J. Chow, Energy Resources and Global Development, Science, vol.302, pp.1528-1559, 2003.

I. Arto, The energy requirements of a developed world, Energy for Sustainable Development, vol.33, pp.1-13, 2016.

J. O. Bockris, Will lack of energy lead to the demise of high-technology countries in this century?, International Journal of Hydrogen Energy, vol.32, pp.153-161, 2007.

F. Martins, Fossil fuel energy consumption in European countries. Energy Procedia, vol.153, pp.107-118, 2018.

C. Bauer, Greenhouse Gas Emissions from Energy Systems, Comparison, and Overview?, Encyclopedia of the Anthropocene, pp.473-84, 2018.

X. Wang, Future extreme climate changes linked to global warming intensity, Science Bulletin, vol.62, pp.1673-80, 2017.

S. M. Benson, Sustainability and Energy Conversions, MRS Bulletin, vol.33, pp.297-302, 2008.

E. Baranes, Non-renewable and intermittent renewable energy sources: Friends and foes?, Energy Policy, vol.111, pp.58-67, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01671723

A. G. Olabi, Renewable energy and energy storage systems, Energy, vol.136, pp.1-6, 2017.

J. Andrews, The role of hydrogen in a global sustainable energy strategy, Wiley Interdisciplinary Reviews: Energy and Environment, vol.3, pp.474-89, 2014.

L. Barreto, The hydrogen economy in the 21st century: a sustainable development scenario, International Journal of Hydrogen Energy, vol.28, pp.267-84, 2003.

A. Bakenne, Sankey-Diagram-based insights into the hydrogen economy of today, International Journal of Hydrogen Energy, vol.41, pp.7744-53, 2016.

C. Winter, Hydrogen energy -Abundant, efficient, clean: A debate over the energy-system-ofchange, International Journal of Hydrogen Energy, vol.34, pp.1-52, 2009.

R. Moliner, Analysis of the strategies for bridging the gap towards the Hydrogen Economy, International Journal of Hydrogen Energy, vol.41, pp.19500-19508, 2016.

J. D. Fonseca, Trends in design of distributed energy systems using hydrogen as energy vector: A systematic literature review, International Journal of Hydrogen Energy, vol.44, pp.9486-504, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01910588

E. S. Hanley, The role of hydrogen in low carbon energy futures-A review of existing perspectives, Renewable and Sustainable Energy Reviews, vol.82, pp.3027-3072, 2018.

D. Parra, A review on the role, cost and value of hydrogen energy systems for deep decarbonisation, Renewable and Sustainable Energy Reviews, vol.101, pp.279-94, 2019.

M. Momirlan, The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet, International Journal of Hydrogen Energy, vol.30, pp.795-802, 2005.

R. M. Navarro, Hydrogen Production Reactions from Carbon Feedstocks: Fossil Fuels and Biomass, Chemical Reviews, vol.107, pp.3952-91, 2007.

C. Acar, Review and evaluation of hydrogen production options for better environment, Journal of Cleaner Production, vol.218, pp.835-884, 2019.

D. Bessarabov, Chapter 2 -Key Performance Indicators, PEM Water Electrolysis, pp.33-60, 2018.

A. Kudo, Heterogeneous photocatalyst materials for water splitting, Chemical Society Reviews, vol.38, pp.253-78, 2008.

M. Oey, Challenges and opportunities for hydrogen production from microalgae, Plant Biotechnology Journal, vol.14, pp.1487-99, 2016.

A. Prinzhofer, Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali), International Journal of Hydrogen Energy, vol.43, pp.19315-19341, 2018.

L. Carrette, Fuel Cells -Fundamentals and Applications. Fuel Cells, vol.1, pp.5-39, 2001.

B. Sundén, Chapter 11 -Fuel cell systems and applications, Batteries and Fuel Cells, vol.179, pp.203-231, 2018.

D. Silva and F. S. , Novel materials for solid oxide fuel cell technologies: A literature review, International Journal of Hydrogen Energy, 2017.

, Netherlands natural gas network could be suitable for hydrogen, Fuel Cells Bulletin, vol.2018, issue.18, pp.30296-30303, 2018.

G. Gahleitner, Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications, International Journal of Hydrogen Energy, vol.38, pp.2039-61, 2013.

D. J. Durbin, Review of hydrogen storage techniques for on board vehicle applications, International Journal of Hydrogen Energy, vol.38, pp.14595-617, 2013.

F. Zhang, The survey of key technologies in hydrogen energy storage, International Journal of Hydrogen Energy, vol.41, pp.14535-52, 2016.

C. Shen, Consequence assessment of high-pressure hydrogen storage tank rupture during fire test, Journal of Loss Prevention in the Process Industries, vol.55, pp.223-254, 2018.

J. Ren, Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review, International Journal of Hydrogen Energy, vol.42, pp.289-311, 2017.

, DOE Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles, 2019.

. Physical-hydrogen-storage, , 2019.

K. Khafidz and N. Z. , The kinetics of lightweight solid-state hydrogen storage materials: A review, International Journal of Hydrogen Energy, vol.41, pp.13131-51, 2016.

K. Lim, Solid-state Materials and Methods for Hydrogen Storage: A Critical Review, Chemical Engineering & Technology, vol.33, pp.213-239, 2010.

M. Lototskyy, Comparative analysis of the efficiencies of hydrogen storage systems utilising solid state H storage materials, Journal of Alloys and Compounds, vol.645, pp.365-73, 2015.

R. A. Varin, Nanostructured Hydrides for Solid State Hydrogen Storage for Vehicular Applications, pp.223-86, 2011.

M. Gurz, The meeting of hydrogen and automotive: A review, International Journal of Hydrogen Energy, vol.42, pp.23334-23380, 2017.

M. V. Lototskyy, Metal hydride systems for hydrogen storage and supply for stationary and automotive low temperature PEM fuel cell power modules, International Journal of Hydrogen Energy, vol.40, pp.11491-11498, 2015.

J. M. Pasini, Metal hydride material requirements for automotive hydrogen storage systems, International Journal of Hydrogen Energy, vol.38, pp.9755-65, 2013.

J. Bellosta-von-colbe, Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives, International Journal of Hydrogen Energy, vol.44, pp.7780-808, 2019.

D. Liu, MOF-5 composites exhibiting improved thermal conductivity, International Journal of Hydrogen Energy, vol.37, pp.6109-6126, 2012.

X. H. An, Experimental investigation and thermodynamic reassessment of La-Ni and LaNi5-H systems, Calphad, vol.40, pp.48-55, 2013.

G. Liang, Hydrogen storage properties of the mechanically alloyed LaNi5-based materials, Journal of Alloys and Compounds, vol.320, pp.133-142, 2001.

M. W. Davids, Influence of oxygen introduced in TiFe-based hydride forming alloy on its morphology, structural and hydrogen sorption properties, International Journal of Hydrogen Energy, vol.37, pp.18155-62, 2012.

A. , Hydrogen in magnesium: new perspectives toward functional stores, Energy & Environmental Science, vol.3, pp.526-569, 2010.

A. Züttel, LiBH4 a new hydrogen storage material, Journal of Power Sources, vol.118, pp.1-7, 2003.

J. Urgnani, Hydrogen release from solid state NaBH4, International Journal of Hydrogen Energy, vol.33, pp.3111-3116, 2008.

J. Wang, Preparation of a new Ti catalyst for improved performance of NaAlH4, International Journal of Hydrogen Energy, vol.37, pp.11650-11655, 2012.

Z. Xueping, Effect of Additives on the Reversibility of Lithium Alanate (LiAlH4), Rare Metal Materials and Engineering, vol.38, issue.10, pp.60034-60037, 2009.

G. Wolf, Calorimetric process monitoring of thermal decomposition of B-N-H compounds, Thermochimica Acta, vol.343, pp.19-25, 2000.

Z. Xiong, High-capacity hydrogen storage in lithium and sodium amidoboranes, Nature Materials, vol.7, pp.138-179, 2008.

A. C. Dillon, Storage of hydrogen in single-walled carbon nanotubes, Nature, vol.386, pp.377-386, 1997.

B. Bogdanovi?, Thermodynamic investigation of the magnesium-hydrogen system, Journal of Alloys and Compounds, vol.282, pp.84-92, 1999.

. Shin-ichi-orimo, Complex Hydrides for Hydrogen Storage, Chemical Reviews, vol.10, pp.4111-4132, 2007.

R. A. Varin, Decomposition behavior of unmilled and ball milled lithium alanate (LiAlH4) including longterm storage and moisture effects, Journal of Alloys and Compounds, vol.504, pp.89-101, 2010.

P. Mauron, Stability and Reversibility of LiBH4, The Journal of Physical Chemistry B, vol.112, pp.906-916, 2008.

L. Chong, Study on reversible hydrogen sorption behaviors of a 3NaBH4/HoF3 composite, International Journal of Hydrogen Energy, vol.39, pp.14275-81, 2014.

J. O. Abe, Hydrogen energy, economy and storage: Review and recommendation, International Journal of Hydrogen Energy, vol.44, pp.15072-86, 2019.

J. Andersson, Large-scale storage of hydrogen, International Journal of Hydrogen Energy, vol.44, pp.11901-11920, 2019.

R. Moradi, Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis, International Journal of Hydrogen Energy, vol.44, pp.12254-69, 2019.

I. P. Jain, Hydrogen storage in Mg: A most promising material, International Journal of Hydrogen Energy, vol.35, pp.5133-5177, 2010.

V. A. Yartys, Magnesium based materials for hydrogen based energy storage: Past, present and future, International Journal of Hydrogen Energy, vol.44, pp.7809-59, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02090051

M. Lutz, Adiabatic magnesium hydride system for hydrogen storage based on thermochemical heat storage: Numerical analysis of the dehydrogenation, Applied Energy, vol.236, pp.1034-1082, 2019.

M. Bhouri, Feasibility analysis of a novel solid-state H2 storage reactor concept based on thermochemical heat storage: MgH2 and Mg(OH)2 as reference materials, International Journal of Hydrogen Energy, vol.41, pp.20549-61, 2016.

Y. Liu, Rare earth-Mg-Ni-based hydrogen storage alloys as negative electrode materials for Ni/MH batteries, Journal of Alloys and Compounds, vol.509, pp.675-86, 2011.

Y. Xu, TiF3 catalyzed MgH2 as a Li/Na ion battery anode, International Journal of Hydrogen Energy, vol.43, pp.20033-20073, 2018.

P. Thongtan, Reversible hydrogen sorption and kinetics of hydrogen storage tank based on MgH2 modified by TiF4 and activated carbon, International Journal of Hydrogen Energy, vol.43, pp.12260-70, 2018.

V. Bérubé, Size effects on the hydrogen storage properties of nanostructured metal hydrides: A review, International Journal of Energy Research, vol.31, pp.637-63, 2007.

M. Afzal, Heat transfer techniques in metal hydride hydrogen storage: A review, International Journal of Hydrogen Energy, vol.42, pp.30661-82, 2017.

J. Zhang, State of the art multi-strategy improvement of Mg-based hydrides for hydrogen storage, Journal of Alloys and Compounds, vol.782, pp.796-823, 2019.

J. Zhang, Recent progress in magnesium hydride modified through catalysis and nanoconfinement, International Journal of Hydrogen Energy, vol.43, pp.1545-65, 2018.

J. Crivello, Review of magnesium hydride-based materials: development and optimisation, Applied Physics A, vol.122, p.97, 2016.

J. Crivello, Mg-based compounds for hydrogen and energy storage, Applied Physics A, vol.122, p.85, 2016.

J. Li, Catalysis and Downsizing in Mg-Based Hydrogen Storage Materials, Catalysts, vol.8, p.89, 2018.

T. Sadhasivam, Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: A review, Renewable and Sustainable Energy Reviews, vol.72, pp.523-557, 2017.

E. Callini, Nanostructured materials for solid-state hydrogen storage: A review of the achievement of COST Action MP1103, International Journal of Hydrogen Energy, vol.41, pp.14404-14432, 2016.

Y. Sun, Tailoring magnesium based materials for hydrogen storage through synthesis: Current state of the art, Energy Storage Materials, vol.10, pp.168-98, 2018.

S. Kumar, Surface modification of MgH2 by ZrCl4 to tailor the reversible hydrogen storage performance, International Journal of Hydrogen Energy, vol.42, pp.6152-6161, 2017.

B. Galey, Enhancing hydrogen storage properties of the Mg/MgH2 system by the addition of bis(tricyclohexylphosphine)nickel(II) dichloride, International Journal of Hydrogen Energy, vol.44, pp.11939-52, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02154794

H. B. Lu, Dehydrogenation characteristics of Ti-and Ni/Ti-catalyzed Mg hydrides, Journal of Alloys and Compounds, vol.481, pp.152-157, 2009.

S. Kumar, Thermodynamics and kinetics of nano-engineered Mg-MgH2 system for reversible hydrogen storage application, Thermochimica Acta, vol.652, pp.103-111, 2017.

G. Chen, Enhancing hydrogen storage performances of MgH2 by Ni nano-particles over mesoporous carbon CMK-3, Nanotechnology, vol.29, p.265705, 2018.

T. Zhang, Enhancement of hydrogen desorption kinetics in magnesium hydride by doping with lithium metatitanate, Journal of Alloys and Compounds, vol.711, pp.400-405, 2017.

X. Zhang, Enhanced hydrogen storage properties of MgH2 catalyzed with carbon-supported nanocrystalline TiO2, Journal of Power Sources, vol.398, pp.183-92, 2018.

M. Chen, Excellent synergistic catalytic mechanism of in-situ formed nanosized Mg2Ni and multiple valence titanium for improved hydrogen desorption properties of magnesium hydride, International Journal of Hydrogen Energy, vol.44, pp.1750-1759, 2019.

M. S. El-eskandarany, Bulk nanocomposite MgH2/10 wt% (8 Nb2O5/2 Ni) solid-hydrogen storage system for fuel cell applications, International Journal of Hydrogen Energy, vol.43, pp.23382-96, 2018.

S. Kumar, Catalytic effect of bis (cyclopentadienyl) nickel II on the improvement of the hydrogenationdehydrogenation of Mg-MgH2 system, International Journal of Hydrogen Energy, vol.42, pp.17178-83, 2017.

S. Kumar, XPS study on the vanadocene-magnesium system to understand the hydrogen sorption reaction mechanism under room temperature, International Journal of Hydrogen Energy, vol.44, pp.2981-2988, 2019.

G. Xia, Monodisperse Magnesium Hydride Nanoparticles Uniformly Self-Assembled on Graphene, Advanced Materials, vol.27, pp.5981-5989, 2015.

S. Shinde, Self-assembled air-stable magnesium hydride embedded in 3-D activated carbon for reversible hydrogen storage, Nanoscale, vol.9, pp.7094-103, 2017.

Y. Liu, Properties of Mg2NiH4 prepared by microwave-assisted activation synthesis from micro-particles, Journal of Alloys and Compounds, vol.468, pp.455-61, 2009.

X. Chen, Hydrogen storage properties of a Mg-La-Fe-H nano-composite prepared through reactive ball milling, Journal of Alloys and Compounds, vol.701, pp.208-222, 2017.

Y. Wang, Destabilization effects of Mg(AlH4)2 on MgH2: Improved desorption performances and its reaction mechanism, International Journal of Hydrogen Energy, vol.39, pp.17747-53, 2014.

Y. Pan, Effect of LiBH4 on hydrogen storage property of MgH2, International Journal of Hydrogen Energy, vol.38, pp.10461-10470, 2013.

N. Hanada, Correlation between hydrogen storage properties and structural characteristics in mechanically milled magnesium hydride MgH2, Journal of Alloys and Compounds, vol.366, pp.269-73, 2004.

B. Paik, Evolution of microstructure in MgH2 powder particles during high energy ball milling and hydrogen cycling, Journal of Alloys and Compounds, vol.492, pp.515-535, 2010.

B. Galey, Impact of the addition of poly-dihydrogen ruthenium precursor complexes on the hydrogen storage properties of the Mg/MgH2 system, Sustainable Energy Fuels, vol.2, pp.2335-2379, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01916678

H. Shao, Hydrogen storage properties of nanostructured MgH2/TiH2 composite prepared by ball milling under high hydrogen pressure, International Journal of Hydrogen Energy, vol.36, pp.10828-10861, 2011.

B. Paik, Microstructure of ball milled MgH2 powders upon hydrogen cycling: An electron microscopy study, International Journal of Hydrogen Energy, vol.35, pp.9012-9032, 2010.

B. Chen, Improving the hydrogenation properties of MgH2 at room temperature by doping with nanosize ZrO2 catalyst, Journal of Alloys and Compounds, vol.655, pp.21-28, 2016.

W. N. Yang, Site density effect of Ni particles on hydrogen desorption of MgH2, International Journal of Hydrogen Energy, vol.35, pp.4534-4576, 2010.

M. Polanski, Mg2NiH4 synthesis and decomposition reactions, International Journal of Hydrogen Energy, vol.38, pp.4003-4013, 2013.

R. L. Sweany, Metal Dihydrogen and ?-Bond Complexes: Structure, Theory, and Reactivity By Gregory J. Kubas, Journal of the American Chemical Society, vol.124, pp.3799-800, 2002.

G. J. Kubas, Characterization of the first examples of isolable molecular hydrogen complexes, M(CO)3(PR3)2(H2) (M = molybdenum or tungsten

R. Isopropyl, Evidence for a side-on bonded dihydrogen ligand, Journal of the American Chemical Society, vol.106, pp.451-453, 1984.

G. J. Kubas, Fundamentals of H2 Binding and Reactivity on Transition Metals Underlying Hydrogenase Function and H2 Production and Storage, Chemical Reviews, vol.107, pp.4152-205, 2007.

M. Grellier, Ruthenium Complexes Carrying Hydride, Dihydrogen, and Phosphine Ligands: Reversible Hydrogen Release, Angewandte Chemie, vol.119, pp.2667-2676, 2007.

M. Grellier, Probing Highly Selective H/D Exchange Processes with a Ruthenium Complex through Neutron Diffraction and Multinuclear NMR Studies, Inorganic Chemistry, vol.52, pp.7329-7366, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00995058

M. Grellier, Dehydrogenation processes via C-H activation within alkylphosphines, Chemical Communications, vol.48, pp.34-42, 2011.

G. Alcaraz, Bis ?-Bond Dihydrogen and Borane Ruthenium Complexes: Bonding Nature, Catalytic Applications, and Reversible Hydrogen Release, Accounts of Chemical Research, vol.42, pp.1640-1649, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01565100

R. Reguillo, Ruthenium-Catalyzed Hydrogenation of Nitriles: Insights into the Mechanism, Journal of the American Chemical Society, vol.132, pp.7854-7859, 2010.

S. Sabo-etienne, Chemistry of bis(dihydrogen) ruthenium complexes and of their derivatives, Coordination Chemistry Reviews, vol.178, pp.381-407, 1998.

T. Hoang, Exploiting the Kubas Interaction in the Design of Hydrogen Storage Materials, Advanced Materials, vol.21, pp.1787-800, 2009.

A. , Hydrogen in magnesium: new perspectives toward functional stores, Energy & Environmental Science, vol.3, pp.526-569, 2010.

E. Romilliat, Etude des modes d'action d'agents de mouture sur le broyage du clinker. thesis, 2006.
URL : https://hal.archives-ouvertes.fr/tel-00012209

N. Hanada, Correlation between hydrogen storage properties and structural characteristics in mechanically milled magnesium hydride MgH2, Journal of Alloys and Compounds, vol.366, pp.269-73, 2004.

B. Paik, Evolution of microstructure in MgH2 powder particles during high energy ball milling and hydrogen cycling, Journal of Alloys and Compounds, vol.492, pp.515-535, 2010.

B. Galey, Impact of the addition of poly-dihydrogen ruthenium precursor complexes on the hydrogen storage properties of the Mg/MgH2 system, Sustainable Energy and Fuels, vol.2, pp.2335-2379, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01916678

H. E. Kissinger, Reaction Kinetics in Differential Thermal Analysis, Analytical Chemistry, vol.29, pp.1702-1708, 1957.

J. Farjas, A simple kinetic method for the determination of the reaction model from non-isothermal experiments, Journal of Thermal Analysis and Calorimetry, vol.102, pp.615-640, 2010.

J. Farjas, Exact analytical solution for the Kissinger equation: Determination of the peak temperature and general properties of thermally activated transformations, Thermochimica Acta, vol.598, pp.51-59, 2014.

B. Bogdanovi?, Thermodynamic investigation of the magnesium-hydrogen system, Journal of Alloys and Compounds, vol.282, pp.84-92, 1999.

T. P. Blach, Sieverts apparatus and methodology for accurate determination of hydrogen uptake by lightatom hosts, Journal of Alloys and Compounds, 2007.

M. Fanfoni, The Johnson-Mehl-Avrami-Kohnogorov model: A brief review, Nouv Cim D, vol.20, pp.1171-82, 1998.

Y. Pang, A review on kinetic models and corresponding analysis method for hydrogen storage materials, International Journal of Hydrogen Energy, vol.41, pp.18072-87, 2016.

A. Montone, Effect of hydrogen pressure and temperature on the reaction kinetics between Fe-doped Mg and hydrogen gas, Journal of Alloys and Compounds, vol.509, pp.580-583, 2011.

A. Montone, On the barriers limiting the reaction kinetics between catalysed Mg and hydrogen, Scripta Materialia, vol.63, pp.456-465, 2010.

P. Moretto, A Round Robin Test exercise on hydrogen absorption/desorption properties of a magnesium hydride based material, International Journal of Hydrogen Energy, vol.38, pp.6704-6721, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00827891

T. B. Flanagan, Hysteresis in solid state reactions, Progress in Solid State Chemistry, vol.23, pp.291-363, 1995.

V. Bérubé, Size effects on the hydrogen storage properties of nanostructured metal hydrides: A review, International Journal of Energy Research, vol.31, pp.637-63, 2007.

N. Broll, Caractérisation de solides cristallisés par diffraction X. Ref : TIP630WEB -"Techniques d'analyse, 1996.

J. Ruste, Microscopie électronique à balayage -Principe et équipement. Ref : TIP630WEB -"Techniques d'analyse, 2013.

F. Louchet, Microscopie électronique en transmission Transmission conventionnelle et balayage en transmission. Ref : TIP630WEB -"Techniques d'analyse, 1988.

J. Rousset, Spectrométrie par résonance magnétique nucléaire. Ref : TIP630WEB -"Techniques d'analyse, 1996.

G. Hollinger, Spectroscopies de photoélectrons: XPS ou ESCA et UPS. Ref : TIP630WEB -"Techniques d'analyse, 1986.

?. E. ?ener, J. L. Sharp, and A. Anctil, Renewable Sustainable Energy Rev, vol.81, pp.2335-2342, 2018.

F. Zhang, P. Zhao, M. Niu, and J. Maddy, Int. J. Hydrogen Energy, vol.41, pp.14535-14552, 2016.

A. Bakenne, W. Nuttall, and N. Kazantzis, Int. J. Hydrogen Energy, vol.41, pp.7744-7753, 2016.

D. J. Durbin and C. Malardier-jugroot, Int. J. Hydrogen Energy, vol.38, pp.14595-14617, 2013.

J. Ren, N. M. Musyoka, H. W. Langmi, M. Mathe, and S. Liao, Int. J. Hydrogen Energy, vol.42, pp.289-311, 2017.

L. E. Klebanoff and J. O. Keller, Int. J. Hydrogen Energy, vol.38, pp.4533-4576, 2013.

N. A. Rusman and M. Dahari, Int. J. Hydrogen Energy, vol.41, pp.12108-12126, 2016.

M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen et al., Scr. Mater, vol.56, pp.841-846, 2007.

S. Kumar, A. Jain, H. Miyaoka, T. Ichikawa, and Y. Kojima, Int. J. Hydrogen Energy, vol.42, pp.17178-17183, 2017.

S. Kumar, A. Singh, G. P. Tiwari, Y. Kojima, and V. Kain, Thermochim. Acta, vol.652, pp.103-108, 2017.

Q. Zhang, Y. Wang, L. Zang, X. Chang, L. Jiao et al., J. Alloys Compd, vol.703, pp.381-388, 2017.

L. Li, Z. Zhang, L. Jiao, H. Yuan, and Y. Wang, Int. J. Hydrogen Energy, vol.41, pp.18121-18129, 2016.

L. Li, G. Jiang, H. Tian, and Y. Wang, Int. J. Hydrogen Energy, vol.42, pp.28464-28472, 2017.

Q. Zhang, L. Zang, Y. Huang, P. Gao, L. Jiao et al., Int. J. Hydrogen Energy, vol.42, pp.24247-24255, 2017.

H. Yu, S. Bennici, and A. Auroux, Int. J. Hydrogen Energy, vol.39, pp.11633-11641, 2014.

N. Hanada, T. Ichikawa, and H. Fujii, J. Phys. Chem. B, vol.109, pp.7188-7194, 2005.

G. Liang, J. Huot, S. Boily, A. Van-neste, and R. Schulz, J. Alloys Compd, vol.292, pp.247-252, 1999.

N. Hanada, T. Ichikawa, S. Orimo, and H. Fujii, J. Alloys Compd, vol.366, pp.269-273, 2004.

B. Paik, I. P. Jones, A. Walton, V. Mann, D. Book et al., J. Alloys Compd, vol.492, pp.515-520, 2010.

B. Chen, Y. Chuang, and C. Chen, J. Alloys Compd, vol.655, pp.21-27, 2016.

Q. Zhang, Y. Xu, Y. Wang, H. Zhang, Y. Wang et al., Int. J. Hydrogen Energy, vol.41, pp.17000-17007, 2016.

K. Alsabawi, T. A. Webb, E. M. Gray, and C. J. Webb, Int. J. Hydrogen Energy, vol.40, pp.10508-10515, 2015.

H. Y. Sohn and S. Emami, Int. J. Hydrogen Energy, vol.36, pp.8344-8350, 2011.

X. Chen, J. Zou, X. Zeng, and W. Ding, J. Alloys Compd, vol.701, pp.208-214, 2017.

L. Xie, J. Li, T. Zhang, and H. Kou, Trans. Nonferrous Met. Soc. China, vol.27, pp.569-577, 2017.

Y. Wang, Y. Wang, X. Wang, H. Zhang, L. Jiao et al., Int. J. Hydrogen Energy, vol.39, pp.17747-17753, 2014.

X. Xiao, T. Qin, Y. Jiang, F. Jiang, M. Li et al., Prog. Nat. Sci.: Mater. Int, vol.27, pp.112-120, 2017.

Y. Wang and Y. Wang, Prog. Nat. Sci.: Mater. Int, vol.27, pp.41-49, 2017.

I. P. Jain, C. Lal, and A. Jain, Int. J. Hydrogen Energy, vol.35, pp.5133-5144, 2010.

T. Sadhasivam, H. Kim, S. Jung, S. Roh, J. Park et al., , vol.72, pp.523-534, 2017.

C. J. Webb, J. Phys. Chem. Solids, vol.84, pp.96-106, 2015.

K. Aguey-zinsou and J. Ares-fernández, Energy Environ. Sci, p.526, 2010.

B. Sakintuna, F. Lamaridarkrim, and M. Hirscher, Int. J. Hydrogen Energy, vol.32, pp.1121-1140, 2007.

G. J. Kubas, Chem. Rev, vol.107, pp.4152-4205, 2007.

T. K. Hoang and D. M. Antonelli, Adv. Mater, vol.21, pp.1787-1800, 2009.

A. Hamaed, T. K. Hoang, G. Moula, R. Aroca, M. L. Trudeau et al., J. Am. Chem. Soc, vol.133, pp.15434-15443, 2011.

A. I. Cooper and M. Poliakoff, Chem. Commun, pp.2965-2967, 2007.

S. Sabo-etienne and B. Chaudret, Coord. Chem. Rev, vol.178, pp.381-407, 1998.

M. A. Esteruelas, A. M. López, and M. Oliván, Chem. Rev, vol.116, pp.8770-8847, 2016.

A. F. Borowski, S. Sabo-etienne, M. L. Christ, B. Donnadieu, and B. Chaudret, Organometallics, vol.15, pp.1427-1434, 1996.

M. Grellier, L. Vendier, B. Chaudret, A. Albinati, S. Rizzato et al., J. Am. Chem. Soc, vol.127, pp.17592-17593, 2005.

M. Grellier and S. Sabo-etienne, Chem. Commun, vol.48, pp.34-42, 2011.

M. Grellier, L. Vendier, and S. Sabo-etienne, Angew. Chem, vol.119, pp.2667-2669, 2007.

G. Alcaraz, M. Grellier, and S. Sabo-etienne, Acc. Chem. Res, vol.42, pp.1640-1649, 2009.

T. Arliguie, B. Chaudret, R. H. Morris, and A. Sella, Inorg. Chem, vol.27, pp.598-599, 1988.

B. Chaudret, P. Dagnac, D. Labroue, and S. Sabo-etienne, New J. Chem, vol.20, pp.1137-1141, 1996.

H. E. Kissinger, Anal. Chem, vol.29, pp.1702-1706, 1957.

J. Farjas and P. Roura, Thermochim. Acta, vol.598, pp.51-58, 2014.

V. Bérubé, G. Radtke, M. Dresselhaus, and G. Chen, Int. J. Energy Res, vol.31, pp.637-663, 2007.

P. Moretto, C. Zlotea, F. Dolci, A. Amieiro, J. Bobet et al., Int. J. Hydrogen Energy, vol.38, pp.6704-6717, 2013.

T. B. Flanagan, C. Park, and W. A. Oates, Prog. Solid State Chem, vol.23, pp.291-363, 1995.

R. Reguillo, M. Grellier, N. Vautravers, L. Vendier, and S. Sabo-etienne, J. Am. Chem. Soc, vol.132, pp.7854-7855, 2010.

X. Xu and C. Song, Appl. Catal., A, vol.300, pp.130-138, 2006.

S. Adjimi, J. M. García-vargas, J. A. Díaz, L. Retailleau, S. Gil et al., Appl. Catal, vol.219, pp.459-466, 2017.

L. Li, L. Qu, J. Cheng, J. Li, and Z. Hao, Appl. Catal, vol.88, pp.224-231, 2009.

L. Di, S. Yao, S. Song, G. Wu, W. Dai et al., Appl. Catal, vol.201, pp.137-149, 2017.

L. Wang and R. T. Yang, J. Phys. Chem. C, vol.112, pp.12486-12494, 2008.

S. Dutta, A review on production, storage of hydrogen and its utilization as an energy resource, J Ind Eng Chem, vol.20, pp.1148-56, 2014.

A. Bakenne, W. Nuttall, and N. Kazantzis, Sankey-Diagram-based insights into the hydrogen economy of today, Int J Hydrogen Energy, vol.41, pp.7744-53, 2016.

C. Acar and I. Dincer, Review and evaluation of hydrogen production options for better environment, J Clean Prod, 2019.

D. Parra, L. Valverde, F. J. Pino, and M. K. Patel, A review on the role, cost and value of hydrogen energy systems for deep decarbonisation, Renew Sustain Energy Rev, vol.101, pp.279-94, 2019.

R. A. Voloshin, M. V. Rodionova, S. K. Zharmukhamedov, N. Veziroglu, T. Allakhverdiev et al., Review: biofuel production from plant and algal biomass, Int J Hydrogen Energy, vol.41, pp.17257-73, 2016.

F. Zhang, P. Zhao, M. Niu, and J. Maddy, The survey of key technologies in hydrogen energy storage, Int J Hydrogen Energy, vol.41, pp.14535-52, 2016.

J. Ren, N. M. Musyoka, H. W. Langmi, M. Mathe, and S. Liao, Current research trends and perspectives on materials-based hydrogen storage solutions: a critical review, Int J Hydrogen Energy, vol.42, pp.289-311, 2017.

M. Dadashzadeh, S. Kashkarov, D. Makarov, and V. Molkov, Risk assessment methodology for onboard hydrogen storage, Int J Hydrogen Energy, vol.43, pp.6462-75, 2018.

M. Gurz, E. Baltacioglu, Y. Hames, and K. Kaya, The meeting of hydrogen and automotive: a review, Int J Hydrogen Energy, vol.42, pp.23334-23380, 2017.

V. A. Yartys, M. V. Lototskyy, E. Akiba, R. Albert, V. E. Antonov et al., Magnesium based materials for hydrogen based energy storage: past, present and future, Int J Hydrogen Energy, vol.44, pp.7809-59, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02090051

I. P. Jain, C. Lal, and A. Jain, Hydrogen storage in Mg: a most promising material, Int J Hydrogen Energy, vol.35, 2010.

J. Crivello, R. V. Denys, M. Dornheim, M. Felderhoff, D. M. Grant et al., Mg-based compounds for hydrogen and energy storage, Appl Phys A, vol.122, issue.1e17, p.85, 2016.

J. Crivello, B. Dam, R. V. Denys, M. Dornheim, D. M. Grant et al., Review of magnesium hydride-based materials: development and optimisation, Appl Phys A, vol.122, issue.1e20, p.97, 2016.

J. Zhang, S. Yan, and H. Qu, Stress/strain effects on thermodynamic properties of magnesium hydride: a brief review, Int J Hydrogen Energy, vol.42, pp.16603-16613, 2017.

J. Zhang, S. Yan, and H. Qu, Recent progress in magnesium hydride modified through catalysis and nanoconfinement, Int J Hydrogen Energy, vol.43, pp.1545-65, 2018.

J. Zhang, Y. Zhu, L. Yao, C. Xu, Y. Liu et al., State of the art multistrategy improvement of Mg-based hydrides for hydrogen storage, J Alloy Comp, vol.782, pp.796-823, 2019.

P. Thongtan, P. Dansirima, S. Thiangviriya, N. Thaweelap, A. Suthummapiwat et al., Reversible hydrogen sorption and kinetics of hydrogen storage tank based on MgH 2 modified by TiF 4 and activated carbon, Int J Hydrogen Energy, vol.43, pp.12260-70, 2018.

M. Lutz, M. Bhouri, and M. Linder, Bü rger I. Adiabatic magnesium hydride system for hydrogen storage based on thermochemical heat storage: numerical analysis of the dehydrogenation, Appl Energy, vol.236, pp.1034-1082, 2019.

Y. Liu, Y. Cao, L. Huang, M. Gao, and H. Pan, Rare eartheMgeNibased hydrogen storage alloys as negative electrode materials for Ni/MH batteries, J Alloy Comp, vol.509, 2011.

Y. Xu and F. M. Mulder, TiF 3 catalyzed MgH 2 as a Li/Na ion battery anode, Int J Hydrogen Energy, vol.43, 2018.

B. Bogdanovi-c, K. Bohmhammel, B. Christ, A. Reiser, K. Schlichte et al., Thermodynamic investigation of the magnesiumehydrogen system, J Alloy Comp, vol.282, pp.829-838, 1999.

M. Afzal, R. Mane, and P. Sharma, Heat transfer techniques in metal hydride hydrogen storage: a review, Int J Hydrogen Energy, vol.42, pp.30661-82, 2017.

G. B-erub-e-v,-radtke, M. Dresselhaus, and G. Chen, Size effects on the hydrogen storage properties of nanostructured metal hydrides: a review, Int J Energy Res, vol.31, pp.637-63, 2007.

E. Callini, K. Aguey-zinsou, R. Ahuja, J. R. Ares, S. Bals et al., Nanostructured materials for solid-state hydrogen storage: a review of the achievement of COST Action MP1103, Int J Hydrogen Energy, vol.41, 2016.

Q. Zhang, Y. Xu, Y. Wang, H. Zhang, Y. Wang et al., Enhanced hydrogen storage performance of MgH 2 Ni 2 P/ graphene nanosheets, Int J Hydrogen Energy, vol.41, pp.17000-17007, 2016.

T. Sadhasivam, H. Kim, J. S. Roh, S. Park, J. et al., Dimensional effects of nanostructured Mg/MgH 2 for hydrogen storage applications: a review, Renew Sustain Energy Rev, vol.72, pp.523-557, 2017.

N. Hanada, T. Ichikawa, and H. Fujii, Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH 2 prepared by mechanical milling, J Phys Chem B, vol.109, pp.7188-94, 2005.

S. Kumar, A. Singh, G. P. Tiwari, Y. Kojima, and V. Kain, Thermodynamics and kinetics of nano-engineered Mg-MgH 2 system for reversible hydrogen storage application, Thermochim Acta, vol.652, pp.103-111, 2017.

X. Zhang, Z. Shen, N. Jian, J. Hu, F. Du et al., A novel complex oxide TiVO 3.5 as a highly active catalytic precursor for improving the hydrogen storage properties of MgH 2, Int J Hydrogen Energy, vol.43, pp.23327-23362, 2018.

M. Chen, X. Xiao, M. Zhang, M. Liu, X. Huang et al., Excellent synergistic catalytic mechanism of in-situ formed nanosized Mg 2 Ni and multiple valence titanium for improved hydrogen desorption properties of magnesium hydride, Int J Hydrogen Energy, vol.44, pp.1750-1759, 2019.

M. Ismail, N. S. Mustafa, N. Juahir, and F. Yap, Catalytic effect of CeCl 3 on the hydrogen storage properties of MgH 2, Mater Chem Phys, vol.170, pp.77-82, 2016.

J. Wang, Y. Du, L. Sun, and X. Li, Effects of F and Cl on the stability of MgH 2, Int J Hydrogen Energy, vol.39, pp.877-83, 2014.

N. A. Sazelee, N. H. Idris, M. Din, M. F. Mustafa, N. S. Ali et al., Synthesis of BaFe 12 O 19 by solid state method and its effect on hydrogen storage properties of MgH 2, Int J Hydrogen Energy, vol.43, 2018.

L. Li, Z. Zhang, L. Jiao, H. Yuan, and Y. Wang, In situ preparation of nanocrystalline Ni@C and its effect on hydrogen storage properties of MgH 2, Int J Hydrogen Energy, vol.41, pp.18121-18130, 2016.

Q. Zhang, Y. Wang, L. Zang, X. Chang, L. Jiao et al., Core-shell Ni 3 N@Nitrogen-doped carbon: synthesis and application in MgH 2, J Alloy Comp, vol.703, pp.381-389, 2017.

Q. Zhang, L. Zang, Y. Huang, P. Gao, L. Jiao et al., Improved hydrogen storage properties of MgH 2 with Nibased compounds, Int J Hydrogen Energy, vol.42, pp.24247-55, 2017.

L. Xie, Y. Liu, X. Zhang, J. Qu, Y. Wang et al., Catalytic effect of Ni nanoparticles on the desorption kinetics of MgH 2 nanoparticles, J Alloy Comp, vol.482, pp.388-92, 2009.

T. Zhang, S. Isobe, A. Jain, Y. Wang, S. Yamaguchi et al., Enhancement of hydrogen desorption kinetics in magnesium hydride by doping with lithium metatitanate, J Alloy Comp, vol.711, pp.400-405, 2017.

Y. Wang, Y. Wang, X. Wang, H. Zhang, L. Jiao et al., Destabilization effects of Mg(AlH 4 ) 2 on MgH 2 : improved desorption performances and its reaction mechanism, Int J Hydrogen Energy, vol.39, pp.17747-53, 2014.

B. Zhang, W. Li, Y. Lv, Y. Yan, and Y. Wu, Hydrogen storage properties of the mixtures MgH 2 eLi 3 N with different molar ratios, S464e7, vol.645, 2015.

J. A. Puszkiel, A. Larochette, P. Gennari, and F. C. , Hydrogen storage properties of MgxFe (x: 2, 3 and 15) compounds produced by reactive ball milling, J Power Sources, vol.186, pp.185-93, 2009.

A. Deorsola, F. A. Ortigoza-villalba, G. A. Debenedetti, B. Baricco, and M. , Development of nanostructured Mg 2 Ni alloys for hydrogen storage applications, Int J Hydrogen Energy, vol.36, 2011.

X. Chen, J. Zou, X. Zeng, and W. Ding, Hydrogen storage properties of a Mg-La-Fe-H nano-composite prepared through reactive ball milling, J Alloy Comp, vol.701, pp.208-222, 2017.

S. Kumar, A. Jain, H. Miyaoka, T. Ichikawa, and Y. Kojima, Catalytic effect of bis (cyclopentadienyl) nickel II on the improvement of the hydrogenation-dehydrogenation of Mg-MgH 2 system

, Int J Hydrogen Energy, vol.42, pp.17178-83, 2017.

B. Galey, A. Auroux, S. Sabo-etienne, M. Grellier, S. Dhaher et al., Impact of the addition of poly-dihydrogen ruthenium precursor complexes on the hydrogen storage properties of the Mg/MgH 2 system, Sustain Energy Fuels, vol.2, pp.2335-2379, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01916678

G. Azadi, R. Bagheri, R. Bikas, Y. Mousazade, J. Cui et al., A transparent electrode with water-oxidizing activity, Int J Hydrogen Energy, vol.43, pp.22896-904, 2018.

M. M. Najafpour, G. Renger, M. Ho?y-nska, A. N. Moghaddam, E. Aro et al., Manganese compounds as water-oxidizing catalysts: from the natural water-oxidizing complex to nanosized manganese oxide structures, Chem Rev, vol.116, pp.2886-936, 2016.

K. W. Quasdorf, X. Tian, and N. K. Garg, Cross-coupling reactions of aryl pivalates with boronic acids, J Am Chem Soc, vol.130, pp.14422-14425, 2008.

J. Xiao, J. Wu, W. Zhao, and S. Cao, NiCl 2 (PCy 3 ) 2 -catalyzed hydrode fluorination of fluoroarenes with LiAl(O-t-Bu)3H, J Fluorine Chem, vol.146, pp.76-85, 2013.

H. E. Kissinger, Reaction kinetics in differential thermal analysis, Anal Chem, vol.29, pp.1702-1708, 1957.

J. Farjas and P. Roura, Exact analytical solution for the Kissinger equation: determination of the peak temperature and

J. Chow, R. J. Kopp, and P. R. Portney, Energy Resources and Global Development, Science, vol.302, issue.5650, pp.1528-1531, 2003.

I. Arto, I. Capellán-pérez, R. Lago, G. Bueno, and R. Bermejo, The Energy Requirements of a Developed World, vol.33, pp.1-13, 2016.

P. E. Graves, Implications of Global Warming: Two Eras. World Development Perspectives, pp.7-8, 2017.

J. O. Bockris, Will Lack of Energy Lead to the Demise of High-Technology Countries in This Century?, International Journal of Hydrogen Energy, vol.32, issue.2, pp.153-158, 2007.

G. J. Kramer and M. Haigh, No quick switch to low, 2018.

,

C. Bauer, K. Treyer, T. Heck, and S. Hirschberg, Greenhouse Gas Emissions from Energy Systems, Comparison, and Overview?, Encyclopedia of the Anthropocene, pp.9276-9280, 2018.

S. M. Benson and F. M. Orr, Sustainability and Energy Conversions, MRS Bulletin, vol.33, issue.4, pp.297-302, 2008.

E. Baranes, J. Jacqmin, and J. Poudou, Non-Renewable and Intermittent Renewable Energy Sources: Friends and Foes? Energy Policy, vol.111, pp.58-67, 2017.

,

C. ?ener, ?. E. Sharp, J. L. Anctil, and A. , Factors Impacting Diverging Paths of Renewable Energy: A Review. Renewable and Sustainable Energy Reviews, vol.81, pp.2335-2342, 2018.

A. G. Olabi, Renewable Energy and Energy Storage Systems, vol.136, pp.1-6, 2017.

S. Dutta, A Review on Production, Storage of Hydrogen and Its Utilization as an Energy Resource, Journal of Industrial and Engineering Chemistry, vol.20, issue.4, pp.1148-1156, 2014.

J. Andrews and B. Shabani, The Role of Hydrogen in a Global Sustainable Energy Strategy, Wiley Interdisciplinary Reviews: Energy and Environment, vol.3, issue.5, pp.474-489, 2014.

L. Barreto, A. Makihira, and K. Riahi, The Hydrogen Economy in the 21st Century: A Sustainable Development Scenario, International Journal of Hydrogen Energy, vol.28, issue.3, pp.267-284, 2003.

A. Bakenne, W. Nuttall, and N. Kazantzis, Sankey-Diagram-Based Insights into the Hydrogen Economy of Today, International Journal of Hydrogen Energy, vol.41, issue.19, pp.7744-7753, 2016.

C. Winter, Hydrogen Energy -Abundant, Efficient, Clean: A Debate over the Energy-Systemof-Change, International Journal of Hydrogen Energy, vol.34, issue.14, pp.1-52, 2009.

M. Momirlan and T. N. Veziroglu, The Properties of Hydrogen as Fuel Tomorrow in Sustainable Energy System for a Cleaner Planet, International Journal of Hydrogen Energy, vol.30, issue.7, pp.795-802, 2005.

D. J. Durbin and C. Malardier-jugroot, Review of Hydrogen Storage Techniques for on Board Vehicle Applications, International Journal of Hydrogen Energy, vol.38, issue.34, pp.14595-14617, 2013.

F. Zhang, P. Zhao, M. Niu, and J. Maddy, The Survey of Key Technologies in Hydrogen Energy Storage, International Journal of Hydrogen Energy, vol.41, issue.33, pp.14535-14552, 2016.

L. Zhou, Progress and Problems in Hydrogen Storage Methods. Renewable and Sustainable Energy Reviews, vol.9, pp.395-408, 2005.

C. Shen, L. Ma, G. Huang, Y. Wu, J. Zheng et al., Consequence Assessment of High-Pressure Hydrogen Storage Tank Rupture during Fire Test, Journal of Loss Prevention in the Process, vol.55, pp.223-231, 2018.

J. Ren, N. M. Musyoka, H. W. Langmi, M. Mathe, and S. Liao, Current Research Trends and Perspectives on Materials-Based Hydrogen Storage Solutions: A Critical Review, International Journal of Hydrogen Energy, vol.42, issue.1, pp.289-311, 2017.

,

L. E. Klebanoff and J. O. Keller, 5 Years of Hydrogen Storage Research in the U.S. DOE Metal Hydride Center of Excellence (MHCoE), International Journal of Hydrogen Energy, vol.38, issue.11, pp.4533-4576, 2013.

, Oct, vol.25, 2018.

M. Lototskyy and V. A. Yartys, Comparative Analysis of the Efficiencies of Hydrogen Storage Systems Utilising Solid State H Storage Materials, Journal of Alloys and Compounds, vol.645, pp.365-373, 2015.

K. L. Lim, H. Kazemian, Z. Yaakob, and W. R. Daud, Solid-state Materials and Methods for Hydrogen Storage: A Critical Review, Chemical Engineering & Technology, vol.33, issue.2, pp.213-226, 2010.

A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune et al., Storage of Hydrogen in Single-Walled Carbon Nanotubes, Nature, vol.386, issue.6623, pp.377-379, 1997.

D. Liu, J. J. Purewal, J. Yang, A. Sudik, S. Maurer et al., MOF-5 Composites Exhibiting Improved Thermal Conductivity, International Journal of Hydrogen Energy, vol.2012, issue.7, pp.6109-6117

X. H. An, Q. F. Gu, J. Y. Zhang, S. L. Chen, X. B. Yu et al., Experimental Investigation and Thermodynamic Reassessment of La-Ni and LaNi5-H Systems, vol.40, pp.48-55, 2013.

G. Liang, J. Huot, and R. Schulz, Hydrogen Storage Properties of the Mechanically Alloyed LaNi5-Based Materials, Journal of Alloys and Compounds, vol.320, issue.1, pp.133-139, 2001.

M. W. Davids and M. Lototskyy, Influence of Oxygen Introduced in TiFe-Based Hydride Forming Alloy on Its Morphology, Structural and Hydrogen Sorption Properties, International Journal of Hydrogen Energy, vol.2012, issue.23, pp.18155-18162

K. Aguey-zinsou and J. Ares-fernández, Hydrogen in Magnesium: New Perspectives toward Functional Stores, vol.2010, pp.526-543

B. Bogdanovi?, K. Bohmhammel, B. Christ, A. Reiser, K. Schlichte et al., Thermodynamic Investigation of the Magnesium-Hydrogen System, Journal of Alloys and Compounds, vol.282, issue.1, pp.829-838, 1999.

J. Wang, A. D. Ebner, and J. A. Ritter, Preparation of a New Ti Catalyst for Improved Performance of NaAlH4, International Journal of Hydrogen Energy, vol.2012, issue.16, pp.11650-11655

?. Shin-ichi-orimo, J. R. Nakamori, ?. Eliseo, and . Züttel,

M. Craig, *. Jensen, and ?. , Complex Hydrides for Hydrogen Storage, 2019.

,

Z. Xueping, L. Ping, and Q. Xuanhui, Effect of Additives on the Reversibility of Lithium Alanate (LiAlH4), vol.38, pp.60034-60037, 2009.

R. A. Varin and L. Zbroniec, Decomposition Behavior of Unmilled and Ball Milled Lithium Alanate (LiAlH4) Including Long-Term Storage and Moisture Effects, Journal of Alloys and Compounds, vol.504, issue.1, pp.89-101, 2010.

A. Züttel, P. Wenger, S. Rentsch, P. Sudan, P. Mauron et al., LiBH4 a New Hydrogen Storage Material, Journal of Power Sources, vol.118, issue.1, pp.1-7, 2003.

P. Mauron, F. Buchter, O. Friedrichs, A. Remhof, M. Bielmann et al., Stability and Reversibility of LiBH4, J. Phys. Chem. B, vol.112, issue.3, pp.906-910, 2008.

J. Urgnani, F. J. Torres, M. Palumbo, and M. Baricco, Hydrogen Release from Solid State NaBH4, International Journal of Hydrogen Energy, vol.33, issue.12, pp.3111-3115, 2008.

,

L. Chong, J. Zou, X. Zeng, and W. Ding, Study on Reversible Hydrogen Sorption Behaviors of a 3NaBH4/HoF3 Composite, International Journal of Hydrogen Energy, vol.39, issue.26, pp.14275-14281, 2014.

G. Wolf, J. Baumann, F. Baitalow, and F. P. Hoffmann, Calorimetric Process Monitoring of Thermal Decomposition of B-N-H Compounds, Thermochimica Acta, vol.343, issue.1, pp.19-25, 2000.

Z. Xiong, C. K. Yong, G. Wu, P. Chen, W. Shaw et al., High-Capacity Hydrogen Storage in Lithium and Sodium Amidoboranes, Nature Materials, vol.7, issue.2, pp.138-141, 2008.

T. Y. Wei, K. L. Lim, Y. S. Tseng, and S. L. Chan, A Review on the Characterization of Hydrogen in Hydrogen Storage Materials. Renewable and Sustainable Energy Reviews, vol.79, pp.1122-1133, 2017.

H. Yu, S. Bennici, and A. Auroux, Hydrogen Storage and Release: Kinetic and Thermodynamic Studies of MgH2 Activated by Transition Metal Nanoparticles, International Journal of Hydrogen Energy, vol.39, issue.22, pp.11633-11641, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01057379

G. Liang, J. Huot, S. Boily, A. Van-neste, and R. Schulz, Catalytic Effect of Transition Metals on Hydrogen Sorption in Nanocrystalline Ball Milled MgH2-Tm, Fe and Ni) Systems. Journal of Alloys and Compounds, vol.292, issue.1-2, pp.442-451, 1999.

I. P. Jain, C. Lal, and A. Jain, Hydrogen Storage in Mg: A Most Promising Material, International Journal of Hydrogen Energy, vol.35, issue.10, pp.5133-5144, 2010.

,

B. Galey, A. Auroux, S. Sabo-etienne, M. Grellier, S. Dhaher et al., Impact of the Addition of Poly-Dihydrogen Ruthenium Precursor Complexes on the Hydrogen Storage Properties of the Mg/MgH2 System, Sustainable Energy Fuels, vol.2018, issue.10, pp.2335-2344
URL : https://hal.archives-ouvertes.fr/hal-01916678

B. Galey, A. Auroux, S. Sabo-etienne, M. Grellier, and G. Postole, Enhancing Hydrogen Storage Properties of the Mg/MgH2 System by the Addition of Bis(Tricyclohexylphosphine)Nickel(II) Dichloride, International Journal of Hydrogen Energy, vol.44, issue.23, pp.11939-11952, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02154794

V. Bérubé, G. Radtke, M. Dresselhaus, and G. Chen, Size Effects on the Hydrogen Storage Properties of Nanostructured Metal Hydrides: A Review, Int. J. Energy Res, vol.31, issue.6-7, pp.637-663, 2007.

E. Callini, K. Aguey-zinsou, R. Ahuja, J. R. Ares, S. Bals et al., Nanostructured Materials for Solid-State Hydrogen Storage: A Review of the Achievement of COST Action MP1103, International Journal of Hydrogen Energy, vol.41, issue.32, pp.14404-14428, 2016.

,

T. Sadhasivam, H. Kim, S. Jung, S. Roh, J. Park et al., Dimensional Effects of Nanostructured Mg/MgH2 for Hydrogen Storage Applications: A Review. Renewable and Sustainable Energy Reviews, vol.72, pp.523-534, 2017.

A. Schneemann, J. L. White, S. Kang, S. Jeong, L. F. Wan et al., Nanostructured Metal Hydrides for Hydrogen Storage, Chemical Reviews, 2018.

J. Li, B. Li, H. Shao, W. Li, and H. Lin, Catalysis and Downsizing in Mg-Based Hydrogen Storage Materials. Catalysts, vol.8, p.89, 2018.

C. J. Webb, A Review of Catalyst-Enhanced Magnesium Hydride as a Hydrogen Storage Material, Journal of Physics and Chemistry of Solids, vol.84, pp.96-106, 2015.

,

Y. Wang and Y. Wang, Recent Advances in Additive-Enhanced Magnesium Hydride for Hydrogen Storage, Progress in Natural Science: Materials International, vol.27, issue.1, pp.41-49, 2017.

Y. Sun, C. Shen, Q. Lai, W. Liu, D. Wang et al., Tailoring Magnesium Based Materials for Hydrogen Storage through Synthesis: Current State of the Art, Energy Storage Materials, vol.10, pp.168-198, 2018.

S. Kumar, A. Singh, G. P. Tiwari, Y. Kojima, and V. Kain, Thermodynamics and Kinetics of Nano-Engineered Mg-MgH2 System for Reversible Hydrogen Storage Application, Thermochimica Acta, vol.652, pp.103-108, 2017.

T. Zhang, S. Isobe, A. Jain, Y. Wang, S. Yamaguchi et al., Enhancement of Hydrogen Desorption Kinetics in Magnesium Hydride by Doping with Lithium Metatitanate, Journal of Alloys and Compounds, vol.711, pp.400-405, 2017.

J. Zhang, Y. Zhu, L. Yao, C. Xu, Y. Liu et al., State of the Art Multi-Strategy Improvement of Mg-Based Hydrides for Hydrogen Storage, Journal of Alloys and Compounds, vol.782, pp.796-823, 2019.

S. Shinde, S. Kim, D. Yu, J. Lee, and J. , Self-Assembled Air-Stable Magnesium Hydride Embedded in 3-D Activated Carbon for Reversible Hydrogen Storage, Nanoscale, vol.2017, issue.21, pp.7094-7103

S. D. Vincent and J. Huot, Effect of Air Contamination on Ball Milling and Cold Rolling of Magnesium Hydride, Journal of Alloys and Compounds, vol.509, issue.19, pp.175-179, 2011.

L. Xie, J. Li, T. Zhang, and H. Kou, Role of Milling Time and Ni Content on Dehydrogenation Behavior of MgH2/Ni Composite. Transactions of Nonferrous Metals Society of China, vol.27, pp.60063-60066, 2017.

N. Hanada, T. Ichikawa, S. Orimo, and H. Fujii, Correlation between Hydrogen Storage Properties and Structural Characteristics in Mechanically Milled Magnesium Hydride MgH2, Journal of Alloys and Compounds, vol.366, issue.1-2, pp.734-739, 2004.

T. P. Blach, E. Gray, and . Maca, Sieverts Apparatus and Methodology for Accurate Determination of Hydrogen Uptake by Light-Atom Hosts, Journal of Alloys and Compounds, pp.692-697, 2007.

P. Moretto, C. Zlotea, F. Dolci, A. Amieiro, J. Bobet et al., A Round Robin Test Exercise on Hydrogen Absorption/Desorption Properties of a Magnesium Hydride Based Material, International Journal of Hydrogen Energy, vol.38, issue.16, pp.6704-6717, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00827891

,

T. B. Flanagan, C. Park, and W. A. Oates, Hysteresis in Solid State Reactions. Progress in Solid State Chemistry, vol.23, pp.291-363, 1995.

K. Agueyzinsou, J. Aresfernandez, T. Klassen, and R. Bormann, Effect of Nb2O5 on MgH2 Properties during Mechanical Milling, International Journal of Hydrogen Energy, vol.32, issue.13, pp.2400-2407, 2007.

Y. Pang and Q. Li, A Review on Kinetic Models and Corresponding Analysis Methods for Hydrogen Storage Materials, International Journal of Hydrogen Energy, vol.41, issue.40, pp.18072-18087, 2016.

B. Chen, Y. Chuang, and C. Chen, Improving the Hydrogenation Properties of MgH2 at Room Temperature by Doping with Nano-Size ZrO2 Catalyst, Journal of Alloys and Compounds, vol.655, pp.21-27, 2016.

G. Barkhordarian, T. Klassen, and R. Bormann, Effect of Nb2O5 Content on Hydrogen Reaction Kinetics of Mg, Journal of Alloys and Compounds, vol.364, issue.1-2, pp.530-539, 2004.

S. Milo?evi?, S. Kurko, L. Pasquini, L. Matovi?, R. Vujasin et al., Fast Hydrogen Sorption from MgH2-VO2(B) Composite Materials, Journal of Power Sources, vol.307, pp.481-488, 2016.

G. Xia, Y. Tan, X. Chen, D. Sun, Z. Guo et al., Monodisperse Magnesium Hydride Nanoparticles Uniformly Self-Assembled on Graphene, Advanced Materials, vol.27, issue.39, pp.5981-5988, 2015.

J. Crivello, B. Dam, R. V. Denys, M. Dornheim, D. M. Grant et al., Review of Magnesium Hydride-Based Materials: Development and Optimisation, Appl. Phys. A, vol.122, issue.2, 2016.

M. S. El-eskandarany, E. Shaban, and B. Al-halaili, Nanocrystalline ?-?-? Cyclic Phase Transformation in Reacted Ball Milled MgH2 Powders, International Journal of Hydrogen Energy, vol.39, issue.24, pp.12727-12740, 2014.

L. Li, Z. Zhang, L. Jiao, H. Yuan, and Y. Wang, Situ Preparation of Nanocrystalline Ni@C and Its Effect on Hydrogen Storage Properties of MgH2, International Journal of Hydrogen Energy, vol.41, issue.40, pp.18121-18129, 2016.

Q. Zhang, Y. Wang, L. Zang, X. Chang, L. Jiao et al., Core-Shell Ni3N@Nitrogen-Doped Carbon: Synthesis and Application in MgH2, Journal of Alloys and Compounds, vol.703, pp.381-388, 2017.

, Annexe 3 : Protocole expérimental d'une analyse en DTP

, Remplissage du creuset dans la boite-à-gants avec l'échantillon et sertissage, 3. Sortie du creuset de la boite-à-gants et chargement sur la nacelle de l'ATG pour effectuer la pesée précise, 4. Retour du creuset dans la boite-à-gants afin de faire des trous dans le couvercle avec une aiguille pour permettre aux gaz de décomposition de sortir du creuset hermétique pendant l'analyse, 5. Toujours dans la boîte-à-gants, mise en place du creuset troué dans le microréacteur

, Sortie du réacteur hermétiquement fermé de la boite à gants et connexion à l'appareil d'analyse

, Mise en route de la procédure thermique : -Gaz porteur 40 ml/min d'argon, -Température initiale 40 °C, -Rampe de montée en température de 2 °C/min jusqu'à 450 °C, -Refroidissement à vitesse maximale pour finir la manipulation

. Le-développement-de-l'hydrogène-en-tant-que-nouveau-vecteur-d'énergie-demande-de-pouvoir-le-stocker-À-grande-Échelle, En effet, ces derniers ne sont pour le moment que très peu utilisés dans la littérature. L'objectif de ce travail de thèse est donc d'explorer leur potentiel et leur efficacité pour améliorer les propriétés de stockage du système Mg/MgH2. Différents composites "MgH2 + complexe" ont été préparés par broyage et imprégnation et les cinétiques de sorption des systèmes obtenus ainsi que leurs paramètres thermodynamiques ont été déterminés par analyse thermique (DTP, DSC, PCT). Enfin, de nombreuses techniques de caractérisation physico-chimiques (DRX, RMN, XPS, MEB, MET) ont été utilisées afin de comprendre les phénomènes se déroulant lors de l'hydrogénation et la déshydrogénation des composites préparés. Le meilleur système « MgH2 + complexe » préparé durant ce travail (MgH2 dopé avec 20 % du complexe NiHCl(PCy3)2) est capable d'absorber 6 % en masse d'H2 à 100 °C en 30 min et de libérer son hydrogène sous vide à 200 °C. Les énergies d'activation apparentes et enthalpies de réaction de ce composite sont respectivement de 22 et -65 kJ/mol H2 pour l'hydrogénation, dans des conditions d'encombrement, de coût énergétique et de sécurité acceptables. Le stockage sous forme solide dans des hydrures métalliques réversibles, constitue une solution particulièrement sûre et intéressante pour des applications dans le secteur des transports

, Mots clefs : Stockage solide de l'hydrogène, système Mg/MgH2, complexes de métaux de transition, cinétiques de sorption