B. E. Schirrmeister, M. Gugger, and P. C. Donoghue, Cyanobacteria and the Great Oxidation Event: Evidence from genes and fossils, Palaeontology, vol.58, pp.769-785, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01385271

A. Bekker, Dating the Rise of Oxygen, Nature, vol.427, pp.117-120, 2004.

M. J. Van-kranendonk, A Chronostratigraphic Division of the Precambrian, Geol. Time Scale, pp.299-392, 2012.

L. Charpy, B. E. Casareto, M. J. Langlade, and Y. Suzuki, Cyanobacteria in Coral Reef Ecosystems: A Review, J. Mar. Biol, 2012.

A. O. Isichei, The role of algae and cyanobacteria in arid lands. A review, Arid Soil Res. Rehabil, 1990.

D. R. Boone, R. W. Castenholz, and G. M. Garrity, Bergey's manual of systematic bacteriology, 2001.

K. Lounatmaa, T. Vaara, K. Österlund, and M. Vaara, Ultrastructure of the cell wall of a Synechocystis strain, Can. J. Microbiol, vol.26, pp.204-208, 1980.

R. Y. Stanier, G. C. Bazine, G. Staijier, and . Cohen-bazire, PHOTOTROPHIC PROKARYOTES: THE CYANOBACTERIA. Ann. Rev. Microbio!, vol.31, p.50, 1977.

R. Rippka, J. Waterbury, and G. Cohen-bazire, A cyanobacterium which lacks thylakoids, Arch. Microbiol, vol.100, pp.419-436, 1974.

J. C. Meeks, E. L. Campbell, M. L. Summers, and F. C. Wong, Cellular differentiation in the cyanobacterium Nostoc punctiforme, Arch. Microbiol, vol.178, pp.395-403, 2002.

R. Y. Stanier, J. Deruelles, R. Rippka, M. Herdman, and J. B. Waterbury, Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria, Microbiology, 1979.

H. W. Paerl and T. G. Otten, Harmful Cyanobacterial Blooms: Causes, Consequences, and Controls, Microb. Ecol, vol.65, pp.995-1010, 2013.

C. Mereschkowsky, Über Natur und Ursprung der Chromatophoren im Pflanzenreiche, Biol. Zent. Bl, vol.25, pp.593-604, 1905.

R. Emerson and W. Arnold, a Separation of the Reactions in Photosynthesis By Means of Intermittent Light, J. Gen. Physiol, vol.15, pp.391-420, 1932.

W. Wirtz, M. Stitt, H. W. Heldt, . Light, . Calvin et al., AS MEASURED IN PEA LEAVES. FEBS Lett, vol.142, pp.223-226, 1982.

R. E. Blankenship, Molecular Mechanisms of Photosynthesis. Molecular Mechanisms of Photosynthesis, 2008.

R. Emerson and W. Arnold, the Photochemical Reaction in Photosynthesis, J. Gen. Physiol, vol.16, pp.191-205, 2004.

H. Gaffron and K. Wohl, Zur Theorie der Assimilation. Naturwissenschaften, vol.24, pp.103-107, 1936.

C. W. Mullineaux, Co-existence of photosynthetic and respiratory activities in cyanobacterial thylakoid membranes, Biochim. Biophys. Acta -Bioenerg, vol.1837, pp.503-511, 2014.

A. G. Chew and D. A. Bryant, Chlorophyll Biosynthesis in Bacteria: The Origins of Structural and Functional Diversity, Annu. Rev. Microbiol, vol.61, pp.113-129, 2007.

H. Scheer, B. Grimm, R. J. Porra, W. Rüdiger, and H. Scheer, An Overview of Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications BT -Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications, pp.1-26, 2006.

R. Tanaka and A. Tanaka, Tetrapyrrole Biosynthesis in Higher Plants, Annu. Rev. Plant Biol, vol.58, pp.321-346, 2007.

T. Burger-wiersma, M. Veenhuis, H. J. Korthals, C. C. Van-de-wiel, and L. R. Mur, A new prokaryote containing chlorophylls a and b, Nature, vol.320, pp.262-264, 1986.

R. C. Dougherty, H. H. Strain, W. A. Svec, R. A. Uphaus, and J. J. Katz, Structure, properties, and distribution of chlorophyll c, J. Am. Chem. Soc, vol.92, pp.2826-2833, 1970.

T. Renger and E. Schlodder, The Primary Electron Donor of Photosystem II of the Cyanobacterium Acaryochloris marina Is a Chlorophyll d and the Water Oxidation Is Driven by a Chlorophyll a/Chlorophyll d Heterodimer, J. Phys. Chem. B, vol.112, pp.7351-7354, 2008.

M. Chen, A red-shifted chlorophyll, Science, vol.329, pp.1318-1327, 2010.

D. J. Nürnberg, Photochemistry beyond the red limit in chlorophyll f-containing photosystems. Science (80-. ), vol.360, pp.1210-1213, 2018.

A. Vershinin, Biological functions of carotenoids -diversity and evolution, BioFactors, vol.10, pp.99-104, 1999.

H. Hashimoto, C. Uragami, N. Yukihira, A. T. Gardiner, and R. J. Cogdell, Understanding/unravelling carotenoid excited singlet states, J. R. Soc. Interface, vol.15, 2018.

T. Polivka, J. L. Herek, D. Zigmantas, H. Akerlund, and V. Sundstrom, Direct observation of the (forbidden) S1 state in carotenoids, Proc. Natl. Acad. Sci, vol.96, pp.4914-4917, 1999.

J. L. Lustres, A. L. Dobryakov, A. Holzwarth, and M. Veiga, S2?S1 internal conversion in ?-carotene: Strong vibronic coupling from amplitude oscillations of transient absorption bands, Angew. Chemie -Int. Ed, vol.46, pp.3758-3761, 2007.

T. Polivka and V. Sundstrom, Ultrafast dynamics of carotenoid excited states -From solution to natural and artificial systems, Chem Rev, vol.104, pp.2021-2071, 2004.

J. A. Bautista, Excited State Properties of Peridinin: Observation of a Solvent Dependence of the Lowest Excited Singlet State Lifetime and Spectral Behavior Unique among Carotenoids, J. Phys. Chem. B, vol.103, pp.8751-8758, 1999.

M. M. Enriquez, The Intramolecular Charge Transfer State in Carbonyl-Containing Polyenes and Carotenoids, J. Phys. Chem. B, vol.114, pp.12416-12426, 2010.

H. M. Vaswani, C. Hsu, M. Head-gordon, and G. R. Fleming, Quantum Chemical Evidence for an Intramolecular Charge-Transfer State in the Carotenoid Peridinin of Peridinin?Chlorophyll?Protein, J. Phys. Chem. B, vol.107, pp.7940-7946, 2003.

R. Croce, M. G. Müller, R. Bassi, and A. R. Holzwarth, Carotenoid-to-Chlorophyll Energy Transfer in Recombinant Major Light-Harvesting Complex (LHCII) of Higher Plants. I. Femtosecond Transient Absorption Measurements, Biophys. J, vol.80, pp.901-915, 2001.

L. Frank, *. De-weerd, J. T. Kennis, J. P. Dekker, and R. V. Grondelle, ?-Carotene to Chlorophyll Singlet Energy Transfer in the Photosystem I Core of Synechococcus elongatus Proceeds via the ?-Carotene S2 and S1 States, 2003.

C. S. Foote and R. W. Denny, Chemistry of singlet oxygen. VII. Quenching by .beta.-carotene, J. Am. Chem. Soc, vol.90, pp.6233-6235, 1968.

Z. Liu, Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution, Nature, vol.428, pp.287-292, 2004.

P. Haworth, J. L. Watson, and C. J. Arntzen, The detection, isolation and characterization of a light-harvesting complex which is specifically associated with Photosystem I, Biochim. Biophys. Acta -Bioenerg, vol.724, pp.151-158, 1983.

R. Bassi, D. Sandona, and R. Croce, Novel aspects of chlorophyll a/b-binding proteins, Physiol. Plant, vol.100, pp.769-779, 1997.

E. J. Boekema, H. Van-roon, J. F. Van-breemen, and J. P. Dekker, Supramolecular organization of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes, Eur. J. Biochem, vol.266, pp.444-452, 1999.

C. W. Mullineaux, Phycobilisome-reaction centre interaction in cyanobacteria, Photosynth. Res, vol.95, pp.175-182, 2008.

L. Tian, Site, rate, and mechanism of photoprotective quenching in cyanobacteria, J. Am. Chem. Soc, vol.133, pp.18304-18311, 2011.

M. G. Rakhimberdieva, V. A. Boichenko, N. Karapetyan, and I. N. Stadnichuk, Interaction of phycobilisomes with photosystem II dimers and photosystem I monomers and trimers in the cyanobacterium Spirulina platensis, Biochemistry, vol.40, pp.15780-15788, 2001.

C. Dong, ApcD is necessary for efficient energy transfer from phycobilisomes to photosystem I and helps to prevent photoinhibition in the cyanobacterium Synechococcus sp. PCC 7002, Biochim. Biophys. Acta -Bioenerg, vol.1787, pp.1122-1128, 2009.

M. K. Ashby and C. W. Mullineaux, The role of ApcD and ApcF in energy transfer from phycobilisomes to PS I and PS II in a cyanobacterium, Photosynth. Res, vol.61, pp.169-179, 1999.

P. I. Calzadilla, F. Muzzopappa, P. Sétif, and D. Kirilovsky, Different roles for ApcD and ApcF in Synechococcus elongatus and Synechocystis sp. PCC 6803 phycobilisomes, Biochim. Biophys. Acta -Bioenerg, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02570018

X. Wei, Structure of spinach photosystem II-LHCII supercomplex at 3.2 Å resolution, Nature, vol.534, pp.69-74, 2016.

Y. Umena, K. Kawakami, J. Shen, and N. Kamiya, Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å, Nature, vol.473, pp.55-60, 2011.

K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber, and S. Iwata, Architecture of the Photosynthetic Exygen-Evolving Centre. Science, vol.303, pp.1831-1839, 2004.

N. Kamiya and J. Shen, Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution, Proc. Natl. Acad. Sci, vol.100, pp.98-103, 2003.

T. Cardona, A. Sedoud, N. Cox, and A. W. Rutherford, Charge separation in Photosystem II: A comparative and evolutionary overview, Biochim. Biophys. Acta -Bioenerg, vol.1817, pp.26-43, 2012.

J. Shen, The Structure of Photosystem II and the Mechanism of Water Oxidation in Photosynthesis, Annu. Rev. Plant Biol, vol.66, pp.23-48, 2015.

F. Morais, J. Barber, and P. J. Nixon, The chloroplast-encoded alpha subunit of cytochrome b-559 is required for assembly of the photosystem two complex in both the light and the dark in Chlamydomonas reinhardtii, J. Biol. Chem, vol.273, pp.29315-29320, 1998.

D. J. Chapman, K. Gounaris, and J. Barber, Electron-transport properties of the isolated D1-D2-cytochrome b-559 Photosystem II reaction centre, Biochim. Biophys. Acta -Bioenerg, vol.933, pp.423-431, 1988.

K. E. Shinopoulos and G. W. Brudvig, Cytochrome b559 and cyclic electron transfer within photosystem II, Biochim. Biophys. Acta -Bioenerg, vol.1817, pp.66-75, 2012.

G. Kurisu, H. Zhang, J. L. Smith, and W. A. Cramer, Structure of the Cytochrome b6f Complex of Oxygenic Photosynthesis: Tuning the Cavity, Science, vol.302, pp.1009-1014, 2003.

P. Mitchell, The protonmotive Q cycle: a general formulation, FEBS Lett, vol.59, pp.137-146, 1975.

J. Hladík and D. Sofrová, Does the trimeric form of the Photosystem 1 reaction center of cyanobacteria in vivo exist?, Photosynth. Res, vol.29, pp.171-175, 1991.

P. Jordan, Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution, Nature, vol.411, pp.909-917, 2001.

J. Kruip, D. Bald, E. Boekema, and M. Rögner, Evidence for the existence of trimeric and monomeric Photosystem I complexes in thylakoid membranes from cyanobacteria, Photosynth. Res, vol.40, pp.279-286, 1994.

A. Ben-shem, F. Frolow, and N. Nelson, Evolution of photosystem I -from symmetry through pseudosymmetry to asymmetry, FEBS Lett, vol.564, pp.274-280, 2004.

A. Amunts, O. Drory, and N. Nelson, The structure of a plant photosystem I supercomplex at 3.4 Å resolution, Nature, vol.447, pp.58-63, 2007.

J. H. Golbeck, Structure and Function of Photosystem I, Annu. Rev. Plant Physiol. Plant Mol. Biol, vol.43, pp.293-324, 1992.

D. I. Arnon, M. B. Allen, and F. R. Whatley, Photosynthesis by Isolated Chloroplasts, Nature, vol.174, pp.394-396, 1954.

N. Battchikova, M. Eisenhut, and E. Aro, Cyanobacterial NDH-1 complexes: Novel insights and remaining puzzles, Biochim. Biophys. Acta -Bioenerg, vol.1807, pp.935-944, 2011.

J. M. Schuller, Structural adaptations of photosynthetic complex I enable ferredoxindependent electron transfer. Science (80-. ), vol.363, pp.257-260, 2019.
URL : https://hal.archives-ouvertes.fr/cea-02065421

Z. He, NDH-1L interacts with ferredoxin via the subunit NdhS in Thermosynechococcus elongatus, Photosynth. Res, vol.126, pp.341-349, 2015.

F. Gao, The NDH-1L-PSI Supercomplex Is Important for Efficient Cyclic Electron Transport in Cyanobacteria, Plant Physiol, vol.172, pp.1451-1464, 2016.

N. Yeremenko, Open Reading Frame ssr2016 is Required for Antimycin A-sensitive Photosystem I-driven Cyclic Electron Flow in the Cyanobacterium Synechocystis sp. PCC 6803, Plant Cell Physiol, vol.46, pp.1433-1436, 2005.

Y. Munekage, PGR5 Is Involved in Cyclic Electron Flow around Photosystem I and Is Essential for Photoprotection in Arabidopsis, Cell, vol.110, pp.361-371, 2002.

R. Edge, T. G. Truscott, H. A. Frank, A. J. Young, G. Britton et al., Carotenoid Radicals and the Interaction of Carotenoids with Active Oxygen Species BT -The Photochemistry of Carotenoids, pp.223-234, 1999.

L. Zolla and S. Rinalducci, Involvement of Active Oxygen Species in Degradation of Light-Harvesting Proteins under Light Stresses, Biochemistry, vol.41, pp.14391-14402, 2002.

A. Krieger-liszkay, Singlet oxygen production in photosynthesis, J. Exp. Bot, vol.56, pp.337-346, 2004.

N. Keren, H. Gong, and I. Ohad, Oscillations of reaction center II-D1 protein degradation in vivo induced by repetitive light flashes. Correlation between the level of RCII-QB-and protein degradation in low light, J. Biol. Chem, vol.270, pp.806-814, 1995.

P. B. Kós, Z. Deák, O. Cheregi, and I. Vass, Differential regulation of psbA and psbD gene expression, and the role of the different D1 protein copies in the cyanobacterium Thermosynechococcus elongatus BP-1, Biochim. Biophys. Acta -Bioenerg, vol.1777, pp.74-83, 2008.

N. Dashdorj, The Single Chlorophyll a Molecule in the Cytochrome b6f Complex: Unusual Optical Properties Protect the Complex against Singlet Oxygen, Biophys. J, vol.88, pp.4178-4187, 2005.

A. H. Mehler, Studies on reactions of illuminated chloroplasts, Arch. Biochem. Biophys, vol.33, pp.65-77, 1951.

A. W. Rutherford, A. Osyczka, and F. Rappaport, Back-reactions, short-circuits, leaks and other energy wasteful reactions in biological electron transfer: Redox tuning to survive life in O 2, FEBS Lett, vol.586, pp.603-616, 2012.

K. Asada, Production and scavenging of reactive oxygen species in chloroplasts and their functions, Plant Physiol, vol.141, pp.391-397, 2006.

G. Shimakawa and C. Miyake, Oxidation of P700 Ensures Robust Photosynthesis, Front. Plant Sci, vol.9, p.1617, 2018.

W. Ke, G. Dai, H. Jiang, R. Zhang, and B. Qiu, Essential roles of iron superoxide dismutase in photoautotrophic growth of Synechocystis sp. PCC 6803 and heterogeneous expression of marine Synechococcus sp. CC9311 copper/zinc superoxide dismutase within its sodB knockdown mutant, Microbiology, vol.160, pp.228-241, 2014.

A. Latifi, M. Ruiz, and C. Zhang, Oxidative stress in cyanobacteria, FEMS Microbiol. Rev, vol.33, pp.258-278, 2009.

A. Krieger-liszkay and A. Trebst, Tocopherol is the scavenger of singlet oxygen produced by the triplet states of chlorophyll in the PSII reaction centre, J. Exp. Bot, vol.57, pp.1677-1684, 2006.

A. E. Mcdonald, Flexibility in photosynthetic electron transport: The physiological role of plastoquinol terminal oxidase (PTOX), Biochim. Biophys. Acta -Bioenerg, vol.1807, pp.954-967, 2011.

S. Bailey, Alternative photosynthetic electron flow to oxygen in marine Synechococcus, Biochim. Biophys. Acta -Bioenerg, vol.1777, pp.269-276, 2008.

Y. Allahverdiyeva, J. Isojärvi, P. Zhang, and E. Aro, Cyanobacterial Oxygenic Photosynthesis is Protected by Flavodiiron Proteins. Life, vol.5, 2015.

Y. Allahverdiyeva, Flavodiiron proteins Flv1 and Flv3 enable cyanobacterial growth and photosynthesis under fluctuating light, Proc. Natl. Acad. Sci. 110, pp.4111-4116, 2013.

P. Zhang, Operon flv4-flv2 Provides Cyanobacterial Photosystem II with Flexibility of Electron Transfer, Plant Cell, vol.24, pp.1952-1971, 2012.

C. W. Mullineaux and J. F. Allen, State 1-State 2 transitions in the cyanobacterium Synechococcus 6301 are controlled by the redox state of electron carriers between Photosystems I and II, Photosynth. Res, vol.23, pp.297-311, 1990.

F. Wollman and C. Lemaire, Studies on kinase-controlled state transitions in Photosystem II and b6f mutants from Chlamydomonas reinhardtii which lack quinone-binding proteins, Biochim. Biophys. Acta -Bioenerg, vol.933, pp.85-94, 1988.

J. Minagawa, State transitions-The molecular remodeling of photosynthetic supercomplexes that controls energy flow in the chloroplast, Biochim. Biophys. Acta -Bioenerg, vol.1807, pp.897-905, 2011.

P. I. Calzadilla, The Cytochrome b6f Complex Is Not Involved in Cyanobacterial State Transitions, Plant Cell, vol.31, pp.911-931, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02108309

R. Ka?a, Mobility of photosynthetic proteins, Photosynth. Res, vol.116, pp.465-479, 2013.

C. W. Mullineaux, M. J. Tobin, and G. R. Jones, Mobility of photosynthetic complexes in thylakoid membranes, Nature, vol.390, pp.421-424, 1997.

S. Joshua and C. W. Mullineaux, Phycobilisome diffusion is required for light-state transitions in cyanobacteria, Plant Physiol, vol.135, pp.2112-2119, 2004.

D. Bruce, S. Brimble, and D. A. Bryant, State transitions in a phycobilisome-less mutant of the cyanobacterium Synechococcus sp, BBA -Bioenerg, vol.7002, pp.66-73, 1989.

K. El-bissati, E. Delphin, N. Murata, A. L. Etienne, and D. Kirilovsky, Photosystem II fluorescence quenching in the cyanobacterium Synechocystis PCC 6803: Involvement of two different mechanisms, Biochim. Biophys. Acta -Bioenerg, vol.1457, pp.229-242, 2000.

J. Olive, I. Bina, C. Vernotte, C. Astier, and F. A. Wollman, Randomization of the EF particles in thylakoid membranes of synechocystis 6714 upon transition from state I to state Introduction 47

. Ii and . Lett, , vol.208, pp.308-312, 1986.

H. Liu, Phycobilisomes supply excitations to both photosystems in a megacomplex in cyanobacteria, Science, vol.342, pp.1104-1107, 2013.

R. Ranjbar-choubeh, E. Wientjes, P. C. Struik, D. Kirilovsky, and H. Van-amerongen, State transitions in the cyanobacterium Synechococcus elongatus 7942 involve reversible quenching of the photosystem II core, Biochim. Biophys. Acta -Bioenerg, vol.1859, pp.1059-1066, 2018.

C. Dong and J. Zhao, ApcD is required for state transition but not involved in blue-light induced quenching in the cyanobacterium Anabaena sp, PCC7120. Chinese Sci. Bull, vol.53, pp.3422-3424, 2008.

A. V. Ruban, Light harvesting control in plants, FEBS Lett, vol.592, pp.3030-3039, 2018.

D. A. Campbell, V. Hurry, K. Clarke, P. Gustafsson, and G. Oquist, Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol, Mol. Biol. Rev, vol.62, pp.667-683, 1998.

M. G. Rakhimberdieva, I. N. Stadnichuk, I. V. Elanskaya, and N. V. Karapetyan, Carotenoid-induced quenching of the phycobilisome fluorescence in photosystem IIdeficient mutant of Synechocystis sp, FEBS Lett, vol.574, pp.85-88, 2004.

A. Wilson, G. Ajlani, J. M. Verbavatz, I. Vass, C. A. Kerfeld et al., A Soluble Carotenoid Protein Involved in Phycobilisome-Related Energy Dissipation in Cyanobacteria, Plant Cell Online, vol.18, pp.992-1007, 2006.

A. Wilson, A photoactive carotenoid protein acting as light intensity sensor, Proc. Natl. Acad. Sci. 105, pp.12075-12080, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01203971

C. Boulay, A. Wilson, S. D-'haene, and D. Kirilovsky, Identification of a protein required for recovery of full antenna capacity in OCP-related photoprotective mechanism in cyanobacteria, Proc. Natl. Acad. Sci, vol.107, pp.11620-11625, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00554176

C. Boulay, L. Abasova, C. Six, I. Vass, and D. Kirilovsky, Occurrence and function of the orange carotenoid protein in photoprotective mechanisms in various cyanobacteria, Biochim. Biophys. Acta -Bioenerg, 2008.

A. Wilson, C. Boulay, A. Wilde, C. A. Kerfeld, and D. Kirilovsky, Light-Induced Energy Dissipation in Iron-Starved Cyanobacteria: Roles of OCP and IsiA Proteins, Plant Cell Online, vol.19, pp.656-672, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00259203

K. Holt, T. Krogmann, and D. W. , A carotenoid-protein from cyanobacteria, BBA -Bioenerg, vol.637, pp.408-414, 1981.

Y. P. Wu and D. W. Krogmann, The orange carotenoid protein of Synechocystis PCC 6803, Biochim. Biophys. Acta -Bioenerg, vol.1322, pp.1-7, 1997.

C. A. Kerfeld, The crystal structure of a cyanobacterial water-soluble carotenoid binding protein, Structure, vol.11, pp.55-65, 2003.

A. Wilson, Structural determinants underlying photoprotection in the photoactive orange carotenoid protein of cyanobacteria, J. Biol. Chem, vol.285, pp.18364-18375, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01203915

C. Punginelli, A. Wilson, J. M. Routaboul, and D. Kirilovsky, Influence of zeaxanthin and echinenone binding on the activity of the Orange Carotenoid Protein, Biochim. Biophys. Acta -Bioenerg, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01203969

C. B. De-carbon, A. Thurotte, A. Wilson, F. Perreau, and D. Kirilovsky, Biosynthesis of soluble carotenoid holoproteins in Escherichia coli, Sci. Rep, vol.5, p.9085, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01448094

E. G. Maksimov, A comparative study of three signaling forms of the orange carotenoid protein, Photosynth. Res, vol.130, pp.389-401, 2016.

H. Zhang, Molecular mechanism of photoactivation and structural location of the cyanobacterial orange carotenoid protein, Biochemistry, vol.53, pp.13-19, 2014.

H. Liu, Mass spectrometry footprinting reveals the structural rearrangements of cyanobacterial orange carotenoid protein upon light activation, Biochim. Biophys. Acta -Bioenerg, vol.1837, pp.1955-1963, 2014.

M. Gwizdala, A. Wilson, and D. Kirilovsky, In vitro reconstitution of the cyanobacterial photoprotective mechanism mediated by the Orange Carotenoid Protein in Synechocystis PCC 6803, Plant Cell, vol.23, pp.2631-2674, 2011.

R. L. Leverenz, Structural and Functional Modularity of the Orange Carotenoid Protein: Distinct Roles for the N-and C-Terminal Domains in Cyanobacterial Photoprotection, Plant Cell, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02549541

D. Jallet, Specificity of the Cyanobacterial Orange Carotenoid Protein: Influences of Orange Carotenoid Protein and Phycobilisome Structures, Plant Physiol, vol.164, pp.790-804, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204147

E. G. Maksimov, The Signaling State of Orange Carotenoid Protein, Biophys. J, vol.109, pp.595-607, 2015.

J. D. King, H. Liu, G. He, G. S. Orf, and R. E. Blankenship, Chemical activation of the cyanobacterial orange carotenoid protein, FEBS Lett, vol.588, pp.4561-4565, 2014.

A. Wilson, C. Punginelli, M. Couturier, F. Perreau, and D. Kirilovsky, Essential role of two tyrosines and two tryptophans on the photoprotection activity of the Orange Carotenoid Protein, Biochim. Biophys. Acta -Bioenerg, vol.1807, pp.293-301, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00999887

H. Liu, Photoactivation and relaxation studies on the cyanobacterial orange carotenoid protein in the presence of copper ion, Photosynth. Res, vol.135, pp.143-147, 2018.

E. Kish, M. M. Pinto, D. Kirilovsky, R. Spezia, and B. Robert, Echinenone vibrational properties: From solvents to the orange carotenoid protein, Biochim. Biophys. Acta -Bioenerg, vol.1847, pp.1044-1054, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01219485

V. Slouf, Ultrafast spectroscopy tracks carotenoid configurations in the orange and red carotenoid proteins from cyanobacteria, Photosynth. Res, pp.105-117, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01451888

C. W. Wilson, The Essential Role of the N-Terminal Domain of the Orange Carotenoid Protein in Cyanobacterial Photoprotection: Importance of a Positive Charge for Phycobilisome Binding, Plant Cell, vol.24, pp.1972-1983, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00725326

R. L. Leverenz, A 12 Å carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection. Science (80-. ), vol.348, pp.1463-1466, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01446619

S. Gupta, Local and global structural drivers for the photoactivation of the orange carotenoid protein, Proc. Natl. Acad. Sci, vol.112, pp.5567-5574, 2015.

E. G. Maksimov, The photocycle of orange carotenoid protein conceals distinct intermediates and asynchronous changes in the carotenoid and protein components, Sci. Rep, vol.7, p.15548, 2017.

S. Bandara, Photoactivation mechanism of a carotenoid-based photoreceptor, Proc. Natl. Acad. Sci, 2017.

P. E. Konold, Photoactivation mechanism , timing of protein secondary structure dynamics and carotenoid translocation in the Orange Carotenoid, J. Am. Chem. Soc, vol.141, pp.520-530, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02171867

M. G. Rakhimberdieva, D. V. Vavilin, W. F. Vermaas, I. V. Elanskaya, and N. V. Karapetyan, Phycobilin/chlorophyll excitation equilibration upon carotenoid-induced nonphotochemical fluorescence quenching in phycobilisomes of the cyanobacterium Synechocystis sp. PCC 6803, Biochim. Biophys. Acta -Bioenerg, vol.1767, pp.757-765, 2007.

D. Harris, Orange carotenoid protein burrows into the phycobilisome to provide photoprotection, Proc. Natl. Acad. Sci, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01457540

D. Zlenko, Role of the PB-loop in ApcE and phycobilisome core function in cyanobacterium Synechocystis sp. PCC 6803, Biochim. Biophys. Acta -Bioenerg, vol.1860, pp.155-166, 2019.

M. G. Rakhimberdieva, I. V. Elanskaya, W. F. Vermaas, and N. V. Karapetyan, Carotenoid-triggered energy dissipation in phycobilisomes of Synechocystis sp. PCC 6803 diverts excitation away from reaction centers of both photosystems, Biochim. Biophys. Acta -Bioenerg, vol.1797, pp.241-249, 2010.

L. Tian, Picosecond kinetics of light harvesting and photoprotective quenching in wildtype and mutant phycobilisomes isolated from the cyanobacterium Synechocystis PCC 6803, Biophys. J, vol.102, pp.1692-1700, 2012.

D. Jallet, M. Gwizdala, D. Kirilovsky, and . Apcd, ApcF and ApcE are not required for the Orange Carotenoid Protein related phycobilisome fluorescence quenching in the cyanobacterium Synechocystis PCC 6803, Biochim. Biophys. Acta -Bioenerg, vol.1817, pp.1418-1427, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02645373

A. H. Squires, Single-molecule trapping and spectroscopy reveals photophysical heterogeneity of phycobilisomes quenched by Orange Carotenoid Protein, Nat. Commun, vol.10, p.1172, 2019.

M. Gwizdala, Switching an Individual Phycobilisome Off and On, 2018.

R. Berera, The Photophysics of the Orange Carotenoid Protein, a Light-Powered Molecular Switch, J. Phys. Chem. B, vol.116, pp.2568-2574, 2012.

R. Berera, M. Gwizdala, I. H. Van-stokkum, D. Kirilovsky, and R. Van-grondelle, Excited states of the inactive and active forms of the orange carotenoid protein, J. Phys. Chem. B, vol.117, pp.9121-9128, 2013.

T. Polívka, P. Chábera, and C. A. Kerfeld, Carotenoid-protein interaction alters the S1 energy of hydroxyechinenone in the Orange Carotenoid Protein, Biochim. Biophys. Acta -Bioenerg, vol.1827, pp.248-254, 2013.

E. G. Maksimov, The time course of non-photochemical quenching in phycobilisomes of Synechocystis sp. PCC6803 as revealed by picosecond time-resolved fluorimetry, Biochim. Biophys. Acta -Bioenerg, vol.1837, pp.1540-1547, 2014.

T. Pol?vka, C. A. Kerfeld, T. Pascher, and V. S. , Spectroscopic Properties of the Carotenoid 3 ? -Hydroxyechinenone in the Orange Carotenoid Protein from the Cyanobacterium Arthrospira maxima ?, Biochemistry, vol.44, pp.3994-4003, 2005.

P. Chábera, M. Durchan, P. M. Shih, C. A. Kerfeld, and T. Polívka, Excited-state properties of the 16kDa red carotenoid protein from Arthrospira maxima, Biochim. Biophys. Acta -Bioenerg, vol.1807, pp.30-35, 2011.

D. M. Niedzwiedzki, H. Liu, and R. E. Blankenship, Excited state properties of 3'-hydroxyechinenone in solvents and in the orange carotenoid protein from synechocystis sp. PCC 6803, J. Phys. Chem. B, vol.118, pp.6141-6149, 2014.

A. Sedoud, The Cyanobacterial Photoactive Orange Carotenoid Protein Is an Excellent Singlet Oxygen Quencher, Plant Cell, vol.26, pp.1781-1791, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204071

M. Gwizdala, A. Wilson, A. Omairi-nasser, and D. Kirilovsky, Characterization of the Synechocystis PCC 6803 Fluorescence Recovery Protein involved in photoprotection, Biochim. Biophys. Acta -Bioenerg, vol.1827, pp.348-354, 2013.

M. Sutter, Crystal structure of the FRP and identification of the active site for modulation of OCP-mediated photoprotection in cyanobacteria, Proc. Natl. Acad. Sci, vol.110, pp.10022-10027, 2013.

Y. Lu, Native mass spectrometry analysis of oligomerization states of fluorescence recovery protein and orange carotenoid protein: Two proteins involved in the cyanobacterial photoprotection cycle, Biochemistry, vol.56, pp.160-166, 2017.

N. N. Sluchanko, The purple Trp288Ala mutant of Synechocystis OCP persistently quenches phycobilisome fluorescence and tightly interacts with FRP, Biochim. Biophys. Acta -Bioenerg, vol.1858, pp.1-11, 2017.

N. N. Sluchanko, OCP-FRP protein complex topologies suggest a mechanism for controlling high light tolerance in cyanobacteria, Nat. Commun, vol.9, pp.1-15, 2018.

Y. Lu, A Molecular Mechanism for Nonphotochemical Quenching in Cyanobacteria, Biochemistry, vol.56, pp.2812-2823, 2017.

A. Thurotte, Regulation of Orange Carotenoid Protein Activity in Cyanobacterial Photoprotection, Plant Physiol, vol.169, pp.737-747, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01446136

M. Moldenhauer, Interaction of the signaling state analog and the apoprotein form of the orange carotenoid protein with the fluorescence recovery protein, Photosynth. Res, vol.135, pp.125-139, 2018.

M. Moldenhauer, Assembly of photoactive orange carotenoid protein from its domains unravels a carotenoid shuttle mechanism, Photosynth. Res, vol.133, pp.327-341, 2017.

N. N. Sluchanko, Y. B. Slonimskiy, M. Moldenhauer, T. Friedrich, and E. G. Maksimov, Deletion of the short N-terminal extension in OCP reveals the main site for FRP binding, FEBS Letters, vol.591, pp.1667-1676, 2017.

A. Thurotte, The cyanobacterial Fluorescence Recovery Protein has two distinct activities: Orange Carotenoid Protein amino acids involved in FRP interaction, Biochim. Biophys. Acta -Bioenerg, vol.1858, pp.308-317, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02392037

Y. B. Slonimskiy, Functional interaction of low-homology FRPs from different cyanobacteria with Synechocystis OCP

M. R. Melnicki, Structure, Diversity, and Evolution of a New Family of Soluble Carotenoid-Binding Proteins in Cyanobacteria, Mol. Plant, vol.9, pp.1379-1394, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01356055

R. López-igual, Different Functions of the Paralogs to the N-Terminal Domain of the Orange Carotenoid Protein in the Cyanobacterium Anabaena sp. PCC 7120, Plant Physiol, vol.171, pp.1852-1866, 2016.

H. Bao, Additional families of orange carotenoid proteins in the photoprotective system of cyanobacteria, Nat. Plants, vol.3, p.17089, 2017.

S. Lechno-yossef, M. R. Melnicki, H. Bao, B. L. Montgomery, and C. A. Kerfeld, Synthetic OCP heterodimers are photoactive and recapitulate the fusion of two primitive carotenoproteins in the evolution of cyanobacterial photoprotection, Plant J, vol.91, pp.646-656, 2017.

H. J. Berendsen, D. Van-der-spoel, R. Van-drunen, V. Gromacs:-a-message-passing-references-alva, S. Z. Nam et al., The MPI bioinformatics Toolkit as an integrative platform for advanced protein sequence and structure analysis, Nucleic Acids Res, vol.44, pp.410-415, 2016.

H. Bao, M. R. Melnicki, and C. A. Kerfeld, Structure and functions of Orange Carotenoid Protein homologs in cyanobacteria, Curr Opin Plant Biol, vol.37, pp.1-9, 2017.

C. Boulay, A. Wilson, D. 'haene, S. Kirilovsky, and D. , Identification of a protein required for recovery of full antenna capacity in OCP-related photoprotective mechanism in cyanobacteria, Proc Natl Acad Sci U S A, vol.107, pp.11620-11625, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00554176

G. Bernát, U. Schreiber, E. Sendtko, I. N. Stadnichuk, S. Rexroth et al., Unique properties vs. Common themes: The atypical cyanobacterium Gloeobacter violaceus PCC 7421 is capable of state transitions and blue-light-induced fluorescence quenching, Plant Cell Physiol, vol.53, pp.528-542, 2012.

C. Bourcier-de-carbon, A. Thurotte, A. Wilson, F. Perreau, D. Kirilovsky et al., Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation, Plant Cell, vol.5, pp.1613-1626, 1996.

R. D. Finn, J. Clements, and S. R. Eddy, HMMER web server: interactive sequence similarity searching, Nucleic Acids Res, vol.39, pp.29-37, 2011.

P. D. Fraser, Y. Miura, and N. Misawa, In vitro characterization of astaxanthin biosynthetic enzymes, J Biol Chem, vol.272, pp.6128-6135, 1997.

S. Guindon, J. F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk et al., New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0, Syst Biol, vol.59, pp.307-321, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00511784

S. Gupta, M. Guttman, R. L. Leverenz, K. Zhumadilova, E. G. Pawlowski et al., Local and global structural drivers for the photoactivation of the orange carotenoid protein, Proc Natl Acad Sci U S A, vol.112, pp.5567-5574, 2015.

M. Gwizdala, A. Wilson, and D. Kirilovsky, In vitro reconstitution of the cyanobacterial photoprotective mechanism mediated by the Orange Carotenoid Protein in Synechocystis PCC 6803, Plant Cell, vol.23, pp.2631-2643, 2011.

, The paralog of the C-terminal domain of the OCP: a novel carotenoid carrier

M. Gwizdala, A. Wilson, A. Omairi-nasser, and D. Kirilovsky, Characterization of the Synechocystis PCC 6803 Fluorescence Recovery Protein involved in photoprotection, Biochim Biophys Acta, vol.1827, pp.348-354, 2013.

D. Harris, O. Tal, D. Jallet, A. Wilson, D. Kirilovsky et al., Orange carotenoid protein burrows into the phycobilisome to provide photoprotection, Proc Natl Acad Sci U S A, vol.113, pp.1655-1662, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01457540

M. Herdman, S. F. Delaney, and N. G. Carr, A new medium for the isolation and growth of auxotrophic mutants of the blue-green alga Anacystis nidulans, J. Gen. Microbiol, vol.79, pp.233-237, 1973.

M. Iwai, T. Maoka, M. Ikeuchi, and S. Takaichi, 2,2'-beta-hydroxylase (CrtG) is involved in carotenogenesis of both nostoxanthin and 2-hydroxymyxol 2'-fucoside in Thermosynechococcus elongatus strain BP-1, Plant Cell Physiol, vol.49, pp.1678-1687, 2008.

D. Jallet, A. Thurotte, R. L. Leverenz, F. Perreau, C. A. Kerfeld et al., Specificity of the cyanobacterial orange carotenoid protein: influences of orange carotenoid protein and phycobilisome structures, Plant Physiol, vol.164, pp.790-804, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204147

Y. Kashino, H. Koike, and K. Satoh, An improved sodium dodecyl sulfatepolyacrylamide gel electrophoresis system for the analysis of membrane protein complexes, Electrophoresis, vol.22, pp.1004-1007, 2001.

L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass, and M. J. Sternberg, The Phyre2 web portal for protein modeling, prediction and analysis, Nat Protoc, vol.10, pp.845-858, 2015.

C. A. Kerfeld, M. R. Sawaya, V. Brahmandam, D. Cascio, K. K. Ho et al., The crystal structure of a cyanobacterial water-soluble carotenoid binding protein, Structure, vol.11, pp.55-65, 2003.

D. Kirilovsky and C. A. Kerfeld, The orange carotenoid protein in photoprotection of photosystem II in cyanobacteria, Biochim Biophys Acta, vol.1817, pp.158-166, 2012.

D. Kirilovsky and C. A. Kerfeld, The Orange Carotenoid Protein: a blue-green light photoactive protein, Photochem Photobiol Sci, vol.12, pp.1135-1143, 2013.

D. Kirilovsky and C. A. Kerfeld, Cyanobacterial photoprotection by the orange carotenoid protein, Nat Plants, vol.2, p.16180, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01450985

F. I. Kuzminov, N. V. Karapetyan, M. G. Rakhimberdieva, I. V. Elanskaya, M. Y. Gorbunov et al., Investigation of OCP-triggered dissipation of excitation energy in PSI/PSII-less Synechocystis sp. PCC 6803 mutant using non-linear laser fluorimetry, Biochim Biophys Acta, vol.1817, pp.1012-1021, 2012.

D. Lagarde, L. Beuf, and W. Vermaas, Increased production of zeaxanthin and other pigments by application of genetic engineering techniques to Synechocystis sp. strain PCC 6803, Appl Environ Microbiol, vol.66, pp.64-72, 2000.

S. Lechno-yossef, M. Melnicki, H. Bao, B. Montgomery, and C. A. Kerfeld, Synthetic OCP heterodimers are photoactive and recapitulate the fusion of two primitive carotenoproteins in the evolution of cyanobacterial photoprotection, Plant J, 2017.

I. Letunic and P. Bork, Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees, Nucleic Acids Res, vol.44, pp.242-245, 2016.

R. L. Leverenz, D. Jallet, M. D. Li, R. A. Mathies, D. Kirilovsky et al., Structural and Functional Modularity of the Orange Carotenoid Protein: Distinct Roles for the N-and C-Terminal Domains in Cyanobacterial Photoprotection, Plant Cell, vol.26, pp.426-437, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02549541

R. L. Leverenz, M. Sutter, A. Wilson, S. Gupta, A. Thurotte et al., PHOTOSYNTHESIS. A 12 A carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection, Science, vol.348, pp.1463-1466, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01446619

C. Liang, F. Zhao, W. Wei, Z. Wen, and S. Qin, Carotenoid biosynthesis in cyanobacteria: structural and evolutionary scenarios based on comparative genomics, Int J Biol Sci, vol.2, pp.197-207, 2006.

H. Liu, H. Zhang, J. D. King, N. R. Wolf, M. Prado et al., Mass spectrometry footprinting reveals the structural rearrangements of cyanobacterial orange carotenoid protein upon light activation, Biochim Biophys Acta, vol.1837, pp.1955-1963, 2014.

H. Liu, H. Zhang, G. S. Orf, Y. Lu, J. Jiang et al., Dramatic Domain Rearrangements of the Cyanobacterial Orange Carotenoid Protein upon Photoactivation, Biochemistry, vol.55, pp.1003-1009, 2016.

R. Lopez-igual, R. Wilson, A. Leverenz, R. L. Melnicki, M. R. Bourcier-de-carbon et al., Different Functions of the Paralogs to the N-Terminal Domain of the Orange Carotenoid Protein in the Cyanobacterium Anabaena sp. PCC 7120, Plant Physiol, vol.171, pp.1852-1866, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01357451

Y. Lu, H. Liu, R. G. Saer, H. Zhang, C. M. Meyer et al., Native Mass Spectrometry Analysis of Oligomerization States of Fluorescence Recovery Protein and Orange Carotenoid Protein: Two Proteins Involved in the Cyanobacterial Photoprotection Cycle, Biochemistry, vol.56, pp.160-166, 2017.

E. G. Maksimov, N. N. Sluchanko, K. S. Mironov, E. A. Shirshin, K. E. Klementiev et al., Fluorescent Labeling Preserving OCP Photoactivity Reveals Its Reorganization during the Photocycle, Biophys J, vol.112, pp.46-56, 2017.

E. G. Maksimov, N. N. Sluchanko, Y. B. Slonimsiy, K. S. Mironov, K. E. Klementiev et al., The unique proteinto-protein carotenoid transfer mechanism, Biophys J, 2017.

M. R. Melnicki, R. L. Leverenz, M. Sutter, R. Lopez-igual, A. Wilson et al., Structure, Diversity, and Evolution of a New Family of Soluble Carotenoid-Binding Proteins in Cyanobacteria, Mol Plant, vol.9, pp.1379-1394, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01356055

M. Moldenhauer, N. N. Sluchanko, D. Buhrke, D. V. Zlenko, N. N. Tavraz et al., Interaction of the signaling state analog and the apoprotein form of the orange carotenoid protein with the fluorescence recovery protein, Photosynth Res Moldenhauer M, vol.16, pp.307-314, 2013.

T. Polivka, C. A. Kerfeld, T. Pascher, and V. Sundström, Spectroscopic properties of the carotenoid 3'-hydroxyechinenone in the orange carotenoid protein from the cyanobacterium Arthrospira maxima, Biochemistry, vol.44, pp.3994-4003, 2005.

C. Punginelli, A. Wilson, J. M. Routaboul, and D. Kirilovsky, Influence of zeaxanthin and echinenone binding on the activity of the Orange Carotenoid Protein, Biochim Biophys Acta, vol.1787, pp.280-288, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01203969

A. Sedoud, R. Lopez-igual, U. Rehman, A. Wilson, A. Perreau et al., The Cyanobacterial Photoactive Orange Carotenoid Protein Is an Excellent Singlet Oxygen Quencher, Plant Cell, vol.26, pp.1781-1791, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204071

F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus et al., The purple Trp288Ala mutant of Synechocystis OCP persistently quenches phycobilisome fluorescence and tightly interacts with FRP, Biochim Biophys Acta, vol.7, pp.1-11, 2011.

M. Sutter, A. Wilson, R. L. Leverenz, R. Lopez-igual, A. Thurotte et al., Crystal structure of the FRP and identification of the active site for modulation of OCP-mediated photoprotection in cyanobacteria, Proc Natl Acad Sci U S A, vol.110, pp.10022-10027, 2013.

A. Thurotte, C. Bourcier-de-carbon, W. A. Talbot, L. Cot, S. Lopez-igual et al., The cyanobacterial Fluorescence Recovery Protein has two distinct activities: Orange Carotenoid Protein amino acids involved in FRP interaction, Biochim Biophys Acta Thurotte A, vol.169, pp.737-747, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02392037

T. J. Wheeler, J. Clements, and R. D. Finn, Skylign: a tool for creating informative, interactive logos representing sequence alignments and profile hidden Markov models, BMC Bioinformatics, vol.15, issue.7, pp.99-104, 1999.

M. Rodriguez-concepcion, J. Avalos, M. L. Bonet, A. Boronat, L. Gomez-gomez et al., A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health, Progress in lipid research, vol.70, pp.62-93, 2018.

H. E. Khoo, K. N. Prasad, K. W. Kong, Y. Jiang, and A. Ismail, Carotenoids and their isomers: color pigments in fruits and vegetables, Molecules, vol.16, pp.1710-1748, 2011.

A. M. Lafountain, R. O. Prum, and H. A. Frank, Diversity, physiology, and evolution of avian plumage carotenoids and the role of carotenoid-protein interactions in plumage color appearance, Arch Biochem Biophys, vol.572, pp.201-212, 2015.

A. P. Gamiz-hernandez, I. N. Angelova, R. Send, and D. Sundholm,

V. R. Kaila, Protein-Induced Color Shift of Carotenoids in beta-Crustacyanin, Angew Chem Int Ed Engl, vol.54, pp.11564-11570, 2015.

D. Ribeiro, M. Freitas, A. M. Silva, F. Carvalho, and E. Fernandes,

, Antioxidant and pro-oxidant activities of carotenoids and their oxidation products, Food Chem Toxicol, vol.120, pp.681-699

H. Hashimoto, C. Uragami, and R. J. Cogdell, Carotenoids and Photosynthesis, Sub-cellular biochemistry, vol.79, pp.111-150, 2016.

P. Bhosale and P. S. Bernstein, Vertebrate and invertebrate carotenoid-binding proteins, Arch Biochem Biophys, vol.458, pp.121-128, 2007.

E. G. Maksimov, N. N. Sluchanko, Y. B. Slonimskiy, K. S. Mironov, K. E. Klementiev et al., The Unique Protein-to-Protein Carotenoid Transfer Mechanism, Biophys J, vol.113, pp.402-414, 2017.

M. Moldenhauer, N. N. Sluchanko, D. Buhrke, D. V. Zlenko, N. N. Tavraz et al., Assembly of photoactive orange carotenoid protein from its domains unravels a carotenoid shuttle mechanism, Photosynth Res, vol.133, pp.327-341, 2017.

P. M. Shih, Photosynthesis and early Earth, Curr Biol, vol.25, 2015.

C. Boulay, L. Abasova, C. Six, I. Vass, and D. Kirilovsky, Occurrence and function of the orange carotenoid protein in photoprotective mechanisms in various cyanobacteria, Biochim Biophys Acta, vol.1777, pp.1344-54, 2008.

N. V. Karapetyan, Non-photochemical quenching of fluorescence in cyanobacteria, Biochemistry (Mosc), vol.72, pp.1127-1162, 2007.

D. Kirilovsky, Photoprotection in cyanobacteria: the orange carotenoid protein (OCP)-related non-photochemical-quenching mechanism, Photosynth Res, vol.93, pp.7-16, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00259205

D. Kirilovsky and C. A. Kerfeld, Cyanobacterial photoprotection by the orange carotenoid protein, p.16180, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01450985

T. Holt and D. W. Krogmann, A carotenoid-protein from cyanobacteria, Biochim Biophys Acta, vol.637, pp.408-414, 1981.

Y. P. Wu and D. W. Krogmann, The orange carotenoid protein of Synechocystis PCC 6803, Biochim Biophys Acta, vol.1322, pp.1-7, 1997.

E. G. Maksimov, M. Moldenhauer, E. A. Shirshin, E. A. Parshina, N. N. Sluchanko et al., A comparative study of three signaling forms of the orange carotenoid protein, Sci Rep. 5, 9085. 20. Punginelli, vol.130, pp.280-288, 2009.

A. Wilson, G. Ajlani, J. M. Verbavatz, I. Vass, C. A. Kerfeld et al., A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria, Plant Cell, vol.18, pp.992-1007, 2006.

A. Wilson, C. Punginelli, A. Gall, C. Bonetti, M. Alexandre et al., A photoactive carotenoid protein acting as light intensity sensor, Proc Natl Acad Sci U S A, vol.105, pp.12075-80, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01203971

C. Boulay, A. Wilson, S. D'haene, and D. Kirilovsky, Identification of a protein required for recovery of full antenna capacity in OCP-related photoprotective mechanism in cyanobacteria, Proc Natl Acad Sci U S A, vol.107, pp.11620-11625, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00554176

M. Gwizdala, A. Wilson, and D. Kirilovsky, In vitro reconstitution of the cyanobacterial photoprotective mechanism mediated by the Orange Carotenoid Protein in Synechocystis PCC 6803, Plant Cell, vol.23, pp.2631-2674, 2011.

M. Gwizdala, A. Wilson, A. Omairi-nasser, and D. Kirilovsky, Characterization of the Synechocystis PCC 6803 Fluorescence Recovery Protein involved in photoprotection, Biochim Biophys Acta, vol.1827, pp.348-54, 2013.

N. N. Sluchanko, Y. B. Slonimskiy, E. A. Shirshin, M. Moldenhauer, T. Friedrich et al., OCP-FRP protein complex topologies suggest a mechanism for controlling high light tolerance in cyanobacteria, Biochim Biophys Acta, vol.9, pp.382-393, 2018.

N. N. Sluchanko, K. E. Klementiev, E. A. Shirshin, G. V. Tsoraev, T. Friedrich et al., The purple Trp288Ala mutant of Synechocystis OCP persistently quenches phycobilisome fluorescence and tightly interacts with FRP, Biochim Biophys Acta, vol.1858, pp.1-11, 2017.

M. Sutter, A. Wilson, R. L. Leverenz, R. Lopez-igual, A. Thurotte et al., Crystal structure of the FRP and identification of the active site for modulation of OCP-mediated photoprotection in cyanobacteria, Proc Natl Acad Sci U S A, vol.110, pp.10022-10029, 2013.

A. Thurotte, C. Bourcier-de-carbon, A. Wilson, L. Talbot, S. Cot et al., The cyanobacterial Fluorescence Recovery Protein has two distinct activities: Orange Carotenoid Protein amino acids involved in FRP interaction, Biochim Biophys Acta, vol.1858, pp.308-317, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02392037

C. A. Kerfeld, M. R. Sawaya, V. Brahmandam, D. Cascio, K. K. Ho et al., The crystal structure of a cyanobacterial water-soluble carotenoid binding protein, Structure. 11, 55-65. References the C-Terminal Domain of the Cyanobacterial Orange Carotenoid Protein Are Carotenoid Donors to Helical Carotenoid Proteins, Plant Physiol, vol.175, pp.1283-1303, 2003.

N. N. Sluchanko, Y. B. Slonimskiy, and E. G. Maksimov, Features of Protein-Protein Interactions in the Cyanobacterial Photoprotection Mechanism, Biochemistry (Mosc), vol.82, pp.1592-1614, 2017.

C. A. Kerfeld, M. R. Melnicki, M. Sutter, and M. A. Dominguez-martin, Structure, function and evolution of the cyanobacterial orange carotenoid protein and its homologs, The New phytologist, vol.215, pp.937-951, 2017.

D. Harris, A. Wilson, F. Muzzopappa, N. N. Sluchanko, T. Friedrich et al., Structural rearrangements in the C-terminal domain homolog of Orange Carotenoid Protein are crucial for carotenoid transfer, Communications biology. 1, 125. 44. Chabera, vol.11, pp.8795-803, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02323108

G. Britton, S. Liaaen-jensen, and H. Pfander, Carotenoids, 1995.

M. Grung, F. M. Souza, M. Borowitzka, and S. Liaaen-jensen,

, Algal Carotenoids 51. Secondary carotenoids 2.Haematococcus pluvialis aplanospores as a source of (3S, 3?S)-astaxanthin esters, Journal of Applied Phycology, vol.4, pp.165-171

S. Gupta, M. Guttman, R. L. Leverenz, K. Zhumadilova, E. G. Pawlowski et al., Local and global structural drivers for the photoactivation of the orange carotenoid protein, Proc Natl Acad Sci U S A, vol.112, pp.5567-74, 2015.

R. L. Leverenz, M. Sutter, A. Wilson, S. Gupta, A. Thurotte et al., A 12 angstrom carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection, Science, vol.348, pp.1463-1466, 2015.

E. G. Maksimov, N. N. Sluchanko, K. S. Mironov, E. A. Shirshin, K. E. Klementiev et al., Fluorescent References 1. Blankenship RE. Origin and early evolution of photosynthesis, Photosynth. Res, vol.33, pp.91-111, 1992.

K. K. Niyogi and T. B. Truong, Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis, Curr. Opin. Plant Biol, vol.16, pp.307-314, 2013.

A. Wilson, A soluble carotenoid protein involved in phycobilisomerelated energy dissipation in cyanobacteria, Plant Cell, vol.18, pp.992-1007, 2006.

A. Wilson, A photoactive carotenoid protein acting as light intensity sensor, Proc. Natl. Acad. Sci. USA, vol.105, pp.12075-12080, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01203971

M. Gwizdala, A. Wilson, A. Omairi-nasser, and D. Kirilovsky, Characterization of the synechocystis PCC 6803 fluorescence recovery protein involved in photoprotection, Biochim. Biophys. Acta, vol.1827, pp.348-354, 2013.

A. Sedoud, The cyanobacterial photoactive orange carotenoid protein is an excellent singlet oxygen quencher, Plant Cell, vol.26, pp.1781-1791, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204071

C. A. Kerfeld, The crystal structure of a cyanobacterial water-soluble carotenoid binding protein, Structure, vol.11, p.936, 2003.

R. L. Leverenz, Structural and functional modularity of the orange carotenoid protein: distinct roles for the N-and C-terminal domains in cyanobacterial photoprotection, Plant Cell, vol.26, pp.426-437, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02549541

M. Gwizdala, A. Wilson, and D. Kirilovsky, In vitro reconstitution of the cyanobacterial photoprotective mechanism mediated by the Orange Carotenoid Protein in Synechocystis PCC 6803, Plant Cell, vol.23, pp.2631-2643, 2011.

M. Sutter, Crystal structure of the FRP and identification of the active site for modulation of OCP-mediated photoprotection in cyanobacteria, Proc. Natl. Acad. Sci. USA, vol.110, pp.10022-10027, 2013.

C. Boulay, A. Wilson, D. 'haene, S. Kirilovsky, and D. , Identification of a protein required for recovery of full antenna capacity in OCP-related photoprotective mechanism in cyanobacteria, Proc. Natl. Acad. Sci, vol.107, pp.11620-11625, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00554176

N. N. Sluchanko, The purple Trp288Ala mutant of synechocystis OCP persistently quenches phycobilisome fluorescence and tightly interacts with FRP, Biochim. Biophys. Acta, vol.1858, pp.1-11, 2017.

A. Wilson, Structural determinants underlying photoprotection in the photoactive orange carotenoid protein of cyanobacteria, J. Biol
URL : https://hal.archives-ouvertes.fr/hal-01203915

, Chem, vol.285, pp.18364-18375, 2010.

R. Leverenz, A 12 A carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection, Science, vol.348, pp.1463-1466, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01446619

S. Gupta, Local and global structural drivers for the photoactivation of the orange carotenoid protein, Proc. Natl. Acad. Sci, vol.112, pp.5567-5574, 2015.

D. Kirilovsky and C. A. Kerfeld, Cyanobacterial photoprotection by the orange carotenoid protein, Nat. Plants, vol.2, p.16180, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01450985

M. R. Melnicki, Structure, diversity, and evolution of a new family of soluble carotenoid-binding proteins in cyanobacteria, Mol. Plant, vol.9, pp.1379-1394, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01356055

C. A. Kerfeld, Water-soluble carotenoid proteins of cyanobacteria

D. Kirilovsky and C. A. Kerfeld, Lopez-Igual R, et al. Different functions of the paralogs to the N-terminal domain of the Orange Carotenoid Protein in the cyanobacterium Anabaena sp. PCC 7120, Biochim. Biophys. Acta, vol.430, pp.1852-1866, 2004.

H. Bao, M. R. Melnicki, C. A. Kerfeld, S. Lechno-yossef, M. R. Melnicki et al., Structure and functions of Orange Carotenoid Protein homologs in cyanobacteria, Curr. Opin. Plant Biol, vol.37, pp.1-9, 2017.

, Synthetic OCP heterodimers are photoactive and recapitulate the fusion of two primitive carotenoproteins in the evolution of cyanobacterial photoprotection, Plant J, vol.91, pp.646-656, 2017.

F. Muzzopappa, The paralogs to the C-terminal domain of the cyanobacterial OCP are carotenoid donors to HCPs, Plant Physiol, vol.175, pp.1283-1303, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02390060

M. Moldenhauer, Structural, functional, and mutational analysis of the NblA protein provides insight into possible modes of interaction with the phycobilisome, Photosynth. Res, vol.133, pp.30330-30340, 2008.

M. Dines, E. Sendersky, R. Schwarz, and N. Adir, Crystallization of sparingly soluble stress-related proteins from cyanobacteria by controlled urea solublization, J. Struct. Biol, vol.158, pp.116-121, 2007.

E. Krissinel and K. Henrick, Inference of macromolecular assemblies from crystalline state, J. Mol. Biol, vol.372, pp.774-797, 2007.

E. G. Maksimov, The unique protein-to-protein carotenoid transfer mechanism, Biophys. J, vol.113, pp.402-414, 2017.

D. Franke and D. I. Svergun, DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering, J. Appl. Crystallogr, vol.42, pp.342-346, 2009.

V. V. Volkov and D. I. Svergun, Uniqueness of ab initio shape determination in small-angle scattering, The CTDH structure: unraveling the role of the CTT in carotenoid translocation, vol.36, pp.860-864, 2003.

S. Lyskov, J. J. Gray, D. Franke, C. M. Jeffries, and D. I. Svergun, Correlation map, a goodness-of-fit test for one-dimensional X-ray scattering spectra, Nucleic Acids Res, vol.36, pp.419-422, 2008.

A. Grosdidier, V. Zoete, and O. Michielin, SwissDock, a protein-small molecule docking web service based on EADock DSS, Nucleic Acids Res, vol.39, pp.270-277, 2011.

M. Cianci, The molecular basis of the coloration mechanism in lobster shell: ?-crustacyanin at 3.2-Å resolution, Proc. Natl. Acad. Sci, vol.99, pp.9795-9800, 2002.

P. P. Peng, The structure of allophycocyanin B from Synechocystis PCC 6803 reveals the structural basis for the extreme redshift of the terminal emitter in phycobilisomes, Acta Crystallogr. D. Biol. Crystallogr, vol.70, pp.2558-2569, 2014.

M. Lindahl and T. Kieselbach, Disulphide proteomes and interactions with thioredoxin on the track towards understanding redox regulation in chloroplasts and cyanobacteria, Photosynth. Res, vol.72, pp.157-171, 2006.

M. Lindahl and F. J. Florencio, Thioredoxin-linked processes in cyanobacteria are as numerous as in chloroplasts, but targets are different, Proc. Natl. Acad. Sci, vol.100, pp.16107-16112, 2003.

Y. Kashino, H. Koike, and K. Satoh, An improved sodium dodecyl sulfatepolyacrylamide gel electrophoresis system for the analysis of membrane protein complexes, Electrophoresis, vol.22, pp.1004-1007, 2001.

P. D. Kiser, M. Golczak, D. T. Lodowski, M. R. Chance, and K. Palczewski, Crystal structure of native RPE65, the retinoid isomerase of the visual cycle, Proc. Natl. Acad. Sci, vol.106, pp.17325-17330, 2009.

P. D. Kiser, Structure of RPE65 isomerase in a lipidic matrix reveals roles for phospholipids and iron in catalysis, Proc. Natl. Acad. Sci, vol.109, pp.2747-2756, 2012.

P. D. Kiser, Catalytic mechanism of a retinoid isomerase essential for vertebrate vision, Nat. Chem. Biol, vol.11, p.409, 2015.

T. G. Battye, L. Kontogiannis, O. Johnson, H. R. Powell, and A. G. Leslie, iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM, Acta Cryst, vol.67, pp.271-281, 2011.

P. Evans, Scaling and assessment of data quality, Acta Crystallogr. Sect. D

, Biol. Crystallogr, vol.62, pp.72-82, 2006.

A. J. Mccoy, Phaser crystallographic software, J. Appl

, Crystallogr, vol.40, pp.658-674, 2007.

P. V. Afonine, Towards automated crystallographic structure refinement with phenix. refine, Acta Crystallogr. Sect. D. Biol. Crystallogr, vol.68, pp.352-367, 2012.

P. Emsley and K. Cowtan, Coot: model-building tools for molecular graphics, Acta Crystallogr. D. Biol. Crystallogr, vol.60, pp.2126-2132, 2004.

R. P. Joosten, F. Long, G. N. Murshudov, and A. Perrakis, The PDB_REDO server for macromolecular structure model optimization, The PyMOL Molecular Graphics System, vol.1, pp.213-220, 2002.

K. Arnold, L. Bordoli, J. Kopp, and T. Schwede, The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling, Bioinformatics, vol.22, pp.195-201, 2006.

C. E. Blanchet, Versatile sample environments and automation for biological solution X-ray scattering experiments at the P12 beamline (PETRA III, DESY), J. Appl. Crystallogr, vol.48, pp.431-443, 2015.

P. V. Konarev, V. V. Volkov, A. V. Sokolova, M. Koch, and D. I. Svergun, Svergun DI. Determination of the regularization parameter in indirecttransform methods using perceptual criteria, J. Appl. Crystallogr, vol.36, pp.495-503, 1992.

D. Svergun, C. Barberato, and M. Koch, CRYSOL-a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates, J. Appl. Crystallogr, vol.28, pp.768-773, 1995.

M. V. Petoukhov, New developments in the ATSAS program package for small-angle scattering data analysis, J. Appl. Crystallogr, vol.45, pp.342-350, 2012.

O. Trott and A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem, vol.31, pp.455-461, 2010.

J. Gasteiger and M. Marsili, Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges, Tetrahedron, vol.36, pp.3219-3228, 1980.

J. Wang, W. Wang, P. A. Kollman, and D. A. Case, Antechamber: an accessory software package for molecular mechanical calculations, J. Am. Chem. Soc, vol.222, p.403, 2001.

J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, Development and testing of a general amber force field, J. Comput. Chem, vol.25, pp.1157-1174, 2004.

D. A. Case, The Amber biomolecular simulation programs, J. Comput. Chem, vol.26, pp.1668-1688, 2005.

, The CTDH structure: unraveling the role of the CTT in carotenoid translocation

H. Nguyen, J. Maier, H. Huang, V. Perrone, and C. Simmerling, Folding simulations for proteins with diverse topologies are accessible in days with a physics-based force field and implicit solvent, J. Am. Chem. Soc, vol.136, pp.13959-13962, 2014.

D. R. Roe, I. Cheatham, and T. E. , PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data, J. Chem. Theory Comput, vol.9, pp.3084-3095, 2013.

W. Humphrey, A. Dalke, and K. Schulten, VMD: visual molecular dynamics

, J. Mol. Graph, vol.14, pp.33-38, 1996.

J. Srinivasan, T. E. Cheatham, P. Cieplak, P. A. Kollman, and D. A. Case, Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate? DNA helices, J. Am. Chem. Soc, vol.120, pp.9401-9409, 1998.

P. A. Kollman, Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models, Acc. Chem. Res, vol.33, pp.889-897, 2000.

S. Genheden and U. Ryde, The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities, Expert Opin. Drug Discov, vol.10, pp.449-461, 2015.

, The construction of pACBETA and pBAD-CrtW(-CrtO) was described elsewhere 40 . The crtBEIY operon in pACBETA was constitutively expressed under the control of the crtE promoter, whereas the crtW and crtO gene were under the control of the arabinose-inducible promoter araBAD and the OCP genes were under the control of a T7 RNA polymerase promoter. The expression method used to obtain the holo-proteins was described previosly 40 . OCP, NTD, CTD holo-proteins and apo-proteins expressed in E. coli were isolated as described elsewhere 36,40 . Briefly, cells were resuspended in lysis buffer (40 mM Tris pH 8/10% glycerol/300mM NaCl/1mM EDTA/1mM PMSF, 1mM caproic acid/1mM benzamidic acid/ 50 µg mL -1 DNAse) then broken in dim light using a French press. The membranes were pelleted, and the supernatant was loaded on a nickel affinity column (Ni-Probond resin, Invitrogen), BL21 (DE3) cells from Agilent Technologies were transformed simultaneously with three plasmids: (1) pACBETA, (2) pBAD-CrtW (for canthaxanthin production) or pBAD-CrtO

, In order to build the OCP phylogenetic tree, we performed a BLAST 41 search, using as seed the slr1963 protein sequence and an E-value cut-off of 1x10 -4 , to retrieve protein sequences from IMG. For tree rooting, p.2

, Sequences obtained were then aligned using default ClustalOmega 42 . Different trees were constructed using different methods to confirm the result: Maximum likelihood (ML), Bayesian inference and Neighbor-Joining. ML analysis was done using PhyML 3.1 43 in order to build a phylogenetic tree, with the following parameters: LG substitution model, NNI topology search and aBayes algorithm for branch support. Bootstrapped Neighbor-Joining trees were constructed using the Kimura-2-parameter model and 1,000 bootstrap repeats were built to give statistical support, CP024957.1 Streptomyces cavourensis) were added independently giving the same result

D. Kirilovsky and C. A. Kerfeld, Cyanobacterial photoprotection by the orange carotenoid protein, Nat. Plants, vol.2, p.16180, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01450985

C. A. Kerfeld, M. R. Melnicki, M. Sutter, and M. A. Dominguez-martin, Structure, function and evolution of the cyanobacterial orange carotenoid protein and its homologs, New Phytol, vol.215, pp.937-951, 2017.

N. N. Sluchanko, Y. B. Slonimskiy, and E. G. Maksimov, Features of protein?protein interactions in the cyanobacterial photoprotection mechanism, Biochem, vol.82, pp.1592-1614, 2017.

C. A. Kerfeld, The crystal structure of a cyanobacterial water-soluble carotenoid binding protein, Structure, vol.11, pp.55-65, 2003.

A. Wilson, A photoactive carotenoid protein acting as light intensity sensor, Proc. Natl. Acad. Sci. 105, pp.12075-12080, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01203971

R. L. Leverenz, A 12 Å carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection. Science (80-. ), vol.348, pp.1463-1466, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01446619

P. E. Konold, Photoactivation mechanism , timing of protein secondary structure dynamics and carotenoid translocation in the Orange Carotenoid, J. Am. Chem. Soc, vol.141, pp.520-530, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02171867

S. Gupta, Local and global structural drivers for the photoactivation of the orange carotenoid protein, Proc. Natl. Acad. Sci, vol.112, pp.5567-5574, 2015.

H. Liu, Dramatic Domain Rearrangements of the Cyanobacterial Orange Carotenoid Protein upon Photoactivation, Biochemistry, vol.55, pp.1003-1009, 2016.

E. G. Maksimov, The Signaling State of Orange Carotenoid Protein, Biophys. J, vol.109, pp.595-607, 2015.

E. G. Maksimov, A comparative study of three signaling forms of the orange carotenoid protein, Photosynth. Res, vol.130, pp.389-401, 2016.

A. Wilson, G. Ajlani, J. M. Verbavatz, I. Vass, C. A. Kerfeld et al., A Soluble Carotenoid Protein Involved in Phycobilisome-Related Energy Dissipation in Cyanobacteria, Plant Cell Online, vol.18, pp.992-1007, 2006.

M. Gwizdala, A. Wilson, and D. Kirilovsky, In vitro reconstitution of the cyanobacterial photoprotective mechanism mediated by the Orange Carotenoid Protein in Synechocystis PCC 6803, Plant Cell, vol.23, pp.2631-2674, 2011.

C. W. Wilson, The Essential Role of the N-Terminal Domain of the Orange Carotenoid Protein in Cyanobacterial Photoprotection: Importance of a Positive Charge for Phycobilisome Binding, Plant Cell, vol.24, pp.1972-1983, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00725326

C. Boulay, A. Wilson, S. D-'haene, and D. Kirilovsky, Identification of a protein required for recovery of full antenna capacity in OCP-related photoprotective mechanism in cyanobacteria, Proc. Natl. Acad. Sci, vol.107, pp.11620-11625, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00554176

M. Sutter, Crystal structure of the FRP and identification of the active site for modulation of OCP-mediated photoprotection in cyanobacteria, Proc. Natl. Acad. Sci, vol.110, pp.10022-10027, 2013.

N. N. Sluchanko, The purple Trp288Ala mutant of Synechocystis OCP persistently quenches phycobilisome fluorescence and tightly interacts with FRP, Biochim. Biophys. Acta -Bioenerg, vol.1858, pp.1-11, 2017.

N. N. Sluchanko, Y. B. Slonimskiy, M. Moldenhauer, and T. Friedrich,

E. G. Maksimov, Deletion of the short N-terminal extension in OCP reveals the main site for FRP binding, FEBS Letters, vol.591, pp.1667-1676, 2017.

Y. Lu, Native mass spectrometry analysis of oligomerization states of fluorescence recovery protein and orange carotenoid protein: Two proteins involved in the cyanobacterial photoprotection cycle, Biochemistry, vol.56, pp.160-166, 2017.

M. Moldenhauer, Interaction of the signaling state analog and the apoprotein form of the orange carotenoid protein with the fluorescence recovery protein, Photosynth. Res, vol.135, pp.125-139, 2018.

A. Thurotte, The cyanobacterial Fluorescence Recovery Protein has two distinct activities: Orange Carotenoid Protein amino acids involved in FRP interaction, Biochim. Biophys. Acta -Bioenerg, vol.1858, pp.308-317, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02392037

H. Bao, Additional families of orange carotenoid proteins in the photoprotective system of cyanobacteria, Nat. Plants, vol.3, p.17089, 2017.

S. Lechno-yossef, M. R. Melnicki, H. Bao, B. L. Montgomery, and C. A. Kerfeld, Synthetic OCP heterodimers are photoactive and recapitulate the fusion of two primitive carotenoproteins in the evolution of cyanobacterial photoprotection, Plant J, vol.91, pp.646-656, 2017.

M. R. Melnicki, Structure, Diversity, and Evolution of a New Family of Soluble Carotenoid-Binding Proteins in Cyanobacteria, Mol. Plant, vol.9, pp.1379-1394, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01356055

F. Muzzopappa, The paralogs to the C-terminal domain of the cyanobacterial OCP are carotenoid donors to HCPs, Plant Physiol, vol.175, pp.1283-1303, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02390060

C. A. Kerfeld, Structure and Function of the Water-Soluble Carotenoid-Binding Proteins of Cyanobacteria, Photosynth. Res, vol.81, pp.215-225, 2004.

E. G. Maksimov, The Unique Protein-to-Protein Carotenoid Transfer Mechanism, Biophys. J, vol.113, pp.402-414, 2017.

M. Moldenhauer, Assembly of photoactive orange carotenoid protein from its domains unravels a carotenoid shuttle mechanism, Photosynth. Res, 2017.

D. Jallet, Specificity of the Cyanobacterial Orange Carotenoid Protein: Influences of Orange Carotenoid Protein and Phycobilisome Structures, Plant Physiol, vol.164, pp.790-804, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204147

G. Bernát, Unique properties vs. Common themes: The atypical cyanobacterium gloeobacter violaceus PCC 7421 is capable of state transitions and bluelight-induced fluorescence quenching, Plant Cell Physiol, vol.53, pp.528-542, 2012.

D. Harris, Structural rearrangements in the C-terminal domain homolog of Orange Carotenoid Protein are crucial for carotenoid transfer, Commun. Biol, vol.1, p.125, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02323108

Y. B. Slonimskiy, Light-controlled carotenoid transfer between watersoluble proteins related to cyanobacterial photoprotection, FEBS J, vol.286, pp.1908-1924, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02173834

E. G. Maksimov, Fluorescent Labeling Preserving OCP Photoactivity Reveals Its Reorganization during the Photocycle, Biophys. J, vol.112, p.827, 2017.

E. G. Maksimov, The photocycle of orange carotenoid protein conceals distinct intermediates and asynchronous changes in the carotenoid and protein components, Sci. Rep, vol.7, p.15548, 2017.

A. Wilson, Structural determinants underlying photoprotection in the photoactive orange carotenoid protein of cyanobacteria, J. Biol. Chem, vol.285, pp.18364-18375, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01203915

R. López-igual, Different Functions of the Paralogs to the N-Terminal Domain of the Orange Carotenoid Protein in the Cyanobacterium Anabaena sp. PCC 7120, Plant Physiol, vol.171, pp.1852-1866, 2016.

Y. Wen, Orange and red carotenoid proteins are involved in the adaptation of the terrestrial cyanobacterium Nostoc flagelliforme to desiccation, Photosynth. Res, vol.1, pp.1-11, 2019.

D. Harris, Orange carotenoid protein burrows into the phycobilisome to provide photoprotection, Proc. Natl. Acad. Sci, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01457540

N. N. Sluchanko, OCP-FRP protein complex topologies suggest a mechanism for controlling high light tolerance in cyanobacteria, Nat. Commun, vol.9, pp.1-15, 2018.

C. Bourcier-de-carbon, A. Thurotte, A. Wilson, F. Perreau, and D. Kirilovsky, Biosynthesis of soluble carotenoid holoproteins in Escherichia coli, Sci. Rep, vol.5, p.9085, 2015.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, J. Mol. Biol, vol.215, pp.403-410, 1990.

F. Sievers, Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega, Mol. Syst. Biol, vol.7, p.539, 2011.

S. Guindon, New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0, Syst. Biol, vol.59, pp.307-321, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00511784

F. Ronquist and J. P. Huelsenbeck, MrBayes 3: Bayesian phylogenetic inference under mixed models, Bioinformatics, vol.19, pp.1572-1574, 2003.

P. J. Cock, Biopython: freely available Python tools for computational molecular biology and bioinformatics, Bioinformatics, vol.25, pp.1422-1423, 2009.

T. J. Wheeler, J. Clements, and R. D. Finn, Skylign: a tool for creating informative, interactive logos representing sequence alignments and profile hidden Markov models, BMC Bioinformatics, vol.15, 2014.

A. Waterhouse, SWISS-MODEL: homology modelling of protein structures and complexes, Nucleic Acids Res, vol.46, pp.296-303, 2018.

H. J. Berendsen, D. Van-der-spoel, and R. Van-drunen, GROMACS: A messagepassing parallel molecular dynamics implementation, Comput. Phys. Commun, vol.91, pp.43-56, 1995.

, Supplementary Figure 3 | Tolypothrix and Scytonema OCPs: photoactivation. (a) Photoactivation kinetics of Tolypothrix OCPs: OCP1CAN (open blue square), vol.1, p.2

, CAN (open fuchsia triangle) and OCP2 CAN (closed fuchsia triangle). (b) Photoactivation kinetics of Scytonema OCPX CAN (blue circles) and OCPX ECN (black triangles) (c) Dark recovery kinetics of OCP1Tolypothrix-CAN in absence(closed square) or presence of Synechocystis FRP (open square). The figures (a-c) show representative experiments

|. Ocp2 and . Synechocystis, PCC 7509: photoactivation and recovery. (a) Photoactivation kinetics of OCP2 CAN (blue square) and OCPX CAN (black triangle) from Synechocystis sp. PCC 7509 at 8°C under 5000 µE of white light illumination. (b) Back-conversion kinetics of Synechocystis sp. PCC 7509 OCP2 CAN (blue square) and OCPX CAN in the absence (black triangle) and in presence of FRP

Y. Wen, OCP-E174K (g), OCP-?174-179 (h), and dark spectra of OCP-e174K-R185E (black curve), holo-OCP O contribution (dotted orange curve) and holo-OCP R contribution (dotted red curve) obtained from spectral decomposition (dotted blue curve) (i). The figures (a-i) show representative experiments, which were repeated 3 times with similar results, Supplementary Figure 7 | Absorbance spectra of OCP1 linker mutants. Dark (black) and photoactivated (red) spectrum of WT OCP and OCP R185A (dashed lines) (a), OCP-P175A-P179A (b), vol.1, pp.1-11, 2019.

M. Moldenhauer, Assembly of photoactive orange carotenoid protein from its domains unravels a carotenoid shuttle mechanism, Photosynth. Res, vol.133, pp.327-341, 2017.

S. Lechno-yossef, M. R. Melnicki, H. Bao, B. L. Montgomery, and C. A. Kerfeld, Synthetic OCP heterodimers are photoactive and recapitulate the fusion of two primitive carotenoproteins in the evolution of cyanobacterial photoprotection, Conclusions and Perspectives, vol.91, pp.646-656, 2017.

R. López-igual, Different Functions of the Paralogs to the N-Terminal Domain of the Orange Carotenoid Protein in the Cyanobacterium Anabaena sp. PCC 7120, Plant Physiol, vol.171, pp.1852-1866, 2016.

A. U. Rehman, K. Cser, L. Sass, and I. Vass, Characterization of singlet oxygen production and its involvement in photodamage of Photosystem II in the cyanobacterium Synechocystis PCC 6803 by histidinemediated chemical trapping, Biochim. Biophys. Acta -Bioenerg, vol.1827, pp.689-698, 2013.

H. Zhang, Molecular mechanism of photoactivation and structural location of the cyanobacterial orange carotenoid protein, Biochemistry, vol.53, pp.13-19, 2014.

V. Slouf, Ultrafast spectroscopy tracks carotenoid configurations in the orange and red carotenoid proteins from cyanobacteria, Photosynth. Res, pp.105-117, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01451888

E. G. Maksimov, Fluorescent Labeling Preserving OCP Photoactivity Reveals Its Reorganization during the Photocycle, Biophys. J, vol.112, p.827, 2017.

Z. Chen, Effects of Phosphorylation of ? Subunits of Phycocyanins on State Transition in the Model Cyanobacterium Synechocystis sp. PCC 6803, Plant Cell Physiol, vol.56, pp.1997-2013, 2015.

A. Bah and J. D. Forman-kay, Modulation of Intrinsically Disordered Protein Function by Post-translational Modifications, J. Biol. Chem, vol.291, pp.6696-705, 2016.

J. Kromdijk, Improving photosynthesis and crop productivity by accelerating recovery from photoprotection, Science, vol.354, pp.857-861, 2016.

A. Wilson, M. Gwizdala, A. Mezzetti, M. Alexandre, C. A. Kerfeld et al., The Essential Role of the N-Terminal Domain of the Orange Carotenoid Protein in Cyanobacterial Photoprotection: Importance of a Positive Charge for Phycobilisome Binding, Plant Cell, vol.24, pp.1972-1983, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00725326

. Ni-holo-anactdh-ni-holo-tectdh-ne-peuvent-transférer-le-caroténoïde-À-l'apo-ntd-isolé and . Cependant, AnaCTDH est en mesure de transférer partiellement le caroténoïde à l'OCP. Ce résultat inattendu suggère fortement que le transfert de caroténoïde s'effectue de CTDH au domaine CTD de l'OCP. En accord avec cela, CTDH peut transférer le caroténoïde en CTD isolé. En outre, AnaCTDH peut extraire le caroténoïde de l'OCP R , dans lequel le caroténoïde se trouve dans le NTD. Ce résultat a montré qu'il existe également un transfert «inverse» de caroténoïde des NTD vers les CTDH. En accord avec cela

, Il a été suggéré que ce transfert «inverse» de caroténoïde pourrait jouer le rôle de FRP en désactivant l'OCP R dans les souches dépourvues de FRP (ces souches contiennent généralement de l'OCPX). L'interaction entre apo-CTDH et OCP R entraînerait un transfert de caroténoïde vers CTDH et la formation d'apo-OCP, qui est inactif. Ensuite, l'holo-OCP pourrait être régénéré dans l'obscurité par transfert de caroténoïde du même CTDH vers l'apo-OCP. Il est important de noter qu'il s'agit simplement d'une observation in vitro et que de nouvelles expériences in vivo seront nécessaires pour prouver cette hypothèse

. Enfin, AnaCTDH peut récupérer le caroténoïde de l'énigmatique holo-HCP1. Malgré le fait que cette protéine est exprimée in vivo, son rôle n'est pas clair car HCP1 ne peut pas quencher ni le 1 O2 ni la fluorescence du PBS. Bien que nos résultats suggèrent que HCP1