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Résumé / Abstract
Suivre la formation et l’évolution des structures cosmologiques à l’aide de simulations

numériques

Les grands relevés observationnels des dernières décennies ont conduit à imposer le modèle
ΛCDM comme le modèle cosmologique privilégié pour décrire l’Univers. Dans ce modèle, la
matière noire représente la principale composante de la matière de l’Univers, et sa nature in-
connue représente l’un des plus grands mystères de la physique contemporaine. La modélisation
dynamique de la matière noire par le biais de simulations numérique constitue désormais un outil
indispensable pour contraindre ses propriétés et ses origines physiques.

Dans cette thèse, nous étudions différents aspects de l’effondrement gravitationnel des pertur-
bations dans le champ de densité initial, qui mène à une toile cosmique complexe composée de
murs, filaments et halos, dans lequel les baryons se condensent et forment les riches structures
que nous pouvons observer aujourd’hui. En particulier, nous utilisons des simulations cosmo-
logiques à N-corps et employons une application Lagrangienne depuis les conditions initiales
jusqu’aux positions et vitesses finales pour suivre l’évolution du fluide de matière noire.

Dans un premier temps, nous utilisons les propriétés de l’espace des phases de la matière noire
pour étudier l’émergence du champ de tenseur de dispersion des vitesses aux grandes échelles.
Il transporte les signatures des anisotropies de l’effondrement gravitationnel, ce qui nous per-
met de déduire une nouvelle méthode de classification de la toile cosmique et de caractériser le
champ de vitesse de la matière noire dans ces environment effondrés. Nous montrons ensuite que
l’amplitude de la dispersion de vitesse de la matière noire est en bon accord avec les vitesses
aléatoires isotropes dans le gaz de baryons chauffé par chocs et traçant la distribution de matière
noire. Ceci permettra d’améliorer les prédictions des températures du milieu intergalactique à
partir des simulations à N-corps dans des études futures.

Dans un second temps, nous nous concentrons sur l’effondrement de halos gravitationnelle-
ment liés et leur origine dans le champ de perturbation initial. Ces « patchs » de proto-halos jouent
une rôle important pour des simulations « zoom », c’est-à-dire des simulations qui concentrent
les ressources de calculs sur un objet spécifique et requièrent ainsi une connaissance précise du
« patch » Lagrangien depuis lequel cet objet se forme. Dans ce cadre nous avons développé une
application Web qui permet aux utilisateurs de sélectioner des objets cibles en vue d’être re-
simulés dans des catalogues de halos extraits de diverses simulations récentes, de récupérer les
conditions initiales compatibles à différents codes de simulations raffinées sur leurs proto-halos
associé, et de référencer ces conditions initiales dans les publications scientifiques.

Enfin, nous utilisons les jeux de données disponibles de halos et proto-halos associés pour étu-
dier la connexion entre les perturbations initiales, les propriétés intrinsèques des objets effondrés
et l’influence de l’environnement à grande échelle.

Mots clés : cosmologie, formation des structures à grande échelle, matière noire, simulations
numérique
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Résumé / Abstract

Following the Collapse and Evolution of Cosmological Structures in Simulations

Observational efforts during the last decades have led to the establishment of the ΛCDM model
as the standard model of our Universe. In this model, dark matter represents the majority of
the matter content of the Universe, whose unknown nature poses one of the largest mysteries in
physics today. A key ingredient for constraining its properties and physical origin from astro-
nomical observations is the modeling of dark matter in cosmological simulations to understand
the formation of structures and create accurate predictions.

In this thesis, we study various aspects of the gravitational collapse of perturbations in the
initial density field, which leads to an intricate web composed of walls, filaments, and halos, in
which baryons condense and form the rich structures that we can observe today. In particular, we
use cosmological N-body simulations and exploit the Lagrangian mapping from coordinates in
the initial conditions to the late time positions and velocities to follow the evolution of the dark
matter fluid.

In a first part, we use the phase-space properties of dark matter to study the emergence of the
large-scale velocity dispersion tensor field. It carries the anisotropic signature of gravitational
collapse, allowing us to derive a new classification method of the cosmic web and characterize
the velocity field of dark matter in these collapsed environments. We then show that the am-
plitude of the dark matter velocity dispersion is in good agreement with the isotropic random
velocities in the shock-heated baryonic gas tracing the dark matter distribution. This will allow
improved predictions of temperatures of the intergalactic medium from N-body simulations in
future studies.

In a second part, we focus on the collapse of gravitationally bound halos and their origin in the
initial perturbation field. These proto-halo patches play an important role for zoom simulations,
i.e. simulations that focus computational resources on an individual object of interest and thus
require accurate knowledge about the Lagrangian patch from where the object forms. In this
regard, we develop a web application, which allows users to find target objects for re-simulation
in various halo catalogs of existing state-of-the-art simulations, to retrieve initial conditions for
different simulation codes refined on their associated proto-halo, and to reference the initial con-
ditions in scientific publications.

Finally, we exploit the available dataset of halos and associated proto-halos to study the con-
nection between the initial perturbations, intrinsic properties of the collapsed objects, and the
influence of the large scale environment.

Keywords: cosmology, structure formation, dark matter, numerical simulations
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Introduction

During the last hundred years, our understanding of the Universe has fundamentally changed.
While at the beginning of the last century, scientists argued whether the spiral nebulae were
part of our galaxy or if they were distant “island universes”, it became undeniably clear that
these galaxies were indeed extragalactic systems after Edwin Hubble inferred the distance to
the Andromeda nebula using the period-luminosity relation of Cepheid variable stars in 1924
[164]. Only five years later, Hubble made his second fundamental contribution to cosmology
by showing that the galaxies are receding from us with a velocity proportional to their distance
[163]. This distance – velocity relation is now known as Hubble’s law and implies (assuming
statistical isotropy and homogeneity of space) that the Universe is expanding.

With the publication of the General Theory of Relativity by Albert Einstein [94] in 1915/1916,
a self-consistent model of the Universe was available, connecting the content of the Universe to
its geometry via the Einstein field equations. Solutions of these equations for the homogeneous
Universe were found a couple years later by Aleksander Friedman [109, 110] and are now known
as Friedman world models, which describe the geometry and expansion of the Universe as a
function of its energy content.

The expansion of the Universe implied that at very early times, the Universe must have been
very dense and hot, such that radiation and (baryonic) matter were tightly coupled via Comp-
ton scattering. As the Universe expanded and the photon-baryon fluid would cool, the ionized
hydrogen would be able to recombine, and the scattering would eventually become inefficient,
allowing photons to free-stream through the Universe. This diffuse background radiation, the
cosmic microwave background (CMB), was predicted by Alpher & Herman in 1948 [6], who es-
timated a black body radiation with a temperature of about 5 K, and detected in 1965 by Penzias
& Wilson [248], confirming the thermal history of the Universe. Subsequent observations of the
CMB showed that the radiation is uniform over the sky to an accuracy of 10−5 and its spectrum
follows the Planck spectrum with a remarkable precision, with a black-body temperature of ∼ 2.7
K [294].

Another key evidence for the “Big Bang” model of the Universe was the prediction by Hoyle
& Tayler in 1964 [162] of chemical abundances of helium and other light isotopes created during
the primordial nucleosynthesis, matching the measured abundances accurately. The calculations
also showed that there is an upper limit to the mean baryon density, above which less than the
observed abundances of 2H and 3He would be generated. This constrained the baryonic matter
content of the Universe to ≲ 1∕10 of the critical density required for a Universe with a flat
geometry.

To model the vast amount of observable structures in our Universe, physicists studied the grav-
itational collapse of perturbations in the homogeneous background. It was soon found that in an
expanding Universe, the growth of such perturbations is only algebraic [201]. Together with the
nucleosynthesis constraints on the amount of baryonic matter, the fact that before recombination,
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Introduction

Figure 1: Left: full sky map of the anisotropies in the cosmic microwave background tempera-
ture, observed with the Planck satellite (image courtesy of ESA and the Planck Col-
laboration [2]). Right: galaxy distribution in the nearby universe from one slice of the
2dF Galaxy Redshift Survey, with clearly visible filamentary structures of the cosmic
web (image courtesy of the 2dFGRS team [68]).

pressure support in the photon-baryon fluid would inhibit the growth of baryonic perturbations,
and with upper limits on the amplitude of said perturbations at the time of recombination from
the non-detection of temperature fluctuations in the CMB, this posed a severe problem to explain
the structure in today’s Universe.

A solution to these problems was proposed in the form of non-baryonic dark matter which
would only interact gravitationally with the baryonic universe. Fluctuations in the dark mat-
ter distribution would be able to grow during the radiation dominated era and provide potential
wells, into which the baryonic matter would fall into after recombination, lowering the expected
temperature fluctuations in the CMB. With the prediction of non-zero rest masses, neutrinos be-
came a natural dark matter candidate. Because of their relativistic nature, free-streaming would,
however, erase fluctuations below the scale of the most massive clusters, implying a “top-down”
structure formation, where the most massive objects would form first, with smaller objects frag-
menting in a later step [89].

An alternative dark matter category originated from extensions to the standard model in parti-
cle physics, predicting particles that would decouple from the thermal background after they had
become non-relativistic in the early Universe. These kind of dark matter candidates were thus
grouped in the Cold Dark Matter (CDM) picture, in which structure would form “bottom-up”,
opposed to the Hot Dark Matter (HDM) “top-down” picture of neutrinos. After the discovery
of angular fluctuations in the CMB by the COBE satellite in 1992 [294], CDM became the pre-
ferred model, since the amplitude of the temperature fluctuations would be too low for structures
to form in the HDM picture.

xii



The discovery of the characteristic luminosity profile of Type 1a supernovae [265] and their
subsequent use as standard candles to estimate cosmological distances allowed to measure Hub-
ble’s law with higher accuracy and ultimately lead to the detection of the accelerated expansion
of space in 1998 [272, 249]. The acceleration can be attributed to the cosmological constant Λ in
Einstein’s field equation and is also known as dark energy, representing 70% of the Universe’s
energy content today.

The accelerated expansion of the Universe was later confirmed with measurements of the
acoustic peaks in the CMB by the Wilkinson Microwave Anisotropy Probe (WMAP) [32] and
measurements of the clustering statistics of the galaxy distribution from redshift surveys such
as the 2dF Galaxy Redshift Survey [68], shown in fig. 1. The agreement between the results
by these entirely independent cosmological probes has lead to the establishment of the ΛCDM
model as the standard model of our Universe. Continuously improved measurements (for exam-
ple the high precision measurements of the CMB anisotropy measured by the Planck satellite [2],
shown in fig. 1) and new galaxy survey catalogs allow us to measure the model parameters with
high accuracy, which is why some people are calling this the era of precision cosmology.

Despite the success of the ΛCDM model, the picture of our Universe is still incomplete. On
the one hand, the model requires a process setting up the initial state of the Universe in a way
that creates the cosmos as we can observe it today. It is now generally believed that the Universe
underwent an initial inflationary phase [129, 202], in which space expanded exponentially and
scaled tiny quantum fluctuations to cosmic scales, the seeds from which galaxies can form. This
model also naturally creates a flat spatial geometry and would allow regions of space separated
by enormous distances to have been in causal contact before, explaining the homogeneity that
we can observe for example in the CMB. On the other hand, the physical nature of dark matter
and dark energy, accounting for ∼95% of the content of our Universe today, are unknown and
form some of the largest mysteries in physics today.

Numerical simulations of structure formation played a crucial role in forming our understand-
ing of the Universe, by allowing to connect the initial perturbations, analytically predicted by
theory and measured for example in the CMB, to the collapsed structures in the late time Uni-
verse that we observe today. With increasingly larger and more accurate galaxy redshift surveys
available in the future, also the need for more accurate modeling rises in order to estimate co-
variances, study systematics, and test data pipelines. Both larger and more detailed simulations
play an important role in creating accurate mock observations. Furthermore, numerical sim-
ulations allow us to study the mechanics behind the formation of structures, develop a deeper
understanding of the non-linear processes, and create more precise analytical models.

Since dark matter only interacts gravitationally, it is relatively easy and computationally afford-
able to model structure formation using collisionless N-body simulations. Collapsed structures
in the dark matter distribution, the dark matter halos, are the regions where the baryonic gas can
cool and condense to form galaxies. Understanding galaxy formation thus requires a precise un-
derstanding of the formation, evolution, and structure of the underlying dark matter distribution.

Simulating the physics of the baryonic matter component is in contrast very complex and
computationally much more expensive. With the increase of computational power over the last
decades, it has become feasible to run such simulations on large scales and to model the for-
mation of galaxies and galaxy clusters with increasingly higher levels of detail and under the
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Introduction

addition of additional baryonic processes. However, computational resources still limit the size
and dynamic range of such simulations. In this regard, two techniques that we will encounter
in this thesis have been developed: first, the dynamic range of simulations can be increased by
focusing the computational resources on an object of interest to resolve it with maximum reso-
lution, while still capturing the environmental effects in lower resolution. Such simulations are
called zoom simulations and play an important role for example in detailed studies of galaxy
formation. A second technique, used to calibrate surveys that require a large number of mock
observations, is the prediction of observables from dark matter only simulations. Such tech-
niques include for example the creation of galaxy catalogs from dark matter halo catalogs or the
prediction of absorption spectra of distant quasars from the dark matter density. This requires
a precise understanding of the connection between the dark matter and the baryonic properties
(e.g. densities and temperatures) and will present an ideal application field for machine learning
techniques in the future.

Outline of this thesis

In this thesis, we mainly use numerical N-body simulations to study the formation and evolution
of structures in our Universe, with a focus on the Lagrangian mapping from the initial conditions
to the formed structures, which allows us to follow the evolution of the dark matter fluid during
the gravitational collapse.

In a first project, we apply this knowledge to reconstruct the continuous dark matter phase-
space distribution in simulations, allowing us to accurately measure and study the velocity distri-
bution function in different environments of the cosmic web. We then apply the measurements of
the velocity field to introduce a new classification scheme for the cosmic web and, by comparing
dark matter and baryons in a two component simulation, we show how this measurement may
help in the future to better predict temperatures in the intergalactic medium.

In a second part, we shift our focus from the large-scale structure to individual gravitationally
bound objects, the dark matter halos, and their roots in the initial perturbation field, the proto-
halos. These proto-halos play a crucial role in setting up zoom simulations, defining the region
with needs to be sampled in higher resolution. The lack of access to such proto-halos from halo
catalogs of existing state-of-the-art simulations, and the absence of an easy way of referencing
simulations in publications that would allow the community to reproduce, verify, and improve
scientific results, motivated the development of an online platform, allowing users to find targets
to re-simulate, to create initial conditions focused on these objects, and cite the simulation in
scientific articles.

In addition, the connection between proto-halo patches and the final objects encodes the for-
mation histories of the halos under the influence of the large scale environment. Measuring the
correlation between the initial patch, the final halo, and the environment thus provides valuable
information of the formation process. Furthermore, the ability to accurately predict halo for-
mation from the initial density field is an important ingredient for the fast generation of mock
catalogs. To improve such methods, studying the connection between the proto-halo patch and
the final halo is crucial.

xiv



This thesis is structured as follows: In chapter 1 and chapter 2, we start with a review of the
theory of structure formation and the numerical methods used in this work, where we highlight
connections to techniques and questions addressed in later chapters.

In chapter 3, we measure the velocity dispersion tensor field that emerges in the dark matter
phase-space distribution during gravitational collapse. The anisotropic nature of gravitational
collapse is reflected in the anisotropy of the velocity dispersion tensor, leading to a natural clas-
sification method of the cosmic web. We provide detailed measurements of the different envi-
ronments, the orientation and alignment of the velocity dispersion field, and we present a com-
parison of the dark matter velocity dispersion with the average particle velocity in the baryonic
gas, reflected in its local temperature.

In chapter 4, we present the COSMICWEB project, a web platform providing access to initial
conditions for zoom simulations from various halo catalogs of existing state-of-the-art simula-
tions. We give a detailed overview of the functionality, the available data, and the architecture
of the application, and we walk through the most important components of the platform.

In chapter 5, we analyze the large datasets of halos, their properties, and their proto-halos from
the COSMICWEB project to study the connection between the initial perturbations and the final
objects. Specifically, we measure the shapes and orientations of the initial regions that later col-
lapse to halos and study the connection to the intrinsic properties of the halo and correlations with
their environment. We also measure the mass and environment dependence of the “goodness of
fit” of the minimum bounding ellipsoids used to describe the proto-halo patches in COSMICWEB,
an important factor determining the computational efficiency of the zoom simulation.

We summarize the main results in chapter 6, including an outlook on future goals and projects.

xv





CHAPTER 1
Cosmological Structure Formation

The development of the theory of General Relativity (GR) by Albert Einstein in 1915 enabled the
construction of a comprehensive theory of our Universe during the last century. Observations of
the Large Scale Structure (LSS) and the Cosmological Microwave Background (CMB) during the
last decades led to the establishment of the ΛCDM model, which has been successfully applied
to a large range of phenomena, and has become the standard model in modern cosmology.

The ΛCDM model is based on the assumption that there is no special point or direction in the
Universe. This so-called Cosmological or Copernican Principle manifests itself in a number of
observations, such as number-counts of galaxies and the regularity of the CMB with deviations
only of the order of 10−5. It is these tiny primordial perturbations on top of the homogeneous
background that gravitationally collapse and form the rich structures of the Universe that we see
today.

This chapter will give a brief summary of the evolution of the homogeneous universe (1.1),
the generation and linear growth of perturbations (section 1.2), quantification of inhomogeneities
using correlation functions and power spectra (section 1.3), and models for the non-linear col-
lapse (section 1.4) leading to the formation of dark matter halos (section 1.5). The discussion
follows the references [57, 81, 221, 185], with additional references given if needed. We use
units in which c = 1, and Fourier transformations, unless explicitly defined differently, follow
the normalization convention

f (x) =
1

(2�)3 ∫ d3k eikxf (k). (1.1)

1.1 The Homogeneous and Isotropic Universe

The FLRW metric

In more mathematical terms, the Cosmological principle means that on large enough scales,
the universe appears homogeneous and isotropic, with perturbations around the homogeneous
background being small. The discovery of the redshift of galaxies indicating a recession velocity
proportional to their distance by Georges Lemaître in 1927 [195] and Edwin Hubble in 1929
[163] implied that the Universe is not static in time but expanding. Hence, the homogeneity only
applies to space but not to time.

The most general metric capturing this spatial homogeneity and isotropy (a so-called max-
imally symmetric three-metric) is the Friedman-Lemaître-Robertson-Walker (FLRW) metric,
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Chapter 1 Cosmological Structure Formation

which in spherical coordinates can be written as

ds2 = g��dx
�dx� = −dt2 + a(t)2

(
d�2 + Sk(�)

2dΩ2
)
, (1.2)

where a(t) is the scale factor measuring the expansion of the universe, � is the comoving distance,
dΩ2 the angular separation, and k ∈ {−1, 0, 1} denotes an an open (negatively curved), flat and
closed (positively curved) universe respectively. The function Sk(�) depends on the curvature
and is defined as

Sk(�) =

⎧
⎪⎨⎪⎩

sinh (�) k = −1

� k = 0

sin (�) k = +1

(1.3)

The scale factor a(t) connects comoving units which remain constant over time and physical
units which expand with the Universe by dx = a(t)d� . Choosing a(tnow) = 1, comoving units
correspond to physical units at the present.

Photons travel on null-geodesics (ds2 = 0). Hence, the comoving distance that a photon travels
from its origin to us is related to the emission time temit by

� = ∫
tobs

temit

dt

a(t)
. (1.4)

The largest separation in the Universe that is causally connected is the longest distance a photon
could have traveled since the beginning of the Universe. This distance is known as the particle

horizon

�H (t) = ∫
t

0

dt′

a(t′)
. (1.5)

Defining the comoving time through

d� =
dt

a(t)
, (1.6)

we find that for units in which c = 1, the conformal time corresponds to the particle horizon.
The evolution of �H = � in the past Universe is illustrated in fig. 1.1

A direct consequence of the FLRW metric is the reddening of electromagnetic and gravita-
tional waves as they propagate: emitted at time temit and wavelength �emit , it will be observed
at time tobs with wavelength �obs = �emita(tobs)∕a(temit). If the universe is expanding and thus
a(tobs) > a(temit), the observed wavelength will be longer than at emission and hence remote
galaxies appear redder than close-by ones. The redshift parameter is defined as

1 + z =
�obs
�emit

=
1

a
, (1.7)

where a(temit) = a and we assumed that a(tobs) = a(tnow) = 1. We can rewrite eq. (1.4) in terms
of z and obtain

� = ∫
zemit

0

dz

H(z)
, (1.8)
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1.1 The Homogeneous and Isotropic Universe

where we assumed that zobs = 0 and introduced the Hubble parameter H defined as

H =
ȧ

a
. (1.9)

For close-by objects, H ≃ H0 is constant and equal to the current expansion rate of the Universe,
and thus we find the famous Hubble-Lemaître law [195, 163] (often referred to as Hubble’s law)

z ≈ H0�, (1.10)

stating a linear relationship between the measured redshift of a galaxy and its distance to us
(under the assumption of no peculiar velocities, i.e. �̇ = 0 for both the observed galaxy and us).

The Einstein Equations

According to GR, it is the geometry of space-time that determines the trajectories of its content,
and the content that in turn determines the geometry of the space-time. The Einstein field equa-
tions (EFE) relate the stress-energy tensor T�� , a measure of the energy and momentum density
in the Universe, to the Einstein tensor G�� , a measure of the curvature, by

G�� + Λg�� = 8�GT�� , (1.11)

where G is the gravitational and Λ the cosmological constant.
Following the Cosmological Principle, we require that the content of the Universe is homo-

geneous and isotropic in its rest frame (which is the comoving frame in which also the metric
is homogeneous and isotropic). This is called a perfect fluid for which the energy momentum
tensor can be written as

T�� = (p + �)U�U� + pg�� , (1.12)

where U� is the four-velocity of the fluid, � is the energy density and p the pressure measured in
the rest frame. The pressure is connected to the energy density via the equation of state (EOS)
which in its simplest form is a linear relationship of the form

p = w�. (1.13)

The three most relevant perfect fluids in cosmology are the so-called dust, radiation, and dark

energy. Dust refers to cold (non-relativistic) and collisionless matter, thus wm = 0. Examples
are the cold dark matter (CDM), but also non-relativistic baryonic matter, stars and galaxies for
which the pressure is negligible compared to the energy density. Radiation refers to relativistic
content, such as electromagnetic radiation or neutrinos, moving close to the speed of light, and
has wr = 1∕31. In eq. (1.11), we can also include Λg�� in the energy stress tensor by requiring
p = −(8�G)−1Λ and p+� = 0 and thus wΛ = −1. The cosmological term can thus be interpreted
as dark energy (DE), the energy density of the vacuum.

1The equation of state for radiation can be obtained from the electro-magnetic stress tensor in the theory of special
relativity valid in a local free-falling frame, see e.g. [81].
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Chapter 1 Cosmological Structure Formation

The conservation of energy-momentum T ��
;� = 0 implies that

� ∝ a−3(1+w), (1.14)

and thus we have �m ∝ a−3 for dust, �r ∝ a−4 for radiation, and �Λ = const for dark energy. The
additional factor of a for radiation with respect to dust can be understood from the loss of internal
energy (frequency) as the universe expands (cf. redshift). For a universe composed of these three
components, radiation will thus dominate if a is small, and dark energy will dominated for large
a.

The Friedman equations

We now require the FLRW metric to be a solution of the EFE, which will allow us to compute a(t)
as a function of the content of the Universe. Calculating the curvature from the metric and using
the perfect fluid representation of the energy momentum tensor, we obtain two equations (one
from the time coordinate and one from the isotropic space coordinates). These are the Friedman
equations (FE, [109, 110]) and can be written as

(
ȧ

a

)2

=
8�G

3
� −

k

a2
(1.15)

−3
ä

a
= 4�G(� + 3p), (1.16)

where ◌̇ denotes the derivative wrt. cosmic time, and where we have absorbed Λ in � as dark
energy.

Using the Hubble parameter H defined in eq. (1.9) and introducing the critical density

�c =
3H2

8�G
, (1.17)

we can rewrite eq. (1.15) in terms of the density parameter Ω =
�

�c
as

Ω − 1 =
k

H2a2
. (1.18)

The critical density �c is the threshold density between an open (� < �c), flat (� = �c), and
closed (� > �c) universe. We can rewrite the curvature term as Ωk = k(Ha)−2 = Ω − 1 and
split the total density parameter Ω = Ωm +Ωr +ΩΛ to obtain the parametrized FE for a universe
composed of dust, radiation and dark energy:

H2 = H2
0

(
Ω0,r

a4
+

Ω0,m

a3
+

Ω0,k

a2
+ Ω0,Λ

)
, (1.19)

where ◌0 denotes parameters evaluated in the present Universe. The homogeneous background
can thus be parametrized by four parameters, describing the Universe today: Ω0,m Ω0,r, Ω0,Λ and
H0. Recent observations of the CMB strongly favor a flat universe [67] and we will therefore
only consider Ωk = 0 in the following.
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1.2 Linear Growth of Primordial Perturbations

The FE are analytically solvable in the case of a dominant constituent. We will first look at
the early universe which is dominated by the radiation density Ωr ≫ Ωm + ΩΛ. In this case, we
can integrate eq. (1.19) and obtain

ar(t) ∝ t1∕2 (1.20)

As the Universe expands, the matter density becomes more important. The scale factor at which
radiation and matter have the same energy density, also known as time of equivalence, is given
by

Ω0,r

a4
eq

=
Ω0,m

a3
eq

⇒ aeq =
Ω0,r

Ω0,m

. (1.21)

Recent observations [67] find zeq = 3371 ± 23 corresponding to aeq ∼ 3 × 10−4.
The Universe then enters the matter dominated era, also known as an Einstein-de Sitter (EdS)

universe. The scale factor in such a universe evolves as

am(t) ∝ t2∕3. (1.22)

At even later times, the Universe will transition to a vacuum-dominated state. The second time
of equivalence, when the matter energy density equals the vacuum energy, is given by

Ω0,m

a3
eq,2

= Ω0,Λ ⇒ aeq,2 =

(
Ω0,m

Ω0,Λ

)1∕3

, (1.23)

which with current cosmological parameters [67] corresponds to aeq,2 ∼ 0.76 or zeq,2 ∼ 0.31.
A vacuum dominated universe, a so-called de Sitter universe, grows exponentially. Consider-

ing a flat universe with ΩΛ = 1 we find

aΛ(t) ∝ eH0t. (1.24)

1.2 Linear Growth of Primordial Perturbations

1.2.1 Quantum fluctuations and inflation

A model only considering the epochs of radiation, matter, and dark energy after the Big Bang
fails to describe some observations of our Universe. By introducing an initial inflationary period
tb < t < te, during which the Universe grew exponentially, i.e. a de-Sitter universe for which

a(t) = aee
H(t−te), (1.25)

is able to solve the following problems [129, 202]:

Horizon problem: the observed homogeneity of the CMB temperature over the entire sky ex-
tends to scales which without inflation were never in causal contact (∼ 2 degrees), and
thus could not have thermalized. Inflation causes previously causally connected modes to
extend beyond the Hubble radius and enter the horizon again at later times. To solve the
Horizon problem, we need H(te − tb) ≃ 60 [200, 325].
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Chapter 1 Cosmological Structure Formation

Flatness problem: the very close to flat geometry of the Universe observed today and the in-
stability of the state Ω = 1 means that at earlier times, the Universe must have been even
closer to flatness, requiring fine-tuned initial conditions. Inflation naturally blows up any
existing curvature radius and creates a nearly flat universe.

Monopole problem: some theories beyond the standard particle model (grand unified theo-
ries, GUT [118]) predict the creation of magnetic monopoles during symmetry-breaking
at very high temperatures that however are not observed. Inflation dilutes potential mag-
netic monopoles.

Structure formation problem: Similar to the Horizon problem, the largest anisotropies ob-
served in the CMB extend to scales beyond causality without inflation. Furthermore, the
most massive gravitationally bound structures that we observe would not have had enough
time to form if they were not in causal contact before re-entering the particle Horizon.

In the slow-roll or new inflation model, the exponential expansion is caused by a scalar field �
“rolling” down a potential hill V (�). Deriving the equation of motion of the field (e.g. [221]),
one obtains

�̈ + 3H�̇ +
dV

d�
= 0, (1.26)

under the assumption of spatial homogeneity (i.e. ∇� = 0). The energy density and pressure of
the field are given by

� =
1

2
�̇2 + V (�) (1.27)

p =
1

2
�̇2 − V (�). (1.28)

If the field evolves slowly (�̇ ≪ V (�)), then the equation of state satisfies p ≃ −� and an
inflationary phase is possible with

H2 =
8�G

3
V (�) =

8�

3m2
Pl

V (�), (1.29)

where mPl = G−1∕2 is the Planck mass (in units with ℏ = c = 1). Most recent Planck observa-
tions [254] favor slow-roll models with concave potentials and no evidence has been found for
dynamics beyond slow-roll so far.

Inflation provides a natural mechanism for the creation of perturbations arising from fluctua-
tions in the primordial quantum fields. These fluctuations are stretched to observable scales and
are the seeds of structure formation. Due to the quantum-mechanical nature of these fluctuations,
we can only predict statistical properties. Most theories produce close-to Gaussian perturbations
with a power spectrum similar to the Harrison-Zel’dovich spectrum [144, 344]. The exact value
is parametrized by the spectral index ns

P (k) ∝ kns . (1.30)

We discuss the initial power spectrum and its meaning in more detail in section 1.3.
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Figure 1.1: Growth of super- and sub-horizon perturbations and potentials in the radiation, mat-
ter, and dark energy dominated epochs. Φ denotes metric perturbations in the Newto-
nian gauge, � DM perturbations, and Θ0 the monopole of temperature perturbations
of photons.

1.2.2 Relativistic linear perturbation theory

In order to accurately treat the evolution of primordial perturbations, an analysis using full GR is
required. In appendix A.1 we outline the main steps in deriving the system of coupled equations,
the so-called Einstein-Boltzmann equations, that describe the evolution of the perturbations in
the matter and radiation content of our Universe and the perturbations in the metric. In general,
these equations have to be numerically integrated. For this purpose, various publicly available
codes exist (e.g. [196, 39]). In some limiting cases and under some simplifications, however,
we can find analytical approximations. These asymptotic limits are shown in the time-horizon
diagram in fig. 1.1 and we briefly summarize them here. More details on the derivation can be
found in the appendix and in [81].

On scales larger than the particle horizon, the metric perturbations mainly stay constant, with
a decay of ∼ 10% after the Universe enters the matter dominated era. Metric perturbations that
enter the horizon during the radiation epoch however will decay. Only DM perturbations can
grow during that time, while perturbations in the photon-baryon fluid oscillate due to radiation
pressure. In the matter dominated era, all matter perturbations can grow and the growth factor
D+(a) ∝ a is independent of the mode k. The potential Φ of the metric perturbation remains
constant. At late times when dark energy becomes significant, the growth of perturbations slows
down and the potentials dilute.

There are therefore two different regimes affecting the primordial perturbations: the scale
dependent evolution during the radiation era and horizon crossing, and the scale-independent
growth during the matter and dark energy era. The scale dependent growth and effects of the
decaying mode (cf. next section) is usually encapsulated in the transfer function T (k, a), whereas
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Chapter 1 Cosmological Structure Formation

the growth functionD+(a) describes the scale-independent growth, so we can write at linear order

�(k, a) = �(k, ain)T (k, a)D+(a), (1.31)

for some initial perturbation �(k, ain) and some time a well after the regime of the transfer func-
tion. To obtain the transfer function T (k), either numerical codes such as CAMB [196] or CLASS

[39], or fitting formulae such as the BBKS [20] or the Eisenstein & Hu [95] transfer function
have to be used.

In the next section, we will focus on the subhorizon scale in the matter dominated era, where we
can neglect GR effects and treat the perturbations in the Newtonian limit (also see the discussion
in appendix A.1). We will derive the equations governing the evolution of the perturbations of
DM and baryons, and determine the growth function D+(a).

1.2.3 Linear perturbations in the Newtonian limit

For sub-horizon scales and small metric perturbations Φ, treating the perturbations in the New-
tonian limit is a good approximation. This is crucial if we want to treat structure formation
numerically with conventional N-body solvers (see next chapter), but also allows us to get a bet-
ter understanding of physical phenomena in the linear limit which is the goal of this section. A
recent analysis of relativistic corrections to this Newtonian approach can for example be found
in [102].

Collisionless gas

We consider a self-gravitating, single-species, classical gas, where the motion of each particle is
described by the Lagrangian

 =
1

2
ma2ẋ2 − mΦ, (1.32)

where x are the comoving coordinates, p = )∕)ẋ = mav are the canonical momenta, and Φ

the potential field. The full state of the N particle system is captured in the 6N-dimensional
phase-space. For a macroscopic description however, we do not need to know the position and
momentum of individual particles and thus we can represent the state as a phase-space distribu-
tion function f (x,p, t) which measures the particle density at (x,p) at time t:

dN = f (x,p, t) d3x d3p. (1.33)

The evolution of f is described by the Boltzmann equation

Df

Dt
=

)f

)t
+

)f

)xi

dxi
dt

+
)f

)pi

dpi
dt

=
)f

)t
+

pi
ma2

)f

)xi
− m

)Φ

)xi

)f

)pi

=

[
df

dt

]

C

,

(1.34)
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1.2 Linear Growth of Primordial Perturbations

where we used the Lagrangian equations of motion. The term in the last equation is the collision
integral measuring the rate at which particles are scattered from a phase-space element d3x d3p
located at (x1,p1) to another one located at (x2,p2) per time interval dt due to collisions. It
is zero in the case of a collisionless gas, such as for dark matter, or for collisional gas in local
thermodynamic equilibrium.

We will first study the collisionless Boltzmann equation which is also known as the Vlasov
equation. Together with the Poisson equation, they describe the evolution of the phase-space
density

)f

)t
+

pi
ma2

)f

)xi
− m

)Φ

)xi

)f

)pi
= 0 (1.35)

∇2Φ = 4�Ga2�̄�, (1.36)

where the scale-factor a(t) is determined by the FE of the homogeneous background, �̄ is the
background (matter) density and � = ��∕�̄ the local overdensity. Solving the Vlasov equation
is difficult and generally has to be done numerically, for example by sampling the phase-space
distribution with particles and evolving them with anN-body solver (see next chapter). For small
perturbations, we can analyze the system analytically by taking moments of f and the Vlasov
equation. Using the first few moments of the phase-space distribution function,

n =
a3�

m
=

a3�̄(1 + �)

m
= ∫ d3p f (x,p, t) (1.37)

⟨pi⟩ = ma⟨vi⟩ = 1

n ∫ d3p pi f (x,p, t) (1.38)

⟨pipj⟩ = m2a2⟨vivj⟩ = 1

n ∫ d3p pipj f (x,p, t) (1.39)

⟨pipjpk⟩ = m3a3⟨vivjvk⟩ = 1

n ∫ d3p pipjpk f (x,p, t), (1.40)

(1.41)

where n is the comoving number density, and the corresponding cumulants

�2
ij = ⟨vivj⟩ − ⟨vi⟩⟨vj⟩ (1.42)

Σ3
ijk = ⟨vivjvk⟩ − ⟨vi⟩⟨vj⟩⟨vk⟩ − �2

ij⟨vk⟩ − �2
jk⟨vi⟩ − �2

ki⟨vj⟩, (1.43)

we find from the first three moments of the Vlasov equation, which after some algebra can be
written as [221]

)�

)t
+

1

a

)

)xj

(
(1 + �)⟨vj⟩

)
= 0 (1.44)

) ⟨vi⟩
)t

+H ⟨vi⟩ +
⟨vj⟩
a

) ⟨vi⟩
)xj

= −
1

a

)Φ

)xi
−

1

a(1 + �)

)

)xj

(
(1 + �)�2

ij

)
(1.45)

)�2
ij

)t
+ 2H�2

ij +
⟨vk⟩
a

)�2
ij

)xk
= −

1

a

(
�2
ik

)⟨vj⟩
)xk

+ �2
jk

)⟨vi⟩
)xk

)
−

1

a(1 + �)

)

)xk

(
(1 + �)Σ3

ijk

)
.

(1.46)
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Figure 1.2: Growth factorD+(a) for an EdS universe in whichD+(a) ∝ a, an open CDM universe
with Ωm = 0.3 and a flat ΛCDM model with Ωm = 0.3 and ΩΛ = 0.7 in agreement
with current observations [67].

The first equation simply describes the mass conservation, while the second one is the Euler-
equation of a collisionless fluid in an expanding universe. The evolution of the velocity disper-
sion �2

ij is determined by the third moment Σ3
ijk

which again depends on the next higher moment,
resulting in an infinite hierarchy of equations, the so-called Boltzmann-hierarchy. In the fol-
lowing, we will consider two cases under which this infinite hierarchy is truncated: during the
single-stream regime of a cold collisionless fluid and the local thermodynamic equilibrium of a
collisional gas.

For a cold collisionless fluid in the single-stream regime, we can set �2
ij = 0. Assuming small

perturbations so that we can neglect non-linear terms in the perturbative quantities �, v, and their
derivatives, we can differentiate eq. (1.44) and combine with eq. (1.45) and eq. (1.36) to obtain

�̈ + 2H�̇ = 4�G�̄�. (1.47)

The second term, also called the Hubble drag, acts as a friction countering the accelerating col-
lapse of the perturbations.

This second order linear and homogeneous differential equation has two independent solutions
which can be combined to the general solution

�(t) = �(0)D+(t) + �(0)D−(t), (1.48)

where D+(t) is the growing mode (growth factor) and D−(t) the decaying mode. One can verify2

that for an EdS universe, D+(t) ∝ t2∕3 ∝ a and D−(t) ∝ t−1 ∝ a−3.2 are the solutions (up to
normalization). Therefore, perturbations grow at the same rate as the scale factor in a matter
dominated universe. The decaying mode falls of rapidly and can thus be safely ignored at late
times.

2using the time derivative of Ḣ +H2 = ä∕a and eq. (1.16) to substitute the right-hand side, see e.g. [221]

10



1.2 Linear Growth of Primordial Perturbations

The growth of the potential perturbations is connected to the density perturbations via the
Poisson equation and evolves as Φ ∝ a2�̄� ∝ D+(a)∕a. In an EdS universe, the potentials thus
do not evolve and are frozen in. In general, we can write at linear order

Φ(x, a) =
D+(a)

a
Φi, (1.49)

for some initial potential field Φi, linked to the initial density perturbations via the Poisson equa-
tion.

Collisions and the ideal gas

The collision integral in eq. (1.34) accounts for the momentum exchange when particles collide.
For an ideal gas, we assume that there are only binary collisions with conserved particle number,
total momentum, and total energy. If the mean free path between particle collisions is short,
the system will (locally) approach a Maxwell-Boltzmann velocity distribution around the mean
velocity ⟨v⟩ and therefore Σ3

ijk
and the higher order cumulants of the phase-space distribution

function are zero. The local velocity distribution function (VDF) can thus be written as

f (x, v, t) =
n(x, t)√

(2�)3 det(�2)
exp

[
−
1

2

(
vi − ⟨vi⟩

) (
�2
ij

)−1 (
vj − ⟨vj⟩

)]
(1.50)

=
n(x, t)

(2�(�mH)
−1kBT )

3∕2
exp

[
−
(v − ⟨v⟩)2
2kBT

]
, (1.51)

where we assumed in the second step that the collisions will isotropize the velocity distribution
function, i.e. �2

ij = �ijkBT ∕(�mH), with a spatially varying temperature T , and the average
molecular weight � in units of the atomic hydrogen mass mH. Instead of using T , we can also
describe the system by the isotropic pressure p = nkbT = � tr

(
�2
ij

)
∕3. Unlike the collisionless

case where the pressure pij = ��2
ij is anisotropic and dependent on the full Boltzmann hierarchy

(cf. eq. (1.45)), the (isotropic) pressure for an ideal gas is fully determined by the first two
moments of f , truncating the hierarchy at the second level.

We can now substitute the velocity dispersion �2
ij with the pressure p (or rather its tensor

representation pij = p�ij∕3) in eq. (1.45). Additionally, we use the equation of state p = p(�, S)
with the entropy S such that

1

�̄

)p

)xi
=

1

�̄

[(
)p

)�

)

S

)�

)xi
+

(
)p

)S

)

�

)S

)xi

]
(1.52)

= c2s
)�

)xi
+

�

�̄

)S

)xi
, (1.53)

where c2s = ()p∕)�)S is the adiabatic sound speed, and � = ()p∕)S)� = 2�T ∕3 by the first law
of thermodynamics for an ideal monoatomic gas. Equation (1.45) becomes the collisional Euler
equation

) ⟨vi⟩
)t

+H ⟨vi⟩ + 1

a

⟨
vj
⟩ ) ⟨vi⟩

)xj
= −

1

a

)Φ

)xi
−

c2s
a

)�

)xi
−

2T

3a

)S

)xi
. (1.54)
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Chapter 1 Cosmological Structure Formation

To linear order, individual Fourier modes evolve independently. It is therefore useful to transform
the mass conservation, Euler, and Poisson equation to Fourier space. Keeping only linear terms
of perturbative quantities we find

continuity equation �̇ +
ik

a
v (1.55)

Euler equation v̇ +Hv = −
ik

a

(
Φ + c̄2s � −

2T̄

3
S

)
(1.56)

Poisson equation k2Φ = −4�Ga2�̄�. (1.57)

Considering only curl-free velocities3 such that v ∥ k, we can combine the equations to obtain

�̈ + 2H�̇ +

(
c2
s
k2

a2
− 4�G�̄

)
� +

2T̄

3a2
k2S = 0. (1.58)

Comparing this result with eq. (1.47), we see that a collisionless gas with negligible velocity
stress can be treated as an ideal gas with zero pressure (cs = 0, T = 0). For an ideal gas, both the
perturbations in the density � and in the entropy (connected to pressure perturbations, causing
the gas to adiabatically expand and compress) are driving the evolution of the density perturba-
tions. Therefore, there are two initial sources for density fluctuations: isentropic perturbations
()S∕)xi = 0) corresponding to perturbations in the space-time curvature, and isocurvature per-
turbations (� = 0) which may be generated by spatial variations in abundance ratios in the early
Universe [221].

We will only consider isentropic initial conditions and adiabatic evolution, such that k2Sk =

0. Equation (1.58) has the form of a damped harmonic oscillator with the undamped angular
frequency

!2 =
c2sk

2

a2
− 4�G�̄. (1.59)

Thus, the pressure adds a characteristic scale to the system, the Jeans length, which we can write
in physical units as

�J =
2�a

kj
= cs

(
�

G�̄

)
. (1.60)

Perturbations smaller than the Jeans length have !2 > 0 and thus oscillate (corresponding to
an acoustic wave propagating with the sound speed cs) and will not grow due to the pressure
support. Only for modes larger than the Jeans-length, pressure is no longer able to support the
gravitational collapse, and in the limit k ≪ kJ , we recover the solutions of the pressureless gas.

We can define the Jeans mass by relating the wave-length � to a sphere of radius �∕2:

MJ =
�

6
�̄m�

3
J . (1.61)

3Taking the curl of eq. (1.54) and only keeping linear terms, one can show that ∇×v ∝ a−1. Therefore, any vorticity
(in the linear regime) will decay as the Universe expands. A curl-free vector field can be written as a gradient of
a potential field and thus v ∥ k.
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1.2 Linear Growth of Primordial Perturbations

It can be shown (cf. [221]) that before recombination, when electrons and photons are tightly
coupled via Compton scattering and thus baryons and photons behave as a single fluid, the Jeans
mass is of the order of superclusters. Only after baryonic matter decouples from radiation (z ∼

1100), it drops by several orders of magnitudes to the size of globular clusters. Perturbations on
scales smaller than superclusters can thus only grow after recombination.

1.2.4 Zel’dovich approximation

We now go back to the pressureless fluid but we change to a Lagrangian reference frame following
the motion of mass elements. We write the position of such an element as a displacement from
its initial position q such that

x(q, t) = q + s(q, t). (1.62)

Assuming a bijective mapping, the mass within the element d3q has to be conserved, and thus
�(x, t) d3x = �̄(t)d3q. We then have

�(x(q), t) = �̄(t) det

[
)xi(q, t)

)qj

]−1

= �̄(t) det

[
�ij +

)si(q, t)

)qj

]−1

≃ ̄�(t)

(
1 −

)si(q, t)

)qi

)
,

(1.63)

where in the last step, we assumed small displacements such that )si)qj ≪ 1. To linear order,
we previously obtained �(x, t) = �̄(t)(1 +D+(t)�i), and comparing these equations we find that

�(x(q), t) ≃ −D+(t)∇s(q, 0) (1.64)

∇s(q, 0) = −�i(x(q)) = −
∇2Φi

4�G�̄a3
. (1.65)

We can thus write eq. (1.62) as

x(q, a) = q −
D+(a)

4�G�̄a3
∇Φi(q)

= q −D+(a)
2

3H2a3
∇Φi(q)

= q − a
2

3H2
0

∇Φi(q),

(1.66)

where the last equality holds for an EdS universe (i.e. Ω = Ωm = 1 together with and eq. (1.19)).
This formulation of linear perturbation theory of a cold and pressureless fluid was developed by
Zel’dovich [343] and is known as the Zel’dovich approximation (ZA). It models the evolution of
structures in a Lagrangian description where particles travel on straight lines given by the initial
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Chapter 1 Cosmological Structure Formation

density perturbations4 and the travelled distance is proportional to the growth factor D+. This
linear order approximation can be extended to higher order theories, such as second-order La-
grangian perturbation theory (2LPT, [229, 282]), which give more accurate results in the slightly
non-linear regime, and can be used to set up initial conditions for N-body simulations at lower
redshifts (see section 2.1.3).

Going back to eq. (1.63) and labeling the real eigenvalues of the symmetric deformation tensor
∇s as �1 ≥ �2 ≥ �3, we find

1 + � =
1

(1 −D+(a)�1)(1 −D+(a)�2)(1 −D+(a)�3)
. (1.67)

There are thus up to three singularities during the time evolution, corresponding to the three axes
of collapse along the eigenvectors of the deformation tensor. The first collapse (shell-crossing)
occurs whenD+(a)�1 = 1, forming a two dimensional structure (also called a wall or a Zel’dovich

pancake). At D+(a)�2 = 1, the structure will collapse along its second axis, forming a filament,
before finally the third axis collapses, and a spherical structure (a halo) is formed. In the case
of negative eigenvalues or a collapse time larger than the Hubble time, collapse will not happen
along this axis. Together with the uncollapsed regions (voids), walls, filaments, and halos form
the components of the cosmic web. Since perturbations exist on all scales, the cosmic web has a
multi-scale nature, with filaments embedded in walls, and halos embedded in filaments.

In general, the eigenvalues �i of the tidal field can be positive or negative. For a Gaussian
random field, a useful analytical formula of the joint probability distribution P (�1, �2, �3) has
been obtained by Doroshkevich [87], which can be written as [221]

P
(
�1, �2, �3

)
∝
(
�1 − �2

) (
�1 − �3

) (
�2 − �3

)
exp

[
−

3

�2

(
I2
1
+

5

2
I2
2

)]
, (1.68)

where �2 = ⟨�2⟩ is the variance of the overdensity field, I1 = �1 + �2 + �3 = �, and I2 =

�1�2+�1�3+�2�3. Integrating over the distribution yields a probability of 8% of all eigenvalues
being negative (− − −, corresponding to voids) or positive (+ + +, corresponding to halos) and
42% for the mixed states − − + (walls) and − + + (filaments).

Note that the ZA is not valid after the first shell-crossing, as can be seen in the 1D simulation
of a plane-wave collapse in fig. 1.3. The ZA predicts that after the formation of the caustic, the
particles will simply continue on their trajectories. However, after shell-crossing, the approxi-
mation of �2

ij = 0 that we assumed in eq. (1.45) is no longer valid, and all higher moments of
the Boltzmann hierarchy have to be considered. We will look in more detail at the generation of
velocity dispersion in chapter 3.

The multi-scale nature of perturbations means that different scales will enter the non-linear
regime at different times, with small-scale structures collapsing first. By selectively filtering out
modes below the non-linear threshold k < kNL, shell-crossing and the consequent “smearing
out” of caustics in the ZA can be avoided [66, 276]. This technique is called the truncated ZA
and can be applied to studies of the large scale features in the Universe. In practice, the low-
pass filtering corresponds to a smoothing of the initial conditions, similar to the truncation of the
power spectrum by warm dark matter (cf. section 1.3.2).

4Since the velocity is proportional to the gradient of the potential field, velocity flows are irrotational in the ZA.
Vorticity can however be generated after shell-crossing [87], when the ZA is no longer valid.
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1.2 Linear Growth of Primordial Perturbations
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Figure 1.3: Collapse of a 1d plane-wave perturbation in the ZA and the full gravity evolution
with a N-body simulation. The top row shows the phase-space distribution (dark
matter sheet), the second row the projected density, and the bottom row the velocity
dispersion �2 = ⟨v2⟩ − ⟨v⟩2. Time is normalized such that the collapse occurs at
the scale factor a = ax. After shell-crossing (second column), caustics form in the
density distribution where the phase-space distribution goes from a single- to multi-
valued distribution, giving rise to velocity dispersion. The ZA is no longer able to
predict the evolution of the system and diverges from the true solution, visible at later
times (third column).

A further technique to avoid the artificial smearing-out of collapsed regions in the ZA is the
adhesion model (see [126, 284, 127, 111] and also [128] for a recent review), in which particles
are made to stick together once they enter a caustic. Defining u = dx∕dD+ and using the ZA,
we find along the particle trajectory

Du

DD+

=
)u

)D+

+ (u∇)u = 0. (1.69)

The stickiness is achieved by adding an artificial viscosity to the equation:

)u

)D+

+ (u∇)u = �∇2u, (1.70)

where � is the viscosity parameter chosen arbitrarily. This equation is known as the Burgers’
equation [26, 54] and can be solved analytically for a irrotational velocity field [334]. If we let
� → 0, we recover the ZA. In structure formation, the adhesion model has been used exten-
sively to study the formation and properties of the large-scale cosmic web (e.g. the evolution
of voids [277], filamentary structure [237], and halo mass functions in 2D [318]. However, the
approximation cannot predict the dynamics and properties within the structures once they form.
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Chapter 1 Cosmological Structure Formation

1.3 Statistical Properties of the Overdensity Field

Since the primordial perturbations are thought to originate from random, quantum mechanical
processes during the inflationary phase, we can only compare the statistical properties of the
cosmic density and velocity fields (and not an individual realization) between theoretical and
numerical models and observations. As discussed in section 1.2.1, the primordial perturbations
after inflation are predicted to be statistically homogeneous and isotropic and close to Gaussian,
following a power law P (k) ∝ kns . In the following, we will introduce the basic quantities of
such a Gaussian random field.

1.3.1 Two-point correlators

A simple measure of the clustering of an inhomogeneous universe is the two-point correlation
function �(x,x′) = ⟨�(x)�(x′)⟩, measuring the expectation value of �(x)�(x′) from an underlying
stochastic process creating the overdensity field �. Due to the cosmological principle, � can only
depend on the distance between x and x′ and not the exact location or angle. Hence, we can
write

�(r) = ⟨�(x)�(x′)⟩, (1.71)

where r = |x−x′|. Equivalently, we can define the correlation function in Fourier space and we
find

⟨�(k)�†(k′)⟩ = (2�)3�D(k − k′)P (k), (1.72)

where �D is the Dirac delta-function and P (k) is the power spectrum, which only depends on
k = |k| and is real-valued due to rotational symmetry and the reality condition for �(x). Plugging
in the definition of �(k) as a Fourier transform of �(x), one can see that the two-point correlation
function and the power spectrum are each other’s Fourier transform:

P (k) = 4� ∫
ℝ+

dr r2
sin(kr)

kr
�(r) (1.73)

�(r) =
1

2�2 ∫
ℝ+

dk k2
sin(kr)

kr
P (k), (1.74)

and thus both quantities carry the same information and can be used interchangeably (on infinite
domains).

For a Gaussian random field, �(r) or P (k) determine the field entirely: the probability to find
the overdensities �(xi) at N points xi simultaneously is given by a multivariate Gaussian

(�(x1),… , �(xN )) =
1

(2�)N∕2det(V )1∕2
exp

[
−
1

2

N∑
i,j=1

�(xi)
(
V −1

)
ij
�(xj)

]
, (1.75)

where the covariance matrix is solely determined by the correlation function: Vij = �(|xi−xj|).
In Fourier space, different �(k) modes are mutually independent, and their real and imaginary
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1.3 Statistical Properties of the Overdensity Field

parts are both independent Gaussian variables with mean 0 and variance P (|k|)∕2 [221] or equiv-
alently with a random phase � and a Rayleigh-distributed modulus � with variance P (k) [276]:

(�, �) d�d� =
�

P (k)
exp

[
−

�2

2P (k)

]
d�

1

2�
d�. (1.76)

Given a power spectrum P (k), this equation can be used to draw independent random numbers in
Fourier space, which can then be transformed to real space to obtain a realization of the overden-
sity field following the power spectrum (also see the discussion on generating initial conditions
for simulations, section 2.1.3).

1.3.2 The linear power spectrum

Starting from the primordial power-spectrum P (k) ∝ kns produced during inflation (cf. sec-
tion 1.2.1) and combining the scale-dependent evolution of perturbations in the radiation domi-
nated era and outside the horizon described by the transfer function T (k) (section 1.2.2) and the
linear, scale-independent evolution described by the growth function D+ (section 1.2.3), we find
that the evolution of the linear power spectrum is given by

Plin(a, k) = A0k
nsT 2(a)D2

+
(a), (1.77)

where A0 is the normalization at the present time (since D+(a = 1) = 1 by convention). The full,
non-linear power spectrum can be written as P (k) = Plin(k) + Pnl(k), where Pnl(k) captures the
contribution from regions that have entered the non-linear regime. A comparison of the linear
power spectrum and the non-linear contributions at late times can be seen in fig. 1.4. Note that
the non-linear scale kNL, below which non-linear effects are important, increases to larger modes
as time increases.

One way to constrain the amplitude of the power spectrum from observations is to measure
the variance of mass (galaxies) that one finds in randomly placed spheres of radius R. Mathe-
matically, this corresponds to measuring the variance of the density field smoothed on the scale
R:

�R(x) = (� ∗ WR)(x) (1.78)

�R(k) = ŴR�(k), (1.79)

where ŴR is the Fourier transform of the window function W , which is commonly a tophat or a
Gaussian filter. The variance of an overdensity field �(x) is simply �2 = ⟨�(x)2⟩ = �(0), hence
we find from eq. (1.74):

�2(R) =
1

2�2 ∫
ℝ+

dk k2P (k)ŴR(k)
2. (1.80)

Note that if P (k) does not have a strong cutoff on small scales, the filtered density variance will
diverge for R → 0. In such cases, the overdensity field will always be non-linear on some scale
and structure can only grow via mergers of non-linear clumps (so-called bottom-up or hierarchical
structure formation [242]).
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Figure 1.4: Matter distribution power spectra obtained from linear theory and from the 300MPC
simulation at redshifts z = 0, 1 and 2. The theory spectra were computed using the
Eisenstein & Hu [95] transfer function (with Planck 2015 cosmological parameters
[67]), which was also used to set up the initial conditions of the simulation (cf. sec-
tion 2.1.3). Power spectra of the simulation were obtained by projecting the N-body
particles onto a mesh with the CIC assignment scheme (cf. section 2.1.2) and de-
convolving with the assignment kernel. The noise on large scales is due to the low
number of corresponding modes (cosmic variance).

For some applications it is convenient to express � in terms of contained mass instead of
radius, so we will use �(R) and �(M) interchangeably. The typical mass within the filter WR is
just M = �̄ ∫ d3x WR(x), which is 4��̄R3∕3 in the case of a tophat window function.

For historical reasons, the value �8 = �(8 ℎ−1 Mpc) is often used to represent the amplitude
of the power spectrum (once the shape of the power spectrum is known, A0 and �8 are easily
converted). This convention originates from the observation that for the distribution of galaxies,
�gal(R) = b�(R) ∼ 1 for R = 8 ℎ−1 Mpc [221], where b is the bias parameter describing the
different clustering amplitude of galaxies as tracers of the dark matter distribution.

Truncation by free-streaming in warm and hot dark matter models

Candidates for DM particles can be categorized into hot (HDM), warm (WDM), and cold (CDM)
dark matter according to their velocity dispersion, which determines the free-streaming length
below which perturbations are erased and gravitational collapse is suppressed. Per definition,
the velocity dispersion is negligible for structure formation in the CDM case, whereas for hot
DM (e.g. light neutrinos), fluctuations on scales smaller than superclusters are washed out. This
implies that in a pure HDM universe, structure would have to form top-down through fragmen-
tation of larger structures (pancakes), which is in contradiction with various observations, such
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1.4 Non-linear Collapse Models

as the incompatible age of galaxies [106], cooling time of the shock-heated baryons during the
primary collapse [286], and early measurements of the CMB amplitude [294]. The intermediate
range of WDM has gained interest in recent years, as such a DM candidate may alleviate certain
tensions between observations and simulations of small scale structures5 (a review can be found
in [53]).

To study the effects of free-streaming on clustering, the Einstein-Boltzmann equations (cf.
appendix A.1) including all species have to be (numerically) solved. The result is usually given
as a relative transfer function TWDM(k), measuring the scale dependent modifications to the linear
CDM transfer function. In the following, we will use the formula provided by Viel et al. [319]
(also see [41]), who find the fitting formula

TWDM(k) ≡
[
PWDM
lin

P CDM
lin

]1∕2

≃
[
1 + (�k)2�

]−5∕�
, (1.81)

where � determines the scale of the suppression and depends on the WDM candidate parameters.
For the index �, values of 1.0 [41] and 1.12 [319] have been used in the literature. For a thermally
produced dark matter candidate with particle mass mWDM, the suppression scale can be modeled
with

� = 0.049
[mWDM

keV

]−1.11 [ΩWDM

0.25

]0.11 [
ℎ

0.7

]1.22
ℎ−1Mpc. (1.82)

For sterile neutrinos, which are not thermally produced, the same formula can be applied but
masses have to be translated according to

m�s
= 4.43keV

(mWDM

1keV

)4∕3
(
ΩWDM

0.1225

)−1∕3

. (1.83)

Instead of using the suppression scale �, it is convenient to characterize the free-streaming with
the scale at which TWDM drops to 1/2, also known as the half-mode scale khm

WDM
[281, 280]. The

half-mode mass can then be obtained from the average mass within a tophat of radius �∕khm
WDM

:

Mhm
WDM

=
4�

3
�̄

[
��

(
2�∕5 − 1

)− 1

2�

]3
. (1.84)

The half-mode mass is where the WDM is expected to first affect the properties of halos [281].
Recent constraints on the mass of sterile neutrinos obtained from Ly-� observations [340] find
m�s

≳ 4.17 keV corresponding to Mhm ∼ 1.8 × 108ℎ−1M⊙.

1.4 Non-linear Collapse Models

Present-day structures in the Universe, such as DM halos, galaxies, and galaxy clusters, have
overdensities � ≫ 1 and are thus in the highly non-linear regime. In general, numerical meth-
ods (see next chapter) have to be used to accurately simulate their formation and structure. For
some simplified cases with high degrees of symmetry, analytic solutions can be found however,
providing useful insights to non-linear structure formation.

5However, it has been shown that these “small scale structure tensions” can also be alleviated within the ΛCDM
framework if baryonic processes such as stellar feedback are modeled in more detail [53].
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Chapter 1 Cosmological Structure Formation

1.4.1 Spherical and ellipsoidal collapse models

The simplest model assumes a spherical density peak of radius r with constant overdensity �
on a homogeneous background density �̄. Due to the spherical symmetry, the problem is fully
parametrized by the evolution of the radius r(t). Assuming an EdS universe (�̄ = �̄m = �c), we
can use the conservation of energy of the outermost shell:

 =
1

2
ṙ2 −

GM

r
=

1

2

(
ṙ2 −

8�G�

3

)
, (1.85)

which we can rewrite as
ṙ2

r2
=

8�G

3
� −

k

r2
, (1.86)

where we defined k = −2 . This equation corresponds to the Friedman equation of a universe
with constant curvature, cf. eq. (1.15). The curvature of this “mini-universe” is determined by the
energy  . Overdense and underdense spherical regions thus evolve according to the Friedman
equations for a closed or an open universe respectively. Overdense perturbations will slowly
decouple from the expanding homogeneous background until the turnaround time, after which
they collapse. The collapse of a perturbation will eventually halt when the patch reaches virial
equilibrium, forming a DM halo. The radius and density evolution of the spherical collapse
model is visualized in fig. 1.5.

An analytic derivation of the key results from the spherical collapse model can be found in
appendix A.2. Comparing the density of the perturbation �̄(1 + �) with the background density
�̄, we find that at the time of turnaround, �ta ≃ 4.55, and at the time of virialization, �vir ≃ 177.
These non-linear densities can be compared to the densities predicted by linear theory at the
turnaround (�lin

TA
≃ 1.06) and at virialization (�c = �lin

vir
≃ 1.686). We will use these thresholds

in the next section to predict where virialized structures have formed using linear perturbation
theory only.

As a simple, non-spherical extension of this model, one can consider the collapse of a homo-
geneous ellipsoid with comoving principal axesX (e.g. [166, 333, 43]). The principle axes obey
the equation of motion

dV

dt
= −

1

a
∇Φ(X), (1.87)

where V is the peculiar velocity at the ellipsoid boundary and Φ the gravitational potential per-
turbation, which we can separate into a potential arising from the interior of the ellipsoid, and
an external contribution, i.e. Φ = Φint + Φext . To describe the external potential in the linear
regime, we can assume that the ellipsoid evolves from a Lagrangian sphere with radius R0

6. We
can then use the ZA (cf. section 1.2.4) to describe the collapse and deformation of this sphere
under the influence of the gravitational tidal field, i.e. Xi(t) = R0(1 − �iD+(t)), where �i are
the eigenvalues of the deformation tensor ∇∇Φi∕(4�G�̄a3). In the linear regime, the external

6The approximation of initially spherical perturbations has been shown to predict inaccurate collapse times (e.g.
[207], where also an extended ellipsoid model accounting for non-spherical proto-halo patches is presented). We
will measure the shapes of proto-halos in chapter 5 where we find that especially low mass halos tend to originate
from elliptic Lagrangian volumes.
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Figure 1.5: Collapse of a spherical perturbation with radius r as a function of conformal time
�, with t = r⋆(� − sin �) and r⋆ = GM , where M is the total mass of the patch.
The patch grows until the turnaround time at � = �, after which it contracts until it
virializes at around � = 3�∕2 to � = 2� due to imperfections in the symmetry. The
overdensity at virialization is � ≃ 177, whereas the linear approximation would only
predict �c ≃ 1.686.

potential Φl,ext can then be written as [221]

Φl,ext(x) = 2�G�̄ma
2

3∑
j=1

(
�j −

�init
3

)
D+(t)x

2
j , (1.88)

where �init = �1 + �2 + �3 is the initial overdensity of the ellipsoid. We can assume that Φext =

Φl,ext during the entire collapse of the ellipsoid, since the internal potential will dominate during
the non-linear regime and hence any approximation of the external field is irrelevant.

The internal potential can be derived from the Poisson equation, resulting in (e.g. [62])

Φint(x) = �Ga2�̄m�
3∑
i=1

�ix
2
i , (1.89)

with the coefficients

�i = X1X2X3 ∫
ℝ+

dy
(
X2

i + y
)−1 3∏

j=1

(
X2

j + y
)−1∕2

. (1.90)
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Combining the potentials and using eq. (1.87), the dynamics of the principle axes can be writ-
ten as [221]

d2Xj

dt2
+

2ȧ

a

dXj

dt
= −4�G�̄mXj

[
1

2
�j� +D+(t)

(
�j −

�init
3

)]
. (1.91)

This equation is valid until the shortest axis collapses. To extend the model, a common practice is
to “freeze” the axes once they reach a radius corresponding to the virialized radius of a spherical
perturbation with the same mass. The ellipsoid model is thus fully specified by the eigenvalues
of the gravitational tidal field �i, or alternatively by the initial overdensity �init and the ellipticity
and prolateness parameters

e =
�1 − �3
2
∑

�i
p =

�1 + �3 − 2�2
2
∑

�i
. (1.92)

The ellipticity e ∈ [0, 0.5] describes the overall deviation from spherical symmetry (e = 0),
whereas p differentiates between an oblate (p < 0) and prolate (p > 0) symmetry. Comparing
the collapse time of an ellipsoid with the collapse time of an equal sized spherical perturbation,
one finds that in the ellipsoidal model, the collapse along the shortest axis occurs earlier [332,
287], and the collapse of the last axis later [289].

The ellipticity and prolateness of the tidal field depends on the local overdensity. Using
eq. (1.92), one can derive [221]

(e, p|�init) ∝ e(e2 − p2) exp

[
−
5�2

init

2�2
(3e2 + p2)

]
, (1.93)

where �2 = ⟨�2⟩ is the variance of the overdensity field. In fig. 1.6, we show the distribution
for some selected values of �init∕�. The distributions peak at p = 0, and regions with a larger
overdensity tend to have a more spherical tidal tensor.

1.4.2 Density peaks

The spherical and ellipsoidal collapse models describe the formation of a gravitationally bound
halo of mass M through the collapse of a perturbation of volume V = M∕�̄ in the initial density
field. In peak theory, it is assumed that this region corresponds to a peak of the density field
smoothed on the scaleM . It has been shown that this assumption is reasonable for a large fraction
(∼ 70%) of halos, with “peakless” halos predominantly emerging from highly clustered regions
under the influence of strong tidal fields [206]. Nevertheless, studying the density peaks of the
initial density field can provide useful insight into number densities, the spatial distribution, and
the primordial shapes of halos.

In the following, we will consider the smoothed overdensity field �R(x) = ∫ d3x′ �(x′)WR(x+

x′), where WR is the smoothing kernel of scale R. A peak xP of this field is characterized by
∇�R(xP ) = 0 and a negative definite Hessian

Hij(x) =
)2�R(x)

)xi)xj
, (1.94)
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Figure 1.6: The ellipticity – prolateness probability distribution of the tidal field at �init∕�. Note
that by construction (cf. eq. (1.101)), the ellipticity e is constrained to the interval
[0, 0.5] and the prolateness p to [−e, e] for e ≤ 0.25 and [−1 + 3e, e] for e > 0.25.
We outline this validity triangle with black lines.

i.e. Λi > 0 ∀i, where Λ1 ≥ Λ2 ≥ Λ3 are the eigenvalues of −Hij . In the neighborhood of a
density peak, the overdensity can be estimated as

�R(x − xP ) ≃ �(xP ) +
1

2
Hij(x − xP )i(x − xP )j (1.95)

≃ �(xP ) −
1

2
Λi(x − xP )

2
i , (1.96)

where in the last step we have assumed that the coordinate system xi is aligned with the eigen-
frame of Hij .

For the following discussion, it is useful to introduce the spectral moments of the density fields,

�2
j (R) =

1

2�2 ∫ dk k2P (k)k2jW̃R(k)
2, (1.97)

where P (k) is the linear power spectrum extrapolated to z = 0. Note that for j = 0, 1, and 2, this
quantity corresponds to �2

0
(R) = ⟨�2

R
⟩, �2

1
(R) = ⟨(∇�R)2⟩, and �2

2
(R) = ⟨(∇2�R)

2⟩, which can
be seen by substituting P (k) according to eq. (1.72).

Furthermore, we can characterize a density peak by its peak height � = �R∕�0. It is then
possible to estimate the number density of peaks of a certain height pk(�) d� of any Gaussian
random field. Since the derivation and full expression are rather lengthy and tedious, we refer to
Bardeen et al. [20] for a full description. For high peaks where � ≫ 1, the (comoving) number
density can be approximated as

pk(�) d� =

(
�2
2
∕(3�2

0
)
)3∕2

(2�)2

(
�3 − 3�

)
e−�

2∕2d�. (1.98)
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Figure 1.7: The ellipticity – prolateness probability distribution of the peak shape at fixed peak
curvature x, where x is set at the characteristic scale x∗ for a given �, i.e. x = x∗ = �,
with  = �2

1
∕(�0�2) = 1.58−1, corresponding to the values chosen in [20]. The

contours include 50, 5 and 1% of the distribution. Note that by construction (cf.
eq. (1.101)), the ellipticity e is constrained to the interval [0, 0.5] and the prolateness
p to [−e, e] for e ≤ 0.25 and [−1+3e, e] for e > 0.25. We outline this validity triangle
with black lines.

Note that the shape of this distribution is (up to a normalization) independent of the power spec-
trum. The total comoving number density of peaks of arbitrary height, i.e. npk = ∫

ℝ
d�pk(�),

can be calculated analytically [20]:

npk =
29 − 6

√
6

53∕22(2�)2R3
∗

≃ 0.016R−3
∗
, (1.99)

where R∗ =
√
3 �1∕�2.

In addition to the number density, one can also derive clustering statistics of peaks with given
peak height thresholds [20]. By using the ZA to displace the peaks according to the local grav-
itational field, one can then derive the correlation function of evolved peaks, which correspond
to halos in the peak-theory picture (e.g. [211]).

Another interesting property of peaks are the shapes of the overdensity field surrounding it.
We can estimate the isodensity surface �R(x) = c using the second order expansion of �R around
xP from eq. (1.96). The isodensity contour is then given by an ellipsoid with semi-axes ai defined
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by

a2i =
2(�R(xP ) − c)

Λi

. (1.100)

Similar to the characteristics of the tidal field (cf. eq. (1.92)), we can define the ellipticity and
prolateness of the triaxial ellipsoid by

e =
Λ1 − Λ3

2
∑

Λi

p =
Λ1 + Λ3 − 2Λ2

2
∑

Λi

. (1.101)

The probability distribution of these shape parameters under the constraint of the peak height
� and peak curvature x =

∑
Λi∕�2, i.e. (e, p|�, x), can also be computed analytically for a

Gaussian random field [20]. It can be shown that the distribution depends only on x. The peak
curvature x however will generally increase for larger peak heights7. Figure 1.7 shows some
examples of the ellipticity-prolateness probability distribution at a fixed value of x. The larger
x (and therefore the higher the peak), the more spherical (e → 0) the peak becomes. Peaks of
lower heights tend to be more elliptical, with a higher probability of positive prolateness (p > 0).
Associating these peak-patches to regions that will later collapse to halos, we therefore expect
that more massive halos (larger peak-heights) will form from more spherical regions in the initial
overdensity field, whereas less massive halos tend to originate from more elliptical regions. We
will measure the shapes of proto-halos in chapter 5.

1.4.3 Halo abundance

We will now derive an estimate of the abundance of collapsed objects, the halo mass function
(HMF), following the prescription by Press and Schechter (PS) [264]. The critical assumption
that PS made is that, even if the field is non-linear on small-scales, linear theory is still able
to predict the amplitude of long-scale modes, requiring that the large-scale power exceeds the
power generated via non-linear coupling of small-scale modes [335, 242].

Given an overdensity field �M smoothed on the mass scale M , we can identify positions x at
which the overdensity exceeds the critical density discussed in the previous section, i.e. where
�M ≥ �c . The argument of PS says that these points will be contained in a halo of mass MH ≥
M . Since �M is a Gaussian field with variance �2(M) given eq. (1.80), we can compute the
probability of �M exceeding �c by

(�M > �c) =
1√

2��(M) ∫
∞

�c

d� exp

[
−

�2

2�2(M)

]
=

1

2

[
1 − erf

(
�√
2

)]
, (1.102)

where � = �c∕�(M) is the peak-height defined in the last section and erf(x) = 2�−1∕2 ∫ x
0
dy e−y

2
.

Since according to the cosmological principle �(M) → 0 for R → ∞, we can always find a
smoothing scale M ′ at which �M ′ = �c if �M > �c . Arguing that half of the mass that will
eventually be accreted is unaccounted for (� < 0), PS introduced a “fudge”-factor by multiplying
the probability by 2, providing a better fit to observations. This probability is then related to

7The characteristic scale is x∗ = ��2
1
∕(�2�0). Analytic formulae of the conditional probability distributions(e, p|x)

and (x|�) can be found in [20] and [221].
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the number density of halos with mass MH ∈ [M,M + dM] per unit comoving volume by
(dn∕dM)dM = �̄∕M (d∕dM)dM , which we can write as

dn

dM
dM = −2

�̄

M

(
d(�M > �c)

d�(M)

)(
d�(M)

dM

)
dM

= −

√
2

�

�̄

M�(M)

(
d�(M)

dM

)
�e−�

2∕2 dM.

(1.103)

This function is known as the PS mass function [264], and given its simplicity, it is able to describe
results from N-body simulations to a surprising degree (cf. fig. 1.8). However, the derivation
contains strong simplifications (e.g. spherical symmetry and negligence of peaks-within-peaks,
see e.g. [224]), a somewhat arbitrary fudge-factor of 2, and the comparison with simulations is
still far from perfect. There has been substantial research into dealing with these caveats (see e.g.
[221] for an overview).

The PS mass function can be derived in a more thorough way with the excursion set formal-
ism, which is sometimes also referred to as the extended PS formalism [42]. In this theory, the
fraction of matter in gravitationally bound objects of mass M is estimated from the first-crossing
distribution of Markovian random walk trajectories (i.e. estimating the probability of the ran-
dom walk exceeding a threshold �c) when decreasing the filtering scale of the overdensity field
(see e.g. [221]). The theory naturally produces the factor 2 that had to be included with an ad-
hoc argument in the PS derivation. Furthermore, one can replace the critical threshold from the
spherical collapse model with the more general and mass dependant threshold of the ellipsoidal
model to account for the triaxial nature of gravitational collapse [289]. Since lower mass halos
are generally influenced by more elliptic tidal fields (cf. fig. 1.6), the collapse time is longer and
thus the required collapse threshold higher, reducing the number of expected low mass halos (cf.
the HMF comparison in fig. 1.8).

A further model to predict the locations of halo formation in the initial conditions is the peak-

patch model [43], which combines the theory of density peaks discussed in the previous section
and the excursion set formalism (also see [303] for a recent implementation to create mock halo
catalogs). In addition to the purely theoretical HMF, there is a large variety of fitting formulas
calibrated from numerical simulations available (e.g. Sheth & Tormen 1999 [288], Jenkins et al.
2001 [170], Warren et al. 2006 [323], Tinker et al. 2008 and 2010 [314, 313], etc.). Nevertheless,
the PS formalism still provides useful insight into hierarchical structure formation. From the
exponential cutoff in eq. (1.103), we can see that halos can only form in significant numbers if
� > 1 ⇔ �(M) > �c , defining the characteristic non-linear scale

�(MNL)D+(t) = �c . (1.104)

1.5 Properties of DM Halos

The exact definition of where to put the boundary of a halo, and thus which mass and radius it
will have, is a disputed topic and various conventions are being used. A common way to define
the halo edge is by using a spherical overdensity criterion, either with respect to the background
density or to the critical density of the universe. The mass and radius of the sphere where this
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Figure 1.8: HMF measured from the 300MPC simulation (cf. appendix A.3) in comparison with
the theoretical predictions by the spherical collapse model by Press and Schechter
[264], the ellipsoidal collapse model by Sheth et al. 2001 [289], and the fitting func-
tion by Tinker et al. 2008 [314]. The HMF is multiplied by M2 for visualization
purposes to compress the dynamic range. At masses below 1011ℎ−1M⊙, the halos in
the simulation are no longer well resolved, causing the measured HMF to drop. At
high masses, only few halos exist in the simulation volume, increasing the Poisson
noise.

critical overdensity Δ is reached, is then denoted by MΔb and RΔb or MΔc and RΔc respectively.
The most common value for Δ is 200 (close to the virial overdensity from the spherical collapse
model, cf. section 1.4). However, in research fields interested in the inner structure of the halo,
larger thresholds such as Δ = 500 or Δ = 2500 are being used (e.g. for scaling relations of
different galaxy cluster properties).

Early simulations showed that the density distribution within the halos do not follow a uniform
power law, but instead the logarithmic slope changes gradually from -1 near the center8 to -3 at
large radii, with remarkable similarity between a large range of halos [231]. The density profiles
have found to be well fitted by a two-parameter formula, known as the NFW profile:

�(r) =
�0

(r∕rs)(1 + (r∕rs)
2)
, (1.105)

where �0 is the characteristic density and rs is the scale radius indicating where the slope is
roughly -2. The ratio between the halo radius and the scale radius determines the concentration
of the halo, i.e. cΔ(b∕c) = RΔ(b∕c)∕rs. The concentration parameter has been shown to decrease
with increasing halo mass, and to increase with the age of the halo and the time since the last
major merger event. The universality of the NFW profile is thought to be established by the
early formation process of the halo with frequent merger events [221]. These establish the inner

8Rotation curve measurements from some galaxies suggest a flat inner density profile incompatible with the numer-
ical predictions of the ΛCDM model. This so-called cusp–core tension might arise from unaccounted baryonic
physics [53].
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structure of the halo and thus set rs, whereas late time accretion increases the mass and radius
of the halo without affecting the core of the halo and therefore leaving rs roughly fixed and
increasing the concentration over time.

With the availability of higher resolution simulations, deviations from the NFW profile were
found [307] and the use of a three parameter formula, known as the Einasto profile, was proposed
to account for these [230]:

�(r) = �0 exp

(
−
2

�

[(
r

rs

)�

− 1

])
. (1.106)

The shape parameter � determines how quickly the profile steepens towards the outskirts, and
generally increases with mass but has a wide distribution [115].

Due to the anisotropic nature of the collapse, halos are not expected to follow the idealized
spherical picture described so far, but rather have elliptical shapes. Numerical simulations show
that massive halos and halos at high redshifts tend to be more aspherical [5], and halos that
have recently experienced a major merger have a tendency to be oblate. The halo shapes are
correlated over large distances and tend to be aligned with the large scale environment [19, 156].
This phenomenon is known as intrinsic alignment [149, 317] and has to be accounted for in
studies measuring the correlated shape distortion of background galaxies from the foreground
matter distribution.

Halos are kept in equilibrium by pressure support from velocity dispersion that can be split in
a radial and tangential component (�2

r (r) and �2
t (r) respectively). The distribution between the

two components is parametrized by the anisotropy parameter

�(r) = 1 −
�2
t

2�2
r

, (1.107)

hence � = 1 corresponds to a purely radial, � = ∞ to a purely tangential, and � = 0 to an
isotropic system. In simulations, typical dark matter halos appear to have more isotropic velocity
dispersion in the inner regions and radially biased anisotropy at larger radii [107].

In the linear collapse regime, halos can acquire angular momentum due to the misalignment
between tidal forces and the inertia tensor of the proto-halo [161, 243]. This phenomenon is
described in the tidal torque theory (TTT, [331]). This initial angular momentum may, however,
be significantly altered during the non-linear evolution and during merger events. The amount of
coherent rotation with respect to random motion in a halo can be expressed as the dimensionless
(Peebles) spin parameter [243]

�P =
J
√|E|

GM5∕2
, (1.108)

where J is the magnitude of the angular momentum, E the total energy, and M the halo mass.
The total energy is a hard to measure parameter in both observations and simulations. Therefore,
an alternative definition of the spin parameter exists, the Bullock spin parameter [52], which can
be derived from �P under the assumption of an isothermal density profile:

�B =
J√

2MRvc

=
J√

2GRM3
, (1.109)
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where vc =
√
GM∕R is the virial circular velocity. Simulations show that the angular momen-

tum vector tends to be aligned with the minor axis of the ellipsoid describing the halo [19]. There
is also a large environmental effect on the orientation of the angular momentum: low mass halos
prefer to spin along the filament or the wall they are embedded in, whereas more massive halos
have a tendency to rotate perpendicular to their structure [132, 198].

Due to the hierarchical growth of halos in the CDM model, a large fraction of mass is ac-
creted via mergers. After a merger event, the lower mass halo becomes a subhalo orbiting in the
potential of its host. Strong tidal forces and dynamic friction strip away weakly bound mass of
the subhalo and whether a substructure survives or is completely disrupted within the host halo
depends on the orbital parameters, the relative mass, and its concentration parameter. High reso-
lution simulations show that a large fraction of the halo mass remains in the form of substructure
down to the resolution scale (e.g. [124]). Furthermore, it has recently been shown that N-body
simulations suffer from significant overmerging and therefore at least some of the observed dis-
ruption is artificially induced by discreteness effects [48]. The fact that we are unable to observe
this rich substructure in our galaxy and the neighboring galaxies (the missing satellites problem)
is expected due to baryonic effects [53], e.g. lower density cores of medium sized satellites from
stellar feedback and interactions such as tidal and ram pressure stripping between the satellites
and the host galaxies.
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CHAPTER 2
Cosmological Simulations

In the previous chapter, we have shown how small perturbations with � ≪ 1 can be treated ana-
lytically in the linear approximation. However, as perturbations grow and � ∼ 1, the predictive
power of these solutions decreases. Higher order approximations (such as n-loop order approxi-
mations [38] and renormalized perturbation theory [70]) only converge slowly, and in general a
full non-linear treatment using numerical simulations is needed. While dark matter can assumed
to be collisionless, and thus be treated by conventional collisionless N-body methods, baryonic
physics is more complex and requires the hydrodynamic equations to be solved as well as the
modeling of processes below the resolution of simulations, such as gas cooling, star formation,
metallicity enrichment, feedback mechanisms from supernovae and black holes, and interactions
between ionized matter and magnetic fields (see e.g. [295]).

This chapter provides a brief overview of numerical methods used in a cosmological context.
We discuss the collisionless dynamics solved in N-body simulations and how initial conditions
are set up (section 2.1), how structures in N-body simulations are identified (section 2.2), and
how the Lagrangian information can be used to reconstruct the phase-space distribution from
the N-body tracers (section 2.3). The simulations that have been performed for this thesis and
analyzed in the subsequent chapters are described in appendix A.3.

2.1 N-body Methods for Collisionless Dynamics

The state of a collisionless system is captured by the phase-space distribution function f (x,p, t),
and evolves according to the Vlasov-Poisson system of equations (cf. eqs. (1.35) and (1.36)).
Solving this partial differential equation with an Eulerian scheme directly in seven dimensions
is extremely difficult due to the number of dimensions, the necessary resolution because of the
strong clustering of matter at late times, and the complex multistreaming distribution of cold dark
matter in the non-linear regime. Even with recent progress in solving the system in the full six
dimensional phase space (e.g. [342, 308, 78]), memory requirements still limit the usability of
these solvers for large scale simulations needed in cosmology.

The other method of solving the equations is by sampling the phase-space distribution by dis-
crete particles. These N particles trace the continuous phase-space function, and since Df∕Dt =
0 along the flow, the particle masses are conserved as well. The flow (the formal solution of the
Vlasov-Poisson system) is given in the form of characteristics: a set of curves in 6+1 dimensional
space which fill the entire volume but do not intersect each other. Their trajectories (x,p, t)(s)
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are given by the differential equations

dx

ds
=
p(s)

m

dp

ds
= −m∇Φ(x(s), s). (2.1)

Using the scale factor a as the time variable, we can rewrite the evolution as

dx

da
=

p

ma3H

dp

da
= −m

∇Φ

aH
. (2.2)

The N particles that we use to sample the phase-space follow these trajectories. The accuracy of
this method, thus, naturally depends on the resolution parameter N . The exact sampling of the
phase space depends on our requirements: if we want to simulate a large volume with uniform
accuracy, we will uniformly sample the phase-space with equal mass particles. However, if we
are interested in a particular region, we can increase the resolution in that area by sampling with
a larger number of low-mass particles and cover the rest of the volume with a few high-mass
particles. In section 2.1.3, we will discuss the setup of the initial simulation state in more detail.

Going back to eq. (2.2), we find that the numerical integration of the particle trajectories con-
sists of two parts: a gravity step in which forces from the particle positions are computed, and a
time integration step to update the particle positions and momenta given the force field. We will
discuss these two parts in the following.

2.1.1 Time integration

The N-body system is a Hamiltonian system; for each particle we can write the phase-space
coordinates asw = (q,p) and its Hamiltonian as (q,p) = p2∕(2ma2) +mΦ(q)∕(2a) [74]. The
evolution of the system is then given by Hamilton’s equations which we write as

ẇ = D(w), (2.3)

where D = {⋅,} is the Liouville operator acting on w via the Poisson bracket {A,B} =

)xA)pB − )xB )pA. The formal solution of this equation can be written as a canonical transfor-
mation

w(t + Δt) = eΔtDw(t), (2.4)

where we can think of the operator eΔtD as a symplectic map from time t to t+Δt preserving the
phase-space volume. Any numerical integrator should thus also respect the symplectic structure
to produce stable and accurate results.

There is no general simple solution for eq. (2.3). We can, however, use the fact that the
Hamiltonian for the N-body problem is separable in a kinetic and potential part by (q,p) =
 (p) + (q). We can thus split the symplectic map by

eΔtD ≃ eΔtD eΔtD . (2.5)

Note that this is only an approximation since [D ,D ] ≠ 0, hence, using the Baker-Campbell-
Hausdorff identity, the error is of quadratic order: [ΔtD ,ΔtD ] ∝ (Δt)2. The new operators,
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also known as the drift and kick operators, have the exact solutions1

eΔtD
(
x

p

)
=

(
x + (ma−2)Δtp

p

)
(2.6)

eΔtD
(
x

p

)
=

(
x

p − (ma−1)Δt∇Φ

)
. (2.7)

The time integration scheme in eq. (2.5) is also known as the symplectic Euler scheme and is
accurate to first order in Δt. The accuracy can be improved to order (Δt)n by combining multiple
kick and drift steps

eΔtD+(Δn+1
t ) =

N∏
i

eaiΔtD ebiΔtD , (2.8)

where the coefficients ai and bi fullfil
∑

i ai =
∑

i bi = 1, and have to be chosen such that the
required accuracy is achieved. This can be done by analyzing the Baker-Campbell-Hausdorff
identity and requiring terms of lower order to vanish (see e.g. [105] for a fourth order integrator
and [341] 6th and 8th order integrators).

The most common scheme that is used for collisionless N-body simulations is the kick-drift-
kick leap-frog integrator, which is the second order scheme obtained by setting the coefficients
to a0 = a1 = 0.5, b1 = 1, b2 = 0:

eΔtD+Derr = e
1

2
ΔtD eΔtD e

1

2
ΔtD . (2.9)

In theory, the symplectic drift-kick-drift integrator could also be used with a0 = 0, a1 = 1, b1 =
b2 = 0.5. However, it has been shown that the error in this method grows faster than in the kick-
drift-kick variant if variable timesteps are being used [300]. Higher order schemes are rarely
used for cosmological N-body simulations, as the particles are collisionless and close two-body
encounters where a higher-order scheme would be beneficial, are avoided by force softening (see
below).

Adaptive timesteps

In cosmological simulations, gravitational forces cover a large dynamic range. Integrating short-
range interactions within high density regions, such as galaxies and clusters, require smaller
timesteps than the long range gravitational field of the large scale structure. Unfortunately, vary-
ing Δt in space and time generally breaks the symplectic nature of the integrator. By splitting the
potential into a long-range and a short-range potential lr and sr however, one can construct a
symplectic map by [300]

e
1

2
ΔtDlr

(
e

1

2m
ΔtDsr e

1

m
ΔtD e

1

2m
ΔtDsr

)m
e

1

2
ΔtDlr , (2.10)

which corresponds to m short-range kick-drift-kick leap-frogs before updating the long-range
potential. This method naturally works together with the hybrid force calculations discussed in
section 2.1.2.

1Note that if the integration time is long compared to the expansion of the universe, we have to replace Δt∕a and
Δt∕a2 by ∫ t+Δt

t
dt a(t)−1 and ∫ t+Δt

t
dt a(t)−2 respectively.
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A common criterion to determine the time-step of an individual particle is given by Δti =

�
√
�∕|ai|, where ai is the acceleration of the particle, � the force softening (see below) and �

an accuracy parameter (e.g. [300, 74]). This rule has been shown to produce robust results (see
[263] for a comparison of different criterions).

2.1.2 Force calculation

Cosmological simulations only cover a limited volume of the entire Universe. In order to imple-
ment isotropy and homogeneity on large scales, one can apply periodic boundary conditions to
the simulated box. Assuming a cubic volume of size L, the potential then becomes [74]

Φ(x, t) = −G
∑
n

∫ d3p d3x′
f (x′ + nL,p, t)

|x − x′ − nL| , (2.11)

where n = (i, j, k) represents the box replica shifted by the distance nL. The periodic sum can
be approximated using Ewald’s method [98]. If Fourier methods are used to compute the forces,
periodicity is naturally provided.

Naively evaluating the phase-space moment in eq. (2.11) from the particle distribution re-
sults in equations of motions of a collisional system, which allows for two-body encounters with
diverging forces. However, the dark matter particles in cosmological N-body simulations are
tracers of the continuous dark matter phase space distribution rather than actual particles; hence,
such short-range interactions would not be physical. This problem can be alleviated by introduc-
ing force-softening, with the goal of estimating a smooth density distribution from the particle
data. We can replace the Dirac-� peaks by kernels characterized by the softening length � such
that we can write the density as [76]

�̃(x) =
N∑
i

mi

�3
W (|x − xi|∕�i). (2.12)

Commonly used kernels are the Plummer sphere [257]

W (r) =
3

4�
(
1 + r2

)5∕2 , (2.13)

and the cubic spline kernel first applied to solve SPH problems [226]

W (r) =
1

4��3

⎧⎪⎨⎪⎩

4 − 6r2 + 3r3 r < 1

(2 − r)3 1 ≤ r < 2

0 r ≥ 2.

(2.14)

It has been shown that the spline kernels produce more accurate forces than the Plummer sphere
(see [76] for a comparison of the performance of various kernels.)

Lower bounds on the softening length � can be found by limiting typical deflection angles in
close encounters [333], and by requiring that two-body forces do not exceed the typical mean-
field strength [263]. For a virialized system of mass M and radius R, one finds � > �min ∼
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2.1 N-body Methods for Collisionless Dynamics

R∕
√
N , where N = M∕m is the number of particles. Choosing a large softening length will

allow for larger timesteps and thus decrease the total number of force computations required.
However, with increasing softening length, the effective resolution of the simulation is reduced.
A good choice of � thus has to balance these two opposing effects. Analyzing the convergence
of halos in cosmological simulations, Power et al. [263] suggest � ∼ 4�min. This proposal has
been widely adopted for many zoom simulations (cf. section 2.1.3), such as the Phoenix [114],
AGORA [178], and Auriga [122] simulations. For uniform mass resolution simulations that are
not targeted on a specific halo, the softening length is usually set to be a fraction of the mean
particle separation, with suggested values ranging from 1/120 [181], 1∕60 [208], to 1/10 [179].
For our simulations (cf. appendix A.3), we adopt the commonly used factor 1/50.

Direct force computation

Computing the forces by pairwise summation is of order (N2), where N is the total number of
particles. For large N , this becomes computationally too expensive and better scaling methods
such as the ones discussed below have to be used. However, for small simulations and short range
force calculations on optimized hardware (cf. section 2.1.2), the small overhead of this simple
method may actually result in an overall faster computation.

Tree codes and fast multipole methods

Tree codes and fast multipole methods approximate eq. (2.11) by splitting the volume into dis-
tinct groups for which the force contributions can be evaluated by a single expression if certain
requirements are met. This reduces the complexity by not having to iterate over all individual
particles.

Tree codes [23] split the volume into a hierarchical spatial tree such as cubic oct-trees or
binary KD-trees. Each node is split until the leaf nodes contain fewer than nmax particles. In
a preparatory step, the multipole expansions have to be computed for each node recursively.
Forces can then be computed by “walking” through the tree, starting by the top node: if the
multipole expansion of the node provides an accurate enough force estimate (i.e. if the node is
small and distant enough, expressed as the opening angle), the walk along this specific branch of
the tree is stopped and the force estimate used. Otherwise, the node is “opened” and the algorithm
progresses by analyzing each of the children. The number of force computations for each particle
scales with the depth of the tree (∼ logN) and tree algorithms are thus of order (N logN). A
specific tree method is characterized by the maximum order of multipole expansion, the opening
criterion, and the spatial grouping algorithm. The widely used GADGET2 code [300] for example
uses an oct-tree with only monopole moments (total masses), which, when expressed with respect
to the center of mass, have vanishing dipoles and are thus first order accurate [74]. During the
force evaluation, the parent node is opened if the estimated truncation error is larger than a relative
threshold of the total force in the last time-step.

In addition to the particle-node interactions of the tree-code, fast multipole methods also con-
sider node-node interactions by approximating the potential or force “landscape” within a node
by a multipole expansion [123, 75]. This allows to lower the scaling of the force computation to
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(N), providing a very efficient method for high particle number simulations (e.g. PKDGRAV3
[262]).

Particle-Mesh methods

Instead of solving Poisson equation by direct summation or tree approximations, one can solve
the differential equations on a regularly spaced grid and with the help of Fast Fourier Transforms
(FFT). These schemes are called particle-mesh (PM) methods and are (Ngrid logNgrid) for the
FFT and (N) for the mass assignment and the force interpolation. Gravitational softening is
implicitly applied on the length scale of the cell size. To compute the forces, we note that in
Fourier space, the potential is given by

Φ̂(k) =
4�G�̄

|k|2 �̂(k). (2.15)

The force field can then be calculated by multiplying Φ̂ with −ik and applying an inverse Fourier
transform or alternatively by transforming the potential back to real space first and then using a
finite difference scheme [300]. We can then interpolate the forces from the grid to the particle
positions. This method requires the computation of the overdensity field � on the grid from the
particle positions. There are different mass assignment methods depending on the shape that
we assign to the particles [154]. The most common methods are the nearest grid-point (NGP),
cloud-in-cell (CIC), and triangular-shaped-clouds (TSC) scheme with the one dimensional shape
functions

SNGP(x) =
1

Δx
�D(x) (2.16)

SCIC(x) =
1

Δx

{
1 |x| ≤ Δx

2

0 otherwise
(2.17)

STSC(x) =
1

Δx

{
1 −

x

Δx
|x| ≤ Δx

2

0 otherwise
, (2.18)

where Δx is the size of a cell. The three-dimensional shape function is just the product S3d(x) =∏
i S(xi). A cell that is offset by x from the particle is thus assigned the weight w3d(x) =∏
iw(xi), with the one-dimensional assignment functions given by

wNGP(x) =

{
1 |x| ≤ Δx

2

0 otherwise
(2.19)

wCIC(x) =

{
1 −

|x|
Δx

|x| ≤ Δx

0 otherwise
(2.20)

wTSC(x) =

⎧⎪⎪⎨⎪⎪⎩

3

4
−
( |x|
Δx

)2 |x| ≤ Δx

2

1

2

(
3

2
−

|x|
Δx

)2
Δx

2
≤ |x| ≤ 3Δx

2

0 otherwise .

. (2.21)
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The total density assigned to the cell at position xc by all particles is given by the convolution

�(xc) =
m

(Δx)
3 ∫ d3x′n(x′)w(xc − x

′). (2.22)

The artificial smoothing introduced by the grid projection needs to be deconvolved in Fourier
space by dividing with the Fourier transform of the assignment function, which is given by [173]

ŵ(k) =
∏
i

sincn
(
kiL

2N

)
, (2.23)

where n = 1 for NGP, n = 2 for CIC, and n = 3 for TSC. Since the force field is calculated on
the grid and forces have to be interpolated back to the particle position using the same scheme,
this correction has to be applied twice [300].

As an alternative to solving the Poisson equation on the grid with Fourier transforms, relax-
ation methods such as Gauss-Seidel iterations can be used to invert the finite-difference matrix
equation. The convergence rate can be drastically improved by using a hierarchy of coarser dis-
cretizations for which relaxation occurs faster, and propagating the results along the hierarchy
[49, 326]. One can show that with appropriate relaxation methods, a scaling of (Ngrid) can
be achieved [316]. Additionally, multigrid methods allow for non-uniform grids adapted to the
local particle density (similar to tree and fast multipole methods), and require only a small bound-
ary layer from the neighboring processors, reducing the communication overhead in massively
parallel setups [125].

Hybrid methods

Each of the methods discussed above have advantages and disadvantages which may be com-
pensated by using a combination of methods. The FFT PM solver for example automatically
accounts for periodic boundary conditions, lacks however in spatial resolution on small-scales.
Thus, a long-range solver using FFTs is often combined with direct summation (P3M [93]) or
tree codes (TreePM [338, 40]). In multigrid PM methods, FFTs can be used on the coarsest grid
to implement periodic boundary conditions [188].

The optimal combination of methods also depends on the hardware architecture. Although
TreePM has a better scaling relation than direct summation, it comes with a larger computational
overhead and more complex data structures. The more compute-intensive but straight-forward
particle-particle computation has been found to perform faster for local short-range computations
on accelerated hardware (e.g. GPUs), whereas TreePM is preferred if only CPUs are available
[131].

2.1.3 Initial Conditions for Cosmological Simulations

The N-body simulation has to be initialized with a random realization of the perturbation field
at the starting redshift, the initial conditions (ICs). Note that the initial redshift has to be chosen
high enough so that the perturbations on the sampled scales are still in the linear regime, but it
also has to be well in the matter-dominated era to be suitable for an N-body simulation. The
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Gaussian random field can be generated in Fourier space from the power spectrum defined in
eq. (1.77) and the probability distribution of the real and imaginary components of �(k, zstart)
given by eq. (1.76). However, this naïve sampling in Fourier space introduces a significant error
in the real-space statistical properties due to the finite box size [247, 291]. Better results are
thus obtained by sampling a white noise field �(xijk) and the discretized correlation function in
real-space �(|xijk|), and by performing a convolution, i.e. [133]

�(x) = �(|x|) ∗ �(x). (2.24)

Even though the sampling is done in real space, the convolution can still be performed in Fourier
space using FFTs.

Once the linear perturbation field has been generated, the simulation particles have to be sam-
pled so that the constraints given by the density field are obeyed. We can use the Lagrangian
perturbation theory discussed in section 1.2.4 to compute the displacement and velocity fields
for particles at Lagrangian coordinates q. These Lagrangian coordinates are usually chosen on
a regular grid, however other possibilities exist, such as glass-like initial conditions, where par-
ticles are first placed randomly, and the system is evolved backwards until it reaches a quasi-
equilibrium, creating a Lagrangian point-set without preferred directions [332, 322]. Further
methods for Lagrangian particle distributions include quaquaversal tiling (Q-SET) [142] and ca-
pacity constrained Voronoi tessellation (CCVT) [197].

To compute the velocity and displacement fields in the ZA or higher order Lagrangian per-
turbation theory from these initial Lagrangian particle distributions, Poisson’s equation and gra-
dients have to be computed (cf. eq. (1.66)), either in Fourier space or using a finite difference
scheme (cf. [133]).

Zoom initial conditions

Cosmological simulations span an enormous range of scales, from the LSS on sizes up to gi-
gaparsecs down to individual galaxies and their substructures on scales ranging from several
parsecs to kiloparsecs. The computational cost of computing and storing the full dynamic range
in the entire simulated volume sets a limit on the upper and lower scales that can be simulated in a
single run. A popular approach to circumvent this limitation is the so-called multi-mass or zoom

technique, in which the immediate region around the object of interest is simulated with a highly
increased resolution compared to its surrounding large scale environment. This allows capturing
both the influences of the cosmic environment from fluctuations on scales equal and larger than
the object as well as small scale fluctuations affecting the structure of the object directly.

To set up such a zoom simulation, the Lagrangian volume that collapses to the object of interest
at later times has to be known, requiring to run a full (i.e. uniform mass) simulation first and
tracing back the particles to their initial position. We will discuss the process to set up zoom
simulations in detail in chapter 4, and we will study the Lagrangian volumes from which halos
form, the emphproto-halos, in chapter 5.

One usually abstracts the shape of the Lagrangian volume spanned by the traced-back particles
to a more regular and convex description, which corrects to some degree for potentially irregular
shapes due to the limited number of tracer particles. Common Lagrangian volume descriptors
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include minimum bounding rectangular boxes, rotated rectangular boxes, minimum bounding
ellipsoids, and convex hulls (cf. [239]). Once the Lagrangian proto-halo region is determined,
it can be sampled in a higher resolution than the remaining box. There are two common ap-
proaches to do this multi-mass sampling: either, the initial conditions can be generated at high
resolution for the entire box and subsequently degraded outside the target region, or, small-scale
perturbations can be added to the coarse resolution withing the zoom region [36, 133]. Typically,
one uses the second approach, as the memory requirements for the first method quickly become
unfeasible. Special care needs to be taken to guarantee continuity and differentiability across
coarse-fine boundaries, and to assure that the refined grid adheres to the Fourier modes of the
coarse grid, see [133] for a detailed description. A widely used multi-scale IC generator is MUSIC

[133], which we will also be using to set up the simulations used in this thesis, and which forms
the foundation of the online cosmological initial conditions for zoom simulations (COSMICWEB)
project, which we will present in chapter 4.

2.2 Analysis of Structures in Simulations

An important post-processing task is the identification of different structures that formed dur-
ing the gravitational collapse, as they provide the connection between the models of structure
formation and actual observations and give insight into environmental dependent evolution of
galaxies and halos. Therefore, various methods and tools were developed to map the phase-
space distribution traced by the N-body particles to gravitationally bound objects and identify
their distribution in a larger environmental context given by the cosmic web (cf. section 1.2.4).

2.2.1 Identifying gravitationally bound objects

Extracting halo catalogs from numerical simulations has a wide range of applications in cos-
mology. To constrain cosmological parameters, the observed LSS has to be compared with the
theoretical abundance and clustering found in N-body simulations, requiring a consistent iden-
tification of gravitationally bound structures. Knowing the formation history and structure of
halos, semi-analytic models can be applied to study the formation of galaxies and to generate
mock catalogs. The abundance of substructure found in simulations can also be directly com-
pared with observations and is important for accurate modeling of gravitational lensing (cf. e.g.
[180, 7, 210].

The standard, most basic techniques that are being used for halo-finding are the spherical

overdensity method (SO, [264, 190]) and the friends-of-friends algorithm (FoF, [72]). In the SO
method, spheres are expanded around local density peaks until the mean density falls below a
certain threshold (cf. section 1.5). The method proceeds iteratively, starting from the densest
location in the simulation and removing all particles within an identified halo from the list of
potential density peaks. However, it assumes that halos are spherical which might not correspond
to the true shape of the gravitationally bound volume.

FoF algorithms are based on the simple concept that particles belong to the same group if
they lie within some linking length b, expressed as a multiple of the mean particle separation.
In this way, a group is roughly characterized by an isodensity contour � ∝ b−3. The commonly
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used linking length b = 0.2 corresponds approximately to � ∼ 60�̄. For a spherical halo with
an isothermal profile �(r) ∝ r−2, this linking length implies a mean overdensity of 180, close
to the virialized density threshold predicted by the spherical collapse model2 [108, 190] (cf.
section 1.4). The advantage of FoF algorithms is the absence of any shape assumptions and
the simple numerical implementation via equivalence classes. HMF obtained with this method
show a nearly universal and redshift independent behavior [170, 271]. However, the algorithm
can cause spurious linking of neighboring halos in high density environments [121].

The SO and FoF methods work well for finding isolated halos, struggle however in dense
environments and identifying subhalos orbiting around larger host halos. Various codes were
thus developed to deal with these issues, by using additional information such as the complete
6D phase-space distribution [96, 30], Lagrangian information [99], and the time evolution [141].
A comprehensive comparison of different contemporary halo and subhalo finders can be found
in the series of papers from the halo finder comparison project [182, 238, 183].

Halos can be tracked through the evolving simulation by following the constituting particles,
assigning each halo a descendant halo in the next snapshot. We can then order the halos both
in space and in time, building a substructure and merger tree. For the substructure tree, halos
within the radius of a more massive halo, the host halo, can be assigned as its subhalos. In theory,
this hierarchy can span over multiple levels, i.e. subhalos of subhalos, etc. In the time hierarchy,
two or more halos may share a common descendant halo, or a previously free halo may become a
subhalo in the next snapshot, both representing a merger event. T he merger can be classified by
the mass ratio of the merging halos, with a major merger commonly referring to a ratio threshold
of 1:3 (e.g. [73, 117]) or 1:4 (e.g. [176, 268]). By following the most massive progenitor halos
back in time, one can extract the main progenitor branch.

2.2.2 Identifying components of the cosmic web

The anisotropic nature of gravitational collapse leads to the formation of a multi-scale network of
walls, filaments and halos, the cosmic web, surrounding near-empty voids (cf. section 1.2.4, and
also [329]). These patterns are also present in the distribution of observed galaxies (e.g. from
the Sloan Digital Sky Survey SDSS [311]).

Understanding and analyzing the structure of the cosmic web is important for multiple reasons.
The cosmic web defines the large-scale environment of forming halos and galaxies and the loca-
tion of such objects in the cosmic web may thus influence their evolution and appearance today.
A classic example of such an environmental effect is the origin of halo spin due to misalignments
between the inertia tensor of the forming halo and the tidal field exerted by the environment [88,
331, 250, 203]. The topology of the cosmic web was also shown to have a strong impact on star
formation activity of forming galaxies that can accrete cold gas efficiently through connected
filaments at high redshifts (e.g. [77, 10]). The geometry of the cosmic web can also be used
directly as a cosmological probe: the analysis of the distribution and morphology of voids for
example can be used to gain insight into dark energy (e.g. [241, 327, 253]).

2Studies using percolation theory show that the isodensity contour does not correspond to a single density value,
but to a range of values which for b = 0.2 is close to 81�̄ [227]. Furthermore, if only FoF is used, the mean halo
density is sensitive to the halo profile, the substructure, and the mass resolution [323, 227].
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Extracting the geometry and identifying the different components of the cosmic web is there-
fore an important task in the analysis of cosmological simulations. Similar to the different con-
ventions and techniques used to identify halos, there are various different methods and codes to
classify the cosmic web (also see the comparison papers by Colberg et al. [65] and by Libeskind
et al. [199]). The main methods can be classified in roughly three categories:

• Hessian based models use the local geometric information in the Hessian of the tidal
field or the velocity shear field. The tidal field causing the anisotropic collapse retains
its anisotropic properties on large scales and thus its eigenvalue signatures can be used to
classify the cosmic web (the so-called T-web classification, [43, 132, 138, 104]). The large
scale velocity field is directly related to the tidal field in the linear regime (see section 1.2.4)
and thus its shear contains the same geometric information (V-web classification, [155,
198]). The morphology of the density field can also directly be used (e.g. [13]). To
capture the multi-scale nature of the cosmic web, the fields can be smoothed on a range of
scales to identify components embedded in larger structures [61].

• Topological methods assign the cosmic web components to distinct large-scale topolog-
ical properties of the studied field. By using a watershed technique on the density field
for example, voids can be identified, and walls assigned to the two-dimensional structures
separating them, filaments to the one-dimensional wall intersections, and nodes to the con-
nections of filaments [255, 233, 12, 16]. This concept can be further developed using the
mathematical concept of discrete Morse theory, allowing for a sophisticated segmentation
of the volume [298].

• Finally, phase-space or Lagrangian methods use the folding of the dark matter sheet (cf.
next section) to detect the axes along which gravitational collapse has already occurred and
how far this collapse has proceeded. The MultiStream Web Analysis (MSWA) method by
Shandarin et al. [285] (also see [269]) uses the phase-space tessellation method described
in the next section to count the number of overlapping dark matter sheets at a given co-
ordinate (i.e. the number of shell-crossings). These sheet numbers are then heuristically
assigned to the cosmic web environments: voids: nstream = 1, walls: 3 ≤ nstream < 17,
filaments: 17 ≤ nstream < 90 and halos: nstream ≥ 90. The ORIGAMI [99] code finds the
individual axes along which the Lagrangian particle ordering is inverted and thus shell-
crossing has occurred. The number of these axes is then directly related to voids (0), walls
(1), filaments (2) and halos (3).

In chapter 3 we will discuss how the velocity dispersion emerging during collapse and measured
on the phase-space sheet can be used to identify the components of the cosmic web from a dy-
namical point of view.

2.3 Reconstruction of the Dark Matter Phase-Space Sheet

In section 2.1, we described how one can sample particles from the phase-space distribution to
simulate the dynamics of DM. We treated them as point-like objects with a softening to achieve
a collisionless behavior. The sampled particles are however merely a numerical tool rather than
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Figure 2.1: Left: one possibility of the decomposition of the unit cube in six equal-volume tetra-
hedra. Right: illustration of tetrahedral coordinates � = (�0, �1, �2, �3) for which each
�i is 0 at vertex i and grows to 1 at the opposite face. A point within the tetrahedron
can be described by �i ∈ [0, 1] and the constraint

∑
i �i = 1.

physical entities. Nevertheless, we can use their nature as tracers of phase-space to reconstruct the
underlying continuous distribution. This approach has been successfully demonstrated by Abel
et al. 2002 [1] and Shandarin et al. 2012 [285], and applied to study the large scale velocity fields
[139] and emergence of velocity dispersion [51] (chapter 3), to improve lensing maps extracted
from N-body simulations [9], and to reduce discreteness artifacts in the force computation of
numerical simulations [136, 134].

This section contains an overview of Lagrangian phase-space tessellation techniques, and in
particular we review the tetrahedral tessellation technique used in [1, 139] and Buehlmann &
Hahn 2019 [51] (adapted in chapter 3).

2.3.1 Tessellation of the phase-space submanifold

At early times, the CDM displacement and velocity fields are well-described by the ZA (cf.
section 1.2.4). The map q → (x, v) thus describes a three-dimensional manifold embedded in the
six-dimensional phase-space (assuming a perfectly cold fluid, which is a reasonable assumption
for CDM). The N-body particles sampled with the ZA are tracers of this submanifold and can be
thought of as vertices of phase-space volume elements. These volume elements are particularly
simple if a cubic lattice is chosen for sampling the Lagrangian coordinates (cf. section 2.1.3).

For the tetrahedral tessellation technique, we can further split each of the Lagrangian cubes
into three-dimensional simplices (tetrahedra). This decomposition is, however, not unique. The
minimum tessellation with the minimum number of five tetrahedra was for example being used
in [285]. For the discussion in this section and the analysis in chapter 3, we use the equal-volume
segmentation shown in fig. 2.1. Note that this decomposition is not isotropic and if anisotropic
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artifacts are a concern, results need to be averaged over 12 separate tessellations with rotated
decompositions.

If we keep track of the particles belonging to each volume element (e.g. by using particle ids),
we can reconstruct this tessellation at any later time. Due to Liouville’s theorem, each element,
although deformed, will still carry the same mass. As a simple density estimate, we can assume a
constant stream density inversely proportional to the volume across the tetrahedron (a piece-wise

constant approximation). The density at any position x is then the sum of the stream densities
of all intersecting tetrahedra at that point. This approximation is illustrated in fig. 2.3 (panel C),
for a two-dimensional example. The 3x3 particles span 4 unit squares in Lagrangian space, that
can each be divided into two triangles in two different ways (solid and dashed lines). For panel
C, we only use the solid triangulation; however, a better approximation can be obtained if one
averages over both triangulations.

2.3.2 Interpolation on Tetrahedra

Instead of using a piece-wise constant approximation, we can linearly interpolate any function
on the tetrahedron if we know its values at the vertices. For that purpose, we can use natural
tetrahedral coordinates � = (�0, �1, �2, �3) illustrated in fig. 2.1. One can easily check that

∑
i �i =

1. To convert tetrahedral coordinates to spatial coordinates, we can use the linear transformation

⎡⎢⎢⎢⎣

1

x
y
z

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

1 1 1 1

x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

⎤⎥⎥⎥⎦
⋅ �T ≡ J ⋅ �T . (2.25)

The volume of the tetrahedron can then be computed as3 6V = | det J |. As long as V ≠ 0, the
map � → x is invertible, and we can easily find the tetrahedral coordinates for a position x.

Any function f with known values at the vertices f (xi) = fi can be linearly interpolated in
tetrahedral coordinates as

f (�(x)) =
∑
i

fi �i(x). (2.26)

The derivative of f can be obtained via the chain rule

)f

)xi
=
∑
j

)f

)�j

)�j

)xi
=
∑
j

(
J−1

)
(i+1)j

)f

)�j

≈
∑
j

(
J−1

)
(i+1)j

fj ,
(2.27)

where we used the linear approximation of f from the previous equation. Note that the derivatives
only exists if V ≠ 0 and that the approximation is only accurate to first order.

3We use the absolute value of the determinant since the sign changes when the vertex order is reversed (e.g. during
shell-crossing).

43



Chapter 2 Cosmological Simulations

We can estimate the stream-density at the vertices by

�(qi) =

(∑N
i=1miVi

N

)−1

, (2.28)

where N is the number of tetrahedra (each with volume Vi and mass mi respectively) sharing
the vertex. Since we know the velocities at the vertices qi from the particle data, we can easily
interpolate densities, velocities, and derivatives thereof across the tetrahedron.

2.3.3 Projections of the dark matter sheet

To evaluate the spatial properties of a function f (q) interpolated on the phase-space tessellation,
we need to project the DM sheet to Eulerian space. At each point x, the projection ⟨f ⟩(x) (cf.
eq. (1.38)) can be obtained by taking the density-weighted average over all intersecting tetrahedra,
i.e.

⟨f ⟩(x) =
∑

k �k(x)fk(x)∑
k �k(x)

, (2.29)

where �k(x) and fk(x) are interpolated from their values at the vertices of the tetrahedra Tk. We
can use this formula to estimate the mean velocity ⟨v⟩(x), the velocity dispersion (cf. eq. (1.39))

�2
ij(x) = ⟨vivj⟩(x) − ⟨vi⟩(x)⟨vj⟩(x), (2.30)

and any higher order moment of the phase-space distribution function.
Panel (D) of fig. 2.3 shows the density estimate using the interpolated triangulation technique.

Unlike panel (C), the result is also averaged over both triangularization possibilities. Thanks
to the interpolation, the estimated density is continuous across the triangle edges, except at the
transitions between the single- and multistreaming regime. However, caustics at these interfaces
cannot be captured by the tetrahedral decomposition (unless the volume becomes zero). To cap-
ture the caustics, higher order interpolations have to be used, which we will discuss next.

2.3.4 Higher order interpolation on cubes

The interpolation technique described above is a linear piece-wise interpolation on a tetrahedral
segmentation. Higher order interpolations can be achieved by considering larger Lagrangian
volume elements with more tracer particles. In particular, Hahn & Angulo 2016 [134] used 3-
variate polynomials on cubic volume elements to interpolate the mapping q → x. Combining
three polynomials of order n along each dimension, we can write a 3-variate polynomial as

�(k)(q) =
n∑

i,j,k=0

aijkq
i
0
qj
1
qk
2
. (2.31)

Note that the multivariate polynomial itself has order 3n, and thus can have multiple roots even
for n = 1; for n > 1, the map can only be inverted numerically. The polynomial has n3 degrees
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of freedom, and therefore, a Lagrangian cube with side length n has to be chosen to compute the
coefficients. By writing the Lagrangian coordinate combinations in a vector Q defined as

Q =
(
1, q3, q

2
3
… , qi

1
qj
2
qk
3

⏟⏟⏟
Qn2i+nj+k

,… , qn
1
qn
2
qn
3

)
, (2.32)

we can write the map q → x as
x = AQ. (2.33)

The coefficients of the matrixAwith shape (3, n3) can be determined from the coordinates at each
of the n3 vertices. Defining the coordinate matrices  = (Q1,… ,Qn3) and  = (x1,… ,xn3),
we can compute A as

A = −1. (2.34)

Note that if the Lagrangian points are on a regular grid, −1 has only to be computed once per
given interpolation order.

Unlike the tetrahedral decomposition discussed previously, it is difficult to invert the map due
to the non-linear terms. Therefore, it is less feasible to project the dark matter sheet point-wise
for the higher-order interpolations. However, we can use the interpolation to sample additional
“particles” to refine the resolution. These particles can then be used, for example, to estimate
the density via CIC or TSC (cf. section 2.1.2) with lower Poisson noise, increasing the force
accuracy, especially in low density regions [134].

Lagrangian Space Eulerian Space

Figure 2.2: Refinement of the particle sampling in a Lagrangian cube using a bivariate polyno-
mial that was fit to 9 N-body particles (black). The refinement particles (blue) are
sampled on a regular grid in Lagrangian space.

Figure 2.2 illustrates the sampling of additional high resolution particles with uniform spacing
on the Lagrangian cube and the interpolated mapping to Eulerian space. If the refinement grid
has the resolution nf , each new particle will have mass mf = (n∕nf )

3m, where m is the N-body
particle mass. By writing the Lagrangian coordinates of the refined particles as the matrix f

similar to , their mapped Eulerian coordinates can be calculated by

f = Af = −1f . (2.35)
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Note that if the same refinement grid is used across the simulation, −1f has to be computed
only once, and the new particles can easily be sampled by a single matrix multiplication for
each Lagrangian volume element. The linear and second order interpolation of the mapping of
a two-dimensional Lagrangian square in comparison with the triangulation is shown in fig. 2.3.

An alternative method to subsample the Lagrangian space is by using Fourier techniques on
the displacement field  (q) = x(q) − q, i.e. trigonometric interpolation. In theory, one could
use the Fourier transform  ̃ of the full field and add additional modes k above the Nyquist
frequency set to 0. Doubling the Fourier modes along each axis by zero-padding the new modes
and transforming the displacement back to real-space, would therefore smoothly increase the
particle resolution by 23. However, for reasonably high-resolution simulations, this method will
quickly reach the memory limits of common computer systems. It can however also be applied to
subsets of Lagrangian space, if the volume is sufficiency padded to account for the non-periodic
boundaries.

Furthermore, we can apply the tetrahedral decomposition and projection method discussed
previously to the subsampled particles in order to combine the advantages of both methods:
higher order, smooth interpolations and point-wise evaluation of the densities, velocities and
moments thereof. Figure 2.5 shows a comparison of the densities and velocities obtained with the
tetrahedral tessellation method once directly applied to the particles, and once on a subsampled
set of particles using the third order polynomial method with m = 2 (i.e. 22⋅3 = 64 times the
number of tetrahedra). We can clearly see that especially in low-density regions, the density
estimate becomes less “edgy” and caustics become better visible.

In addition, we also measured the velocities of the streams along two lines, one through what
appears to be a wall or filament, and one directly through the halo at the center of the shown slice.
Along the first line, we can see the phase-space spirals discussed in fig. 1.3 (note that due to the
projection on the x, y and z axis, the spirals seem to intersect each other). Adding the particle
subsampling, the curves become significantly smoother. For the cut through the halo, the number
of overlapping streams becomes so high that individual streams can no longer be distinguished
(∼ 600 streams). We therefore also show a velocity histogram at the halo center, showing a
Gaussian-like distribution of velocities. Note that the true velocity distribution function is still
a sum of Dirac-delta functions, and the approach to a Maxwell-Boltzmann distribution through
(chaotic) mixing is only approximate (cf. e.g. [143, 213]).

As a final remark, it is worth emphasizing that the tessellation and interpolation methods de-
scribed in this section do not “create” new information, i.e. the simulation and any result drawn
from it is still limited by the particle resolution. The methods help, however, to lower the shot-
noise from the limited number of sampling points in phase-space, and allow for point-wise mea-
surements of densities, velocities, and moments of the phase-space distribution that would not
be possible by using the N-body particles only.
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Figure 2.3: Illustrations of different methods to map Lagrangian space (left column) to Eulerian space
(right columns). Nine particles that were initially on a regular 3x3 grid are mapped to Eu-
lerian space (A) where particles 2 and 8 have flipped their position. Instead of treating the
particles as point-like objects, we can assign a square volume to them (B), similar to the
partition in Lagrangian space. The regular grid in Lagrangian space can be tessellated into
equal-area, two-dimensional simplices (triangles) which can be reconstructed from their ver-
tices in Eulerian space. This triangulation is, however, not unique, and in two dimensions
two possibilities exist. (C) shows the density estimation from a single triangulation if for
each triangle a constant density inversely proportional to its volume is assumed. This es-
timation can be improved by averaging over both triangulations and linearly interpolating
the density across the triangles from the value estimated at the corners (D). The distribution
can also be interpolated by fitting a multivariate polynomial across a Lagrangian square. (E)
shows the combination of linear interpolations on four 1x1 squares and (F) of one 2nd order
interpolation on the full 2x2 square.
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Figure 2.4: Illustration of density estimates with CIC and with dark matter sheet tessellation methods.
The images are centered on an isolated halo1 with M200c ∼ 1.9 × 1013 ℎ−1M⊙ from the low
resolution 300MPC_lowres simulation. Top: smoothed CIC deposition (Gaussian kernel with
� ∼ 50 ℎ−1kpc) projected along the z-axis (left) and sliced along the center (right). Middle:
interpolation on a single tetrahedral decomposition and average over all possible decomposi-
tions. Bottom: CIC decomposition of a large number of additionally sampled particles using
the linear and quadratic polynomial interpolation.

1 The halo on COSMICWEB: https://cosmicweb.oca.eu/simulation/300MPC_lowres/halo/23802097
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Figure 2.5: Top: illustration of the density estimates with the tetrahedral decomposition (aver-
aged over all possible tessellations) using the N-body particles (left) and on sub-
sampled particles using the polynomial interpolation with n = 3 and m = 2 (right).
Bottom: Velocity distribution along two lines shown on the density slices. Black
lines show the velocities obtained from particles directly, orange from the subsam-
pled particles. For line B, we only show the subsampled result, and in addition the
velocity histogram at the halo center (indicated by the black vertical line).
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CHAPTER 3
The Large Scale Velocity Dispersion in

the Cosmic Web
This chapter has been adapted from Buehlmann & Hahn [51]

and supplemented with additional results.

In the previous chapters, we saw how gravitational collapse in a cosmological context produces
an intricate cosmic web of voids, walls, filaments, and nodes. The anisotropic nature of this colli-
sionless collapse leads to the emergence of an anisotropic velocity dispersion, or stress, absorbing
most of the kinetic energy after shell-crossing. In this chapter, we measure this large-scale ve-
locity dispersion tensor �2

ij in N-body simulations using the phase-space tessellation technique
discussed in section 2.3.

In the CDM paradigm of cosmological structure formation, the VDF of dark matter particles is
well approximated by the cold limit, in which they occupy only a three-dimensional hypersurface
in the six-dimensional phase-space: the Lagrangian submanifold. This submanifold can be pa-
rameterized by the Lagrangian coordinate q ∈ ℝ

3, so that the phase-space distribution function
can be written as

fCDM(x, v, t) = ∫ d3q �D (x − x(q, t)) �D (v − v(q, t)) , (3.1)

where x(q, t) and v(q, t) are the momentary position and velocity associated with q at time t.
At the earliest times, the submanifold coincides with three-dimensional space, but metric per-
turbations cause it to deform increasingly due to the growth of velocity perturbations reinforced
non-linearly by self-gravity, leading to shell-crossing at later times and resulting in multivalued
velocities.

The monokinetic regime is given by those regions where there is a single solution so that the
VDF is a Dirac �-distribution (which is the zero-temperature limit of a Gaussian velocity distribu-
tion). Its evolution is fully described by the continuity and the Euler equation (cf. section 1.2.3).
Only after shell-crossing, when the VDF becomes a discrete sum over �-distributions, the second
and all higher order cumulants emerge, so that an infinite hierarchy of fluid equations would have
to be solved in the absence of collisions or other efficient relaxation processes suppressing the
higher order cumulants. It is only on the smallest scales, i.e. inside halos that are not dominated
by recent accretion, that efficient (chaotic) mixing lets the velocity distribution approach a VDF
relatively close to a Maxwell-Boltzmann distribution (cf. for example [143, 213]).

In three dimensions, the emergence of the second and higher order cumulants happens only
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Chapter 3 The Large Scale Velocity Dispersion in the Cosmic Web

in those subspaces in which shell-crossing occurred due to the triaxial nature of the gravita-
tional collapse. This anisotropic collapse should thus be reflected, at least on larger scales, in
the second moment of the local VDF, which is the velocity dispersion tensor. We focus on this
particular aspect in this chapter by asking: (1) how does the anisotropic triaxial collapse of

structure lead to an anisotropic velocity dispersion on large scales, and, (2) to what degree is

the anisotropic nature retained even in the presence of small-scale perturbations that will drive

a gradual isotropization in the deeply non-linear regime. Studying the large-scale VDF is im-
portant for both our general understanding of cosmic structure formation and in particular for the
implications on redshift-space distortions, since the three-dimensional positions of galaxies are
always a sum of their positions and their line-of-sight velocities.

The structure of this chapter is as follows. First, in section 3.1, we discuss how gravitational
collapse and the formation of the cosmic web lead to the emergence of velocity dispersion in
the originally perfectly cold universe. Then, in section 3.2, we provide a brief summary of the
N-body simulations and the tessellation method that we use to measure the velocity dispersion
tensor field, with more details in appendix A.3. In the ensuing sections, we present our results on
the measurement of the velocity dispersion field. We start in section 3.3 with an analysis of the
magnitude, including the evolution, density relations, and two-point correlations. In section 3.4,
we evaluate the anisotropy of the velocity dispersion tensor, derive a natural and parameterless
cosmic-web identification method, and study the density dependence and time evolution of the
detected cosmic web environments. We investigate the orientation of the dispersion field in the
cosmic web in section 3.5 and compare the DM velocity dispersion with the temperature of gas
in collapsed structures measured from a two-component simulation including baryons. Finally,
we summarize our findings in section 3.7, and give an outlook on future projects in section 3.8.

3.1 The emergence of velocity dispersion from shell-crossing

In section 1.2.4, we have discussed how at early times (or on large scales), the dynamics of
CDM can be described by the ZA. At the earliest times, the map from Lagrangian to Eulerian
space is bijective, and therefore the velocity field v(x) is single valued at every point in space.
However, as time evolves, the dark matter fluid accelerates towards potential wells and the initial
perturbations grow according to the growth function D+(t) until the dark matter sheet undergoes
shell-crossing and enters the multistreaming regime. Since perturbations, and therefore the force
fields, generally do not possess spatial symmetries, the collapse is anisotropic and happens at
different rates along different axes. The principal axes of collapse correspond to the eigenvectors
of the tidal field Tij = )2�∕)qi)qj .

Since dark matter in the standard CDM paradigm is collisionless, there is no rapid process
that drives the multistreaming regions towards an isotropic Maxwell-Boltzmann distribution and
thus an infinite hierarchy of moments of the Vlasov equation would need to be considered in
an accurate analytic model (cf. section 1.2.3). Once the perturbation is in the multistreaming
regime, the velocity dispersion tensor1 is defined as the variance of the velocities of the various

1Note that in some literature, �ij is also used to denote the velocity shear tensor Σij =
(
)vi∕)xj + )vj∕)xi

)
∕2 (e.g.

[245]) and should not be confused with the velocity dispersion tensor defined here.
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streams at a given point (cf. eq. (1.42)), weighted by their respective local density on each stream,

�2
ij(x) =

⟨
vi(x)vj(x)

⟩
−
⟨
vi(x)

⟩⟨
vj(x)

⟩
, (3.2)

where stream averaging is defined as

⟨f (x)⟩ =
∑

k �
(k)(x)f (k)(x)∑
k �

(k)(x)
. (3.3)

Here, the index k runs over the intersections of the dark matter sheet with position. We will now
take a closer look at the evolution of the velocity dispersion as it emerges along the first axis of
collapse and how the collapse along the subsequent axes are imprinted in �2

ij .

3.1.1 From one-dimensional collapse to the cosmic web

To get an intuitive understanding of the velocity dispersion immediately after collapse, we will
first look at a simplified model of a perturbation with a single mode k in one dimension (a plane
wave), �(q) = A cos(kq)with amplitudeA. In the ZA, which in 1D is exact before shell-crossing,
we can write

x(q, a) = q −D+(a)Ak sin(kq) u(q, a) = −Ḋ+(a)Ak sin(kq). (3.4)

The mapping q ↔ x is unique for D+(a) < D+(a×), where shell-crossing occurs at a×. This time
is defined by D+(a×) ≡ A−1k−2, at which time the spatial derivative at q = 0 vanishes and the
wave collapses. In fig. 1.3 we illustrate the phase-space configuration of the plane wave before
and shortly after collapse, and at twice the collapse time a = 2a×. While the ZA is still able to
model the dark matter sheet in the first snapshot, it deviates strongly at later times and especially
overestimates the width of the collapsed region.

The Eulerian density shows the characteristic caustics at the border of the collapsed region
where )x∕)q vanishes. In the ZA, these outer caustics are captured (albeit at the wrong loca-
tions), whereas the density peaks from subsequent shell-crossings at later times cannot be recov-
ered. The velocity dispersion, zero in the monokinetic regime, rises strongly towards the inside
of the collapsed region. Since the ZA does not capture subsequent shell-crossings due to sec-
ondary infall, it cannot correctly predict the long-term evolution of the velocity dispersion. In
the full non-linear solution, the central density increases together with the velocity dispersion,
keeping the two in a dynamical equilibrium that cannot be described in the ZA. Nevertheless,
the ZA provides a first estimate of the velocity dispersion immediately after shell-crossing. In
appendix A.4 we derive an analytic solution for the lowest order polynomial expansion of a plane
wave still leading to collapse and show that, within the range of scales captured by our simula-
tions, we expect the velocity dispersion measured shortly after collapse to increase with the scale
of the perturbation.

In three dynamical dimensions, collapse can proceed along a second and a third axis, first
producing filaments, and finally halos through shell-crossing from the multi-dimensional flow
field (cf. [18, 17, 150, 100] for detailed discussions of the emergence of caustic singularities
during anisotropic gravitational collapse and the nature of the multistreaming regions). The
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number of collapsed axes and their directions is directly imprinted in the velocity dispersion
tensor, as velocity dispersion is nonzero only along the dimensions that have already collapsed.
Studying the eigenvalues and eigenvectors of �2

ij thus allows us to measure the advancement in
structure formation and to identify the different components of the cosmic web. Since �2

ij is
a symmetric, positive semidefinite tensor, its associated eigenvalues �i are real and positive or
zero. In theory, an eigenvalue of zero corresponds to an un-collapsed dimension along which no
velocity dispersion has been generated. In this sense, a void has three zero eigenvalues, a pancake
two, a filament one, and for a node all eigenvalues are different from zero. Naturally, due to finite
numerical resolution and in a universe generated from random fluctuations on a multitude of
scales, we will hardly find exactly vanishing eigenvalues. We discuss a natural way of separating
the different regimes depending on the relative strengths of the eigenvalues in section 3.4.

3.2 Measuring large-scale velocity dispersion in N-body simulations

To measure and analyse the properties of the dark matter velocity dispersion in the non-linear
regime, we rely on numerical simulations. For this purpose, we have performed a set of cos-
mological N-body simulations using the tree-PM code GADGET-2 [300], with initial conditions
generated at redshift z = 99 using MUSIC [133]. The detailed parameters for each simulation are
described in appendix A.3.

The set comprises three pairs of a high and low resolution simulation (with 10243 and 5123

particles) of a 300 ℎ−1Mpc box that have been initialized with the an identical random seed
and cosmological parameters consistent with the Planck (2015) results [67]. For two pairs (la-
belled 300WDM1 and 300WDM2), we filter out the small-scale structure in the initial condi-
tion, whereas for the 300CDM pair we use the full spectrum. To truncate the initial power
spectrum, we use the WDM model discussed in section 1.3.2 with thermal relic DM parti-
cle masses of 250eV (300WDM2) and 500eV (300WDM1), leading to truncation scales � =

250ℎ−1kpc and � = 113ℎ−1kpc respectively. These scales correspond to half-mode masses of
Mhm

WDM = 2.2 × 1012ℎ−1M⊙ and Mhm
WDM2 = 2.2 × 1011ℎ−1M⊙. The scales that we are using are

of course incompatible with observations, but instead were tuned to correspond to roughly the
non-linear scale M∗ at z = 0, as well as to an approximately ten times smaller scale. We use the
same amplitude for the power spectrum in the WDM initial conditions as the one derived from
�8 in the CDM case, so that perturbations on large scales have identical amplitudes. Together
with equivalent random seeds, all simulations have the same large-scale structure, up to some
small back-reaction from small scales which are not present in the WDM runs.

Additionally, for the comparison of the velocity dispersion with the gas temperature in sec-
tion 3.6, we have run a DM-only and a hydrodynamic simulation of a 150 ℎ−1Mpc box, labelled
150CDM and 150CDM_H respectively. Both simulations use the same random noise field, al-
lowing a direct comparison. The hydrodynamic simulation was run with the adaptive-refinement
mesh code RAMSES [312], with an initial resolution of 210 and a density dependent refinement
criterion to a maximal resolution of 213. Since we mainly focus on the isotropization of the gas
velocity dispersion and shock heating during collapse, additional features such as gas cooling,
heating from the UV background, and subgrid modeling of baryonic physics have been turned
off.
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To determine the DM velocity dispersion at any given point x, we reconstruct the fine-grained
phase-space distribution of dark matter using the tessellation method with the tetrahedral decom-
position described in section 2.3 (also see [1, 285]). More precisely, we use the equal volume
decomposition depicted in fig. 2.1. From this decomposition, we can measure the moments of
the velocity field at a given point x in configuration space according to eq. (2.29). The velocity
dispersion tensor field, i.e. the variance of the velocities of the tetrahedra intersecting that point,
can thus be written as:

�2
ij(x) =

∑
k �

(k)v(k)i v(k)j∑
k �

(k)
−

∑
k �

(k)v(k)i∑
k �

(k)

∑
k �

(k)v(k)j∑
k �

(k)
. (3.5)

The fields �(k) and v(k)i are interpolated linearly on the tetrahedra to the evaluation point using
the values at the vertices. For our statistical result, we use the entire volume of the 300 ℎ−1Mpc
boxes and compute the velocity dispersion on a 10243 and 5123 grid. For the visualizations, we
use a finer grid of sampling points around a M200c = 8.9 × 1013 ℎ−1M⊙ halo.

3.3 Magnitude of the large-scale velocity dispersion

We start our analysis by measuring the strength of the local velocity dispersion. A natural quantity
of the velocity dispersion magnitude is the trace of �2

ij , which measures the sum of the dispersion

along its main axes, tr(�2
ij) =

∑
i �i, and essentially corresponds to the effective temperature of

the dark matter due to gravitational collapse. We will first look at some visualizations of tr(�2
ij)

in our simulations and then look more closely at its local density dependence and its evolution
over time. We then measure the autocorrelation as well as cross correlations with the overdensity
and velocity divergence.

3.3.1 Visual impression

To give a visual impression of the cosmic velocity dispersion field and its spatial properties, we
will first focus on the surroundings of a halo with mass M200c ∼ 8.9×1013 ℎ−1M⊙. We compute
the velocity and density fields from the tessellation of the dark matter sheet at points located on
a uniform 5123 grid within a 18 ℎ−1Mpc box centred at the halo. The halo we chose is massive
enough to exist in all simulations. As can be seen from the density in the multistreaming regions
shown in the top row of fig. 3.1, the halo is embedded in the intersection of large walls with
several other massive halos close-by. In the WDM simulations, low density walls and higher
density filaments at the wall intersections are clearly visible. The highest density is reached
in the central halo. Shifting the suppression scale for small-scale fluctuations towards lower
masses extends the multistreaming web in previously uncollapsed regions and adds additional
perturbations within the existing walls and filaments. Most notably, filaments begin to appear
in walls, and nodes in filaments. We will define cleanly what we mean by walls, filaments and
nodes in section 3.4.

The second and fourth rows of fig. 3.1 illustrate the velocity dispersion amplitude in the three
simulations. Starting from the 300WDM1 simulation, we can clearly see walls separating large
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Figure 3.1: Visualization of the normalized density in the multistreaming regions (first and third
row) and the amplitude of the velocity dispersion tr(�2

ij) (second and fourth rows) for
a 18 ℎ−1Mpc box around a M200c = 8.9 × 1013 ℎ−1M⊙ halo.
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volumes with no velocity dispersion. These regions, the cosmic voids, have not collapsed and
are thus still in the monokinetic single-stream regime. Among the wall regions, the velocity
dispersion increases with the size and thickness of the structures. This is consistent with our
one-dimensional collapse model presented in appendix A.4, predicting that larger-scale pertur-
bations also have higher velocity dispersion after collapse and result in wider collapsed regions.
In the centre of the cross sections of the large walls, we can see additional finer structures with
lower velocity dispersion. These structures originate from the secondary collapse in a direction
perpendicular to the wall, causing enhanced densities and suppressed velocity dispersion due to
the higher weight of the inner streams (cf. fig. 1.3 at a = 2.0a×).

The major structures remain remarkably similar in all simulations with only little change in
the strength of the velocity dispersion. Decreasing and removing the suppression of small-scale
perturbations in the initial conditions naturally adds multistreaming structures in the voids (cf.
[306] for a detailed discussion of this aspect). These fine structures are small in size and width,
and have relatively low velocity dispersion. The additional small-scale structures within exist-
ing collapsed regions have a relatively small effect on the measured velocity dispersion as it is
dominated by the large-scale modes. We will further discuss and quantify the influence of small
perturbations in section 3.5.

3.3.2 Density correlation of the velocity dispersion

To further investigate the relationship between density and velocity dispersion, we compute
tr(�2

ij) on the full box and plot its distribution with respect to the density (TESS) measured in the
multistreaming regions (remember that the velocity dispersion vanishes exactly in single stream
regions). The results are plotted in fig. 3.2. The shaded regions show the 100%, 99%, 90%, 50%,
and the peak 5% contours and the black lines the median and the 95% interval of the distribution
at a specific density 1+ �. Additionally, we include the results from the lower resolution simula-
tion to test for convergence. We find consistent results at high densities but deviations especially
for the CDM simulation in low density environments, where the lower resolution simulation fails
to capture the collapsed small-scale fluctuations with low velocity dispersion and low densities.

We find that above a density of � ∼ 4 in the 300WDM1 realization and � ∼ 1 in the 300CDM
simulation, the velocity dispersion is positively correlated with density, with roughly tr(�2

ij) ∝

(1 + �)� and � ∼ 0.5 − 1. The correlation is stronger in the 300CDM simulation due to the addi-
tional low density, low velocity dispersion regions which do not exist when small-scale fluctua-
tions are suppressed. At low densities, this trend is reversed and the velocity dispersion increases
towards the few collapsed regions below mean density. This is most likely due to the collapsed re-
gions with the lowest densities – walls or pancakes – but which still have high velocity dispersion
if they originate from a large-scale mode, as can be seen from the visualizations.

The volume distributions of the multistreaming regions peak at � ∼ 1 − 3 and tr(�2
ij) ∼

103 − 104, depending on the truncation scale of the small-scale structure (higher densities and
higher velocity dispersion in the truncated simulations). The presence of small-scale fluctuations
in the 300WDM2 and 300CDM simulations does not affect the distribution at the high end of
the velocity dispersion distribution, but adds structures with low velocity dispersion and low to
medium (� ∼ 10) density. This is consistent with the observation of added small-scale structure
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Figure 3.2: Distribution of the velocity dispersion amplitude tr(�2
ij) and density (TESS) mea-

sured in the complete simulations, with the shaded areas indicating the 100%, 99%,
90%, 50%, and the peak 5% contours of the distribution. The black lines show the
median (solid) and the 95% interval for the distribution at a fixed density 1 + �. In
addition, we show the intervals obtained from the lower resolution simulations in
lighter colors. The bottom dotted lines indicate a (1 + �) and (1 + �)0.5 slope as
comparison.

with low velocity dispersion in previously uncollapsed regions, but persistently high velocity
dispersion within the large-scale structures.

3.3.3 Two-point statistics of the cosmic velocity dispersion

As one can see from the 3d-visualizations in fig. 3.1, and later in fig. 3.5 and fig. 3.6, the veloc-
ity dispersion is spatially correlated, both in amplitude and in direction. First, we will focus on
amplitude auto- and cross-correlations and will focus on directional correlations below in sec-
tion 3.4. Since the velocity dispersion vanishes in single-stream regions, the field is not defined
everywhere in space, hence the resulting two-point statistics will also include a strong signal of
the size and shape of multistreaming regions.

To analyse the spatial clustering of the velocity dispersion, it is useful to measure its autocor-
relation and cross-correlation with the density field in Fourier space. The density and velocity
dispersion power spectra and the corresponding cross-spectrum are given by

⟨
�(k)�(k′)∗

⟩
= P��(k) �D(k − k′) (3.6)⟨

�2(k)�2(k′)∗
⟩
= P�2�2(k) �D(k − k′) (3.7)⟨

�(k)�2(k′)∗
⟩
= P��2(k) �D(k − k′), (3.8)

with �2 = tr(�2
ij). We deconvolve the density field (CIC) with the CIC assignment kernel

WCIC(k) =
∏

i sinc
2(ki∕2kNy), to correct for the smoothing effect of the mass assignment scheme

close to the Nyquist wave number kNy = N�∕L, and de-alias the measured density power spec-
trum by interlacing the original field with a grid shifted by half a cell size in all directions (cf.
[283]).

58
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Figure 3.3 shows the measured power spectra at redshift z = 1 and z = 0 for the three sim-
ulations. Starting from the top, we notice that at both redshifts the matter power spectrum is
enhanced at small scales compared to the linear power spectrum due to the non-linear growth of
structures. As expected from the set-up of the simulations, the amount of small-scale clustering
is dependent on the truncation scale of the initial power spectrum. A comparison between the
low and high resolution simulations shows that the results are well converged.

For the velocity dispersion power spectrum, the situation is somewhat different: even at the
largest scales, we find a measurable offset of ∼ 20% in amplitude between the 300WDM1,
300WDM2 and 300CDM simulations. A comparison with the lower resolution simulations
shows that none of the measurements are perfectly converged. This lack of fast convergence
is very reminiscent of the convergence properties of the vorticity power spectrum, where various
studies have found that the non-linear scale has to be very well resolved [267, 139]. Just as the
vorticity, �2

ij is only non-zero in multistreaming regions and thus more strongly affected by res-
olution than those quantities that are non-zero also in the monokinetic regime and thus defined
everywhere in space.

Since shell-crossing occurs predominantly in overdense regions, the velocity dispersion is
highly correlated with the density field on large scales. On the largest scales, we find that
P�2�2(k) ∝ k−1, with a sharp drop on small scales. The same holds for the cross-spectrum, which
however becomes negative above k ∼ 6 ℎMpc−1 at z = 1. The inversion moves towards larger
scales at later times, with k ∼ 3.5 ℎMpc−1 at z = 0. This is a signature of the largest collapsed
structures and has also been observed in the density – velocity divergence cross-spectrum [139,
169] and the velocity divergence – velocity dispersion cross-spectrum [169] at similar scales.
The transition from correlation to anticorrelation at small scales is of course consistent also with
the two-dimensional density-dispersion histograms we presented in the previous section. We
note that the scale of anticorrelation between overdensity and velocity dispersion is independent
of the type of simulation, and nearly independent of the resolution, indicating further that it orig-
inates from the largest collapsed structures. This phenomenon thus plausibly originates from the
outer shells of the largest collapsed structures and we therefore expect it to be intimately related
to the splash-back radius of galaxy clusters (cf. [119, 228, 212]), which denotes the outer caustic
in isotropically collapsed systems (what we will call ‘nodes’ below).

3.4 The anisotropy of the velocity dispersion tensor

We previously argued that the progression of anisotropic collapse from walls to filaments to nodes
should be reflected directly in the tensor �2

ij , absent of any strong isotropization processes. In this
section, we analyze the anisotropy of the velocity dispersion using the anisotropic coefficients cl,
cp, and cs which are widely used in neuro-sciences for diffusion tensor imaging (e.g. [4, 251]).
These allow us to visualize the anisotropy of �2

ij and provide a natural segmentation of the cosmic
web. We then analyse the mass and volume fractions of the identified environments, measure
their density distribution, and compare our results with other cosmic web finders. Following
the N-body particles across multiple snapshots, we trace the mass build-up of the environments
through time and measure the evolution of the mass and volume fractions.
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3.4.1 Classification of the cosmic web

In an idealized setting we would expect that uncollapsed and collapsed axes should correspond to
vanishing and non-zero eigenvalues of the velocity dispersion tensor respectively. Naturally, an
exact vanishing of eigenvalues is unlikely in a numerical setting, and due to overlapping perturba-
tions on various scales. We therefore derive three dimensionless quantities from the eigenvalues
�1 > �2 > �3 ≥ 0 of �2

ij which capture the relative strengths of the collapsed dimensions (re-
flecting thus dominantly one-, two-, or three-dimensional collapse):

1. the linear anisotropy cl = (�1 − �2)∕(
∑

�i),

2. the planar anisotropy cp = 2(�2 − �3)∕(
∑

�i), and

3. the spherical anisotropy (or isotropy) cs = 3�3∕(
∑

�i).

Note that by construction cl + cp + cs = 1, and hence these quantities parametrize a barycentric

space with three extrema (cs = 1: fully symmetric, cp = 1: symmetric along two axes, and
zero along the third, cl = 1: dispersion only along one axis) and can be represented in a ternary
diagram, as shown in fig. 3.5. We can divide this diagram into three parts depending on the
dominant parameter and decide if a region is either

1. linear-anisotropic ⇔ cl is dominant ⇔ ‘wall’-like,

2. planar-anisotropic ⇔ cp is dominant ⇔ ‘filament’-like,

3. isotropic ⇔ cs is dominant ⇔ ‘halo’-like.

For a more sophisticated classification of the cosmic web, one might consider different segmen-
tations of the anisotropy triangle, for example, by classifying filaments as regions which have a
planar anisotropy larger than a small threshold, above which one assumes that collapse along the
second axis has started. An analogous argument can be made for the isotropic component and
nodes. We leave the investigation of these advanced classifications for a later study and define
walls, filaments, and nodes depending on the dominant anisotropic parameter which avoids the
introduction of additional parameters. Note that the multi-scale nature of the cosmic web means
that filaments can be embedded in walls and nodes in filaments. Since this method uniquely
identifies the environment at a specific point in space by its dominant anisotropic parameter, it
does not resolve this hierarchical structure and the classification depends on the amount of small-
scale perturbations. To identify the cosmic web on various scales, additional smoothing steps
(either by suppressing small-scale fluctuations in the initial conditions or by post-processing) are
required.

We compute the anisotropy parameters for each volume cell in the multistreaming region and
show the resulting volume and mass distribution in fig. 3.7 for the 300WDM1_10, 300WDM2_10
and 300CDM_10 simulations. The largest part of the volume in all simulations has a highly
linear-anisotropic velocity dispersion and hence is in wall-like structures. This is more pro-
nounced in the WDM1 case, where 83% of the multistreaming volume has a planar anisotropy
coefficient smaller than 0.25 and only a small fraction (∼ 3%) has an isotropic coefficient larger
than 0.25. In the CDM simulation, a larger fraction of the collapsed volume is isotropized, with
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3.4 The anisotropy of the velocity dispersion tensor

26% of the volume having cp > 0.25 and 10% having cs > 0.25. Interestingly, we can see that the
large volume fraction with vanishing spherical anisotropy in the 300WDM1 realization moves
away from the cs = 0 line and becomes more isotropized by the small-scale perturbations in the
300CDM simulation.

Looking at the mass-weighted distribution, we find a second peak at large cs originating from
high density regions which are predominantly located in fully collapsed structures (cf. fig. 3.8).
From the 300WDM1 (300CDM) simulations, we find 17% (26%) of the collapsed mass being
in regions with a planar coefficient larger than 0.25 and 42% (60%) in regions with an isotropic
coefficient larger than 0.25. The results for the 300WDM2_10 simulation are located between
the other two simulations.

Simulation uncollapsed walls filaments nodes
% % % %

vo
lu

m
e 300WDM1 95 (95) 4.9 ( 4.5) 0.5 ( 0.4) 0.1 ( 0.1)

300WDM2 92 (93) 7.4 ( 6.3) 0.7 ( 0.7) 0.2 ( 0.2)
300CDM 89 (91) 9.6 ( 7.4) 1.2 ( 1.0) 0.4 ( 0.3)

m
as

s 300WDM1 41 (48) 33 (31) 11 ( 9) 16 (13)
300WDM2 30 (40) 35 (33) 10 (10) 24 (17)

300CDM 24 (37) 36 (34) 11 (10) 30 (19)

�̄ �̄ �̄ �̄

de
ns

ity

300WDM1 -0.6 (-0.5) 5.7 ( 5.9) 22 ( 21) 204 ( 125)

300WDM2 -0.7 (-0.6) 3.8 ( 4.3) 14 ( 13) 115 ( 78)

300CDM -0.7 (-0.6) 2.7 ( 3.6) 8 ( 9) 69 ( 63)

Table 3.1: Top: mass and volume fractions in the single- and multistreaming regions. The mul-
tistreaming regions are split by the dominant anisotropy parameter into linear (wall-
like), planar (filament-like), and isotropic (node-like) environments. The percentages
are computed from the 10243 particle realizations using the tessellation density esti-
mate, with the CIC densities showing consistent results. Bottom: mean density of the
individual environments. Values from the 5123 simulations are given in parentheses
for comparison and highlighted in italic if they show a strong discrepancy.

In table 3.1 we list the volume and mass fractions of the cp, cl, cs dominant and of the single-
stream regions for the different simulations, including the lower resolution simulations to check
for convergence. We note that convergence of the results in the CDM limit is generally a non-
trivial question since in the perfectly cold limit, virtually all structure on the investigated scales
should be in halos (cf. [306]). This can be seen from the CDM volume and mass fraction in
node-like regions that is larger in the higher resolution simulation.

The fraction of volume and mass in multistreaming regions increases with colder simulations,
consistent with the additional small-scale structures observed in fig. 3.1. The uncollapsed single-
stream regions remain the dominant fraction of the volume, whereas most mass can be found in
collapsed regions. Each of the three multistreaming regions gains volume by adding small-scale
structures, but only the mass fraction in node-like regions increases significantly, while that in
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3.4 The anisotropy of the velocity dispersion tensor

walls and filaments remain roughly constant.
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tions at high (solid) and low (dotted) resolutions. Bottom: Relative distribution of
regions with predominately linear anisotropy (walls), planar anisotropy (filaments),
and spherical anisotropy (nodes) depending on the local density. We also include the
single-stream distribution that falls within the shown density range.

To further investigate the density dependence of the anisotropic parameters, we measure their
mean value as a function of the local density (TESS) �(x) + 1. The results are shown in the top
panels of fig. 3.8 and a comparison with the low resolution simulation (dotted) shows that they are
fairly well converged in the simulations with truncated small-scale perturbations. In collapsed re-
gions close to the mean density, the linear anisotropy parameter is strongest, whereas high-density
regions have a predominantly isotropic velocity distribution. The planar anisotropic coefficient
peaks around � ∼ 10 in the CDM case and � ∼ 30 in the WDM1 simulation, and decreases for
both smaller and higher overdensities. The simulations differ mainly in the low density regime,
which is almost purely linearly anisotropic in the 300WDM1 simulation, but has a small planar
anisotropic contribution in the 300CDM simulation. Overall, small-scale perturbations lower the
density threshold at which shell-crossing along the second and third axes can occur, and thus at
which the planar anisotropy and isotropy become measurable. In the 300CDM simulation, this
threshold remains unresolved due to initial density fluctuations at arbitrarily small scales.

Labelling each cell by its dominant anisotropic parameter, we can examine the density distri-
bution of linear-, planar-, and spherical-anisotropic multistreaming regions (walls, filaments and
nodes). The results are shown in the lower panel of fig. 3.8 and the mean density of each environ-
ment can be found in table 3.1. In agreement with the measured mean anisotropic coefficients,
wall-like regions are predominantly in low density environments, followed by filament-like and
node-like regions (this hierarchy also directly follows from the study of the initial shear tensor

67



Chapter 3 The Large Scale Velocity Dispersion in the Cosmic Web

by calculating the probability of the eigenvalue signatures depending on the local overdensity,
cf. [258]). In the 300WDM_10 simulation, the distributions peak at � ∼ 3, � ∼ 10, and � ∼ 50

respectively. In the case of the colder simulation, the distributions shift towards lower densities
due to the additional small-scale perturbations (� ∼ 1, � ∼ 3, and � ∼ 20 respectively, for the
300CDM_10 simulation). A comparison to the low resolution simulation (dotted) shows quali-
tatively consistent results for both WDM simulations but a shift towards higher densities in the
300CDM_9 simulation due to the unresolved small-scale structure.

3.4.2 Comparison of cosmic web environments detected by different finders

Previous studies on volume and mass fractions in the cosmic web have found a wide range of
values (a recent comparison can be found in [199], with some results included in the compar-
ison table 3.2]). These sometimes large discrepancies are the result of fundamentally different
classification criteria, which complicate the comparison of our results.

Most closely related to our method are the cosmic web finders MSWA [285] and ORIGAMI [99]
(cf. section 2.2.2), which also exploit the Lagrangian to Eulerian coordinate mapping. Since
we use the same single-stream definition as MSWA, our mass and volume fractions for cosmic
voids are comparable. We note that the reported void volume fractions using this technique are
consistently ∼ 90%, but the mass fractions vary strongly (23% by [285], 32% by [269] and 56%
by [199]). The void volume fraction reported in Libeskind et al. [199] for ORIGAMI is lower
(70%), with a larger volume fraction classified as nodes (7.4%) and filaments (6.4%). The mass
is equally more attributed to nodes (50%), but less to walls (14%).

Compared to further methods, we find our volume and especially mass fraction of filament-like
regions to be towards the lower end of the wide range of reported values. Results for the mass
fraction using stream number thresholds range from 10%-20%, with other methods assigning up
to 50% (NEXUS+ [60]) and 60% (DISPERSE [298, 199]) of the total mass to filaments. On the
other hand, the total mass fraction of wall-like regions is at the upper level of previous studies
(13%-33%), with our results being comparable to Shandarin et al. [285].

To compare the density dependence of the environments detected by the different cosmic web
finders, we use the public data from the cosmic web comparison paper by Libeskind et al. [199],
which includes an N-body simulation2 snapshot at z = 0 and the classification of the cosmic
web environments on a 1003 grid. The public data includes various classification techniques and
we refer the reader to [199] for further information and references.

To increase the comparability of the results, we compute the volume averaged density field
using the DTFE code [278, 328, 59] on the same 1003 grid for the provided snapshot as well as
on a 2563 grid for the 300CDM_512 simulation at z = 0. Figure 3.9 shows the measured density
distribution of each environment. Note that not all classifiers detect every environment and hence
some lines are missing from some of the panels. Additionally, we compute the volume and mass
fractions of each environment and its mean density. The values are listed in table 3.2.

Overall, the cosmic web environments detected via the velocity dispersion anisotropy dis-
cussed in this paper are consistent with the range of density distributions and mass and volume
fractions from existing methods. As already reported in [199], the measured quantities of the

2Simulation parameters: 200 ℎ−1Mpc box, 5123 particles with ΛCDM cosmology and [67] parameters
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Chapter 3 The Large Scale Velocity Dispersion in the Cosmic Web

cosmic web regions highly depend on the applied definition. The mass and volume fractions
measured in this paper agree best with MSWA method as we have already noted above. How-
ever, filaments and nodes extend to lower densities than the ones identified with MSWA and their
density distributions are more similar to the environments identified with V-web [155], MMF-2
(filaments only [10]), CLASSIC (see [199] for method and further references) and T-web [132,
104].

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

dV
i/

dl
og

(
+

1)

voids walls

10 1 100 101 102 103

+ 1

0.00

0.25

0.50

0.75

1.00

1.25

1.50

dV
i/

dl
og

(
+

1)

filaments

10 1 100 101 102 103

+ 1

nodes

Bisous
CLASSIC
DisPerse
MMF-2
MSWA
NEXUS
Origami
Spineweb
T-web
V-web

2
ij  anisotropy

(this paper)

Figure 3.9: Comparison of the density contrast 1+� distribution (normalized) of the cosmic web
environments found by different cosmic web finders (note that not all environments
are classified by every finder). The comparison data has been obtained from the data
published together with the cosmic web comparison paper by [199] containing more
details about the individual classifiers.

3.4.3 Evolution of mass and volume fractions of structures over cosmic time

Most of our results above have been obtained at z = 0. In order to complement this momentary
picture at late time, we investigate in this subsection the evolution of the collapsed regions of the
respective morphologies over cosmic time.

From the theory of anisotropic collapse, we expect the first multistreaming regions to have
linear-anisotropic velocity dispersion. Planar-anisotropic and isotropic velocity dispersion emerge
at a later stage when the wall-like structures collapse along the second and third axes. As the
collapse time depends on the amplitude and scale of the perturbation (cf. appendix A.4), more
single-streaming volume will continuously enter the linear-anisotropic regime and collapse fur-
ther. In fig. 3.10, we measure the volume and mass fraction that has collapsed at different times
during our simulation. As the perturbations with the highest overdensities enter the multistream-
ing regime first, a significant fraction of the total mass can be found in collapsed regions before
the same fraction of volume has collapsed. The multistreaming mass fraction remains larger than
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(rows). To check for convergence, we include the results for the low resolution
simulations (blue). The cell densities have been obtained by the CIC algorithm.
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Chapter 3 The Large Scale Velocity Dispersion in the Cosmic Web

the volume fraction throughout the simulation. We find that the first multistreaming regions oc-
cur at later times in the WDM simulation, consistent with the slower collapse of larger scales.
The truncated initial power spectrum leads to an overall lower fraction of multistreaming volume
and mass at any time during the entire simulation. We notice that as expected, the first collapsed
structures have linear-anisotropic velocity dispersion, before a significant fraction of mass and
volume becomes planar and spherically isotropic. Comparing the high and low resolution re-
sults we notice that even for the 300WDM1 and 300WDM2 simulations, the mass fractions at
high redshifts depend on the resolution. This discrepancy becomes naturally larger in the case
of the 300CDM simulation, as new small-scale perturbations are added when the resolution of
the simulation is increased. Since these small fluctuations are the first to collapse, the difference
becomes particularly evident at early times.

In order to better understand the evolution of the environments, we follow the dark matter
particles that reside in the various environments at z = 0 back in time. At each earlier snap-
shot we compute the relative mass fractions of the environments. The results up to z = 5 are
shown in fig. 3.11. Starting from the single-stream regions, we find that their progenitors were
mostly single-stream regions. Wall-like regions mainly feed from single-stream regions, with
a small fraction passing through cells with planar or spherical anisotropy. As predicted by the
anisotropic collapse model, walls collapse to filaments, hence the progenitors of filament-like
regions were mainly in wall-like regions. For the node-like regions however, we find that many
of their constituent particles appear to collapse directly from wall-like regions. Given the rel-
atively low time and space resolution we have around halos, this aspect should be investigated
more closely in future work.

Among the progenitors of each environment, we find a small fraction of particles that have
changed environment in the opposite way than predicted by the theory of anisotropic collapse.
This fraction is larger in the colder simulations, with up to 20% of the void progenitors passing
through multistreaming cells and 25% of the filament progenitors coming from node-like regions.
This is most likely due to the finite resolution of the rasterization grid. If the cell encloses multiple
environments (either due to the small size of the collapsed region in CDM, or at a boundary),
a particle still in a lower level in the collapse hierarchy might be attributed to a higher level
environment dominating the cell (e.g. a void particle assigned to a wall-cell). This issue could
be avoided by evaluating the tessellation directly at the particle positions.

The scale of the WDM cut-off does not change the qualitative results of mass flowing from the
single-stream regime to wall-, filament- and finally node-like structures. However, the fraction
of mass flowing in the opposite direction increases with the amount of small-scale structure,
further indicating that this is an effect of the rasterization cell size. Changing the resolution of the
simulation does not alter the mass fractions of the progenitors significantly. However, since the
measured collapsed mass fraction at a given time is lower at lower resolutions if the perturbations
are not fully captured (see discussion above), the mass transport from one environment to the next
is also delayed. This is especially evident for the 300WDM2 and 300CDM simulations as well
as the node-like environments in the 300WDM1 case.

This so-called mass transport across the cosmic web has been studied in detail e.g. by Cautun
et al. [60] using the NEXUS+ algorithm. Qualitatively, these authors reported similar trends in
mass flowing from voids to walls to filaments and finally to halos, including significant reverse
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at z = 0 for the three different dark matter variants (rows). We show the mass
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z = 0. The results from the xDM_10 simulations are plotted with solid and their
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Chapter 3 The Large Scale Velocity Dispersion in the Cosmic Web

flows which they attributed to incorrect identification of environments in underdense regions.
Their results differ in the timescale of matter transport through the environments, with collapsed
environments being overall more “stable” between z = 2 and today, whereas we find large mass
fractions in uncollapsed regions. This is most likely tied to the unconverged collapsed mass
fraction in cold simulations discussed above. Furthermore, they observe a filamentary mass
fraction of ∼80% as the progenitors of nodes, whereas in our measurements only ∼20% of the
node mass has previously been in filaments. This most likely is connected to our overall lower
filamentary mass fractions and using a different segmentation of the anisotropy triangle will most
likely lower the discrepancies.

3.5 Orientation of the cosmic velocity dispersion

In the previous section, we have measured the anisotropy of the velocity dispersion field. The
characteristic direction of the anisotropy, i.e. the main axis of the tensor field in wall-like struc-
tures and the minor axis in filament-like structures, contains additional information on the axes
of collapse. In fig. 3.6, we visualize the directions in walls (middle) and filaments (bottom) in
the 18 ℎ−1Mpc cube using the direction-color encoding shown in the colored unit sphere. For
wall-like structures the main axis of the velocity dispersion is perpendicular to the structure itself,
whereas in filament-like structures the minor axis is parallel to the filament as expected from the
collapse history of these regions. We can already see by eye that the characteristic directions are
consistent over large distances across an entire segment of the cosmic web. This remains true for
large structures even in the CDM simulation where the visualizations become however somewhat
cluttered by small-scale structures. This long range consistency of the velocity dispersion tensor
could be used in principle to further dissect the volume by unambiguously identifying individual
walls and filaments. In this section, we will first measure the typical extent of the alignment using
a marked correlation function and measure its deviations induced by small-scale perturbations.
In the second part, we compare the orientation of the velocity dispersion field with the tidal force
tensor which has also been used for classifying the cosmic web and which is tightly related to
the velocity dispersion.

3.5.1 Alignment of the velocity dispersion tensor

Since filaments and walls are to first order not spatially curved, we expect the characteristic
directions of the velocity dispersion field to be consistent over their typical sizes. To quantify
this alignment as a function of distance, we use so-called marked correlation functions. They
extend the classical correlation function framework (cf. [245]) to study the spatial clustering
of (usually scalar) properties of objects, so-called marks [304, 305]. These marked correlation
functions have already been successfully applied to study the clustering of galaxy properties (e.g.
[31, 290, 293, 292]), the self-alignment and tidal field alignment of cosmic voids [256], and have
more recently been suggested as a tool to constrain modified gravity models [330].

The commonly used marked correlation function [290] is defined as the ratio of the weighted
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3.5 Orientation of the cosmic velocity dispersion

to the unweighted correlation function,

(r) =
1 +W (r)

1 + �(r)
≈

WW

DD
, (3.9)

where 1 + W (r) =
∑

ij m(xi,xj)∕m̄ is the sum over all objects i, j at separation r weighted by
the mark function m(xi,xj), which for scalar marks usually is its product, i.e. m(xi,xj) = mimj .
Analogous to the unweighted correlation function, the approximation WW ∕DD (the ratio of the
weighted to the unweighted pair counts) can be used to efficiently estimate the marked correlation
function. If the marks are uncorrelated, (r) = 1. Correlated and anticorrelated marks manifest
themselves as larger and smaller values respectively.

For our measurement, the marks are the velocity dispersion tensors (or more precisely its
eigenvectors) defined in every volume cell, which we have to reduce to a scalar quantity in the
mark function (cf. [31]). We use the angle � between the major or minor eigenvectors e of �2

ij
at the volume elements located at x1 and x2 and since the eigenvectors are invariant under sign
inversion, we define m(xi,xj) = (e(x1) ⋅ e(x2))

2 = cos(�)2. Together with our grid-based data,
this definition allows us to efficiently compute (r) in Fourier space using

 (WW )(k) =
1

m̄ ∫ d3r exp(ikr)∫ d3r1
(
ei(r + r1)e

i(r1)
)2

(3.10)

=
1

m̄
 (eiej)(k) ⋅  (eiej)(−k), (3.11)

with summation over i, j = 1, 2, 3.
We are primarily interested in the excess of alignment compared to a random distribution of

the eigenvectors. To measure this excess, we compute rand(r) over five permutations of the
velocity dispersion tensor field. Comparing (r) with the variance of rand(r) allows us to
quantify the significance of our results. The results for the alignments of the major (minor)
eigenvectors of �2

ij in the wall-like (filament-like) collapsed regions are shown in fig. 3.12. On
small scales, the characteristic directions for both wall-like and filament-like structures are highly
correlated, which is consistent with our expectation based on the spatial coherence of the tensors
shown qualitatively in fig. 3.6. The alignment decays with increasing distance and disappears
for scales larger than ∼ 30 ℎ−1Mpc which corresponds roughly to the typical extent of large
walls and filaments found in simulations [60] and observations (e.g. [44]). The alignment of
the major eigenvector field in wall-like structures is generally stronger than the alignment of the
minor eigenvector field in filament-like regions, indicating that the orientation of the velocity
dispersion field is more consistent in the early stages of collapse (along walls) than in regions
that have evolved further in the collapse hierarchy (along filaments).

Going from the WDM to the CDM simulation, the alignment correlations remain highly sig-
nificant but decrease at all scales as expected. Small-scale initial perturbations on the one hand
create additional collapsed structures in previously uncollapsed regions, and on the other hand
isotropize the smooth large-scale structures by causing them to fragment into smaller filaments
and halos. In order to measure this “isotropization” we compare the mark correlation function
measured on the wall-like and filament-like support of the 300WDM1_10 simulation between
the CDM and WDM1 realizations. The result is shown in the lower panel of fig. 3.12. On short
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3.5 Orientation of the cosmic velocity dispersion

separations the marked correlation function in the 300CDM simulation is 8% lower in wall-
like regions and 25% lower in filament-like regions. As the marked correlation approaches the
random distribution on larger scales, the difference between the simulations vanishes.

Another way of locally quantifying the influence of small-scale structures on the large-scale
walls and filaments is to compare the strength of the velocity dispersion along and perpendic-
ular to the structure and how it changes by adding perturbations. For this we define the angle
between the two velocity dispersion components as tan(�) = �2

∥
∕�2

⟂
, where the orientation is

defined by the eigenvectors of �2
ij in the WDM1 simulation. To compute the parallel and per-

pendicular components, we transform �2
ij,xDM

to the eigenframe of �2
ij,WDM1

and use its diagonal
components.

In fig. 3.13 we compare the point-wise differences in amplitude and alignment angle between
the 300WDM1 simulation and the 300WDM2 and 300CDM simulations respectively for wall-
like and filament-like regions. Since the amplitude of the velocity dispersion is connected to
the scale of the structure (cf. section 3.3), we plot the distributions as a function of tr(�2

ij) to
check for additional biases. We find that the velocity dispersion in regions with low amplitude in
300WDM1 is generally enhanced in both filaments and walls, but less affected by the small-scale
structure if the velocity dispersion is already large. Overall, both the amplitude of �2

ij and the
alignment are highly consistent in most of the wall-like and filamentary volume.

3.5.2 Correlation with the gravitational tidal field

The Zel’dovich approximation (cf. section 1.2.4) predicts that anisotropic collapse is dictated by
the large-scale tidal field tensor

Tij =
)2�

)xi)xj
, (3.12)

where � is the gravitational potential. Since the large-scale gravitational potential is constant
at linear order, the large-scale tidal field remains correlated with the collapse evolution of the
cosmic web. This fact has been used previously to classify the cosmic volume into the void-wall-
filament-node morphology [132]. Since in the ZA, the particle velocities before shell-crossing
obey v ∝ (� (this relation can be extended to the early non-linear regime, see e.g. [63, 64],
but the corrections remain small if the velocity field is filtered on sufficiently large-scales), a
similar argument implies that before shell-crossing (or smoothed on large-scales), the velocity
divergence tensor of the mean velocity field also reflects these cosmic web environments (used
in the V-web classification of [155]). After shell-crossing, this inflow pattern gives rise to the
anisotropic dispersion that we discuss and quantify in this paper.

We thus want to ask next whether we can recover this expected correlation between the two
tensor fields: the tidal field as the dynamic origin of anisotropic collapse, and the large-scale
velocity dispersion tensor as the result and signature of anisotropic collapse. We compute the
tidal field tensor of the large-scale structure from the smoothed density field measured by the CIC
deposition of the dark matter particles. We use a Gaussian kernel with radius rs = 1 ℎ−1Mpc to
filter out small-scales. The qualitative results are not sensitive to rs and the measured alignment
only drops significantly for rs < 500 ℎ−1kpc and rs > 4 ℎ−1Mpc. The tidal field can be conve-
niently derived in Fourier space as T̂ij(k) = −4�G (kikj)k

−2 �̂s(k). We compute the eigenvalue
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Figure 3.13: Comparison of the velocity dispersion in walls and filaments between the
300WDM1_10 simulation and 300WDM2_10 and 300CDM_10 respectively. Top:
relative change of the magnitude (trace) of �2

ij as a function of the WDM1 magni-
tude. Bottom: change of angular alignment of the velocity dispersion defined as
the angle spanned by the velocity dispersion along and perpendicular to the wall
(filament) tan(�) = �2

||∕�
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⟂

. The directionality of the structures is defined by their
characteristic eigenvector of the velocity dispersion tensor in the 300WDM1_10
simulation. The contour levels include 99%, 90%, 66%, 33% and 10% of the vol-
ume elements respectively and the lines show the median and 66% intervals at fixed
velocity dispersion amplitude.
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decomposition in each cell to obtain the principal axes of the tidal field and measure the angle �
between its eigenvectors and the eigenvectors of the velocity dispersion tensor.

Figure 3.14 shows the cumulative distribution function (CDF) of the angles between the major-
major and minor-minor eigenvectors of the two fields within the wall-like and filament-like re-
gions. For a purely random distribution, cos � is uniformly distributed over [0, 1]. We notice
a strong positive alignment for both vector fields in all simulations, with the major eigenvec-
tors being stronger aligned in wall-like regions, and minor eigenvectors in filament-like regions.
This follows directly from the distinct nature of the major and minor directions in walls and fil-
aments as discussed previously. As expected, the two vector fields have the highest alignment
in the 300WDM_10 simulation with 73% (67%) of the major (minor) eigenvectors in wall-like
(filament-like) regions deviating by less than 20 degrees from their counterpart. The deviations
in the velocity dispersion alignment discussed in the previous section lower this alignment in
the colder simulations, especially in filamentary regions that have progressed further in the col-
lapse hierarchy (43% of the major eigenvectors in walls and 33% of the minor eigenvectors in
filaments within 20 degrees in the 300CDM_10 simulation). However, the alignments remain
highly significant.
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3.6 Comparison with the collisional dynamics of an ideal gas

Before we conclude our studies of the velocity dispersion, we take a look at the behavior of
baryonic gas during the collapse of a perturbation. For this purpose, we have run a hydrodynamic
simulation, allowing us to measure the gas density and temperature in the regions where DM has
undergone shell-crossing.

Before we conclude our studies of the velocity dispersion arising from the collapse of cosmic
structures, we want to take a look at the dynamics of baryons. They form a collisional ideal
gas, and thus behave fundamentally different from the collisionless DM component. Baryons in
the intergalactic medium (IGM), in contrast to DM, are also directly detectable for example as
absorption features in high redshift spectra of quasars in the form of the Ly-� forest [209, 218].
Until shell-crossing, baryons and DM roughly trace each other3 (e.g. [8]), but the collisional
character of the former leads to local thermodynamic equilibrium and the formation of shocks
instead of caustics. The anisotropic velocity dispersion, that captures most of the kinetic energy
of the DM sheets after collapse, thus becomes an isotropic velocity dispersion in the baryonic
case, where the VDF is described by the Maxwell-Boltzmann distribution. The temperature
of the gas in the collapsed region depends on the kinetic energy before collapse, and it is thus
reasonable to expect that it will be related to the velocity dispersion of DM.

In this section, we will measure this temperature – DM velocity dispersion relation and in-
vestigate the possibility of predicting IGM temperatures from DM-only simulations. For this
purpose, we have run a cosmological hydrodynamic simulation following baryons and DM, al-
lowing us to measure the gas density and temperature in the regions where DM has undergone
shell-crossing. This hydrodynamic simulation was initialized with the same parameters and ran-
dom seed as the 150CDM DM-only simulation (cf. section 3.2) and was run with the RAMSES

[312] simulation code. Since we are mostly interested in the shock-heating of the ideal gas during
gravitational collapse, we disabled the cooling module, the UV background radiation, and other
subgrid models. More details on the simulations can be found in appendix A.3.

In fig. 3.15, we show the velocity dispersion magnitude and gas temperature measured on a
slice in the 150CDM simulations. We immediately observe that the temperature distribution
follows the distribution of DM multistreaming regions. While the baryonic gas is cold in voids
(especially since we ignore UV background heating), it is substantially heated in the multistream-
ing environments, and peaks at the intersections of the cosmic web. These intersections corre-
spond to filaments and nodes, which have undergone collapse along multiple axes, heating the
gas to an even larger amount4. Unlike the collapsed environments in the DM component which
form a relatively fine net-like structure, the gas temperature distribution appears more clumpy,
with heated regions extending beyond the DM multistreaming regions. The temperature in these

3This is only approximately true, since baryons below the horizon scale are coupled to photons before recombination
and thus baryonic perturbations are damped. At later times, the gravitational coupling between DM and baryons
will reduce this discrepancy, cf. [339, 8].

4Note that we have disabled cooling in the simulation, which would be very efficient in the densest and hottest regions
(nodes). Measurements at the high temperature end have thus be treated with caution, and more sophisticated
simulations would have to be used to make a predictive statement about the tr(�ij2)–T relation. The measurements
presented here should however be sufficient to demonstrate the effect of isotropization of the velocity dispersion
during the gaseous collapse.
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Figure 3.15: Velocity dispersion and the gas temperature, measured on a slice of the 150CDM
DM-only (tr(�2

ij), left panels) and the 150CDM_H hydrodynamic simulation (T ,
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clumps ranges from 105 to 107 K, and between these clumps, gas at a much lower temperature
(T ∼ 10−2 [K], but still above the temperature in voids) extends along the walls of the cosmic
web. There appear to be two different regimes of the gas temperature, one that has been efficiently
heated and one that has been slightly warmed.

To investigate this phenomenon in more detail, we measure the velocity dispersion – tempera-
ture relation in the DM multistreaming regions. The result is shown in fig. 3.16, with temperatures
normalized by the average molecular weight �, which depends on the degree of ionization, and
therefore temperature and density, of the medium. Generally, the gas temperature correlates with
the DM velocity dispersion. However, the distribution is bimodal, with the first peak at very low
temperatures and relatively low velocity dispersion and the second peak at high velocity disper-
sion and temperature. These peaks have an elongated shape, with the first peak rising roughly
as T ∝ tr(�2

ij)
1∕2 and the second peak as T ∝ tr(�2

ij). By comparing the temperatures, we can
associate these peaks with the two phases that we have previously observed in the illustration.

The very low temperature of the lower peak indicates that these regions have not been shock-
heated yet, and indeed, a comparison of the gas density and temperature in fig. 3.17 shows that
T ∝ �−1 with  ∼ 5∕3, corresponding to the adiabatic relation of an ideal gas at fixed entropy.
Gas in these regions has thus been merely compressed during the infall process, but no shock has
been formed yet. Note that the low temperature of this gas is due to the absence of an ionizing
background radiation in our simulation, which would heat the intergalactic medium by photo-
ionization to several thousand Kelvin (see e.g. [220, 130, 266]). We can estimate the temperature
of the non-shocked, uncompressed gas from the adiabatic expansion: without coupling to the
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3.6 Comparison with the collisional dynamics of an ideal gas
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Figure 3.17: Left: gas density – gas temperature distribution of the low temperature and low
velocity dispersion region from fig. 3.16. Right: DM velocity dispersion – hy-
drogen velocity dispersion (inferred from the temperature) distribution in the high
temperature and high velocity dispersion region from fig. 3.16.

photon background, the temperature evolves as Tgas ∝ a3(−1), where  = 5∕3 for an ideal gas.
Therefore, Tgas(z = 0) ≃ TCMB(1 + zCMB)

−1 ≃ 2.5 × 10−3 K, agreeing with our measurements.
The prevalence of non-shocked gas in shell-crossed environments may be partially due to small

misalignments between the positions of collapsed structures in the GADGET 150CDM simula-
tion and the RAMSES hydrodynamic simulation. Improved results can definitely be obtained by
directly using the DM particle positions from the hydrodynamic simulation; we will do so for
future projects.

For the remainder of this section, we will focus on the high velocity dispersion – high temper-
ature peak. The internal energy density of an ideal monoatomic gas with 3 degrees of freedom
is " = 3nkBT ∕2 = 3�TkB∕(2�mH), which is connected to the velocity dispersion of the gas via

kinetic theory by " = �v2
rms

∕2, where vrms =
(
3⟨v2

1D
⟩)1∕2 is the root-mean-square velocity, with

v2
rms

corresponding to the velocity dispersion of the gas.
In fig. 3.17, we show the comparison between the trace of the dark matter velocity dispersion

and the isotropic velocity dispersion of the baryonic gas. The distribution follows closely a 1:1
relation, with a measured standard deviation of ∼ 0.4 dex at fixed tr(�2

ij). This shows that the
anisotropic kinetic energy before the collapse is transformed into an internal energy described
by an isotropic temperature during the shock phase of gravitational collapse.

This result is very encouraging as it allow to relate the gas temperature directly to properties
of DM. The ability to accurately predict such temperatures in the cosmic web is an important
ingredient to model the IGM properties from DM-only simulation. So far, this is commonly
done via the density-temperature relation [165, 186, 219] and used in the generation of mock-
observations for Ly-� absorption lines in quasar spectra [246, 297].

In order to improve the accuracy of temperature predictions and to better understand the scat-
ter in the DM velocity dispersion – gas temperature relation and the low velocity dispersion
peak, more detailed studies will need to be carried out. In particular, better and more realistic
hydrodynamical simulations will need to be performed to include cooling, background heating
and feedback processes, potentially altering the properties of the gas significantly. Moreover,
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Chapter 3 The Large Scale Velocity Dispersion in the Cosmic Web

the influence of the different cosmic web environments needs to be analyzed, since the collapse
along the second and third axis will lead to additional shocks. We summarize future plans in
section 3.8.

3.7 Conclusions

During the anisotropic gravitational collapse of cosmic structure from cold initial conditions,
kinetic energy is absorbed after shell-crossing into velocity dispersion, or stress, and provides
the effective pressure that resists gravity in virial equilibrium. Due to the collisionless nature of
dark matter, there is no microscopic process that renders this velocity dispersion isotropic so that
it must retain some memory of anisotropic collapse in the cosmic web on large scales. On the
other hand, the collapse of smaller structures always precedes the collapse of larger structures in
the hierarchical structure formation scenario of CDM. One thus expects that smaller scale per-
turbations always act to increase the isotropy of the dispersion tensor. In order to disentangle this
influence of small-scale structures from other non-linear, or even numerical effects, we always
considered three simulations that all start from the same random phases. In addition to a vanilla
CDM simulation, where the perturbation spectrum is effectively unresolved, we also include two
simulations which start from initial conditions with suppressed small-scale fluctuations (exactly
like in WDM scenarios).

For these three flavours of simulations, we computed the velocity dispersion tensor directly
from the CDM distribution function that we reconstructed using the phase-space sheet tessel-
lation technique ([1, 285], cf. section 2.3), which has previously been shown to yield highly
accurate results for velocity fields [139]. We characterize the magnitude of the dispersion ten-
sor through its trace value, and the anisotropic nature through three characteristic dimensionless
numbers, the linear, planar and spherical anisotropy (section 3.4). The relative dominance of one
over the others of these numbers allows a parameter-free definition of wall-like, filament-like and
node-like environments. This is a consequence of the collapse along one, two or three directions,
causing large velocity dispersion along precisely those axes. Voids, in contrast, are characterized
by the vanishing of the dispersion tensor since, in this picture, they are still simply single-stream
regions.

Our main results regarding the one and two-point statistics of the dispersion tensor can be
summarized as follows:

1. the amplitude of the velocity dispersion at z = 0 is correlated with density in high density
regions, and anticorrelated in collapsed regions below a simulation dependent threshold
(� < 4 in the warmest simulation and � < 1 for the CDM simulation). For � > 0 we find
for the amplitude a scaling tr(�2

ij) ∝ (1 + �)� with � ∼ 0.5 − 1.

2. the anisotropy of �2
ij is strongly correlated with density, with environments below � ∼ 10

having a strong linear anisotropy and turning isotropic at higher densities.

3. the velocity dispersion power spectrum is proportional to the linear theory density power
spectrum on large scales, but decays faster than the non-linear matter spectrum on small
scales.
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4. the velocity dispersion – density cross-spectrum behaves similarly on large scales but be-
comes negative above k ≳ 3 ℎMpc−1.

5. the velocity dispersion tensor field is spatially correlated not only in magnitude, but also
in direction. This correlation extends over the typical size of filaments and walls in the
cosmic web and is in agreement with the model of anisotropic collapse causing a consistent
alignment of �2

ij over a collapsed large scale mode.

6. the velocity dispersion tensor is very well aligned with the large-scale tidal field tensor,
which is responsible for the anisotropic collapse on large scales. This implies that large-
scale random motions in shell-crossed regions still reflect their origin from anisotropic
collapse.

A large amount of studies have been devoted to dissect the cosmic web into distinct components
in N-body simulations (e.g. [132, 14, 15, 298, 155, 99] and many more) with a wide variance
of results on both the volume and mass occupying the various structures [199]. Typically, these
methods require either the introduction of a filter scale (owing to the multi-scale nature of the
cosmic web, in which small halos sit inside filaments that sit inside large-scale walls) or some
tuning of multi-scale filter parameters. The velocity dispersion tensor allows a parameter free
determination of the same environments and is directly motivated by the anisotropy of large-
scale gravitational collapse. We can directly confirm previous results that

1. mass predominantly flows from voids to walls to filaments and finally to halos, in agree-
ment with expectations from anisotropic collapse,

2. nodes occupy the densest regions, followed by filaments and walls. The measured mean
densities are however highly dependent on the amount of small-scale structure that can
be captured by the resolution of the simulation, and generally decrease with increased
resolution.

We expect that these results can give important insights into the anisotropic nature of gravitational
collapse and the emergence of anisotropic stress in the cosmic web which are of great importance
in effective perturbative models of large-scale structure formation and evolution, but also in the
modeling of redshift space distortions in cosmological observations. A further interesting future
application is to investigate the statistics of the “coldness” of local Hubble flows [175, 11].

Finally, we have compared the DM velocity dispersion with the baryonic gas temperature in
a cosmological two-component baryon and DM simulation. For a large fraction of the gas in
DM multistreaming environments, we have found a remarkable agreement between the average
velocities of particles inferred from the gas temperature and the dark matter velocity disper-
sion. Multistreaming in DM goes hand-in-hand with shock-heating of the baryonic component.
While the DM velocity dispersion is inherently anisotropic after collapse, the collisional nature
of baryons leads to isotropic pressure. For a second part of the gas, no shock heating was found,
which may be due to misalignments between the simulations and will require further tests in the
future. This result, possible only due to accurate, point-wise measurements of the DM veloc-
ity dispersion, presents a promising step towards improving predictions of the IGM temperature
from DM-only simulations. Being able to accurately predict baryonic densities and temperatures
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is an important ingredient in the theoretical modeling of absorption lines in the spectra of distant
quasars (Ly-� forest) (e.g. [246, 297]). We give an outlook to future projects in the next section
and also in chapter 6.

3.8 Outlook

Further work on the large-scale velocity dispersion can be categorized into two classes: improve-
ments on the measurement and analysis technique and applications of the measurements. We will
look at these to categories in the following.

3.8.1 Improvements of the velocity dispersion measurement

In order to separate the small-scale structure from the large-scale cosmic web, we were running
simulations with a truncated initial power spectrum. It would be advantageous, however, to be
able to disentangle the different scales of the cosmic-web as a post-processing of a single simu-
lation with the full initial spectrum (e.g. the 300CDM simulation in our case). This separation
of scales has to be achieved by some smoothing operation that preserves the large-scale map-
ping from Lagrangian space to phase-space. We have experimented with different Lagrangian
smoothing kernels, but so far no satisfactory result has been obtained and more research is re-
quired.

For the result presented in this chapter, we have only used the single coverage tessellation
without the polynomial or Fourier interpolation technique presented in section 2.3. Using a
higher order interpolation to refine the particle grid and increase the number of tetrahedra and
averaging the measured velocity dispersion over the full set of potential tessellations will improve
the results especially in low density areas (cf. fig. 2.5) and may help to better resolve filaments
and increase the low filamentary mass fraction measured in section 3.4.1.

In high density areas with a large number of overlapping streams, such as within DM halos, the
particle sampling of phase-space is not fine enough to follow the phase-space sheet accurately and
therefore the estimated velocity dispersion and densities via the tessellation technique cannot be
guaranteed to be accurate. Better results may be obtained by estimating the velocity dispersion
directly from the particles in such cases. To allow for a precise measurement over the entire
simulation volume, a hybrid method applying the correct technique depending on the local stream
count could be considered.

3.8.2 Applications of the velocity dispersion measurement

We have applied the anisotropy of the velocity dispersion tensor to classify the distinct cosmic
web components by using the dominant anisotropic component. Different (parametrized) seg-
mentations of the anisotropy diagram (fig. 3.5 could be considered, e.g. by measuring how far
the collapse along the second and third axis has proceeded relative to the first axis. An analysis
of the anisotropy in different idealized environments could provide some insight into possible
classifiers.
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Our classification of the cosmic web so far does not exploit the characteristic orientation of the
anisotropy in walls and filaments. This directionality could be used to isolate individual segments
of the cosmic web. Together with the ability of accessing different scales of the cosmic web that
we discussed above, it would be possible to assign halos to specific walls and filaments. This
would allow us to study the assembly bias due to the impact of the cosmic web environment on
halo and galaxy formation (see e.g. [47, 275, 116]).

The ability to accurately measure the evolution of the cosmic velocity dispersion and higher
moments of the dark matter phase-space distribution is also an important ingredient in the de-
velopment of analytical perturbation theories that extend beyond shell-crossing. The effective

sound speed of DM, related to
√

tr(�2
ij) in our analysis, is for example an important ingredient

in effective field theories of large scale structure (e.g. [27, 56]). Ultimately, any fluid description
of DM beyond shell-crossing will have to incorporate the anisotropic stress tensor in some form.

The ability to improve predictions of the IGM temperature beyond the commonly used density
– temperature relation entails various interesting further projects, such as improved Ly-� mod-
eling from DM-only simulations as we have already discussed in section 3.6. However, more
studies of the DM velocity dispersion – gas temperature relation are required, e.g. using more
realistic hydrodynamical simulations, measurements of the correlation in different cosmic web
environments, and understanding the origin of the observed scatter.

Inferring properties of the baryonic matter from DM-only simulations is a natural field of
application for machine learning techniques and generative methods. This has already been suc-
cessfully demonstrated for example for mock Sunyaev-Zel’dovich observations [315], mapping
the DM density to baryonic gas pressure. Applying such methods to predict gas densities and
temperatures from DM densities and velocity dispersions presents a promising avenue to develop
this project further.

87





CHAPTER 4
COSMICWEB: Online Cosmological

Initial Conditions for Zoom Simulations
Part of this chapter will be submitted to “Computational Astro-

physics and Cosmology” for publication as a refereed article.

Zoom simulations, which we have briefly mentioned in section 2.1.3, provide a powerful tool for
studies in galaxy formation and evolution, by covering a large range of scales while focusing the
computational resources on a specific object of interest. This technique allows us to resolve the
internal structure of the target object at higher resolutions and therefore model baryonic physics
on smaller scales, with recipes motivated by more local physics.

Zoom simulations have been successfully used to study a large range of gravitationally bound
objects ranging from the first galaxies to massive galaxy clusters, with a variety of different
simulation codes and subgrid models. Recent projects using cosmological zoom simulations
include for example the AGORA simulation comparison project [178], the Auriga project [122]
targeting Milky Way mass halos to study disc formations, the FIRE-1 [157] and FIRE-2 [158]
simulations exploring feedback processes in galaxy formation, and the RHAPSODY-G [137] and
CLUSTER-EAGLE [21] simulations studying massive galaxy clusters. Recent simulation projects
study the effects of additional baryonic physics on galaxy and cluster formation, such as magnetic
fields [215, 214, 85, 84], anisotropic thermal conduction [91, 174, 22] and cosmic rays [92].
Zoom simulations provide an ideal tool to study these processes in a cosmological context (in
contrast to studying isolated objects in idealized simulations). In the future, with the inclusion of
further models and improved subgrid recipes that are able to model baryonic processes on a more
physical and less phenomenological level, zoom simulations will play an even more important
role by allowing to easily compare different models and implementations.

The widely adapted initial conditions generator MUSIC [133] provides a powerful tool to set up
zoom simulations: with the capability to output initial conditions in multiple formats for different
simulation codes, and the integration of white-noise field generators from other initial condition
tools, it allows to i) create the same zoom simulation for different simulation software for code
comparisons, and ii) create zoom simulations from existing simulations that were not necessarily
run with the same code or set-up with the same initial conditions generator. However, there is
currently no platform available to easily find zoom-targets from existing simulations and to create
and share zoom initial conditions.

With COSMICWEB, we provide an ecosystem for the community of people running zoom sim-
ulations to fill this gap. A uniform web-interface allows to easily find and validate target objects
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for zoom simulations from existing state-of-the-art simulations as well as new simulations. For
the selected targets, a configuration file specifying the simulation parameters as well as the high-
resolution zoom region can be downloaded from COSMICWEB or directly with MUSIC to generate
the zoom initial conditions for the specified simulation code. The initial conditions can then be
cited in articles, talks or on webpages, allowing others to reproduce, compare, and verify scien-
tific results.

This chapter focuses on the design and implementation of the COSMICWEB application. In the
next chapter, we will take a closer look at the proto-halo patches that have been computed for the
project. The structure of this chapter is as follows: we begin in section 4.1 with a brief overview
of the steps involved in the creation of a zoom simulation, how the current situation motivated
the development of COSMICWEB, and what the scope the project is. In section 4.2, we discuss
the data that will be available at the release of COSMICWEB. Section 4.3 describes the modular
design of COSMICWEB and how the different components interact. We take a closer look at the
web interface in section 4.4 and the database in section 4.5. We conclude in section 4.6 and
briefly describe the state of the project at the time of writing. In section 4.7, we give an outlook
on future plans additions to the project.

4.1 Motivation and goals

Setting up zoom simulations requires knowledge of the initial region from which the object of
interest originates form, the so-called proto-halo patch. For its construction, one needs to first
run a lower resolution full-box simulation, in which one then selects an object of interest and
traces its constituent particles back to the initial conditions, from where the boundaries of the
Lagrangian volume can be determined. Extra care needs to be taken to not contaminate the
zoom region with lower mass particles, as these can have a significant effect on properties of the
target object; in particular, they may lower the baryon fraction and cause artificial fragmentation
of the gas in the halo (e.g. [239]).

The process to set up a zoom simulation is illustrated in fig. 4.1 and contains the following
steps:

1. From a given seed for the random number generator and cosmological parameters, generate
the initial particle displacements and velocities for a uniformly resolved simulation at a
high redshift.

2. Evolve this initial state to today while storing multiple snapshots and tracking the individ-
ual particles. This can be done with various N-body simulation codes.

3. In each snapshot, find bound structures and generate a halo catalog. Build a merger tree
by tracing halos across time.
Select halos matching the research requirements for re-simulation.

4. Compute Lagrangian volume by backtracking particles within the traceback-radius Rtb to
their Lagrangian position. For COSMICWEB, we compute the minimum bounding ellipsoid
of the particles to describe the Lagrangian volume.
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Figure 4.1: Illustration of the steps involved in the creation of a zoom simulation. A full de-
scription of the process can be found in the main text. The COSMICWEB database
stores halo catalogs, merger trees and the associated Lagrangian proto-halo patches
of pre-run simulations and makes them accessible through an intuitive web frontend.

5. Sample this Lagrangian volume in the initial conditions with higher resolution using a
multi-scale initial condition generator such as MUSIC [133].

6. Run the zoom simulation with advanced baryonic physics, depending on the project re-
quirements.

The steps 1 to 5 are preparatory steps that so far have to be repeated for every zoom simulation
(unless one has access to a suitable pre-run simulation). Large publicly available halo and galaxy
catalogs of large simulations exist (e.g. [216, 232, 148]), but they are usually not associated
with proto-halo patches. Furthermore, the direct comparison between different simulation codes,
baryonic physics prescriptions, and the verification of scientific results is impeded, since the
initial conditions used for studies involving zoom simulations are usually not made public or
easily accessible.

With COSMICWEB, we address three issues with the current work flow for setting up and
running zoom simulations:

• Finding interesting objects to simulate. We provide access to the halo catalogs and merger
trees of pre-run simulations in which the user can search for halos (and galaxies) at various
redshifts matching his research project requirements.
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• Generating zoom initial conditions. For every halo, we provide multiple proto-halo patches
including a different amount of the halo environment. The application combines these
patches with the initial conditions of the simulation to generate a MUSIC [133] configura-
tion file that can be used to generate the initial conditions for various simulation codes.

• Referencing initial conditions. Users can reference halos and collections of halos that they
used in their works, allowing the community to reproduce results and to compare different
simulation codes for verification. To reference halos, COSMICWEB generates a tag that can
be included in publications and through which the zoom initial conditions can be accessed
using the COSMICWEB application or directly downloaded with a script provided with
MUSIC.

In the following sections, we discuss the data that is currently available in the COSMICWEB

project, and how the aforementioned design goals have been implemented.

4.2 Cosmological simulations, merger trees and proto-halo patches

We will briefly summarize the currently available simulations and the data they contain. This
overview presents a snapshot at the time of writing. Further simulations will be made available
in the future (see section 4.7 for current plans) and can also be contributed by the community
thanks to the modular design (cf. section 4.3).

4.2.1 Simulations

Currently, data from seven DM-only simulations is hosted at the Observatoire de la Côte d’Azur as
shown in table 4.1. The simulations span cosmological volumes from 603 ℎ−3Mpc3 to 1 ℎ−3Gpc3

and mainly use cosmological parameters conforming with the Planck 2015 [67] results. The
150MPC and 300MPC simulations were run both with 10243 and 5123 particle resolutions to
allow for comparisons between the catalogs and Lagrangian proto-halo patches, and to test for
convergence. Additionally, we include two simulations which have been previously used for
zoom simulations: the cosmological volumes of the AGORA comparison project [178] and of
the RHAPSODY cluster re-simulation project [336, 337, 137] which is originally based on the
Carmen simulation of the LasDamas project [217] (we labeled the simulations as “AGORA”
and “RHAPSODY” for the sake of convenience). These simulations use older WMAP 7/9
[187, 151] cosmological parameters. However, we have updated the parameters in the RHAP-
SODY_NewCosmo simulation to allow comparisons between the halo catalogs and zoom simu-
lation results. We describe the running and processing of the simulations in more detail below.

Another set of halo catalogs and merger trees originates from simulations of the Evolution

and Assembly of GaLaxies and their Environments simulation suite (EAGLE [279, 69, 216]) and
is hosted by the Virgo consortium1. In particular, we provide access to the Ref-L0025N0376

and the Ref-L0100N1504 simulation that were run with full gravity, hydrodynamics and subgrid
modeling, and their L0025N0376 and L0100N1504 DM-only counterparts. With the addition of

1http://www.virgo.dur.ac.uk/
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size cosmo. DM resolution [b] snapshots structure finder Ne
min

[ℎ−1Mpc] [ℎ−1M⊙] [zmax – zmin]

lo
ca

l

150MPC 150 [P1] 2.70 × 108 101 [12 – 0] ROCKSTAR 100
150MPC_lowres 150 [P1] 2.16 × 109 101 [12 – 0] ROCKSTAR 500
300MPC 300 [P1] 2.14 × 109 101 [12 – 0] ROCKSTAR 100
300MPC_lowres 300 [P1] 1.71 × 1010 101 [12 – 0] ROCKSTAR 500
AGORA 60 [W1] 1.21 × 108 101 [12 – 0] ROCKSTAR 1000
RHAPSODY 1000 [W2] 6.46 × 1010 101 [12 – 0] ROCKSTAR 1000
RHAPSODY_NewCosmo 1000 [P1] 7.99 × 1010 101 [12 – 0] ROCKSTAR 1000

E
A

G
L

E

Ref-L0025N0376 16.94 [P2] 6.57 × 106 ✓ 29 [20.3 – 0] FoF & SUBFIND 1000
L0025N0376 16.94 [P2] 7.63 × 106 29 [20.3 – 0] FoF & SUBFIND 1000
Ref-L0100N1504 67.77 [P2] 6.57 × 106 ✓ 29 [20.3 – 0] FoF & SUBFIND 1000
L0100N1504 67.77 [P2] 7.63 × 106 29 [20.3 – 0] FoF & SUBFIND 1000

Table 4.1: Available simulations with some key parameters, including the size of the simulated
volume, the cosmological parameters that were used, dark matter mass resolution, the
inclusion of baryonic physics in the simulation [b], the number and redshift range
of snapshots, the structure finder that was used, and the minimum number of parti-
cles within the traceback-radius that was required to compute the minimum bounding
ellipsoids (Ne

min
). [P1] and [P2] correspond to slightly different Planck 2015 [67]

cosmologies, and [W1] and [W2] are derived from the WMAP 7 [187] and WMAP
9 [151] results. More details on the settings of the locally hosted simulation as well
as the cosmological parameters can be found in appendix A.3, in particular table A.1.
The EAGLE simulations are described in [279, 69, 216].

simulations including full baryonic physics, COSMICWEB users can also use galaxy properties to
constrain their search for zoom simulation targets.

Locally hosted simulations

Initial conditions for the full simulations were generated using MUSIC [133] at redshift z = 49

(RHAPSODY & RHAPSODY_NewCosmo) and z = 99 (remaining simulations). Using a mod-
ified version of the GADGET-3 code [300], we evolved the simulations to redshift z = 0 and
stored 100 snapshots between z = 12 and 0 (logarithmically distributed in scale factor units).
Each snapshot was processed with the ROCKSTAR structure finder [30], which identifies halos
and subhalos using a six-dimensional phase-space friend-of-friend algorithm and measures their
intrinsic properties (cf. section 2.2). Using CONSISTENT TREES [28], we grouped halos from
different snapshots together to merger trees containing information about spatial hierarchy (halo
substructure) as well as temporal hierarchy (descendant and progenitor halos and merger events).
In addition, we measure environmental parameters such as D1,1 directly from the halo catalog.

The EAGLE database

The initial conditions of the EAGLE simulations were generated from white noise fields created
with PANPHASIA [171] using the phase-descriptors specified in [279] as random seeds. The
updated version of MUSIC includes the PANPHASIA random number generator, allowing us to
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create zoom simulations in the EAGLE volumes from a unified interface.
The eagle simulations were run with a modified version of the GADGET-3 code with a full

gravity and hydrodynamics treatment, including a large number of subgrid modules accounting
for physical processes below the resolution scale, such as radiative cooling and heating, star
formation and evolution, metal enrichment, and feedback from supernovae and supermassive
black holes [69]. Each simulation contains 29 snapshots distributed between z = 20 and z = 0.
In the snapshots, halos are identified using a FoF algorithm (cf. section 2.2) with linking length
b = 0.2 and a spherical over-density algorithm. Baryonic particles are then assigned to the
FoF groups and all particle species within the group are further processed with the SUBFIND

algorithm [301, 82] to separate self-bound structures and identify galaxies. The subhalo catalogs
are linked across time by determining the descendant halos using D-TREES [172, 268], and the
main progenitors defined by the largest “branch mass” [268].

4.2.2 Proto-halo computation

The proto-halo patch is defined by the Lagrangian volume that collapses to the halo of interest2.
In an N-body simulation, it is traced by the particles that are within the traceback-radius Rtb of
the halo, which is often chosen as a multiple of the halo radius. The choice of Rtb is a trade-off
between the computational cost and the robustness of the zoom simulation against contamination
of the high-resolution region by low-mass particles, which can bias final results. We will discuss
these effects in more detail in chapter 5.

Once the particles within the traceback radius are identified, different techniques exist to de-
scribe their enclosing Lagrangian volume, such as a rectangular bounding box, minimum bound-
ing ellipsoids, and convex hulls. A comparison of some commonly used methods can be found
in [239]. To measure the quality and computational cost of a proto-halo patch, we define its ef-
ficiency as the ratio of the mass of the particles that were used in its construction to its enclosed
mass:

 =
Mparticles

Mellipsoids

. (4.1)

In general, the efficiency increases with the complexity of the boundary description, e.g the
rectangular bounding box requiring 6 coordinates is less efficient than the minimum bounding
ellipsoid (9 parameters), which in turn is less efficient than the convex hull which is described
by all the particles on the surface, see [239]. The variance of the efficiency is mass dependent
and increases for low mass halos (cf. chapter 5). This is due to environmental effects such as
strong tidal fields in the vicinity of small halos distorting the proto-halo shape as well as more
anisotropic mass accretion.

For COSMICWEB, we decided to provide minimal bounding ellipsoids for our halos, since the
storage of convex hulls for all halos in all snapshots and multiple traceback-radii would not be
feasible, and since ellipsoids provide more robustness while still capturing the triaxial shape of
a typical proto-halo patch. An ellipsoid is described by its center qc and its shape matrix A. The
symmetric, positive definite matrix A can be normalized such that coordinates q that are within

2For high peak-height halos, the proto-halos correspond reasonable well to peaks in the initial Gaussian random
field, cf. section 1.4 and [260, 206].
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the ellipsoid satisfy
(q − qc)

TA (q − qc) < 1. (4.2)

To compute the minimum bounding ellipsoid, we use Khachiyan’s algorithm [177, 189], which
iteratively optimizes the volume of the ellipsoid under the constraints that all particles are con-
tained. We account for periodic boundary conditions by moving all particles to the same local
coordinate system centered at the proto-halo center of mass. This requires that no axis of the
proto-halo patch is longer than half the box size, which generally should not occur and for which
a zoom simulation would only result in a marginal benefit.

For the locally hosted simulations, we provide minimal bounding ellipsoids for all host halos
(i.e. no subhalos, since those will by definition be affected by contamination) at every snapshot
and for four different traceback-radii Rtb = 1, 2, 4, and 10 Rvir if the number of particles within
Rtb is larger than the threshold Ne

min
listed in table 4.1. The EAGLE simulations provide mini-

mum bounding ellipsoids at Rtb = 1, 2, and 4 R200c for all FoF groups larger than 1000 particles.
Note that in principle, intermediate size ellipsoids could be generated by interpolation. We will
consider this in future versions of COSMICWEB.

4.2.3 Supported selectors

To allow users to find target halos to re-simulate, we store various intrinsic and environmental
properties of the halos that can be used to constrain the set of potential candidates. Note that indi-
vidual simulations may contain different information (e.g. baryons vs. DM-only) and the analysis
of the original simulation can be performed with various structure finder tools (cf. section 2.2)
that measure a varying set of properties and may use different conventions in their analysis. In
the design of COSMICWEB, it is therefore essential to account for variable feature sets that can
be configured separately for each simulation. The list of features also has to be easily extendable
when additional simulations with new halo and galaxy properties will be added in the future.

Table 4.2 lists the selectors that have been added to COSMICWEB at the time of writing, and
the support by the locally hosted simulations and the EAGLE simulations. In addition to intrinsic
and environmental halo and galaxy properties, we also include temporal selectors (redshift of
halo and redshift of last major merger) as well as properties of the proto-halo patch (number
of particles used in the computation and the efficiency parameter). These parameters can be
used to exclude poorly-converged minimum bounding ellipsoids. However, the filtering with
these criteria may create a biased sample of proto-halos that are predominantly in less clustered
environments. We will take a closer look at the correlation between the efficiency parameter and
the environment in section 5.3.

4.3 Application architecture

Due to the diverse and potentially very large datasets, the COSMICWEB project is designed to be
decentralized and modular. This allows us to host the merger trees and proto-halo patches on
different servers than the application server, the user, and the publication data. We can therefore
connect existing databases to COSMICWEB without the need of duplicating data. This decen-
tralized approach however results in a more complex application design and requires a thorough
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4.3 Application architecture

specification of the communication protocols between the individual parts. In this section, we
will discuss the structure of COSMICWEB, how the individual components interact, and what
requirements need to be met to add additional external datasets. We will finish with a short
overview on how we ensure data safety and prevent unauthorized to the various servers.

4.3.1 Overview

We will start with an outline of the project architecture. The COSMICWEB platform can be split
into four main parts, visualized in fig. 4.2:

• the data servers providing access to the halo/galaxy catalogs and minimum bounding el-
lipsoids,

• the main server (application server) hosting the web application and storing user data,
simulation meta-data, and access information to the API servers,

• the client web application running in the user’s browser, and

• a plugin for the MUSIC initial condition generator.

The main application server, currently hosted on https://cosmicweb.oca.eu, is responsible
for the user management, storage of collections and publications with references to the included
halos, and provides information about the API server of each simulation. It also serves the actual
website together with a collection of javascript functions and libraries, which we call, taken
together, the client application. Using javascript and additional libraries and frameworks, we
can design interactive webpages that load additional data from the application and API servers
and updates the webpages accordingly. The actual implementations is discussed in detail in
section 4.4. The simulation meta-data (e.g. the URL of the API server and feature list of the
selected simulation) are included in the websites, allowing the client application to download
the halo details and the Lagrangian ellipsoids directly from the API servers, as well as to submit
halo-finder queries.

The data servers, which we will refer to as API servers (application programming interface),
provide an interface between the actual datasets and the COSMICWEB application. This abstrac-
tion is necessary to support heterogeneous databases over a common protocol. In theory, an API
server could be set up to read the data from text files on demand. However, specialized database
software is preferred, as it provides easier methods to access the data, faster query rates through
indexing, and helps ensuring data integrity with foreign keys and constraints.

Finally, the MUSIC plugin is a convenience tool that allows downloading initial condition con-
figuration files directly on the command line. Using the plugin, downloading the files first on a
local machine and then re-uploading them to a headless compute cluster can be avoided.

For the interaction between these four components to work, the requests to and answers from
the API servers have to follow a specified protocol which we will discuss in more detail next.

4.3.2 The API

The communication between the COSMICWEB application and external databases is handled by
API Servers following a predefined set of rules. Since these rules are subject to change over
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Figure 4.2: Sketch of the architecture of COSMICWEB. The server-side (left) is split into a main
application server and data servers providing access to the simulations through an
API. The main server hosts the webpage, provides user management and data storage
(halo collections, publications, saved queries, etc.), and contains meta-data of the
simulations and connection information to their associated API servers. The webpage
served by the main server will fetch the requested data from the API servers and .

time, the API is versioned and the outline given here reflects the current state. Updated and more
detailed specifications can be found directly on the webpage3.

The API consists of several endpoints that receive requests from the client application and
send the requested data back using the JSON4 syntax. We list and explain these endpoints in
table 4.3. Different simulations may not contain all data and support all features. This is why we
differentiate between required and optional endpoints. The information on which features and
properties are available for each simulation are stored on the central server.

The required endpoints are necessary for the basic functionality of COSMICWEB. They in-
clude information on the available snapshots, the halo-finding capability, basic information on
individual halos, and their Lagrangian ellipsoids. The optional endpoints are mainly used for
visualizations of the halo substructure, the formation history, and the local environment of the
halo. For each simulation in COSMICWEB, individual features can be enabled, and the interface
automatically adapts to show the available information.

3https://cosmicweb.oca.eu/documentation/api
4Specified in the ECMA-404 Standard, The JavaScript Object Notation (JSON) Data Interchange Syntax (2017).
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Required endpoints

/halo_finder POST Interface for halo queries, accepting a list of filters which
include ranges for parameters, mass definitions, available
ellipsoids, etc.

/snapshots GET List of available snapshots for the simulation, including
redshifts and number of halos that were detected

/snapshots/<id> GET Details of a specific snapshot

/halo/<id> GET Details of a specific halo and associated galaxy (if avail-
able). The returned fields depend on the enabled proper-
ties for the simulation (cf. table 4.2).

/halo/<id>/ellipsoids GET List of Lagrangian ellipsoids measured at different
traceback-radii, specified by the center, shape matrix and
traceback-radius (optional: number of particles within
Rtb and efficiency parameter).

/halo/<id>/ellipsoids/<id> GET Definition of a specific Lagrangian ellipsoid

Optional endpoints

/snapshots/<id>/massfunction GET The halo mass function computed from all host halos in
the snapshot

/halo/<id>/substructure GET Substructure tree of the halo

/halo/<id>/main_progenitors GET List of halos corresponding to the main progenitors se-
quence of the specified halo

/halo/<id>/mergertree GET Merger tree of the halo. The merger threshold can be
specified by the request argument ?mm_fraction=<r>,
where r is the ratio between merging and resulting halo,
e.g. a 1:3 merger corresponds to r = 0.25.

/halo/<id>/surrounding GET All halos within a certain distance of the halo. The
distance can be specified by the request argument
?box_size=<m>, where m is a multiplier to the halo ra-
dius.

/halo/<id>/tracking GET A list of coordinates of the main progenitors, normalized
to the unit cube

/halo/<id>/images GET If there are images or graphics associated with the halo,
return a list of image URLs and descriptions.

Table 4.3: List of API endpoints, split into required and optional features. The endpoints use the
HTTP GET method with the exception of /halo_finder, for which the selectors will
be transmitted by a POST request. The endpoint paths are relative to the simulation
API URL stored on the COSMICWEB application server. The precise format of the
request and JSON response is specified on the COSMICWEB website.
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External datasets can be integrated in COSMICWEB by setting up a server5 listening on the
various endpoints, parsing incoming requests, querying the dataset, and returning the result in
the specified format. For the locally hosted simulations, we are using the FLASK framework, but
in general any web server that can parse and process the requests is suitable. We will discuss the
API implementation for the local simulations in more detail in section 4.5.

4.3.3 The MUSIC plugin

To facilitate downloading initial conditions from COSMICWEB to computing facilities and lo-
cal machines, we include a PYTHON command-line executable (compatible with PYTHON2 and
PYTHON3) that interfaces the COSMICWEB API. It allows downloading individual IC configura-
tion files as well as configuration files for collections and publication lists. The executable has
two modes (publication and get) and is used as:

./cosmICweb.py [--output-path OUTPUT_PATH] [--common-directory]

[publication [--traceback-radius TRACEBACK_RADIUS] PUBLICATION_TAG]

OR

[get DOWNLOAD_STRING]

--output-path OUTPUT_PATH: By default, the MUSIC configuration files are stored in the cur-
rent working directory in a sub-directory named after the publication or the simulation of
the halos. If --output-path is specified, the script stores the files in this directory instead
without creating the subdirectory. Folders for each halo will be created however, unless
the --common-directory flag is set.

--common-directory: If this option is set, all MUSIC configuration files will be stored in the
same directory instead of individual directories for each halo.

publication [--traceback-radius TRACEBACK_RADIUS] PUBLICATION_TAG: The tag of
the publication can be used to download zooms for all halos within the publication list. The
traceback-radius for the proto-halo patches is set to 2 as default but can be changed. The
executable will skip a halo if no minimum bounding ellipsoid with the specified traceback
radius exists.

get DOWNLOAD_STRING: A download string can be generated from the download interface on
COSMICWEB (cf. section 4.4). This string can then be used to download the MUSIC con-
figuration files with this executable. Configuration settings from the download window
will be applied during the process.

4.3.4 Security considerations

To protect confidential user data such as passwords and prevent unauthorized access and the
injection of malicious code, several precautions have been taken. The communication between

5Since the API Server runs on a different address than the COSMICWEB server, it has to be configured to support
cross-origin resource sharing (CORS).
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the client and the application and API servers is encrypted with HTTPS, and no passwords are
stored on the servers, but instead a secure hash is generated using the PBKDF2 algorithm and
compared during the login process. All user input that is stored on the server and later visible on
the page, such as title and descriptions of collections and publications, and names for halos, is
sanitized to prevent cross-site scripting and injection of dangerous code.

To view halos and download initial conditions, no user account is currently required. However,
to create collections and publications and to access the Halo Finder page, the user needs to be
authenticated. We included the Halo Finder in this list, since queries can cause significant loads
on the API servers which may require regulating user and web-crawler access. After logging in,
the user’s session is maintained through cookies in the client application.

Due to the decentralized design, the API servers do not have direct access to the user’s session.
To overcome this authentication limitation, we include a JSON web token (JWT) in each request
that is sent from the client application to the API endpoints. This JWT is generated by the appli-
cation server and includes the user’s authentication status together with a signature that prevents
modifications to the token. The API server can verify the authenticity of the JWT by using a
shared secret key and deny the request if the authorization requirements are not met. With this
approach, access to the API endpoints that do not originate from COSMICWEB can be prevented.

4.4 Details of the web interface

In this section, we present the main pages of COSMICWEB, discuss their functionality, and explain
some of the implementation choices. The web interface is hosted using the FLASK framework6,
which routes and processes incoming requests, handles user sessions, and serves the web pages.

In general, pages with low interactivity, such as the landing page, simulation overview pages,
and the documentation pages, are fully constructed on the application server, i.e. the server
dynamically composes the page with user and simulation data and sends the complete and static
HTML to the client. On the other hand, pages that change under the user interaction and pages
that have to fetch additional data from the API servers only contain the skeleton of the webpage,
into which components are dynamically inserted. For this purpose, we use the javascript-based
REACT library7, allowing us to write parts of a page as dynamical components with simple state
and event handling. A schematic of the rendering of a REACT application and its insertion into
the Document Object Model (DOM) of the browser is shown in fig. 4.3. The DOM is initially
created when the browser receives the HTML skeleton and represents the tree structure of the
webpage, with each node being an element of the page, such as an input field, table rows and
cells, or text paragraphs. We include an empty container-node in the HTML, into which REACT

inserts and updates its partial (virtual) DOM.

4.4.1 Halo Finder

The Halo Finder is the search page that allows the user to query the databases and find objects
of interest to re-simulate. The page aims to provide an intuitive interface for selecting the target

6https://flask.palletsprojects.com
7https://reactjs.org/
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Figure 4.3: Illustration of the rendering process of a REACT application. The application is mod-
eled as a tree consisting of REACT components, which can be stateful or stateless.
Parameters can be forwarded through the property interface of the components. Each
component defines a render function, containing other REACT components or HTML
elements. The function is invoked during the initial construction and whenever the
state or the properties change. The rendering builds a virtual DOM which is inserted
to the real DOM. On re-renderings, the virtual and real DOM are compared in order
to only update the differences, increasing the responsiveness of the application. As
an example, we illustrate the procedure when the state of component B is changed
(highlighted in red), e.g. after the user changed an input field. The state update causes
a re-rendering of component B, altering the properties of components B1, B2, and
B3 which in turn are also re-rendered. However, the updated properties only change
the DOM representation of B3, hence only this node is updated in the real DOM.

simulation, setting up the query filters, and obtaining a preliminary overview of the returned
results, without the need of knowing the database layout or SQL. To achieve this, the page needs
to be able to dynamically adapt to the selected simulation, as different selectors may be supported
for different projects (cf. table 4.2).

The interface consists of three parts: the simulation selection panel, the property filters, and
the result display. In the simulation selection panel, a single simulation has to be selected which
will set the corresponding API endpoint and security token in the application state. The choice
of a snapshot is optional, as the redshift range can also be constrained in the filter window. The
available filters are dynamic and adapt to the feature list of the selected simulation. The parameter
ranges can either be edited in a textual interface or by using sliders, for which the available
maximum range of is automatically set to a sensible default for the chosen simulation. Once a
query has been committed and the response of the API server has arrived, the halos corresponding
to the filter criteria are shown in the results panel, either as a list, where each element can be
clicked to open the Halo Explorer for the corresponding halo, or as a scatter plot, where the
parameters shown on the x and y axes can be chosen from the supported halo parameters. Halos
can be further selected in either view in order to store them in a collection or for bulk-downloading
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the initial conditions configuration files directly from the halo finder.
Due to the high complexity of the Halo Finder page, with many components depending on the

state of others, handling the application state directly in REACT components would become too
complex and error-prone. We therefore decided to use the FLUX8 design-pattern to manage the
state, in particular the REDUX9 implementation. The key idea is a unidirectional data flow with
a central store managing the state of the application.

Store

Store

View Actions Dispatcher Reducer State

When the user interacts with the interface, or upon response from the API servers, an action is
emitted and dispatched to the store. The store updates the state by combining the current state
and the action with the help of the reducer functions. The interface components are then updated
with the new state.

The clear separation of the interface, the state, and the update logic achieved by this design
pattern greatly lowers the complexity of the Halo Finder page. Figure 4.4 shows the simplified
website and a schematic diagram of the control flow and state management. Actions are for
example emitted by

• selecting a simulation, which updates the state with the corresponding feature list and API
server address and security token,

• changing the search options and filter ranges,

• clicking the search, reset, and save buttons,

• receiving a response from the API server,

• selecting individual halos in the result list or scatter plot.

As an example, we discuss the search action in more detail. The action is emitted after clicking
the “search” button and dispatched to the store. First, the current parameter selection is validated,
after which the result state is either updated to error or loading. In the latter case, a request with
the query settings is sent to the API server corresponding to the selected simulation. This request
is asynchronous, hence the state is updated and the interface updates to reflect the changed state
(“loading”), completing the unidirectional flow cycle. Upon receiving the server’s response, a
new action (“received”) is dispatched to the store. Depending on the status of the response, the
result state is changed from loading to error with a description of the error, or updated with the
returned list of matching halos. The interface updates to reflect the changed state. The other
actions proceed in a similar order. By clicking the “reset” button for example, the dispatched
action resets the simulation and filter settings to their default values and clears the result state.

8https://facebook.github.io/flux/
9https://redux.js.org/
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Figure 4.4: Schematic of the Halo Finder page. The state of the application, including UI set-
tings, validation and server errors, the selected simulation and filters, and server re-
sponses, is managed using the FLUX design pattern described in the text. Interface
interactions and callbacks from server responses (black arrows) emit actions which
are dispatched to the central store and reduced with the current state to create the
new state which is reflected in the updated UI (orange arrows). The search action is
shown in more detail, with a description in the main text.

4.4.2 Halo Explorer

The Halo Explorer page provides an overview of the available details of a halo, enabling the user
to confirm or exclude possible re-simulation targets. It displays valuable information on intrinsic
parameters, the halos past, surrounding, and interior substructure. The design of the page is
modular, and individual components are enabled depending on the feature set of the simulation to
which the halo belongs to. Figure 4.5 shows a schematic overview over the different components
and their corresponding API endpoints. The first row is always present and contains an overview
over mass, radius, and further halo parameters, as well as links to related halos in the temporal and
spatial hierarchy if available. The last row (publications) is also feature independent and indicates
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Figure 4.5: Schematic of the Halo Explorer page. Each panel is connected to an API endpoint
to which a request is sent upon first opening the panel or upon refreshing the panel
parameters (black arrows). Panels that are not supported by the corresponding sim-
ulation are automatically disabled. Additionally, the halo can be published or stored
in a collection (green arrows), and initial conditions can be obtained through the
Downloader.

if the halo is already part of a publication, with the possibility to create a new publication that will
be visible for other users (more information in section 4.4.4). Using the buttons in the top right
corner, the halo can be added to an existing or to a new collection, or the Downloader overlay
can be opened to access the initial conditions configuration script for this halo.
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The remaining panels contain additional information and visualizations that depend on the
support of the corresponding simulation API. To avoid loading all the data at once and potentially
overloading the API servers with several queries at once, the data retrieval is lazy, i.e. the panels
start in a closed state and a request to the API endpoint is only sent when the panel is opened the
first time. The response is then cached, so that closing and reopening the panel does not cause
additional requests.

In addition to the schematic overview in fig. 4.5, screenshots of the visualization panels can
be seen in fig. 4.6 and fig. 4.7. In the following, we will briefly discuss each panel.

Evolution visualization

The evolution panel retrieves the halo properties of the halo’s main progenitor chain. It allows
to visualize the evolution of any numerical parameter configured for that simulation. Different
definitions of the same quantity, such as masses, radii, concentrations, and spin parameters, are
shown together. The plot powered with PLOTLY10 and is interactive and allows zooming, panning
and hovering over data points to see the numerical values.

Merger visualization

The merger panel shows the past major mergers with an adjustable threshold for the ratio be-
tween the merging and resulting halo (i.e. a merger between two halos with a 1:3 mass ratio
would correspond to a merger ratio of 0.25 for our definition). The graph shows the main pro-
genitor branch and highlights halos associated with a merger above the threshold together with
the merging halo. Each halo in the graph can be selected to show its mass and redshift and open
its corresponding Halo Explorer page.

Halo Tracking

The tracking panel visualizes the (comoving) displacement of the halo from its first measured
position during the course of the simulation, following the main progenitor branch. This can
be useful to identify close-by interactions with neighboring massive halos altering the trajectory
of the halo, and to set up parameters for “movie”-features included in various simulation codes
that allow on-the-fly processing of a small simulation volume for visualization purposes. In
that regard, we also provide a polynomial fit of selectable order to the halo coordinates, i.e.
xi =

∑
k cka

k, where a is the scale factor and c are the polynomial coefficients. Note that with
default settings, MUSIC re-centers the simulation volume on the zoom center, hence the c0 offsets
need to be corrected for the shift before using the polynomial to track the movie center.

Substructure visualization

The substructure panel provides a broad overview of the halo’s substructure tree with a circle-

packing enclosure diagram. Note that the ratio of the circle radii of the subhalos roughly cor-
respond to the halo radii, but the diagram does not represent the actual sizes or locations of the

10https://plot.ly/javascript/
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Figure 4.6: Screenshots of the Halo Explorer visualizations (Part 1: temporal)
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Figure 4.7: Screenshots of the Halo Explorer visualizations (Part 2: spatial and ellipsoids)
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subhalos. However, it allows selecting subhalos to show more information on measured masses
and radii.

Surrounding visualization

The surroundings panel shows all halos in the vicinity of the halo in a fully interactive and re-
sponsive 3d visualization built with WebGL11. The size of surrounding box can be chosen in
multiples of the halo radius, and the display currently offers three different shaders for the halos:
a disk and circle shader with the radii corresponding to the halo radius and a NFW-like surface
density shader. The latter is adapted from the calculated surface density in [25]

Σ(x) =
2�srs
x2 − 1

f (x), (4.3)

where x = r∕rs = c(r∕rH ) for a halo with radius r, scale radius rH , and concentration parameter
c, and f (x) is defined as

f (x) =

⎧
⎪⎪⎨⎪⎪⎩

1 −
2√
x2−1

tan−1
√

x−1

x+1
(x > 1)

1 −
2√
1−x2

tanh−1
√

1−x

1+x
(x < 1)

0 (x = 1).

(4.4)

For a clear visualization, we use a very low concentration parameter c = 0.5 for every halo and
map the logarithmic density to a normalized luminosity scale. Additionally, if the information is
available, the closest more massive neighbor and the separation is shown on the side.

Lagrangian ellipsoids overview

The ellipsoid panel visualizes the computed Lagrangian minimum bounding ellipsoids of the
halo to allow for a comparison of the volume and shape of the Lagrangian patches associated with
each traceback-radius. The projections are directly computed from the ellipsoid shape matrix by
requiring the derivative of the ellipsoid boundary equation along the projection axis to vanish,
i.e.

)(qTAq)

)qi
= 0. (4.5)

Furthermore, the panel also lists the number of particles that were used for the ellipsoid computa-
tion to estimate the quality and convergence of the ellipsoid, the mass enclosed by the ellipsoid,
and the efficiency parameter � (cf. eq. (4.1)). Note that these quantities are not shown in the
screenshots due to spatial constraints.

11https://www.khronos.org/webgl
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Figure 4.8: Schematic of the initial conditions downloader overlay. The overlay can be accessed
from the Halo Finder, Halo Explorer and the collection and publication interfaces
and allows configuring and downloading the initial conditions configuration files,
either by opening them directly in the browser, downloading as an archive, or by
generating a link which can be used with an external script directly on the server.

Images

Finally, the images panel will show already existing visualizations of the halo or associated
galaxy. Mock images of the gri bands are for example provided for some galaxies in the publicly
available EAGLE data [216]. This feature is currently is still under development, and the corre-
sponding API backend for the EAGLE simulations has not been fully implemented yet. Future
versions of COSMICWEB may also allow uploading images from re-simulations which will be
shown in this panel.

4.4.3 Downloader

The Downloader is an overlay that can be opened from the Halo Finder, Halo Explorer, and
the collection and publication views. It allows configuring and downloading the MUSIC initial
condition configuration files for a single or multiple halos (from the same simulation) at once. A
schematic overview is shown in fig. 4.8.

Upon opening the overlay, the Downloader is configured with the halos from the page of origin.
For each halo, the Downloader proceeds with requesting its minimum bounding ellipsoids with
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the progress being shown in the overlay. If no ellipsoids are provided for a halo, the corresponding
entry will be highlighted and ignored in the later processing.

The options menu allows selecting the traceback radius of the minimum bounding ellipsoid and
specifying the starting redshift and the coarsest and finest particle resolution of the simulation,
as well as the type of initial conditions file that will be generated by MUSIC. These options will
be added to the configuration file, facilitating the batch processing of multiple zoom simulations.
Depending on the selected output format, more options that are specific to that code will be shown
in the list.

Finally, after the initial conditions are downloaded and the options specified, the interface
offers three different ways of retrieving the initial conditions configuration files, either by clicking
on the halo entry to open a single file directly in the browser, downloading an archive that contains
all files, or storing the configuration online to later download the files with the separate PYTHON

script that we provide with MUSIC. This allows downloading the initial conditions directly on the
server where the full initial conditions will be generated.

4.4.4 Collections and Publications

When querying halos in the Halo Finder, a multitude of halos may fulfill the search requirements
and be suitable for re-simulation. Narrowing the selection thus requires a more thorough inves-
tigation of the candidates, using the Halo Explorer, or maybe even running medium-resolution
zoom simulations on a few targets. It is therefore convenient to temporary store the candidates
and maybe share them with colleagues. Collections are designed to satisfy this requirement by
providing an intuitive interface to group halos, with the capability of naming and describing the
group and individual halos.

Collections can be created by selecting multiple halos in the Halo Finder, from the Halo Ex-

plorer by adding a single halo to an existing or new collection, or from a subset of halos in an
existing collection. Once a collection has been created, it can be viewed and edited in the Col-

lection Editor. We show a schematic overview of the viewer/editor in fig. 4.9. On the application
server, we only store the simulation the collection belongs to, together with a list of halo iden-
tifiers associated with the group. To give an overview of the contained halos, the Collection

Editor loads additional data from the API Server that can be viewed in a scatter plot or in a evo-
lution plot, where the history of a selectable property along the main progenitor branch can be
compared amongst the halos.

The editor allows changing the collection name and adding a descriptive text to the collection
and individual halos. Halos can also be assigned names, for example to match the naming con-
vention in a research article. If a halo is no longer being considered, it can be removed from the
collection. Generally, a collection can only be accessed by the user who created it. To share a
collection with colleagues, this restriction can be removed by checking the corresponding op-
tion, allowing other users to read but not modify the data. Since we use a random universally

unique identifier (UUID12, version 4) for each collection URL, with a total of 2122 possibilities,
the probability of a third party guessing the URL is insignificant.

Once the re-simulations are complete and the results are ready for publication, the collection

12https://www.rfc-editor.org/info/rfc4122
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Figure 4.9: Schematic of the Collection Editor.

can be promoted to the publication status. During this process, the collection is assigned a per-
manent URL composed of the name that was given to the collection. This URL can then be
added to the article, allowing other researches to easily retrieve the referenced halos and their
initial conditions. Additionally, the collection appears under the list of publications shown on
COSMICWEB, together with the description and a link to the research article, and the publication
will also be highlighted in the Halo Explorer for the halos in the collection.

Sometimes, a study for a research article may target a single halo only. For this case, a perma-
nent URL, together with a short description and a link to the article, can be created directly from
the Halo Explorer page, without the detour of creating a single halo collection first.

4.5 Details of the local API implementation

In section 4.3, we have have discussed the requirements on the API servers in order that they
can be integrated with the rest of the COSMICWEB application. How these requirements are best
implemented has to be evaluated case-by-case and depends on the available data, its storage,
the server infrastructure, etc. In this section, we will discuss the implementation for the local
simulations as a case example.

The locally hosted simulations support all required and optional features listed in table 4.3
with the exception of images. The API server thus needs to be able to efficiently access halo
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Figure 4.10: Schematic of the table layout of the local simulation database. Bold entries highlight
the primary keys and arrows represent foreign keys. The halos and ellipsoids table
have been partitioned by simulation for better performance. Additional halo and
ellipsoid properties not relevant for the relationship graph have been grayed out.
See table 4.2 for the abbreviations used for the properties.

catalogs with merger-tree information and associated Lagrangian ellipsoids. We therefore store
the data in a SQL-database13, which allows us to express relations, such as descendant halos,
main progenitor halos, host halos, and main subhalo, as foreign keys between individual entities.

Figure 4.10 shows a schematic overview of the database layout. The lowest entity in the de-
pendency graph is an ellipsoid, which is associated to a halo, which in turn belongs to a snapshot,
associated to the top entity, a simulation. In theory, it would suffice to link a halo with a snapshot
only. However, since the amount of data is fairly large and COSMICWEB requires low latencies
to display the query results in the browser in a reasonable time frame, we use partitioning for the
halos and ellipsoids table. This creates a sub-table for each simulation, basically removing the
latency increase for queries after adding additional simulations.

To minimize storage requirements, some halo properties can be computed on-the-fly. For
the halo boundary definitions following the critical and mean density threshold conventions,
we for example only store the halo masses. The radii and concentration parameters can then
be computed from the critical and mean densities stored with the associated snapshots and the
scale radius stored with the halo. On the other hand, we decided to pre-compute the ellipsoid

13We use the open-source POSTGRESQL database, which provides advanced features such as data partitioning which
is indispensable for large amounts of data such as with this project.
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efficiencies from the shape matrix and the number of particles used to construct the ellipsoid,
as an on-the-fly computation of the shape determinants would increase the query times for the
/halofinder endpoint too much.

As mentioned previously, merger tree relations are implemented using foreign keys point-
ing to the related halo in the halos table. The full main progenitor branch, required for the
/halo/<id>/main_progenitors endpoint, and merger list with variable merger thresholds,
required for /halo/<id>/mergertree, can be efficiently constructed with recursive queries.
Furthermore, quantities such as the mass fraction in substructures or distances to the closest more-
massive halo can be computed dynamically from these relations. In theory, also the time of the
last major merger could be calculated on-the-fly, but for performance reasons in the /halofinder
endpoint, we decided to pre-compute the redshift of the last 1:3 merger for every halo.

As mentioned in section 4.2, the Lagrangian ellipsoids for the local simulations have been
obtained from particles within 1, 2, 4, and 10 Rvir of the halos. Since we may add additional
ellipsoid definitions in a future version of COSMICWEB, we use an extra lookup-table for the
ellipsoid type. Such additional Lagrangian ellipsoids may for example include ellipsoids obtained
from only the bound particles within the traceback-radius, or by optimization of the shape by
removing the outermost particles that increase the volume disproportionally. Having a lookup-
table facilitates this step significantly, as one can simply add an additional entry.

To parse incoming API requests to the various endpoints, to dispatch queries to the database,
and to format the response according to the API specifications, we use the FLASK framework in
combination with the SQLALCHEMY library. Some complex and time-intensive queries, such as
building merger trees or hierarchical trees, have been manually profiled and optimized to guaran-
tee a reasonable execution time. To identify future bottlenecks in the API server, queries that take
a disproportionate amount of time to process are logged on the server, allowing us to optimize
the application where necessary.

4.6 Conclusions

In this chapter, we have presented the COSMICWEB project, an online platform that aims to sim-
plify the creation and sharing of zoom simulations. We have layed out the current work-flow
for setting up and running zoom simulations and showed how COSMICWEB integrates with this
process. In particular, we address three key steps: i) finding and selecting targets for zoom sim-
ulations, ii) retrieving the zoom initial conditions with a high resolution region placed on the
Lagrangian volume of the target, and iii), sharing the initial condition configuration in research
publication, allowing the community to compare and verify scientific results. We envision the
following workflow with COSMICWEB:

1. select a suitable simulation for simulation target,

2. choose appropriate filters in the Halo Finder and query results,

3. preselect some halos using the property list and scatter plot and store them in a new col-
lection,

4. take a closer look at individual halos in the Halo Explorer,
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5. select the target halo(s) by either removing halos from the collection or by creating a new
collection,

6. download the initial conditions configuration files for the halo(s) using the Downloader

overlay,

7. create the initial conditions and run the zoom simulations,

8. when publishing the results, promote the collection to a publication, include the generated
COSMICWEB link in the article, and add a link to the article in COSMICWEB.

The ability to access initial conditions from published research will allow the scientific commu-
nity to easily verify results and compare and improve different models of baryonic physics and
code implementations, which will ultimately help us to improve our overall understanding of the
evolution of galaxies and clusters in our Universe.

Zoom simulations are and will remain an indispensable tool in numerical cosmology to per-
form high resolution simulations of individual gravitationally bound objects, study the formation
and evolution of galaxies in great detail, and to compare different simulation codes and physical
models on the same object.

State of COSMICWEB at the time of writing

Some parts of the COSMICWEB project are being finalized at the time of writing this thesis, after
which the application will be ready to be released to the public. The development of the web
frontend and the integration of the locally hosted simulation (cf. table 4.1) is mostly finished.
There will be some minor changes, mostly affecting the documentation of COSMICWEB and
small parts of the user interface to provide a more intuitive user guidance through the different
components of the web application.

Some work is still required for the interface between the EAGLE simulation database and COS-
MICWEB, in particular to allow searching the halo catalogs through the halo-finder interface. At
the moment, the Halo Finder (see below) is not yet working for EAGLE, but halos and their asso-
ciated proto-halo patches can be retrieved if the EAGLE galaxyID is known. We hope to be able
to finish the integration of EAGLE soon.

4.7 Outlook

As a public platform, the development of COSMICWEB will never be finished as such, since the
data as well as the requirements will change over time, requiring adaptations and extensions to the
project. The exact kind of improvements that we will consider highly depends on the feedback
and requirements from the community. In this outlook, we will therefore only present some
possibilities. Future development can be categorized into two classes: the addition of new data,
in particular the integration of new simulations, and the addition of new features. We discuss
them separately in the next two sections.
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4.7.1 New simulations and data

New halo catalogs and proto-halos from additional simulations can either be directly hosted at
the Observatoire de la Côte d’Azur, or from existing or new databases located outside. To facil-
itate the setting up of the API interface, we may publish our own implementation described in
section 4.5 as a template in the future.

We are or are planning to get in contact with other collaborations that maintain large databases
of simulation data, such as the ILLUSTRISTNG Collaboration [252, 232], the HORIZONAGN
[90], and the MAGNETICUM project [83]. Adding cosmological volumes that contain halos that
were studied in already published articles, such as the FIRE [157, 158] or C-EAGLE [21] simu-
lations, may be a valuable addition to COSMICWEB. In addition, constrained simulations and
reconstructions of the local Universe [37, 120] (e.g. [321, 296]) would provide interesting and
unique possibilities to extend the available halo catalogs and initial conditions.

We are also planning to add new DM-only simulations to extend the mass range of halos for
which we provide initial conditions. In particular, low mass halos are not well-represented at the
moment, which will require high-resolution, low volume simulations. We are also planning to
add halos from a “zoom-into-the-void” simulation, to allow studies of isolated, low mass objects,
in even higher resolutions than the original zoom simulation.

We would also like to provide a platform for people to upload their own initial conditions,
unrelated to simulations that are hosted on COSMICWEB. This would allow researchers to share
the configurations of custom zoom simulations on COSMICWEB; however, the available features
would obviously be very limited.

Running zoom simulations on targets in the COSMICWEB database will naturally improve the
knowledge about this object, e.g. better mass estimates additional information on the galaxy
forming inside the halo, and, most importantly, a better converged Lagrangian volume from
which the halo originates. It would therefore be beneficial for future runs to collect this data and
feed it back to the COSMICWEB database. How this “information loop” could be implemented
is, however, unclear at the moment.

4.7.2 Additional functionality

As a result of the modular design, new Halo Explorer features and Halo Finder filters can be
easily added in the future if required. Such features may include visualizations of the full halo
merger tree with the ability to navigate different progenitor branches, animations of the halo
growth, motion, and merger events using the already existing 3D framework for the visualization
of the halo surrounding, or a tool to find similar halos in the database for statistical studies (e.g.
by suggesting halos with similar properties).

For typical Halo Finder queries (e.g. Milky Way like halos), selector presets may be made
available, with randomized ordering of the returned halos.

For initial conditions generation and proto-halos, we will add support for alternative generators
to MUSIC, in particular for PANPHASIA [171] for the EAGLE simulations. We may also consider
supporting additional descriptors of proto-halo shapes, such as convex hulls, for more optimized
zoom simulations.

To guarantee the accessibility of initial conditions referenced in publications, even after the
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potential end of COSMICWEB, it would be advantageous to store these particular datasets on third-
party services specialized on long-term storage of scientific data. We are considering using the
CERN initiative ZENODO14 to automatically create an entry upon the creation of a publication in
COSMICWEB. In addition, this would provide the COSMICWEB users with unique, citable Digital
Object Identifiers (DOI).

14https://zenodo.org
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CHAPTER 5
Statistics of Proto-Halo Patches

For the COSMICWEB project presented in the previous chapter, we have computed a vast set of
proto-halo patches from multiple simulations at various traceback-radii and at a large range of
redshifts. This provides a large dataset connecting the linear density field with the non-linear
collapsed structures across cosmic time, presenting a unique opportunity to study the origin of
halos in the initial overdensity field and to find correlations between these initial patches and the
objects they evolve into.

In section 1.4, we discussed some dynamical models that predict the non-linear collapse from
the initial overdensity field, namely the spherical and ellipsoidal collapse model that associate
halos to patches in the linear density field that have crossed a predicted density threshold, and the
peaks theory which assumes that halos will form at local maxima of the linear density field. Both
the ellipsoidal model and the peaks theory predict that in general, the gravitational collapse will
be anisotropic, with larger ellipticities for lower peak heights and lower initial densities, generally
associated with lower mass halos.

The mapping between the Lagrangian patch and the final halo encodes the entire formation
history of the object. Its knowledge thus provides a unique opportunity to study how intrinsic
properties of an object arise from initial fluctuations and how they are correlated with the envi-
ronment at larger scales. For example, the triaxial nature of the collapse plays an important role
in the initial growth of the halo’s spin, modeled in tidal torque theory (e.g. [331, 24, 146]), which
predicts that most of the angular momentum of halos is gained during the initial, linear collapse
phase of the halo due to a miss-alignment between the proto-halos shape and the external tidal
field. Of large interest are also secondary correlations of halo properties with the large scale
environment, known as assembly bias [113, 324, 112, 47]. Such assembly bias is potentially
problematic in LSS observations, as it can in principle induce a beyond mass dependent bias in
measurements of cosmological clustering. Spatially correlated merger histories, reflected in spa-
tially correlated proto-halo shapes, are a possible source of intrinsic alignments of galaxies, i.e.
locally correlated orientations of galaxies, contaminating shear measurements in weak lensing
studies [147, 71, 58, 152].

Studying proto-halo shapes may thus yield valuable information on the formation history and
properties of the final halo and its surroundings. In this chapter, we will take a first look at the
Lagrangian patches and their associated halos from the local COSMICWEB database. In particu-
lar, we will study the shape distribution of proto-halos, their alignment with the initial tidal and
density field, and the impact of the halo environment on the proto-halo shape and the “goodness-
of-fit” of the minimum bounding ellipsoid via the efficiency parameter. The massive amount
of data will certainly allow for future in-depth studies (see the discussion in section 5.5). The
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chapter is structured as follows: In section 5.1, we describe the data that is used in the following
analysis, measure how well the minimum bounding ellipsoids capture the shape of the proto-halo,
and we take a closer look at some selected halos and their associated proto-halo. In section 5.2,
we compute the shape distribution of halos depending on mass and on secondary environmental
parameters. In section 5.3, we take a closer look at the minimum bounding as a description of
the proto-halo and discuss important considerations when using them as zoom regions in sim-
ulations, such as the efficiency parameter and the choice of trace-back radius. We conclude in
section 5.4 and provide an outlook on future projects in section 5.5

5.1 Overview

We will start with a brief discussion of the subset of simulations, halos, and associated proto-
halos that we use in this chapter and then visually inspect a few halos and proto-halos of different
masses.

5.1.1 Data

For this chapter, we use the 150MPC, 300MPC, and RHAPSODY_NewCosmo simulations al-
ready discussed in the previous chapter and summarized in appendix A.3. Since the only differ-
ence between these simulations is the simulated volume and the random seed, this choice allows
us to extend the mass range of halos we have access to.

The primary factor that determines the shape distribution of halos is the halo mass (cf. [20]
and section 1.4), and we will therefore study five mass bins in more detail. The mass bins and
which simulation the data originates from is presented in table 5.1.

We will mainly use the minimum bounding ellipsoids evaluated at Rtb = 1Rvir and look at
larger trace-back radii in section 5.3. The ellipsoids in our database are defined by their center
qc and their shape matrix A, i.e.

(q − qc)
TA(q − qc) ≤ 1. (5.1)

mass range (Mvir) sample size simulation redshift particle numbers
[ℎ−1M⊙]

(3, 6) × 1010 140736 150MPC 0 110 – 220
(1, 2) × 1011 51407 150MPC 0 370 – 740
(1, 2) × 1012 52030 300MPC 0 470 – 930
(1, 2) × 1013 6449 300MPC 0 4670 – 9340
(1, 2) × 1014 17803 RHAPSODY_NewCosmo 0 1250 – 2500

Table 5.1: Summary of halo mass bins used in this chapter, including the simulation the halos are
obtained from, number of host halos in that mass range and corresponding number of
particles (note that the number of particles within the ellipsoid is larger than the num-
ber of bound particles within the virial radius, since not all particles are gravitationally
bound and proto-halos are not perfectly ellipsoidal).
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The eigenvalues �1 ≥ �2 ≥ �3 of the shape matrix are related to the semi axes of the ellipsoid
by ai = �

−1∕2

i (note that a1 ≤ a2 ≤ a3). Equivalent to the shape of peaks (cf. section 1.4), we
can define the ellipticity and prolateness of the ellipsoid by

e =
a3 − a1
2
∑

ai
p =

a1 + a3 − 2a2
2
∑

ai
. (5.2)

An often used alternative approach to measure the shape of a proto-halo patch L is the inertia
tensor (e.g. [46, 184])

Iij =
∑
q∈L

q2�ij − qiqj , (5.3)

and its reduced and dimensionless form (e.g. [135])

Ĩij =
∑
q∈L

(q2�ij − qiqj)∕q
2, (5.4)

where q are the Lagrangian coordinates of particles associated with the halo, centered at the
center of mass of the Lagrangian patch. The reduced form weighs the inner part of the profile
more and is thus less affected by spurious particles in the outskirts of the proto-halo patch. Using
the moment of inertia for a homogeneous ellipsoid with semi-axes a1 ≥ a2 ≥ a3, which in the
eigenframe of the ellipsoid corresponds to the diagonal matrix
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)
∕ 5,

we can relate the eigenvalues �1 ≥ �2 ≥ �3 of the inertia tensor to the axes of the ellipsoid:

a2
1
=

5

2N

(
�1 + �2 − �3

)

a2
2
=

5

2N

(
�1 − �2 + �3

)

a2
3
=

5

2N

(
−�1 + �2 + �3

)
,

(5.5)

where N is the number of particles associated with the halo.
Compared to the minimum bounding ellipsoid, these methods, in particular the reduced inertia

tensor, will be less affected by single outlier particles. However, on average, the shapes and
orientations should agree with each other for all methods. To test this, we compute the ellipsoid
shape from the inertia tensor and the reduced inertia tensor and compare them with the shape
of the minimum bounding ellipsoid, using the two mass bins of the 300MPC simulation. The
results are shown in fig. 5.1.

Comparing the ellipsoid derived from the full and from the reduced inertia tensor, we find a
very good agreement. Naturally, the ellipticity and prolateness obtained from the reduced inertia
tensor is lower compared to the full inertia tensor, since the outer particles, which define the
proto-halo shape, contribute less to the tensor. We find that ered ∼ 0.6 efull is a good fit to the
ellipticity measurements. Similarly, the prolateness of the reduced inertia tensor is also damped
to a similar degree and slightly stronger for lower mass halos at positive prolateness. The major
and minor semi axes are strongly aligned: 80% of all major axes of proto-halos from the upper
(lower) mass bin deviate less than 9° (13°), and 80% of all minor axes deviate less than 6° (9°).
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Figure 5.1: Comparison between the ellipticity, prolateness, and alignments of the major and
minor axis of the proto-halo shape determined by the inertia tensor, reduced inertia
tensor, and minimum bounding ellipsoid. We use proto-halos from two mass bins
of the 300MPC simulation: (1, 2) × 1012 ℎ−1M⊙ (blue) and (1, 2) × 1013 ℎ−1M⊙

(orange). The left columns show the comparison between the ellipsoid obtained from
the full inertia tensor I (eq. (5.3)) and the reduced inertia tensor Ĩ (eq. (5.4)), and
the right columns the comparison between the full inertia tensors and the minimum
bounding ellipsoids. Vertical bars indicate the standard error of the mean in the
corresponding ellipticity and prolateness bin.
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5.1 Overview

For the minimum bounding ellipsoid, we observe an overall larger scatter of ellipticities and
prolateness, which is to be expected due to the large influence of outlier particles. On average, the
ellipticity is slightly overestimated for low values and underestimated for larger ellipticities (e ≳
0.15 for the higher, and e ≳ 0.19 for the lower mass bin). This is most likely due to the impact of
outliers: if the patch is more spherical, an outlier will increase the ellipticity independently of its
location. If the patch is already elliptic, there is a higher chance that the outlier will increase the
minor semi axis, resulting in a more spherical minimum bounding ellipsoid. The prolateness of
the minimum bounding ellipsoid is dampened, especially for oblate proto-halo patches. Major
and minor semi axes are well aligned, with 80% of all major axes of proto-halos from the upper
(lower) mass bin deviating less than 36° (33°), and 80% of all minor axes deviating less than 28°
(21°).

Overall, the ellipsoid derived from the inertia tensor, the reduced inertia tensor, and the mini-
mum boundary agree with each other to a reasonable degree. The inertia tensor may be preferred,
as it is a more robust shape measurement of the proto-halo patch, assuming that the proto-halo
patch is defined by only the particles within the halo boundary. For this chapter however, we
will use the minimum bounding ellipsoids already precomputed for the COSMICWEB project.
On average, the shapes should be consistent with the inertia tensor, but we expect that high ellip-
ticities will be under-, and low ellipticities will be overestimated if one would directly compare
the results with the inertia tensor method.

5.1.2 Visual Impression

Before we discuss the statistics of proto-halo shapes, we will take a visual look at some selected
halos. Figure 5.2 illustrates the relation between proto-halos in Lagrangian space and the re-
sulting halo at redshift z = 0. We choose six halos from the 300MPC simulation: two halos
each around M200c ∼ 1012, 1013, and 1014 ℎ−1M⊙, where one is selected from an isolated and
one from a more populated environment. The traceback radii at 1, 2, 4, and 10 Rvir are shown
as circles in Eulerian space. All particles within the circles are traced back to the initial con-
ditions and colored with the color corresponding to the radius. We note that while in isolated
environments, the proto-halo patches are compact and do not grow significantly with increasing
traceback radius (with the exception of Rtb = 10Rvir), they are less spherical, more scattered,
and grow significantly at larger radii in populated regions.

We outline the minimum bounding ellipsoids with the corresponding color. Note that the il-
lustration is only a 2-dimensional slice through the center of the ellipsoid, hence the ellipsoids
appear to be a bad fit in some cases since the 3-dimensional structure is not visible. However, we
can already see that halos in isolated environments tend to have more efficient ellipsoids, with a
higher fraction of particles within the ellipsoid boundaries collapsing into the traceback-radius.
In section 5.3, we will measure this correlation between the environment and the efficiency pa-
rameter in more detail.

An interesting observation is the generally low increase in ellipsoid size between Rtb = 1Rvir

and Rtb = 2Rvir . This is particularly noticeable in the isolated 1013 and 1014 ℎ−1M⊙ examples,
where the increase in ellipsoid size is barely visible and most of the added particles from the
outer regions of the halo are within the proto-halo at Rtb = 1Rvir . This is due to the splash-back
radius, corresponding to the outer caustic that separates the infalling matter from the matter that
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Figure 5.2: Slices through eight halos at redshift z = 0 (right side of the panels) and their proto-
halo patches (left side). The halos are chosen from the 300MPC simulation around
three halo mass values M200c ∼ 1011, 1012, 1013 and 1014 ℎ−1M⊙ from an isolated
environment (top) and more populated regions (bottom). The circles in Eulerian
space correspond to traceback-radii of 1 (magenta), 2 (green), 4 (blue), and 10 Rvir

(yellow) respectively. Particles within Rtb are traced back to Lagrangian space and
colored correspondingly. The ellipses represent cuts through the minimum bounding
ellipsoids and the background shades illustrate the density field (darker corresponds
to higher density).
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−Rsp −RH 0 RH Rsp

x

v

q

multistreaming region

Figure 5.3: 1d illustration of the Lagrangian origin of the matter between the halo radius RH

and the splash-back radius Rsp. The top panel shows the phase-space distribution
of a plane-wave collapse (cf. fig. 1.3), with the multistreaming within the halo and
splash-back radius highlighted. Note that the Lagrangian origin (the “unwrapped”
phase-space spiral) of the region between RH and Rsp is partially embedded within
regions belonging to the central part of the halo.

has crossed the central halo region at least once [103, 35, 3]. The traceback radius is generally
larger than conventional halo radii definitions and roughly between 1 and 2.5Rvir [228]. The
matter between 1 and 2 Rvir thus partially originates from the inner part of the proto-halo, which
does not affect the minimum bounding ellipsoid. This effect is illustrated for a one-dimensional
toy-example in fig. 5.3 and is also discussed in [135].

5.2 Shape distribution of proto-halos

In this section, we look at the statistical distribution of proto-halo ellipticities and prolateness.
From peaks-theory, we expect that higher peaks, corresponding to more massive systems, will
be more spherical (cf. section 1.4). We will therefore start by measuring the mass dependency
of the proto-halo shape. Since halos in clustered environments are subject to stronger tidal fields,
we will, in the second part, measure the environmental effect on the proto-halo shapes at fixed
mass.

5.2.1 Shape distribution by halo mass

For all halos in the mass bins listed in table 5.1, we compute the ellipticity and prolateness of
their associated Lagrangian minimum-bounding ellipsoid according to eq. (5.2). The resulting
distributions are shown in fig. 5.4, with contours including 90%, 50%, and 10% of the proto-halo
patches. In addition, we summarize the numerical values of the distributions in table 5.2.

We immediately notice that the more massive halos originate indeed from more spherical
patches. The ellipticity increases towards lower masses, although there is no significant differ-
ence between the smallest two mass bins, most likely due to the smaller logarithmic mass gap
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Figure 5.4: Ellipticity – prolateness distribution of proto-halos depending on the halo mass at
z = 0. The proto-halos have been computed with Rtb = 1Rvir . The contours include
10, 50, and 90% of the halos in the corresponding mass range. The proto-halos of
the lowest two mass bins come from the 150MPC, the middle mass bin from the
300MPC, and the most massive two from the RHAPSODY_NewCosmo simulation.

between them.
The minimum bounding ellipsoids tend to be slightly prolate, especially for lower mass halos.

One might expect slightly prolate proto-halos from the theoretical predictions of low mass peak-
shapes (cf. fig. 1.7), but we will show below that the density peaks and the proto-halos are
generally not aligned. We also note that the minimum bounding ellipsoids tend to be biased
towards higher prolateness in comparison with the inertia tensor measurement (cf. fig. 5.1).

5.2.2 Shape distribution by environment

We will now focus on environmental influences on the proto-halo shape. Strong tidal fields will
significantly affect the axes along which the initial perturbation can accrete mass, which in turn
defines the proto-halo shape (see for example [193, 259, 260, 80, 207]). Tidal fields will be
stronger in an already overdense environment (cf. fig. 1.6), and therefore we expect the proto-
halo shape to be more distorted (i.e. elliptical) if the halo is in a clustered environment and in
the vicinity of a more massive neighbor.

The local COSMICWEB database (cf. section 4.5) currently offers two indicators to measure the
halo environment: on the one hand, we store the D1,1 parameter (see the definition in table 4.2),
which measures the distance to the closest, more massive halo, normalized by the virial radius,
and on the other hand, we store minimum bounding ellipsoids at 1, 2, 4, and 10 Rvir traceback-
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5.2 Shape distribution of proto-halos

mass range ellipticity ellipticity prolateness prolateness
[ℎ−1M⊙] e ± �e 90% interval p ± �p 90% interval

(3, 6) × 1010 0.1828 ± 0.0002 (0.087, 0.333) 0.0523 ± 0.0003 (-0.081, 0.256)
(1, 2) × 1011 0.1750 ± 0.0003 (0.081, 0.304) 0.0486 ± 0.0004 (-0.079, 0.225)
(1, 2) × 1012 0.1469 ± 0.0002 (0.069, 0.244) 0.0315 ± 0.0003 (-0.072, 0.159)
(1, 2) × 1013 0.1120 ± 0.0005 (0.053, 0.184) 0.0170 ± 0.0006 (-0.058, 0.104)
(1, 2) × 1014 0.0809 ± 0.0002 (0.040, 0.130) 0.0070 ± 0.0003 (-0.048, 0.066)

Table 5.2: Mean, standard error of the mean, and 90% intervals of the ellipticity and prolateness
distribution of proto-halos in the corresponding mass bin (Rtb = 1Rvir). The mass
bins and their associated simulations are described in table 5.1.

radii, together with the number of particles that were used in their construction. The number
of particles is proportional to the mass within the traceback radii and therefore, we can easily
compute the relative mass increase with increasing radius from the halo center. For the following
discussion, we use the D1,1 parameter and the ratio

M10,1 ≡ Np(R = 10Rvir)

Np(R = Rvir)
=

M(R = 10Rvir)

M(R = Rvir)
. (5.6)

In fig. 5.5, we show the distribution of D1,1 and M10,1 for the mass bins described in table 5.1.
D1,1 tends to be smaller for lower mass halos, meaning that it is more likely for a low mass
halo to be in the tidal influence of a more massive neighbor than it is for a high mass halo. The
measured D1,1 means and standard errors of the means for the mass bins in increasing order
are: 9.09 (±0.02), 8.91 (±0.03), 9.01 (±0.03), 9.58 (±0.08), and 14.00 (±0.06). On the other
hand, the relative mass increase from 1 to 10 traceback-radii peaks at lower values for low mass
halos, but is distributed over a wider range than the mass increase of massive halos, meaning that
low mass halos live in a larger variety of environments, from fairly isolated to very clustered.
The means and standard errors of the means of M10,1 for the mass bins in increasing order are:
27.89 (±0.14), 24.62 (±0.20), 15.83 (±0.11), 10.87 (±0.12), 8.54 (±0.03). Therefore, even
though the distributions peak at lower values, the relative mass increase for low mass halos is on
average larger than for massive halos.

To measure the effect of D1,1 and M10,1 on the ellipticity of the proto-halo, we focus on the
1011 ℎ−1M⊙ mass bin from the 150MPC and the 1013 ℎ−1M⊙ mass bin from the 300MPC sim-
ulation. We create subsets of each mass bin by splitting the sample along the 33rd and 67th

percentile of the D1,1 and M10,1 distribution (indicated by vertical lines in fig. 5.5), and taking
the lower and upper thirds to increase the contrast between low and high clustering. We show
the ellipticity – prolateness distribution of these subsets in the two panels of fig. 5.6.

For both quantities indicating a more clustered environment, i.e. for low D1,1 and for high
M10,1, we can clearly see from both mass bins that the ellipticity of the proto-halos is significantly
larger than for isolated halos. The effect on the prolateness distribution is less evident. We list
the means and 90% intervals of the measured ellipticities and prolateness in table 5.3.

Both the D1,1 and M10,1 filters separate the proto-halo ellipticities to a similar degree, indi-
cating that they indeed measure the same property. The selection by M10,1 produces a slightly
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Figure 5.5: Distribution of the environmental parameter D1,1 and mass increase between spheres
of 1 and 10 Rvir , i.e. M(10rvir) ∕M(rvir), measured from five different mass bins.
The lower two mass bins have been obtained form the 150MPC, the middle bin from
the 300MPC, and the upper two from the RHAPSODY_NewCosmo simulations.
Horizontal lines show the 33rd and 67th percentile of the distribution, colored with
respect to the mass bin.

mass range subset ellipticity ellipticity prolateness prolateness
[ℎ−1M⊙] e ± �e 90% interval p ± �p 90% interval

(1, 2) × 1011 D1,1 low 0.1819 ± 0.0005 ( 0.082, 0.306) 0.0504 ± 0.0007 (-0.082, 0.226)
D1,1 high 0.1570 ± 0.0005 ( 0.075, 0.270) 0.0395 ± 0.0006 (-0.074, 0.189)
M10,1 low 0.1452 ± 0.0004 ( 0.072, 0.233) 0.0334 ± 0.0005 (-0.069, 0.156)
M10,1 high 0.1967 ± 0.0006 ( 0.086, 0.330) 0.0599 ± 0.0008 (-0.084, 0.254)

(1, 2) × 1013 D1,1 low 0.1208 ± 0.0009 ( 0.058, 0.193) 0.0187 ± 0.0011 (-0.061, 0.111)
D1,1 high 0.0977 ± 0.0007 ( 0.047, 0.160) 0.0129 ± 0.0009 (-0.052, 0.089)
M10,1 low 0.0960 ± 0.0007 ( 0.047, 0.155) 0.0124 ± 0.0009 (-0.052, 0.083)
M10,1 high 0.1265 ± 0.0009 ( 0.061, 0.199) 0.0212 ± 0.0012 (-0.063, 0.118)

Table 5.3: Mean, standard error of mean, and 90% intervals of the ellipticity and prolateness
distribution of proto-halos in the corresponding mass bin and the environment subset.
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Figure 5.6: Ellipticity – prolateness distribution of proto-halos depending on the environmental
parameter D1,1 (top) and on the mass increase between a sphere of 1Rvir and 10Rvir

of the halo at z = 0, M10,1 (bottom). The distributions show the lower and upper
third of theD1,1 andM10,1 distributions (cf. fig. 5.5), calculated from the 1011 and the
1013 ℎ−1M⊙ mass bins from the 150MPC and the 300MPC simulation respectively.
The contours include 10, 50, and 90% of all halos in the corresponding mass bin.
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stronger contrast between the subsets, in particular for the low halo mass bin, and we will there-
fore use this separation for the following analysis of the alignments of proto-halos with the tidal
field and the density peaks.

5.2.3 Tidal field correlation

The ellipsoidal collapse model (cf. section 1.4) assumes that a Lagrangian sphere collapses
anisotropically under the initial tidal field. We have seen that the assumption of spherical proto-
halo patches is generally not true; the tidal field, however, still plays an important role in the
collapse of the proto-halo, determining along which axes the Lagrangian patch is compressed (cf.
e.g. [206]). We therefore expect a strong correlation between the direction of the tidal field and
the proto-halo shape (also see [207]). Halos in highly clustered environments will additionally
be affected by strong non-linear tidal fields at later times.

To measure the correlation between the initial tidal field and the proto-halo shape, we will again
focus on the 1011 and 1013 ℎ−1M⊙ mass bins. Using the initial conditions generator MUSIC,
we output the initial density field of the 150MPC and 300MPC simulations and compute the
(unnormalized) tidal tensor1 via Fourier Transforms, i.e.

Tij =

{−1
(
kikj
k2

�̃R(k)
)

k ≠ 0

0 else.
(5.7)

In addition, we also compute the tidal tensors TR,ij from the density fields �R smoothed with a
tophat window function of mass M = 1011 and 1013 ℎ−1M⊙ respectively.

To calculate the tidal field at the ellipsoid position, we use two commonly used methods: we
once average the unsmoothed Tij over the cells inside the ellipsoid, and once evaluate TR,ij at the
ellipsoid center. We then determine the eigenvalues �1 ≥ �2 ≥ �3 and corresponding eigenvec-
tors at every proto-halo location. Since the eigenvalues of the tidal tensor may be negative, we
use the axes ratio �3∕�1 instead of the ellipticity in the following discussion. Similarly, we can
calculate the ratio a3∕a1 of the semi axes a1 ≥ a2 ≥ a3 of the minimum bounding ellipsoids.

The comparison between the ellipticity and orientation of the proto-halos, and the ellipticity
and orientation of the tidal field is shown in fig. 5.7. The shape ratios are correlated for all mass
bins, subsamples, and tidal field definitions. For a large positive tidal field ratio, i.e. �3∕�1 ≫ 0,
there is no preferred direction of the tidal forces, and hence the collapse occurs more isotropically
and mass can be accreted from all directions. With decreasing ratio, the relative accretion along
the third axis becomes less efficient than along the first axis, resulting in an elongated, more
elliptical proto-halo (see e.g. [207] for a detailed discussion and a similar measurement using
the proto-halo inertia tensor). We note that the correlation is weaker for the high M10,1 subset of
the low mass bin. This is most likely due to non-linear tidal fields emerging during the collapse
of the more clustered environments, erasing some of the “memory” of the halo’s birth place.

This phenomenon can also be seen in the alignment measurements of the proto-halo orientation
in the tidal field. While the minor and major axes of the proto-halos in isolated environments are
strongly aligned with the minor and major axes of the tidal field, this alignment is lowered for
the high M10,1 subset of both mass bins, but remains significant.

1The tidal tensor is sometimes also denoted as velocity shear tensor, since Tij ∝ ∇u.
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Figure 5.7: Comparison of the initial tidal field with the proto-halo shapes. Top: correlation
between the tidal field axes ratio �3∕�1 and the ellipsoid semi axes ratio a3∕a1. The
points show the mean ellipsoid shape ratio at fixed tidal field axis ratio, with vertical
lines showing the standard error of the mean. Bottom rows: Cumulative distribution
function of the alignment between the major and minor axes of the tidal field and
the minimum bounding ellipsoid. We compare two measurements of the tidal field
tensor: computed from the smoothed initial density and evaluated at the center of the
ellipsoid (left) and computed from the initial density and averaged over the ellipsoid
(right).
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Comparing the two tidal field measurement methods, we observe that the averaging over the
unsmoothed tidal field results in stronger alignments than evaluating the smoothed tidal field at
the center of the ellipsoid. For future studies, this method is thus to be preferred.
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Figure 5.8: Alignment of the density field with the proto-halo shape. The plots show the cu-
mulative distribution function of the alignment between the eigenvectors Λ⃗i of the
Hessian of the smoothed density field and the major (a1) and minor (a3) semi axes of
the ellipsoids. Note that on a peak, Λi < 0, and therefore, Λ⃗1 indicates the shortest
axis of the peak and Λ⃗3 points along the elongated axis of the density peak.

We finish our discussion of the proto-halo shapes by measuring the alignment of the proto-
halos with respect to the shapes of the peaks in the initial density field. For this purpose, we
evaluate the Hessian Hij of the smoothed �R at the ellipsoid centers2 (cf. eq. (1.94)) and compute
the eigenvalues Λ1 ≥ Λ2 ≥ Λ3 and the corresponding eigenvectors Λ⃗i. At a density peak, defined
by its concave shape, all eigenvalues would be 0. We find, however, independently of the method
used to determine Hij and the mass samples, that this is only the case for 20% of the sample, but
slightly lower ( 15%) for halos in clustered environments, and higher ( 25%) for isolated halos.

Figure 5.8 shows the alignments between the eigenvectors of Λ1 and Λ3 and the orientation of
the proto-halo semi axes a1 and a3. For the clustered halo sample, there is almost no alignment
between any axes, indicating that the proto-halos are basically randomly oriented with respect
to the underlying density field, confirming previous results by Ludlow et al. [207]. However,
we measure a slight positive alignment between the eigenvector of Λ1 and the minor axis of the
proto-halos in the isolated sample. This finding suggests that, in the absence of strong tidal forces,
the shape of the local initial density field has a small impact on the regions that are accreted into
the halo. Overall, however, the tidal field ultimately determines the shape and orientation of the
proto-halo.

2The results have been verified against the evaluation by averaging the unsmoothed Hessian over the ellipsoid shape,
yielding the same alignments.
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5.3 Proto-halos for zoom simulations: efficiencies and

traceback-radii

When running zoom simulations, one often targets a certain mass range and environment (e.g.
cluster re-simulations [137, 21] or simulations of Milky-Way type halos [122]), with the goal
of re-simulating a fair sample of halos in that parameter range. We have seen in the previous
sections how the mass and environment affects the shape of the proto-halo. In this last section,
we will focus on the efficiency parameter of the proto-halo ellipsoids, i.e. how well the minimum
bounding ellipsoid described the proto-halo. The efficiency parameter is an important factor
in determining how much computational resources are required to simulate the object in high
resolution. We recall the definition of the efficiency parameter from eq. (4.1):

 =
Mparticles

Mellipsoids

, (5.8)

i.e. the ratio of the number of particles within the traceback radius of the halo and the number
of particles within the minimum bounding ellipsoid. The lower the efficiency, the larger is the
fraction of high resolution particles that have to be simulated, but which will not be part of the
final halo.

We naturally expect that the more regular the shape of the traced-back particles, the better
it will be described by an ellipsoid, and thus the higher the efficiency will be. In the previous
section, we have seen that more compact and spherical proto-halos are associated with more
massive and more isolated halos, so we expect that these halos will also be the most “efficient”
to re-simulate. To determine this efficiency – mass and efficiency – environment correlation, we
measure  at Rtb = 1 and 4Rvir at z = 0 for all halos in the 150MPC, 300MPC and RHAP-
SODY_NewCosmo simulation, and also at z = 1 and z = 2 for the 300MPC simulation to study
the redshift dependency.

5.3.1 Efficiency distribution by halo mass

We start with the discussion of the efficiency – halo mass relation which is shown in fig. 5.9 for the
three simulations at redshift z = 0 and at 1 and 4 Rvir traceback-radii. We also highlight the mass
corresponding to 1000 N − body particles. Above this threshold, the efficiency increases for all
simulations, in agreement with the measurements in [239]. At the low mass end (Mvir ∼ 100mp,
where mp is the N-body particle mass), most of the ellipsoids have converged due to the low
number of particles that are used to compute the ellipsoid, which can be seen by the substantial
drop in efficiency.

For the Rtb = 1Rvir ellipsoids, we observe an upturn in the efficiency between these lowest
masses and the 1000 particle threshold. We suspect that this upturn is most likely due to a surface
effect of the ellipsoid and may highlight an issue with our minimum bounding ellipsoid computa-
tion. To fit the minimum bounding ellipsoid to the Lagrangian particles, we use their Lagrangian
coordinates, i.e. the center of the cells. On the surface of the ellipsoid, the optimized minimum
bounding ellipsoid will therefore cut through cells belonging to particles within the traceback
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Figure 5.9: Efficiency of the Lagrangian minimum bounding ellipsoids as a function of the halo
mass Mvir . Shown is the median efficiency and the 66% and 90% contours. The
minimal bounding ellipsoids are computed from particles within Rtb = 1 and 4Rvir

of free halos in the 150MPC, 300MPC and the RHAPSODY_NewCosmo simulation
at redshift z = 0. The dashed vertical lines show the mass of 1000 particles for
estimating the convergence threshold.

radius. As a consequence, the ellipsoid volume and therefore mass decreases, and the appar-
ent efficiency increases, as the ellipsoid does not contain the full Lagrangian volume associated
with the traceback-radius (in theory,  > 1 would be possible, but has not been observed in our
database). With increasing halo mass, the number of particles within the traceback radius grows
and the surface-to-volume fraction decreases, hence the effect becomes less apparent. However,
we consider this to be a bug in the computation which will need to be addressed in future ver-
sions of COSMICWEB, either by artificially upscaling the size of the ellipsoids by half a cell size
in all directions, or by recomputing the ellipsoids and requiring that the entire Lagrangian cells
are contained instead of only the centers.

When considering halos at different redshifts, objects of different mass occupy the nodes of
the cosmic web where they can accrete surrounding mass relatively isotropically. Objects which
are affected by massive neighbors must by definition be of smaller mass. We therefore expect
the ellipsoid efficiency to strongly depend on cosmic time at fixed mass. To first order, this
evolving mass scale is encoded in the peak height �(M,z) = �c∕�(M,z) (cf. section 1.4) of a
perturbation. Specifically, one defines the non-linear mass as �(MNL, z) = 1 (cf. eq. (1.104)).
Expressed in units of the non-linear mass, the HMF becomes (almost) universal (cf. e.g. [170, 97,
314]). Similarly, factoring out the growth of MNL removes the evolution of the patch efficiency
as shown in fig. 5.10 (with the exception of the increase and drop in measured efficiencies at low
particle numbers that is present at all redshifts).
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Figure 5.10: Efficiency of the Lagrangian minimum bounding ellipsoids of the 300MPC simu-
lation at redshift z = 0, 1, and 2 as a function of the halo mass Mvir normalized by
the non-linear mass MNL (cf. eq. (1.104))

5.3.2 Efficiency distribution by secondary parameters

To investigate the influence of further parameters on the ellipsoid efficiency, we select halos
from the five mass bins in table 5.1 and measure the distribution of efficiencies depending on the
closest more-massive halo distance D1,1, the mass increase ratio between 1 and 10Rvir M10,1,
the proto-halo ellipticity eellipsoid, the spin parameter �Peebles, the concentration parameter cvir ,
and the redshift of the last major merger (defined with a minimum mass-ratio of 1:3) zlast_mm.
While the first three parameters are a direct or strongly correlated measure of the environment
(cf. previous section) and we therefore expect a strong correlation with the efficiency parameter,
the other three parameters are at most connected to the environment via secondary effects.

Figure 5.11 visualizes the measured correlations between the six selected parameters and the
efficiency at 1 and 4Rvir traceback-radii. Additionally, we also show the distribution of the prop-
erty for each mass bin to indicate in which parameter range we expect most halos. As expected,
the three environmental parameters have the strongest influence on the efficiency of the proto-
halo, with halos in clustered environments (⇔ low D1,1 ⇔ high M10,1 ⇔ high ellipticity) having
a lower efficiency ( ∼ 0.1 − 0.2) on average than isolated halos ( ∼ 0.4 − 0.6). Since most
halos, in particular low mass halos, live in rather clustered regions of the universe, selecting a
re-simulation target by high efficiency will therefore create a strongly biased sample towards iso-
lated halos. We note that this result is partially in tension with the results of Oñorbe et al. [239],
detecting only a “mild correlation” between the Lagrangian volume and the environment.

The remaining three parameters show less correlation with the efficiency parameter. We can
observe a weak trend to lower efficiencies with increasing spin parameter and decreasing con-
centration parameter, which is most likely related to the environmental correlation of these pa-
rameters. There is no visible dependence of the efficiency parameter on the time since the last
major merger with the exception of the lowest mass bin. Perhaps a bit counter-intuitively, the
efficiency drops significantly for low mass halos for which the last major merger event occurred

135



Chapter 5 Statistics of Proto-Halo Patches

p
d
f

M ∈ (3, 6)× 1010h−1M⊙

M ∈ (1, 2)× 1011h−1M⊙

M ∈ (1, 2)× 1012h−1M⊙

M ∈ (1, 2)× 1013h−1M⊙

M ∈ (1, 2)× 1014h−1M⊙

0.0

0.2

0.4

0.6

ǫ(
R

tb
=

4
R

v
ir
)

10 20 30
D1,1

0.0

0.2

0.4

0.6

ǫ(
R

tb
=

4
R

v
ir
)

5 10 15
M10,1

0.1 0.2 0.3
eellipsoid

p
d
f

0.0

0.2

0.4

0.6

ǫ(
R

tb
=

4
R

v
ir
)

0.05 0.10
λPeebles

0.0

0.2

0.4

0.6

ǫ(
R

tb
=

4
R

v
ir
)

5 10 15
cvir

1 2 3 4
zlast mm

Figure 5.11: Efficiency of the Lagrangian minimum bounding ellipsoids as a function of the
environmental parametersD1,1, M10,1, and the ellipticity eellipsoid, as well as the halo
spin �Peebles, concentration cvir , and redshift of the last major merger zlast_mm. The
plots show the median of the efficiency at 1 and 4 traceback-radii for the mass bins
detailed in table 5.1. Shaded regions include 66% of the halos at the given parameter
value. The top panels show the (normalized) distributions of the parameter for a
each mass bin.

136



5.3 Proto-halos for zoom simulations: efficiencies and traceback-radii

1

10

100

M
x
(R

tb
)
/
M

x
(R

v
ir
)

Split by Mvir

Mellipsoid

Mparticles

Split by D1,1

M ∈ (1, 2)× 1011h−1M⊙

D1,1 ∈ [1, 5)

D1,1 ∈ [5, 15)

D1,1 ∈ [15,∞)

1 2 4 10

Rtb / Rvir

1

10

ǫ(
R

tb
)
/
ǫ(
R

v
ir
)

M ∈ (3, 6)× 1010h−1M⊙

M ∈ (1, 2)× 1011h−1M⊙

M ∈ (1, 2)× 1012h−1M⊙

M ∈ (1, 2)× 1013h−1M⊙

M ∈ (1, 2)× 1014h−1M⊙

1 2 4 10

Rtb / Rvir

M ∈ (1, 2)× 1013h−1M⊙

D1,1 ∈ [1, 5)

D1,1 ∈ [5, 15)

D1,1 ∈ [15,∞)

Figure 5.12: Relative change of mass of Lagrangian proto-halo patches (top) and the efficiency
parameter (bottom) with increasing Rtb for halos in the mass bins detailed in ta-
ble 5.1. For the mass increase, we plot the change inMellipsoid (dashed) andMparticles

(solid) separately. In addition, we subdivide two mass bins according to the envi-
ronmental parameter D1,1, shown on the right.

at early times compared to low mass halos that had a more recent major merger. In previous stud-
ies, it has been shown that such halos with early last major merger are associated with regions of
strong tidal fields which suppress mergers at later times [140, 29]. These halos may effectively
be satellites of a host halo, but outside its virial radius and thus not counted as subhalos [119].
The strong tidal field influences the mass assembly (which in the most extreme cases includes
mass loss) and thus leads to less regular proto-halo shapes, reflected in low efficiencies of the
minimum bounding ellipsoid.

5.3.3 Mass increase and efficiency change with increasing traceback-radius

When running zoom simulations, one has to be aware of potential contamination of the target
object with lower mass particles. It has been shown that such contamination will bias properties
of the target significantly, e.g. by lowering the baryon fraction in the halo and causing artificial
fragmentation of the gas [239]. To avoid contamination, a larger traceback-radius can be chosen.
However, a larger traceback-radius will increase the volume of the minimal bounding ellipsoid,
and therefore require more computational resources. The exact growth of the Lagrangian ellip-
soid naturally depends on the environment of the halo: in a clustered environment, more mass
will fall within the larger traceback-radii than for an isolated halo.
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In order to measure the growth of the Lagrangian volume depending on the halo mass and
environment, we compute the relative mass increase between 1, 2, 4, and 10Rvir traceback-radii
for the traceback-mass (i.e. the number of particles contained within Rtb) as well as the volume
of the minimum bounding ellipsoids. We use the mass bins detailed in table 5.1 and subdivide
the 1011 and 1013 ℎ−1M⊙ bins into three subsets depending on the normalized distance to the
closest more massive halo D1,1.

The results are shown in the top panels of fig. 5.12. As expected, both the particles within Rtb

and the volume of the minimal bounding ellipsoid increase faster for lower-mass halos and halos
in more clustered environments. For halos in the lowest mass bin for example, the volume of the
minimum bounding ellipsoid is on average more than ten times larger at Rtb = 2Rvir compared
to 1Rvir , whereas the ellipsoid volumes of the most massive halos in our sample only increase
by a factor of 1.24 on average. We also note that for low mass halos and halos in clustered
environments, the ellipsoid mass grows faster than the traceback mass between 1 and 2 Rvir . For
these halos, it is very likely that neighboring halos contribute to the number of particles within a
large Rtb, causing irregular proto-halo patches which lower the efficiency parameter and increase
the volume of the ellipsoid fit. For isolated halos and massive halos dominating their surrounding
on the other hand, the growth of the traceback-mass and the minimum bounding ellipsoid with
increasing Rtb is lower and more regular.

This effect can also be seen from the average change in efficiency, shown in the lower panels
of fig. 5.12. For halos in the lowest mass bin, the efficiency drops by ∼ 25% from 1 to 2 Rvir

traceback-radii. Only at larger Rtb, the efficiency increases significantly; however, so does the
contained mass and therefore computational cost. For massive halos and halos in isolated envi-
ronments, we measure a small increase of the efficiency with increasing traceback-radius. Note
however, that the “base” efficiency of these halos is already higher than for less massive halos
(cf. fig. 5.9 and fig. 5.11).

We conclude that for massive and isolated objects, the traceback-radius can be increased with-
out a large penalty in computational cost. For halos in a dense and clustered environment, the
high resolution volume increases more rapidly; however, this is to be expected, as the environ-
ment plays a more dominant role during the evolution of these objects than for isolated halos.
With the exception of the lowest mass bin at Rtb = 2Rvir , the minimum bounding ellipsoids tend
to provide a better fit to the proto-halos at larger traceback-radii, as can be seen by the increase
of efficiency.

5.4 Conclusions

In this chapter, we took a first look at the proto-halo data contained in the COSMICWEB database.
Unlike previous studies of proto-halo shapes that use inertia tensors to infer ellipticity, prolate-
ness, and orientation of the proto-halo (e.g. [259, 260, 135, 207, 46]), our database contains min-
imum bounding ellipsoids. We therefore first compared the shape and orientation measurements
according to the inertia tensor, the reduced inertia tensor, and the minimum bounding ellipsoid
descriptions, and we found good agreement between the various methods. However, to compare
numerical values between the studies, one would have to take into account the discrepancies be-
tween the methods, e.g. the minimum bounding ellipsoid overestimates low and underestimates
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high ellipticities and is less sensitive to oblateness / prolateness compared to inertia tensors.
Visualizing the proto-halo and minimum bounding ellipsoids of six selected halos from the

300MPC simulation, we saw that halos in clustered environments tend to have less regularly
shaped proto-halos and their bounding ellipsoids tend to be less spherical and less efficient, i.e.
providing a worse fit than proto-halos of isolated halos.

We verified this observation by analyzing halos and their proto-halos from five mass bins
between 3 × 1010 to 2 × 1015 ℎ−1M⊙, taken from the 150MPC, the 300MPC, and the RHAP-
SODY_NewCosmo simulation of the COSMICWEB database. Our results mainly agree with pre-
vious studies [206, 207] and can be summarized as follows:

• more massive halos have on average a more spherical proto-halo shape, whereas proto-
halos of low mass halos tend to be more elliptical and slightly prolate;

• however, triaxiality remains important throughout all tested mass-scales, invalidating the
simple assumption of an initially spherical Lagrangian volume in the ellipsoidal collapse
model (cf. section 1.4), and therefore predicting halo collapse requires a more sophisticated
description;

• proto-halos of isolated halos are on average more spherical than the ones of halos in clus-
tered environments;

• the proto-halos align mainly with the tidal field (the velocity shear) in the initial condi-
tions, with the strongest compression along the major axis of the ellipsoid, and the lowest
compression, or even expansion, along the minor semi axis. The alignment is stronger for
proto-halos in isolated environments, hinting to non-linear effects erasing the “memory”
of the initial condition in clustered environments;

• the proto-halos are almost randomly oriented with respect to the local density peaks. Only
for the most isolated halos, we could measure a small alignment between peak shape and
proto-halo shape.

We then shifted our focus towards the efficiency of the proto-halos, an important measure of the
feasibility of the minimum bounding ellipsoid as a zoom-region for simulations. In agreement
with [239], we found that proto-halos of more massive halos statistically have a higher efficiency
and are thus better captured by an ellipsoid than proto-halos of lower masses. However, we found
a strong correlation between the efficiency and the sphericity of the proto-halo shape as well as
environmental parameters, indicating that the higher efficiency of more massive proto-halos is
mainly due to their more compact, spherical shape that is less distorted by the tidal-field and
non-linear interactions in clustered environments.

The strong correlation between the efficiency and environment calls for attention when se-
lecting targets for zoom simulations, in particular for low mass halos. When requiring a high
efficiency, desirable for high resolution simulation, one will be mainly selecting halos biased to-
wards high isolation, which may not be representative of typical halos in that mass range. We
also investigated correlations with additional halo parameters, and only found a weak relation
between higher efficiency, lower spin parameter, and higher concentration.

For zoom simulations, one may prefer proto-halos at larger traceback radius to prevent contam-
ination of the halo interior through lower mass particles. We saw that the increase in computa-
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tional cost is low for high-mass and isolated halos, but becomes significant for low mass halos and
halos in clustered environments, which is expected since the environment plays a more dominant
role during the evolution of these halos. We also observed that with increasing traceback-radius,
the minimum bounding ellipsoids provide a better fit to the proto-halos, and thus lead to a higher
efficiency of these ellipsoids.

5.5 Outlook

This chapter provided merely a first glance at the proto-halo data contained in COSMICWEB.
The large datasets will allow for more detailed studies of correlations between properties of the
evolved halos and their place of origin. In our brief overview, we have only used halos at z = 0,
but the availability of full merger trees with associated Lagrangian volume for each halo in this
tree will allow us to study the evolution of the proto-halo patch as the halo accretes mass and
merges with neighboring halos. Such measurements, if compared to different models and predic-
tions of halo formation (e.g. [43, 135, 206, 145]), will hopefully be able to help our understanding
of where and how structure forms from the initial perturbations.

Future large scale surveys require extensive sets of mock catalogs with varying cosmological
parameters in order to estimate covariances, study systematics, and test data pipelines. However,
the number of simulations required to generate these mocks becomes prohibitively large for full
N-body simulations, and therefore, many approximate, accelerated methods have and are be-
ing developed [223]. These accelerated methods include abridged particle-mesh methods such
as COLA [310, 160, 168] and FastPM [101], generative methods using trained neural networks
(e.g. generative adversarial networks) to create new catalog realizations (e.g. [274, 273]), and
predictive methods, which implement physical or machine learned models of gravitational col-
lapse to find halos in the initial density field, which then can be moved to their final location using
Lagrangian perturbation theory. This last category includes for example excursion sets and peak-
patch methods [43, 303, 320], PINOCCHIO [225, 222], and the neural network code HALONET

[33].
The large and detailed COSMICWEB datasets present an ideal testing and training ground to

develop and improve such mock catalog generators. In particular, with the rising prevalence of
machine learning techniques in cosmology, it would certainly be an interesting application to
consider.
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Concluding remarks

Numerical simulations play an important role in cosmology by allowing us to connect theoretical
models to observations, which in turn allows us to constrain parameters and to refine or reject
models. Simulations also enable us to closely follow non-linear processes and study the mechan-
ics behind the formation and evolution of halos and galaxies, and thus improve our understanding
of the Universe. It is therefore crucial to further develop and improve numerical methods in order
to keep up with the availability of larger and more accurate observational studies and to tackle
current challenges in cosmology.

In this thesis, we focused on the connection between the initial perturbation field and the
formed structures in N-body simulations by following the simulation particles during the evo-
lution of the Universe. We used this Lagrangian map to reconstruct the continuous phase-space
distribution of dark matter, allowing us to accurately measure the local velocity distribution func-
tion, and to determine the regions of origin which collapse to gravitationally bound dark matter
halos. These regions, the proto-halos, are on the one hand an important ingredient for zoom
simulations and on the other hand allow us to study correlations between the initial conditions,
the properties of the final halos, and the tidal forces of the large scale environment.

In chapter 3, we used the tessellation method ([1, 285], section 2.3) to reconstruct the dark
matter phase-space sheet which allowed us to accurately measure the velocity dispersion tensor
field in the cosmic web. In the CDM paradigm, velocity dispersion vanishes per definition in
the single-stream regime and emerges in collapsed structures where shell-crossing has occurred,
carrying the anisotropic signature of collapse in its tensorial components. Using this property, we
introduced a new cosmic web classification method based on the progress of the collapse along
the three axes. We studied various aspects of the magnitude and the anisotropy of the velocity
dispersion field in detail, such as their density dependence, spatial correlations, and alignments.
Furthermore, we found a remarkable agreement between the DM velocity dispersion and the
random motions in the shock-heated baryonic gas, opening an interesting research field for future
studies.

In chapter 4, we presented COSMICWEB, a web application that aims to improve the zoom
simulation workflow by providing a uniform interface to halo catalogs and merger trees from
existing simulations, by allowing to download initial conditions refined on these halos, and by
enabling users to easily reference these initial conditions in publications. The possibility to gen-
erate zoom initial conditions for halos from existing large and detailed datasets simplifies the
creation of zoom simulations of objects that are well-suited for various research requirements.
Furthermore, COSMICWEB provides the capabilities to easily batch-process a collection of zoom
simulations, for example to run a statistical analysis on a number of halos from a certain param-
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eter space, and the ability to access the zoom initial conditions from published articles allows to
easily reproduce results and compare different codes and subgrid implementations.

In chapter 5, we studied the proto-halos computed for the COSMICWEB project, in particular
the correlations between the shapes of the minimum bounding ellipsoids, the intrinsic properties
of the formed halos, and their large-scale environment. We confirmed previous results that the
tidal forces from the large scale environment play a significant role in determining the region that
collapses to a halo. Furthermore, we verified the agreement of the minimum bounding ellipsoid
shape with the inertia tensor, and we measured a strong correlation of the efficiency, i.e. the
“goodness of fit” of the minimum bounding ellipsoid, with the halo mass and the environment.
The environmental dependency of the proto-halo efficiency has to be taken into account when
selecting targets for optimized zoom initial conditions, as considering high-efficiency proto-halos
only will bias the selection to isolated halos.

Outlook

Each of the three main projects presented in this thesis provides many interesting and promising
possibilities for future scientific studies. We have laid out several opportunities at the end of each
chapter, and work on some of these projects has already been started.

Machine learning is becoming a more and more widely used technique in astrophysics and in
cosmology in particular, covering a large variety of applications (see e.g. [55] for an overview
of machine learning across physical sciences). Machine learning methods applied to and range
from classifying strong lens systems [191], estimating photometric redshifts [45, 194] and clus-
ter masses [235, 236, 234, 153], predicting cosmological parameters from the DM density fields
[270]. Another category of applications focuses on creating mock observations for estimating
covariances, testing pipelines, and studying systematic effects in observational surveys. The re-
quirement of large quantities of test data can make N-body simulations and in particular full
hydrodynamic simulations unfeasible, and accelerated, more approximate methods have to be
used, such as “deep learning” models trained on the accurate models (full simulations). Applica-
tions of these generative models include enhancing DM-only simulations by “painting” baryonic
features such as galaxies [345] and Sunyaev-Zel’dovich effect mock observations [315], predict-
ing the non-linear particle evolution [145], creating halo mock catalogs from a linear density
field [205, 204, 33], and generating new realizations of the large scale structure entirely [274].

Many of these applications are still in their infancy and sometimes merely a proof-of-concept.
Substantial research efforts will be required to develop them into powerful and accurate tools in
the future. In that regard, the projects presented in this thesis have great potential to be continued
with a focus on machine learning, and to contribute to the ongoing effort in developing accurate
mock observables using fast generative models.

On the one hand, the agreement between the DM velocity dispersion and the random motions
in the baryonic gas measured in chapter 3 can be used to enhance DM-only simulations with
baryonic features, specifically gas densities and temperatures in the intergalactic medium, and
improve existing methods such as LYMAS [246] that predict Ly-� statistics from DM simula-
tions. In fig. 3.15, we observed spatial differences between the DM velocity dispersion field and
the baryonic temperature field, such as the larger extent of shock-heated regions compared to the
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DM multistreaming environments. Convolutional networks would be the ideal tools to learn such
discrepancies and accurately “paint” the baryonic properties onto the DM density and velocity
distribution field.

On the other hand, the large number of proto-halos and associated merger trees from various
different simulations in the COSMICWEB project present an ideal training ground for algorithms
to learn i) predicting halo properties and entire merger trees from an initial proto-halo patch and
its environment, and ii) identifying regions in the initial conditions that will collapse at a given
time. Such machine learning algorithms could extend the currently available methods (e.g. [43,
303]), with less focus on physical processes and theoretical understanding, but fast and accurate
predictions required for generating mock catalogs for upcoming surveys and instruments such as
DESI [79], SKA [302], LSST [167], Euclid [192], WFIRST [299], and SPHEREx [86]. A further
challenging but very rewarding task lies in inverting this problem and generate the proto-halo
patch and environment of a halo, given certain constraints on intrinsic and external properties.
This would allow creating constrained simulations of any kind of object or group of objects, such
as the local Universe.
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APPENDIX A
Appendix

A.1 Relativistic Perturbation Theory

In the early Universe and on large scales, we can treat the inhomogeneities as perturbations of
the smooth FLRW background ḡ�� and write

g�� = ḡ�� + ℎ�� , (A.1)

where |ℎ��| ≪ g�� is a symmetric 4-tensor. Due to gauge-freedom under the infinitesimal coor-
dinate transformation x� → x̃� = x� + ��(x), only 6 of the 10 independent parameters of ℎ��
are physical [221]. A choice of gauge has thus to be made, fixing 4 degrees of freedom.

We can decompose ℎ�� in so-called scalar-, vector- and tensor-perturbations by writing

ℎ00 = −E (A.2)

ℎi0 = a
[
)F

)xi
+ Gi

]
(A.3)

ℎij = a2
[
A�ij +

)B

)xi)xj
+

)Ci

)xj
+

)Cj

)xi
+Dij

]
, (A.4)

where A,B,E, F are scalars, Ci and Gi are divergence-less vector fields and Dij is a traceless,
symmetric and divergence-less tensor field. These different modes correspond to different phys-
ical phenomena: the gravitational potential (scalar mode), gravito-magnetism (vector mode) and
gravitational radiation (tensor mode) (see e.g. [221]). In the linear regime, they are completely
decoupled and evolve independently. It can be shown that the vector perturbations decay as the
Universe expands while the tensor perturbations mainly play a role in the CMB polarization and
would be an important probe to constrain inflation if detected [325].

In the following, we will be considering scalar modes only. Due to gauge-freedom, we can
choose a coordinate system in which B = F = 0. Choosing A = 2Φ and E = 2Ψ, we recover
the common notation of the Newtonian gauge in which the full metric becomes

g�� =

(
−1 − 2Ψ

a2�ij(1 + 2Φ)

)
. (A.5)

The Newtonian gauge has the advantage that it can easily be related to the Newtonian limit of
gravity.

Analogously, we also perturb the stress-energy tensor T�� = T̄�� + �T�� . For photons, we
parametrize the temperature inhomogeneities as T = T̄ (t)(1+Θ(x, p̂, t)) and label n-th multipole
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of Θ as Θn. Analogously for neutrinos, where we name the perturbations  . For CDM, we write
density perturbations as � = �̄(t)(1+�(x, t)) and peculiar velocities as v(x, t) and ignore all higher
order moments due to the coldness of CDM1 Similarly to CDM, the baryonic inhomogeneities
can be parametrized by �b(x, t) and vb(x, t)

To study the evolution of the perturbed metric and energy density, we can split the problem
into two parts: studying the effect of the inhomogeneous potential on the content of the Universe
via the Boltzmann equation, and the effect of the perturbed components on the metric via the
EFE. Computing these reactions give rise to a system of coupled differential equations known
as the Einstein-Boltzmann equations. Assuming the perturbations are small, the system can be
simplified by only considering terms linear in perturbations and transforming the equations to
Fourier space.

Using the conformal time � (see eq. (1.6)) and defining � = p̂k̂ as the cosine between the
wave-vector k and the photon momentum p, the linear Boltzmann equations can be written as
[81]

Θ̇ + ik�Θ = −Φ̇ − ik�Ψ − �̇
[
Θ0 − Θ + �vb −

1

2
2(�)Π

]
(A.6)

Π = Θ2 + ΘP2 + ΘP 0 (A.7)

ΘP + ik�ΘP = −�̇
[
−ΘP +

1

2

(
1 − 2(�)

)
Π
]

(A.8)

�̇ + ikv = −3Φ̇ (A.9)

v̇ +
ȧ

a
v = −ikΨ (A.10)

�̇b + ikvb = −3Φ̇ (A.11)

v̇b +
ȧ

a
vb = −ikΨ +

�̇

R

[
vb + 3iΘ1

]
(A.12)

̇ + ik� = −Φ̇ − ik�Ψ, (A.13)

where l is the Legendre polynomial of order l, � is the optical depth, ΘP the perturbations in
the photon polarization field and R = 3�b,0∕4�,0 is the baryon/photon ratio. Equation (A.6)
determines the evolution of the photon temperature including Compton scattering between pho-
tons and baryons, eq. (A.8) describes the generation of photon polarization that can be observed
in the CMB, eq. (A.9) and eq. (A.10) govern the evolution of CDM overdensities and peculiar
velocities, and eq. (A.11) and eq. (A.12) the ones of baryons which unlike the CDM are coupled
to the photons by Compton scattering. Equation (A.13) describes the evolution of the neutrino
temperature inhomogeneities, assuming massless neutrinos.

The second part, the effects of the perturbations in the energy stress tensor on the potentials Φ
and Ψ, are obtained from the EFE. We find in the linear approximation [81]

k2Φ + 3
ȧ

a

(
Φ̇ −

ȧ

a
Ψ
)
= 4�Ga2

[
�m�m + 4�rΘr,0

]
(A.14)

k2(Φ + Ψ) = −32�Ga2�rΘr,2, (A.15)

1As discussed in section 1.2.3, this assumption is only valid before shell-crossing at early times.
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A.1 Relativistic Perturbation Theory

where ◌m and ◌r indicates all non-relativistic matter and relativistic radiation respectively. Note
that if the radiation quadrupole Θr,2 is small, then Φ ≃ −Ψ is a good approximation. The differ-
ence between the potentials, the so-called gravitational slip, is predicted to be very small in GR
but might arise in modified GR theories [34].

Perturbative solutions in limiting cases

With the exceptions of some limiting cases, the system of Einstein-Boltzmann equations has to be
solved numerically. Various codes exist and are publicly available (e.g. CAMB [196] and CLASS

[39]).
However, we can gain some useful insight by studying the Einstein-Boltzmann equations in

some asymptotic cases and by taking some approximations. We assume that the photons are
tightly coupled to the baryons and thus Θi = 0 for i > 1 (valid before recombination) and thus
also Ψ = −Φ, but we neglect the baryonic matter density since DM is the dominant matter
component. A thorough derivation can be found in [81].

After computing the zeroth and first moment of eq. (A.6), we are left with the equations [81]

Θ̇0 + kΘ1 = −Φ̇ (A.16)

Θ̇1 −
k

3
Θ0 = −

k

3
Φ (A.17)

�̇ + ikv = −3Φ (A.18)

v̇ +
ȧ

a
v = ikΦ (A.19)

k2Φ + 3
ȧ

a
(Φ̇ +

ȧ

a
Φ) = 4�Ga2

[
�m� + 4�Θ0

]
. (A.20)

Alternatively, we can use an algebraic version of the last equation without time derivatives

k2Φ = 4�Ga2
[
�m� + 4�Θ0 +

3aH

k

(
i�mv + 4�Θ1

)]
. (A.21)

For modes that are much larger than the horizon and thus k� ≪ 1, we can drop all terms con-
taining k. Equation (A.16) and eq. (A.17) implicate that � − 3Θ0 = const. From the analysis of
eq. (A.20), one finds that Φ = ΦP = const during the radiation dominated era with a ≪ aeq,1 and
once the universe becomes matter-dominated and a ≫ aeq,1, the potential drops by 10%, hence
Φ → (9∕10)ΦP .

For subhorizon scales k� ≫ 1 during the radiation era, one can ignore the matter contribution
to the potential in eq. (A.21), and together with the radiation perturbation equations eq. (A.16)
and eq. (A.17) one finds that

Φ = 3ΦP

(
sin(k�∕

√
3) − (k�∕

√
3) cos(k�∕

√
3)

(k�∕
√
3)3

)
, (A.22)

where ΦP is the primordial value of Φ. Hence, as soon as the mode enters the horizon (k� = 1),
the potential starts to decay due to radiation pressure and after decaying oscillates. The photon
temperature fluctuationΘ0 oscillate with fixed amplitude and from the coupling with the potential
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one can derive that the matter perturbations grow logarithmically with �. Hence, perturbations
in radiation (and also baryons since they are tightly coupled to photons in this era) do not grow
in the radiation dominated era whereas dark matter perturbations can grow logarithmically.

Finally, during the matter era, we can safely ignore the radiation contribution. The equations
we have to deal with are the matter density and velocity equations eq. (A.18) and eq. (A.19)
and the Poisson equation eq. (A.21) without the radiation terms and the velocity term (since
k ≫ �−1 ∼ aH during the matter era). This Newtonian limit of matter perturbations is precisely
the system of equations we studied in section 1.2.3. We found that the growth of perturbations
� is independent of the scale k and can be parametrized by the growing mode D+(a) and the
decaying mode D−(a). Ignoring the decaying mode, we find using the Poisson equation that the
evolution of the potential is determined by Φ ∝ D+(a)∕a. Since during the matter era D+(a) ∝ a,
the potential is constant. During the dark energy dominated epoch however, it will decay due to
the accelerated expansion of the Universe.

The different limits that we discussed are summarized in fig. 1.1. The scale dependent evo-
lution during the radiation era and at horizon crossing is captured by the transfer function T (k),
which can either be obtained by the aforementioned numerical codes, or by fitting functions [20,
95]. The scale independent growth is decoded into the growth function D+(a). For late times
(well after any scale-dependent effects take place), we can write the potential and the density
perturbation as [81]

Φ(k, a) =
9

10
ΦP (k)T (k)

D+(a)

a
(A.23)

�(k, a) =
3

5

k2

ΩmH
2
0

ΦP (k)T (k)D+(a). (A.24)

A.2 Spherical Collapse Model

Expressing eq. (1.86) with k = +1 in term of conformal time d�∕dt = r−1 and using the constant
r⋆ = (4∕3)�G�0r

3
0
= GM we find

(
d

d�

r

r⋆

)2

= 2
r

r⋆
−

(
r

r⋆

)2

, (A.25)

which has the simple solution

r(�) = r⋆(1 − cos(�)) (A.26)

t(�) = ∫
�

0

d�′ r(�′) = r⋆(� − sin(�)). (A.27)

Note that for small �, we find r ≃ r⋆�
2∕2 ≃ (9GMt2∕2)1∕3 which simply corresponds to the

evolution of an EdS universe with k = 0. At very early times, the overdense patch thus grows
at the same rate as the background is expanding. We can write the evolution of the background
density as

�̄(t) =
3M

4�rb(t)
3
=

1

6�Gt2
, (A.28)
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A.2 Spherical Collapse Model

where we used rb to distinguish the evolution of the background radius from the radius r of the
perturbation.

Looking at eq. (A.26), we see that the perturbation reaches its maximum expansion at � = � or
equivalently t = GM�. This is the so-called turnaround time, after which the sphere collapses.
The density of the perturbation at the turnaround is

�ta =
3M

4�r3ta
=

3

32�G3M2
. (A.29)

A comparison with the background density yields the patch overdensity at the time of turnaround:

1 + �ta =
�ta
�̄(tta)

=
9�2

16
≈ 5.55. (A.30)

After the turnaround, the patch contracts and the overdensity increases. For a perfect spherically
symmetric and perfect pressureless matter, the perturbation would collapse to a singularity at
� = 2�. However, a realistic overdensity will never be perfectly spherical and the support from
the angular momentum conservation will prevent the singularity from forming. It is therefore
a good approximation to assume that eventually, a finite size, virialized structure (a dark matter
halo) will form. Virial equilibrium requires

2Evir
kin

+ Evir
pot

= 0, (A.31)

and since the kinetic energy at the turnaround is zero, we find

Etot = Ekin + Epot = Epot
|||t=tta =

1

2
Evir
pot

, (A.32)

assuming the total energy is conserved. Since Epot ∝ r−1 for a homogeneous sphere, we find
that the virialized structure must have the radius rvir = rta∕2 = r⋆. Using eq. (A.26), the
sphere contracts to the virial radius at �vir = 3∕2�. However, virialization takes some extra
time and one usually uses � = 2� as the virialization time [185], i.e. when a perfect symmetric
perturbation would have collapsed to a singularity. We thus calculate the overdensity of the
system by evaluating the patch density at � = 3�∕2 and the background density at � = 2� and
find for the virialization density threshold

1 + �vir = 18�2 ≃ 178. (A.33)

Note that this result is independent of the total mass of the overdense patch2. Encountering a
region with an overdensity larger than �vir , we can thus assume that the structure it belongs to
has virialized.

2This is however only true in an EdS universe. For a ΛCDM universe, the virial density can be approximated by the
Bryan & Norman fitting function [50]

�vir
�c

= 18�2 + 82x − 39x2, (A.34)

where x = (1 + a3ΩΛ∕Ωm)
−1 − 1. Also see [159, 240] for general discussions of spherical collapse models with

dark energy universes and characteristic signatures.
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We can compute what densities these thresholds would compare to if we assume only linear
growth. This will later allow us to identify non-linear, virialized structures in predictions from
linear perturbation theory only. For this, we approximate the evolution of the patch density to
the first non-vanishing order

1 + �(�) =
�(�)

�̄(�)
=

9(� − sin �)2

2(1 − cos �)3
= 1 +

3�2

20
+ (�4), (A.35)

and expand � in terms of t to find

�lin(t) =
3

20

(
6t

GM

)2∕3

∝ t2∕3 ∝ a, (A.36)

recovering the linear growth factor D+(a) ∝ a in an EdS universe (cf. eq. (1.48) and the
subsequent discussion). We therefore find the linear overdensity thresholds equivalents to the
turnaround and virialization thresholds:

�lin
|||ta =

3

20
(6�)2∕3 ≃ 1.062 (A.37)

�c ≡ �lin
|||vir =

3

20
(12�)2∕3 ≃ 1.686. (A.38)

Figure 1.5 visualizes the time evolution of the background and patch radii and the density contrast
of the perturbation.

A.3 Simulation Details

This section provides a summary of the simulations that have been performed for this thesis.
Some existing simulations that are used for COSMICWEB, such as the AGORA and RHAPSODY
box, have been rerun with the original seed. The simulations are listed in table A.1 together with
an overview over the most important parameters.

The N-body simulations have been performed with the tree-PM code GADGET-2 [300], with
initial conditions generated with MUSIC [133]. For most of the simulations, we use the Eisenstein
& Hu [95] transfer-function and cosmological parameters consistent with the Planck 2015 results
[67] and denoted by [P1] in table A.1.

Additionally, a hydrodynamic simulation was run with the adaptive-mesh-refinement code
RAMSES [312]. The 150CDM_H simulation uses the same random noise field as the 150CDM
simulation, allowing a direct comparison of the collapsed structures between the dark-matter only
and the hydrodynamic run. The mesh is initialized on level 10 and allowed to be refined to level
13 using the quasi-Lagrangian refinement strategy [188], spitting the cell if it contains more than
8 DM particles. Cooling and UV background heating have been turned off.

Furthermore, simulations with suppressed small-scale structures have been carried out by trun-
cating the initial power spectrum. The truncation method is identical to the free-streaming in
WDM models (cf. discussion in section 1.3.2). We used WDM masses of of 250eV and 500eV,
leading to truncation scales � = 250ℎ−1kpc and � = 113ℎ−1kpc respectively. For the index
parameter in eq. (1.81), we chose � = 1 [41]. For these WDM simulations, the amplitudes A0 of
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the initial power spectrum (cf. eq. (1.77)) has been fixed to the corresponding CDM value, hence
�8 alters from the assumed cosmological parameters. However, fixing the amplitude and using
the same random seeds ensures that the large scale structure in the CDM and WDM simulations
agree with each other up to non-linear back reaction of the small-scale structure.

A.4 Analytical model for one dimensional plane wave collapse

In this section we construct a very rough model to estimate the velocity dispersion of a plane wave
right after the collapse time a×. A more thorough treatment including post-collapse corrections
can be found in [309]. In order to be able to invert x = x(q) analytically after shell-crossing, we
expand the plane wave perturbation with mode k around q = 0 to the lowest order that leads to
collapse,

x(q, a) =

[
1 −

D+(a)

D+(a×)

]
q +

k2

6

D+(a)

D+(a×)
q3 + (q5). (A.39)

This expression has one real root for a < a× and three for a > a×, corresponding to the dark
matter sheets crossing x = 0. In catastrophe theory (e.g. [261], but also [18, 150]), this is also
called a normal form, describing the topological structure of the first shell-crossing, and such a
system is referred to as the cusp catastrophe. We include this Taylor expansion in fig. A.1. It
tightly follows the ZA around q = 0 but starts to deviate further away from the centre of collapse.
This causes the approximation to underestimate the velocity dispersion (compared to ZA) at late
times.

Focusing on the center x = 0 of the perturbation, we can express the velocity dispersion (in
comoving velocity units) as

�2
c
(x = 0, a) =

3

k2

(
1 −

D+(a×)

D+(a)

)(
Ḋ+(a)

D+(a)

)2

, (A.40)

for a >= a×. To get an estimate on �2
c immediately after collapse, we evaluate this equation at

a = a×(1 + Δa) with Δa ≪ 1. Furthermore, we assume an Einstein de-Sitter (EdS) universe
(Ωm = Ωtot = 1), for which the growth factor scales as D+(a) = a and Ḋ+(a) = ȧ = H2

0
a−1∕2

and obtain

�2
c

(
x = 0, a×(1 + Δa)

)
=

3H2
0

k2
Δa

1 + Δa

(
a×(1 + Δa)

)−3
. (A.41)

Recalling the shell-crossing time of a plane wave a× = A−1k−2, we find that at fixed Δa, the
comoving velocity dispersion �2

c ∝ A3k4. The typical amplitude of the potential is dependent
on the scale k and related to the matter power spectrum as A(k) ∼ (P��(k)k

−4)1∕2. We therefore
expect �2

c ∝ P
3∕2

��
k−2, which implies that for scales sufficiently smaller than the Hubble horizon at

radiation-matter equality, k > keq, small-scale perturbations are expected to have lower velocity
dispersion at a fixed time after shell-crossing. Of course, this is only a very rough model of the
actual physics, neglecting the three dimensional nature of collapse, the presence of perturbations
on all scales and post-collapse corrections.
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A.4 Analytical model for one dimensional plane wave collapse
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Figure A.1: One-dimensional plane-wave collapse model of the dark matter sheet showing the
phase-space distribution, the local density and the (comoving) velocity dispersion.
The left panels show the system shortly after shell-crossing (a = 1.2a×), whereas
the system evolved further in the right panels (a = 2a×). We compare the results
from numerical integration (black) with the ZA (blue) and the approximated plane
wave perturbation (orange). The ZA is correct up to shell-crossing and starts to
deviate at later times, overestimating the size of the collapsed region and the velocity
dispersion within. The velocity dispersion at the center x = 0.5 in the fully evolved
model peaks at a ∼ 1.4a× and decays afterwards due to the growing density after
subsequent further shell-crossings in the central region. As the ZA does not model
this secondary collapse, the velocity dispersion increases until the expansion of the
universe dominates the velocity field.
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