C. Alternatives, . Les, C. Dans-le-monde, and . Gif-sur-yvette, INTERNATIONAL ATOMIC ENERGY AGENCY, 2017.

, Status and Trends in Spent Fuel and Radioactive Waste Management, Nuclear Energy Series No. NW-T-1.14, IAEA, 2018.

A. Pushnov, A. Ryabushenko, and M. Berengarten, The risks of global warming and cooling efficiency of circulating water in cooling towers of nuclear power plant, The 9th International Conference, 2014.

U. S. Nrc, The Student Corner, p.7, 2019.

, Uranium 2018: Resources, Production and Demand, 2019.

K. D. Kok, , 2009.

P. Carbol, D. H. Wegen, T. Wiss, and P. Fors, Spent Fuel as Waste Material, Comprehensive Nuclear Materials, pp.389-420, 2012.

, INSPYRE, Investigations Supporting MOX Fuel Licensing in ESNII Prototype Reactors, vol.2020

D. G. Cacuci, Handbook of Nuclear Engineering. Cacuci DG, 2010.

W. D. Kingery, Sintering from Prehistoric Times to the Present. Solid State Phenom, Rahaman MN. Ceramic Processing, vol.111, pp.25-26, 1992.

R. L. Coble, Diffusion models for hot pressing with surface energy and pressure effects as driving forces, J Appl Phys, vol.41, issue.12, pp.4798-807, 1970.

J. J. Frenkel, Viscous flow of crystalline bodies under the action of surface tension, J Phys, vol.9, p.385, 1945.

H. Ullrich, R. W. Cahn, P. Haasen, and E. J. Kramer, Materials science and technology A comprehensive treatment, Characterization of Materials (Part II, vol.2, issue.6, pp.786-786, 1994.

, Shewmon P. Diffusion in Solids

. Prof and . Dr, Helmut Föll

S. S?miya and Y. Moriyoshi, Sintering Key Papers, 1990.

R. L. Coble, Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models, J Appl Phys, vol.32, issue.5, pp.787-92, 1961.

W. D. Kingery and M. Berg, Study of the Initial Stages of Sintering by Viscous Flow, Evaporation-Condensation, and Self-Diffusion, Sintering Key Papers, pp.367-82, 1990.

R. L. Coble, Initial Sintering of Alumina and Hematite, J Am Ceram Soc, vol.41, issue.2, pp.55-62, 1958.

D. L. Johnson and I. B. Cutler, Diffusion Sintering: I, Initial Stage Sintering Models and Their Application to Shrinkage of Powder Compacts, J Am Ceram Soc, vol.46, issue.11, pp.541-546, 1963.

Q. Yin, B. Zhu, H. Zeng, and . Microstructure, Property and Processing of Functional Ceramics, 2010.

G. Greenwood, The growth of dispersed precipitates in solutions, Acta Metall, vol.4, issue.3, pp.243-251, 1956.

C. Wagner, Theory of the aging of precipitates by dissolution-reprecipitation (Ostwald ripening), Z Elektrochem, vol.65, issue.7, pp.511-81, 1961.

I. M. Lifshitz and V. V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J Phys Chem Solids, vol.19, issue.1-2, pp.35-50, 1961.

J. E. Burke and D. Turnbull, Recrystallization and grain growth, Prog Met Phys, vol.3, pp.220-92, 1952.

. Brook-rj, Controlled Grain Growth, Treatise on Materials Science & Technology, pp.331-64, 1976.

M. F. Yan, Microstructural control in the processing of electronic ceramics, Mater Sci Eng, vol.48, issue.1, pp.53-72, 1981.

P. Cavaliere, Spark Plasma Sintering of Materials. Cavaliere P, editor. Spark Plasma Sintering of Materials, 2019.

O. Guillon, J. Gonzalez-julian, B. Dargatz, T. Kessel, G. Schierning et al., Field-Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments, vol.16, pp.830-879, 2014.

U. Anselmi-tamburini, J. E. Garay, and Z. A. Munir, Fast low-temperature consolidation of bulk nanometric ceramic materials, Scr Mater, vol.54, issue.5, pp.823-831, 2006.

S. Grasso, B. N. Kim, C. Hu, G. Maizza, and Y. Sakka, Highly transparent pure alumina fabricated by high-pressure spark plasma sintering, J Am Ceram Soc, vol.93, issue.9, pp.2460-2462, 2010.

R. M. Krsmanovi?-whiffen, D. Bregiroux, and B. Viana, Nanostructured Y2O3 ceramics elaborated by Spark Plasma Sintering of nanopowder synthesized by PEG assisted combustion method: The influence of precursor morphological characteristics, Ceram Int, 2017.

R. Chaim, Z. Shen, and M. Nygren, Transparent nanocrystalline MgO by rapid and low-temperature spark plasma sintering, J Mater Res, vol.19, issue.9, pp.2527-2531, 2004.

T. Yao, S. M. Scott, G. Xin, B. Gong, and J. Lian, Dense nanocrystalline UO2+x fuel pellets synthesized by high pressure spark plasma sintering, J Am Ceram Soc, vol.101, issue.3, pp.1105-1115, 2018.

B. Gong, D. Frazer, T. Yao, P. Hosemann, M. Tonks et al., Nano-and micro-indentation testing of sintered UO2 fuel pellets with controlled microstructure and stoichiometry, J Nucl Mater, vol.516, pp.169-77, 2019.

M. Cologna, V. Tyrpekl, M. Ernstberger, S. Stohr, and J. Somers, Sub-micrometre grained UO2 pellets consolidated from sol gel beads using spark plasma sintering (SPS), Ceram Int, vol.42, issue.6, pp.6619-6642, 2016.

V. Tyrpekl, M. Cologna, J. F. Vigier, A. Cambriani, W. De-weerd et al., Preparation of bulk-nanostructured UO2 pellets using high-pressure spark plasma sintering for LWR fuel safety assessment, J Am Ceram Soc, vol.100, issue.4, pp.1269-1274, 2017.

D. R. Olander, Fundamental aspects of nuclear reactor fuel elements, 1976.

C. Guéneau, A. Chartier, and L. Van-brutzel, Thermodynamic and Thermophysical Properties of the Actinide Oxides, Comprehensive Nuclear Materials, pp.21-59, 2012.

G. Franceschin, N. Flores-martínez, G. V. Victorio, S. Ammar, and R. Valenzuela, Sintering and Reactive Sintering by Spark Plasma Sintering (SPS), Sintering of Functional Materials

L. Ge, G. Subhash, R. H. Baney, and J. S. Tulenko, Influence of processing parameters on thermal conductivity of uranium dioxide pellets prepared by spark plasma sintering, J Eur Ceram Soc, vol.34, issue.7, pp.1791-1801, 2014.

G. Leinders, T. Cardinaels, K. Binnemans, and M. Verwerft, Thermophysical Properties Database of Materials for Light Water Reactors and Heavy Water Reactors, INTERNATIONAL ATOMIC ENERGY AGENCY, vol.459, pp.135-142, 2006.

D. G. Martin, The thermal expansion of solid UO2 and (U,Pu) mixed oxides -a review and recommendations, J Nucl Mater, vol.152, issue.2-3, pp.90315-90322, 1988.

M. G. Adamson, E. A. Aitken, and R. W. Caputi, Experimental and thermodynamic evaluation of the melting behavior of irradiated oxide fuels, J Nucl Mater, vol.130, pp.349-65, 1985.

J. J. Carbajo, G. L. Yoder, S. G. Popov, and V. K. Ivanov, A review of the thermophysical properties of MOX and UO2 fuels, J Nucl Mater, vol.299, issue.3, pp.181-98, 2001.

J. K. Fink, Thermophysical properties of uranium dioxide, J Nucl Mater, vol.279, issue.1, pp.1-18, 2000.

J. P. Hiernaut, G. J. Hyland, and C. Ronchi, Premelting transition in uranium dioxide, Int J Thermophys, vol.14, issue.3, pp.609-621, 1993.

C. Ronchi, M. Sheindlin, M. Musella, and G. J. Hyland, Thermal conductivity of uranium dioxide up to 2900 K from simultaneous measurement of the heat capacity and thermal diffusivity, J Appl Phys, vol.85, issue.2, pp.776-89, 1999.

R. Konings, O. Bene?, A. Kovács, D. Manara, D. Sedmidubský et al., The Thermodynamic Properties of the f-Elements and their Compounds. Part 2. The Lanthanide and Actinide Oxides, J Phys Chem Ref Data, vol.43, issue.1, p.13101, 2014.

J. H. Harding and D. G. Martin, A recommendation for the thermal conductivity of UO2, J Nucl Mater, vol.166, issue.3, pp.223-229, 1989.

J. D. Higgs, B. J. Lewis, W. T. Thompson, and Z. He, A conceptual model for the fuel oxidation of defective fuel, J Nucl Mater, vol.366, issue.1-2, pp.99-128, 2007.

K. Teske, H. Ullmann, and D. Rettig, Investigation of the oxygen activity of oxide fuels and fuel-fission product systems by solid electrolyte techniques. Part I: Qualification and limitations of the method, J Nucl Mater, vol.116, issue.2-3, pp.260-266, 1983.

H. Matzke, Lattice disorder and metal self-diffusion in non-stoichiometric UO2 and (U, Pu)O2, Le J Phys Colloq, vol.34, issue.C9, 1973.
URL : https://hal.archives-ouvertes.fr/jpa-00215431

P. G. Lucuta, H. Matzke, and I. J. Hastings, A pragmatic approach to modelling thermal conductivity of irradiated UO2 fuel: Review and recommendations, J Nucl Mater, vol.232, issue.2-3, pp.166-80, 1996.

S. D. Conradson, B. D. Begg, D. L. Clark, D. Auwer, C. Ding et al., Charge distribution and local structure and speciation in the UO2+x and PuO2+x binary oxides for x?0.25, J Solid State Chem, vol.178, issue.2, pp.521-556, 2005.

R. A. Penneman and M. T. Paffett, PuO2.25") incorporating interstitial hydroxyl rather than oxide, J Solid State Chem, vol.178, issue.2, pp.563-569, 2005.

J. K. Gibson, W. A. De-jong, P. D. Dau, and Y. Gong, Heptavalent Actinide Tetroxides NpO4 -and PuO4 -: Oxidation of Pu(V) to Pu(VII) by Adding an Electron to PuO4, J Phys Chem A, vol.121, issue.47, pp.9156-62, 2017.

T. Yamashita, N. Nitani, T. Tsuji, and H. Inagaki, Thermal expansions of NpO2 and some other actinide dioxides, J Nucl Mater, vol.245, issue.1, pp.750-757, 1997.

M. Tokar, A. W. Nutt, and T. K. Keenan, Linear Thermal Expansion of Plutonium Dioxide, Nucl Technol, vol.17, issue.2, pp.147-52, 1973.

D. G. Martin, The thermal expansion of solid UO2 and (U, Pu) mixed oxides -a review and recommendations, J Nucl Mater, vol.152, issue.2-3, pp.90315-90322, 1988.

M. Kato, K. Morimoto, H. Sugata, K. Konashi, M. Kashimura et al., Solidus and liquidus temperatures in the UO2-PuO2 system, J Nucl Mater, 2008.

D. Bruycker, F. Boboridis, K. Pöml, P. Eloirdi, R. Konings et al., The melting behaviour of plutonium dioxide: A laser-heating study, J Nucl Mater, vol.416, issue.1-2, pp.166-72, 2011.

O. L. Kruger and H. Savage, Heat Capacity and Thermodynamic Properties of Plutonium Dioxide, J Chem Phys, vol.49, issue.10, pp.4540-4544, 1968.

F. L. Oetting, The chemical thermodynamics of nuclear materials. VII. the high-temperature enthalpy of plutonium dioxide, J Nucl Mater, vol.105, issue.2-3, pp.257-61, 1982.

H. E. Flotow, D. W. Osborne, S. M. Fried, and J. G. Malm, Heat capacity of 242 PuO2 from 12 to 350°K and of 244 PuO2 from 4 to 25°K. Entropy, enthalpy, and Gibbs energy of formation of PuO2 at 298.15°K, J Chem Phys, vol.65, issue.3, pp.1124-1133, 1976.

C. Duriez, J. Alessandri, T. Gervais, and Y. Philipponneau, Thermal conductivity of hypostoichiometric low Pu content (U,Pu)O2?x mixed oxide, J Nucl Mater, vol.277, issue.2-3, pp.143-58, 2000.

R. Kandan, R. Babu, K. Nagarajan, and P. R. Vasudeva-rao, Calorimetric measurements on uranium-plutonium mixed oxides, J Nucl Mater, vol.324, issue.2-3, pp.215-224, 2004.

T. Wiss, Radiation Effects in UO2, Comprehensive Nuclear Materials, pp.465-80, 2012.

J. Soullard and E. A. Alamo, Etude du ralentissement des ions dans une cible diatomique, Radiat Eff, vol.38, issue.3-4, pp.133-142, 1978.

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, SRIM -The stopping and range of ions in matter (2010). Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms, vol.268, pp.1818-1841, 2010.

N. Ishikawa, T. Sonoda, T. Sawabe, H. Sugai, and M. Sataka, Electronic stopping power dependence of ion-track size in UO2 irradiated with heavy ions in the energy range of ?1 MeV/u. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms, 2013.

F. Seitz and J. Koehler, Solid State Physics, vol.2, p.305, 1956.

M. Toulemonde, E. Paumier, and C. Dufour, Thermal spike model in the electronic stopping power regime, Radiat Eff Defects Solids, vol.126, issue.1-4, pp.201-207, 1993.

,

T. Wiss, H. Matzke, C. Trautmann, M. Toulemonde, and S. Klaumünzer, Radiation damage in UO2 by swift heavy ions. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms, vol.122, pp.583-591, 1997.

C. Ronchi, The nature of surface fission tracks in UO2, J Appl Phys, vol.44, issue.8, pp.3575-85, 1973.

H. Matzke, Radiation enhanced diffusion in UO2 and (U, Pu)O2. Radiat Eff, vol.75, pp.317-342, 1983.

H. Blank and H. Matzke, The effect of fission spikes on fission gas re-solution, Radiat Eff, vol.17, issue.1-2, pp.57-64, 1973.

L. Thomé, A. Debelle, F. Garrido, P. Trocellier, Y. Serruys et al., Combined effects of nuclear and electronic energy losses in solids irradiated with a dual-ion beam, Appl Phys Lett, vol.102, issue.14, p.141906, 2013.

G. Gutierrez, D. Gosset, M. Bricout, C. Onofri, and A. Debelle, Effect of coupled electronic and nuclear energy deposition on strain and stress levels in UO2, J Nucl Mater, vol.519, pp.52-58, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02136517

K. Dayman, S. Biegalski, and D. Haas, Determination of short-lived fission product yields with gamma spectrometry, J Radioanal Nucl Chem, vol.305, issue.1, pp.213-236, 2015.

K. E. Sickafus, E. A. Kotomin, and B. P. Uberuaga, Radiation effects in solids, vol.235, 2007.

L. Électricité-de-france and E. Le-combustible-nucléaire,

T. Wiss, J. Hiernaut, D. Roudil, J. Colle, E. Maugeri et al., Evolution of spent nuclear fuel in dry storage conditions for millennia and beyond, J Nucl Mater, vol.451, issue.1-3, pp.198-206, 2014.

D. Roudil, C. Jégou, X. Deschanels, S. Peuget, C. Raepsaet et al., Effects of alpha self-irradiation on actinide-doped spent fuel surrogate matrix. MRS Proc, vol.932, 2006.

W. J. Weber, Ingrowth of lattice defects in alpha irradiated UO2 single crystals, J Nucl Mater, vol.98, issue.1-2, pp.206-221, 1981.

D. R. Olander and P. Van-uffelen, On the role of grain boundary diffusion in fission gas release, J Nucl Mater, vol.288, issue.2-3, pp.137-184, 2001.

H. J. Matzke, Gas release mechanisms in UO2 -a critical review, Radiat Eff, vol.53, issue.3-4, pp.219-261, 1980.

F. Cappia, D. Pizzocri, M. Marchetti, A. Schubert, P. Van-uffelen et al., Microhardness and Young's modulus of high burn-up UO2 fuel, J Nucl Mater, vol.479, pp.447-54, 2016.

J. Spino, J. Cobos-sabate, and F. Rousseau, Room-temperature microindentation behaviour of LWR-fuels, part 1: fuel microhardness, J Nucl Mater, vol.322, issue.2-3, pp.204-220, 2003.

C. Ronchi, M. Sheindlin, D. Staicu, and M. Kinoshita, Effect of burn-up on the thermal conductivity of uranium dioxide up to 100.000 MWdt -1, J Nucl Mater, vol.327, issue.1, pp.58-76, 2004.

D. Staicu, T. Wiss, V. V. Rondinella, J. P. Hiernaut, R. Konings et al., Impact of auto-irradiation on the thermophysical properties of oxide nuclear reactor fuels, J Nucl Mater, vol.397, issue.1-3, pp.8-18, 2010.

D. Klein, W. Baer, and G. G. Smith, Spatial Distribution of U 238 Resonance Neutron Capture in Uranium Metal Rods, Nucl Sci Eng, vol.12, issue.6, pp.698-706, 1958.

J. Noirot, L. Desgranges, and J. Lamontagne, Detailed characterisations of high burn-up structures in oxide fuels, J Nucl Mater, vol.372, issue.2-3, pp.318-357, 2008.

J. Noirot, Y. Pontillon, J. Lamontagne, I. Zacharie-aubrun, K. Hanifi et al., High Burn-up Structure in Nuclear Fuel: Impact on Fuel Behavior, vol.115, 2016.

M. Kinoshita, High burnup RIM project : (III) Properties of rim-structured fuel, Int Mtg LWR Fuel Performance, 2004.

T. Sonoda, M. Kinoshita, I. Ray, T. Wiss, H. Thiele et al., Transmission electron microscopy observation on irradiation-induced microstructural evolution in high burn-up UO2 disk fuel. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms, vol.191, pp.622-627, 2002.

J. P. Hiernaut, T. Wiss, J. Y. Colle, H. Thiele, C. T. Walker et al., Fission product release and microstructure changes during laboratory annealing of a very high burn-up fuel specimen, J Nucl Mater, vol.377, issue.2, pp.313-337, 2008.

T. J. Gerczak, C. M. Parish, P. D. Edmondson, C. A. Baldwin, and K. A. Terrani, Restructuring in high burnup UO2 studied using modern electron microscopy, J Nucl Mater, vol.509, pp.245-59, 2018.

Y. Miao, T. Yao, J. Lian, S. Zhu, S. Bhattacharya et al., Nano-crystallization induced by high-energy heavy ion irradiation in UO2, Scr Mater, vol.155, pp.169-74, 2018.

R. Manzel and C. Walker, EPMA and SEM of fuel samples from PWR rods with an average burn-up of around 100

/. Mwd and . Kghm, J Nucl Mater, vol.301, issue.2-3, pp.170-82, 2002.

J. Spino, S. Cruz, H. Jovani-abril, R. Birtcher, R. Ferrero et al., Bulk-nanocrystalline oxide nuclear fuels -An innovative material option for increasing fission gas retention, plasticity and radiation-tolerance, J Nucl Mater, vol.402, issue.1-3, pp.27-44, 2012.

J. Rest, M. Cooper, J. Spino, J. A. Turnbull, P. Van-uffelen et al., Fission gas release from UO2 nuclear fuel: A review, J Nucl Mater, vol.513, pp.310-355, 2018.

T. Walker, C. Bremier, S. Portier, S. Hasnaoui, R. Goll et al., SIMS analysis of an UO2 fuel irradiated at low temperature to 65MWd/kgHM, J Nucl Mater, vol.393, pp.212-235, 2009.

C. Jegou, M. Gennisson, S. Peuget, L. Desgranges, G. Guimbretière et al., Raman micro-spectroscopy of UOX and MOX spent nuclear fuel characterization and oxidation resistance of the high burn-up structure, J Nucl Mater, vol.458, pp.343-352, 2015.

K. Hayashi, H. Kikuchi, and K. Fukuda, Radiation damage of UO2 by high-energy heavy ions, J Nucl Mater, vol.248, pp.191-196, 1997.

F. Garrido, C. Choffel, L. Thomé, J. Dran, L. Nowicki et al., A channeling investigation of the structural modifications in uranium dioxide submitted to swift-ion irradiation and aqueous corrosion. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms, pp.465-70, 1998.
URL : https://hal.archives-ouvertes.fr/in2p3-00013209

P. Ruello, L. Desgranges, G. Baldinozzi, G. Calvarin, T. Hansen et al., Heat capacity anomaly in UO2 in the vicinity of 1300K: an improved description based on high resolution X-ray and neutron powder diffraction studies, J Phys Chem Solids, vol.66, issue.5, pp.823-854, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00122705

L. Desgranges, G. Baldinozzi, P. Ruello, and C. Petot, Is UO2 irradiation resistance due to its unusual high temperature behaviour?, J Nucl Mater, vol.420, issue.1-3, pp.334-341, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00639227

L. Desgranges, G. Baldinozzi, P. Ruello, and C. Petot, How polarons can enhance UO2 irradiation resistance? Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms, vol.277, pp.109-120, 2012.

G. Baldinozzi, L. Desgranges, and C. Petot, A statistical approach of the thermodynamic properties of UO2 at high temperature. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms, vol.327, pp.68-73, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01084008

I. O. Usov, R. M. Dickerson, P. O. Dickerson, D. D. Byler, and K. J. Mcclellan, Uranium dioxide films with xenon filled bubbles for fission gas behavior studies, J Nucl Mater, vol.452, issue.1-3, pp.173-180, 2014.

,

O. Walter, K. Popa, and O. D. Blanco, Hydrothermal decomposition of actinide(IV) oxalates: A new aqueous route towards reactive actinide oxide nanocrystals, Open Chem, vol.14, issue.1, 2016.

K. Popa, O. Walter, O. D. Blanco, A. Guiot, D. Bouëxière et al., A low-temperature synthesis method for AnO2 nanocrystals (An = Th, U, Np, and Pu) and associate solid solutions, CrystEngComm, vol.20, pp.4616-4622, 2018.

V. Tyrpekl, M. Holzhäuser, H. Hein, J. F. Vigier, J. Somers et al., Synthesis of dense yttrium-stabilised hafnia pellets for nuclear applications by spark plasma sintering, J Nucl Mater, vol.454, issue.1-3, pp.398-404, 2014.

T. Yao, K. Mo, D. Yun, S. Nanda, A. M. Yacout et al., Grain growth and pore coarsening in dense nano-crystalline UO2+x fuel pellets, J Am Ceram Soc, vol.100, issue.6, pp.2651-2658, 2017.

P. G. Lucuta, R. A. Verrall, H. Matzke, and B. J. Palmer, Microstructural features of SIMFUEL -Simulated high-burnup UO2-based nuclear fuel, J Nucl Mater, vol.178, issue.1, pp.48-60, 1991.

E. Geiger, R. Bès, P. Martin, Y. Pontillon, G. Ducros et al., Insights on fission products behaviour in nuclear severe accident conditions by X-ray absorption spectroscopy, J Nucl Mater, vol.471, pp.25-33, 2016.
URL : https://hal.archives-ouvertes.fr/cea-02383228

,

P. G. Lucuta, H. Matzke, R. A. Verrall, and H. A. Tasman, Thermal conductivity of SIMFUEL, J Nucl Mater, vol.188, pp.198-204, 1992.

H. Matzke, P. G. Lucuta, R. A. Verrall, and J. Henderson, Specific heat of UO2-based SIMFUEL, J Nucl Mater, vol.247, pp.121-127, 1997.

R. A. Verrall and P. G. Lucuta, Specific heat measurements of UO2 and SIMFUEL, J Nucl Mater, vol.228, issue.2, pp.251-254, 1996.

P. G. Lucuta, R. A. Verrall, I. J. Hastings, and H. Matzke, Thermal conductivity and gas release from SIMFUEL, International Atomic Energy Agency (IAEA, p.24050857, 1993.

A. Sengupta, R. Bhagat, T. Jarvis, J. Banerjee, T. Kutty et al., Some important properties of simulated UO2 fuel, p.31003194, 1999.

M. C. Pujol, M. Idiri, L. Havela, S. Heathman, and J. Spino, Bulk and Young's modulus of doped UO2 by synchrotron diffraction under high pressure and Knoop indentation, J Nucl Mater, vol.324, issue.2-3, pp.189-97, 2004.

J. Quiñones, J. Garcia-serrano, J. A. Serrano, P. Díaz-arocas, and J. Almazan, SIMFUEL and UO2 Solubility and Leaching Behavior Under Anoxic Conditions, MRS Proc, vol.506, p.247, 1997.

K. Ollila, SIMFUEL dissolution studies in granitic groundwater, J Nucl Mater, vol.190, pp.70-77, 1992.

S. Sundin, B. Dahlgren, O. Roth, and M. Jonsson, H2O2 and radiation induced dissolution of UO2 and SIMFUEL in HCO3 -Deficient aqueous solution, J Nucl Mater, vol.443, issue.1-3, pp.291-298, 2013.

J. A. Serrano, J. Quinones, J. Cobos, P. Diaz-arocas, V. Rondinella et al., Leaching study of the behaviour of spent fuel and simfuel under simulated granitic repository conditions, Proc Int Conf Radioact Waste Manag Environ Remediat ICEM, vol.2, pp.1081-1086, 2001.

V. Oversby, Uranium dioxide, SIMFUEL, and spent fuel dissolution rates -a review of published data, p.31008584, 1999.

D. W. Shoesmith, Used fuel and uranium dioxide dissolution studies-A review, 2007.

T. E. Eriksen, D. W. Shoesmith, and M. Jonsson, Radiation induced dissolution of UO2 based nuclear fuel -A critical review of predictive modelling approaches, J Nucl Mater, vol.420, issue.1-3, pp.409-432, 2012.

,

D. Lemma, F. G. Colle, J. Y. Rasmussen, G. Konings, and R. , Fission product partitioning in aerosol release from simulated spent nuclear fuel, J Nucl Mater, vol.465, pp.127-161, 2015.

T. Wangle, V. Tyrpekl, M. Cologna, and J. Somers, Simulated UO2 fuel containing CsI by spark plasma sintering, J Nucl Mater, 2015.

L. Gall and C. , Contribution to the study of fission products release from nuclear fuels in severe accident conditions: effect of the pO2 on Cs, Mo and Ba speciation, 2018.
URL : https://hal.archives-ouvertes.fr/cea-02458380

S. Cruz, H. Spino, J. Grathwohl, and G. , Nanocrystalline ZrO2 ceramics with idealized macropores, J Eur Ceram Soc, vol.28, issue.9, pp.1783-91, 2008.

V. G. Baranov, A. V. Lunev, V. F. Reutov, A. V. Tenishev, M. G. Isaenkova et al., An attempt to reproduce high burn-up structure by ion irradiation of SIMFUEL, J Nucl Mater, vol.452, issue.1-3, pp.147-57, 2014.

K. Ollila, E. Myllykylä, M. Tanhua-tyrkkö, and T. Lavonen, Dissolution rate of alpha-doped UO2 in natural groundwater, J Nucl Mater, vol.442, issue.1-3, pp.320-325, 2013.

A. Fernández, D. Haas, R. Konings, and J. Somers, Transmutation of Actinides, J Am Ceram Soc, vol.85, issue.3, pp.694-700, 2004.

V. Rondinella, T. Wiss, J. Hiernaut, and J. Cobos, Studies on Spent Fuel Alterations During Storage and Radiolysis Effects on Corrosion Behaviour Using Alpha-Doped UO2, 9th ASME International Conference on Radioactive Waste Management, pp.265-72, 2003.

V. Rondinella, T. Wiss, J. Hiernaut, and D. Staicu, Dose Rate Effects on the Accumulation of Radiation Damage, 11th International Conference on Environmental Remediation and Radioactive Waste Management, Parts A and B. ASME, pp.1071-1077, 2007.

J. Jonnet, P. Van-uffelen, T. Wiss, D. Staicu, B. Rémy et al., Growth mechanisms of interstitial loops in ?-doped UO2 samples. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms, vol.266, pp.3008-3020, 2008.

D. Roudil, M. F. Barthe, C. Jégou, A. Gavazzi, and F. Vella, Investigation of defects in actinide-doped UO2 by positron annihilation spectroscopy, J Nucl Mater, vol.420, issue.1-3, pp.63-68, 2012.

C. Ronchi and J. P. Hiernaut, Helium diffusion in uranium and plutonium oxides, J Nucl Mater, vol.325, issue.1, pp.1-12, 2004.

K. Nakajima, H. Serizawa, N. Shirasu, Y. Haga, and Y. Arai, The solubility and diffusion coefficient of helium in uranium dioxide, J Nucl Mater, vol.419, issue.1-3, pp.272-80, 2011.

E. Maugeri, T. Wiss, J. P. Hiernaut, K. Desai, C. Thiriet et al., Helium solubility and behaviour in uranium dioxide, J Nucl Mater, vol.385, issue.2, pp.461-466, 2009.

Z. Talip, T. Wiss, D. Marcello, V. Janssen, A. Colle et al., Thermal diffusion of helium in 238 Pu-doped UO2, J Nucl Mater, vol.445, issue.1-3, pp.117-127, 2014.

C. Ferry, C. Poinssot, C. Cappelaere, L. Desgranges, C. Jegou et al., Specific outcomes of the research on the spent fuel long-term evolution in interim dry storage and deep geological disposal, J Nucl Mater, vol.352, issue.1-3, pp.246-253, 2006.

V. V. Rondinella, H. Matzke, C. J. Cobos, and T. Wiss, Leaching behaviour of UO2 containing ?-emitting actinides, Radiochim Acta, vol.88, pp.9-11, 2000.

V. Rondinella, H. Matzke, J. Cobos, and T. Wiss, ?-Radiolysis and ?-Radiation Damage Effects on UO2 Dissolution Under Spent Fuel Storage Conditions. MRS Proc, vol.556, p.447, 1999.

V. V. Rondinella, J. Cobos, and T. Wiss, Leaching behaviour of low -Activity alpha-doped UO2, Mater Res Soc Symp Proc, vol.824, pp.167-73, 2004.

B. Muzeau, C. Jégou, F. Delaunay, V. Broudic, A. Brevet et al., Radiolytic oxidation of UO2 pellets doped with alpha-emitters (238/239Pu), J Alloys Compd, vol.467, issue.1-2, pp.578-589, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00360249

,

R. Mohun, L. Desgranges, A. Canizarès, N. Raimboux, F. Duval et al., Investigating the role of irradiation defects during UO2 oxidative dissolution, J Nucl Mater, vol.509, pp.305-317, 2018.
URL : https://hal.archives-ouvertes.fr/insu-01868484

W. J. Weber, Thermal recovery of lattice defects in alpha-irradiated UO2 crystals, J Nucl Mater, vol.114, issue.2-3, pp.90259-90262, 1983.

W. J. Weber, Alpha-irradiation damage in CeO2 , UO2 and PuO2, Radiat Eff, vol.83, issue.1-2, pp.145-56, 1984.

H. Palancher, R. Kachnaoui, G. Martin, A. Richard, J. C. Richaud et al., Strain relaxation in He implanted UO2 polycrystals under thermal treatment: An in situ XRD study, J Nucl Mater, vol.476, pp.63-76, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01873630

G. Guimbretière, L. Desgranges, A. Canizarès, R. Caraballo, F. Duval et al., In situ Raman monitoring of He 2+ irradiation induced damage in a UO2 ceramic, Appl Phys Lett, issue.4, p.103, 2013.

,

G. Guimbretière, L. Desgranges, A. Canizarès, G. Carlot, R. Caraballo et al., Determination of in-depth damaged profile by Raman line scan in a pre-cut He 2+ irradiated UO2, Appl Phys Lett, vol.100, issue.25, p.251914, 2012.

L. Desgranges, G. Guimbretière, P. Simon, C. Jegou, and R. Caraballo, A possible new mechanism for defect formation in irradiated UO2, Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms, vol.315, pp.169-172, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00904062

R. Mohun, L. Desgranges, J. Léchelle, P. Simon, G. Guimbretière et al., Charged defects during alphairradiation of actinide oxides as revealed by Raman and luminescence spectroscopy. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms, vol.374, pp.67-70, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01915141

L. Desgranges, G. Guimbretière, P. Simon, F. Duval, A. Canizares et al., Annealing of the defects observed by Raman spectroscopy in UO2 irradiated by 25 MeV He 2+ ions. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms, vol.327, pp.74-81, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01077084

L. Desgranges, P. Simon, P. Martin, G. Guimbretiere, G. Baldinozzi et al., Microstructure changes and thermal conductivity reduction in UO2 following 3.9 MeV He2+ ion irradiation, J Nucl Mater, vol.66, issue.1-3, pp.283-292, 2014.

G. Martin, G. Carlot, P. Desgardin, M. Vayer, C. Ramboz et al., Surface Blistering and Flaking of Sintered Uranium Dioxide Samples under High Dose Gas Implantation and Annealing. Defect Diffus Forum, 2012.
URL : https://hal.archives-ouvertes.fr/insu-00689540

G. Martin, P. Garcia, C. Sabathier, G. Carlot, T. Sauvage et al., Helium release in uranium dioxide in relation to grain boundaries and free surfaces, Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms, vol.268, pp.2133-2137, 2010.

G. Martin, P. Desgardin, P. Garcia, T. Sauvage, G. Carlot et al., Helium Migration Mechanisms in Polycrystalline Uranium Dioxide, MRS Proc, vol.985, pp.985-990, 2006.

S. Guilbert, T. Sauvage, P. Garcia, G. Carlot, M. F. Barthe et al., He migration in implanted UO2 sintered disks, J Nucl Mater, vol.327, issue.2-3, pp.88-69, 2004.

S. Guilbert, T. Sauvage, H. Erramli, M. F. Barthe, P. Desgardin et al., Helium behavior in UO2 polycrystalline disks, J Nucl Mater, vol.321, issue.2-3, pp.121-128, 2003.

F. Garrido, L. Nowicki, G. Sattonnay, T. Sauvage, and L. Thomé, Lattice location of helium in uranium dioxide single crystals, Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms, vol.219, issue.220, pp.196-205, 2004.
URL : https://hal.archives-ouvertes.fr/in2p3-01202497

T. Sauvage, P. Desgardin, G. Martin, P. Garcia, G. Carlot et al., Microstructure effects on He diffusion in sintered UO2 by ?NRA, Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, vol.240, pp.271-276, 2005.
URL : https://hal.archives-ouvertes.fr/in2p3-00025147

G. Martin, C. Sabathier, G. Carlot, P. Desgardin, C. Raepsaet et al., Irradiation damage effects on helium migration in sintered uranium dioxide, Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, vol.273, pp.122-126, 2012.

G. Martin, P. Desgardin, T. Sauvage, P. Garcia, G. Carlot et al., A quantitative ?NRA study of helium intergranular and volume diffusion in sintered UO2, Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms, vol.249, pp.509-512, 2006.

L. F. He, B. Valderrama, A. R. Hassan, J. Yu, M. Gupta et al., Bubble formation and Kr distribution in Krirradiated UO2, J Nucl Mater, vol.456, pp.125-157, 2015.

C. Onofri, C. Sabathier, H. Palancher, G. Carlot, S. Miro et al., Evolution of extended defects in polycrystalline UO2 under heavy ion irradiation: Combined TEM, XRD and Raman study, Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms, vol.374, pp.51-57, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01729241

N. Djourelov, B. Marchand, H. Marinov, N. Moncoffre, Y. Pipon et al., Study of temperature and radiation induced microstructural changes in Xe-implanted UO2 by TEM, STEM, SIMS and positron spectroscopy, J Nucl Mater, vol.443, issue.1-3, pp.562-571, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00881212

N. Djourelov, B. Marchand, H. Marinov, N. Moncoffre, Y. Pipon et al., Variable energy positron beam study of Xe-implanted uranium oxide, J Nucl Mater, vol.432, issue.1-3, pp.287-93, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00782767

,

B. Marchand, N. Moncoffre, Y. Pipon, C. Garnier, N. Bérerd et al., Xenon migration in UO2: A SIMS study, Prog Nucl Energy, vol.57, pp.145-154, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00691826

A. Michel, C. Sabathier, G. Carlot, O. Kaïtasov, S. Bouffard et al., An in situ TEM study of the evolution of Xe bubble populations in UO2, Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, pp.218-221, 0272.
URL : https://hal.archives-ouvertes.fr/in2p3-00688383

B. Marchand, N. Moncoffre, Y. Pipon, N. Bérerd, C. Garnier et al., Xenon migration in UO2 under irradiation studied by SIMS profilometry, J Nucl Mater, vol.440, issue.1-3, pp.562-569, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00861210

,

C. Onofri, M. Legros, J. Léchelle, H. Palancher, C. Baumier et al., Full characterization of dislocations in ionirradiated polycrystalline UO2, J Nucl Mater, vol.494, pp.252-259, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01584641

C. Onofri, C. Sabathier, C. Baumier, C. Bachelet, H. Palancher et al., Influence of exogenous xenon atoms on the evolution kinetics of extended defects in polycrystalline UO2 using in situ TEM, J Nucl Mater, vol.512, pp.297-306, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01983000

C. Onofri, C. Sabathier, C. Baumier, C. Bachelet, H. Palancher et al., Evolution of extended defects in polycrystalline Au-irradiated UO2 using in situ TEM: Temperature and fluence effects, J Nucl Mater, vol.482, pp.105-113, 2016.

F. Garrido, L. Vincent, L. Nowicki, G. Sattonnay, and L. Thomé, Radiation stability of fluorite-type nuclear oxides, Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms, vol.266, pp.2842-2849, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00825710

G. Sattonnay, L. Vincent, F. Garrido, and L. Thomé, Xenon versus helium behavior in UO2 single crystals: A TEM investigation, J Nucl Mater, vol.355, issue.1-3, pp.131-136, 2006.
URL : https://hal.archives-ouvertes.fr/in2p3-00091674

C. Sabathier, G. Martin, A. Michel, G. Carlot, S. Maillard et al., In-situ TEM observation of nano-void formation in UO2 under irradiation, Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms, vol.326, pp.247-50, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-01057436

G. Gutierrez, C. Onofri, S. Miro, M. Bricout, and F. Leprêtre, Effect of ballistic damage in UO2 samples under ion beam irradiations studied by in situ Raman spectroscopy, Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms, vol.434, pp.45-50, 2018.
URL : https://hal.archives-ouvertes.fr/cea-02339665

H. M. Rietveld, A profile refinement method for nuclear and magnetic structures, J Appl Crystallogr, vol.2, issue.2, pp.65-71, 1969.

G. Williamson and W. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metall, vol.1, issue.1, pp.22-31, 1953.

V. Pet?í?ek, M. Du?ek, and L. Palatinus, Crystallographic Computing System JANA2006: General features, Standard Test Methods for Determining Average Grain Size. ASTM Int, vol.229, issue.5, p.345, 2012.

V. Tyrpekl, C. Berkmann, M. Holzhäuser, F. Köpp, M. Cologna et al., Implementation of a spark plasma sintering facility in a hermetic glovebox for compaction of toxic, radiotoxic, and air sensitive materials, Rev Sci Instrum, vol.86, issue.2, p.23904, 2015.

M. Naji, J. Y. Colle, O. Bene?, M. Sierig, J. Rautio et al., An original approach for Raman spectroscopy analysis of radioactive materials and its application to americium-containing samples, J Raman Spectrosc, vol.49, issue.9, pp.750-756, 2015.

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity, J Appl Phys, vol.32, issue.9, pp.1679-84, 1961.

M. Sheindlin, D. Halton, M. Musella, and C. Ronchi, Advances in the use of laser-flash techniques for thermal diffusivity measurement, Rev Sci Instrum, vol.69, issue.3, pp.1426-1462, 1998.

D. Staicu and M. Barker, Thermal conductivity of heterogeneous LWR MOX fuels, J Nucl Mater, vol.442, issue.1-3, pp.46-52, 2013.

L. Vlahovic, D. Staicu, A. Küst, and R. Konings, Thermal diffusivity of UO2 up to the melting point, J Nucl Mater, vol.499, pp.504-511, 2018.

J. Drowart, C. Chatillon, J. Hastie, and D. Bonnell, High-temperature mass spectrometry: Instrumental techniques, ionization cross-sections, pressure measurements, and thermodynamic data (IUPAC technical report), Pure Appl Chem, vol.77, issue.4, pp.683-737, 2005.

J. P. Hiernaut, J. Y. Colle, R. Pflieger-cuvellier, J. Jonnet, J. Somers et al., A Knudsen cell-mass spectrometer facility to investigate oxidation and vaporisation processes in nuclear fuel, J Nucl Mater, vol.344, issue.1-3, pp.246-53, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02462535

J. Colle, D. Freis, O. Bene, and R. Konings, Knudsen Effusion Mass Spectrometry of Nuclear Materials: Applications and Developments, ECS Trans, vol.46, issue.1, pp.23-38, 2013.

J. Y. Colle, E. A. Maugeri, C. Thiriet, Z. Talip, F. Capone et al., A mass spectrometry method for quantitative and kinetic analysis of gas release from nuclear materials and its application to helium desorption from UO2 and fission gas release from irradiated fuel, J Nucl Sci Technol, vol.51, issue.5, pp.700-711, 2014.

,

P. Javorský, F. Wastin, E. Colineau, J. Rebizant, P. Boulet et al., Low-temperature heat capacity measurements on encapsulated transuranium samples, J Nucl Mater, vol.344, issue.1-3, pp.50-55, 2005.

,

P. Javorský, J. Rebizant, P. Boulet, G. Stewart, and F. Wastin, Specific heat measurements on transuranium systems at ITU Karlsruhe, 2003.

D. Horlait, F. Lebreton, P. Roussel, and T. Delahaye, XRD Monitoring of ? Self-Irradiation in Uranium-Americium Mixed Oxides, Inorg Chem, vol.52, issue.24, pp.14196-204, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02263475

F. Lebreton, P. M. Martin, D. Horlait, R. Bès, A. C. Scheinost et al., New insight into self-irradiation effects on local and long-range structure of uranium-americium mixed oxides (through XAS and XRD), Inorg Chem, vol.53, pp.9531-9540, 2014.
URL : https://hal.archives-ouvertes.fr/cea-02528973

D. Prieur, A. Jankowiak, C. Leorier, N. Herlet, L. Donnet et al., Influence of the Microstructure on the U1-yAmyO2-x (y= 0.1; 0.15) Pellet Macroscopic Swelling, Adv Sci Technol, vol.73, pp.104-112, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00573384

H. Amorín, R. Jiménez, J. Ricote, T. Hungría, A. Castro et al., Apparent vanishing of ferroelectricity in nanostructured BiScO3-PbTiO3, J Phys D Appl Phys, vol.43, issue.28, p.285401, 2010.

F. Maglia, I. G. Tredici, and U. Anselmi-tamburini, Densification and properties of bulk nanocrystalline functional ceramics with grain size below 50nm, J Eur Ceram Soc, vol.33, issue.6, pp.1045-66, 2013.

,

Y. Miao, T. Yao, J. Lian, J. S. Park, J. Almer et al., In situ synchrotron investigation of grain growth behavior of nano-grained UO2, Scr Mater, vol.131, pp.29-32, 2017.

V. Tyrpekl, M. Cologna, D. Robba, and J. Somers, Sintering behaviour of nanocrystalline ThO2 powder using spark plasma sintering, J Eur Ceram Soc, vol.36, issue.3, pp.767-772, 2016.

H. Matzke, On uranium self-diffusion in UO2 and UO2+x, J Nucl Mater, vol.30, issue.1-2, pp.26-35, 1969.

V. Tyrpekl, J. F. Vigier, D. Manara, T. Wiss, D. Blanco et al., Low temperature decomposition of U(IV) and Th(IV) oxalates to nanograined oxide powders, J Nucl Mater, vol.460, pp.200-208, 2015.

L. Balice, D. Bouëxière, M. Cologna, A. Cambriani, J. Vigier et al., Nano and micro U1-xThxO2 solid solutions: From powders to pellets, J Nucl Mater, vol.498, pp.307-320, 2018.

R. Hesabi, Z. Haghighatzadeh, M. Mazaheri, M. Galusek, D. Sadrnezhaad et al., Suppression of grain growth in submicrometer alumina via two-step sintering method, J Eur Ceram Soc, issue.8, pp.1371-1377, 2009.

R. Hesabi, Z. Mazaheri, M. Ebadzadeh, and T. , Enhanced electrical conductivity of ultrafine-grained 8Y2O3 stabilized ZrO2 produced by two-step sintering technique, J Alloys Compd, vol.494, issue.1-2, pp.362-365, 2010.

K. Maca, V. Pouchly, and P. Zalud, Two-Step Sintering of oxide ceramics with various crystal structures, J Eur Ceram Soc, issue.2, pp.583-589, 2010.

X. H. Wang, P. L. Chen, and I. W. Chen, Two-step sintering of ceramics with constant grain-size, I. Y2O3, J Am Ceram Soc, vol.89, issue.2, pp.431-438, 2006.

Z. A. Munir, U. Anselmi-tamburini, and M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, J Mater Sci, vol.41, pp.763-777, 2006.

D. Bona, E. Walter, O. Störmer, H. Wiss, T. Baldinozzi et al., Synthesis of nanostructured ThO2 pellets, J Am Ceram Soc, vol.102, issue.7, pp.3814-3822, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02415373

J. M. Elorrieta, D. Manara, L. J. Bonales, J. F. Vigier, O. Dieste et al., Raman study of the oxidation in (U, Pu)O2 as a function of Pu content, J Nucl Mater, vol.495, pp.484-491, 2017.
URL : https://hal.archives-ouvertes.fr/cea-02415667

W. L. Lyon and W. E. Baily, The solid-liquid phase diagram for the UO2-PuO2 system, J Nucl Mater, vol.22, issue.3, pp.332-341, 1967.

B. Belbeoch, J. C. Boivineau, and P. Perio, Changements de structure de l'oxyde U4O9, J Phys Chem Solids, vol.28, issue.7, pp.1267-75, 1967.

C. Jégou, R. Caraballo, S. Peuget, D. Roudil, L. Desgranges et al., Raman spectroscopy characterization of actinide oxides (U1?yPuy)O2: Resistance to oxidation by the laser beam and examination of defects, J Nucl Mater, vol.405, issue.3, pp.235-278, 2010.

Z. Talip, S. Peuget, M. Magnin, L. Berardo, C. Valot et al., Raman microspectroscopic studies of unirradiated homogeneous (U0.76Pu0.24)O2+x: the effects of Pu content, non-stoichiometry, self-radiation damage and secondary phases, J Raman Spectrosc, vol.48, issue.5, pp.765-72, 2017.

G. Dolling, R. A. Cowley, and A. Woods, The Crystal Dynamics of Uranium Dioxide, Can J Phys, vol.43, issue.8, pp.1397-413, 1965.

S. Nichenko and D. Staicu, Molecular Dynamics study of the mixed oxide fuel thermal conductivity, J Nucl Mater, vol.439, issue.1-3, pp.93-101, 2013.

W. F. Cureton, R. I. Palomares, J. Walters, C. L. Tracy, C. Chen et al., Grain size effects on irradiated CeO2, ThO2, and UO2, Acta Mater, vol.160, pp.47-56, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01915325

W. F. Cureton, R. I. Palomares, C. L. Tracy, E. C. O'quinn, J. Walters et al., Effects of irradiation temperature on the response of CeO2, ThO2, and UO2 to highly ionizing radiation, J Nucl Mater, vol.525, pp.83-91, 2019.

C. Fw, D. Dl, and . Land-cc, Strain Effects and Spalling in Alpha-Bombarded ThO2, J Am Ceram Soc, vol.54, issue.4, pp.177-186, 1971.

M. Kato, A. Komeno, H. Uno, H. Sugata, N. Nakae et al., Self-radiation damage in plutonium and uranium mixed dioxide, J Nucl Mater, vol.393, issue.1, pp.134-140, 2009.

T. D. Chikalla and R. P. Turcotte, Self-radiation damage ingrowth in 238 PuO2, Radiat Eff, vol.19, issue.2, pp.93-101, 1973.

Z. Talip, T. Wiss, E. A. Maugeri, J. Y. Colle, P. E. Raison et al., Helium behaviour in stoichiometric and hyperstoichiometric UO2, J Eur Ceram Soc, vol.34, issue.5, pp.1265-1277, 2014.

P. Garcia, G. Martin, P. Desgardin, G. Carlot, T. Sauvage et al., A study of helium mobility in polycrystalline uranium dioxide, J Nucl Mater, vol.430, issue.1-3, pp.156-65, 2012.

,

M. S. El-genk and J. M. Tournier, Estimates of helium gas release in 238 PuO2 fuel particles for radioisotope heat sources and heater units, J Nucl Mater, vol.280, issue.1, pp.1-17, 2000.

J. Y. Colle, J. P. Hiernaut, T. Wiss, O. Bene?, H. Thiele et al., Fission product release and microstructure changes of irradiated MOX fuel at high temperatures, J Nucl Mater, vol.442, issue.1-3, pp.330-370, 2013.

K. Govers, S. Lemehov, M. Hou, and M. Verwerft, Molecular dynamics simulation of helium and oxygen diffusion in UO2±x, J Nucl Mater, vol.395, issue.1-3, pp.131-140, 2009.

K. Fucke and J. W. Steed, X-ray and Neutron Diffraction in the Study of Organic Crystalline Hydrates. Water, vol.2, pp.333-50, 2009.

M. Bessa and L. , Synthesis and characterization of hydroxyapatite modified with (9r)-9-hydroxystearic acid

H. E. Flotow, D. W. Osborne, S. M. Fried, and J. G. Malm, Heat capacity of 242 PuO2 from 12 to 350°K and of 244 PuO2 from 4 to 25°K. Entropy, enthalpy, and Gibbs energy of formation of PuO2 at 298.15°K, J Chem Phys, vol.65, issue.3, pp.1124-1133, 1976.

S. V?lu, D. Bona, E. Popa, K. Grivau, J. C. Colineau et al., The effect of lattice disorder on the lowtemperature heat capacity of (U1?yThy)O2 and 238 Pu-doped UO2, Sci Rep, vol.9, 2019.