G. Bolelli, V. Canillo, L. Lugli, and T. Manfredini, Plasma -sprayed graded ceramic coatings on refractory materials for improved chemical resistance, Journal of the European Ceramic Society, vol.26, pp.2561-2579, 2006.

C. Bartuli, L. Lusvarghi, T. Manfredini, and T. Valente, Thermal spraying to coat traditional ceramic substrates: Case studies, Journal of the European Ceramic Society, vol.27, pp.1615-1622, 2007.

N. Ntakaburimvo and C. Allaire, Experimental investigation on the wear resistance of refractories: effect of the nature of the exposed surface, 2002.

J. Fernández and E. Vidrio, , p.629, 2003.

H. Taylor, Cement Chemistry, 2004.

A. M. Guzmán, D. I. Martínez, and R. González, Corrosion -erosion wear of refractory bricks in glass furnaces, Engineering Failure Analysis, vol.46, pp.188-195, 2014.

V. Y. Dzyuzer, Electrofused AZS refractories for high-capacity glass-founding furnaces, Refractories and Industrial Ceramics, vol.54, issue.4, pp.304-306, 2013.

D. I. Pantelis, P. Psyllaki, and N. , Tribological behaviour of plasmasprayed Al2O3 coatings under severe wear conditions, Wear, vol.237, pp.197-204, 2000.

C. S. Ramesh, D. S. Devaraja, R. Keshavamurthy, and B. R. Sridhar, Slurry erosive wear behaviour of thermally sprayed Inconel-718 coatings by APS process, Wear, vol.271, pp.1365-1371, 2011.

A. International, Heat Resistant Materials Handbook, 2010.

P. M. Boyce, Gas turbine engineering handbook, 2002.

I. David and F. Correa,

, Licence CC BY

J. D. Osorio, A. Lopera, A. Toro, and J. P. Hernández, Phase transformations in air plasma -sprayed yttria -stabilized zirconia thermal barrier coatings, pp.13-18, 2014.

K. Holmberg and A. Matthews, Coatings tribology -contact mechanisms and surface design, Tribology International, pp.107-120, 1998.

A. Ravaux, Réalisation et étude de dépôts composites multi-échelle élaborés par projection plasma pour applications tribologiques à hautes températures, 2014.

A. Werry, Développement de matériaux multi échelles anti usure et anticorrosion pour remplacement des stellites en milieu nucléaire, 2017.

G. W. Stachowiak, Wear. Materials, mechanisms and practice, 2006.

. Astm-g40, Standard Terminology Relating to Wear and Erosion, 2015.

R. S. Lima, S. E. Kruger, B. R. Lamouche, and . Marple, Elastic modulus measurements via laser -ultrasonic and knoop indentation techniques in thermally sprayed coatings, Journal of thermal spray technology, vol.14, issue.1, pp.52-60, 2005.

L. Latka, D. Chicot, A. Cattini, L. Pawlowski, and A. Ambroziak, Modeling of elastic modulus and harness determination by indentation of porous yttria stabilized zirconia coatings, Surface & Coatings technology, vol.220, pp.131-139, 2013.

D. Chicot, G. Duarte, A. Tricoteaux, B. Jorgowski, A. Leriche et al., Vickers indentation fracture (VIF) modeling to analyze multi-cracking toughness of titania, alumina and zirconia plasma sprayed coatings, Materials Science and Engineering A527, pp.65-76, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00429771

B. R. Lawn, A. G. Evans, and D. B. Marshall, Elastic/plastic indentation damage in ceramics: the median/radial crack system, Journal of the American Ceramic Society, vol.63, pp.574-581, 1980.

G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurements, Journal of the American Ceramic Society, vol.64, issue.9, pp.533-538

I. David and F. Correa,

, Licence CC BY

P. Chantikul, G. R. Anstis, B. R. Lawn, and D. B. Marshall, A Critical evaluation of indentation techniques for measuring fracture toughness: II, Strength method, Journal of the American Ceramic Society, vol.64, issue.9, pp.539-543

D. B. Marshall, T. Noma, and A. G. Evans, A simple method for determining elasticmodulus -to -hardness ratios using knoop indentation measurements, Communications of the American Ceramic Society, p.175, 1982.

I. M. Hutchings, Tribology, friction and wear of engineering materials, 1992.

I. G. Goryacheva, Contact mechanics in tribology, 1998.

G. W. Stachowiak and A. Batchelor, Butterworth Heinemann -Team LRN, 2001.

K. and Z. Gahr, Microstructure and wear of materials, 1987.

B. Bhushan, Modern tribology handbook, Principles of tribology, 2001.

M. Woydt and K. H. Habig, High temperature tribology of ceramics, Tribology International, vol.22, pp.75-87, 1989.

M. G. Gee, C. S. Matharu, E. A. Almond, and T. S. Eyre, The measurement of sliding friction and wear of ceramics at high temperature, Wear, vol.138, pp.169-187, 1990.

C. S. Yust and F. J. Carignan, Observation on the sliding wear of ceramics, ASLE Transactions, vol.28, pp.245-253, 1985.

R. H. Hannink, M. J. Murray, and H. G. Scott, Friction and wear of partially stabilized zirconia: basic science and practical applications, Wear, vol.100, pp.355-356, 1984.

V. Aronov, Friction induced strengthening mechanisms of magnesia partially stabilized zirconia, Journal of Tribology, vol.109, pp.531-536, 1987.

I. David and F. Correa,

, Licence CC BY

G. W. Stachowiak and G. B. Stachowiak, unlubricated wear and friction of toughened zirconia ceramics at elevated temperatures, Wear, vol.143, pp.277-295, 1991.

X. Dong, S. Jahanmir, and S. M. Hsu, Tribological characteristics of alumina at elevated temperatures, J Am Ceram Soc, pp.1036-1080, 1991.

Y. An, X. Zhao, G. Hou, H. Zhou, J. Chen et al., Tribological and thermal properties of mullite coating prepared by atmospheric plasma spraying, Journal of Thermal Spray Technology, vol.23, issue.3, pp.410-419, 2014.

F. Vargas, Élaboration de couches céramiques épaisses à structures micrométriques et nanométriques par projections thermiques pour des applications tribologiques, 2011.

D. Franco, H. Ageorges, E. Lopez, and F. Vargas, Tribological performance at high temperatures of alumina coatings applied by plasma spraying process onto a refractory material, Surface & Coatings Technology, vol.371, pp.276-286, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02188060

S. Q. Armster, J. P. Delplanque, M. Rein, and E. J. Lavernia, Thermo -fluid mechanisms controlling droplet based materials processes, International Materials Reviews, issue.6, pp.265-301, 2002.

R. S. Lima and B. R. Marple, High Weibull Modulus HVOF Titania Coatings, vol.12, pp.240-249, 2003.

P. Fauchais, Thermal spray fundamentals, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00946557

. Astm-c1327, Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics, 2015.

. Astm-c1326, Standard Test Method for Knoop Indentation Hardness of Advanced Ceramics, 2013.

J. M. Meza, C. Chavez, and J. M. Vélez, Técnicas de indentación: medición de propiedades mecánicas en cerámicas, Revista Dyna, pp.81-93, 2006.

E. Rocha--rangel, Fracture toughness determinations by means of indentation fracture, Nanocomposites with unique properties and applications in medicine and industry, 2011.

I. David and F. Correa, , p.151

, Licence CC BY

. Astm-c1161, Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature, 2002.

A. G. Evans and E. A. Charles, Fracture Toughness Determination by Indentation, Journal of The American Ceramc Society, pp.371-372, 1976.

I. C. Mccolm, Ceramic Hardness, 1990.

E. Sánchez, P. Miranda, J. F. Meléndez, A. Guiberteau, and . Pajares, Temperature dependence of mechanical properties of alumina up to the onset of creep, Journal of the European Ceramic Society, vol.27, pp.3345-3349, 2007.

T. Kumazawa, S. Ohta, S. Kanzaki, S. Sakaguchi, and H. Tabata, Elastic properties of mullite ceramics at elevated temperature, Journal of Materials Science Letters, vol.8, pp.47-48, 1989.

R. G. Munro, Evaluated material properties for a sintered ?-alumina, J. Am. Ceram. Soc, vol.80, issue.8, pp.1919-1928, 1997.

E. Y. Fogaing, M. Huger, and C. Gault, Elastic properties and microstructure: study of two fused cast refractory materials, Journal of the European Ceramic Society, vol.27, pp.1843-1848, 2007.

C. P. Alpert, H. M. Chan, S. J. Bennison, and B. R. Lawn, Temperature dependence of hardness of alumina -based ceramics, J. Am. Ceram. Soc, 1988.

W. Kollenberg, Microhardness of Mullite at Temperatures to 1000°C, J. Am. Cerum. Soc, pp.1739-1740, 1989.

J. E. Pitchford, R. J. Stearn, A. Kelly, and W. J. Clegg, Effect of Oxygen Vacancies on the Hot Hardness of Mullite, J. Am. Ceram. Soc, vol.84, issue.5, pp.1167-1168, 2001.

H. H. Xu, C. P. Ostertag, and R. F. Krause, Effect of temperature on toughness curves in alumina, J. Am. Ceram. Soc, vol.78, issue.1, pp.260-262, 1995.

T. Nakamura, G. Qian, and C. C. Berndt, Effects of Pores on Mechanical Properties of Plasma -Sprayed, Ceramic Coatings, vol.83, pp.578-584, 2000.

I. David and F. Correa,

, Licence CC BY

K. Komeya, Materials science and technology, High temperature engineering ceramics, 2006.

D. Ramanenkaa, M. L. Anttib, G. Gustafssona, and P. Jonséna, Characterization of high-alumina refractory bricks and modelling of hot rotary kiln behavior, Engineering Failure Analysis, vol.79, pp.852-864, 2017.

C. Aksel, The effect of mullite on the mechanical properties and thermal shock behaviour of alumina -mullite refractory materials, Ceramics International, vol.29, pp.183-188, 2003.

A. J. Kessman, K. Ramji, N. J. Morris, and D. R. Cairns, Zirconia sol -gel coatings on alumina -silica refractory material for improved corrosion resistance, Surface & Coatings Technology, vol.204, pp.477-483, 2009.

N. P. Shatova and O. N. Popov, Mechanism of corrosion in electrofused baddeleyite -Corundum refractories by sodium -Calcium silicate glass at temperatures up to 1600°C, Refractory and industrial ceramics, vol.14, pp.447-451, 1973.

L. Paw?owski, Strategic oxides for thermal spraying: problems of availability and evolution of prices, Surface & Coatings Technology, vol.220, pp.14-19, 2013.

C. Cano, E. Garcia, A. L. Fernandes, M. I. Osendi, and P. Miranzo, Mullite/ZrO2 coatings produced by flame spraying, Journal of the European Ceramic Society, vol.28, pp.2191-2197, 2008.

E. López, Síntesis coloidal de materiales compuestos nanoestructurados con matrices de alúmina y de aluminio mediante la utilización de alcóxido de circonio, Tesis doctoral, 2006.

P. Souza-santos, H. Souza-santos, and S. P. Toledo, Materials Research, pp.104-114, 2000.

G. N. Heintze and S. Uematsu, Preparation and structures of plasma-sprayed ?and ?-Al2O3 coatings, Surface and Coatings Technology, vol.50, pp.213-222, 1992.

K. Sabiruddin, J. Joardar, and P. P. Bandyopadhyay, Analysis of phase transformation in plasma sprayed alumina coatings using Rietveld refinement, Surface and Coatings Technology, vol.204, pp.3248-3253, 2010.

G. D. Girolamo, A. Brentari, C. Blasi, and E. Serra, Microstructure and mechanical properties of plasma sprayed alumina -based coatings, Ceramics International, vol.40, pp.12861-12867, 2014.

I. David and F. Correa,

, Licence CC BY

R. Mcpherson, A review of microstructure and properties of plasma sprayed ceramic coatings, Surface and Coatings Technology, vol.39, pp.173-181, 1989.

R. Mcpherson, On the formation of thermally sprayed alumina coatings, Journal of Materials Science, vol.15, pp.3141-3149, 1980.

J. W. Murray, A. S. Ang, Z. Pala, E. C. Shaw, and T. Hussain, Suspension High Velocity Oxy-Fuel (SHVOF) -Sprayed Alumina Coatings: Microstructure, Nanoindentation and Wear, vol.25, pp.1700-1710, 2016.

J. Ilavsky, C. C. Berndt, H. Herman, P. Chraska, and J. Dubsky, Alumina -base plasma -sprayed materials -Part II: Phase transformations in aluminas, Journal of Thermal Spray Technology, pp.439-444, 1997.

L. Pawlowski, The science and engineering of thermal spray coatings, 2008.

A. González, Etude du comportement à haute température de revêtements nanostructurés élaborés par projection thermique (combustion et plasma) à partir de poudres et de suspensions, 2014.

M. D. Gosipathala, A. Masroor, and V. S. Raja, Hot corrosion behaviour of plasma sprayed YSZ/Al2O3 dispersed NiCrAlY coatings on Inconel -718 superalloy, Surface & Coatings Technology, vol.204, pp.291-299, 2009.

P. Diaz, M. J. Edirisinghe, and B. Ralph, Microstructural changes and phase transformations in a plasma-sprayed zirconia yttria -titania thermal barrier coatings, Surface & Coatings Technology, vol.82, pp.284-290, 1996.

F. Tarasi, Suspension Plasma Sprayed Alumina-Yttria Stabilized Zirconia Nano -Composite Thermal Barrier Coatings -Formation and Roles of the Amorphous Phase, Canada, 2010.

C. Schacht and R. Handbook, , 2004.

F. Vargas, E. Restrepo, J. E. Rodríguez, F. Vargas, L. P. Arbeláez et al., Solid -state synthesis of mullite from spent catalysts for manufacturing refractory brick coatings, Ceramics International, vol.44, pp.3556-3562, 2018.

I. David and F. Correa,

, Licence CC BY

C. Zanelli, M. Dondi, M. Raimondo, and G. Guarini, Phase composition of aluminamullite -zirconia refractory materials, Journal of the European Ceramic Society, vol.30, pp.29-35, 2010.

G. I. Vázquez, J. L. Rodríguez, J. C. Rendón, J. López, and C. A. Gutiérrez, Microstructure and mechanical behavior of alumina -zirconia -mullite refractory materials, Ceramics International, vol.38, pp.1617-1625, 2012.

T. Chráska, J. Hostomský, M. Klementová, and J. Dubský, Crystallization kinetics of amorphous alumina -zirconia -silica ceramics, Journal of the European Ceramic Society, vol.29, pp.3159-3165, 2009.

D. Zhu, Advanced ceramic coatings and interfaces, 2007.

T. Senda, E. Yasuda, M. Kaji, and R. C. Bradt, Effect of Grain Size on the Sliding Wear and Friction of Alumina at Elevated Temperatures, J. Am. Ceram. Soc, vol.82, issue.6, pp.1505-1511, 1999.

X. Lin, Y. Zeng, C. Ding, and P. Zhang, Effects of temperature on tribological properties of nanostructured and conventional Al2O3 -3 wt.% TiO2 coatings, Wear, vol.256, pp.1018-1025, 2004.

G. Darut, H. Ageorges, A. Denoirjean, G. Montavon, and P. Fauchais, Effect of the structural scale of plasma -sprayed alumina coatings on their friction coefficients, Journal of Thermal Spray Technology, vol.17, issue.5-6, pp.788-795, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00366012

P. A. Manojkumar, A. S. Gandhi, M. Kamaraj, V. T. Paul, N. Kumar et al., Role of nanocrystalline feedstock in the tribological behaviour of alumina coatings deposited by detonation gun, International Journal of Refractory Metals and Hard Materials, vol.35, pp.108-114, 2012.

R. S. Lima and B. R. Marple, Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: A Review, Journal of Thermal Spray Technology, issue.1, pp.40-63, 2007.

H. Chen, Y. Zhang, and C. Ding, Tribological properties of nanostructured zirconia coatings deposited by plasma spraying, Wear, vol.253, pp.885-893, 2002.

H. Chen, C. Ding, P. Zhang, P. La, and S. W. Lee, Wear of plasma-sprayed nanostructured zirconia coatings against stainless steel under distilled -water conditions, Surface and Coatings Technology, vol.173, pp.144-149, 2003.

I. David and F. Correa,

, Licence CC BY

J. F. Li, H. Liao, X. Y. Wang, B. Normand, V. Ji et al., Improvement in wear resistance of plasma sprayed yttria stabilized zirconia coating using nanostructured powder, Tribology International, vol.37, pp.77-84, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00112939

H. Chen, S. Lee, X. Zheng, and C. Ding, Evaluation of unlubricated wear properties of plasma-sprayed nanostructured and conventional zirconia coatings by SRV tester, Wear, vol.260, pp.1053-1060, 2006.

Y. He, L. Winnubst, A. J. Burggraaf, and H. Verweij, Influence of porosity on friction and wear of tetragonal zirconia polycrystal, J. Am. Ceram. Soc, vol.80, issue.2, pp.377-380, 1997.

W. Bundschuh and K. H. Gahr, Influence of porosity on friction and sliding wear of tetragonal zirconia polycrystal, Wear, pp.175-191, 1991.

P. Boch and J. C. Nièpce, Ceramic materials, process, properties and applications, 2007.

J. Poirier, Les céramiques réfractaires, de l'élaboration aux propriétés d'emploi, Commission thématique réfractaires, vol.2

P. Fauchais, Dépôts céramiques par PVD ou CVD assistées ou par projection plasma, Techniques de l'ingénieur Céramiques, vol.4801, 2013.

X. Q. Cao, R. Vassen, F. Tietz, and D. Stoever, New double-ceramic-layer thermal barrier coatings based on zirconia -rare earth composite oxides, Journal of the European Ceramic Society, vol.26, pp.247-251, 2006.

Y. Tong and S. Liu, Li2O -Al2O3 -SiO2 glass-ceramic coating on a porous silica ceramic Substrate, Journal of Alloys and Compounds, vol.600, pp.51-54, 2014.

G. Bolelli, V. Cannillo, L. Lusvarghi, T. Manfredini, C. Siligardi et al., Plasma -sprayed glass-ceramic coatings on ceramic tiles: microstructure, chemical resistance and mechanical properties, Journal of the European Ceramic Society, vol.25, pp.1835-1853, 2005.

A. V. Pinzón, K. J. Urrego, A. González, M. Rincón, and F. Vargas, Corrosion protection of carbon steel by alumina -titania ceramic coatings used for industrial applications, Ceramics International, 2018.

I. David and F. Correa,

, Licence CC BY

L. Catalogue, Acetylene?there is no better fuel gas for oxy-fuel gas processes

D. Franco, Study of thermal shock resistance of flame sprayed coatings manufactured to protect molds used in glass containers industry, Revista Chilena de Ingeniería, issue.2, pp.239-248, 2016.

H. Walker, Handbook of refractory practice, Harbison Walker Refractory Company, 2005.

A. Yurkov, Refractories for Aluminium. Electrolysis and the Cast House, 2015.

J. D. Gagel, W. C. Parisi, and D. M. Thomas, Process for making fused-cast refractory products. US patent 5738811, 1998.

L. Massard, Etude du fluage de réfractaires électrofondus du système aluminezircone-silice, 2005.

O. Krause, Ullmann's encyclopedia of industrial chemistry -refractory ceramics, 2014.

V. V. Narulkar, S. Prakash, and K. Chandra, Effects of temperature on tribological properties of Al2O3-TiO2 coating, vol.58, pp.582-587, 2008.

Y. Xu, Q. Miao, W. Liang, X. Yu, Q. Jiang et al., Tribological behavior of Al2O3/Al composite coating on ?-TiAl at elevated temperature, vol.101, pp.122-129, 2015.

T. Senda, M. Saruta, and Y. Ochi, Tribology of mullite ceramics at elevated temperatures, Journal of the Ceramic Society of Japan, vol.102, issue.6, pp.556-561, 1994.

A. Rico, P. Poza, and J. Rodríguez, High temperature tribological behavior of nanostructured and conventional plasma sprayed alumina -titania coatings, Vacuum, vol.88, pp.149-154, 2013.

. Astm-e1920, Standard guide for metallographic preparation of thermal spraying coatings, 2003.

I. David and F. Correa,

, Licence CC BY

. Astm-g99, Standard test method for wear testing with a pin -on -disk apparatus, 2017.

P. Fauchais, G. Montavon, and G. Bertrand, From Powders to Thermally Sprayed Coatings, Journal of Thermal Spray Technology, vol.19, pp.56-80, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00451149

A. Bacciochini, Quantification de l'architecture poreuse de dépôts finement structurés (sub -micromètre -nanomètre) de zircone yttriée réalisés par projection plasma de suspension, 2010.

G. Routschka and K. E. Granitzki, Ullmann's encyclopedia of industrial chemistryrefractory ceramics, 2014.

O. Tingaud, P. Bertrand, and G. Bertrand, Microstructure and tribological behavior of suspension plasma sprayed Al2O3 and Al2O3 -YSZ composite coatings, Surface & Coatings Technology, vol.205, pp.1004-1008, 2010.

P. Chráska, J. Dubsky, K. Neufuss, and J. Písacka, Alumina -base plasma -sprayed materials part I: Phase stability of alumina and alumina -chromia, Journal of Thermal Spray Technology, vol.6, issue.3, pp.320-326, 1997.

P. Boch and J. C. Niepce, Ceramic materials -Processes, Properties and applications, ISTE Ltda, 2007.

R. S. Lima, C. Moreau, and B. R. Marple, HVOF -sprayed coatings engineered from mixtures of nanostructured and submicron Al2O3-TiO2 powders: An enhanced wear performance, Journal of Thermal Spray Technology, issue.6, pp.866-872, 2007.

T. Tesar, R. Musalek, J. Medricky, J. Kotlan, F. Lukac et al., Development of suspension plasma sprayed alumina coatings with high enthalpy plasma torch, Surface & Coatings Technology, vol.325, pp.277-288, 2017.

V. Singh, A. Sil, and R. Jayaganthan, A study on sliding and erosive wear behaviour of atmospheric plasma sprayed conventional and nanostructured alumina coatings, Materials and Design, vol.32, pp.584-591, 2011.

Y. An, S. Li, G. Hou, X. Zhao, H. Zhou et al., Mechanical and tribological properties of nano/micro composite alumina coatings fabricated by atmospheric plasma spraying, Ceramics International, vol.43, pp.5319-5328, 2017.

T. E. Fischer, Z. Zhu, H. Kim, and D. S. Shin, Genesis and role of wear debris in sliding wear of ceramics, Wear, vol.245, pp.53-60, 2000.

I. David and F. Correa,

, Licence CC BY

V. Dehnavi, X. Y. Liu, B. L. Luan, D. W. Shoesmith, and S. Rohani, Phase transformation in plasma electrolytic oxidation coatings on 6061 aluminum alloy, vol.251, pp.106-114, 2014.

Y. Wang and S. M. Hsu, Wear and wear transition modeling of ceramics, Wear, vol.195, pp.35-46, 1996.

Y. J. He, A. J. Winnubst, D. J. Schipper, A. J. Burggraaf, and H. Verweij, Effects of a second phase on the tribological properties of Al2O2 and ZrO2 ceramics, Wear, vol.210, pp.178-187, 1997.

Z. Liang, W. Wang, M. Zhang, F. Wu, J. Chen et al., Structural, mechanical and thermodynamic properties of ZrO2 polymorphs by first-principles calculation, Physica B, vol.511, pp.10-19, 2017.

Y. Zhang and J. Zhang, First principles study of structural and thermodynamic properties of zirconia, Materials Today: Proceedings, vol.1, pp.44-54, 2014.

H. J. Kim and Y. J. Kim, Amorphous phase formation of the pseudo-binary Al2O3 -ZrO2 alloy during plasma spray processing, Journal of Materials Science, vol.34, pp.29-33, 1999.

A. González, H. Ageorges, O. Rojas, E. López, F. Hurtado et al., Efecto de la microestructura y de la microdurezasobre la resistencia al desgaste de recubrimientos elaborados por proyección térmica por plasma atmosférico a partir de circona -alúmina,circona -itria y circona -ceria, vol.54, pp.124-132, 2015.

M. S. Conconi, N. M. Rendtorff, and E. F. Aglietti, AZS refractories by XRD Methods, vol.1, pp.28-33, 2011.

P. Chráska, J. Dubsky, K. Neufuss, and J. Pisacka, Alumina -base plasma -sprayed materials. Part I: Phase stability of alumina and alumina -chromia, Journal of Thermal Spray Technology, vol.6, issue.3, pp.320-326, 1997.

S. N. Dub, G. A. Gogotsi, and E. E. Lomonova, Hardness and fracture toughness of tetragonal zirconia single crystals, Journal of Materials Science Letters, vol.14, pp.46-49, 1995.

A. S. Gandhi, V. Jayaram, and A. H. Chokshi, Dense amorphous zirconia -alumina by low-temperature consolidation of spray -pyrolyzed powders, J. Am. Ceram. Soc, vol.82, issue.10, pp.2613-2618, 1999.

, Licence CC BY

M. Gust, G. Goo, J. Wolfenstine, and M. L. Mecartmy, Influence of amorphous grain boundary phases on the superplastic behavior of 3 -mol% -Yttria -stabilized tetragonal zirconia polycrystals (3Y -TZP), J. Am. Ceram. Soc, pp.1681-1690, 1993.

J. H. Ouyang and S. Sasaki, Microstructure and tribological characteristics of ZrO2 -Y2O3 ceramic coatings deposited by laser -assisted plasma hybrid spraying, Tribology International, vol.35, pp.255-264, 2002.

K. Adachi, K. Kato, and N. Chen, Wear map of ceramics, Wear, pp.291-301, 1997.

H. Scheider, S. Komarneni, W. Mullite, &. Gmbh, . Co et al., , 2005.

G. D. Girolamo, C. Blasi, L. Pilloni, and M. Schioppa, Microstructural and thermal properties of plasma sprayed mullite coatings, Ceramics International, vol.36, pp.1389-1395, 2010.

P. Rohan, K. Neufuss, J. Mat?jí?ek, J. Dubský, L. Prchlík et al., Thermal and mechanical properties of cordierite, mullite and steatite produced by plasma spraying, Ceramics International, vol.30, pp.597-603, 2004.

S. Li, X. Xi, G. Hou, Y. An, X. Zhao et al., Preparation of plasma sprayed mullite coating on stainless steel substrate and investigation of its environmental dependence of friction and wear behavior, Tribology International, vol.91, pp.32-39, 2015.

S. Li, X. Zhao, Y. An, W. Deng, G. Hou et al., Effect of deposition temperature on the mechanical, corrosive and tribological properties of mullite coatings, Ceramics International, vol.44, pp.6719-6729, 2018.

G. Hou, Y. An, X. Zhao, H. Zhou, and J. Chen, Effect of critical plasma spraying parameter on microstructure and wear behavior of mullite coatings, Tribology International, vol.94, pp.138-145, 2016.

Y. Hariya, W. A. Dollase, and G. C. Kennedy, An experimental investigation of the relationship of mullite to sillimanite, American Mineralogist, vol.54, pp.1419-1441, 1969.

J. G. Fisher, K. Chang, P. F. James, P. F. Messer, and H. A. Davies, Ceramic flake formation in the aluminosilicate system by plasma spraying, Journal of Materials Science, vol.40, pp.1625-1632, 2005.

I. David and F. Correa,

, Licence CC BY-NC-ND, vol.3

, Licence CC BY

A. Figure, Morphologie des pistes d'usure du revêtement de mullite/ZrO2-Al2O3 finement structuré : a-b) 25 °C, c-d) 500 °C, e-f) 750 °C et g-h) 1000 °C

A. Figure, Morphologie des pistes d'usure du revêtement de mullite/ZrO2-Al2O3 microstructuré : ab) 25 °C, c-d) 500 °C, e-f) 750 °C et g-h) 1000 °C, vol.8

A. Figure, Morphologie des pistes d'usure du revêtement de mullite/ZrO2-Y2O3 finement structuré : a-b) 25 °C, c-d) 500 °C, e-f) 750 °C et g-h) 1000 °C

A. Figure, Morphologie des pistes d'usure du revêtement de mullite/ZrO2-Y2O3 microstructuré : ab) 25 °C, c-d) 500 °C, e-f) 750 °C et g-h) 1000 °C

, Tous les matériaux céramiques ont été exposés à des conditions d'usure par contact glissant (5 N, 20000 tours et 0,10 m.s -1 ) avec un tribomètre de type bille sur disque à des températures de 25, 500, 750 et 1000 °C. Les résultats montrent que l'usure des revêtements d'Al2O3, de ZrO2-Al2O3 et de ZrO2-Y2O3 à 25 et 1000 °C est due à une déformation ductile, avec des taux d'usure respectifs de l'ordre de 10 -4 -10 -6 et 10 -4 -10 -5 mm 3 .N -1 .m -1 , alors qu'à 500 et 750 °C l'usure se fait par déformation fragile avec des taux d'usure de l'ordre de 10 -3 -10 -4 mm 3 .N -1 .m -1 pour les deux températures. La résistance à l'usure a été trouvée légèrement supérieure dans les revêtements finement structurés principalement en raison de la ténacité plus élevée. Pour les deux réfractaires électrofondus en volume à échelle submillimétrique, l'usure par déformation ductile est prépondérante à 1000 °C, avec des taux d'usure de l'ordre de 10 -4 mm 3 .N -1 .m -1 . Pour les systèmes bicouches de mullite, l'usure par déformation fragile a été observée à toutes les températures évaluées, avec des taux d'usure de l'ordre de 10 -3 -10 -4 mm 3 .N -1 .m -1 , sans montrer aucune amélioration du fait de la présence d'une sous-couche céramique. En cherchant des solutions plus économiques et pour d'autres applications, le comportement tribologique à haute température a également été étudié sur des revêtements d'Al2O3 finement structurés et microstructurés, réalisés par projection à la flamme oxyacétylénique, plus économique que la projection plasma, Dans le but d'évaluer la performance et de comprendre les mécanismes d'usure, à haute température, de matériaux céramiques, de compositions chimiques différentes (Al2O3, base ZrO2, mullite), à différentes échelles de structure (finement structuré, microstructuré et submillimétrique) et de configurations différentes (monocouche, bicouche et en volume), des revêtements céramiques ont été réalisés par projection plasma à pression atmosphérique sur un substrat céramique silico-alumineux. Les revêtements d'Al2O3, de ZrO2-Al2O3 et de ZrO2-Y2O3 correspondant à la configuration monocouche ont été élaborés avec deux échelles de structure : finement structurée et microstructurée

. Mots-clés, Usure à haute température, revêtement monocouche, revêtement bicouche, revêtement finement structuré, revêtement microstructuré, réfractaire en volume, réfractaire à échelle submillimétrique, déformation ductile, déformation fragile, projection plasma