Skip to Main content Skip to Navigation
Theses

Carotenoid translocation and protein evolution in cyanobacterial photoprotection

Abstract : Cyanobacteria are photosynthetic organisms capable of CO₂ conversion into organic compounds and production of O2 by using light energy. Nevertheless, high light intensities saturate the photosynthetic apparatus leading to production of reactive oxygen species, which are dangerous for the cell. To cope with this, the photoactive Orange Carotenoid Protein (OCP) induces thermal dissipation of the excess energy harvested by the antenna complex, the phycobilisome (PBS) to decrease the energy arriving at the photochemical centers. The OCP is composed of two domains connected by a flexible linker, the C-terminal domain (CTD) and the N-terminal domain (NTD). During photoactivation, the carotenoid is translocated to the NTD, the domains separate and the NTD is able to interact with the PBS. Three OCP families co-exist (OCPX, OCP1 and OCP2) in modern cyanobacteria. In addition to the OCP, many cyanobacteria also contain homologs of OCP domains, the CTDH and HCP. The HCPs are a family of carotenoid proteins with different photoprotective traits. Most of them are very good singlet oxygen quenchers, and one sub-clade is able to interact with the PBS and to induce thermal energy dissipation like OCP. The role of CTDH was unknown. The presence of these homologs in parallel to the OCP supported the general idea that the OCP has a modular evolutionary origin and that the CTDH and HCP can interact forming an OCP-like complex with similar characteristics and function than the OCP.In this thesis, I present the first characterization of the CTDH proteins. CTDHs are dimers binding a carotenoid molecule. The main role of the CTDH is to transfer its carotenoid to the HCP. In addition, CTDHs are able to uptake carotenoids from membranes but not HCPs. These results strongly suggested that the CTDHs are carotenoid carriers that ensure the proper carotenoid loading into HCPs. This novel carotenoid translocation mechanism could be multidirectional. The resolution of two tridimensional structures of the ApoCTDH from Anabaena showed that the C-terminal tail of the CTDH (CTT) can populate different conformations. Moreover, mutational analysis demonstrated that the CTT has an essential role in carotenoid translocation. Finally, I report a molecular characterization of the flexible linker connecting the domains of different modern OCPs and its role during the evolution of the OCP. First, I characterized OCPs from the three subclades, including the uncharacterized OCPX. OCPX and OCP2 present a fast deactivation compared with OCP1. While OCP1 and OCPX can dimerize, OCP2 is stable as monomer. Finally, I found that the linker is essential for the OCP deactivation and it regulates the photoactivation. In OCP1 and OCPX the linker slows down the photoactivation, while in OCP2 it increases the photoactivation rate. Bioinformatic analysis complements this characterization and provides a clear picture of the evolution of the OCP to respond efficiently to stress conditions.
Complete list of metadatas

Cited literature [384 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-02682436
Contributor : Abes Star :  Contact
Submitted on : Monday, June 1, 2020 - 1:02:58 AM
Last modification on : Thursday, October 1, 2020 - 3:06:35 AM
Long-term archiving on: : Thursday, September 24, 2020 - 7:25:27 PM

File

84195_MUZZOPAPPA_2019_archivag...
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02682436, version 1

Citation

Fernando Muzzopappa. Carotenoid translocation and protein evolution in cyanobacterial photoprotection. Bacteriology. Université Paris Saclay (COmUE), 2019. English. ⟨NNT : 2019SACLS493⟩. ⟨tel-02682436⟩

Share

Metrics

Record views

107

Files downloads

100