. .. A-nnexes, -178 -Annex III: EFTEM compared to ChemiSTEM imaging of sample implanted with Y and O sample at 500°C, 176 -Annex II: HRTEM imaging of the matrix annealed at 1000 and 1100°C

, Annex V: Thin foil annealing at 800°C of O, Ti and Y sample implanted at room temperature, p.184

V. I. Annex, Complimentary Atom Probe Tomography

V. Annex and . .. List-of-oxides, 189 -Annex IX: Résumé détaillé en français?????????????????????????????.?-189 -bram, vol.36, pp.4323-4330, 2008.

C. C. Ahn, Transmission Electron Energy Loss Spectroscopy in Materials Science and the EELS Atlas, 2006.

E. Airiskallio, High temperature oxidation of Fe-Al and Fe-Cr-Al alloys : The role of Cr as a chemically active element, Corrosion Science, vol.52, pp.3394-3404, 2010.

M. J. Alinger, G. R. Odette, and D. T. Hoelzer, The development and stability of Y-Ti-O nanoclusters in mechanically alloyed Fe-Cr based ferritic alloys, Journal of Nuclear Materials, vol.333, pp.382-386, 2004.

M. J. Alinger, G. R. Odette, and D. T. Hoelzer, On the role of alloy composition and processing parameters in nanocluster formation and dispersion strengthening in nanostuctured ferritic alloys, Acta Materialia, vol.57, pp.392-406, 2009.

, Australian microscopy & Microanalysis Research facility

H. Asteman and M. Spiegel, A comparison of the oxidation behaviours of Al2O3 formers and Cr2O3 formers at 700°C -Oxide solid solutions acting as a template for nucleation, Corrosion Science, vol.50, pp.1734-1743, 2008.

M. A. Auger, Microstructure and mechanical properties of ultrafine-grained Fe-14Cr and ODS Fe-14Cr model alloys, Journal of Nuclear Materials, vol.417, pp.213-216, 2011.

L. Barnard, G. R. Odette, I. Szlufarska, and D. Morgan, An ab initio study of Ti-Y-O nanocluster energetics in nanostructured ferritic alloys, Acta Materialia, vol.60, pp.935-947, 2012.

L. Barnard, N. Cunningham, G. R. Odette, I. Szlufarska, and D. Morgan, Thermodynamic and kinetic modeling of oxide precipitation in nanostructured ferritic alloys, Acta Materialia, vol.91, pp.340-354, 2015.

R. Behr, J. Mayer, and E. Arzt, TEM investigations of the superdislocations and their interaction with particles in dispersion strengthened intermetallics, Intermetallics, vol.7, pp.423-436, 1999.

A. Benninghoven, Surface investigation of Solids by the Statical Method of Secondary Ion Mass Spectroscopy, Surface Science, vol.35, pp.427-457, 1973.

D. Bhattacharyya, P. Dickerson, G. R. Odette, S. A. Maloy, and A. Misra, On the structure and chemistry of complex oxide nanofeatures in nanostructured ferritic alloy U14YWT, Philosophical Magazine, vol.92, pp.2089-2107, 2012.

A. Bhattacharya, Ion Irradiation effects on high purity bcc Fe and model FeCr alloys, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01252243

J. Bischoff and A. T. Motta, Oxidation behavior of ferritic-martensitic and ODS steels in supercritical water, Journal of Nuclear Materials, vol.424, pp.261-276, 2012.

J. Bischoff and A. T. Motta, EFTEM and EELS analysis of the oxide layer formed on HCM12A exposed to SCW, Journal of Nuclear Materials, vol.430, pp.171-180, 2012.

J. Bocquet, C. Barouh, and C. Fu, Migration mechanism for oversized solutes in cubic lattices : The case of yttrium in iron, Physical Review B, vol.95, issue.1, p.1, 2017.
URL : https://hal.archives-ouvertes.fr/cea-02415662

X. Boulnat, Acta Materialia Influence of oxide volume fraction on abnormal growth of nanostructured ferritic steels during non-isothermal treatments : An in situ study

, Acta Materialia, vol.97, pp.124-130, 2015.

X. Boulnat, M. Perez, S. Cazottes, Y. Carlan, and . De, Characterization and modeling of oxides precipitation in ferritic steels during fast non-isothermal consolidation, Acta Materialia, vol.107, pp.390-403, 2016.

. P-r-eview, BP Statistical Review of World, 2017.

M. C. Brandes, L. Kovarik, M. K. Miller, and M. J. Mills, Morphology, structure, and chemistry of nanoclusters in a mechanically alloyed nanostructured ferritic steel, Journal of Material Science, vol.47, pp.3913-3923, 2012.

R. Braun and M. Feller-kniepmeier, Diffusion of Chromium in -Iron, Physica Status Solidi, vol.90, pp.553-561, 1985.

A. Bremaecker and . De, Past research and fabrication conducted at SCK CEN on ferritic ODS alloys used as cladding for FBR's fuel pins, Journal of Nuclear Materials, vol.428, pp.13-30, 2012.

M. Brocq, B. Radiguet, L. J. Breton, F. Cuvilly, P. Pareige et al., Nanoscale characterisation and clustering mechanism in an Fe-Y2O3 model ODS alloy processed by reactive ball milling and annealing, Acta Materialia, vol.58, pp.1806-1814, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02177323

M. Brocq, B. Radiguet, S. Poissonnet, F. Cuvilly, P. Pareige et al., Nanoscale characterization and formation mechanism of nanoclusters in an ODS steel elaborated by reactiveinspired ball-milling and annealing, Journal of Nuclear Materials, vol.409, pp.80-85, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02176567

J. Brodrick, D. J. Hepburn, and G. J. Ackland, Mechanism for radiation damage resistance in yttrium oxide dispersion strengthened steels, Journal of Nuclear Materials, vol.445, pp.291-297, 2014.

C. Capdevila, M. K. Miller, I. Toda, and J. Chao, Influence of the -' phase separation on the tensile properties of Fe-base ODS PM 2000 alloy, Materials Science and Engineering A, vol.527, pp.7931-7938, 2010.

Y. Carlan and . De, CEA developments of new ferritic ODS alloys for nuclear applications, Journal of Nuclear Materials, vol.386, pp.430-432, 2009.

V. Castro and . De, Microstructural characterization of Y2O3 ODS-Fe-Cr model alloys, Journal of Nuclear Materials, vol.386, pp.449-452, 2009.

V. Castro, . De, E. A. Marquis, S. Lozano-perez, R. Pareja et al., Stability of nanoscale secondary phases in an oxide dispersion strengthened Fe-12Cr alloy, Acta Materialia, vol.59, pp.3927-3936, 2011.

C. Cayron, A. Montani, D. Venet, Y. Carlan, and . De, Identification of new phases in annealed Fe -18CrWTi ODS powders, Journal of Nuclear Materials, vol.399, pp.219-224, 2010.

J. Chao, On some scale related aspects influencing the fracture behaviour at room temperature of preoxidized MA956 alloy, Material Science and Engineering A, vol.242, pp.248-258, 1998.

, ChemiSTEM TM : Technology A revolution in EDX analytics, 2010.

Y. Chen, K. Sridharan, S. Ukai, and T. R. Allen, Oxidation of 9Cr oxide dispersion strengthened steel exposed in supercritical water, Journal of Nuclear Materials, vol.371, pp.118-128, 2007.

D. Chen, A. Kimura, W. Han, and H. Je, Age-hardening susceptibility of high-Cr ODS ferritic steels and SUS430 ferritic steel. Fusion Engineering and Design 98-99, pp.1945-1949, 2015.

J. Cheon, S. Lee, C. , B. Lee, B. et al., Sodium fast reactor evaluation : Core materials, Journal of Nuclear Materials, vol.392, pp.324-330, 2009.

H. S. Cho and A. Kimura, Corrosion resistance of high-Cr oxide dispersion strengthened ferritic steels in super-critical pressurized water, Journal of Nuclear Materials, vol.370, pp.1180-1184, 2007.

A. Claisse and P. Olsson, Nuclear Instruments and Methods in Physics Research B First-Annexes 201 principles calculations of (Y, Ti, O) cluster formation in body centred cubic, Nuclear Instruments and Methods in Physics Research, B, vol.303, pp.18-22, 2013.

. Sn-sm and . Csnsm,

N. J. Cunningham, M. J. Alinger, D. Klingensmith, Y. Wu, and G. R. Odette, On nano-oxide coarsening kinetics in the nanostructured ferritic alloy MA957 : A mechanism based predictive model, Material Science and Engineering A, vol.655, pp.355-362, 2016.

M. Dade, J. Malaplate, J. Garnier, F. Barcelo, P. Wident et al., In fl uence of microstructural parameters on the mechanical properties of oxide dispersion strengthened Fe-14Cr steels, Acta Materialia, vol.127, 2017.

L. Dai, Y. Liu, and Z. Dong, Size and structure evolution of yttria in ODS ferritic alloy powder during mechanical milling and subsequent annealing, Powder Technology, vol.217, pp.281-287, 2012.

Z. Dapeng, L. Yong, L. Feng, W. Yuren, Z. Liujie et al., ODS ferritic steel engineered with bimodal grain size for high strength and ductility, Materials Letters, vol.65, pp.1672-1674, 2011.

K. Dawson and G. J. Tatlock, Characterisation of nanosized oxides in ODM401 oxide dispersion strengthened steel, Journal of Nuclear Materials, vol.444, pp.252-260, 2014.

A. Deschamps, F. Geuser, . De, J. Malaplate, and D. Sornin, When do oxide precipitates form during consolidation of oxide dispersion strengthened steels, Journal of Nuclear Materials, vol.482, pp.83-87, 2016.

P. Dou, Effects of extrusion temperature on the nano-mesoscopic structure and mechanical properties of an Al-alloyed high-Cr ODS ferritic steel, Journal of Nuclear Materials, vol.417, pp.166-170, 2011.

P. Dou, TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened steel with Zr addition, Journal of Nuclear Materials, vol.444, pp.441-453, 2014.

P. Dou, TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel with Hf addition, Journal of Nuclear Materials, vol.485, pp.189-201, 2017.

R. Egerton, Electron energy-loss spectroscopy in the TEM, Reports on Progresses in Physics, vol.72, issue.1, 2009.

J. J. Fischer, Dispersion Strebgthened Ferritic Alloy For Use In Liquid-Metal Fast Breeder Reactors (LMFBRS), 1976.

C. L. Fu, M. Krcmar, G. S. Painter, and X. Chen, Vacancy Mechanism of High Oxygen Solubility and Nucleation of Stable Oxygen-Enriched Clusters in Fe, Physical Review Letters, vol.99, issue.1, 2008.

W. F. Gale and T. C. Totemeir, Smithells Metals Reference Book, 2004.

. [g-en-iv-r-oadm and . Ap, A Technology Roadmap for Generation IV Nuclear Energy Systems, 2002.

L. Giancarli, Breeding Blanket Modules testing in ITER: An international program on the way to DEMO, vol.81, pp.393-405, 2006.

S. M. Goldberg and R. Rosner, Nuclear Reactors : Generation to Generation, American Academy of Arts and Science, 2011.

R. Goldston, A Plan for the Development of Fusion Energy, Journal of Fusion Energy, vol.21, pp.61-111, 2003.

N. H. Goo, Formation of hard magnetic L1 0 -FePt / FePd monolayers from elemental multilayers, 2007.

A. Gopejenko, Y. F. Zhukovskii, P. V. Vladimirov, E. A. Kotomin, and A. Möslang, Ab initio simulation of yttrium oxide nanocluster formation on fcc Fe lattice, Journal of Nuclear Materials, vol.406, pp.345-350, 2010.

A. Gopejenko, Y. F. Zhukovskii, P. V. Vladimirov, E. A. Kotomin, and A. Möslang, Modeling of yttrium , oxygen atoms and vacancies in ?-iron lattice, Journal of Nuclear Materials, vol.416, pp.40-44, 2011.

A. Gopejenko, Y. Mastrikov, A. Zhukovskii, Y. , F. Kotomin et al., Ab initio modelling of the Y, O, and Ti solute interaction in fcc -Fe matrix, Nuclear Inst. and Methods in Physics Research, B, vol.433, pp.106-110, 2018.

C. Hatzoglou, B. Radiguet, F. Vurpillot, and P. Pareige, A chemical composition correction model for nanoclusters observed by APT -Application to ODS steel nanoparticles, Journal of Nuclear Materials, vol.505, pp.240-248, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02061493

P. He, M. Klimenkov, R. Lindau, and A. Möslang, Characterization of precipitates in nano structured 14 % Cr ODS alloys for fusion application, Journal of Nuclear Materials, vol.428, pp.131-138, 2012.

C. W. He, M. F. Barthe, P. Desgardin, S. Akhmadaliev, M. Behar et al., Positron studies of interaction between yttrium atoms and vacancies in bcc iron with relevance for ODS nanoparticles formation, Journal of Nuclear Materials, vol.455, pp.398-401, 2014.

J. He, F. Wan, K. Sridharan, T. R. Allen, A. Certain et al., Stability of nanoclusters in 14YWT oxide dispersion strengthened steel under heavy ion-irradiation by atom probe tomography, Journal of Nuclear Materials, vol.455, pp.41-45, 2014.

C. Heintze, M. Hernandez-mayoral, A. Ulbricht, F. Bergner, A. Shariq et al., Nanoscale characterization of ODS Fe-9%Cr model alloys compacted by spark plasma sintering, Journal of Nuclear Materials, vol.428, pp.139-146, 2012.

C. Heintze, F. Bergner, M. Hernandez-mayoral, R. Kogler, G. Muller et al., Irradiation hardening of Fe e 9Cr-based alloys and ODS Eurofer : Effect of helium implantation and iron-ion irradiation at 300 C including sequence effects, Journal of Nuclear Materials, vol.470, pp.258-267, 2016.

, Hetherington, C. Aberration correction for TEM. Materials Today, vol.7, pp.50-55, 2004.

I. Hilger, Fabrication and characterization of oxide dispersion strengthened (ODS) 14Cr steels consolidated by means of hot isostatic pressing , hot extrusion and spark plasma sintering, Journal of Nuclear Materials, vol.472, pp.206-214, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01804480

C. Hin, B. D. Wirth, and J. B. Neaton, Formation of Y2O3 nanoclusters in nanostructured ferritic alloys during isothermal and anisothermal heat treatment: A kinetic Monte Carlo study, Physical Review B, vol.80, issue.1, p.134118, 2009.

C. Hin and B. D. Wirth, Formation of Y2O3 nanoclusters in nano-structured ferritic alloys: Modeling of precipitation kinetics and yield strength, Journal of Nuclear Materials, vol.402, pp.30-37, 2010.

C. Hin and B. D. Wirth, Formation of oxide nanoclusters in nanostructured ferritic alloys during anisothermal heat treatment : A kinetic Monte Carlo study, Materials Science & Engineering A, vol.528, pp.2056-2061, 2011.

A. Hirata, Atomic structure of nanoclusters in oxide-dispersion-strengthened dteels, Journal of Nuclear Materials, vol.10, pp.922-926, 2011.

A. Hirata, T. Fujita, C. T. Liu, and M. W. Chen, Characterization of oxide nanoprecipitates in an oxide dispersion strengthened 14YWT steel using aberration-corrected STEM, Acta Materialia, vol.60, pp.5686-5696, 2012.

D. T. Hoelzer, B. A. Pint, and I. G. Wright, A microstructural study of the oxide scale formation on ODS Fe-13Cr steel, Journal of Nuclear Materials, vol.287, pp.1306-1310, 2008.

D. T. Hoelzer, G. R. Odette, and M. J. Alinger, Influence of particle dispersions on the hightemperature strength of ferritic alloys, Journal of Nuclear Materials, vol.370, pp.166-172, 2007.

D. T. Hoelzer, K. A. Unocic, M. A. Sokolov, and T. S. Byun, In fl uence of processing on the microstructure and mechanical properties of 14YWT*, Journal of Nuclear Materials, vol.471, pp.251-265, 2016.

F. Hofer, P. Warbichler, W. Grogger, and O. Lang, On the application of enerfy filtering TEM in material science: I. Precipitates in a Ni/Cr-alloy, Micron, vol.26, pp.377-390, 1995.

J. P. Hofmann, Recent advances in secondary ion mass spectrometry of solid acid catalysts: large zeolite crystals under bombardment ?, Physical Chemistry Chemical Physics, vol.16, pp.5465-5474, 2014.

N. Holtkamp, The status of the ITER design, Fusion Engineering and Design, vol.84, pp.98-105, 2009.

L. L. Hsiung, Formation mechanism and the role of nanoparticles in Fe-Cr ODS steels developed for radiation tolerance, Physical Review B, vol.82, issue.1, p.184103, 2010.

H. L. Hu, Z. J. Zhou, L. Liao, L. F. Zhang, M. Wang et al., Corrosion behavior of a 14Cr-ODS steel in supercritical water, Journal of Nuclear Materials, vol.437, pp.196-200, 2013.

B. J. Inkson and P. L. Threadgill, Y2O3 Morphology in an Oxide Dispersion Strengthened FeAl Alloy Prepared by Mechanical Alloying, Materials Research Society Proceedings, vol.460, p.767, 1996.

M. Inoue, T. Kaito, and S. Ohtsuka, Research and development of Oxide Dispersion Strengthened Ferritic Steels for Sodium Fast Breeder Reactor Fuels, 2007.

J. Isselin, R. Kasada, and A. Kimura, Corrosion behaviour of 16%Cr-4%Al and 16%Cr ODS ferritic steels under different metallurgical conditions in a supercritical water environment, Corrosion Science, vol.52, pp.3266-3270, 2010.

Y. Jiang, J. R. Smith, and G. R. Odette, Formation of Y-Ti-O nanoclusters in nanostructured ferritic alloys : A first-principles study, Physical Review B, vol.79, issue.1, p.64103, 2009.

D. E. Johnson, Introduction to Analytical Electron Microscopy, 1979.

B. Jouffrey and M. Karlik, Etude des metaux par microscopie electronique en transmission (MET) -Formation des images, Dossier Techniques de L'Ingenieur, 2012.

D. C. Joy, R. F. Egerton, and D. M. Maher, Progress in the quantification of electron-loss spectra, Scanning Electron Microscopy SEM Inc, pp.817-826, 1979.

N. Juslin, K. Nordlund, J. Wallenius, and L. Malerba, Simulation of threshold displacement energies in FeCr, Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, vol.255, pp.75-77, 2007.

T. Kaito, T. Narita, S. Ukai, and Y. Matsuda, High temperature oxidation behavior of ODS steels, Journal of Nuclear Materials, vol.333, pp.1388-1392, 2004.

, Kalokhtina, Study of the Formation of Nano-particles in ODS and NDS Steels by Atom Probe Tomography, 2012.

R. Kasada, N. Toda, K. Yutani, H. S. Cho, H. Kishimoto et al., Pre-and postdeformation microstructures of oxide dispersion strengthened ferritic steels, Journal of Nuclear Materials, vol.367, pp.222-228, 2007.

R. Kasada, Anisotropy in tensile and ductile-brittle transition behavior of ODS ferritic steels, Journal of Nuclear Materials, vol.417, pp.180-184, 2011.

J. E. Kelly, Generation IV International Forum : A decade of progress through international cooperation, Progress in Nuclear Energy, vol.77, pp.240-246, 2014.

J. H. Kim, Effects of processing condition on the microstructural and tensile properties of 14Cr-based oxide dispersion strengthened alloys, Journal of Nuclear Materials, vol.449, pp.300-307, 2014.

A. Kimura, Development of Al added high-Cr ODS steels for fuel cladding of next generation nuclear systems, Journal of Nuclear Materials, vol.417, pp.176-179, 2011.

M. Klimenkov, R. Lindau, and A. Möslang, New insights into the structure of ODS particles in the ODS-Eurofer alloy, Journal of Nuclear Materials, vol.386, pp.553-556, 2009.

M. Klimenkov, R. Lindau, E. Materna-morris, and A. Möslang, TEM characterization of precipitates in EUROFER 97, Progress in Nuclear Energy, vol.57, pp.8-13, 2012.

M. Klimenkov, R. Lindau, U. Jantsch, and A. Moslang, Effect of irradiation temperature on microstructure of ferritic-martensitic ODS steel, Journal of Nuclear Materials, vol.493, pp.426-435, 2017.

M. Klimiankou, R. Lindau, and A. Moslang, HRTEM Study of yttrium oxide particles in ODS steels for fusion reactor application, Journal of Crystal Growth, vol.249, pp.381-387, 2003.

M. Klimiankou, R. Lindau, and A. Moslang, TEM characterization of structure and composition of nanosized ODS particles in reduced activation ferritic-martensitic steels, Journal of Nuclear Materials, vol.333, pp.347-351, 2004.

M. Klimiankou, R. Lindau, and A. Moslang, Energy-filtered TEM imaging and EELS study of ODS particles and Argon-filled cavities in ferritic-martensitic steels, Micron, vol.36, pp.1-8, 2005.

M. Klimiankou, R. Lindau, and A. Moslang, Direct correlation between morphology of (Fe,Cr)23C6 precipitates and impact behavior of ODS steels, Journal of Nuclear Materials, vol.370, pp.173-178, 2007.

R. L. Klueh, K. Ehrlich, and F. Abe, Ferritic/martensitic steels: promises and problems*, Journal of Nuclear Materials, vol.191, pp.116-124, 2008.

R. L. Klueh, D. S. Gelles, S. Jitsukawa, A. Kimura, G. R. Odette et al., Ferritic/martensitic steels -overview of recent results, Journal of Nuclear Materials, vol.311, pp.455-465, 2008.

R. L. Klueh, P. J. Maziasz, I. S. Kim, L. Heatherly, D. T. Hoelzer et al., Tensile and creep properties of an oxide dispersion-strengthened ferritic steel, Journal of Nuclear Materials, vol.311, pp.773-777, 2008.

R. L. Klueh, J. P. Shingledecker, R. W. Swindeman, and D. T. Hoelzer, Oxide dispersionstrengthened steels: A comparison of some commercial and experimental alloys, Journal of Nuclear Materials, vol.341, pp.103-114, 2008.

R. L. Klueh and A. T. Nelson, Ferritic/martensitic steels for next-generation reactors, Journal of Nuclear Materials, vol.371, pp.37-52, 2008.

P. Klugkist and C. Herzig, Tracer Diffusion of Titanium in -Iron, Physica Status Solidi, vol.148, pp.413-421, 1995.

A. Kohyama, A. Hishinuma, D. S. Gelles, R. L. Klueh, W. Dietz et al., Lowactivation ferritic and martensitic steels for fusion application, Journal of Nuclear Materials, vol.237, pp.138-205, 1996.

V. Kuksenko, C. Pareige, C. Genevois, M. Roussel, and P. Pareige, Effect of neutronirradiation on the microstructure of a Fe-12at.%Cr alloy, Journal of Nuclear Materials, vol.415, pp.61-66, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02107410

K. Lackner, R. Andreani, D. Campbell, M. Gasparotto, D. Maisonnier et al., Long-term fusion strategy in Europe, Journal of Nuclear Materials, vol.311, pp.10-20, 2002.

D. J. Larson, P. J. Maziasz, I. S. Kim, and K. Miyahara, Three-dimensional atom probe observation of nanoscale titanium-oxygen clustering in an oxide-dispersion-strengthened Fe-12Cr-3W-0.4Ti+Y2O3 ferritic alloy, Scripta Materialia, vol.44, pp.359-364, 2001.

J. L. Lavergne, C. Foa, P. Bongrand, D. Seux, and J. M. Martin, Application of recording and processing of energy-filtered image sequences for the elemental mapping of biological specimens: Imaging-Spectrum, Journal of Microscopy, vol.174, pp.195-206, 1993.

R. D. Leapman, C. E. Fiori, and C. R. Swyt, Mass thickness determination by electron energy-loss for quantitative x-ray microanalysis in biology, Journal of Microscopy, vol.133, pp.239-253, 1984.

C. Lee, Y. Iijima, T. Hiratani, and K. Hirano, Diffusion of Chromium in -Iron, Materials Transactions, vol.31, pp.255-261, 1990.

J. S. Lee, C. H. Jang, I. S. Kim, and A. Kimura, Embrittlement and hardening during thermal aging of high Cr oxide dispersion strengthened alloys, Journal of Nuclear Materials, vol.370, pp.229-233, 2007.

J. H. Lee, Influence of alloy composition and temperature on corrosion behavior of ODS ferritic steels, Journal of Nuclear Materials, vol.417, pp.1225-1228, 2011.

M. Lescoat, I. Monnet, J. Ribis, P. Dubuisson, Y. D. Carlan et al., Amorphozation of oxides in ODS materials under low and high energy ion irradiations, Journal of Nuclear Materials, vol.417, pp.266-269, 2011.

M. Lescoat, Radiation-induced Ostwald ripening in oxide dispersion strengthened ferritic steels irradiated at high ion dose, Acta Materialia, vol.78, pp.328-340, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-01059153

H. Li and W. Chen, Stability of MnCr2O4 spinel and Cr2O3 in high temperature carbonaceous environments with varied oxygen partial pressures, Corrosion Science, vol.52, pp.2481-2488, 2010.

S. Li, The influence of Cr content on the mechanical properties of ODS ferritic steels, Journal of Nuclear Materials, vol.455, pp.194-200, 2014.

W. Li, The effect of Zr , Ti addition on the particle size and microstructure evolution of yttria nanoparticle in ODS steel 1100 C, Powder Technology, vol.319, pp.172-182, 2017.

W. Li, Microstructural characterization and strengthening mechanisms of a 15Cr-ODS steel produced by mechanical alloying and Spark Plasma Sintering, Fusion Engineering and Design, vol.137, pp.71-78, 2018.

R. Lindau, Present development status of EUROFER and ODS-EUROFER for application in blanket concepts, Journal of Nuclear Materials, vol.79, pp.989-996, 2005.

K. H. Lo, C. H. Shek, and J. K. Lai, Recent developments in stainless steels, Materials Science and Engineering R, vol.65, pp.39-104, 2009.

A. J. London, Comparison of atom probe tomography and transmission electron microscopy analysis of oxide dispersion strengthened steels, Journal of Physics: Conference Series, vol.522, issue.1, p.12028, 2014.

A. J. London, Acta Materialia Effect of Ti and Cr on dispersion , structure and composition of oxide nano-particles in model ODS alloys, Acta Materialia, vol.97, pp.223-233, 2015.

A. J. London, S. Lozano-perez, M. P. Moody, S. Amirthapandian, and B. K. Panigrahi, Quantification of oxide particle composition in model oxide dispersion strengthened steel alloys, Ultramicroscopy, vol.159, pp.360-367, 2015.

-. Loyer-prost and M. , High resolution Transmission Electron Microscopy characterization of a milled oxide dispersion strengthened steel powder, Journal of Nuclear Materials, vol.479, pp.76-84, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01403043

X. Mao, H. Oh, H. Kang, K. Kim, and J. Jang, On the coherency of Y2Ti2O7 particles with austenitic matrix of oxide dispersion strengthened steel, Acta Materialia, vol.89, pp.141-152, 2015.

E. A. Marquis, Fe-Cr alloys Core/shell structures of oxygen-rich nanofeatures in oxidedispersion strengthened Fe-Cr alloys, Applied Physics Letters, vol.93, issue.1, 2008.

E. A. Marquis, Nuclear reactor materials With the renewed interest in nuclear energy , developing new, Materials Today, vol.12, pp.30-37, 2009.

E. A. Marquis, S. Lozano-perez, V. Castro, and . De, Effects of heavy-ion irradiation on the grain boundary chemistry of an oxide-dispersion strengthened Fe-12wt.% Cr alloy, Journal of Nuclear Materials, vol.417, pp.257-261, 2011.

L. Martinelli, Comparative oxidation behaviour of Fe-9Cr steel in CO2 and H2O at 550?C : Detailed analysis of the inner oxide layer, Corrosion Science, vol.100, pp.253-266, 2015.
URL : https://hal.archives-ouvertes.fr/cea-02384901

Y. A. Mastrikov, Nuclear Inst . and Methods in Physics Research B Ab initio modelling of the initial stages of the ODS particle formation process, Nuclear Instruments and Methods in Physics Research B, 2018.

Y. A. Mastrikov, M. N. Sokolov, E. A. Kotomin, A. Gopejenko, and Y. F. Zhukovskii, Ab Initio Modeling of Y and O Solute Atom Interaction in Small Clusters within the bcc Iron Lattice, Physica Status Solidi, vol.1800346, issue.1, 2018.

M. H. Mathon, M. Perrut, L. Poirier, . Ratti, N. Herve et al., Development of new ferritic alloys reinforced by nano titanium nitrides, Journal of Nuclear Materials, vol.456, pp.449-454, 2015.

M. M. Abu-khader, Recent advances in nuclear power : A review, Progress in Nuclear Energy, vol.51, pp.225-235, 2009.

M. K. Miller, E. A. Kenik, K. F. Russell, L. Heatherly, and D. T. Hoelzer, Maziasz Atom probe tomography of nanoscale particles in ODS ferritic alloys, Journal of Nuclear Materials, vol.353, pp.140-145, 2003.

M. K. Miller, D. T. Hoelzer, E. A. Kenik, and K. F. Russell, Nanometer scale precipitation in ferritic MA/ODS alloy MA957, Journal of Nuclear Materials, vol.333, pp.338-341, 2008.

M. K. Miller, K. F. Russell, and D. T. Hoelzer, Characterization of precipitates in MA/ODS ferritic alloys, Journal of Nuclear Materials, vol.351, pp.261-268, 2008.

M. K. Miller and R. G. Forbes, Atom probe tomography, Materials Characterization, vol.60, pp.461-469, 2009.

M. K. Miller and D. T. Hoelzer, Effect of neutron irradiation on nanoclusters in MA957 ferritic alloys, Journal of Nuclear Materials, vol.418, pp.307-310, 2011.

M. Mock and K. Albe, Diffusion of yttrium in bcc-iron studied by kinetic Monte Carlo simulations, Journal of Nuclear Materials, vol.494, pp.157-164, 2017.

E. I. Moses, Ignition on the National Ignition Facility : a path towards inertial fusion energy, Nuclear Fusion, vol.49, issue.1, 2009.

M. Mujahid and J. W. Martin, The effect of oxide particle coherency on Zener pinning in ODS superalloys, Journal of Material Science Letters, vol.13, pp.153-155, 1994.

D. Murali, B. K. Panigrahi, M. C. Valsakumar, S. Chandra, C. S. Sundar et al., The role of minor alloying elements on the stability and dispersion of yttria nanoclusters in nanostructured ferritic alloys: An ab initio study, Journal of Nuclear Materials, vol.403, pp.113-116, 2010.

D. Murali, B. K. Panigrahi, M. C. Valsakumar, and C. S. Sundar, Diffusion of Y and Ti / Zr in bcc iron : A first principles study, Journal of Nuclear Materials, vol.419, pp.208-212, 2011.

T. Muroga, T. Nagasaka, H. Abe, A. Kimura, and T. Okuda, Fabrication and characterization of reference 9Cr and 12Cr-ODS low activation ferritic/martensitic steels, Fusion Engineering and Design, vol.89, pp.1717-1722, 2014.

T. Muroga, J. M. Chen, V. M. Chernov, R. J. Kurtz, M. Flem et al., Present status of vanadium alloys for fusion applications, Journal of Nuclear Materials, vol.455, pp.263-268, 2014.

K. L. Murty and I. Charit, Structural materials for Gen-IV nuclear reactors : Challenges and opportunities, Journal of Nuclear Materials, vol.383, pp.189-195, 2008.

S. Noh, B. Choi, S. U. Kang, and T. K. Kim, Influence Of Mechanical Alloying Atmospheres on the Microstructures and Mechanical Properties of 15Cr ODS Steels, Nuclear Engineering and Technology, vol.46, pp.857-862, 2014.

H. Oka, Effect of thermo-mechanical treatments on nano-structure of 9Cr-ODS steel, Nuclear Materials and Energy, vol.9, pp.346-352, 2016.

Z. Oksiuta, P. Olier, Y. Carlan, and N. De-&-baluc, Development and characterisation of a new ODS ferritic steel for fusion reactor application, Journal of Nuclear Materials, vol.393, pp.114-119, 2009.

Z. Oksiuta, M. Lewandowska, K. J. Kurzydlowski, and N. Baluc, Effect of vanadium addition on the microstructure and mechanical properties of the ODS ferritic steels, Journal of Nuclear Materials, vol.442, pp.84-88, 2013.

P. Olier, Chemical and microstructural evolution on ODS Fe-14CrWTi steel during manufacturing stages, Journal of Nuclear Materials, vol.428, pp.40-46, 2012.

P. Olier, M. Couvrat, C. Cayron, N. Lochet, and L. Chaffron, Incidence of mechanical alloying contamination on oxides and carbides formation in ODS ferritic steels, Journal of Nuclear Materials, vol.442, pp.106-111, 2013.

A. Pandey, K. Jayasankar, M. Debata, B. K. Mishra, and S. Saroja, Optimization of milling parameters , processing and characterization of nano-crystalline oxide dispersion strengthened ferritic steel, Powder Technology, vol.262, pp.162-169, 2014.

P. Pareige, M. K. Miller, R. E. Stoller, D. T. Hoelzer, E. Cadel et al., Stability of nanometer-sized oxide clusters in mechanically-alloyed steel under ion-induced displacement cascade damage conditions, Journal of Nuclear Materials, vol.360, pp.136-142, 2008.

A. Ramar, N. Baluc, and R. Schäublin, On the lattice coherency of oxide particles dispersed in EUROFER97, Journal of Nuclear Materials, vol.386, pp.515-519, 2009.

A. Ramar and R. Schäublin, Analysis of hardening limits of oxide dispersion strengthened steel, Journal of Nuclear Materials, vol.432, pp.323-333, 2013.

V. P. Ramunni and A. M. Rivas, Diffusion behavior of Cr diluted in bcc and fcc Fe : Classical and quantum simulation methods, Materials Chemistry and Physics, vol.162, pp.659-670, 2015.

M. Ratti, D. Leuvrey, M. H. Mathon, Y. Carlan, and . De, Influence of titanium on nano-cluster ( Y , Ti , O ) stability in ODS ferritic materials, Journal of Nuclear Materials, vol.386, pp.540-543, 2009.

J. Ribis, Stability of nano-oxides upon heavy ion irradiation of an ODS material, Journal of Nuclear Materials, vol.417, pp.262-265, 2011.

J. Ribis and Y. De-carlan, Interfacial strained structure and orientation relationships of the nanosized oxide particles deduced from elasticity-driven morphology in oxide dispersion strengthened materials, Acta Materialia, vol.60, pp.238-252, 2012.

J. Ribis and S. Lozano-perez, Orientation relationships and interface structure of ??-Cr nanoclusters embedded in ?-Fe matrix after ?-?? demixing in neutron irradiated Oxide Dispersion Strengthened material, Materials Letters, vol.74, pp.143-146, 2012.

J. Ribis, E. Bordas, P. Trocillier, Y. Surreys, Y. Carlan et al., Nuclear Instruments and Methods in Physics Research B Radiation-sustained nanocluster metastability in oxide dispersion strengthened materials, Nuclear Instruments and Methods in Physics Research, B, vol.365, pp.22-25, 2015.

J. Ribis, M. Lescoat, S. Y. Zhong, M. Mathon, Y. Carlan et al., Influence of the low interfacial density energy on the coarsening resistivity of the nano-oxide particles in Ti-added ODS material, Journal of Nuclear Materials, vol.442, pp.101-105, 2013.

J. Ribis, Structural and chemical matrix evolution following neutron irradiation in a MA957 oxide dispersion strengthened material, Journal of Nuclear Materials, vol.434, pp.178-188, 2013.

J. Ribis and S. Lozano-perez, Nano-cluster stability following neutron irradiation in MA957 oxide dispersion strengthened material, Journal of Nuclear Materials, vol.444, pp.314-322, 2014.

J. Ribis, M. A. Thual, T. Guilbert, Y. Carlan, and A. De-&-legris, Relaxation path of metastable nanoclusters in oxide dispersion strengthened materials, Journal of Nuclear Materials, vol.484, pp.183-192, 2017.
URL : https://hal.archives-ouvertes.fr/cea-02381277

S. Rogozhkin, Nanostructure evolution in ODS steels under ion irradiation, Nuclear Materials and Energy, vol.0, pp.1-9, 2016.

B. Rouxel, C. Bisor, Y. Carlan, . De, A. Courcelle et al., In fl uence of the austenitic stainless steel microstructure on the void swelling under ion irradiation, EPJ Nuclear Sciences and Technologies, vol.30, pp.1-11, 2016.

H. Sakasegawa, Correlation between chemical composition and size of very small oxide particles in the MA957 ODS ferritic alloy, Journal of Nuclear Materials, vol.384, pp.115-118, 2009.

D. Sakuma, S. Yamashita, K. Oka, S. Ohnuki, L. E. Rehn et al., Y2O3 nanoparticle formation in ODS ferritic steels by Y and O dual ion-implantation, Journal of Nuclear Materials, vol.329, pp.392-396, 2004.

R. Schaublin, A. Ramar, N. Baluc, V. Castro, . De et al., Microstructural development under irradiation in European ODS ferritic / martensitic steels, Journal of Nuclear Materials, vol.351, pp.247-260, 2006.

K. E. Sickafus, E. A. Kotomin, and B. P. Uberuaga, Radiation Effects in Solids, 235 Mathematics, 2007.

R. E. Smallman and R. J. Bishop, Modern physical metallurgy and materials engineering, 1999.

D. L. Smith, M. C. Billone, S. Majumdar, R. F. Mattas, and D. Sze, Materials integration issues for high performance fusion power systems, Journal of Nuclear Materials, vol.263, pp.65-73, 1998.

C. L. Smith, The need for fusion, Fusion Engineerig and Design, vol.74, pp.3-8, 2005.

A. Steckmeyer, Tensile properties and deformation mechanisms of a 14Cr ODS ferritic steel, Journal of Nuclear Materials, vol.405, pp.95-100, 2010.

Q. X. Sun, T. Zhang, X. P. Wang, Q. F. Fang, T. Hao et al., Microstructure and mechanical properties of oxide dispersion strengthened ferritic steel prepared by a novel route, Journal of Nuclear Materials, vol.424, pp.279-284, 2012.

C. Suryanarayana, Mechanical alloying and milling, Progress in Materials Science, vol.46, pp.1-184, 2001.

M. J. Swenson and J. P. Wharry, Nanocluster irradiation evolution in Fe-9 % Cr ODS and ferritic-martensitic alloys, Journal of Nuclear Materials, vol.496, pp.24-40, 2017.

J. U. Takada, Determination of diffusion coefficient of oxygen in -iron from internal oxidation measurements in Fe-Si alloys, Journal of Materials Science, vol.21, pp.2133-2137, 1986.

S. Takaya, Corrosion behavior of Al-alloying high Cr-ODS steels in lead -bismuth eutectic, Journal of Nuclear Materials, vol.386, pp.507-510, 2009.

S. Takaya, Al-containing ODS steels with improved corrosion resistance to liquid lead -bismuth, Journal of Nuclear Materials, vol.428, pp.125-130, 2012.

L. Tan, Y. Yang, and J. T. Busby, Effects of alloying elements and thermomechanical treatment on 9Cr Reduced Activation Ferritic-Martensitic ( RAFM ) steels, Journal of Nuclear Materials, vol.442, pp.13-17, 2013.

L. Tan, Y. Katoh, and L. L. Snead, Development of castable nanostructured alloys as a new generation RAFM steels*, Journal of Nuclear Materials, vol.511, pp.598-604, 2018.

T. Tanaka, Synergistic effect of helium and hydrogen for defect evolution under multiion irradiation of Fe -Cr ferritic alloys, Journal of Nuclear Materials, vol.333, pp.294-298, 2004.

A. F. Tavassoli, E. Diegele, R. Lindau, N. Luzginova, and H. Tanigawa, Current status and recent research achievements in ferritic / martensitic steels, Journal of Nuclear Materials, vol.455, pp.269-276, 2014.

P. J. Thomas and P. A. Midgley, An introduction to energy-filtered transmission electron microscopy, Topics in Catalysis, vol.21, pp.109-138, 2002.

Z. Tong and Y. Dai, The microstructure and tensile properties of ferritic/martensitic steels T91, Eurofer-97 and F82H irradiated up to 20 dpa in STIP-III, Journal of Nuclear Materials, vol.398, pp.43-48, 2010.

S. Ukai, Alloying design of oxide dispersion for long life FBRs core materials strengthened ferritic steel, Journal of Nuclear Materials, vol.204, pp.5-73, 1993.

S. Ukai, S. Mizuta, T. Yoshitake, T. Okuda, M. Fujiwara et al., Tube manufacturing and characterization of oxide dispersion strengthened ferritic steels, Journal of Nuclear Materials, vol.287, pp.702-706, 2000.

S. Ukai and M. Fujiwara, Perspective of ODS alloys application in nuclear environments, Journal of Nuclear Materials, pp.749-757, 2002.

C. A. Williams, N. Baluc, and P. Unifantowicz, Structure of complex oxide nanoparticles in a Fe-14Cr-2W-0.3Ti-0.3Y2O3 ODS RAF steel, Journal of Nuclear Materials, vol.442, pp.158-163, 2013.

D. Vaumousse, A. Cerezo, and P. J. Warren, A procedure for quantification of precipitate microstructures from three-dimensional atom probe data, Ultramicroscopy, vol.95, pp.215-221, 2003.

P. Villars and L. D. Calvert, Pearson's Handbook of Crystallographic Data for Intermettalic Phases, 1985.

, Fundamentals of Radiation Materials Science, 2007.

J. P. Wharry, M. J. Swenson, and K. H. Yano, A review of the irradiation evolution of dispersed oxide nanoparticles in the b.c.c. Fe-Cr system: Current understanding and future directions, Journal of Nuclear Materials, vol.486, pp.11-20, 2017.

D. B. Williams and B. C. Carter, Transmission Electron Microscopy: A textbook for Materials Science, 2009.

C. A. Williams, E. A. Marquis, A. Cerezo, and G. D. Smith, Nanoscale characterisation of ODS -Eurofer 97 steel : An atom-probe tomography study, Journal of Nuclear Materials, vol.400, pp.37-45, 2010.

C. A. Williams, G. D. Smith, and E. A. Marquis, The effect of Ti on the coarsening behavior of oxygen-rich nanoparticles in oxide-dispersion-strengthened steels after annealing at 1200°C, Scripta Materialia, vol.67, pp.108-111, 2012.

C. A. Williams, D. Haley, E. A. Marquis, G. D. Smith, and M. P. Moody, Ultramicroscopy Defining clusters in APT reconstructions of ODS steels, Ultramicroscopy, vol.132, pp.271-278, 2013.

Y. Wu, E. M. Haney, N. J. Cunningham, and G. R. Odette, Transmission electron microscopy characterization of the nanofeatures in nanostructured ferritic alloy MA957, Acta Materialia, vol.60, pp.3456-3468, 2012.

Y. Wu, J. Ciston, S. Kraemer, N. Bailey, R. Odette et al., The crystal structure , orientation relationships and interfaces of the nanoscale oxides in nanostructured ferritic alloys, Acta Materialia, vol.111, pp.108-115, 2016.

Y. P. Xia, X. P. Wang, Z. Zhuang, Q. X. Sun, T. Zhang et al., Microstructure and oxidation properties of 16Cr -5Al -ODS steel prepared by sol -gel and spark plasma sintering methods, Journal of Nuclear Materials, vol.432, pp.198-204, 2013.

R. Xie, Z. Lu, C. Lu, Z. Li, X. Ding et al., Microstructures and mechanical properties of 9Cr oxide dispersion strengthened steel produced by spark plasma sintering, Fusion Engineering and Design, vol.115, pp.67-73, 2017.

H. Xu, Z. Lu, S. Ukai, N. Oono, and C. Liu, Effects of annealing temperature on nanoscale particles in oxide dispersion strengthened Fe-15Cr alloy powders with Ti and Zr additions, Journal of Alloys and Compounds, vol.693, pp.177-187, 2017.

H. Xu, Z. Lu, D. Wang, and C. Liu, Microstructure Refinement and Strengthening Mechanisms of a 9Cr Oxide Dispersion Strengthened Steel by Zirconium Addition, Nuclear Engineering and Technology, vol.49, pp.178-188, 2017.

H. Xu, Z. Lu, D. Wang, and C. Liu, Effect of zirconium addition on the microstructure and mechanical properties of 15Cr-ODS ferritic Steels consolidated by hot isostatic pressing, Fusion Engineering and Design, vol.114, pp.33-39, 2017.

M. Yamamoto, S. Ukai, S. Hayashi, T. Kaito, and S. Ohtsuka, Reverse phase transformation from a to c in 9Cr-ODS ferritic steels, Journal of Nuclear Materials, vol.417, pp.237-240, 2011.

S. Yamashita, K. Oka, S. Ohnuki, N. Akasaka, and S. Ukai, Phase stability of oxide dispersion-strengthened ferritic steels in neutron irradiation, Journal of nuclear Materials, pp.283-288, 2002.

S. Yamashita, N. Akasaka, and S. Ohnuki, Nano-oxide particle stability of 9-12Cr grain morphology modified ODS steels under neutron irradiation, Journal of nuclear Materials, vol.329, pp.377-381, 2004.

S. Yamashita, N. Akasaka, S. Ukai, and S. Ohnuki, Microstructural development of a heavily neutron-irradiated ODS ferritic steel (MA957) at elevated temperature, Journal of Nuclear Materials, pp.202-207, 2007.

Y. Yazawa, T. Furuhara, and T. Maki, Effect of matrix recrystallization on morphology, crystallography and coarsening behavior of vanadium carbide in austenite, Acta Materialia, vol.52, pp.3727-3736, 2004.

K. Yutani, H. Kishimoto, R. Kasada, and A. Kimura, Evaluation of Helium effects on swelling behaviour of oxide dispersion strengthened ferritic steels under ion irradiation, Journal of Nuclear materials, pp.423-423, 2007.

P. Yvon and F. Carré, Structural materials challenges for advanced reactor systems, Journal of Nuclear Materials, vol.385, pp.217-222, 2009.

L. Zhang, S. Ukai, T. Hoshino, S. Hayashi, and X. Qu, Y 2 O 3 evolution and dispersion refinement in Co-base ODS alloys, Acta Materialia, vol.57, pp.3671-3682, 2009.

C. H. Zhang, A. Kimura, R. Kasada, J. Jang, H. Kishimoto et al., Characterization of the oxide particles in Al-added high-Cr ODS ferritic steels, Journal of Nuclear Materials, vol.417, pp.221-224, 2011.

T. Zhang, C. Vieh, K. Wang, and Y. Dai, Irradiation-induced evolution of mechanical properties and microstructure of Eurofer 97, Journal of Nuclear Materials, vol.450, pp.48-53, 2014.

H. Zhang, Processing and microstructure characterisation of oxide dispersion strengthened Fe-14Cr-0.4Ti-0.25Y2O3 ferritic steels fabricated by plasma sintering, Journal of Nuclear Materials, vol.464, pp.61-68, 2015.

G. Zhang, The microstructure and mechanical properties of Al-containing 9Cr ODS ferritic alloy, Journal of Alloys and Compounds, vol.648, pp.223-228, 2015.

Q. Zhao, L. Yu, Y. Liu, Y. Huang, Q. Guo et al., Evolution of Al-containing phases in ODS steel by hot pressing and annealing, Powder Technology, vol.311, pp.449-455, 2017.

Q. Zhao, L. Yu, Y. Liu, Y. Huang, Z. Ma et al., Microstructure and tensile properties of a 14Cr ODS ferritic steel, Materials Science & Engineering A, vol.680, pp.347-350, 2017.

C. Zheng, A. Gentils, J. Ribis, V. A. Borodin, O. Kaitasov et al., Metal-oxide nano-clusters in Fe-10%Cr alloy by ion implantation. Nuclear Instruments and Methods in, Physics Research B, vol.365, pp.319-324, 2015.

C. Zheng, Metallic nano-oxide clusters synthesis by ion implantation in high purity Fe10Cr alloy, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01242211

X. Zhou, Z. Ma, L. Yu, Y. Huang, and H. Li, Formation mechanisms of Y-Al-O complex oxides in 9Cr-ODS steels with Al addition, Journal of Materials Science, vol.54, pp.7893-7907, 2019.

J. Ziegler and . Website, , 1996.

S. J. Zinkle, Advanced materials for fusion technology, Fusion Engineering and Design, vol.74, pp.31-40, 2005.

S. J. Zinkle and J. T. Busby, Structural materials for fission & fusion energy Structural materials represent the key for containment of nuclear fuel, Materials Today, vol.12, pp.12-19, 2009.