, Notre étude est la première étude évaluant l'intérêt d'une acquisition dynamique et du paramètre Ki pour le diagnostic différentiel HDU et TNE

. Choi, Nous nous sommes donc intéressés à l'utilité d'une telle acquisition pour différencier l'HDU physiologique des TNE en imagerie 68 Ga-DOTATOC-TEP/TDM, qui est un piège diagnostique classique, Nos résultats montrent d'excellentes performances diagnostiques des paramètres statiques et dynamiques mais surtout des rapports TLR et TSR, 2013.

, 7% des patients présentaient une HDU pancréatique. Ces données sont légèrement inférieures aux chiffres de la littérature : 34,8% dans l'étude de Graybriel et al. en 68 Ga-DOTATATE-TEP/TDM, 3% dans l'étude de Krauz et al. en 68 Ga-DOTANOC-TEP/TDM [Krauz et al. 2012] et 70% dans l'étude de Jacobsson et al. en 68 Ga-DOTATOC-TEP/TDM, vol.25

, En approche SUV, nos résultats montrent que les paramètres statiques ont de bonnes

. Suvpeak, Nos résultats sont globalement concordants avec les données de la littérature

. Dans-l'étude-de-graybiel, les valeurs de SUVmax moyen dans les HDU et les TNE en

-. Ga, . Irm, and . Étaient-comparables-À-ceux-de-notre-Étude, Aucun cut-off n'était proposé, SUVmax à 10.5±7.2 versus SUVmax médian à 13.62 dans les HDU et SUVmax à 63.2±52.0 versus SUVmax median à 53.99 dans les pTNE respectivement)

. Par and P. Dans-l'étude-de,

-. Ga and . Tdm, Avec le même traceur, il n'était en revanche pas retrouvé de cut-off avec des sensibilité et spécificité correctes par Krauz et al

. Enfin, E. De, and . Preliminaire, Prévalence et taux de malignité des ITf fixant au 18 FDG

. Tep/tdm, résultats d'une étude prospective ETUDE 1 : Valeur diagnostique des paramètres semi-quantitatifs et d'une échelle à 5 2. points dans le diagnostic de malignité des

M. Abecassis, M. J. Mcloughlin, B. Langer, and J. E. Kudlow, Serendipitous adrenal masses: prevalence, significance, and management, Am J Surg, vol.149, pp.783-791, 1985.

R. Abgral, S. Leboulleux, and D. Deandreis, Performance of 18Fluorodeoxyglucose-Positron Emission Tomography and Somatostatin Receptor Scintigraphy for High Ki67 (>=10%) Well-Differentiated Endocrine Carcinoma Staging, Journal of Clinical Endocrinology & Metabolism, vol.96, pp.665-71, 2010.

R. Abgral, N. Keromnes, and P. Robin, Prognostic value of volumetric parameters measured by 18F-FDG PET/CT in patients with head and neck squamous cell carcinoma, Eur J Nucl Med Mol Imaging, vol.41, pp.659-67, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01255796

R. Abgral, G. Valette, and P. Robin, Prognostic evaluation of percentage variation of metabolic tumor burden calculated by dual-phase (18) FDG PET-CT imaging in patients with head and neck cancer, Head Neck, vol.38, issue.1, pp.600-606, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01258692

K. H. Allison and G. W. Sledge, Ambrosini V, Campana D, Bodei 6. L, et al. 68Ga-DOTANOC PET/CT Clinical Impact in Patients with Neuroendocrine Tumors, Journal of Nuclear Medicine, vol.28, pp.669-73, 2010.

G. Akamatsu, K. Mitsumoto, T. Taniguchi, Y. Tsutsui, S. Baba et al., Influences of point-spread function and time-of-flight reconstructions on standardized uptake value of lymph nodze metastases in FDG-PET, Eur J Radiol, vol.83, pp.226-256, 2014.

M. Amadasun and R. King, Textural features corresponding to textural properties, IEEE Trans Systems, Man, and Cybernetics, vol.19, pp.1264-74, 1989.

V. Ambrosini, D. Campana, and L. Bodei, 68Ga-DOTANOC PET/CT Clinical Impact in Patients with Neuroendocrine Tumors, Journal of Nuclear Medicine, vol.51, pp.669-73, 2010.

A. Andrew, B. Kramer, and B. B. Rawdon, The origin of gut and pancreatic neuroendocrine (APUD) cells--the last word?, J Pathol, vol.186, pp.117-125, 1998.

C. Ansquer, S. Scigliano, and E. Mirallié, 18F-FDG PET/CT in the characterization and surgical decision concerning adrenal masses: a prospective multicentre evaluation, Eur J Nucl Med Mol Imaging, vol.37, pp.1669-78, 2010.

P. Antunes, M. Ginj, and H. Zhang, Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals?, Eur J Nucl Med Mol Imaging, vol.34, pp.982-93, 2007.

M. Araz, Ç. Soydal, and E. Özkan, The efficacy of fluorine-18-choline PET/CT in comparison with 99mTc-MIBI SPECT/CT in the localization of a hyperfunctioning parathyroid gland in primary hyperparathyroidism, Nuclear Medicine Communications, vol.39, pp.989-94, 2018.

C. Are, J. F. Hsu, R. A. Ghossein, H. Schoder, J. P. Shah et al., Histological Aggressiveness of Fluorodeoxyglucose Positron-Emission Tomogram (FDG-PET)-Detected Incidental Thyroid Carcinomas, Annals of Surgical Oncology, vol.14, pp.3210-3215, 2007.

M. Aristophanous, B. C. Penney, M. K. Martel, and C. A. Pelizzari, A Gaussian mixture model for definition of lung tumor volumes in positron emission tomography, Med Phys, vol.34, pp.4223-4258, 2007.

R. Arnold, A. Wilke, and A. Rinke, Plasma chromogranin A as marker for survival in patients with metastatic endocrine gastroenteropancreatic tumors, Clin Gastroenterol Hepatol, vol.6, pp.820-827, 2008.

S. Arvola, I. Jambor, and A. Kuisma, Comparison of standardized uptake values between 99mTc-HDP SPECT/CT and 18F-NaF PET/CT in bone metastases of breast and prostate cancer, EJNMMI Res, vol.9, 2019.

J. Bae, C. B. Park, and W. , Incidental thyroid lesions detected by FDG-PET/CT: prevalence and risk of thyroid cancer, World Journal of Surgical Oncology, vol.7, p.63, 2009.

S. Balogova, J. Talbot, and V. Nataf, 18F-fluorodihydroxyphenylalanine vs other radiopharmaceuticals for imaging neuroendocrine tumours according to their type, Eur J Nucl Med Mol Imaging, vol.40, pp.943-66, 2013.

M. Barrio, J. Czernin, and M. W. Yeh, The incidence of thyroid cancer in focal hypermetabolic thyroid lesions: A 18FDG PET/CT study in more than 6,000 patients, Nucl Med Commun, vol.37, pp.1290-1296, 2016.

M. Barrio, J. Czernin, and S. Fanti, The Impact of Somatostatin Receptor-Directed PET/CT on the management of patients with Neuroendocrine Tumor: A Systematic Review and Meta-Analysis, J Nucl Med, vol.58, pp.756-61, 2017.

L. Barzon, N. Sonino, F. Fallo, G. Palu, and M. Boscaro, Prevalence and natural history of adrenal incidentalomas, Eur J Endocrinol, vol.149, pp.273-85, 2003.

E. Baudin, M. Ducreux, T. Belhocine, J. Foidart, and P. Rigo, Fluorodeoxyglucose positron emission tomography and somatostatin receptor scintigraphy for diagnosing and staging carcinoid tumours: correlations with the pathological indexes p53 and Ki-67, Nucl Med Commun, vol.23, pp.727-761, 2002.

S. Bergeret, J. Charbit, C. Ansquer, G. Bera, P. Chanson et al., Novel PET tracers: added value for endocrine disorders, Endocrine, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02336247

F. Bertagna, G. Treglia, A. Piccardo, and R. Giubbini, Diagnostic and Clinical Significance of F-18-FDG-PET/CT Thyroid Incidentalomas, Journal of Clinical Endocrinology & Metabolism, vol.97, pp.3866-75, 2012.

F. Bertagna, G. Treglia, and A. Piccardo, F18-FDG-PET/CT thyroid incidentalomas: a wide retrospective analysis in three Italian centres on the significance of focal uptake and SUV value, Endocrine, vol.43, pp.678-85, 2013.

E. M. Bertino, P. D. Confer, J. E. Colonna, P. Ross, and G. A. Otterson, Pulmonary neuroendocrine/carcinoid tumors: a review article, Cancer, vol.115, pp.4434-4475, 2009.

J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms, vol.198

Q. C. Black, I. S. Grills, and L. L. Kestin, Defining a radiotherapy target with positron emission tomography, Int J Radiat Oncol Biol Phys, vol.60, pp.1272-82, 2004.

M. A. Blake, J. Slattery, and M. K. Kalra, Adrenal lesions: characterization with fused PET/CT image in patients with proved or suspected malignancy--initial experience, Radiology, vol.238, pp.970-977, 2006.

L. A. Boccalatte, F. Higuera, and N. L. Gómez, Usefulness of 18F-Fluorocholine Positron Emission Tomography-Computed Tomography in Locating Lesions in Hyperparathyroidism: A Systematic Review, JAMA Otolaryngol Head Neck Surg, 2019.

L. Bodei, M. Kidd, and G. Paganelli, Long-term tolerability of PRRT in 807 patients with neuroendocrine tumours: the value and limitations of clinical factors, Eur J Nucl Med Mol Imaging, vol.42, pp.5-19, 2015.

L. Bodei, M. S. Kidd, and A. Singh, PRRT genomic signature in blood for prediction of 177Lu-octreotate efficacy, Eur J Nucl Med Mol Imaging, vol.45, pp.1155-69, 2018.

J. Boeckmann, T. Bartel, E. Siegel, D. Bodenner, and B. C. Stack, Can the pathology of a thyroid nodule be determined by positron emission tomography uptake?, Otolaryngol Head Neck Surg, vol.146, pp.906-918, 2012.

R. Boellaard, R. Delgado-bolton, and W. Oyen, Glucose metabolism of the thyroid in Graves' disease measured by F-18-fluoro-deoxyglucose positron emission tomography, Eur J Nucl Med Mol Imaging, vol.42, pp.765-72, 1998.

T. V. Bogsrud, D. Karantanis, and M. A. Nathan, The value of quantifying 18F-FDG uptake in thyroid nodules found incidentally on whole-body PET???CT: Nuclear, Medicine Communications, vol.28, pp.373-81, 2007.

G. W. Boland, M. A. Blake, P. F. Hahn, and W. W. Mayo-smith, Incidental adrenal lesions: principles, techniques, and algorithms for imaging characterization, Radiology, vol.249, pp.756-775, 2008.

G. W. Boland, M. A. Blake, N. S. Holalkere, and P. F. Hahn, PET/CT for the characterization of adrenal masses in patients with cancer: qualitative versus quantitative accuracy in 150 consecutive patients, AJR Am J Roentgenol, vol.192, pp.956-62, 2009.

E. Bombardieri, V. Ambrosini, and C. Aktolun, 111In-pentetreotide scintigraphy: procedure guidelines for tumour imaging, European Journal of Nuclear Medicine and Molecular Imaging, vol.37, pp.1441-1449, 2010.

S. Bonabi, F. Schmidt, M. A. Broglie, S. R. Haile, and S. J. Stoeckli, Thyroid incidentalomas in FDG-PET/CT: prevalence and clinical impact, Eur Arch Otorhinolaryngol, vol.269, pp.2555-60, 2012.

R. Brindle, D. Mullan, B. K. Yap, and A. Gandhi, Thyroid incidentalomas discovered on positron emission tomography CT scanning -Malignancy rate and significance of standardised uptake values, European Journal of Surgical Oncology (EJSO), vol.40, pp.1528-1560, 2014.

M. Bongiovanni, A. Spitale, W. C. Faquin, L. Mazzucchelli, and Z. W. Baloch, The Bethesda System for Reporting Thyroid Cytopathology: A Meta-Analysis, Acta Cytologica, vol.56, pp.333-342, 2012.

M. F. Bozkurt, I. Virgolini, and S. Balogova, Guideline for PET/CT imaging of neuroendocrine neoplasms with 68Ga-DOTA-conjugated somatostatin receptor targeting peptides and 18F-DOPA, Eur J Nucl Med Mol Imaging, vol.44, pp.1588-601, 2017.

C. Brendle, J. Kupferschläger, K. Nikolaou, C. La-fougère, S. Gatidis et al., Is the standard uptake value (SUV) appropriate for quantification in clinical PET imaging? -Variability induced by different SUV measurements and varying reconstruction methods, European Journal of Radiology, vol.84, pp.158-62, 2015.

J. D. Brierley, M. K. Gospodarowicz, and C. Wittekind, TNM classificationof malignant tumors, 2016.

I. Buchmann, M. Henze, and S. Engelbrecht, Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours, Eur J Nucl Med Mol Imaging, vol.34, pp.1617-1643, 2007.

H. Budiawan, G. J. Cheon, and H. Im, Heterogeneity Analysis of (18)F-FDG Uptake in Differentiating Between Metastatic and Inflammatory Lymph Nodes in Adenocarcinoma of the Lung: Comparison with Other Parameters and its Application in a Clinical Setting, Nucl Med Mol Imaging, vol.47, pp.232-273, 2013.

D. L. Bushnell and R. P. Baum, Standard imaging techniques for neuroendocrine tumors

, Endocrinol Metab Clin North Am, vol.40, pp.153-62, 2011.

D. Campana, V. Ambrosini, and R. Pezzilli, Standardized Uptake Values of 68Ga-DOTANOC PET: A Promising Prognostic Tool in Neuroendocrine Tumors, Journal of Nuclear Medicine, vol.51, pp.353-362, 2010.

M. E. Caplin, M. Pavel, and J. B. ?wik?a, Lanreotide in Metastatic Enteropancreatic Neuroendocrine Tumors, New England Journal of Medicine, vol.371, pp.224-257, 2014.

L. Carideo, D. Prosperi, and F. Panzuto, Role of Combined [68Ga]Ga-DOTA-SST Analogues and [18F]FDG PET/CT in the Management of GEP-NENs: A Systematic Review, JCM, vol.8, p.1032, 2019.

E. M. Caoili, M. Korobkin, I. R. Francis, R. H. Cohan, and N. R. Dunnick, Delayed enhanced CT of lipid-poor adrenal adenomas, AJR Am J Roentgenol, vol.175, issue.5, pp.1411-1416, 2000.

M. Cattoni, E. Vallières, and L. M. Brown, Improvement in TNM staging of pulmonary neuroendocrine tumors requires histology and regrouping of tumor size, The Journal of Thoracic and Cardiovascular Surgery, vol.155, pp.405-418, 2018.

K. Chen, D. Bandy, and E. Reiman, Noninvasive quantification of the cerebral metabolic rate for glucose using positron emission tomography, 18F-fluoro-2-deoxyglucose, the Patlak method, and an image-derived input function, J Cereb Blood Flow Metab, vol.18, pp.716-739, 1998.

D. Chen-y-k and C. , Prevalence and risk of cancer of focal thyroid incidentaloma identified by 18F-fluorodeoxyglucose positron emission tomography for cancer screening in healthy subjects, Anticancer research, vol.25, pp.1421-1426, 2005.

W. Chen, M. Parsons, D. A. Torigian, H. Zhuang, and A. Alavi, Evaluation of thyroid FDG uptake incidentally identified on FDG-PET/CT imaging, Nuclear Medicine Communications, vol.30, pp.240-244, 2009.

M. H. Cherk, G. Kong, R. J. Hicks, and M. S. Hofman, Changes in biodistribution on 68Ga-DOTA-Octreotate PET/CT after long acting somatostatin analogue therapy in neuroendocrine tumour patients may result in pseudoprogression, Cancer Imaging, vol.18, p.3, 2018.

, Chiti Comparison of somatostatin receptor imaging, computed tomography and ultrasound in the clinical management of neuroendocrine gastroenteropancreatic tumours, Eur. J. Nucl. Med, vol.25, pp.1396-1403, 1998.

A. R. Cho, I. Lim, and I. I. Na, Evaluation of Adrenal Masses in Lung Cancer Patients Using F-18 FDG PET/CT, Nucl Med Mol Imaging, vol.45, pp.52-60, 2011.

N. Choi, W. Moon, H. Y. Kim, H. G. Roh, and J. W. Choi, Thyroid Incidentaloma Detected by Time-Resolved Magnetic Resonance Angiography at 3T: Prevalence and Clinical Significance, Korean J Radiol, vol.13, pp.275-82, 2012.

H. Choi, H. Yoon, T. S. Kim, J. H. Oh, D. Y. Kim et al., Voxel-based dual-time 18F-FDG parametric imaging for rectal cancer: differentiation of residual tumor from postchemoradiotherapy changes, Nucl Med Commun, vol.34, pp.1166-73, 2013.

S. Chong, K. S. Lee, and H. Y. Kim, Integrated PET-CT for the Characterization of Adrenal Gland Lesions in Cancer Patients: Diagnostic Efficacy and Interpretation Pitfalls, RadioGraphics, vol.26, pp.1811-1835, 2006.

A. Y. Chung, T. B. Tran, and K. T. Brumund, Metastases to the thyroid: a review of the literature from the last decade, Thyroid, vol.22, pp.258-268, 2012.

S. R. Chung, Y. J. Choi, C. H. Suh, H. J. Kim, J. J. Lee et al., Thyroid Incidentalomas Detected on 18 F-Fluorodeoxyglucose Positron Emission Tomography with Computed Tomography: Malignant Risk Stratification and Management Plan, Thyroid, vol.28, pp.762-770, 2018.

A. Cistaro, N. Asabella, A. Coppolino, and P. , Diagnostic and prognostic value of 18F-FDG PET/CT in comparison with morphological imaging in primary adrenal gland malignancies -a multicenter experience, Hell J Nucl Med, vol.18, pp.97-102, 2015.

M. S. Cohen, N. Arslan, and F. Dehdashti, Risk of malignancy in thyroid incidentalomas identified by fluorodeoxyglucose-positron emission tomography, Surgery, vol.130, pp.941-947, 2001.

J. Daisne, M. Sibomana, A. Bol, G. Cosnard, M. Lonneux et al., Evaluation of a multimodality image (CT, MRI and PET) coregistration procedure on phantom and head and neck cancer patients: accuracy, reproducibility and consistency, Radiother Oncol, vol.69, pp.237-282, 2003.

A. Dasari, C. Shen, and D. Halperin, Trends in the Incidence, Prevalence, and Survival Outcomes in Patients With Neuroendocrine Tumors in the United States, JAMA Oncol, vol.3, pp.1335-1377, 2017.

D. Deandreis, A. Ghuzlan, A. Auperin, and A. , Is 18 F-Fluorodeoxyglucose-PET/CT Useful for the Presurgical Characterization of Thyroid Nodules with Indeterminate Fine Needle Aspiration Cytology?, Thyroid, vol.22, pp.165-72, 2012.

Ö. Demir, N. Köse, E. Özkan, U. Ünlütürk, G. Aras et al., Clinical significance of thyroid incidentalomas identified by 18F-FDG PET/CT: correlation of ultrasonograpy findings with cytology results, Nuclear Medicine Communications, vol.37, pp.715-735, 2016.

L. De-mestier, E. Pasmant, and C. Fleury, Familial small-intestine carcinoids: Chromosomal alterations and germline inositol polyphosphate multikinase sequencing, Digestive and Liver Disease, vol.49, pp.98-102, 2017.

L. De-mestier, Prognostic Impact of Uptake at 18FluoroDihydroxy-Phenylalanine (FDOPA-PET) in Advanced Small-Intestine Neuroendocrine Tumors (siNET), ENETS, vol.2019

E. H. Dibble, L. Alvarez, A. C. Truong, M. Mercier, G. Cook et al.,

. 18f-fdg, Metabolic Tumor Volume and Total Glycolytic Activity of Oral Cavity and Oropharyngeal Squamous Cell Cancer: Adding Value to Clinical Staging, Journal of Nuclear Medicine, vol.53, pp.709-724, 2012.

A. Dierick-gallet, I. Borget, C. Lepoutre, P. Vielh, A. Alghuzlan et al., Poster P1-051: Incidentalomes thyroïdiens fxant le FDG: prise en compte des critères échographiques de suspicion de malignité dans les indications de cytoponction, vol.75, p.319, 2014.

M. K. Dishop and S. Kuruvilla, Primary and metastatic lung tumors in the pediatric population: a review and 25-year experience at a large children's hospital, Arch Pathol Lab Med, vol.132, pp.1079-103, 2008.

L. A. Drever, W. Roa, A. Mcewan, and D. Robinson, Comparison of three image segmentation techniques for target volume delineation in positron emission tomography, J Appl Clin Med Phys, vol.8, pp.93-109, 2007.

C. Dromain, T. De-baere, and J. Lumbroso, Detection of liver metastases from endocrine tumors: a prospective comparison of somatostatin receptor scintigraphy, computed tomography, and magnetic resonance imaging, J Clin Oncol, vol.23, pp.70-78, 2005.

P. S. Duarte, J. Marin, A. De-carvalho-jw-de, M. T. Sapienza, and C. A. Buchpiguel,

/. Iodine and . Fdg-'flip-flop, Phenomenon Inside a Large Metastatic Thyroid Cancer Lesion Better Characterized on SPECT/CT and PET/CT Studies, Clin Nucl Med, vol.43, pp.436-444, 2018.

R. Dudczak and T. Traub-weidinger, PET and PET/CT in endocrine tumours, European Journal of Radiology, vol.73, pp.481-93, 2010.

S. B. Edge, D. R. Byrd, C. C. Compton, A. G. Fritz, F. L. Greene et al., AJCC Cancer Staging Manual, 2010.

G. Eisenhofer, S. R. Bornstein, F. M. Brouwers, N. Cheung, P. L. Dahia et al., Malignant pheochromocytoma: current status and initiatives for future progress, Endocr Relat Cancer, vol.11, pp.423-459, 2004.

J. A. Eloy, E. M. Brett, and G. M. Fatterpekar, The Significance and Management of Incidental [ 18 F]Fluorodeoxyglucose-Positron-Emission Tomography Uptake in the Thyroid Gland in Patients with Cancer, AJNR Am J Neuroradiol, vol.30, pp.1431-1435, 2009.

Y. E. Erdi, O. Mawlawi, and S. M. Larson, Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding, Cancer, vol.80, pp.2505-2514, 1997.

P. D. Evans, C. M. Miller, and D. Marin, FDG-PET/CT characterization of adrenal nodules: diagnostic accuracy and interreader agreement using quantitative and qualitative methods, Acad Radiol, vol.20, pp.923-932, 2013.

S. Ezziddin, M. Attassi, and C. J. Yong-hing, Predictors of long-term outcome in patients with well-differentiated gastroenteropancreatic neuroendocrine tumors after peptide receptor radionuclide therapy with 177Lu-octreotate, J Nucl Med, vol.55, pp.183-90, 2014.

A. Faggiano, P. Ferolla, and F. Grimaldi, Natural history of gastro-entero-pancreatic and thoracic neuroendocrine tumors. Data from a large prospective and retrospective Italian epidemiological study: the NET management study, J Endocrinol Invest, vol.35, pp.817-840, 2012.

M. Fassnacht, W. Arlt, and I. Bancos, Management of adrenal incidentalomas: European Society of Endocrinology Clinical Practice Guideline in collaboration with the European Network for the Study of Adrenal Tumors, Eur J Endocrinol, vol.175, pp.1-34, 2016.

J. Feuardent, M. Soret, O. De-dreuille, H. Foehrenbach, and I. Buvat, Reliability of uptake estimates in FDG PET as a function of acquisition and processing protocols using the CPET, IEEE Transactions on Nuclear Science, vol.52, pp.1447-52, 2005.

A. Frilling, G. Akerström, and M. Falconi, Neuroendocrine tumor disease: an evolving landscape, Endocr Relat Cancer, vol.19, pp.163-185, 2012.

V. Froeling, R. Röttgen, and F. Collettini, Detection of pancreatic neuroendocrine tumors (PNET) using semi-quantitative [68Ga]DOTATOC PET in combination with multiphase contrast-enhanced CT, Q J Nucl Med Mol Imaging, vol.58, pp.310-318, 2014.

M. Gabriel, C. Decristoforo, and D. Kendler, 68Ga-DOTA-Tyr3-Octreotide PET in Neuroendocrine Tumors: Comparison with Somatostatin Receptor Scintigraphy and CT, Journal of Nuclear Medicine, vol.48, pp.508-526, 2007.

M. Gabriel, A. Oberauer, and G. Dobrozemsky, 68Ga-DOTA-Tyr3-octreotide PET for assessing response to somatostatin-receptor-mediated radionuclide therapy, J Nucl Med, vol.50, pp.1427-1461, 2009.

S. Gaillard and P. Meyer, Incidentalome surrénalien : maladie des temps modernes, Revue Médicale Suisse, p.5, 2009.

A. Gallamini, S. F. Barrington, and A. Biggi, The predictive role of interim Positron Emission Tomography on Hodgkin lymphoma treatment outcome is confirmed using the 5-point scale interpretation criteria, Computer Graphics and Image Processing, vol.4, pp.172-181, 1975.

S. Gao, C. Huang, and X. Huang, Ki-67 Index of 5% is Better Than 2% in Stratifying G1 and G2 of the World Health Organization Grading System in Pancreatic Neuroendocrine Tumors, Pancreas, vol.48, pp.795-803, 2019.

E. Garin, L. Jeune, F. Devillers, and A. , Predictive Value of 18F-FDG PET and Somatostatin Receptor Scintigraphy in Patients with Metastatic Endocrine Tumors, Journal of Nuclear Medicine, vol.50, pp.858-64, 2009.

X. Geets, J. A. Lee, A. Bol, M. Lonneux, and V. Grégoire, A gradient-based method for segmenting FDG-PET images: methodology and validation, Eur J Nucl Med Mol Imaging, vol.34, pp.1427-1465, 2007.

H. Geijer and L. H. Breimer, Somatostatin receptor PET/CT in neuroendocrine tumours: update on systematic review and meta-analysis, Eur J Nucl Med Mol Imaging, vol.40, pp.1770-80, 2013.

M. Gerlinger, A. J. Rowan, and S. Horswell, Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing, New England Journal of Medicine, vol.366, pp.883-92, 2012.

H. Gharib, E. Papini, and J. R. Garber, UPDATE: APPENDIX. Endocrine Practice, vol.22, pp.1-60, 2016.

R. J. Gillies, A. R. Anderson, R. A. Gatenby, and D. L. Morse, The biology underlying molecular imaging in oncology: from genome to anatome and back again, Clinical Radiology, vol.65, pp.517-538, 2010.

S. U. Goebel, J. Serrano, F. Yu, F. Gibril, D. J. Venzon et al., Prospective study of the value of serum chromogranin A or serum gastrin levels in the assessment of the presence, extent, or growth of gastrinomas, Cancer, vol.85, pp.1470-83, 1999.

I. Goncalves, K. Burbury, and M. Michael, Characteristics and outcomes of therapyrelated myeloid neoplasms after peptide receptor radionuclide/chemoradionuclide therapy (PRRT/PRCRT) for metastatic neuroendocrine neoplasia: a single-institution series, Eur J Nucl Med Mol Imaging, vol.46, pp.1902-1912, 2019.

S. Gratz, B. Kemke, W. Kaiser, J. Heinis, T. M. Behr et al., Incidental non-secreting adrenal masses in cancer patients: intra-individual comparison of 18F-fluorodeoxyglucose positron emission tomography/computed tomography with computed tomography and shift magnetic resonance imaging, J Int Med Res, vol.38, pp.633-677, 2010.

C. E. Graybiel and T. Hope, Physiologic versus malignant uncinate process uptake on 68Ga-DOTA-TATE PET/MRI, J Nucl Med, vol.60, pp.565-565, 2019.

L. Groussin, G. Bonardel, and S. Silvéra, 18F-Fluorodeoxyglucose Positron Emission Tomography for the Diagnosis of Adrenocortical Tumors: A Prospective Study in 77 Operated Patients, J Clin Endocrinol Metab, vol.94, pp.1713-1735, 2009.

M. M. Grumbach, B. Biller, and G. D. Braunstein, Management of the clinically inapparent adrenal mass ('incidentaloma'), Ann Intern Med, vol.138, pp.424-433, 2003.

C. Guerin, F. Pattou, and L. Brunaud, Performance of 18F-FDG PET/CT in the Characterization of Adrenal Masses in Noncancer Patients: A Prospective Study, J Clin Endocrinol Metab, vol.102, pp.2465-72, 2017.

C. Guezennec, P. Robin, and F. Orlhac, Prognostic value of textural indices extracted from pretherapeutic 18-F FDG-PET/CT in head and neck squamous cell carcinoma, Head Neck, 2018.

L. Gust, D. Taieb, and A. Beliard, Preoperative 18F-FDG Uptake is Strongly Correlated with Malignancy, Weiss Score, and Molecular Markers of Aggressiveness in Adrenal Cortical Tumors, World J Surg, vol.36, pp.1406-1416, 2012.

B. I. Gustafsson, M. Kidd, A. Chan, M. V. Malfertheiner, and I. M. Modlin, Bronchopulmonary neuroendocrine tumors, Cancer, vol.113, pp.5-21, 2008.

P. Gut, A. Czarnywojtek, and J. Fischbach, Chromogranin A -unspecific neuroendocrine marker. Clinical utility and potential diagnostic pitfalls, Arch Med Sci, vol.12, pp.1-9, 2016.

N. Hagenimana, J. Dallaire, É. Vallée, and M. Belzile, Thyroid incidentalomas on 18FDG-PET/CT: a metabolico-pathological correlation, J Otolaryngol Head Neck Surg, vol.46, 2017.

L. Hagmarker, J. Svensson, and T. Rydén, Bone Marrow Absorbed Doses and Correlations with Hematologic Response During 177Lu-DOTATATE Treatments Are Influenced by Image-Based Dosimetry Method and Presence of Skeletal Metastases, J Nucl Med, vol.60, pp.1406-1419, 2019.

S. Han, T. Kim, and S. Jeon, Analysis of adrenal masses by 18F-FDG positron emission tomography scanning, Int J Clin Pract, vol.61, pp.802-811, 2007.

R. M. Haralick, K. Shanmugam, and I. Dinstein, Textural Features for Image Classification, IEEE Transactions on Systems, Man, and Cybernetics, vol.3, pp.610-631, 1973.

T. R. Harring, N. Nguyen, J. A. Goss, and C. A. O'mahony, Treatment of liver metastases in patients with neuroendocrine tumors: a comprehensive review, Int J Hepatol, 2011.

M. M. Hassan, A. Phan, D. Li, C. G. Dagohoy, C. Leary et al., Risk factors associated with neuroendocrine tumors: A U.S.-based case-control study, Int J Cancer, vol.123, pp.867-73, 2008.

M. Hatt, F. Lamare, N. Boussion, A. Turzo, C. Collet et al., Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET, Phys Med Biol, vol.52, pp.3467-91, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00150348

M. Hatt, C. Le-rest, C. Turzo, A. Roux, C. Visvikis et al., A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET, IEEE Trans Med Imaging, vol.28, pp.881-93, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00372910

M. Hatt, D. Visvikis, O. Pradier, C. Rest, and C. , Baseline 18 F-FDG PET image-derived parameters for therapy response prediction in oesophageal cancer, Eur J Nucl Med Mol Imaging, vol.38, pp.1595-606, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00595534

M. Hatt, F. Tixier, C. Le-rest, C. Visvikis, and D. , Nouveaux indices en TEP/TDM : mythe et réalités, Médecine Nucléaire, vol.39, pp.331-339, 2015.

A. R. Haug, G. Assmann, and C. Rist, Quantification of immunohistochemical expression of somatostatin receptors in neuroendocrine tumors using 68Ga-DOTATATE PET/CT, Radiologe, vol.50, pp.349-54, 2010.

A. R. Haug, C. J. Auernhammer, and B. Wangler, 68Ga-DOTATATE PET/CT for the Early Prediction of Response to Somatostatin Receptor-Mediated Radionuclide Therapy in Patients with Well-Differentiated Neuroendocrine Tumors, Journal of Nuclear Medicine, vol.51, pp.1349-56, 2010.

B. R. Haugen, E. K. Alexander, and K. C. Bible, American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer, Thyroid, vol.26, pp.1-133, 2015.

M. Heetfeld, C. N. Chougnet, and I. H. Olsen, Characteristics and treatment of patients with G3 gastroenteropancreatic neuroendocrine neoplasms, Endocr Relat Cancer, vol.22, pp.657-64, 2015.

O. Hentic, A. Couvelard, and V. Rebours, Ki-67 index, tumor differentiation, and extent of liver involvement are independent prognostic factors in patients with liver metastases of digestive endocrine carcinomas, Endocrine-Related Cancer, vol.18, pp.51-60, 2011.

M. Henze, J. Schuhmacher, and P. Hipp, PET imaging of somatostatin receptors using

, DOTA-D-Phe1-Tyr3-octreotide: first results in patients with meningiomas, J Nucl Med, vol.42, pp.1053-1059, 2001.

T. Hilal, Current understanding and approach to well differentiated lung neuroendocrine tumors: an update on classification and management, Ther Adv Med Oncol, vol.9, pp.189-99, 2017.

T. Ho, M. Liou, K. Lin, and Y. , Prevalence and significance of thyroid uptake detected by 18F-FDG PET, Endocrine, vol.40, pp.297-302, 2011.

M. Hockel, K. Schlenger, B. Aral, M. Mitze, U. Schaffer et al., Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix, Cancer Res, vol.56, pp.4509-4524, 1996.

F. Hofheinz, R. Bütof, and I. Apostolova, An investigation of the relation between tumor-to-liver ratio (TLR) and tumor-to-blood standard uptake ratio (SUR) in oncological FDG PET, EJNMMI Res, vol.6, 2016.

J. Hofland, G. Kaltsas, W. W. De-herder, M. S. ;-hofman, W. Lau et al., Somatostatin Receptor Imaging with 68 Ga DOTATATE PET/CT: Clinical Utility, Normal Patterns, Pearls, and Pitfalls in Interpretation, RadioGraphics, vol.137, pp.500-516, 2015.

Y. Hsiao, P. Wu, N. Chiu, W. Yao, B. Lee et al., The use of dual-phase 18F-FDG PET in characterizing thyroid incidentalomas, Clinical Radiology, vol.66, pp.1197-202, 2011.

S. C. Huang, Anatomy of SUV. Standardized uptake value, Nucl Med Biol, vol.27, pp.643-649, 2000.

K. F. Hübner, E. Buonocore, and H. R. Gould, Differentiating benign from malignant lung lesions using 'quantitative' parameters of FDG PET images, Clin Nucl Med, vol.21, pp.941-950, 1996.

D. Huizing, B. J. De-wit-van-der-veen, M. Verheij, and M. Stokkel, Dosimetry methods and clinical applications in peptide receptor radionuclide therapy for neuroendocrine tumours: a literature review, EJNMMI Res, vol.8, p.89, 2018.

A. Ianniello, M. Sansovini, and S. Severi, Peptide receptor radionuclide therapy with (177)Lu-DOTATATE in advanced bronchial carcinoids: prognostic role of thyroid transcription factor 1 and (18)F-FDG PET, Eur J Nucl Med Mol Imaging, vol.43, pp.1040-1046, 2016.

E. Ilan, M. Sandström, I. Velikyan, A. Sundin, B. Eriksson et al., Parametric Net Influx Rate Images of 68 Ga-DOTATOC and 68 Ga-DOTATATE: Quantitative Accuracy and Improved Image Contrast, Journal of Nuclear Medicine, vol.58, pp.744-753, 2017.

E. Ilan, I. Velikyan, M. Sandström, A. Sundin, and M. Lubberink, Tumor-to-blood ratio for assessment of somatostatin receptor density in neuroendocrine tumors using 68 Ga-DOTATOC and 68 Ga-DOTATATE, J Nucl Med, 2019.

H. Ilhan, S. Lindner, and A. Todica, Biodistribution and first clinical results of 18F-SiFAlin-TATE PET: a novel 18F-labeled somatostatin analog for imaging of neuroendocrine tumors, Eur J Nucl Med Mol Imaging, 2019.

A. Imperiale, E. Rust, and S. Gabriel, 18F-fluorodihydroxyphenylalanine PET/CT in patients with neuroendocrine tumors of unknown origin: relation to tumor origin and differentiation, J Nucl Med, vol.55, pp.367-72, 2014.

F. Inzani, G. Petrone, and G. Rindi, The New World Health Organization Classification for Pancreatic Neuroendocrine Neoplasia, Endocrinology and Metabolism Clinics of North America, vol.47, pp.463-70, 2018.

T. Ishizuka, K. Kajita, and K. Kamikubo, Phospholipid/Ca2+-dependent protein kinase activity in human parathyroid adenoma, Endocrinol Jpn, vol.34, pp.965-973, 1987.

H. Jacobsson, P. Larsson, C. Jonsson, E. Jussing, and P. Grybäck, Normal Uptake of 68Ga-DOTA-TOC by the Pancreas Uncinate Process Mimicking Malignancy at Somatostatin Receptor PET, Clinical Nuclear Medicine, vol.37, pp.362-367, 2012.

J. Jamsek, I. Zagar, S. Gaberscek, and M. Grmek, Thyroid lesions incidentally detected by 18F-FDG PET-CT -a two centre retrospective study, Radiology and Oncology, vol.49, 2015.

S. Jana, T. Zhang, D. M. Milstein, C. R. Isasi, and M. D. Blaufox, FDG-PET and CT characterization of adrenal lesions in cancer patients, Eur J Nucl Med Mol Imaging, vol.33, pp.29-35, 2006.

E. T. Janson, L. Holmberg, and M. Stridsberg, Carcinoid tumors: analysis of prognostic factors and survival in 301 patients from a referral center, Ann Oncol, vol.8, pp.685-90, 1997.

A. Kandathil, K. K. Wong, D. J. Wale, M. C. Zatelli, A. M. Maffione et al., Metabolic and anatomic characteristics of benign and malignant adrenal masses on positron emission tomography/computed tomography: a review of literature, Endocrine, vol.49, pp.6-26, 2015.

B. J. Kang, O. Jh, J. H. Baik, S. L. Jung, Y. H. Park et al., Incidental thyroid uptake on F-18 FDG PET/CT: correlation with ultrasonography and pathology, Ann Nucl Med, vol.23, pp.729-766, 2009.

N. A. Karakatsanis, Y. Zhou, and M. A. Lodge, Generalized whole-body Patlak parametric imaging for enhanced quantification in clinical PET, Phys Med Biol, vol.60, pp.8643-73, 2015.

J. W. Keyes, SUV: standard uptake or silly useless value?, J Nucl Med, vol.36, pp.1836-1845, 1995.

E. Kim, C. S. Park, and W. Y. Chung, New sonographic criteria for recommending fine-needle aspiration biopsy of nonpalpable solid nodules of the thyroid, American Journal of Roentgenology, vol.178, pp.687-691, 2002.

T. Y. Kim, W. B. Kim, G. Gong, S. J. Hong, and Y. K. Shong, Metastasis to the thyroid diagnosed by fine-needle aspiration biopsy, Clinical Endocrinology, vol.62, pp.236-277, 2005.

B. H. Kim, M. A. Na, I. J. Kim, S. Kim, and Y. Kim, Risk stratification and prediction of cancer of focal thyroid fluorodeoxyglucose uptake during cancer evaluation, Ann Nucl Med, vol.24, pp.721-729, 2010.

B. H. Kim, S. Kim, and H. Kim, Diagnostic value of metabolic tumor volume assessed by 18F-FDG PET/CT added to SUVmax for characterization of thyroid 18F-FDG incidentaloma, Nuclear Medicine Communications, p.1, 2013.

H. K. Kim, S. S. Kim, and C. Y. Oak, Diffuse metastasis to the thyroid: unique ultrasonographic finding and clinical correlation, J Korean Med Sci, vol.29, pp.818-824, 2014.

Y. Kim, G. J. Cheon, and J. C. Paeng, Total lesion glycolysis as the best 18F-FDG PET/CT parameter in differentiating intermediate-high risk adrenal incidentaloma, Nucl Med Commun, vol.35, pp.606-618, 2014.

S. Kim and S. Chang, Predictive value of intratumoral heterogeneity of F-18 FDG uptake for characterization of thyroid nodules according to Bethesda categories of fine needle aspiration biopsy results, Endocrine, vol.50, pp.681-689, 2015.

B. S. Kim, S. Kim, and K. Pak, Diagnostic value of metabolic heterogeneity as a reliable parameter for differentiating malignant parotid gland tumors, Annals of Nuclear Medicine, vol.30, pp.346-54, 2016.

S. Kim, S. Lee, K. Pak, I. Kim, and K. Kim, Diagnostic accuracy of 18 F-FDG PET or PET/CT for the characterization of adrenal masses: a systematic review and meta-analysis, BJR, 2018.

D. King, B. Stackjr, P. Spring, R. Walker, and D. Bodenner, Incidence of thyroid carcinoma in fluorodeoxyglucose positron emission tomography-positive thyroid incidentalomas, Otolaryngology -Head and Neck Surgery, vol.137, pp.400-404, 2007.

R. T. Kloos, M. D. Gross, I. R. Francis, M. Korobkin, and B. Shapiro, Incidentally discovered adrenal masses, Endocr Rev, vol.16, pp.460-84, 1995.

W. Koch, C. J. Auernhammer, and J. Geisler, Treatment with Octreotide in Patients with Well-Differentiated Neuroendocrine Tumors of the Ileum: Prognostic Stratification with Ga-68-DOTA-TATE Positron Emission Tomography, Mol Imaging, 2014.

J. P. Kokko, T. C. Brown, and M. M. Berman, Adrenal adenoma and hypertension, Lancet, vol.1, pp.468-70, 1967.

C. Kratochwil, M. Stefanova, and E. Mavriopoulou, SUV of [68Ga]DOTATOC-PET/CT Predicts Response Probability of PRRT in Neuroendocrine Tumors, Mol Imaging Biol, vol.17, pp.313-321, 2015.

Y. Krausz, N. Freedman, and R. Rubinstein, 68Ga-DOTA-NOC PET/CT Imaging of Neuroendocrine Tumors: Comparison with 111In-DTPA-Octreotide (OctreoScan®), Mol Imaging Biol, vol.13, pp.583-93, 2010.

Y. Krausz, R. Rubinstein, and L. Appelbaum, Ga-68 DOTA-NOC Uptake in the Pancreas: Pathological and Physiological Patterns, Clinical Nuclear Medicine, vol.37, pp.57-62, 2012.

E. P. Krenning, D. J. Kwekkeboom, and W. H. Bakker, Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]-and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients, Eur J Nucl Med, vol.20, pp.716-747, 1993.

E. Kresnik, H. J. Gallowitsch, and P. Mikosch, Fluorine-18-fluorodeoxyglucose positron emission tomography in the preoperative assessment of thyroid nodules in an endemic goiter area, Surgery, vol.133, pp.294-303, 2003.

A. Kroiss, D. Putzer, and C. Decristoforo, 68Ga-DOTA-TOC uptake in neuroendocrine tumour and healthy tissue: differentiation of physiological uptake and pathological processes in PET/CT, Eur J Nucl Med Mol Imaging, vol.40, pp.514-537, 2013.

M. H. Kulke and R. J. Mayer, Carcinoid tumors, N Engl J Med, vol.340, pp.858-68, 1999.

M. H. Kulke, Clinical presentation and management of carcinoid tumors, Hematol Oncol Clin North Am, vol.21, pp.433-55, 2007.

M. H. Kulke, H. Lenz, and N. J. Meropol, Activity of sunitinib in patients with advanced neuroendocrine tumors, J Clin Oncol, vol.26, pp.3403-3413, 2008.

J. Kunikowska, R. Matyskiel, S. Toutounchi, L. Grabowska-derlatka, L. Koperski et al., What parameters from 18F-FDG PET/CT are useful in evaluation of adrenal lesions?, Eur J Nucl Med Mol Imaging, vol.41, pp.2273-80, 2014.

P. L. Kunz, P. J. Catalano, and H. Nimeiri, A randomized study of temozolomide or temozolomide and capecitabine in patients with advanced pancreatic neuroendocrine tumors: A trial of the ECOG-ACRIN Cancer Research Group (E2211), JCO, vol.36, pp.4004-4004, 2018.

S. Kurata, M. Ishibashi, and Y. Hiromatsu, Diffuse and diffuse-plus-focal uptake in the thyroid gland identified by using FDG-PET: prevalence of thyroid cancer and Hashimoto's thyroiditis, Ann Nucl Med, vol.21, pp.325-355, 2007.

M. Kuruva, T. Bartel, and S. Osmany,

L. K. Kvols, K. E. Oberg, and T. M. O'dorisio, Pasireotide (SOM230) shows efficacy and tolerability in the treatment of patients with advanced neuroendocrine tumors refractory or resistant to octreotide LAR: results from a phase II study, Endocr Relat Cancer, vol.19, pp.657-66, 2012.

J. Y. Kwak, E. Kim, and M. Yun, Thyroid Incidentalomas Identified by 18 F-FDG PET: Sonographic Correlation, American Journal of Roentgenology, vol.191, pp.598-603, 2008.

D. J. Kwekkeboom, W. W. De-herder, and B. L. Kam, Treatment with the radiolabeled somatostatin analog, J Clin Oncol, vol.26, pp.2124-2154, 2008.

P. Lambin, R. Leijenaar, and T. M. Deist, Radiomics: the bridge between medical imaging and personalized medicine, Nature Reviews Clinical Oncology, vol.14, pp.749-62, 2017.

N. Launay, S. Silvera, and F. Tenenbaum, Value of 18-F-FDG PET/CT and CT in the Diagnosis of Indeterminate Adrenal Masses, Int J Endocrinol, p.213875, 2015.

N. M. Le-douarin, M. A. Teillet, and G. Couly, Chimères embryonnaires et développement du système nerveux. M/S Médecine sciences, , vol.6, pp.228-244, 1990.

W. Lee, B. Kim, and M. Kim, Characteristics of thyroid incidentalomas detected by pre-treatment [18F]FDG PET or PET/CT in patients with cervical cancer, J Gynecol Oncol, vol.23, pp.43-50, 2012.

J. Y. Lee, J. Y. Choi, and Y. Choi, Diffuse Thyroid Uptake Incidentally Found on 18 F-Fluorodeoxyglucose Positron Emission Tomography in Subjects without Cancer History, Korean Journal of Radiology, vol.14, p.501, 2013.

S. Lee, T. Park, and S. Park, The Clinical Role of Dual-Time-Point 18F-FDG PET/CT in Differential Diagnosis of the Thyroid Incidentaloma, Nucl Med Mol Imaging, vol.48, pp.121-130, 2014.

V. Liberini, Can Texture Analysis Be Used for a Vivo, Neuroendocrine Tumors? A First Step Feasibility Study with 68Ga-DOTATOC PET/CT ENETS 2019

J. D. Lin, H. F. Weng, and Y. S. Ho, Clinical and pathological characteristics of secondary thyroid cancer, Thyroid, vol.8, pp.149-153, 1998.

M. Lin, C. Wong, P. Lin, I. H. Shon, R. Cuganesan et al., The prevalence and clinical significance of 18F-2-fluoro-2-deoxy-D-glucose (FDG) uptake in the thyroid gland on PET or PET-CT in patients with lymphoma, Hematol Oncol, vol.29, pp.67-74, 2011.

G. Low, H. Dhliwayo, and D. J. Lomas, Adrenal neoplasms, Clinical Radiology, vol.67, pp.988-1000, 2012.

Y. Lu, D. Xie, W. Huang, H. Gong, and J. Yu, 18F-FDG PET/CT in the evaluation of adrenal masses in lung cancer patients, Neoplasma, vol.57, pp.129-163, 2010.

C. Lussey-lepoutre, E. Hindié, and F. Montravers, The current role of 18F-FDOPA PET for neuroendocrine tumor imaging, Médecine Nucléaire, vol.40, pp.20-30, 2016.

J. B. Macqueen, Some methods of classication and analysis of multivariate observations, Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, pp.281-97, 1967.

W. Makis and A. Ciarallo, Thyroid Incidentalomas on 18F-FDG PET/CT: Clinical Significance and Controversies, Mol Imaging Radionucl Ther, vol.26, pp.93-100, 2017.

G. Mansmann, J. Lau, E. Balk, M. Rothberg, Y. Miyachi et al., The clinically inapparent adrenal mass: update in diagnosis and management, Endocr Rev, vol.25, pp.309-349, 2004.

P. M. Manohar, L. J. Beesley, E. L. Bellile, F. P. Worden, and A. M. Avram, Prognostic Value of FDG-PET/CT Metabolic Parameters in Metastatic Radioiodine-Refractory Differentiated Thyroid Cancer, Clin Nucl Med, vol.43, pp.641-648, 2018.

F. Mantero, M. Terzolo, and G. Arnaldi, A Survey on Adrenal Incidentaloma in Italy. JCEM, vol.85, pp.637-681, 2000.

B. D. Matthews, B. T. Heniford, P. R. Reardon, F. C. Brunicardi, and F. L. Greene, Surgical experience with nonfunctioning neuroendocrine tumors of the pancreas, Am Surg, vol.66, pp.1122-1123, 2000.

W. W. Mayo-smith, G. W. Boland, R. B. Noto, and M. J. Lee, State-of-the-art adrenal imaging, Radiographics, vol.21, pp.995-1012, 2001.

F. Menegaux, N. Chéreau, and J. Peix, Conduite à tenir devant un incidentalome surrénalien, Journal de Chirurgie Viscérale, vol.151, pp.366-76, 2014.

U. Metser, E. Miller, H. Lerman, G. Lievshitz, S. Avital et al., 18F-FDG PET/CT in the evaluation of adrenal masses, J Nucl Med, vol.47, pp.32-39, 2006.

G. Meyer, H. M?cke, J. Schuhmacher, W. H. Knapp, and M. Hofmann, 68Ga-labelled DOTA-derivatised peptide ligands, Eur J Nucl Med Mol Imaging, p.31, 2004.

E. Mirallié, J. Rigaud, and M. Mathonnet, Management and prognosis of metastases to the thyroid gland, Journal of the American College of Surgeons, vol.200, pp.203-210, 2005.

D. Mirando, Y. Dewaraja, A. Kruzer, and A. Nelson, Personalized therapy planning for 177Lu-DOTATATE using a kidney-driven dose optimization method, J Nucl Med, vol.60, pp.270-270, 2019.

D. Montgomery, A. Amira, and H. Zaidi, Fully automated segmentation of oncological PET volumes using a combined multiscale and statistical model, Med Phys, vol.34, pp.722-758, 2007.

F. Montravers, D. Grahek, and K. Kerrou, Can Fluorodihydroxyphenylalanine PET Replace Somatostatin Receptor Scintigraphy in Patients with Digestive Endocrine Tumors?, J Nucl Med, vol.47, pp.1455-62, 2006.

L. Morris, N. Riaz, and A. Desrichard, Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival, Oncotarget, vol.7, pp.10051-63, 2016.

A. M. Mougey and A. Douglas, Neuroendocrine Tumors: Review and Clinical Update, 2007.

M. Nakajo, M. Jinguji, and Y. Fukukura, FDG-PET/CT and FLT-PET/CT for differentiating between lipid-poor benign and malignant adrenal tumours, Eur Radiol, vol.25, pp.3696-705, 2015.

M. Nakajo, M. Jinguji, M. Nakajo, T. Shinaji, Y. Nakabeppu et al., Texture analysis of FDG PET/CT for differentiating between FDG-avid benign and metastatic adrenal tumors: efficacy of combining SUV and texture parameters, Abdom Radiol (NY), vol.42, pp.2882-2891, 2017.

S. Y. Nam, J. Roh, J. S. Kim, J. H. Lee, S. Choi et al., Focal uptake of 18 Ffluorodeoxyglucose by thyroid in patients with nonthyroidal head and neck cancers, Clin Endocrinol, vol.67, pp.135-144, 2007.

S. Nayan, J. Ramakrishna, and M. K. Gupta, The Proportion of Malignancy in Incidental Thyroid Lesions on 18-FDG PET Study A Systematic Review and Meta-analysis, Otolaryngology --Head and Neck Surgery, p.0194599814530861, 2014.

U. Nestle, S. Kremp, and A. Schaefer-schuler, Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer, J Nucl Med, vol.46, pp.1342-1350, 2005.

G. P. Nicolas, N. Schreiter, and F. Kaul, Sensitivity Comparison of 68Ga-OPS202 and 68Ga-DOTATOC PET/CT in Patients with Gastroenteropancreatic Neuroendocrine Tumors: A Prospective Phase II Imaging Study, J Clin Endocrinol Metab, vol.59, pp.4106-4119, 2010.

C. Nioche, F. Orlhac, and S. Boughdad, LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity, Cancer Res, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01938545

I. Nilsson, F. Arnberg, J. Zedenius, and A. Sundin, Thyroid Incidentaloma Detected by Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography: Practical Management Algorithm, World J Surg, vol.35, pp.2691-2698, 2011.

F. R. Nobels, D. J. Kwekkeboom, and W. Coopmans, Chromogranin A as serum marker for neuroendocrine neoplasia: comparison with neuron-specific enolase and the alphasubunit of glycoprotein hormones, J Clin Endocrinol Metab, vol.82, pp.2622-2630, 1997.

K. , N. S. Matsushita, and A. , High incidence of thyroid cancer in focal thyroid incidentaloma detected by 18F-fluorodexyglucose positron emission tomography in relatively young healthy subjects: results of 3-year follow-up, Endocrine journal, vol.57, p.395, 2010.

K. Oberg, I. M. Modlin, D. Herder, and W. , Consensus on biomarkers for neuroendocrine tumour disease, Lancet Oncol, vol.16, pp.435-481, 2015.

K. Oberg, E. Krenning, and A. Sundin, A Delphic consensus assessment: imaging and biomarkers in gastroenteropancreatic neuroendocrine tumor disease management, Endocrine Connections, vol.5, pp.174-87, 2016.

K. Ohba, S. Nishizawa, and A. Matsushita, High incidence of thyroid cancer in focal thyroid incidentaloma detected by 18F-fluorodexyglucose positron emission tomography in relatively young healthy subjects: results of 3-year follow-up, Endocrine journal, vol.57, p.395, 2010.

M. Okada, T. Shimono, and Y. Komeya, Adrenal masses: the value of additional fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) in differentiating between benign and malignant lesions, Ann Nucl Med, vol.23, pp.349-54, 2009.

F. Orlhac, M. Soussan, J. Maisonobe, C. A. Garcia, B. Vanderlinden et al., Tumor Texture Analysis in 18F-FDG PET: Relationships Between Texture Parameters, Histogram Indices, Standardized Uptake Values, Metabolic Volumes, and Total Lesion Glycolysis, J Nucl Med, vol.55, pp.414-436, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02401421

F. Orlhac, C. Nioche, M. Soussan, and I. Buvat, A freeware for tumor heterogeneity characterization in PET, SPECT, CT, MRI and US to accelerate advances in radiomics, J Nucl Med, vol.58, pp.1316-1316, 2017.

B. Oronsky, P. C. Ma, D. Morgensztern, and C. A. Carter, Nothing But NET: A Review of Neuroendocrine Tumors and Carcinomas, Neoplasia, vol.19, pp.991-1002, 2017.

O. Kara, P. Kara, T. , K. Gedik, and G. , The role of fluorodeoxyglucose-positron emission tomography/computed tomography in differentiating between benign and malignant adrenal lesions, Nucl Med Commun, vol.32, pp.106-118, 2011.

D. O'toole, A. Saveanu, and A. Couvelard, The analysis of quantitative expression of somatostatin and dopamine receptors in gastro-entero-pancreatic tumours opens new therapeutic strategies, Eur J Endocrinol, vol.155, pp.849-57, 2006.

V. Paidpally, A. Chirindel, C. H. Chung, J. Richmon, W. Koch et al., FDG Volumetric Parameters and Survival Outcomes After Definitive Chemoradiotherapy in Patients With Recurrent Head and Neck Squamous Cell Carcinoma, American Journal of Roentgenology, vol.203, pp.139-184, 2014.

M. H. Pampaloni and A. Z. Win, Prevalence and Characteristics of Incidentalomas Discovered by Whole Body FDG PETCT, Int J Mol Imaging, 2012.

F. Panzuto, S. Nasoni, and M. Falconi, Prognostic factors and survival in endocrine tumor patients: comparison between gastrointestinal and pancreatic localization, Endocrine-Related Cancer, vol.12, pp.1083-92, 2005.

B. K. Park, C. K. Kim, B. Kim, and J. Y. Choi, Comparison of delayed enhanced CT and 18F-FDG PET/CT in the evaluation of adrenal masses in oncology patients, J Comput Assist Tomogr, vol.31, pp.550-556, 2007.

S. Y. Park, B. K. Park, and C. K. Kim, The value of adding (18)F-FDG PET/CT to adrenal protocol CT for characterizing adrenal metastasis (? 10 mm) in oncologic patients, AJR Am J Roentgenol, vol.202, pp.153-160, 2014.

S. Partelli, M. Rinzivillo, and A. Maurizi, The Role of Combined 68 Ga-DOTANOC and 18 FDG PET/CT in the Management of Patients with Pancreatic Neuroendocrine Tumors, Neuroendocrinology, vol.100, pp.293-302, 2014.

Y. C. Patel, Molecular pharmacology of somatostatin receptor subtypes, J Endocrinol Invest, vol.20, pp.348-67, 1997.

C. S. Patlak, R. G. Blasberg, and J. D. Fenstermacher, Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data, J Cereb Blood Flow Metab, vol.3, pp.1-7, 1983.

M. E. Pavel, J. D. Hainsworth, and E. Baudin, Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study, Lancet, vol.378, pp.2005-2017, 2011.

M. Pavel, D. O''toole, and F. Costa, ENETS Consensus Guidelines Update for the Management of Distant Metastatic Disease of Intestinal, Pancreatic, Bronchial Neuroendocrine Neoplasms (NEN) and NEN of Unknown Primary Site, Neuroendocrinology, vol.103, pp.172-85, 2016.

S. Pedraza-arévalo, M. D. Gahete, E. Alors-pérez, R. M. Luque, and J. P. Castaño, Multilayered heterogeneity as an intrinsic hallmark of neuroendocrine tumors, Rev Endocr Metab Disord, vol.19, pp.179-92, 2018.

C. S. Peña, G. W. Boland, P. F. Hahn, M. J. Lee, and P. R. Mueller, Characterization of indeterminate (lipid-poor) adrenal masses: use of washout characteristics at contrastenhanced CT, Radiology, vol.217, pp.798-802, 2000.

A. Perren, P. Wiesli, and S. Schmid, Pancreatic endocrine tumors are a rare manifestation of the neurofibromatosis type 1 phenotype: molecular analysis of a malignant insulinoma in a NF-1 patient, Am J Surg Pathol, vol.30, pp.1047-51, 2006.

M. Perri, P. Erba, and D. Volterrani, Adrenal masses in patients with cancer: PET/CT characterization with combined CT histogram and standardized uptake value PET analysis, AJR Am J Roentgenol, vol.197, pp.209-225, 2011.

M. E. Phelps, S. C. Huang, E. J. Hoffman, C. Selin, L. Sokoloff et al., Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method, Ann Neurol, vol.6, pp.371-88, 1979.

A. Pitts, G. Ih, and M. Wei, Clinical utility of FDG-PET for diagnosis of adrenal mass: a large single-center experience, Hormones (Athens), vol.12, pp.417-444, 2013.

V. Prasad and R. P. Baum, Biodistribution of the Ga-68 labeled somatostatin analogue DOTA-NOC in patients with neuroendocrine tumors: characterization of uptake in normal organs and tumor lesions, Q J Nucl Med Mol Imaging, vol.54, pp.61-68, 2010.

A. Pugachev, S. Ruan, S. Carlin, S. M. Larson, J. Campa et al., Dependence of FDG uptake on tumor microenvironment, Int J Radiat Oncol Biol Phys, vol.62, pp.545-53, 2005.

S. Querellou, R. Abgral, L. Roux, and P. , Prognostic value of fluorine-18 fluorodeoxyglucose positron-emission tomography imaging in patients with head and neck squamous cell carcinoma, Head Neck, vol.34, pp.462-470, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00759315

A. Rahmim, M. A. Lodge, and N. A. Karakatsanis, Dynamic whole-body PET imaging: principles, potentials and applications, European Journal of Nuclear Medicine and Molecular Imaging, vol.46, pp.501-519, 2019.

J. C. Reubi, Neuropeptide Receptors in Health and Disease: The Molecular Basis for In Vivo Imaging, J Nucl Med, vol.36, pp.1825-1860, 1995.

S. Reuzé, A. Schernberg, and F. Orlhac, Radiomics in Nuclear Medicine Applied to Radiation Therapy: Methods, Pitfalls, and Challenges, International Journal of Radiation Oncology*Biology*Physics, vol.102, pp.1117-1159, 2018.

A. Rinke, H. Muller, and C. Schade-brittinger, Placebo-Controlled, Double-Blind, Prospective, Randomized Study on the Effect of Octreotide LAR in the Control of Tumor Growth in Patients With Metastatic Neuroendocrine Midgut Tumors: A Report From the PROMID Study Group, Journal of Clinical Oncology, vol.27, pp.4656-63, 2009.

D. Rubello and P. M. Colletti, SUV Harmonization Between Different Hybrid PET/CT Systems, Clin Nucl Med, vol.43, pp.811-815, 2018.

G. Russ, B. Royer, C. Bigorgne, A. Rouxel, M. Bienvenu-perrard et al., Prospective evaluation of thyroid imaging reporting and data system on 4550 nodules with and without elastography, European Journal of Endocrinology, vol.168, pp.649-55, 2013.

G. Russ, S. J. Bonnema, M. F. Erdogan, C. Durante, R. Ngu et al., Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS, European Thyroid Journal, vol.6, pp.225-262, 2017.

V. Rufini, M. L. Calcagni, and R. P. Baum, Imaging of neuroendocrine tumors, Semin Nucl Med, vol.36, pp.228-275, 2006.

H. G. Russnes, N. Navin, J. Hicks, and A. Borresen-dale, Insight into the heterogeneity of breast cancer through next-generation sequencing, 2011.

A. Sabet, A. Aouf, and J. Lohmar, Prediction of lesion-based response to PRRT by baseline somatostatin receptor PET, J Nucl Med, vol.55, pp.395-395, 2014.

G. B. Saha, Basics of PET Imaging: Physics, Chemistry, and Regulations, 2005.

M. Sandstrom, I. Velikyan, and U. Garske-roman, Comparative Biodistribution and Radiation Dosimetry of 68Ga-DOTATOC and 68Ga-DOTATATE in Patients with Neuroendocrine Tumors, Journal of Nuclear Medicine, vol.54, pp.1755-1764, 2013.

A. Sansone, R. Lauretta, and S. Vottari, Specific and Non-Specific Biomarkers in Neuroendocrine Gastroenteropancreatic Tumors, Cancers, vol.11, p.1113, 2019.

M. Schulte, D. Brecht-krauss, and M. Werner, Evaluation of neoadjuvant therapy response of osteogenic sarcoma using FDG PET, J Nucl Med, vol.40, pp.1637-1680, 1999.

A. Scarpa, The landscape of molecular alterations in pancreatic and small intestinal neuroendocrine tumours, Annales d'Endocrinologie, vol.80, pp.153-161, 2019.

M. J. Schlumberger, Papillary and follicular thyroid carcinoma, New England Journal of Medicine, vol.338, pp.297-306, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00176664

J. Scoazec and A. Couvelard, Une nouvelle classification OMS des tumeurs (neuro)endocrines digestives, Annales de Pathologie, vol.31, pp.88-92, 2011.

E. Seregni, L. Ferrari, E. Bajetta, A. Martinetti, and E. Bombardieri, Clinical significance of blood chromogranin A measurement in neuroendocrine tumours, Ann Oncol, vol.12, issue.2, pp.69-72, 2001.

P. Sharma, N. Naswa, and S. S. Kc, Comparison of the prognostic values of 68Ga-DOTANOC PET/CT and 18F-FDG PET/CT in patients with well-differentiated neuroendocrine tumor, Eur J Nucl Med Mol Imaging, vol.41, pp.2194-202, 2014.

R. Sharma, W. M. Wang, and S. Yusuf, 68Ga-DOTATATE PET/CT parameters predict response to peptide receptor radionuclide therapy in neuroendocrine tumours, Radiotherapy and Oncology, p.0, 2019.

H. Shi, Q. Zhang, C. Han, D. Zhen, and R. Lin, Variability of the Ki-67 proliferation index in gastroenteropancreatic neuroendocrine neoplasms -a single-center retrospective study, BMC Endocr Disord, vol.18, p.51, 2018.

H. Shi, Z. Yuan, and Z. Yuan, Diagnostic Value of Volume-Based Fluorine-18-Fluorodeoxyglucose PET/CT Parameters for Characterizing Thyroid Incidentaloma, Korean J Radiol, vol.19, pp.342-51, 2018.

M. A. Sobrinho-simões, J. M. Nesland, R. Holm, M. C. Sambade, and J. V. Johannessen, Hürthle cell and mitochondrion-rich papillary carcinomas of the thyroid gland: an ultrastructural and immunocytochemical study, Ultrastruct Pathol, vol.8, pp.131-173, 1985.

K. K. Soelberg, S. J. Bonnema, T. H. Brix, and L. Hegedüs, Risk of Malignancy in Thyroid Incidentalomas Detected by 18 F-Fluorodeoxyglucose Positron Emission Tomography: A Systematic Review, Thyroid, vol.22, pp.918-943, 2012.

L. Sokoloff, M. Reivich, and C. Kennedy, The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat, J Neurochem, vol.28, pp.897-916, 1977.

J. H. Song, F. S. Chaudhry, and W. W. Mayo-smith, The Incidental Adrenal Mass on CT: Prevalence of Adrenal Disease in 1,049 Consecutive Adrenal Masses in Patients with No Known Malignancy, American Journal of Roentgenology, vol.190, pp.1163-1171, 2008.

H. Sorbye, S. Welin, and S. W. Langer, Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the NORDIC NEC study, Ann Oncol, vol.24, pp.152-60, 2013.

M. Soret, C. Riddell, S. Hapdey, and I. Buvat, Effect of noise, image resolution, and ROI definition on the accuracy of standardized uptake values: a simulation study, IEEE Trans Nucl Sci, vol.49, pp.1519-1546, 2002.

P. Soyer, A. Dohan, and C. Eveno, Carcinoid tumors of the small-bowel: evaluation with 64-section CT-enteroclysis, Eur J Radiol, vol.82, pp.943-50, 2013.

S. R. Steele, M. J. Martin, P. S. Mullenix, K. S. Azarow, and C. A. Andersen, The significance of incidental thyroid abnormalities identified during carotid duplex ultrasonography, Archives of surgery, vol.140, pp.981-985, 2005.

J. Strosberg, G. El-haddad, and E. Wolin, Phase 3 Trial of 177 Lu-Dotatate for Midgut Neuroendocrine Tumors, New England Journal of Medicine, vol.376, pp.125-160, 2017.

A. Sundin, M. Vullierme, G. Kaltsas, and U. Plöckinger, European Neuroendocrine Tumor Society. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: radiological examinations, Mallorca Consensus Conference participants, vol.90, pp.167-83, 2009.

A. Sundlöv, J. Gustafsson, and G. Brolin, Feasibility of simplifying renal dosimetry in 177Lu peptide receptor radionuclide therapy, EJNMMI Phys, vol.5, 2018.

Y. M. Sung, K. S. Lee, and B. T. Kim, 18)F-FDG PET versus (18)F-FDG PET/CT for adrenal gland lesion characterization: a comparison of diagnostic efficacy in lung cancer patients, Korean J Radiol, vol.9, pp.19-28, 2008.

G. Stanta and S. Bonin, Overview on Clinical Relevance of Intra-Tumor Heterogeneity, Front Med (Lausanne), vol.5, 2018.

A. Tabarin, S. Bardet, and J. Bertherat, Exploration et prise en charge des incidentalomes surrénaliens. Consensus d'experts de la Société française d'endocrinologie, Annales d'Endocrinologie, vol.69, pp.1-16, 2008.

D. Taïeb, R. J. Hicks, and K. Pacak, PET Imaging for Endocrine Malignancies: From Woe to Go, J Nucl Med, vol.58, pp.878-80, 2017.

E. P. Tamm, P. Bhosale, J. H. Lee, and E. Rohren, State-Of-The-Art Imaging of Pancreatic Neuroendocrine Tumors, Surg Oncol Clin N Am, vol.25, pp.375-400, 2016.

L. Tessonnier, F. Sebag, and F. F. Palazzo, Does 18F-FDG PET/CT add diagnostic accuracy in incidentally identified non-secreting adrenal tumours?, Eur J Nucl Med Mol Imaging, vol.35, pp.2018-2043, 2008.

R. V. Thakker, P. J. Newey, and G. V. Walls, Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1), J Clin Endocrinol Metab, vol.97, pp.2990-3011, 2012.

M. Theodoropoulou and G. K. Stalla, Somatostatin receptors: From signaling to clinical practice, Frontiers in Neuroendocrinology, vol.34, pp.228-52, 2013.

C. G. Theoharis, K. M. Schofield, L. Hammers, R. Udelsman, and D. C. Chhieng, The Bethesda thyroid fine-needle aspiration classification system: year 1 at an academic institution, Thyroid, vol.19, pp.1215-1223, 2009.

G. Thibault, B. Fertil, and C. Navarro, Texture indexes and gray level size zone matrix. Application to cell nuclei classification, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01499715

P. Thuillier, J. Risson, Y. Eusen, A. Uguen, and R. Abgral, Retroperitoneal Pelvic Solitary Fibrous Tumor With High Tracer Uptake in 68Ga-DOTATOC PET/CT: A Rare Differential Diagnosis of Paraganglioma, Clinical Nuclear Medicine, vol.44, pp.370-371, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02190478

W. D. Travis, Advances in neuroendocrine lung tumors, Ann Oncol, vol.21, pp.65-71, 2010.

W. D. Travis, E. Brambilla, and A. G. Nicholson, The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification, J Thorac Oncol, vol.10, pp.1243-60, 2015.

G. Treglia, F. Bertagna, R. Sadeghi, F. A. Verburg, L. Ceriani et al., Focal thyroid incidental uptake detected by 18F-fluorodeoxyglucose positron emission tomography: Metaanalysis on prevalence and malignancy risk, Nuklearmedizin, vol.52, pp.130-136, 2013.

P. Trimboli, G. Paone, and G. Treglia, Fine-needle aspiration in all thyroid incidentalomas at 18 F-FDG PET/CT: Can EU-TIRADS revise the dogma?, Clin Endocrinol (Oxf), vol.89, pp.642-650, 2018.

S. Uemura, I. Yasuda, and T. Kato, Preoperative routine evaluation of bilateral adrenal glands by endoscopic ultrasound and fine-needle aspiration in patients with potentially resectable lung cancer, Endoscopy, vol.45, pp.195-201, 2013.

R. Vaish, R. Venkatesh, D. A. Chaukar, A. D. Deshmukh, N. C. Purandare et al., Positron emission tomography thyroid incidentaloma: Is it different in Indian subcontinent?, Indian Journal of Cancer, vol.53, p.186, 2016.

A. Van-baardwijk, G. Bosmans, R. J. Van-suylen, M. Van-kroonenburgh, M. Hochstenbag et al., Correlation of intra-tumour heterogeneity on 18F-FDG PET with pathologic features in non-small cell lung cancer: a feasibility study, Radiother Oncol, vol.87, pp.55-63, 2008.

C. Van-de-wiele, V. Kruse, P. Smeets, M. Sathekge, and A. Maes, Predictive and prognostic value of metabolic tumour volume and total lesion glycolysis in solid tumours, Eur J Nucl Med Mol Imaging, vol.40, pp.290-301, 2013.

F. Van-velden, P. Cheebsumon, M. Yaqub, E. F. Smit, O. S. Hoekstra et al., Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung cancer PET studies, Eur J Nucl Med Mol Imaging, vol.38, pp.1636-1683, 2011.

N. Varshney, A. A. Kebede, H. Owusu-dapaah, J. Lather, M. Kaushik et al., A Review of Von Hippel-Lindau Syndrome, J Kidney Cancer VHL, vol.4, pp.20-29, 2017.

S. Vauclin, I. Gardin, K. Doyeux, S. Hapdey, A. Edet-sanson et al., Segmentation des images TEP au 18F-FDG. Principe et revue de la littérature, Médecine Nucléaire, vol.34, pp.358-69, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00475873

I. Velikyan, Prospective of 68 Ga-Radiopharmaceutical Development, Theranostics, vol.4, pp.47-80, 2014.

I. Velikyan, A. Sundin, and J. Sorensen, Quantitative and Qualitative Intrapatient Comparison of 68Ga-DOTATOC and 68Ga-DOTATATE: Net Uptake Rate for Accurate Quantification, Journal of Nuclear Medicine, vol.55, pp.204-214, 2014.

W. Verbeek, C. M. Korse, and M. Tesselaar, GEP-NETs UPDATE: Secreting gastroenteropancreatic neuroendocrine tumours and biomarkers, Eur J Endocrinol, vol.174, pp.1-7, 2016.

R. Vikram, H. Yeung, H. A. Macapinlac, and R. B. Iyer, Utility of PET/CT in Differentiating Benign from Malignant Adrenal Nodules in Patients with Cancer, American Journal of Roentgenology, vol.191, pp.1545-51, 2008.

I. Virgolini, V. Ambrosini, and J. B. Bomanji, Procedure guidelines for PET/CT tumour imaging with 68Ga-DOTA-conjugated peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE, Eur J Nucl Med Mol Imaging, vol.37, pp.2004-2014, 2010.

G. Vitale, A. Dicitore, and C. Sciammarella, Pasireotide in the treatment of neuroendocrine tumors: a review of the literature, Endocrine-Related Cancer, vol.25, pp.351-64, 2018.

R. L. Wahl, H. Jacene, Y. Kasamon, and M. A. Lodge, From RECIST to PERCIST: Evolving Considerations for PET Response Criteria in Solid Tumors, J Nucl Med, vol.50, pp.122-150, 2009.

T. Walter, D. Tougeron, and E. Baudin, Characteristics, prognosis and treatments of 294 patients with poorly differentiated neuroendocrine carcinoma: The FFCD-GTE national cohort, JCO, vol.33, pp.4095-4095, 2015.

D. Walter, P. N. Harter, and F. Battke, Genetic heterogeneity of primary lesion and metastasis in small intestine neuroendocrine tumors, Sci Rep, vol.8, pp.1-9, 2018.

H. Watanabe, M. Kanematsu, and S. Goshima, Adrenal-to-liver SUV ratio is the best parameter for differentiation of adrenal metastases from adenomas using 18F-FDG PET/CT, Annals of Nuclear Medicine, vol.27, pp.648-53, 2013.

J. Wémeau, J. Sadoul, and M. Herbomez, Guidelines of the French society of endocrinology for the management of thyroid nodules, Annales d'Endocrinologie, vol.72, pp.251-81, 2011.

R. A. Werner, H. Ilhan, and S. Lehner, Pre-therapy Somatostatin Receptor-Based Heterogeneity Predicts Overall Survival in Pancreatic Neuroendocrine Tumor Patients Undergoing Peptide Receptor Radionuclide Therapy, Mol Imaging Biol, 2018.

R. A. Werner, H. Hänscheid, and J. P. Leal,

, DOTATOC Biodistribution. Mol Imaging Biol, vol.21, pp.790-798, 2019.

E. M. Wolin, B. Jarzab, and B. Eriksson, Phase III study of pasireotide long-acting release in patients with metastatic neuroendocrine tumors and carcinoid symptoms refractory to available somatostatin analogues, Drug Des Devel Ther, vol.9, pp.5075-86, 2015.

J. Wong, K. Liu, and C. Siu, Management of PET diagnosed thyroid incidentalomas in British Columbia Canada: Critical importance of the PET report, The American Journal of Surgery, vol.213, pp.950-957, 2017.

B. Xu, J. Gao, and L. Cui, Characterization of adrenal metastatic cancer using FDG PET/CT, Neoplasma, vol.59, pp.92-101, 2012.

J. C. Yao, M. Hassan, and A. Phan, One Hundred Years After "Carcinoid": Epidemiology of and Prognostic Factors for Neuroendocrine Tumors in 35,825 Cases in the United States, JCO, vol.26, pp.3063-72, 2008.

J. C. Yao, A. T. Phan, and D. Z. Chang, Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low-to intermediate-grade neuroendocrine tumors: results of a phase II study, J Clin Oncol, vol.26, pp.4311-4319, 2008.

J. C. Yao, M. H. Shah, and T. Ito, Everolimus for Advanced Pancreatic Neuroendocrine Tumors, New England Journal of Medicine, vol.364, pp.514-537, 2011.

J. C. Yao, M. Pavel, and C. Lombard-bohas, Everolimus for the Treatment of Advanced Pancreatic Neuroendocrine Tumors: Overall Survival and Circulating Biomarkers From the Randomized, Phase III RADIANT-3 Study, J Clin Oncol, vol.34, pp.3906-3919, 2016.

J. G. Yi, E. M. Marom, and R. F. Munden, Focal uptake of fluorodeoxyglucose by the thyroid in patients undergoing initial disease staging with combined PET/CT for non-small cell lung cancer, Radiology, vol.236, pp.271-276, 2005.

D. Y. Yoon, S. K. Chang, and C. S. Choi, The prevalence and significance of incidental thyroid nodules identified on computed tomography, J Comput Assist Tomogr, vol.32, pp.810-815, 2008.

W. J. Youden, Index for rating diagnostic tests, Cancer, vol.3, pp.32-37, 1950.

W. F. Young, The incidentally discovered adrenal mass, N Engl J Med, vol.356, pp.601-610, 2007.

D. M. Youserm, T. Huang, L. A. Loevner, and C. P. Langlotz, Clinical and economic impact of incidental thyroid lesions found with CT and MR, American journal of neuroradiology, vol.18, pp.1423-1428, 1997.

J. Yu, N. Li, and J. Li, The Correlation Between [68Ga]DOTATATE PET/CT and Cell Proliferation in Patients With GEP-NENs, Mol Imaging Biol, vol.21, pp.984-90, 2019.

H. Zaidi and A. Alavi, Trends in PET quantification: opportunities and challenges, Clin Transl Imaging, vol.2, pp.183-188, 2014.

M. A. Zeiger, G. B. Thompson, and Q. Duh, American Association of Clinical Endocrinologists and American Association of Endocrine Surgeons Medical Guidelines for the Management of Adrenal Incidentalomas: executive summary of recommendations, Endocr Pract, vol.15, pp.450-453, 2009.

G. Zhai, M. Zhang, H. Xu, C. Zhu, and B. Li, The role of 18F-fluorodeoxyglucose positron emission tomography/computed tomography whole body imaging in the evaluation of focal thyroid incidentaloma, J Endocrinol Invest, vol.33, pp.151-156, 2010.

T. Zimmer, H. Scherübl, S. Faiss, U. Stölzel, E. O. Riecken et al., Endoscopic ultrasonography of neuroendocrine tumours, Digestion, vol.62, issue.1, pp.45-50, 2000.