. Chapitre-1, . Vers-l'intégration, . Des, and . Pulsés, Nature Communications, vol.5, p.7

M. J. Heck, H. Chen, A. W. Fang, B. R. Koch, D. Liang et al., Hybrid Silicon Photonics for Optical Interconnects, IEEE Journal of Selected Topics in Quantum Electronics, vol.17, issue.2, pp.333-346, 2011.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti et al., Single-chip microprocessor that communicates directly using light, vol.528, pp.534-538, 2015.

P. Minzioni, C. Lacava, T. Tanabe, J. Dong, A. E. Willner et al., Roadmap on all-optical processing, vol.7, p.12, 2019.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-jones et al., «Deep learning with coherent nanophotonic circuits», Nature Photonics, vol.11, pp.441-446, 2017.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang et al., «III-V/silicon photonics for on-chip and intra-chip optical interconnects, Laser & Photonics Reviews, vol.4, issue.6, pp.751-779, 2010.

J. Van-campenhout, P. Romeo, P. Regreny, C. Seassal, D. Van-thourhout et al., «Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-oninsulator waveguide circuit, Optics Express, vol.15, p.6744, 2007.

B. R. Koch, A. W. Fang, E. Lively, R. Jones, O. Cohen et al., «Mode locked and distributed feedback silicon evanescent lasers, Laser and Photonics Reviews, vol.3, p.20, 2009.

J. Zhang, Y. Li, S. Dhoore, G. Morthier, and G. R. , Unidirectional, widely-tunable and narrow-linewidth heterogeneously integrated III-V-on-silicon laser, Optics Express, vol.25, issue.6, p.7092, 2017.

P. Mechet, S. Verstuyft, T. De, T. Vries, P. Spuesens et al., «Unidirectional III-V microdisk lasers heterogeneously integrated on SOI, Optics Express, vol.21, pp.19-339, 2013.

T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive et al., «Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides», Journal of Applied Physics, vol.107, issue.6, p.27, 2010.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil et al., «Room-temperature InP distributed feedback laser array directly grown on silicon, Nature Photonics, vol.9, p.10, 2015.

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan et al., «1.55 µ m room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si», Applied Physics Letters, vol.110, pp.121-109, 2017.

S. Liu, X. Wu, D. Jung, J. C. Norman, M. J. Kennedy et al., «High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 41 Tbit/s transmission capacity, Optica, vol.6, issue.2, p.25, 2019.

M. Liao, S. Chen, S. Huo, S. Chen, J. Wu et al., Monolithically Integrated Electrically Pumped Continuous-Wave III-V Quantum Dot Light Sources on Silicon, vol.23, pp.1-10, 2017.

M. L. Davenport, S. Liu, and J. E. Bowers, «Integrated heterogeneous silicon/III-V mode-locked lasers, Photonics Research, vol.6, issue.5, p.25, 2018.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. Van-der et al., «An introduction to InP-based generic integration technology, Semiconductor Science and Technology, vol.29, issue.8, pp.83-84, 2014.

B. E. Saleh and M. C. Teich, Fundamentals of photonics, Wiley series in pure and applied optics, vol.9, p.13, 1991.

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro et al., «High Bandwidth Operation of Directly Modulated Laser Based on Quantum-Dash InAs-InP Material at 1.55 µm, IEEE Photonics Technology Letters, vol.20, p.11, 2008.

/. Lpt, , pp.903-905, 2008.

T. Sato, K. Takeda, A. Shinya, M. Notomi, K. Hasebe et al., «Photonic Crystal Lasers for Chip-to-Chip and On-Chip Optical Interconnects, IEEE Journal of Selected Topics in Quantum Electronics, vol.21, issue.6, pp.728-737, 2015.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi et al., «Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers», Nature Photonics, vol.7, issue.7, p.27, 2013.

G. Shambat, B. Ellis, J. Petykiewicz, M. A. Mayer, A. Majumdar et al., «Electrically Driven Photonic Crystal Nanocavity Devices, IEEE Journal of Selected Topics in Quantum Electronics, vol.18, issue.6, p.27, 2012.

J. Van-campenhout, L. Liu, P. Romeo, D. Van-thourhout, C. Seassal et al., «A Compact SOI-Integrated Multiwavelength Laser Source Based on Cascaded InP Microdisks, IEEE Photonics Technology Letters, vol.20, pp.1345-1347, 2008.

O. Painter, R. Lee, A. Scherer, A. Yariv, J. D. O'brien et al., «Two-Dimensional Photonic Band-Gap Defect Mode Laser, Science, vol.284, pp.1819-1821, 1999.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-romeo et al., «InP-based two-dimensional photonic crystal on silicon : In-plane Bloch mode laser, Applied Physics Letters, vol.81, pp.5102-5104, 2002.

H. Park, S. Kim, S. Kwon, Y. Ju, J. Yang et al., «Electrically Driven Single-Cell Photonic Crystal Laser», Science, vol.305, pp.1444-1447, 2004.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris et al., Ultralow-threshold electrically pumped quantum-dot photoniccrystal nanocavity laser», Nature Photonics, vol.5, issue.5, p.27, 2011.

Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, G. Roelkens et al., «Hybrid III-V semiconductor/silicon nanolaser, Optics Express, vol.19, p.27, 2011.

K. Takeda, T. Sato, T. Fujii, E. Kuramochi, M. Notomi et al., «Heterogeneously integrated photonic-crystal lasers on sili, Optics Express, vol.23, issue.2, p.27, 2015.

G. Crosnier, D. Sanchez, S. Bouchoule, P. Monnier, G. Beaudoin et al., «Hybrid indium phosphide-on-silicon nanolaser diode», Nature Photonics, vol.11, issue.5, pp.297-300, 2017.

N. H. Zhu, Z. Shi, Z. K. Zhang, Y. M. Zhang, C. W. Zou et al., «Directly Modulated Semiconductor Lasers, IEEE Journal of Selected Topics in Quantum Electronics, vol.24, issue.1, pp.1-19, 2018.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, «Microresonator-Based Optical Frequency Combs, Science, vol.332, pp.555-559, 2011.

P. J. Delfyett, A. Ardey, S. P. Bhooplapur, and E. Sarailou, «InP-Based Device Technologies for Signal Processing Using Ultrafast Frequency Combs, IEEE Journal of Selected Topics in Quantum Electronics, vol.24, issue.1, p.24, 2018.

Z. Wang, K. Van-gasse, V. Moskalenko, S. Latkowski, E. Bente et al., Light : Science & Applications, vol.6, p.25, 2017.

H. Meng, J. Leng, C. Qian, and J. Zhao, «Optical sampling analog-to-digital converter based on two asynchronous mode-locked fiber lasers, Journal of the Optical Society of America B, vol.34, p.24, 2017.

C. Calò, V. Vujicic, R. Watts, C. Browning, K. Merghem et al., «Single-section quantum well modelocked laser for 400 Gb/s SSB-OFDM transmission, Optics express, vol.23, p.14, 2015.

V. Vujicic, C. Calò, R. Watts, F. Lelarge, C. Browning et al., «Quantum Dash Mode-Locked Lasers for Data Centre Applications, IEEE Journal of Selected Topics in Quantum Electronics, vol.21, issue.6, p.25, 2015.

B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White et al., «Optical signal processing on a silicon chip at 640Gb/s using slow-light, Optics Express, vol.18, issue.8, p.7770, 2010.

Y. Yu, W. Xue, E. Semenova, K. Yvind, and J. Mork, «Demonstration of a selfpulsing photonic crystal Fano laser», Nature Photonics, vol.11, issue.2, pp.81-84, 2017.

M. Kues, C. Reimer, B. Wetzel, P. Roztocki, B. E. Little et al., «Passively mode-locked laser with an ultra-narrow spectral width», Nature Photonics, vol.11, p.19, 2017.

F. Canbaz, N. Kakenov, C. Kocabas, U. Demirbas, . Sennaroglu et al., «Generation of sub-20-fs pulses from a graphene mode-locked laser, Optics Express, vol.25, p.21, 2017.

A. Moscoso-mártir, J. Müller, J. Hauck, N. Chimot, R. Setter et al., «Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser, Scientific Reports, vol.7, issue.1, pp.13-857, 2017.

U. Keller, Recent developments in compact ultrafast lasers, vol.424, pp.831-838, 2003.

P. Bardella, L. L. Columbo, and M. Gioannini, «Self-generation of optical frequency comb in single section quantum dot Fabry-Perot lasers : a theoretical study, Optics Express, vol.25, pp.26-234, 2017.

O. Duill, S. P. , S. G. Murdoch, R. T. Watts, R. Rosales et al., Simple dispersion estimate for single-section quantum-dash and quantum-dot mode-locked laser diodes, Optics Letters, vol.41, p.5676, 2016.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, «Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene, Optics Express, vol.17, p.21, 2009.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan et al., Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers, Advanced Functional Materials, vol.19, p.22, 2009.

F. Canbaz, N. Kakenov, C. Kocabas, U. Demirbas, and A. Sennaroglu, «Graphene mode-locked Cr :LiSAF laser at 850 nm, Optics Letters, vol.40, p.21, 2015.

I. S. Aylam, S. A. Zharar, N. U. Akenov, C. O. Ocabas, and A. L. Ennaroglu, «Femtosecond pulse generation from a Ti 3 + : sapphire laser near 800 nm with voltage reconfigurable graphene saturable absorbers, Optics Letters, vol.42, issue.7, pp.1404-1407, 2017.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana et al., «2µm Solid-State Laser Mode-Locked By Single-Layer Graphene, Applied Physics Letters, vol.102, issue.1, p.21, 2013.

M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F. Rotermund et al., «Graphene mode-locked femtosecond Cr :ZnSe laser at 2500 nm, Optics Letters, vol.38, p.21, 2013.

J. Sotor, G. Sobon, I. Pasternak, A. Krajewska, W. Strupinski et al., «Simultaneous mode-locking at 1565 nm and 1944 nm in fiber laser based on common graphene saturable absorber, Optics express, vol.21, p.20, 2013.

V. Vujicic, C. Calò, R. Watts, F. Lelarge, C. Browning et al., «Quantum Dash Mode-Locked Lasers for Data Centre Applications, IEEE Journal of Selected Topics in Quantum Electronics, vol.21, issue.6, p.75, 2015.

V. Moskalenko, J. Koelemeij, K. Williams, and E. Bente, «Study of extra wide coherent optical combs generated by a QW-based integrated passively mode-locked ring 76 CHAPITRE 2. CONCEPTION DES CAVITÉS À CRISTAUX PHOTONIQUES laser, Optics Letters, vol.42, issue.7, p.1428, 2017.

M. Lo, R. Guzmán, M. Ali, R. Santos, L. Augustin et al., «18-THz-wide optical frequency comb emitted from monolithic passively mode-locked semiconductor quantum-well laser, Optics Letters, vol.42, p.3872, 2017.

T. Thiessen and J. K. Poon, «20 GHz Mode-Locked Laser Diodes With Integrated Optical Feedback Cavities in a Generic Monolithic InP Photonics Platform, IEEE Photonics Journal, vol.9, issue.5, pp.1-10, 2017.

J. H. Marsh and L. Hou, «Mode-Locked Laser Diodes and Their Monolithic Integration, IEEE Journal of Selected Topics in Quantum Electronics, vol.23, pp.1-11, 2017.

R. Guzmán, C. Gordon, L. Orbe, and G. Carpintero, «1 GHz InP on-chip monolithic extended cavity colliding-pulse mode-locked laser, Optics Letters, vol.42, p.2318, 2017.

S. Joshi, C. Calò, N. Chimot, M. Radziunas, R. Arkhipov et al., «Quantum dash based single section mode locked lasers for photonic integrated circuits, Optics Express, vol.22, pp.11-254, 2014.

S. Latkowski, V. Moskalenko, S. Tahvili, L. Augustin, M. Smit et al., «Monolithically integrated 2.5 GHz extended cavity mode-locked ring laser with intracavity phase modulators, Optics Letters, vol.40, issue.1, p.77, 2015.

J. Luo, N. Calabretta, J. Parra-cetina, S. Latkowski, R. Maldonado-basilio et al., «320 Gb/s all-optical clock recovery and time demultiplexing after transmission enabled by single quantum dash mode-locked laser.», Optics letters, vol.38, pp.4805-4813, 2013.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals : Molding the Flow of Light, vol.306, p.56, 2011.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto et al., «Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap, Nature Photonics, vol.5, issue.2, pp.91-94, 2011.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, «Guided modes in photonic crystal slabs, Physical Review B, vol.60, issue.8, pp.5751-5758, 1999.

. Chapitre-2, . Conception, and . Cavités-À-cristaux-photoniques-1829,

C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Hermann, O. Hess et al., «Silicon-based two-dimensional photonic crystal waveguides, Photonics and Nanostructures -Fundamentals and Applications, vol.1, pp.1-13, 2003.

L. H. Frandsen, A. V. Lavrinenko, J. Fage-pedersen, and P. I. Borel, «Photonic crystal waveguides with semi-slow light and tailored dispersion properties, Optics Express, vol.14, p.9444, 2006.

Y. Hamachi, S. Kubo, and T. Baba, «Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide, Optics Letters, vol.34, p.1072, 2009.

R. Hao, E. Cassan, X. Le-roux, D. Gao, V. D. Khanh et al., «Improvement of delay-bandwidth product in photonic crystal slow-light waveguides, 2010.

J. Liang, L. Ren, M. Yun, and X. W. , «Wideband slow light with ultralow dispersion in a W1 photonic crystal waveguide, Applied Optics, vol.50, p.98, 2011.

J. Li, T. P. White, L. O'faolain, A. Gomez-iglesias, and T. F. Krauss, «Systematic design of flat band slow light in photonic crystal waveguides, Optics express, vol.16, p.59, 2008.

S. A. Schulz, L. O'faolain, D. M. Beggs, T. P. White, A. Melloni et al., «Dispersion engineered slow light in photonic crystals : a comparison», Journal of Optics, vol.12, p.76, 2010.

M. Ebnali-heidari, C. Grillet, C. Monat, and B. J. Eggleton, «Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration, Optics Express, vol.17, p.1628, 2009.

M. Heuck, S. Blaaberg, and J. Mørk, «Theory of passively mode-locked photonic crystal semiconductor lasers, Optics express, vol.18, p.17, 2010.

V. A. Mandelshtam and H. S. Taylor, Harmonic inversion of time signals and its applications, vol.107, pp.6756-6769, 1997.

V. A. Mandelshtam, «FDM : the filter diagonalization method for data processing in NMR experiments, Progress in Nuclear Magnetic Resonance Spectroscopy, vol.38, pp.159-196, 2001.

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, Analysis of a Line-Defect Waveguide on a Silicon-on-Insulator Two-Dimensional Photonic-Crystal Slab», Journal of Lightwave Technology, vol.22, pp.2787-2792, 2004.

R. Rosales, InAs / InP quantum dash mode locked lasers for optical communications, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00923176

S. Ek, P. Lunnemann, Y. Chen, E. Semenova, K. Yvind et al., «Slowlight-enhanced gain in active photonic crystal waveguides», Nature Communications, vol.5, issue.1, p.5039, 2014.

K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, «Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation, Applied Physics Letters, vol.88, pp.201-904, 2006.

W. Xue, Y. Yu, L. Ottaviano, Y. Chen, E. Semenova et al., «Threshold Characteristics of Slow-Light Photonic Crystal Lasers, Physical Review Letters, vol.116, p.149, 2016.

V. Moskalenko, J. Koelemeij, K. Williams, and E. Bente, «Study of extra wide coherent optical combs generated by a QW-based integrated passively mode-locked ring laser, Optics Letters, vol.42, issue.7, p.1428, 2017.

J. P. Vasco and S. Hughes, «Anderson Localization in Disordered LN Photonic Crystal Slab Cavities, ACS Photonics, p.148, 2018.

V. Savona, Physical Review B, vol.83, issue.8, p.85, 2011.

J. P. Vasco and S. Hughes, «Statistics of Anderson-localized modes in disordered photonic crystal slab waveguides, Physical Review B, vol.95, pp.1-11, 2017.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, «Extrinsic Optical Scattering Loss in Photonic Crystal Waveguides : Role of Fabrication Disorder and Photon Group Velocity, Physical Review Letters, vol.94, pp.33-903, 2005.

N. A. Wasley, I. J. Luxmoore, R. J. Coles, E. Clarke, A. M. Fox et al., «Disorder-limited photon propagation and Anderson-localization in photonic crystal waveguides, Applied Physics Letters, vol.101, issue.5, 2012.

S. A. Schulz, L. O'faolain, D. M. Beggs, T. P. White, A. Melloni et al., «Dispersion engineered slow light in photonic crystals : a comparison», Journal of Optics, vol.12, pp.104-108, 2010.

, Deux publications dans des journaux scientifiques

M. Kemiche, J. Lhuillier, S. Callard, and C. Monat, « Design optimization of a compact photonic crystal microcavity based on slow light and dispersion engineering for the miniaturization of integrated mode-locked lasers, vol.8, p.15211, 2018.

P. Demongodin, H. El-dirani, J. Lhuillier, R. Crochemore, M. Kemiche et al., « Ultrafast saturable absorption dynamics in hybrid graphene/Si 3 N 4 waveguides, APL Photonics, vol.4, issue.7, p.76102, 2019.

M. Kemiche, J. Lhuillier, A. Benamrouche, P. Regreny, R. Mazurczyk et al., « Characterization of active photonic crystal cavities based on slow light dispersion engineering for compact mode-locked lasers » Une publication d'un article de revue, Un article sur les résultats de caractérisation optique à soumettre, pp.31-35, 2017.


, Deux présentations orales lors de conférences internationales

M. Kemiche, J. Lhuillier, T. Wood, A. Benamrouche, P. Regreny et al., Towards compact and integrated XXXI ANNEXE E. LISTE DES PUBLICATIONS mode-locked lasers » (Conference Presentation), In Semiconductor Lasers and Laser Dynamics VIII, p.49, 2018.

M. Kemiche, J. Lhuillier, T. Wood, A. Benamrouche, P. Regreny et al., « Slow Light Dispersion Engineering of Active Photonic Crystal Cavities for Compact and Integrated Mode-Locked Lasers, Conference on Lasers and Electro-Optics (STh3A.5), 2018.

M. Kemiche, J. Lhuillier, T. Wood, A. Benamrouche, P. Regreny et al., « Semiconductor photonic crystal mode-locked micro-laser design using graphene for ultrafast optical clock, 2017.