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 Introduction 

The discovery of Nd-Fe-B magnets in 1984 [1]�t[3] constituted an important step in the history of 
permanent magnets. At that time, the Sm-Co based permanent magnets had to be replaced because 
Co was a strategic and expensive material. Nd-Fe-B magnets had strong advantages compared to Sm-
Co: they had larger saturation magnetization, Nd was much less expensive than Sm and Fe is one of 
the most abundant elements on Earth. Nd-Fe-B permanent magnets were first used in hard disk drives 
and speakers. More recently, these magnets play a pivotal part in energy efficient technologies. Since 
they produce the highest energy density among all commercially available magnets, they play a 
significant role in motors of electric vehicles and generators of windmills. For instance, higher energy 
density means lighter and less energy consuming machines. [4] 

The outstanding properties of Nd-Fe-B permanent magnets come from the intrinsic magnetic 
properties of the Nd2Fe14B phase (magnetocrystalline anisotropy, saturation magnetization) and from 
their microstructure. Nevertheless, electrical machines operate at about 120-180°C and magnetic 
properties decrease rapidly with temperature. At 180°C, the anisotropy field of the Nd2Fe14B phase is 
reduced to unaccepted values. This impacts directly the coercivity of the magnet which represents its 
resistance to demagnetization. To maximize coercivity at the operating temperature, a fraction of Nd 
is substituted with heavy rare earth elements such as Dy with a content depending on the application 
(see Fig. 1 from [5]). The demand for Dy is particularly high for electrical motors, especially for those 
of hybrid electric vehicles which can contain more than 5 wt.% of Dy. 

However, the Dy magnetic moments couple antiparallel to the Fe ones, leading to a decrease in 
remanence and thus in the maximum energy density provided by the magnet. In addition, Dy is a 
strategic element classified as a critical raw material by EU. The supply risk is high since China has a 
quasi-monopolistic position in the extraction of Dy (more than 98 % of the total world production). 
Moreover, the price of Dy has been particularly volatile in the last decade. Considered separately, the 
cost of Dy in magnets could represent more than 50 % of the cost of all other materials. For these 
reasons, end-users of magnets are very reluctant to use magnets containing Dy. 

 

Fig. 1: Maximum energy product (BH)max and coercivity of commercial Nd-Fe-B sintered magnets 
according to their composition. [5] 
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Consequently, the major driving force for research and development of Nd-Fe-B permanent magnets 
is to develop magnets that possess excellent magnetic properties with a reduced content of Dy [4]. 
This requires a better understanding of the link between microstructure and coercivity in these 
materials. The key point is the control of the grain size and the distribution of secondary phases at 
grain boundaries to prevent magnetization reversal and magnetic coupling [6]. Many efforts have been 
undertaken in the last decade by research groups and the magnet industry to reduce the Dy content 
in magnets. During this period, significant progresses have also been obtained in the characterization 
of the local chemistry of grain boundaries at the nanoscale. This allowed a better understanding of 
coercivity mechanisms in Nd-Fe-B sintered magnets. Furthermore, micromagnetic simulations have 
shown to be efficient in the description of magnetization reversal in realistic polycrystalline models, 
taking into account the fundamental role of grain boundaries. 

The work presented in this thesis has been developed in the framework of a collaborative action 
between CEA-LITEN and Institut Néel. The global objective of the thesis is the better understanding of 
coercivity of Nd-Fe-B sintered magnets by experimental and numerical approaches. The magnets 
studied here are fabricated on the pilot line at CEA-LITEN by powder metallurgy route. The 
fundamental activity included preparation of model systems, microstructural and magnetic 
characterization and numerical modelling. 

Nd-Fe-B hard magnets are obtained by liquid phase sintering of an oriented monocrystalline powder. 
Post-sinter annealing at low temperature enables the optimal distribution of thin Nd-rich phases at 
grain boundaries [7], [8]. Consequently, grains are mostly exchange-decoupled and it is widely 
accepted that magnetization reversal occurs via switching of individual grains. However, magnetostatic 
or dipolar interactions between grains play also an important role in magnetization reversal in such 
materials. In this work, a first study investigates the demagnetizing field effects in Nd-Fe-B sintered 
grain-decoupled magnets that can lead to some misinterpretation of the demagnetization curves 
usually measured on magnets. Two different experimental configurations (open- and closed-circuit) 
widely used for coercivity measurement are compared experimentally and numerically. 

One of the strategies to improve coercivity is the grain boundary diffusion process developed in 2000 
[9] and which is now an industrially established technique. It consists in the development of core-shell 
grains with Dy-rich phases in the outer regions of Nd2Fe14B grains. In this work, a second study deals 
with the grain boundary diffusion process performed on Nd-Fe-B sintered magnets using Dy-Co alloys. 
The coercive properties are progressively improved after Dy diffusion but the rectangularity of the 
measured demagnetization curves is also deteriorated. Microstructural observations and further 
magnetic measurements are carried out to establish the link between microstructure and coercivity 
and also explain the shape of the experimental demagnetization curves. The latter is reproduced via 
micromagnetic simulations. Moreover, one of the drawbacks of the grain boundary diffusion process 
is its limitation to thin magnets. It can thus lead to Dy-diffused magnets with coercivity gradient. In the 
last part, coercivity in graded magnets is discussed with the help of a diffusion model and further 
micromagnetic simulations. 

The present manuscript is organized in five chapters. 

Chapter I gives a general introduction on the history and properties of permanent magnets. Then, the 
microstructure, the fabrication process and the coercivity mechanisms of Nd-Fe-B sintered magnets 
are presented. Finally, bibliographic researches about micromagnetism and the grain boundary 
diffusion process are detailed. 
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Chapter II describes the fabrication process of Nd-Fe-B sintered magnets at CEA-LITEN. The grain 
boundary diffusion process using Dy-Co alloys is also detailed. Furthermore, the characterization 
(microstructural and magnetic) and numerical methods used in the thesis are described. 

Chapter III deals with the demagnetizing field effects in Nd-Fe-B sintered magnets. The experimental 
and numerical comparison of demagnetization curves measured in open- and closed-circuit is 
presented. 

Chapter IV concerns the experimental and computational parametric study of the grain boundary 
diffusion process using Dy-Co alloys performed on Nd-Fe-B sintered magnets. An important aspect is 
the understanding of the shape of the demagnetization curves measured after Dy diffusion with the 
help of numerical modelling. 

Chapter V constitutes a discussion about coercivity in graded magnets and the reported results are 
strongly related to those of Chapter IV. 

The main results of this work are recalled in the conclusion. The perspectives of research to further 
progress in the understanding of magnetization reversal processes in Nd-Fe-B sintered magnets are 
also suggested. 
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I. From context to coercivity 

I.1. History of rare earth permanent magnets 

The first discovered permanent magnets were the lodestones that provided a stable magnetic field. 
Until the turn of the 19th century, magnets were weak, unstable and made of carbon steel. Some 
improvements were made with the discovery of cobalt magnet steels in Japan in 1917. Then, the 
performances of permanent magnets have been continuously improved since the discovery of the 
alnicos (Al/Ni/Co alloys) �]�v���š�Z�����ï�ì�[�• [10]. This evolution is represented by the increase in the maximum 
energy product (BH)max. This latter is a figure of merit for permanent magnets and represents the 
maximum energy density that, for a magnet of given volume, can be transformed into work in a 
machine that uses the magnet. Fig. 2 shows the rapid improvement in the performances of magnets 
���v���}�µ�v�š���Œ�������]�v���š�Z�����u�]�����o�����}�(���š�Z�����ò�ì�[�•���Á�Z���v the first generation of transition metals and rare-earth 
alloys, such as Sm-Co systems, was developed. However, in the �o���š���� �ó�ì�[�•�U�� �š�Z���� �‰�Œ�]������ �}�(�� ���}�� �]�v���Œ�����•������
drastically due to an unstable supply situation in the Democratic Republic of Congo. At that time, Sm-
Co permanent magnets showed the highest (BH)max and the research community was then forced to 
replace these magnets. A few years later, in 1984, Nd-Fe-B based permanent magnets were developed 
for the first time by Sagawa et al. [1] using powder metallurgy techniques at Sumitomo Special Metals, 
and in parallel by Croat et al. [2], [3] using melt-spinning technique at General Motors. As shown by 
the below graph, in almost a century, (BH)max has been enhanced, starting from �C1 MGOe for steels at 
the early part of the century, to �C�ñ�ò���D�'�K�����(�}�Œ���E��-Fe-B magnets during the past twenty years [4], [11]. 

 

Fig. 2: Evolution of (BH)max at room temperature for permanent magnets during the 20th century and 
their relative volume for the same energy density. [4] 

Moreover, for the same energy density, newly developed Nd-Fe-B magnets enable an important 
reduction in volume for their applications, compared to former systems. Today, more than 80% of rare 
earth permanent magnets implemented by end users are Nd-Fe-B magnets. [4] 

While the maximum energy product represents the strength of a magnet, the resistance to 
demagnetization is crucial for the design of electrical machines, regarding the operating temperature. 
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This second characteristic, named coercivity, will be introduced in more details in the following since 
large efforts in magnet industry and research groups have been engaged in the three last decades to 
improve this property. To further optimize magnetic properties of Nd-Fe-B magnets, emphasis of 
research is nowadays to better understand the link between magnetization reversal (coercivity) 
mechanisms and microstructure in these materials. [6] 

I.2. Intrinsic and extrinsic properties of permanent magnets 

Rare earth permanent magnets are mainly constituted by ferromagnetic materials that exhibit 
�Œ���u���Œ�l�����o���������•�]�����‰�Œ�}�‰���Œ�š�]���•�X���d�Z���•�����u���P�v���š�]�����‰�Œ�}�‰���Œ�š�]���•�����Œ�����P���v���Œ���o�o�Ç���•�����v�����•���^�]�v�š�Œ�]�v�•�]���_���•�]�v�������š�Z���Ç�����Œ����
completely determined by the atomic composition and the structure of the ferromagnetic phases. It is 
important to keep in mind that standard magnet characteristics, widely considered for design 
�‰�µ�Œ�‰�}�•���•�U�����Œ�����Œ���š�Z���Œ���^���Æ�š�Œ�]�v�•�]���_���•�]�v�������š�Z�����u���P�v���š���‰���Œ�(�}�Œ�u���v�����•�����Œ�����•�š�Œ�}�v�P�o�Ç�����(�(�����š���������Ç���š�Z�����‰�Œ�}�����•�•��
parameters [12]. In this section, the basic properties of hard ferromagnetic materials are briefly 
recalled in order to point out the influence of the microstructure on them. 

I.2.1. Intrinsic magnetic properties 

I.2.1.1. Definition of the macroscopic magnetization 

The macroscopic magnetization of a magnetic material is denoted M and corresponds to the volume 
density of internal magnetic moments. This amount is therefore given in A.m2/m3, thus in A/m, while 
the polarization of the material is given by J = µ0M, with J in Tesla and µ0 = 4�‹ x 10-7 T.m/A the 
permeability of free space. When an external magnetic field H (in A/m or Oe) is applied on the material, 
the magnetic induction B is expressed as B = µ0(H+M), with B in Tesla [13]. The macroscopic 
characterization of magnetic materials generally consists in the measurement of the evolution of B (or 
J) as a function of H. This reveals how magnetization develops in the material and helps determining 
the most energy-favorable configurations of the magnetization distribution. In this frame, permanent 
magnets display specific features that are introduced below. 

I.2.1.2. Hard ferromagnetism 

A ferromagnetic material displays a spontaneous macroscopic magnetization that comes from the 
ordering of individual microscopic magnetic moments. These latter are carried by atoms and result 
from the summation of spin and orbital moments of electrons. �d�Œ���v�•�]�š�]�}�v���u���š���o�•���~�&���U�����}�Y�•�����]�•�‰�o���Ç���š�Z����
largest magnetic moment per atom (at room temperature). The ordering is related to the exchange 
interaction occurring between the magnetic moments. 

A material is hard ferromagnetic when the microscopic magnetic moments are preferentially oriented 
along a specific crystallographic direction. This property depends on the magnetocrystalline anisotropy 
of the atomic lattice. These three features (high magnetic moment, ordering and anisotropy) are 
required for hard magnets and are fulfilled with the magnetic phase that constitutes them. 

In these materials, neighboring magnetic moments are strongly coupled through exchange 
interactions. Exchange occurs between electronic orbitals and induces an internal energy minimization 
when the moments are aligned in parallel directions (ferromagnetism) or in antiparallel directions 
(ferrimagnetism). Basically, the exchange energy is given by �9�Ø�ë
L �Ã �#�I �Ü�I �Ý�Ü�á�Ý  for which the 
summation is extended to all couples of microscopic magnetic moments. However, exchange 
interactions are a short range effect that develops at a distance roughly equal to the lattice parameter. 
The amount A characterizes the microscopic exchange stiffness and is related to the shape of electronic 
orbitals and the crystal structure. 
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This trend towards parallel or antiparallel distribution of the magnetic moments gives rise to magnetic 
ordering at finite temperature and zero field. This results in the occurrence of the macroscopic 
spontaneous magnetization MS. Furthermore, ferromagnetic ordering is limited by the thermal 
agitation and disappears above the Curie temperature TC (in K). As expected, the Curie temperature is 
proportional to the exchange stiffness: 

�# 
N
�Ä�³ �Í �´
�6�Ô�,

 [Eq. 1] 

with a0 the lattice parameter of the considered structure. The exchange stiffness is expressed in J/m 
and determines also the exchange length Lex (in nm). This quantity is the length below which atomic 
exchange interactions dominate dipolar interactions. It is given by: 

�.�Ø�ë
L 
§
�6�º

�� �, �Æ�Ä
�. [Eq. 2] 

Magnetic anisotropy corresponds to the existence of energetically favorable directions for 
magnetization, related to the crystalline axes (magnetocrystalline anisotropy). In a uniaxial 
crystallographic system, the anisotropy energy Ea is defined as: 

�' �Ô�:�à�; 
L �-�5�O�E�J�6�:�à�; 
E�-�6�O�E�J�8�:�à�; 
E�-�7�O�E�J�:�:�à�; 
E�® [Eq. 3] 

Ki is the i-th order anisotropy constant in MJ/m3 ���v�����}���]�•���š�Z�������v�P�o���������š�Á�����v���š�Z�����u���P�v���š�]�Ì���š�]�}�v�����]�Œ�����š�]�}�v��
and the easy axis. Only the first term is generally considered for Nd-Fe-B systems. In the absence of 
external magnetic field, magnetization will preferentially lie along the z-easy axis, with either the 
positive or negative orientation. The energy needed to align magnetization along any direction 
perpendicular to the easy axis is the anisotropy energy. 

I.2.1.3. Magnetic domains 

Magnetic domains form in a magnetic material as a result of the magnetostatic energy reduction. They 
are regions in which magnetization is uniform, while its direction may vary from one domain to 
another. Magnetic domains are also called Weiss domains. Between two magnetic domains of 
opposite magnetization, the magnetization vector has to change its direction. The transition area is 
called a domain wall. A particular type is the Bloch domain wall for which magnetization rotates in the 
plane of the domain wall. [13] 

The transition length of magnetization reversal is called domain wall width and noted �wW (in nm). In 
the particular case of a Bloch domain wall, it can be approximated by: 

�Ü�Ð 
N
§
�º

�Ä�-
 [Eq. 4] 

Moreover, the associated domain wall energy �vW (in J/m2) can be expressed as: 

�Û�Ð 
N
¥�#�-�5 [Eq. 5] 

The hysteresis loop is the most common characterization of a magnetic material, underlying many 
processes that imply magnetic domains. Extrinsic magnetic properties that can be determined from 
the hysteresis loop depend strongly on the above introduced parameters. 
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I.2.2. Extrinsic magnetic properties 

I.2.2.1. Hysteresis loop of a permanent magnet: remanence and coercivity 

When an external magnetic field H is applied to a permanent magnet which is originally in a 
demagnetized state, the magnetization M follows the initial magnetization curve that increases rapidly 
and then approaches an asymptotic value called the saturation magnetization MS. When the magnetic 
field is decreased from the saturated state, the magnetization gradually decreases and at zero field 
strength, it reaches a non-zero value called the remanent magnetization or remanence MR. Further 
increase of the magnetic field in the negative sense results in a continued decrease of magnetization, 
which finally falls to zero. The absolute value of the field at this point is called the coercive field or 
coercivity HC. It represents the resistance to demagnetization of the permanent magnet. Another 
definition says that the magnetic susceptibility (i.e. the quantity dM/dH) is maximal at the coercivity 
point. The curve in the second quadrant from MR to the zero magnetization state is referred as the 
demagnetization curve. Further increase of H in the negative sense results in a decrease of M until 
reaching the -MS value. When H is then reversed again to the positive sense, M increases again and 
the loop is closed (see Fig. 3). [14] 

This dependence of the magnetization as a function of the applied magnetic field constitutes the 
hysteresis loop of a permanent magnet. The evolution of the magnetic induction B or of the 
polarization J with H are also hysteresis loops. Hard magnets are difficult to demagnetize: they exhibit 
a larger coercive field and thus a broader hysteresis loop than soft magnets. 

I.2.2.2. Microstructure related magnetic properties 

Extrinsic magnetic properties depend on intrinsic properties and on microstructure. The remanence 
MR is directly proportional to MS, depends on the porosity of the material and on the degree of 
alignment of magnetic easy axes of the hard magnetic phase. The coercive field HC depends on the 
magnetocrystalline anisotropy, on the presence of defects in the microstructure and on other 
microstructural features such as the grain size, determined by the fabrication process. [6], [12] 

HC determines if the magnet is hard and MR directly impacts the maximum energy product (BH)max (in 
kJ/m3 or MGOe). This latter is a figure of merit for permanent magnets. On the hysteresis loop (see Fig. 
3), (BH)max is the area of the largest rectangle that can be inserted under the demagnetization curve. 
Its maximum possible value for an ideal system is µ0MS

2/4. [12] 
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Fig. 3: Hysteresis loop for a permanent magnet with intrinsic and extrinsic magnetic properties, and 
with the (BH)max rectangle in the second quadrant. Adapted from [15], [16] 

I.3. Magnetization reversal mechanisms 

I.3.1. Coherent rotation: the Stoner-Wohlfarth model 

The Stoner-Wohlfarth model [17] describes magnetization reversal in a ferromagnetic crystal by 
coherent rotation involving all magnetic moments (i.e. without formation of domains). In such system, 
the magnetic moments are considered to remain parallel. As a result, the exchange interaction is 
neglected in the model and the total energy of the system is the summation of the Zeeman energy 
(coming from the interaction with the external field Hext and that tends to align the moments along 
Hext), and the magnetocrystalline energy that prevents the moments from deviation from the easy 
axes. Magnetization is considered to be homogeneous and the applied field is along the easy axis 
direction, as shown in Fig. 4. 

 

Fig. 4: Coherent rotation of magnetization vectors described by the Stoner-Wohlfarth model. [18] 
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In the case of uniaxial systems with strong magnetocrystalline anisotropy, there is only one easy axis 
for magnetization. During reversal, magnetization changes its direction, but not its magnitude. Cases 
(1) and (3) correspond to two energy minima, whereas case (2) is the hard axis magnetization 
configuration. The external field required to reverse the magnetic moment and defined as the 
anisotropy field HA is given by: 

�*�º 
L
�6�Ä�-

�Á�, �Æ�Ä
 [Eq. 6] 

The anisotropy field in Nd-Fe-B magnets, calculated from K1 and MS intrinsic properties, is around 8 T 
at room temperature. In practice for Nd-Fe-B magnets, the measured coercivity is only about 20-30 % 
of the theoretical anisotropy field given by the Stoner-Wohlfarth model. This discrepancy is known as 
���Œ�}�Á�v�[�•���‰���Œ�����}�Æ��[19] and is attributed to the presence of defects in the microstructure that exhibit 
locally reduced magnetocrystalline anisotropy [6]. This has been understood by introducing the 
concept of the activation volume that represents the smallest volume in which magnetization reversal 
begins before macroscopic propagation. 

I.3.2. Nucleation vs pinning controlled magnetization reversal 

Magnetization reversal consists of two steps: it begins at defects, corresponding to the nucleation of 
reversed domains, and then propagation of these reversed domains within the entire microstructure 
occurs. Depending on their respective field values, either nucleation or propagation could be the 
process that triggers magnetization reversal and limits coercivity. 

After nucleation, reversal may propagate in the entire system for a given magnetic field value: it is in 
this case controlled by nucleation. Alternatively, the reversed domain may be pinned at magnetic 
heterogeneities: reversal is, in this case, controlled by pinning (i.e. propagation-driven reversal). Fig. 5 
depicts magnetization configuration in the case of nucleation-pinning reversal: 

 

Fig. 5: Magnetization configuration in the case of nucleation-pinning reversal. [18] 

Case (1) corresponds to saturation. The direction of the applied field is then reversed and nucleation 
starts at (2) with the formation of a small domain with reversed magnetization and its respective 
domain wall. At (3), this latter starts to move and then encounters defect points that act as pinning 
centers for the domain wall. At (4), a bigger field value is applied for the depinning of the domain wall, 
to finally achieve saturation in the opposite direction. 

Two models based on the micromagnetic approach have been proposed to describe coercivity in Nd-
Fe-B permanent magnets and to determine the mechanism controlling magnetization reversal. They 
will be presented in Section I.5.2. 
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It is worth noting that microstructural heterogeneities in Nd-Fe-B magnets have a negative effect on 
coercivity since they act as nucleation points for reversal. However, in other systems such as Sm-Co 
magnets, heterogeneities may also act as pinning sites, preventing the propagation of reversed 
domains, and may therefore be crucial for coercivity enhancement. This underlines the need to control 
the microstructure to obtain excellent magnetic properties for permanent magnets. 

I.4. Nd-Fe-B sintered magnets: fabrication and microstructure 

I.4.1. Microstructure of a Nd-Fe-B sintered magnet 

The microstructure of Nd-Fe-B sintered magnets typically consists of single crystalline Nd2Fe14B (at.%) 

hard magnetic grains with a size between 3 and 10 µm. These grains are surrounded by a continuous 
layer of an amorphous Nd-rich phase with a thickness of a few nm. Larger Nd-rich phases are located 
at grain triple junctions. [6], [20] 

On the below BSE-SEM image (Fig. 6), taken from [6], the Nd2Fe14B single crystalline grains are in grey. 
The white regions correspond to Nd-rich phases. The bright contrast between grains is the continuous 
nm-thick grain boundary (GB) phase. 

 

Fig. 6: BSE-SEM image of the typical microstructure of Nd-Fe-B sintered magnets. [6] 

I.4.1.1. The Nd2Fe14B hard magnetic phase 

The Nd2Fe14B phase (also called T1 or �”-phase) crystallizes in the P42/mnm space group and has a 
tetragonal symmetry. The unit cell parameters are a = 8.8 Å and c = 12.2 Å (see Fig. 7) [21]. The 
magnetization easy axis is along c-axis above 135 K but it starts to tilt away from the c-axis below this 
temperature (known in the literature as the spin reorientation temperature) [22]. 
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Fig. 7: Unit cell crystallographic structure of the Nd2Fe14B phase. [21] 

In the unit cell, Nd atoms with their 4f electron states are responsible for the strong magnetocrystalline 
anisotropy. Fe atoms with their 3d electron bands are responsible for the high magnetic moment. The 
Fe magnetic lattice couples parallel with the light rare earths (LRE) magnetic lattice [23]. B atoms 
contribute to the thermodynamic stability of the entire structure [21]. 

The substitution of Nd with other RE elements leads to an important modification of the intrinsic 
magnetic properties of the phase. For example, the replacement of Nd by heavy rare earths (HRE) such 
as Dy and Tb increases the anisotropy field, whereas this latter is reduced when Nd is substituted with 
Ce and Gd. Moreover, the saturation magnetization of HRE2Fe14B phases is decreased compared to the 
one of LRE2Fe14B, because of the antiferromagnetic coupling of magnetic moments. Table 1 gives 
intrinsic magnetic properties at 295 K for some RE2Fe14B compounds: the saturation polarization µ0MS, 
the anisotropy field µ0HA and the Curie temperature TC. 

Phase µ0MS (T) µ0HA (T) TC (K) 
Ce2Fe14B 1.17 2.60 424 
Pr2Fe14B 1.56 7.50 565 
Nd2Fe14B 1.60 7.30 585 
Gd2Fe14B 0.89 2.4 661 
Tb2Fe14B 0.70 �C�î�î 620 
Dy2Fe14B 0.71 �C�í�ñ 598 

Table 1: Intrinsic magnetic properties at 295 K for RE2Fe14B compounds. [21] 

In addition, important micromagnetic parameters and characteristic length scales are given in Table 2 
for the Nd2Fe14B phase: the exchange stiffness A, the magnetocrystalline anisotropy constant K1, the 
exchange length Lex, the domain wall width �wW and the domain wall energy �vW. 

A (pJ/m) K1 (MJ/m3) Lex (nm) �wW (nm) �vW (mJ/m2) 
8.0 4.9 1.9 3.9 25 

Table 2: Micromagnetic parameters and characteristic length scales for Nd2Fe14B phase. [24] 
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I.4.1.2. Nd-rich secondary phases 

In Nd-Fe-B sintered magnets, there are several different Nd-rich phases, including metallic and oxide 
phases. The larger and more rounded Nd-rich regions are usually oxides, whereas the thin layers in the 
Nd2Fe14B grain boundaries are metallic in character. [25]�t[27]   

These secondary phases play a major role on magnetic properties. The remanence is reduced in 
proportion to the volume fraction of secondary phases [6]. Furthermore, the amorphous metallic Nd-
rich phases reduce or remove defects at the surface of Nd2Fe14B grains. It has also been generally 
accepted that these phases do not contain a significant amount of Fe and therefore are paramagnetic, 
thus guaranteeing exchange decoupling of the Nd2Fe14B grains, leading to high coercivity [7], [28]. 
More recently, Sepehri-Amin et al. [27] used atom probe elemental analysis to estimate the chemical 
composition of Nd-rich intergranular layers and claimed that the phase is rich in Fe. They prepared 
then a 50 nm-thick layer of the same composition and measured a saturation magnetization of about 
400 emu/cm3 (�C 0.5 T). They concluded that the GB phase is soft ferromagnetic and the Nd2Fe14B grains 
are most likely to be exchange-coupled. In this case, magnetization reversal is controlled by the pinning 
of domain walls at this GB phase. But this conclusion is still not generally accepted by the research 
community, because measuring the chemical composition of nm-thick layers between µm-sized 
Nd2Fe14B grains is experimentally non-trivial [6]. 

As said before, it has been shown that Nd-rich phases at multijunction sites in Nd-Fe-B sintered 
magnets consist of both metallic and oxide compounds [25], [26]: face-centered cubic (fcc) metallic 
Nd, double hexagonal close packed (dhcp) metallic Nd, a-type Nd2O3 (at.%), c-type Nd2O3 and NdO 
(at.%). Hrkac et al. [29], [30] studied the coercivity dependence on the interfaces between Nd2Fe14B 
grains and these Nd-rich phases, using EBSD, finite element micromagnetics and atomistic models. 
Indeed, such interfaces can distort the crystal structure, resulting in distorted layers with lower 
magnetocrystalline anisotropy that act as nucleation sites for magnetization reversal, being 
detrimental for coercivity. The metallic dhcp Nd produces the largest distortions in Nd2Fe14B, followed 
by a-type Nd2O3, and then by metallic fcc Nd, c-type Nd2O3 and NdO, which all produce similar 
distortion. As a result, the removal of metallic dhcp Nd phases from the microstructure is crucial to 
improve coercivity. 

Sasaki et al. [31] reported quite recently that there are two types of GB phases in a standard sintered 
Nd-Fe-B magnet: one is the crystalline GB phase perpendicular to the easy-axis of Nd2Fe14B grains with 
a Nd content higher than 60 at.% and the other is the amorphous GB phase parallel to the c-axis of 
Nd2Fe14B grains with a lower content of Nd (about 35 at.%). This latter GB phase is assumed to be 
ferromagnetic and the intergrain exchange coupling in Nd-Fe-B sintered magnets is therefore 
anisotropic. This anisotropic nature in the chemical composition of the grain boundaries was also 
investigated by Zickler et al. [32]. 

For Nd-Fe-B sintered magnets, magnetic properties such as coercivity and remanence depend strongly 
on the magnet microstructure. This latter must be controlled during the fabrication process. 

I.4.2. Industrial production process: sintering 

The industrial sintering process of Nd-Fe-B permanent magnets is schematically shown in Fig. 8: 
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Fig. 8: Industrial production route of Nd-Fe-B sintered magnets and pseudo-binary phase diagram 
(Nd/B = 2) of the Nd-Fe-B ternary system. [11] 

The alloy with a typical composition Nd15Fe77B8 (at.%) is produced via a rapid solidification technique, 
�����o�o������ �^�•�š�Œ�]�‰-�����•�š�]�v�P�_�X�� �d�Z���� �v���Æ�š�� �•�š���‰�� �]�•�� �š�Z���� �‰�}�Á�����Œ�� �‰�Œ�}���µ���š�]�}�v�� �(�Œ�}�u�� �š�Z���� �����•���� �]�v�P�}�š�X�� �d�Z�]�•�� �o���š�š���Œ�� �]�•��
hydrogen-decrepitated and further milled into a fine single crystalline powder, the particle size of 
which lies between 3 and 10 µm. This powder is then filled in a mold, aligned in a magnetic field and 
compacted. The obtained green compact is finally sintered and annealed afterwards at lower 
temperature. The magnet is coated to be protected against oxidation. 

The individual steps of the industrial sintering process will be described in more detail in Section II.1 
and II.2. Other production routes exist for Nd-Fe-B permanent magnets, such as the HDDR process and 
hot-deformation [28], that will not be covered in this work. 

I.4.3. Application fields and limitations 

Nd-Fe-B permanent magnets have the highest (BH)max at room temperature. They play a significant 
role in energy applications, such as in the motors of hybrid electric vehicles and in the generators of 
windmills. They contribute to both the saving of electric power and the reduction of CO2 emissions in 
these devices [4]. However, these devices have operating temperatures of about 120-180°C and 
magnetic properties such as remanence and coercivity decrease rapidly with temperature. As a result, 
coercivity is reduced to unacceptable values at maximum operating temperatures. An increase in 
coercivity at room temperature is therefore needed. 

One way of improving coercivity of Nd-Fe-B magnets is to substitute some Nd atoms with HRE such as 
Dy or Tb. This leads to an increase of the anisotropy field and to coercivity enhancement. Nevertheless, 
the substitution of Nd with Dy has also some major drawbacks. For instance, Dy addition leads to a 
decrease of the remanence, because of the antiferromagnetic coupling (see Section I.4.1.1), and it 
directly impacts the (BH)max value. Furthermore, Dy is a critical and strategic element whose price is 
high and fluctuating. Most of the known Dy resources are in China and this monopolistic market 
�•�]�š�µ���š�]�}�v���o�������š�}���š�Z�����^�Œ���Œ���������Œ�š�Z�����Œ�]�•�]�•�_���]�v���î�ì�í�í�X�����š���š�Z���š���š�]�u���U���š�Z�����‰�Œ�]�������}�(�����Ç���Œ�}�•�������}�v�•�]�����Œ�����o�Ç���š�}���ï�ð�ì�ì��
$/kg (2018: 200 $/kg). 

One major objective of the research community is now to develop Nd-Fe-B permanent magnets that 
possess excellent magnetic properties at room temperature with a reduced content of HRE. A good 
control of the microstructure during the fabrication process is therefore needed. 
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I.4.4. State of the art: current strategies to improve coercivity 

Since the discovery of Nd-Fe-B magnets, coercivity has gradually been improved thanks to a better 
control of the fabrication process. Furthermore, in the last two decades, description of coercivity in 
Nd-Fe-B magnets has also been improved, particularly thanks to developments in microstructural 
characterization. The better understanding of magnetization reversal processes led to recent coercivity 
enhancement in Nd-Fe-B magnets. [4], [20]. 

Current strategies to improve coercivity are given in Table 3 and will be further detailed in the 
following: 

Strategies Mechanism Assessment 

Grain size reduction 
Reduced stray field in the vicinity of 

GB 
Numerical modelling: the stray 
field decreases with grain size 

Defect reduction at GB 
Amorphous phase formed during 

annealing 
SEM/TEM characterization 

Exchange decoupling of 
grains 

Formation of a thin and continuous 
non-magnetic GB phase during 

annealing 

SEM/TEM characterization 
Numerical modelling 

HRE diffusion at GB  
Enhanced anisotropy in the vicinity of 

GB 
SEM/TEM characterization 

Numerical modelling 

Table 3: Strategies to improve coercivity. 

I.4.4.1. Grain size reduction 

Coercivity is known to be improved with the reduction of grain size (see Fig. 9). The limit grain size, 
below which oxidation occurs, is 2.5 µm for the conventional fabrication process (jet milling under 
nitrogen atmosphere and pressing) and 1 µ�u�� �(�}�Œ�� �š�Z���� �^�‰�Œ���•�•�o���•�•�_�� �‰�Œ�}����ss (jet milling under helium 
atmosphere and without pressing), developed by the research team of Sagawa. Sepehri-Amin et al. 
[33] fabricated high-coercivity and Dy-free Nd-Fe-B sintered magnets with a grain size of about 1 µm, 
�µ�•�]�v�P�� �š�Z�]�•�� �^�‰�Œ���•�•�o���•�•�_�� �•�]�v�š���Œ�]�v�P�� �‰�Œ�}�����•�•�X�� �d�Z���� ���}���Œ���]�À�]�š�Ç�� �}�(�� �š�Z���� ���•-sintered state was 1362 kA/m, far 
better than the value for conventional magnets with a grain size of 5 µm (around 950 kA/m). More 
recently, Sagawa et al. [34] �����À���o�}�‰������ �š�Z���� �^�v���Á�� �‰�Œ���•�•�o���•�•�_�� �‰�Œ�}�����•�•�� �š�}�� �����Z�]���À���� �����š�š���Œ�� ���(�(�]���]���v���Ç�U��
alignment degree and homogeneity of magnets. 

 

Fig. 9: Evolution of coercivity with grain size for sintered magnets (triangle symbols). [20] 
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Coercivity enhancement caused by the reduction of grain size can be interpreted in two ways. Ramesh 
et al. [35] calculated hysteresis loops of polycrystalline Nd-Fe-B sintered magnets and suggested that 
the coercivity increase with the reduction of the grain size, following a logarithmic dependence, is 
explained by the smaller defect density on the grain surface. Smaller grains are therefore less likely to 
act as nucleation points for magnetization reversal. More recently, Bance et al. [36] used numerical 
modelling to show that the logarithmic decay of coercivity with increasing grain size comes from the 
logarithmic increase in the demagnetizing field near the edges of a grain. Magnetostatic interactions 
are thus less important for smaller grain size. 

I.4.4.2. Defect reduction at GB 

Post-sinter annealing (PSA) at relatively low temperatures (< 900K) leads to a tremendous increase in 
coercivity. PSA depends strongly on the magnet composition and the coercivity optimum is reached 
for a given PSA temperature. In the original work of Sagawa et al. [1], optimal magnetic properties for 
Nd-Fe-B sintered magnets were obtained after annealing at 883K (610°C). Moreover, Shinba et al. [8] 
performed two-stage PSA: at 1073K (800°C) followed by 773K (500°C). They suggested that PSA at 
temperatures above the Nd-Fe-B eutectic point at 938K (665°C) leads to the formation of a small 
amount of liquid phase and to an uniform distribution of the Nd-rich phase, forming the nm-thick GB 
phase. The second PSA, performed below the eutectic point, smoothes grain boundaries and decreases 
defect density, thus preventing nucleation of reversal domains. After PSA, continuous thin layers of 
amorphous Nd-rich phase are found along the grain boundaries. 

I.4.4.3. Exchange decoupling of grains 

�x Cu, Al and Co 

The addition of some elements in the base magnet composition has also an important impact on 
magnetic properties. This combined with an optimized PSA increases magnetic properties. 

The addition of Cu leads to coercivity enhancement, even in very small proportion (0.2 at.%). Cu 
���}���•�v�[�š���‰���v���š�Œ���š�����š�Z�����Z���Œ�����u���P�v���š�]�����‰�Z���•�������v�����(�}�Œ�u�•���������µ�š�����š�]�������}�u�‰�}�µ�v�����Á�]�š�Z���E�����Á�]�š�Z�������u���o�š�]�v�P��
temperature of 508°C [37]. Cu decreases significantly the melting temperature of the Nd-rich phase 
leading to a better wettability of the intergranular phase, when PSA is done at a temperature near the 
eutectic point [7], [27], [38], [39]. After PSA, Cu has been shown to segregate at grain boundaries: this 
was observed by Kim et al. [40] using STEM-EDX technique and by Sepehri-Amin et al. [27] by means 
of 3D atom probe tomography. The formation of such a Cu-rich layer leads to exchange decoupling 
between Nd2Fe14B grains which is beneficial to coercivity. 

According to Strzeszewski et al. [41] and Knoch et al. [42], the addition of Al promotes wettability of 
the intergranular phase. Moreover, Mottram et al. [43] and Sadullahoglu et al. [44] showed that Al 
penetrates the hard magnetic grains and hence decreases remanence. Nevertheless, Al leads also to 
coercivity improvement by the formation of the paramagnetic Nd(Fe,Al)2 phase that reduces magnetic 
coupling between grains. 

In addition, Mottram et al. [45] studied the role of Co as addition element in Nd-Fe-B sintered magnets. 
Co substitutes Fe of the hard magnetic phase and increases the Curie temperature. However, it also 
contributes to the formation of the intergranular and ferromagnetic Nd(Fe,Co)2 phase that is 
detrimental for coercivity. 

Al, Cu and Co can be added at the same time in the base composition to combine their effects and 
finely tune magnetic properties (see Chapter IV). 
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�x Ga 

In 2016, Sasaki et al. [46] characterized the microstructure of Ga-doped Nd-Fe-B sintered magnets of 
composition Nd11.6Pr3.7Fe77.1B5.1Cu0.1Co1.0Al0.9Ga0.5 (at.%). GB chemistry after PSA was studied using 
SEM-EDX and aberration-corrected STEM. Ga has been shown to enhance wettability of grain 
boundaries, because of the formed Nd6(Fe,Ga)14 (at.%) phase located at triple junctions. The GB phase 
has the composition (Nd,Pr)90.4Fe3.4Cu5.4Ga0.8 (at.%), with a small amount of Fe, and has a thickness of 
10 nm. This phase is then assumed to be non-ferromagnetic and decouples hard magnetic grains, 
explaining the 1.8 T (1432 kA/m) coercivity obtained after PSA. This value is achieved for an average 
grain size of 6 µm and further grain size refinement could lead to even higher coercivity values. 

In 2017, Soderznik et al. [47] observed magnetization reversal of the above exchange-decoupled Ga-
doped and of conventional Nd-Fe-B sintered magnets, by magneto-optical Kerr effect (MOKE) 
microscopy. In the standard magnet (with exchange-coupled grains), reversed domains suddenly 
propagate throughout many neighboring grains along the easy axis. Such a cascade type of magnetic 
domain propagation is only observed in the standard magnet. On the contrary, the Ga-doped Nd-Fe-B 
magnet (with exchange-decoupled grains) reveals switching of individual grains. The cascade 
propagation of magnetization reversal is, in this case, suppressed by the thick non-magnetic GB phase. 
The hypothesis of exchange-decoupled grains seems to be valid. 

In 2018, Xu et al. [48] investigated the microstructure of Dy-free Nd-Fe-B sintered magnets that contain 
0.1 at.% of Ga. These magnets show a less important gain in coercivity after PSA but a better 
rectangularity of the demagnetization curve, compared to magnets containing 0.5 at.% of Ga, as shown 
on the below demagnetization curves in Fig. 10. Note that the magnets containing 0.1 at.% of Ga have 
finer Nd2Fe14B grains and a higher Al concentration in their base composition. 

 

Fig. 10: Demagnetization curves of as-sintered (dashed curves) and post-sinter annealed (solid curves) 
Nd-Fe-B sintered magnets containing 0.1 at.% (red) and 0.5 at.% Ga (black). [46], [48] 

Xu et al. found a high Fe concentration in the GB phase of magnets containing 0.1 at.% Ga: the 
intergranular phase is assumed to be ferromagnetic and grains are thus thought to be exchange-
coupled. This explains the better rectangularity of the demagnetization curves. In this case, coercivity 
is governed by the pinning of reversed magnetic domains at this ferromagnetic GB phase, accounting 
for the observed coercivity increase, even with a smaller Ga addition. In conclusion, Ga-doped Nd-Fe-
B sintered magnets are good candidates to achieve very high coercivity at room temperature and 
without the use of HRE. 
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I.4.4.4. HRE diffusion at GB 

HRE can be incorporated into Nd-Fe-B sintered magnets by the grain boundary diffusion process. The 
latter enables the diffusion of HRE mainly along grain boundaries, as well as the formation of HRE-rich 
shells with enhanced anisotropy field in the outer regions of Nd2Fe14B grains. This process will be 
described in further detail in Section I.6. 

In addition to the development of microstructural characterization in the past years, micromagnetic 
simulations plays now an important role in a quantitative understanding of magnetization reversal 
processes in Nd-Fe-B permanent magnets, in relation with some microstructural features. 

I.5. Micromagnetic simulations and models 

I.5.1. Micromagnetic simulations (Landau-Lifshitz-Gilbert formalism) 

Micromagnetic simulations treat a ferromagnetic material as an assembly of small magnetization 
vectors and predicts the magnetization states and dynamics by solving a time-evolution equation [49]. 
They are generally based on two assumptions: 

- The magnetization M and all other quantities are continuous functions of the space variable r. 
- The norm MS of the magnetization vector is constant and uniform in any homogeneous 

material, and at zero or finite temperature. [13] 

Based on these two assumptions, constant magnetization modulus equation �y �•�:� �̃; 
L �/ �Ì�“ �:� �̃; can 
be written, for which m(r) is the unit vector to describe magnetization distributions. 

I.5.1.1. Landau-Lifshitz-Gilbert (LLG) equation for ferromagnetic materials 

The time evolution of magnetization is computed at different applied magnetic fields by solving the 
Landau-Lifshitz-Gilbert (LLG) differential equation: 

�×�“

�×�ç

L �Û�“ 
H�t �‹�Œ�Œ
E�Ù�:�“ 
H

�×�“

�×�ç
�; [Eq. 7] 

�v is �š�Z���� �P�Ç�Œ�}�u���P�v���š�]���� �Œ���š�]�}�� ���v���� �r�� �]�•�� ���� �����u�‰�]�v�P�� �(�����š�}�Œ. The first right-hand side term describes the 
magnetization precession around the effective magnetic field Heff. The second right-hand side term 
describes the damping process that leads magnetization to the minimum energy state, parallel to the 
effective field. �d�Z�]�•���o���š�š���Œ���]�•�����o�•�}���š�Z�����v���P���š�]�À���������Œ�]�À���š�]�À�����}�(���š�Z�����š�}�š���o���'�]�����[�•���(�Œ���������v���Œ�P�Ç���Á�]�š�Z���Œ���•�‰�����š���š�}��
the magnetization [50]: 
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 [Eq. 8] 

�d�Z�����š�}�š���o���u���P�v���š�]�����'�]�����•�[���(�Œ���������v���Œ�P�Ç��ETOT is the sum of several energy terms: 

�' �Í�È�Í 
L���' �Ó
E�' �Æ�¼
E�' �¾�Ñ
E�' �½  [Eq. 9] 

EZ is the Zeeman energy and corresponds to the energy of magnetic moments in an external applied 
magnetic field. This energy tends to align the magnetization along the external applied field. EMC is the 
magnetocrystalline anisotropy energy and arises from the combination of crystal-field effects (coupling 
between electronic orbitals and the lattice) and of spin-orbit effects (coupling between orbital and spin 
moments). It leads to the tendency for the magnetization to align along some preferential axes, called 
easy directions, in a solid. EEX is the exchange energy between neighboring sites. ED is called the 
magnetostatic or dipolar energy and is the mutual Zeeman-type energy that arises between all 
moments of a magnetic material through their stray field. [13] 
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�d�Z���� �š�}�š���o�� �u���P�v���š�]���� �'�]�����•�[�� �(�Œ������ ���v���Œ�P�Ç�� ���•�� ���� �(�µnction of magnetization M and the external applied 
magnetic field Hext can be expressed as: 
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�t �½�ä�y �?�@�8 [Eq. 10] 

In this equation, fk is the magnetocrystalline energy density, A is the exchange stiffness, MS is the 
saturation magnetization, Mk is the k-th component of the magnetization vector M and HD is the 
dipolar field. 

I.5.1.2. Application of micromagnetic simulations for ferromagnetic materials 

Micromagnetism allows the competition between the above energy terms to be investigated, giving 
rise to characteristic magnetic length scales, and is at the origin of the complexity of magnetization 
distributions in hard magnets [13]. The equations [Eq. 7-10] pave the way for micromagnetic 
simulations liable to describe the dynamic behavior and complex magnetization patterns in 
ferromagnetic materials. 

However, the numerical resolution is based on time and geometrical discretization schemes that 
require very fine time steps and meshing compatible with the exchange length in hard magnets 
(around 1 nm), leading to a considerable limitation of the size of studied systems. An approximation, 
based on an energy minimization scheme in which dynamic aspects are not considered, could be 
helpful but the implementation of these micromagnetic simulations remains restricted to small 
volumes of several regular grains. Typically and providing that a defect is pre-determined in the 
meshed geometry, the simulation could naturally describe the nucleation phase as the onset of 
magnetization reversal in this zone, as well as the accurate domain wall structure separating the 
nucleus and the rest of the magnet. The propagation of the domain wall in the meshed volume could 
also be explicitly described with an account for the effect of non-homogeneous properties. Some 
geometrical and microscopic details such as sharp edges and corners of grains can be explicitly 
described. 

I.5.2. Micromagnetic and global models  

Some models have been proposed to describe quantitatively how the external field could trigger the 
magnetization reversal in a ferromagnet in which some nucleus is assumed to be present, without 
consideration on the time evolution or the spatial variation of magnetization. Combined and/or fitted 
to experimental results, these models have brought a better understanding of the magnetization 
reversal processes in Nd-Fe-B magnets and shed light on the link between coercivity and 
microstructural features.  

As for micromagnetic simulations, the physical basis of these models lies on the Gibbs energy 
minimization, combined with further simplifications made on the calculation of the dipolar energy. In 
the simplest cases, some analytical solutions were derived.  Chronologically, these models have been 
designated as micromagnetic and global models. The micromagnetic model was developed by Aharoni 
[51], [52], and more recently by Kronmüller et al. [53]�t[55], while the global model has been proposed 
by Givord et al. [56]. 

I.5.2.1. Micromagnetic model (MM) based on nucleation 

�x Assumptions of the MM 

The MM aims at describing how the external conditions of field and temperature produce 
magnetization reversal starting in a critical region of a grain where nucleation occurs by coherent 
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rotation [10]. The MM assumes that the critical field in this region is proportional to the anisotropy 
field HA of the hard magnetic phase (like in the Stoner-Wohlfarth model, see Section I.3.1) and thus 
the coercive field HC is expressed as: 

�*�¼
L ���Ù�*�º 
F�0�Ø�Ù�Ù�/ �Ì 
L �Ù
�6�Ä�-

�� �, �Æ�Ä

F �0�Ø�Ù�Ù�/ �Ì [Eq. 11] 

MS is the spontaneous magnetization. �r describes the reduction in coercivity due to defects and 
misorientation. Neff is the effective demagnetization constant accounting for the dipolar field resulting 
from local magnetostatic interactions near sharp edges and corners of the microstructure [53]. The 
parameters �r and Neff are determined from the temperature dependent values of Hc(T), HA(T) and 
MS(T) by plotting HC(T)/MS(T) versus HA(T)/MS(T) and fitting a straight line [36]. In the literature, �r�����v����
Neff are assumed to be temperature independent, even if theoretically they are not. In this model, 
nucleation is considered to be the determining mechanism for magnetization reversal. For instance, 
values of �r 
P 0.3 are compatible with a nucleation mechanism, whereas values of �r 
O 0.3 may include 
both pinning and nucleation mechanisms for magnetization reversal [57]. 

Kronmüller et al. assume that uniform coherent rotation of the magnetization vectors occurs during 
magnetization reversal in the defect region: the Stoner-Wohlfarth model [17] is used as a reference in 
the MM. In the case of Stoner-Wohlfarth systems, the angular dependence of coercivity (�}cH being the 
angle between the applied field and the easy axis) is expressed as: 
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 [Eq. 12] 

The above equation refers to magnetization reversal process starting from a defect undergoing 
coherent rotation. However, the exact nature of defects is not described into details. Several 
improvements have been achieved by considering that the defect can be represented by a shell around 
the grain, in which the anisotropy is reduced to zero. Moreover, the link with the non-degraded inner 
phase is depicted by different profiles: step-like, linear and quasi-harmonic anisotropy perturbations 
[10]. Hence, nucleation and propagation of reversal can be described. 

�x Micromagnetic model based on nucleation and propagation 

Aharoni [52] assumed a step-like anisotropy profile with K1(z) = 0 for z��
O��d and K1(z) = K1 for z 
P d, 
where d is the defect size and K1 is the anisotropy constant of the main phase. The minimization of the 
�š�}�š���o���'�]�����•�[���(�Œ���������v���Œ�P�Ç���Á�]�š�Z���•�µ���Z�����v�����v�]�•�}�š�Œ�}�‰�Ç���‰�Œ�}�(�]�o�����Á���•�������o���µ�o���š�������(�}�Œ���š�Z�����š�Á�}���Œ���P�]�}�v�•�U�����v�������}�š�Z��
nucleation field HN and passage field HP (corresponding to the passage of the nucleated domain wall 
from the soft to the hard magnetic phase) were compared. For d 
O �wW/4, HN is higher than HP, 
indicating that nucleation determines magnetization reversal. Both fields are approximatively equal 
for d 
L �wW/4. For d 
P �wW/4, magnetization reversal is rather governed by the propagation of the 
domain wall. 

Abraham and Aharoni [51] then considered a linear variation of K1: this latter was taken as zero in a 
part of the defect region and was assumed to increase linearly to its constant value in the remaining 
part. The nucleation field HN does�v�[�š�����Z���v�P���������o�}�š�����}�u�‰���Œ�������Á�]�š�Z���š�Z���������•�����}�(�������•�š���‰���(�µ�v���š�]�}�v���(�}�Œ��K1. 

Fukunaga et al. [58] used a numerical approach to study the effect of magnetic inhomogeneity on the 
magnetization reversal in a sintered Nd-Fe-B magnet, according to the model in which the anisotropy 
and exchange constants decrease linearly on the surface of Nd2Fe14B grains. A local decrease of the 
exchange constant has no significant effect on HN, whereas a decrease of the anisotropy constant 
causes a remarkable reduction of HN. The HN values are smaller compared with those reported by 



I.From context to coercivity 

20 
 

Aharoni [52]. Finally, the simulated angular dependence of coercivity is in good agreement with the 
experimental results for a reduced anisotropy constant in the 30-50 Å surface region of the grain. 

Kronmüller [53] considered another profile for the anisotropy in a planar defect region of halfwidth r0: 

�- �:�V�; 
L �- �:�»�; 
F
�¿�Ä

�Ö�Û�:�í���å�, �;�.
 [Eq. 13] 

K(�») corresponds to the anisotropy within the ideal matrix and �4K denotes the reduction of anisotropy 
at the center of the inhomogeneous region. Assuming this type of anisotropy profile, the passage field 
HP is found to be: 

�*�É 
L �*�º
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 [Eq. 14] 

The passage field HP decreases with increasing defect width. 

Conclusion: For small defect (soft) regions (d 
O �wW/4), coercivity is limited by nucleation. For larger 
soft regions, it is rather limited by propagation. 

I.5.2.2. Global model (GM) based on activation volume 

�x Assumptions of the GM 

The GM was proposed by Givord et al.�X�� �h�v�o�]�l���� �š�Z���� �D�D�U�� �]�š�� ���}���•�v�[�š�� �Œ���o���š���� ���]�Œ�����š�o�Ç�� ���}���Œ���]�À�]�š�Ç�� �š�}�� �š�Z����
anisotropy of the main phase. Whatever the involved coercivity mechanism, magnetization reversal 
develops through thermal activation of a critical volume of reversed magnetization [59]. Therefore, 
the GM is based on the formation of a magnetization heterogeneity, which is typically a domain wall. 

The energy barrier that must be overcome for magnetization reversal is noted �40. It must be 
proportional to the increase in the domain wall energy of the critical nucleus: �40 �r �vW�[s, where �vW�[ is 
the domain wall energy within the nucleus and s is the surface area of the nucleus [10]. Furthermore, 
the domain wall energy can be written as �Û�Ð�ñ�O
L �Ù�Û�Ð�R�6���7, where �r is a geometrical parameter that 
takes into account the relation between the surface and the volume v of the critical nucleus [59], [60]. 
Note here that the domain wall energy within the nucleus is assumed to be proportional to the domain 
wall energy in the main phase �vW [59]. 

�x Expression of the energy barrier �40  

When an external field equal to the coercive field HC is applied, the energy barrier �40 can be written as 
follows [10]: 

�¿�4
L �ä�4�R�/ �Ì�ä�*�¼
E�ä�4�R�0�Ø�Ù�Ù�/ �Ì
�6 
E�¿�Ô�Ö�ç [Eq. 15] 

The first two terms on the right-hand side of the above equation correspond to the interaction energy 
with the external applied field and to the interaction energy with the dipolar field, respectively. The 
third term �4act expresses the thermal activation energy and is equal to 25 kT [61]. 

�x Expression of coercivity HC as a function of temperature 

Combining the above expression of the energy barrier �40 with the dimensional considerations of the 
first paragraph, one obtains: 
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where �5�Ï 
L �G�6
�ä�4�R�/ �Ì


W  is the magnetic viscosity coefficient, experimentally accessible from magnetic 

after-effect measurements. In addition, the critical volume v is assumed to be equal to the 
experimentally derived activation volume vA. [10], [56] 

So, from the above equation, it is obvious that the GM relates coercivity to intrinsic magnetic 
properties (domain wall energy �vW and saturation magnetization MS) of the main hard phase through 
�r and Neff coefficients. The coercivity is also related to the activation volume vA which can be 
experimentally determined from M=f(t) measurements. [60] 

�x Determination of the activation volume as a function of temperature 

Using the relation���R�º 
L �G�6
�ä�4�5�Ï �/ �Ì


W , vA(T) can be determined if SV(T) is known. Moreover, the magnetic 

viscosity coefficient SV is defined as �5�Ï 
L �5 �ï�Ü�å�å

W , where S is the magnetic viscosity and �–irr is the 

irreversible magnetic susceptibility [62]. The coefficient SV has the dimension of a fluctuation field [10]. 
It is experimentally observed that the magnetization decreases linearly with the natural logarithm of 
time. This is mathematically expressed as �/ �:�P�; 
L �/ �4 
F �5�H�J�:�P�;�ä��Hence, the magnetic viscosity S can be 

calculated by determining the slope of the magnetization time variation (�5
L 
F�@�/
�@�H�J�:�P�;
W ). Time 

effects are more obvious when the applied field is close to the coercive field [18]. In addition, the 
irreversible magnetic susceptibility �–irr is determined by dM/dH measurements. For instance, �–irr is the 
difference �ï�Ü�å�å
L �ï�ç�â�ç
F �ï�å�Ø�é��between the total experimental susceptibility and the reversible 
susceptibility that represents the slopes of the recoil loops [18]. Consequently, SV(T) can be deduced 
at each temperature from after-effect measurements at several applied fields near HC. vA(T) is then 
calculated using appropriate MS values for Nd2Fe14B and the experimental values of SV(T). [60] 

�x Analysis of the temperature dependence of HC 

The equation giving the temperature dependence of HC is equivalent to: 

�*�4 
L �*�¼
E�t�w�5�Ï 
L��
�� �
 �È

�� �, �Æ�Ä�é�²
�-���/ 
F �0�Ø�Ù�Ù�/ �Ì [Eq. 17.1] 

�Á�,

�Æ�Ä

L

�� �
 �È

�� �, �Æ�Ä
�. �é�²

�-���/ 
F�0�Ø�Ù�Ù [Eq. 17.2] 

H0 �Œ���‰�Œ���•���v�š�•�� �š�Z���� �(�]���o���� �v������������ �š�}�� �Œ���À���Œ�•���� �š�Z���� �u���P�v���š�]�Ì���š�]�}�v�� �]�(�� �š�Z���Œ�u���o�� �����š�]�À���š�]�}�v�� �]�•�v�[�š�� �]�v�À�}�o�À�����X�� ���Ç��
plotting the reduced parameter H0/M S as a function of �vW/µ 0MS

2vA
1/3 (appropriate values for MS(T) and 

�vW(T) must be taken), a linear dependence is obtained. This indicates that �r (slope of this line) is 
temperature independent for a given magnet and that Neff (the negative of the intercept with the 
vertical axis) takes only a mean value characterizing the effective dipolar interactions during 
magnetization reversal. [59], [60] 

�x Magnetic properties of the activation volume vA 

In the GM, the activation volume corresponds to a non-uniform state of magnetization. In a 
ferromagnetic material, the length that characterizes such non-uniform magnetization state is the 
domain wall width �wW. Hence, the experimentally obtained activation volume vA can be compared with 
�š�Z�����À���o�µ�����}�(���wW

3 calculated for the Nd2Fe14B phase. The ratio vA�l�wW3 can be plotted as a function of 
temperature (see Fig. 11). This gives information about the differences between the intrinsic magnetic 
properties of the activation volume and those of the main phase. [59] 
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Fig. 11: Thermal variation of the ratio vA/ �wW3 in Nd-Fe-B sintered magnets. [59] 

For Nd-Fe-B sintered magnets, the ratio vA�l�wW3 is roughly constant up to room temperature and 
increases dramatically at higher temperatures. The proportionality between vA ���v���� �wW3 at low 
temperature shows that the magnetic properties of the activation volume are not very different from 
those of the bulk [59]. If nucleation was the determinant coercivity mechanism, the anisotropy of the 
activation volume would differ strongly from the main phase anisotropy. As a result, magnetization 
reversal is not limited by nucleation. On the contrary, magnetization reversal is believed to be rather 
governed by passage and expansion mechanisms. [63] 

Conclusion: The MM and GM approaches show that, except for small defect zones (with reduced K1), 
coercivity is controlled by the passage/propagation of reversal into the non-affected zone (with non-
reduced K1). This has been recently confirmed by Bance et al. [64]. 

I.5.3. Main results of micromagnetic simulations 

Unlike micromagnetic and global models, micromagnetic simulations aim at describing magnetization 
patterns without simplifications on the dipolar field and exchange interactions. Consequently, this 
approach helps to understand the role of the grain size and shape, and of coupling/decoupling phases 
at GB. 

Most of the micromagnetic simulations presented here are performed with the software package 
FEMME (Finite Element MicroMagnEtics), which is a hybrid finite element / boundary element method 
code [65]. 

I.5.3.1. Influence of grain size on coercivity 

As explained in Section I.4.4.1, the size of Nd2Fe14B grains has been shown to have an influence on the 
coercive field and its thermal stability. In addition to the already described works of Ramesh et al. [35] 
and of Bance et al. [36], Schrefl et al. [66] showed that a decrease of the grain size increases coercivity 
because the magnetostatic interactions between the grains are less effective and therefore lead to a 
decrease of the demagnetizing field. Kronmüller et al. [67] also showed that dipolar long-range 
magnetic stray fields reduce coercivity mainly for large grain sizes. 

Sepehri-Amin et al. [50], [68] used finite-element micromagnetic simulations to understand the link 
between grain size and coercivity for exchange-coupled polycrystalline anisotropic Nd-Fe-B sintered 
magnets. Table 4 gives the simulation parameters used in [68]. 
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Simulation parameters Simulation 1 Simulation 2 
Model dimensions 8 x 8 x 8 µm3 400 x 400 x 400 nm3 

Grain shape Polyhedral Polyhedral 
Grain size 0.7 µm / 2.7 µm 30 nm / 50 nm / 130 nm 

Intrinsic magnetic properties of 
Nd2Fe14B grains 

µ0MS = 1.61 T 
K = 4.5 MJ/m3 [69] 

A = 12.5 pJ/m 

Determined between 300 and 
400 K 

Nature of the GB phase Exchange-coupling /  

Table 4: Simulation parameters used in [68]. 

For the simulation 1, tetrahedral meshes were generated and the LLG equation was solved at each 
node using the FEMME software [65]. The results showed that coercivity increases by 0.4 T when the 
grain size is decreased from 2.7 to 0.7 µm. Moreover, the magnetization curves demonstrate a 
decrease in the maximum susceptibility as the grain size is reduced. For instance, for grain sizes 
Q 1 
µm, a two-step initial magnetization curve can be observed. On the one hand, the initial high 
susceptibility observed for large-sized grains comes from the easy displacement of the domain walls 
within the multidomain grains. On the other hand, small-sized single-domain grains require higher 
magnetic fields to reach saturation because of the pinning of the domain walls at the GB phase. 

Furthermore, Sepehri-Amin et al. calculated the stray field generated from the reversed surface grains 
for different grain sizes (1, 2 and 2.7 µm) and showed that the maximum stray field decreases as the 
grain size decreases. Larger stray fields induced by a larger grain size lead to magnetization reversal of 
the neighboring grains at a lower external magnetic field, being detrimental for coercivity. 

A second model (see parameters of simulation 2 in Table 4) was used by Sepehri-Amin et al. to study 
the influence of grain size on the temperature coefficient of coercivity �t�W 

�>
L��
�¿�Á�´

�Á�´ �¿�Í

H�s�r�r [Eq. 18] 

Demagnetization curves were calculated as a function of temperature from 300 K to 400 K (increments 
of 20 K). Fig. 12 shows the temperature dependence of the simulated coercive field for 30, 50 and 130 
nm-sized grains. 

 

Fig. 12: Thermal dependence of coercivity for modeled Nd-Fe-B magnets with average grain sizes of 
30, 50 and 130 nm. [68] 
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To enable a permanent magnet to be used in motors, the lowest absolute value of �t���]�•�������•�]�Œ�����o���X���d�Z����
�•�]�u�µ�o���š�]�}�v�� �•�Z�}�Á������ �š�Z���š�� �t�� �]�•�� �š�Z���� �Z�]�P�Z���•�š�� �(�}�Œ�� ���� �P�Œ���]�v size of 130 nm. This result indicates that the 
temperature coefficient of coercivity deteriorates with increasing grain size. It is in good agreement 
with the experimental observations made by Liu et al. [70] on hot-deformed Nd-Fe-B anisotropic 
magnets. 

In addition, Sepehri-Amin et al. ���o�•�}�������š���Œ�u�]�v�������š�Z�����À���o�µ���•���}�(���r�����v�����Eeff for Nd-Fe-B sintered magnets 
by plotting the HC(T)/MS(T) versus HA(T)/MS(T) and further fitting (see Fig. 13), based on the MM. The 
slope and the intercept of the fitted lines give �r�����v�����Eeff, respectively. 

 

Fig. 13: Dependence of HC/M S with HA/M S for Nd-Fe-B magnets with average grain sizes of 30, 50 and 
130 nm. [68] 

The effective demagnetization constant Neff was shown to increase with the grain size, being consistent 
with the grain size dependence of the stray field. Liu et al. [70] also found that a decrease in the grain 
size leads to a lower Neff for hot-deformed magnets. 

To conclude, the increase in coercivity with decreasing grain size is attributed to the reduction in the 
stray field arising from neighboring grains. The temperature coefficient of coercivity �t���]�•���]�u�‰�Œ�}�À�������Á�]�š�Z��
decreasing grain size because of the lower effective demagnetization constant Neff. 

I.5.3.2. Influence of grain shape on coercivity 

The grain shape (especially the edges or corners of a grain), which is one critical microstructural 
parameter of permanent magnets, can affect the local demagnetization field distribution and thus 
have a significant contribution to the magnetization reversal. Forster et al. [71] calculated energy 
barriers on a columnar-shaped ferromagnetic grain and showed that the energy barrier required for 
magnetization reversal (i.e. coercivity) increases with the column length. Fukada et al. [72] evaluated 
the effective demagnetization factor Neff for Nd-Fe-B sintered magnets with different grain sizes and 
shapes: they reported higher demagnetization factors for platelet-shaped ferromagnetic grains. Bance 
et al. [73] reported that by changing the shape of soft magnetic particles from spheres to long wires, 
the nucleation field and thus coercivity can be enhanced. Yi et al. [74] performed micromagnetic 
simulations to study the effect of grain shape in Nd-Fe-B magnets and showed that the coercivity can 
be almost doubled by changing the grain shape from the triangular prism to the spheroid. 
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Sepehri-Amin et al. [50] calculated demagnetization curves of single Nd2Fe14B grains with the same 
volume, but with different aspect ratios. The smallest coercive field was obtained for single platelet-
shaped grains and the highest coercivity was for elongated grains. These results are in agreement with 
those of Bance et al. [73]. Moreover, they calculated the demagnetization field (prior to the nucleation 
of a reversed domain) for grains of different shapes: plateled-shaped, cuboidal, tetragonal-shaped and 
spherical. The value of the demagnetization field decreases by increasing the aspect ratio from the 
platelet-shaped to the elongated-cuboidal grain, and the minimum demagnetization field was found 
for the spherical grain. 

Further calculations were performed by Sepehri-Amin et al. on the influence of the demagnetizing field 
on coercivity, but this time for exchange-coupled models with different grain shapes. The volume of 
all models is the same. Table 5 gives the simulation parameters used in [50]: 

Simulation parameters Simulation 1 
Model dimensions Cubic: 128 x 128 x 128 nm3 

Grain shape Platelet �t Cubic �t Columnar cuboid 

Grain size /  
Intrinsic magnetic properties of 

Nd2Fe14B grains 
/  

Nature of the GB phase 

Thickness: 2 nm 
µ0MS = 0.5 T 
K = 0 MJ/m3 
A = 4 pJ/m 

Table 5: Simulation parameters for [50]. 

By introducing this type of GB phase in the simulation, the Nd2Fe14B grains are assumed to be partially 
exchange-coupled. The modeled geometries with different grain shapes are presented in Fig. 14: 

 

Fig. 14: Modeled geometries with platelet-, cubic- and columnar cuboid-shaped Nd2Fe14B grains that 
are partially exchange-coupled. [50] 

Simulated demagnetization curves of the three above models are shown in Fig. 15: 
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Fig. 15: Simulated demagnetization curves for the models with different grain shapes. [50] 

The model with platelet-shaped grains shows lower coercivity and by changing the grain shape to cubic 
and columnar cuboid, coercivity increases. As determined previously, coercivity can be improved by 
increasing the aspect ratio of Nd2Fe14B grains in order to reduce the stray field. 

To conclude, the largest coercive field value is obtained for grains with highest aspect ratios (i.e. 
columnar-shaped grains). This result is independent of the considered model (either single-grain or 
coupled multi-grain) in the micromagnetic simulations. The grain shape dependence of coercivity is 
explained by the grain shape dependence of the demagnetization field. This latter is reduced for 
columnar- or spherical-shaped grains. 

I.5.3.3. Influence of GB phase on coercivity 

Micromagnetic simulations can also give an insight into the influence of the chemical composition and 
the structure of the GB phase on coercivity of Nd-Fe-B based permanent magnets. [49], [50], [75]�t[77] 

Liu et al. [76] found a clear correlation between the Nd concentration in the GB phase and the coercive 
field for hot-deformed Nd-Fe-B permanent magnets. The same research team [70] studied the 
influence of saturation magnetization of the GB phase on the demagnetization process in these 
magnets. Simulation parameters for [76] and [70] are given in Table 6: 

Simulation parameters Liu et al. [76] Liu et al. [70] 
Model dimensions Cubic: 400 x 400 x 400 nm3 Cubic: 300 x 300 x 300 nm3 

Grain shape Cuboid Platelet 

Grain size 
(125±25) x (200±25) x 

(100±25) nm3 
Lateral direction: 60 and 150 nm 

Longitudinal direction : 30 and 75 nm 

Intrinsic magnetic 
properties of Nd2Fe14B 

grains 

µ0MS = 1.61 T 
K = 4.5 MJ/m3 
A = 12 pJ/m 

µ0MS = 1.61 T 
K = 4.3 MJ/m3 
A = 12 pJ/m 

Nature of the GB phase 

Thickness : 4 nm 
µ0MS = [0-1.2] T 

K = 0 MJ/m3 
A = [0-8] pJ/m 

Thickness : 3 nm 
µ0MS = [0.03-1.2] T 

K = 0 MJ/m3 
A = [1-12] pJ/m 

Table 6: Simulation parameters for [76] and [70]. 

In [76], tetrahedron meshes were applied with a size of 2 nm at grain boundaries and 7 nm at the 
center of Nd2Fe14B grains. The LLG equation was solved at each node using the FEMME software and 
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demagnetization curves were then simulated: coercivity is enhanced by the reduction of the saturation 
magnetization of GB phase (caused by its increasing Nd content). For the model containing a 
ferromagnetic GB phase (µ0MS = 1.2 T), nucleation starts at a much lower magnetic field than for the 
sample containing a non-magnetic GB phase (µ0MS = 0 T). In the case of a ferromagnetic GB phase, 
reversed magnetic domains can easily propagate into neighboring grains. For a non-ferromagnetic GB 
phase, the pinning strength increases and the propagation of reversed magnetic domains is prevented. 
The improvement of the pinning force of the GB phase is caused by the increase in Nd content. 

In [70], tetrahedral meshes of 3 nm were applied for the GB phase and the LLG equation was solved at 
each node with the FEMME software. Simulated demagnetization curves for the models with grain 
sizes of 60 and 150 nm are shown in Fig. 16: 

 

Fig. 16: Simulated demagnetization curves for hot-deformed Nd-Fe-B magnets with different grain 
sizes and GB phase saturation magnetizations. [70] 

The two exchange-coupled models (µ0MS = 1.2 T and A = 12 pJ/m) show the same coercivity of 3.19 T, 
independent of the grain size. The weakly exchange-coupled model (µ0MS = 0.03 T and A = 1 pJ/m) 
shows a larger coercivity of 4.05 T. The decrease in saturation magnetization and the minimization of 
the ferromagnetic exchange coupling between Nd2Fe14B grains leads to higher coercivity values. In 
addition, the magnetization configuration during domain wall propagation (see Fig. 17) was studied in 
the 60-nm-grain-sized model with various GB phase saturation magnetizations (0.03 and 1.2 T). Red 
and blue colors correspond to Mz/M S = +1 and -1 states, respectively. 
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Fig. 17: Magnetization configuration during domain wall propagation of modeled hot-deformed 
magnets with 60-nm-sized-grains and various GB phase saturation magnetizations. [70] 

On the one hand, when applying an external magnetic field, several nucleation domains of reversed 
magnetization can be observed in the GB phase in the exchange-coupled model (µ0MS = 1.2 T) and they 
propagate easily into neighboring grains. So, no domain wall pinning occurs in the exchange-coupled 
model. On the other hand, for the weakly exchange-coupled model (µ0MS �A���ì�X�ì�ï���d�•�U�������^�Ì�]�P�Ì���P�_�����}�u���]�v��
wall configuration is observed at the GB phase, typical of a strong pinning strength, leading to higher 
coercivity. 

Zickler et al. [32] performed micromagnetic simulations to study the influence of the anisotropic 
magnetic properties of the GBs on coercivity of anisotropic sintered heavy rare-earth free Nd-Fe-B 
magnets. The grain boundaries parallel to the c-axis with a large Fe content are called y-GBs. The grain 
boundaries perpendicular to the c-axis with a low Fe content are called x-GBs. According to the 
simulation results, the coercive field related to the x-GBs is higher by 12% compared to the coercivity 
related to the y-GBs. For instance, the y-GBs switch earlier than the x-GBs. Fujisaki et al. [49] also 
studied the orientation dependence of GB properties on coercivity, using large scale parallel 
computation. They reported that a reduction of the exchange stiffness and the spontaneous 
magnetization of the GB phase parallel to the c-axis enhances coercivity of Nd-Fe-B sintered magnets 
more efficiently than that perpendicular to the c-axis. 

Micromagnetic simulations explaining the squareness of demagnetization curves were also performed 
by Xu et al. [48]. Models with ferromagnetic and non-ferromagnetic GB phases were constructed and 
correspond to Nd-Fe-B sintered magnets containing 0.1 at.% and 0.5 at.% of Ga, respectively. 
Simulation parameters for the exchange-coupled case (magnets with 0.1 at.% of Ga) and for the 
exchange-decoupled case (magnets with 0.5 at.% of Ga) are given in Table 7. For the exchange-coupled 
case, the intrinsic parameters of the GB phase were determined by experimental microstructure 
analysis and ab initio calculations. These parameters depend on the orientation of the GB phase with 
respect to the easy-axis (c-axis). 
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Simulation parameters Exchange-coupled case Exchange-decoupled case 
Model dimensions Cubic: 250 x 250 x 250 nm3 Cubic: 250 x 250 x 250 nm3 

Grain shape Polyhedral Polyhedral 
Grain size 64 equiaxed grains 64 equiaxed grains 

Intrinsic magnetic 
properties of Nd2Fe14B 

grains 

µ0MS = 1.61 T 
K = 4.4 MJ/m3 

A = 8 pJ/m 

µ0MS = 1.61 T 
K = 4.4 MJ/m3 

A = 8 pJ/m 

Nature of the GB phase 

Side-plane GB phase 
Thickness : 2.2 nm 

µ0MS = 0.60 T 
K = 0 MJ/m3 

A = 7.14 pJ/m 
c-plane GB phase 
Thickness : 3 nm 

µ0MS = 0.22 T 
K = 0 MJ/m3 

A = 3.98 pJ/m 

Thickness : 6 nm 
µ0MS = 0 T 

K = 0 MJ/m3 
A = 0 pJ/m 

Table 7: Simulation parameters for [48]. 

The models used in [48] are shown in Fig. 18: 

 

Fig. 18: Micromagnetic models for (a) the exchange-coupled case (0.1 at.% of Ga), (b) the exchange-
decoupled case (0.5 at.% of Ga). [48] 

In both models, a grain at the surface having a misalignment angle of 45° and of reduced anisotropy 
energy acts as nucleation point for magnetization reversal. The models were meshed with 
tetrahedrons ranging from 1.3 to 2.5 nm in size. The demagnetization curves were calculated by 
minimizing the free energy of the systems in a decreasing magnetic field. The simulated 
demagnetization processes and their respective magnetization configuration are shown in Fig. 19: 
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Fig. 19: (a) Simulated demagnetization curves for the exchange-coupled case. (b) Same for the 
exchange-decoupled case. (c) Magnetization reversal process for the exchange-coupled case. (d) 

Same for the exchange-decoupled case. [48] 

For the exchange-coupled case, good squareness of the demagnetization curve is observed, whereas 
squareness is deteriorated when the grains are exchange-decoupled. Moreover, in the case of 
exchange-coupling, magnetization reversal starts from the nucleation grain and then cascade-type 
reversal of neighboring grains happens. This is in agreement with the brutal reduction in magnetization 
in the demagnetization curve and leads to its good squareness. On the contrary, for the exchange-
decoupled case, magnetization reversal starts from the nucleation grain and then individual reversal 
of neighboring grains occurs. This explains the higher coercivity but also the deteriorated squareness 
of the demagnetization curve.    

To conclude, micromagnetic simulations can give additional information and interpretation to 
microstructural effects on coercivity in Nd-Fe-B magnets. Coercivity depends strongly on the chemical 
composition of the GB phase and therefore on its intrinsic properties. The shape of experimental 
demagnetization curves can also be explained by simulations and is mainly determined by the 
ferromagnetic (or not) nature of the GB phase. Recently, more realistic models have been developed 
and take into account the change in properties of the GB phase depending on its orientation with 
respect to the easy axis. However, models in micromagnetic simulations have often two orders of 
magnitude smaller grain size than real Nd-Fe-B sintered magnets, owing to the limitations of 
computation power. 



I.From context to coercivity 

31 
 

I.6. The grain boundary diffusion process (GBDP) in Nd-Fe-B 

sintered magnets 

I.6.1. Benefits of core-shell microstructure 

The grain boundary diffusion process (GBDP) is a way to incorporate HRE into Nd-Fe-B sintered 
magnets. This method was proposed in 2000 by Park et al. [9]. In this process, Nd-Fe-B sintered 
magnets are coated with HRE in different forms and undergo a subsequent heat treatment [78]. The 
latter enables the diffusion of HRE from the surface into the magnet, mainly along grain boundaries 
[78]. Core-shell structures can be obtained by GBDP: (Nd,HRE)2Fe14B phases are formed in the outer 
region of Nd2Fe14B hard magnetic grains. On the below BSE-SEM image (Fig. 20), the Nd2Fe14B cores 
appear dark and the HRE-rich shells are brighter. 

 

Fig. 20: BSE-SEM image of a Dy-coated Nd-Fe-B sintered magnet from [79]. 

The HRE diffuses from the grain boundaries into the Nd2Fe14B phase because of the concentration 
gradient. Moreover, the rejection of Nd from the (Nd,HRE)2Fe14B shells results in a thickening of the 
GB phase [80]. 

For Nd-Fe-B sintered magnets, it is generally accepted that magnetization reversal is initiated by the 
nucleation of reversed magnetic domains in a locally reduced magnetocrystalline anisotropy region, 
e.g. at grain boundaries [6], [53], [81]. This lower anisotropy can be compensated by the addition of 
HRE elements using GBDP. Indeed, the latter enables the selective deposition of HRE in the vicinity of 
grain boundaries, forming HRE-rich shells with an enhanced anisotropy field and thus increasing 
coercivity [78], [80]. Another reason for the coercivity enhancement after GBDP is the increase of the 
grain boundary phase thickness, leading to the improvement of the magnetic isolation of hard 
magnetic grains [80]. In addition, the use of HRE can be minimized by GBDP, as well as the sacrifice of 
remanence (see Section I.4.1.1), since the substitution of Nd by HRE is limited to the region near grain 
boundaries. However, the diffusion length has a limitation of a few millimeters and it is therefore 
challenging to upscale this process to magnets with larger sizes [82]. 

The GBDP has been studied extensively in the last years. A lot of works have been performed with 
GBDP on Nd-Fe-B sintered magnets using Dy/Tb-containing powders, metallic vapor and eutectic 
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alloys, which will be further detailed here. The HRE diffusion in hot-deformed Nd-Fe-B magnets has 
also received a lot of attention in the past years [77], [83]�t[86]. 

I.6.2. State of the art 

I.6.2.1. GBDP using Dy/Tb-containing powders 

Dy/Tb-containing coatings have been used as diffusion sources for GBDP on Nd-Fe-B sintered magnets. 
Table 8 and Table 9 give experimental parameters used in some works for different coating techniques: 

Reference Kim et al. [87] 
Nakamura et al. 

[88] 
Soderznik et al. 

[89] 
Samardzija et al. 

[90] 

Base material 
Commercial 48 M 
Nd-Fe-B sintered 

magnets 

N52 Nd-Fe-B 
sintered magnets 

Nd-Fe-B sintered 
magnets (1.2 wt.% 

Dy + Tb) 

Anisotropic 
sintered Nd2Fe14B 

magnets 

Magnet 
dimensions (mm3) 

12 x 12 x 5 40 x 10 x 14.5 14 x 8 x 3.5 16 x 16 x 2 

Diffusion source 
TbH powder-
ethanol slurry 

TbF powder slurry 
TbF3 powder-
ethanol slurry 

Tb4O7 powder-
ethanol slurry 

Coating technique Dip-coating Dip-coating 
Electrophoretic 

deposition 
Dip-coating 

GBDP 
900-960°C, 6h, 

vacuum 
800-900°C, 10-

110h 
875°C, 10h, 

vacuum 
850°C, 10h 

Post-diffusion 
annealing 

860-960°C, 10h, 
argon and 440-

520°C, 2h, argon 
500°C, 1h 500°C, 1h 500°C, 1h, argon 

Table 8: Experimental parameters for GBDP using Dy/Tb-containing powders. 

Reference Bae et al. [91] Ma et al. [92] Kim et al. [93] Löwe et al. [94] 

Base material 

Nd32FebalB0.97M2.

4 (wt.%, M=Cu, 
Al, Co, Nb) 
sintered 
magnets 

Nd21.84Pr7.03Ho
2(Fe,M)balB0.95 
(wt.%, M=Co, 

Al, Ga, Cu) 
sintered 
magnets 

Nd28Dy3.0FebalB1.0M2.5 
(wt.%, M=Cu, Al, Co, 
Nb) sintered magnets 

Nd29.0Dy2.6FebalB1.0Co1.0

Cu0.1 (wt.%) 

Magnet 
dimensions 

(mm3) 
10 x 10 x 5 10 x 10 x 5 

10 x 12 x 3.6 
10 x 10 x 5 

3.6 x 12 x 10 
8 x 5 x 5 

Diffusion 
source 

DyF3/DyHx-
ethanol slurry 

DyHx (DyH3 

and few DyH2) 
powder-
ethanol-
polyvinyl 

pyrrolidone 
slurry 

DyH2 powder-ethanol 
solution 

Rare-earth foils (Dy, Tb, 
Ce and Gd) with 25 µm 

thickness 

Coating 
technique 

Dip-coating Coating Dip-coating 
Foils attached to 

magnets 
GBDP 900°C, 2h 850°C, 6h 900°C, 2h 900°C (1.5, 6, 10h) 

Post-diffusion 
annealing 

500°C, 2h 465°C, 4h 500°C, 2h 500°C, 2h 

Table 9: Experimental parameters for GBDP using Dy/Tb-containing powders. 
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In these studies, core-shell microstructures have been obtained after GBDP. The thickness of the shells 
decreases from the magnet surface to its center part. For example, in [90], they are 1- µm-thick near 
the magnet surface and their thickness is reduced to a few tens of nm in the center of the magnet. 
These structures suppress the nucleation of reversed domains at the interfaces between the main and 
Nd-rich phases: coercivity is therefore enhanced. For example, in [87], coercivity of the base magnet 
is 15.28 kOe (1216 kA/m), increases to 21.04 kOe (1674 kA/m) after GBDP and is further increased to 
24.86 kOe (1978 kA/m) after post-diffusion annealing.  

In addition, the research teams in [92] and [93] investigated the anisotropic diffusion mechanism of 
Dy. GBDP was performed along and perpendicular to the easy axis. Results of both works are in good 
agreement: coercivity enhancement (compared to coercivity of the as-sintered state) is more 
important when GBDP is done in the direction parallel to the easy-axis. This is attributed to the 
anisotropic distribution of the Nd-rich phase that acts as a diffusion channel. These works thus show 
that diffusing HRE along the easy-axis is the best way to enhance coercivity of Nd-Fe-B sintered 
magnets. 

In [94], the diffusion of different RE (Dy, Tb, Ce and Gd) was studied in Dy-containing Nd-Fe-B sintered 
magnets. Demagnetization curves after GBDP for different times are shown in Fig. 21 for each diffused 
element: 

 

Fig. 21: Demagnetization curves after diffusion at 900°C for different times. Shaded bars correspond 
to coercivity and remanence range for reference samples heat-treated without RE diffusion. [94] 

Both Dy and Tb lead to an increase in coercivity compared to the reference samples, while Ce and Gd 
decrease it. Unlike for HRE, Ce shows no shell formation. Moreover, the evaluation of diffusion speeds 
highlights that Tb diffuses significantly faster than Dy in these magnets. 

I.6.2.2. GBDP using metallic vapor 

GBDP using metallic vapor as the diffusion source was also studied in some works detailed in the below 
Table 10: 



I.From context to coercivity 

34 
 

Reference 
Watanabe 
et al. [95] 

Sepehri-Amin et al. [78] Kim et al. [96] 

Base 
material 

Nd-Fe-B 
sintered 
magnets 

Nd24.0Pr6.6Fe66Co2.2B1.0Ga0.1Cu0.1 
(wt.%) sintered magnet 

Nd31.8Fe66B1.0Cu0.1Al0.15Co0.9Ga0.05 and 
Nd24.3Dy7.5Fe66B1.0Cu0.1Al0.15Co0.9Ga0.05 

(wt.%) sintered magnets 

Magnet 
dimensions 

(mm3) 
3 x 3 x 2.8 5 x 5 x 5.5 6.5 x 6.5 x 6.5 

Diffusion 
source 

Tb vapor Dy vapor Dy vapor 

Coating 
technique 

3D-
sputtering 

Vapor deposition Vapor deposition 

GBDP 
900°C, 

12h, argon 
800-1000°C 950°C, 4h 

Post-
diffusion 
annealing 

/  500-600°C, 1-3h, argon 520°C, 1h 

Table 10: Experimental parameters for GBDP using metallic vapor. 

In [95], the Tb-treated magnet showed an important gain in coercivity (from 950 kA/m for the as-
sintered state to 1980 kA/m after GBDP) and no significant decrease in remanence (from 1.44 T to 1.43 
T). In [78], SEM analysis showed that the thickness of the formed shells decreases from the surface to 
the center of the magnet, in good agreement with the above mentioned works. Furthermore, atom 
probe tomography determined that the Dy content in the shells near the surface and in the center of 
the bulk are 3.3 and 1.4 at.%, respectively. In [96], very high coercivity of 3 T (2387 kA/m) was achieved 
in Dy-containing Nd-Fe-B sintered magnets after GBDP and subsequent post-diffusion annealing. This 
is attributed to the formation of a secondary Dy-rich shell after post-diffusion annealing. During the 
latter, a large amount of Dy atoms diffuse from the GB phase to the primary Dy-rich shell. A higher Dy 
concentration is therefore achieved at the interface between the GB phase and the secondary Dy-rich 
shell. 

I.6.2.3. GBDP using eutectic compositions 

Compared to hydrides, fluorides and oxides, GBDP using eutectic alloys with low melting points has a 
much higher diffusing efficiency. Indeed, these alloys melt into liquid and infiltrate faster into the 
sample at elevated temperatures [97]. Table 11 and Table 12 give experimental parameters for works 
using eutectic compositions as diffusion source: 
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Reference Oono et al. [98] Tang et al. [99] Lu et al. [97] 

Base material 

Nd26.6Dy0.03Pr4.7FebalCo
0.92B1.01Al0.27Cu0.09 
(wt.%) sintered 

magnet 

Nd-Ce-Fe-B sintered 
magnets with 22 wt.% 

of Ce 

Commercial N50 Nd-Fe-B 
sintered magnets 

Magnet dimensions 
(mm3) 

7 x 7 x 5 
7 x 7 x 6 

�”�ô���Æ���ð �”�ô���Æ���ñ 

Diffusion source 
Dy73Ni9.5Al17.5 eutectic 

alloy mixed with 
paraffin 

Nd80-xDyXAl20 (at.%) 
alloy ribbons 

Tb70Cu30 

Pr52.5Tb17.5Cu30 
Pr60Tb20Al20 

Pr60Tb10Cu15Al15 (at.%) 
alloy ribbons 

Coating technique Painting /  /  

GBDP 900°C, 3h, vacuum 900°C, 4-13h 900°C, 4h 

Post-diffusion 
annealing 

500°C, 3h 470°C, 2h, argon 500°C, 2h 

Table 11: Experimental parameters for GBDP using eutectic compounds. 

Reference Lu et al. [100] Chen et al. [101] Lee et al. [102] 

Base material 
Commercial 38 M Nd-
Fe-B sintered magnets 

Commercial 
Nd10.36Pr3.53FebalB5.92Co
0.89Cu0.1 (at.%) sintered 

magnet 

Nd29Dy3.00FebalB0.97M2.3

9 (wt.%, M=Cu, Al, Co, 
Nb) sintered magnets 

Magnet dimensions 
(mm3) 

�”8 x 5 15 x 15 x 4 12.5 x 12.5 x 5 

Diffusion source 

Pr68Cu32 
Dy70Cu30 

Pr35Dy35Cu30 (at.%) 
alloy ribbons 

Dy60Co40 (at.%) 
eutectic alloy 

Ethanol solution of 
DyCo, DyCo + Cu and 
DyCo + Al powders 

Coating technique /  /  Dip-coating 

GBDP 900°C, 4h 865°C, 3h, vacuum 880°C, 8h, vacuum 

Post-diffusion 
annealing 

500°C, 2h /  
530°C, 2h and 500°C, 

2h, vacuum 

Table 12: Experimental parameters for GBDP using eutectic compounds. 

In those works, the role of low melting point elements such as Cu and Al on the Dy diffusion behavior 
was studied. It has been shown that both Cu and Al act as carriers for Dy atoms owing to their solubility 
in the Nd-rich GB phase, which leads to the enhancement of Dy diffusivity during GBDP. Moreover, the 
Al addition also promotes wettability of diffusion alloys. The presence of Co in diffusion alloys improves 
the temperature coefficient of remanence. For example, in [101], the latter is improved from -0.140 
%/°C to -0.095 %/°C after GBDP. Finally, the anisotropic diffusion mechanism of Dy was also studied by 
Chen et al. [103] using Dy70Cu30 (at.%) eutectic alloy for GBDP. The magnet diffused parallel to the easy 
axis showed much higher squareness factor (0.92) than that diffused perpendicular (0.83). 

To conclude, the coercivity enhancement by GBDP can be explained by two microstructural features: 
the Dy-rich shells that increase the anisotropy field and the continuous and thin GB phase formed after 
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post-diffusion annealing that isolates Nd2Fe14B grains. Other works using powder-blending methods or 
concerning intergranular addition of alloy powders will not be covered here. 

I.6.3. Micromagnetic simulations on core-shell structures 

Micromagnetic simulations have been performed to simulate core-shell structures obtained in GB 
diffused Nd-Fe-B magnets. The two main codes used for these simulations are FEMME [65] and 
OOMMF (Object Oriented MicroMagnetic Framework) [104]. 

Bance et al. [81] calculated the temperature-dependent magnetic properties of a single Nd2Fe14B grain 
to study the influence of a hard (Nd,Dy)2Fe14B shell on its magnetization reversal. The geometry of the 
studied grain was dodecahedral and its diameter was 50 nm. 3 single grain models were introduced: 
1) the pure Nd2Fe14B grain, 2) the Nd2Fe14B core with a soft outer 2-nm-thick defect, 3) the Nd2Fe14B 
core with a hard 4-nm-thick (Nd,Dy)2Fe14B shell and soft outer 2-nm-thick defect. Intrinsic magnetic 
properties for the Nd2Fe14B and (Nd,Dy)2Fe14B phases at 300 and 450 K are given in Table 13: 

Phase T (K) 
Magnetocrystalline 
anisotropy constant 

K1 (MJ/m3) 

Saturation 
polarization JS 

(T) 

Exchange 
stiffness A 

(pJ/m) 
Nd2Fe14B 300 4.30 1.613 7.70 
Nd2Fe14B 450 2.90 1.285 4.89 

(Dy47Nd53)2Fe14B 300 5.17 1.151 8.70 
(Dy47Nd53)2Fe14B 450 2.70 0.990 6.44 

Table 13: Intrinsic magnetic properties for the Nd2Fe14B grain and the (Dy47Nd53)2Fe14B hard shell at T 
= 300 K and T = 450 K. [81] 

Demagnetization curves were computed by minimizing the micromagnetic energy for decreasing 
external field. At both studied temperatures, the reduction in coercivity caused by the soft defect is 
canceled out by the hard shell. Moreover, the soft surface defect doubles the size of the activation 
volume (see Section I.5.2.2), whereas the hard (Dy47Nd53)2Fe14B shell reduces it by about one third.  

Zickler et al. [105] carried out micromagnetic simulations on core-shell structures observed in Dy-F 
treated Nd-Fe-B sintered magnets. This work studied the influence of the GB phase and its intrinsic 
magnetic properties on magnetization reversal. The LLG equation is solved at each node of the mesh 
using the FEMME software. The original model structure consists of 8 Nd2Fe14B grains of dimensions 
100 x 100 x 100 nm3, separated by a 4-nm-thick GB phase. To simulate the core-shell structure, an 8-
nm-thick HRE2Fe14B (HRE = Dy, Tb) shell is put between the GB phase and the Nd2Fe14B grains, as shown 
in Fig. 22: 
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Fig. 22: Finite element model consisting of 8 Nd2Fe14B grains separated by a 4 nm-thick GB phase and 
separated from the GB phase by an 8-nm-thick HRE2Fe14B shell. [105] 

The input parameters for the simulations are given in Table 14: 

Phase 
Magnetocrystalline 
anisotropy constant 

K1 (MJ/m3) 

Saturation 
polarization JS 

(T) 

Exchange stiffness A 
(pJ/m) 

Nd2Fe14B 4.9 1.61 7.7 
Dy2Fe14B 4.5 0.67 7.7 
Tb2Fe14B 6.13 0.7 7.7 

Non-magnetic GB 0 0.001 0.077 
Paramagnetic GB 0 0.75 0.077 

Soft-ferromagnetic GB 0 0.75 2.5 

Table 14: Intrinsic magnetic properties for the Nd2Fe14B grains, the Dy- and Tb- enriched shells and 
the GB phase. [105] 

The simulated coercivity is 4.65 T when the GB phase is non-magnetic or paramagnetic in the case of 
Dy-rich shells, and 4.66 T in the case of Tb-rich shells. The coercivity is reduced to 3.58 T when the GB 
phase is soft-ferromagnetic in the case of Dy-rich shells, but it has a more important value of 4.34 T for 
Tb-rich shells in that case. The presence of HRE elements between the GB phase and the Nd2Fe14B 
grains acts as a protective shield against nucleation of reversed magnetic domains and as a pinning 
layer preventing their propagation. 

Oikawa et al. [106] simulated magnetization reversal processes for (Nd,Dy)-Fe-B sintered magnets with 
core-shell structures having different Dy concentrations in their shells and cores, using the energy 
minimization method. The purpose of this work was to understand whether the alloying of Nd2Fe14B 
with Dy prior to GBDP is essential to achieve high coercivity or not. Simulations were performed using 
a supercomputer (1728 cores). In the model, each of the 125 Nd-Fe-B grains has a core-shell structure 
and is separated from its neighbors by a GB phase. The shape of each grain is polyhedral and is 
generated from the Voronoi tessellation of a cube. The model size is 300 x 300 x 300 nm3 and consists 
of about 20 million tetrahedral elements (mesh size of 2.5 nm). The thicknesses of both GB phase and 
shells are set to 5 nm (see Fig. 23). 
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Fig. 23: Structure of the polycrystalline model created by Voronoi tessellation of a cube. [106] 

The GB phase is set to be an amorphous soft magnetic layer, leading to exchange coupling between 
the hard magnetic grains. To start a simulation, the K1 value of a given grain located at the edge of the 
model is set to 1/10 of the K1 value of Nd2Fe14B to act as a nucleation point for magnetization reversal 
and as a source of domain wall propagation. Calculated magnetization reversal patterns showed that 
the origin of coercivity is the pinning of reversed domains at grain boundaries and the anisotropy field 
of the shell influences the domain wall pinning strength. In addition, Dy alloying in the initial sintered 
magnets is not essential to achieve high coercivity after GBDP since coercivity has been shown to be 
independent of the Dy composition of the core (if the shell thickness is greater than 15 nm). The 
challenge is to increase the Dy concentration in the shell to achieve a high value of anisotropy field, 
necessary for high coercivity. 

Helbig et al. [82] carried out micromagnetic simulations to identify the specific nucleation site for 
magnetization reversal in (Nd,Dy)-Fe-B core-shell model magnets prepared by co-sintering Nd-Fe-B 
and (Nd,Dy)-Fe-B powders. The model was constructed and discretized in 1-nm-sized cubic meshes, 
according to the real microstructure, derived from SEM and Kerr microscopy analyses. In the model, 
the GB phase is non-magnetic and the grains are thus magnetically decoupled. It is also assumed that 
the boundary of each grain is covered by a 10-nm-thick defect edge layer of magnetocrystalline 
anisotropy Kedge. The LLG equation was solved at each node by the OOMMF software. Simulation 
results revealed a strong dependency of the coercivity of the analyzed grain on Kedge. When Kedge is 
small, nucleation of magnetization reversal occurs at the shell surface and the increase of Kedge leads 
to an increased grain coercivity. Finally, higher values for Kedge cause a shift of the nucleation site from 
the shell surface to the grain core. 

The OOMMF software was also used by Chen et al. [103] and Li et al. [107] to investigate the 
anisotropic diffusion mechanism during GBDP on sintered Nd-Fe-B magnets. Both works concluded 
that GBDP along the direction parallel to the easy axis is more effective to improve coercivity than that 
along any other direction. For instance, in the direction parallel to the easy axis, the initial 
demagnetization needs to overcome a much higher energy barrier. 

I.7. Problematic of the thesis 

Coercivity in Nd-Fe-B sintered magnets has been extensively studied with the purpose of HRE reduction 
(critical materials) and the last two decades have brought decisive advances in microstructural 
characterization, as well as in realistic micromagnetic modelling. Among others, the crucial role of the 
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magnetocrystalline anisotropy in the vicinity of grain boundaries combined with dipolar field effects 
has been assessed. Among the different strategies to improve coercivity, the addition of some 
elements (Cu, Ga) that form eutectic compounds with RE showing good wettability at grain boundaries, 
is now widely adopted. It is generally accepted that these intergranular phases are non-magnetic and 
the adjacent grains are thus believed to be exchange-decoupled. As a result, high performance 
magnets are assumed to be made of assemblies of grains in which magnetization reverses uniformly 
by switching. However, while exchange interactions between grains are negligible, magnetostatic or 
dipolar interactions in such a granular ferromagnetic material play a distinct role from other 
ferromagnets. This aspect has not been fully investigated yet, both experimentally and numerically. 
The first part of the thesis aims at investigating some features of the demagnetizing field in Nd-Fe-B 
sintered magnets and at bringing some quantitative understanding on how they can affect the magnet 
coercivity (see Chapter III). 

Moreover, one of the strategies to improve coercivity consists in developing core-shell grains with Dy-
rich phases in the outer regions of the grains. This approach is now used in the magnet industry but 
still requires optimization to improve the thickness of the fabricated magnet and the process 
efficiency. Furthermore, the choice of a precursor alloy that contains Co (also considered as a critical 
material) is of interest since Co is used in magnets for improving their resistance to corrosion and the 
thermal stability of magnetic properties. Moreover, the solid state diffusion process requires a 
homogeneous distribution of the Dy-Co diffusion source at the sample surface. It has been 
experimentally observed that an intermetallic compound can be more homogeneously deposited at 
the magnet surface than an eutectic alloy. These considerations have led to the study of the grain 
boundary diffusion process in Nd-Fe-B sintered magnets using a Dy-Co intermetallic compound. This 
work constitutes the second part of the thesis (see Chapter IV and V). 
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II. Fabrication of Nd-Fe-B sintered magnets, characterization 

and numerical methods 

In order to answer the questions related to the coercivity of Nd-Fe-B magnets and raised at the end of 
the previous chapter, different magnet samples have been specifically fabricated and characterized on 
the pilot line at CEA-LITEN. The equipment and processes available on the platform are fully 
representative of the magnet industry even if, for research purposes, smaller amounts of material are 
produced for each batch. This brings the advantage of a fine selection and a better control of the 
composition and microstructure of the sintered magnets (compared to commercial magnets). This 
work also takes benefit from a previous investigation performed during the thesis of B. Hugonnet who 
studied the role of different alloying elements (Al, Co and Cu) and annealing conditions on the magnetic 
performances. 

This chapter firstly recalls the fabrication process of sintered and Dy-diffused Nd-Fe-B magnets 
implemented in this thesis. For the reference sintered magnets, the experimental work covers 
operations from the milling of the starting alloy ribbons to the sintering of green compacts, followed 
by post-sinter annealing heat treatments for further coercivity enhancement. 

Specific attention has been paid to sample preparation for the grain boundary diffusion process (GBDP) 
performed on sintered magnets. Both sintered and diffused magnets have been analyzed by the 
combination of magnetic measurements, microstructural characterization and numerical modelling to 
support our interpretations. The different methods (characterization, simulation) used for the 
interpretation of results are described in the last part of this chapter. 

II.1. From ribbon to green compact 

In this work, Nd-Fe-B magnets are fabricated by the powder metallurgy route. In the obtained magnets, 
a maximum amount of the hard magnetic Nd2Fe14B phase is desirable, as well as a certain amount of 
Nd-rich phase during the sintering process for rapid densification, limited grain growth and coercivity 
development. Moreover, oxidation during the fabrication process has to be limited since it implies a 
composition shift in the Nd-Fe-B ternary phase diagram and can therefore lead to the formation of 
secondary phases (Nd1.1Fe4B4�U�� �v-Fe, Fe2B and Nd2Fe17) that are detrimental for both remanence 
(paramagnetic Nd1.1Fe4B4 phase) and coercivity (ferromagnetic �v-Fe, Fe2B and Nd2Fe17 phases). 

II.1.1. Strip-casting 

For conventional casting techniques, slow cooling rates can lead to the formation of the above 
�u���v�š�]�}�v�������v-Fe phase. The Nd concentration dependence of the critical velocity of solidification front 
above which the formation of Nd2Fe14B is kinetically favored over that of �v-Fe has been reported in [5]. 
���µ�Œ�]�v�P�����}�}�o�]�v�P�U���v-Fe �š�Œ���v�•�(�}�Œ�u�•���]�v�š�}���r-Fe: the latter is ferromagnetic and therefore couples to hard 
�u���P�v���š�]�����P�Œ���]�v�•�U���]�u�‰�o�Ç�]�v�P�����}���Œ���]�À�]�š�Ç�������P�Œ�������š�]�}�v�X���d�Z�������u�}�µ�v�š���}�(���r-Fe can be reduced by post-casting 
annealing, but the process is thus costly. A way to get rid of this problem is to use the strip-casting (SC) 
process with rapid cooling rates. This technique is implemented at CEA-LITEN and is similar to melt-
spinning, but with lower wheel speed (see Fig. 24). Nd-Fe-B is obtained in the form of platelet-like 
�(�o���l���•�l�Œ�]�����}�v�•���Á�]�š�Z�������š�Z�]���l�v���•�•���}�(���Z�µ�v���Œ�����•���}�(���…�u�X 
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Fig. 24: (Left) Schematic representation of the strip-casting method [108]. (Right) Fabrication of Nd-
Fe-B ribbons by the strip-casting process at CEA-LITEN. 

The typical microstructure of Nd-Fe-B ribbons obtained by SC consists of columns of Nd2Fe14B phase 
separated by Nd-rich lamellar phases (see Fig. 25). The interlamellar spacing between the Nd-rich 
phases is about a few micrometers and determines the grain size after milling of the strip-casted 
ribbons. This characteristic length depends mainly on the cooling rate and on the composition of the 
starting melt [109]. To conclude, the microstructure obtained by SC has three main advantages 
compared to conventional casting methods: the distribution of Nd-rich phases is fine and thus less 
�•���v�•�]�š�]�À���� �š�}�� �}�Æ�]�����š�]�}�v�U�� �š�Z���� �����•���v������ �}�(�� �r-Fe and the fine obtained grain size after milling; all lead to 
coercivity improvement. 

 

Fig. 25: Microstructure of Nd-Fe-B strip-casted ribbons fabricated at CEA-LITEN. 

The chemical composition of the strip-casted ribbons used in this work are given in Table 15. The first 
ribbons are used in Chapter III about magnetic characterization. The model alloy ribbons are used in 
Chapter IV/V �����}�µ�š���'�����W�X���d�Z���������v�}�u�]�v���š�]�}�v���d�Z���]�v���š�Z�����Œ�]�����}�v�•�[���v���u���•���Œ���(���Œ�•���š�}���š�Z�� amount of RE in 
the ribbon. 
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 Ribbons (Nd+Pr) Dy Fe B Al Co Cu (Ti+Zr) 
Chapter 

III 
/  30.8 0.5 Bal. 0.99 0.25 1 0.15 0.07 

Chapter 
IV/V 

TR30 29.5 0.5 Bal. 1 0 0 0 0 
TR32 31.5 0.5 Bal. 1 0 0 0 0 

TR31+Al 30.5 0.5 Bal. 1 2 0 0 0 
TR31+Co 30.5 0.5 Bal. 1 0 4 0 0 
TR31+Cu 30.5 0.5 Bal. 1 0 0 0.4 0 

Table 15: Chemical composition of the strip-casted ribbons used in the thesis. Amounts are given in 
wt.%. 

II.1.2. Hydrogen decrepitation to coarse powder 

After SC, hydrogen decrepitation is performed on the strip-casted ribbons to obtain coarse powder. 
The different phases pick up hydrogen and as an example, the Nd-rich phase reacts with hydrogen to 
form mainly NdH3. Decrepitation leads to the formation of micro-cracks in the ribbon and it is 
attributed to the volume increase of the phases during hydrogenation. 

Decrepitation of the ribbons has been performed with the device available at CEA-LITEN. This 
equipment works at room temperature and decrepitation takes a few minutes. The hydrogen picked-
up by the hard magnetic phase reduces its anisotropy field and has to be removed by a heat treatment 
at 200°C under vacuum after decrepitation [110]. Further heat treatment is performed at 550°C under 
vacuum to enable the transformation of NdH3 into NdH2, which is crucial for the next step of milling. 
The complete decomposition of NdH2 into Nd and H2 is performed during sintering. After decrepitation 
and desorption, the obtained coarse powder can be easily milled. 

II.1.3. Jet milling 

Jet milling has some advantages compared to conventional milling techniques. First, it is a faster 
process. Secondly, the powder is not in contact with machine components and the milling gas is inert, 
avoiding contamination of the powder. 

The jet mill used at CEA-LITEN is of the fluidized-bed type (see Fig. 26). The coarse powder is put into 
the jet mill. In the milling vessel, the powder is picked up by high velocity nitrogen gas jets. Interparticle 
collisions in the nitrogen jets result in the diminution of powder size. This low-energy milling enables 
to maintain the Nd-rich phase at the surface of hard magnetic grains, which is important to achieve 
homogeneous sintering. Furthermore, Hattori et al. [111] showed that the grain size after jet milling is 
of the same order of magnitude as the interlamellar spacing between the Nd-rich phases in the SC 
ribbon, guaranteeing an optimal distribution of Nd-rich phase and monocrystalline grains. 



II.Fabrication of Nd-Fe-B sintered magnets, characterization and numerical methods 

43 
 

 

Fig. 26: (Left) Nitrogen jet milling device used at CEA-LITEN. (Right) Typical grain distribution obtained 
after nitrogen jet milling at CEA-LITEN. 

A grain size of about 5 �…m is common in industry after nitrogen jet milling. As already mentioned in 
Section I.4.4.1, ultrafine grain size of around 1 �…m can nowadays be obtained after helium jet milling, 
because of the higher energy of helium jets. 

In this work, six jet-milled powders are used for the next fabrication steps. The first one (powder 1) 
comes from the ribbons (Nd,Pr)30.8Dy0.5FebalB0.99Al0.25Co1Cu0.15(Ti,Zr)0.07 (wt.%) and is used in Chapter III 
(see the associated grain distribution in Fig. 26). The five other powders (powders 2 to 6) come from 
the ribbons TR30, TR32, TR31 + Al, TR31 + Co and TR31 + Cu, respectively (see Table 15 and Table 16). 
These five powders are then mixed to obtain the desired composition studied in Chapter IV and V. The 
median diameters D50 of these six jet-milled powders are given in Table 16. 

Jet-milled powder Starting ribbons D50 (µm) 
1 (Nd,Pr)30.8Dy0.5FebalB0.99Al0.25Co1Cu0.15(Ti,Zr)0.07 4.95 
2 TR30 5.24 
3 TR32 5.14 
4 TR31 + Al 4.93 
5 TR31 + Co 5.19 
6 TR31 + Cu 4.90 

Table 16: Median diameters D50 of the six jet-milled powders used in this work. 

II.1.4. From powder to green compact 

The jet milled powder is transferred into a glove box under nitrogen atmosphere and is afterwards put 
into a cylindrical silicon mold of diameter 14 mm and of height 25 mm. In the glove box, the risk of 
pyrophoricity and oxidation of the powder is minimized. The silicon mold with the powder is then put 
into a plastic packet that is sealed under vacuum since further magnetic alignment and pressing steps 
are performed outside of the glove box. 

II.1.4.1. Magnetic alignment 

Magnetic alignment of the powder is performed in a Bitter coil. The alignment cycle is composed of 
consecutive magnetic pulses of opposite directions and of decreasing intensity. For each pulse, the 
magnetic field intensity and pulse duration are given in Table 17. This enables optimal orientation of 
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the powder, as well as its demagnetization (pulse 5). Indeed, if the powder remains magnetized, 
isostatic pressing will be less effective and the green compact will be too brittle. 

Pulse Mag/Demag Direction 
Magnetic field 
intensity (T) 

Pulse duration 
(ms) 

1 Mag + 7 5 
2 Mag - 6 5 
3 Mag + 4 5 
4 Mag - 0.5 5 
5 Demag + 6 5 

Table 17: Alternating pulses used for magnetic alignment of the powder. 

The grains of the powder are mainly monocrystalline. When a magnetic field is applied to 
monocrystalline grains, the easy axes are along the field direction. In the case of cylindrical green 
compacts, the easy axes are aligned along the revolution axis of the cylinder. 

II.1.4.2. Cold isostatic pressing 

The last fabrication step before sintering is the cold isostatic pressing of the aligned powder. The 
pressing pressure is mediated through a liquid medium (in our case, water) and is applied 
homogeneously from all directions. Such a pressing technique does not disturb the powder alignment. 
In our case, powder is compacted at a pressure of 1500 bars. 

After magnetic alignment and pressing, the green compact has a high degree of texture: grains are 
aligned with their easy axis of magnetization in the same direction. Moreover, the powder is 
consolidated into a mechanically stable green body. 

II.2. Sintering furnace 

The oriented and pressed green body is then further consolidated by liquid phase sintering. The latter 
consists in the melting of the Nd-rich phase to form a fully dense magnet. The optimal sintering 
temperature depends on several parameters: the composition of the green body, the powder grain 
size and the amount of impurities. This temperature should be high enough to enable the formation 
of enough liquid Nd-rich phase, as well as low enough to prevent abnormal grain growth. For instance, 
low density and larger grain size are both detrimental for the coercivity of the final magnet. 

The sintering furnace used in this work is the Lilliput from ECM Technologies (see Fig. 27). The sintering 
atmosphere is secondary vacuum: heat treatment starts when a vacuum of 9x10-5 mbar is reached. 
Moreover, quenching with argon can be performed to freeze the magnet microstructure into a 
thermodynamic metastable state. The furnace is also equipped with an integrated glove box, so that 
oxygen and water vapor contamination is minimized during the experiments. However, this 
contamination still needs to be better prevented during the displacement of the green body from the 
glove box of the lab to the one of the furnace. Moreover, the precise control of a homogeneous furnace 
temperature is also challenging during operations.   
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Fig. 27: Furnace used at CEA-LITEN for sintering, annealing and diffusion heat treatments. 

This furnace is also used to perform the annealing and the diffusion heat treatments. Both sintering 
and post-sinter annealing heat treatments are described in further detail in the following section. 

II.2.1. Sintering heat treatment 

Sintering is composed of two consecutive heat treatments. The first heat treatment is performed at 
750°C to remove the residual H2 from NdH2. The second one constitutes the real sintering and is done 
at 1050 and 1032°C for the magnets studied in Chapter III and IV/V, respectively. The thermal cycle 
used for sintering is detailed in Fig. 28. 

 

Fig. 28: Thermal cycle used for sintering. 

II.2.2. Post-sinter annealing (PSA) heat treatment 

After sintering, annealing is performed to enhance coercivity. This PSA consists in two distinct heat 
treatments. The first one is performed at 800°C such that the Nd-rich phase is in the liquid state. The 
second heat treatment is carried out between 470 and 600°C. The thermal cycle used for PSA is 
detailed in Fig. 29. The influence of PSA on magnetic properties is reported in Chapter IV. 
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Fig. 29: Thermal cycle used for PSA. 

Note also that different annealing heat treatments at low temperatures (470-600°C) can be tested on 
�š�Z���� �•���u���� �u���P�v���š�X�� �&�}�Œ�� �]�v�•�š���v�����U�� ���� �Z�����š�� �š�Œ�����š�u���v�š�� ���š�� �Z�]�P�Z���Œ�� �š���u�‰���Œ���š�µ�Œ���•�� �~�C�� �õ�ì�ì-920°C) after PSA 
enables the recovery of the magnetic properties obtained in the as-sintered state (see Section IV.1.1). 

II.3. GBDP on Nd-Fe-B sintered magnets 

II.3.1. Sample preparation for GBDP 

GBDP on Nd-Fe-B sintered magnets is performed in this work using Dy-Co eutectic and congruent 
melting compounds. Dy-Co binary alloys exhibit low melting points which is crucial to achieve efficient 
diffusion. Furthermore, the presence of Co in these alloys makes them less sensitive to oxidation and 
Co is also known to improve the thermal stability of magnetic properties and the Curie temperature of 
the diffused Nd-Fe-B magnets [112], [113]. The Dy-Co binary phase diagram is given in Fig. 30: 

 

Fig. 30: Dy-Co binary phase diagram. 
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Dy-Co alloys used for GBDP are the Dy66Co34 (at.%) eutectic alloy (TM=726°C) and the Dy63Co37 (at.%) 
congruent melting or intermetallic compound (TM=734°C). Both alloys are prepared by mixing Dy and 
Co in proper ratios and the ingots are obtained after melting at 850°C for 20 minutes. In a glove box, 
the ingots are then cut into flakes and further ground in a mortar. Experimentally, it has been observed 
that the grinding of the Dy63Co37 intermetallic compound was easier than that of the Dy66Co34 eutectic 
alloy. On the one hand, Dy63Co37 �����v���������P�Œ�}�µ�v�����š�}�������‰�}�Á�����Œ���•�]�Ì�����}�(�������}�µ�š���ñ�ì���…�u�X���K�v���š�Z�����}�š�Z���Œ���Z���v���U��
mm-sized particles are obtained after challenging grinding of Dy66Co34. 

The diffused Nd-Fe-B sintered magnets are cylindrical, with a thickness of about 5 mm and a diameter 
of about 10 mm. Before diffusion experiments, the magnets undergo chemical cleaning in a diluted 
nitric acid solution to remove oxidation layers at their surface. The diffusion source used for GBDP is 
an ink fabricated by mixing the Dy-Co powder with Terpineol. Mixing is performed so that the ink is 
composed of about 65 wt.% of Dy-Co powder for optimal viscosity. The ink is then painted on the two 
magnet faces that are perpendicular to the easy-axis (revolution axis) so that the magnet is diffused 
with 0.8 wt.% of Dy (see Fig. 31). 

 

Fig. 31: Sketch of GBDP direction. Diffusion is performed along the easy-axis. 

Since the intermetallic compound Dy63Co37 can be more easily ground, the deposition of the ink at the 
magnet surfaces is more homogeneous and diffusion is therefore more efficient than for the eutectic 
alloy Dy66Co34. As a consequence, the results presented in Chapter IV are mainly obtained for GBDP 
using the intermetallic Dy63Co37 compound as the diffusion source. 

II.3.2. Diffusion heat treatment 

The thermal cycle used for GBDP of Dy-Co is composed of two distinct heat treatments. The first one 
is performed at 250°C to remove the residual Terpineol at the diffused surfaces of the magnet. The 
second one is the real diffusion heat treatment and is done either at 870°C for 3h or at 920°C for 3 and 
12h. The temperature range and duration for GBDP are taken from literature [114] (good diffusion 
kinetics). The thermal cycle used for GBDP is detailed in Fig. 32. 
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Fig. 32: Thermal cycle used for GBDP. 

Further annealing heat treatment is required after GBDP of Dy-Co. In fact, a heat treatment around 
900°C leads to a microstructural state equivalent to the as-sintered one (see Section IV.2.1). The 
influence of this post-diffusion annealing (PDA) on magnetic properties is also studied in Chapter IV. 

II.4. Characterization methods 

II.4.1. Magnetic characterization 

Magnetic properties can be measured using a hysteresigraph system or an extraction magnetometer 
in closed- or open-circuit conditions, respectively. The differences between both types of 
measurement will be discussed in Chapter III. 

II.4.1.1. Closed-circuit measurement: hysteresigraph system 

�x Principle of hysteresigraph 

Magnetic properties are measured in closed-circuit with a hysteresigraph AMH-300-P of Laboratorio 
Elettrofisico (see Fig. 33). The sample is inserted within the airgap of a magnetic circuit (see Fig. 33) 
situated between two poles made of Fe-Co (JS = 2.3 T). The sample surfaces have to be machined in 
order to obtain plane surfaces and to avoid undesired air gap and mechanical stress between the 
sample and the poles. In fact, air gap or irregularities at the sample surface reduce the measured 
remanence. For example, in the case of our magnet compositions, an air gap of about 100 µm leads to 
a drop in remanence of 0.04 T, compared to the same measurement with no air gap. 
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Fig. 33: (Left) Hysteresigraph system used at CEA-LITEN for magnetic characterization in closed-circuit 
conditions. (Right) Sketch of the magnetic circuit in the hysteresigraph system. [115] 

The magnetic field H is generated by an electric current circulating in the winding coils. The yoke 
structure is large enough to avoid saturation and the distribution of the magnetic field H is assumed to 
be homogeneous between the Fe-Co poles. The magnetic field H and the polarization J are measured 
thanks to a planar drilled probe equipped with pick-up coils that allows accurate flux measurements. 
The sample is inserted inside the circular hole of the probe (see Fig. 34). It is not mandatory that the 
probe exactly fits the sample (which is cylindrical in our case). 

 

Fig. 34: (Left) Pick-up probe for calculation of H and J [115]. (Right) LJT-10 coil used for magnetic 
characterization in closed-circuit. 

As shown in Fig. 34, the probe is composed of three concentric coils. Two of them are designed for 
���}�u�‰���v�•���š�]�}�v���‰�µ�Œ�‰�}�•���X���d�Z�����u���P�v���š�]�����(�o�µ�Æ���”�����Œ�}�•�•�]�v�P���š�Z�����]�v�v���Œ�����}�]�o���Á�]�š�Z���E2 t�µ�Œ�v�•���~�����v�}�š���������•���^�����•���v�•�]�v�P��
area�_�•�����v���������o�]�u�]�š�]�v�P�����v�����Œ��������2 surrounding the sample is given by the summation of two terms: 

�Ô
L �0�6�#�,
E�0�6�#�6�ä�4�*   [Eq. 19] 

The first right-hand term represents the contribution of the sample magnetization which exhibits a 
polarization J and a geometrical section A. The second right-hand term comes from the magnetic field 
generated by the winding coils. In addition, the magneti�����(�o�µ�Æ���”C crossing the dashed area in Fig. 34 
between the two external coils of the probe is given by: 

�Ô�¼
L �0�¼�:�#�¼�6 
F �#�¼�5�;�ä�4�*  [Eq. 20] 
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Thus, the magnetic field H is determined by the measurement of the flux �”C. The turn numbers NC and 
N2, as well as the areas A2, AC1 and AC2 can be fitted in such a way that the contribution of the external 
field H is exactly compensated: 

�0�6�#�6 
L �0�¼�:�#�¼�6 
F �#�¼�5�; [Eq. 21] 

The above condition is fulfilled during the probe building and the flux �”T resulting from the difference 
of the two previously defined fluxes is then: 

�Ô�Í 
L �Ô
F�Ô�¼
L �0�6�#�,  [Eq.22] 

Taking into account the section A of the sample, the measurement of the flux �”T gives the value of the 
sample polarization J. The flux values are obtained from the time-integration of the voltage measured 
���š���š�Z�������}�]�o�����v���•���~�������}�Œ���]�v�P���š�}���&���Œ�������Ç�[�•���o���Á�•�X 

The hysteresigraph is considered to supply an absolute measurement of the polarization J. No 
correction is performed after the measurement of J. The sample section A is the only required 
parameter. The length of the sample is considered for calibration purpose (in order to adjust the 
current or voltage increment between two points of the J-H curve). 

In practice, the measuring coils have a non-zero thickness which corresponds to the minimal sample 
thickness. For non-homogeneous samples, it also leads to experimental values of J averaged over few 
millimeters along the sample height. For the LJT-10 coil used in this work (see Fig. 34), the minimal 
thickness is 2.5 mm. 

�x Magnetic properties determined using hysteresigraph 

The hysteresigraph system characterizes the demagnetization curve of the measured magnet. 
Magnetic properties such as the remanence BR, the coercive field Hcj and (BH)max can be determined, 
as well as Hknee (the value of the field for which magnetization value is 0.9MR). The ratio Hknee/Hcj is 
called the squareness or rectangularity. This ratio can be determined qualitatively by looking at the 
shape of the demagnetization curve (see Fig. 35). 

 

Fig. 35: Schematic representation of the rectangularity of a demagnetization curve. 

The more rectangularity is close to 1, the better it is for the magnet application. For instance, a 
deteriorated rectangularity can lead to irreversible magnetic flux losses, generally for applied field 
values higher than Hknee. 
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In this work, the sample size is generally around 5 mm (height) and 10 mm (diameter) after post-
sintering rectification. The input parameters are the sample thickness, diameter, weight and density, 
and measurements are performed at room temperature. Preliminary saturation under a pulsed 
magnetic field of 6 T is required and performed in the laboratory with a Bitter coil prior to each 
measurement. 

II.4.1.2. Open-circuit measurement: extraction magnetometer 

Magnetic properties are measured in open-circuit using a custom-built extraction magnetometer 
available at Institut Néel (CNRS) (see Fig. 36). Magnetization measurements can be performed in a 
magnetic field range from -10.5 to 10.5 T and at temperatures between 2 to 330 K. The required 
dimensions for the sample is a cylinder of maximum diameter 6 mm and of maximum height 6 mm to 
avoid signal saturation. 

A supraconducting coil generates the external magnetic field. The measurement of the voltage in the 
resistor determines the current value in the coil and thus the magnetic field value. The magnetization 
is determined from the flux variation caused by the sample displacement. When both desired 
temperature and magnetic field values are reached, the sample is moved between two detection coils 
in a homogeneous field area. The displacement causes a variation of the magnetic flux that induces an 

electromotive force (�A
L 
F
�×��

�×�ç
) at the terminals of the detection coils. The flux variation integrated on 

the sample displacement is proportional to the sample magnetization. The sensitivity of the extraction 
magnetometer is 5.10-6 A/m2. 

 

Fig. 36: Extraction magnetometer used at Institut Néel for magnetic characterization in open-circuit 
conditions. 

Magnetic characterization in open-circuit conditions suffers from the inconvenience that the internal 
field sensed by the sample is the applied external field reduced by the geometry dependent 
demagnetizing field. Consequently, a field correction must be applied to determine the internal field 
in open-circuit. In closed-circuit measurements, the sample is part of the magnetic circuit and there is 
therefore no demagnetizing field contribution to the internal field. A comparison of both techniques 
constitutes the basis of the work described in Chapter III. 

II.4.1.3. Measurement of the Curie temperature 

The Curie temperature is determined by measuring magnetization as a function of temperature. This 
measurement is done in open-circuit on another extraction magnetometer available at Institut Néel 
with a magnetic field range from -7 to 7 T and a temperature range from 200 to 800 K. The required 
dimensions for the sample is a cylinder of maximum diameter 4.4 mm and of maximum height 7 mm. 
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In this work, the samples are rectangular cuboids. Prior to each measurement, saturation of the sample 
at 6 T is performed. Then, magnetization is measured under an applied magnetic field of 1 T from 300 
K to 520 K by increments of 10 K and from 520 K to 720 K by increments of 5 K. The Curie temperature 
for each sample is determined at the inflexion point when plotting the second derivative of 
magnetization with respect to temperature as a function of temperature. 

II.4.2. Metallography 

For microstructural characterization, the samples first have to be embedded and properly polished. 
The embedding resin is prepared from a mixture of epoxy resin and hardener. Polishing steps are 
detailed in Table 18: 

Polishing step Polishing disk Solution 
Duration 

(min) 
Rotation 

speed (rpm) 
Applied force 

(N) 
1 SiC #1200 Water 2 250 15 

2 
Diamond 

�‰���•�š�����õ���…�u 
Water 8 300 20 

3 
Diamond 

�‰���•�š�����ò���…�u 
Ethanol 4 300 10 

4 
Diamond 

�‰���•�š�����ï���…�u 
Ethanol 4 250 10 

5 
Diamond 

�‰���•�š�����í���…�u 
Ethanol 2 200 10 

6 
Diamond 

�‰���•�š�����ì�X�î�ñ���…�u 
Ethanol 1 200 10 

Table 18: Polishing steps before microstructural characterization. 

II.4.3. Microstructural characterization 

II.4.3.1. Scanning electron microscopy (SEM) 

In SEM, a focused beam of high-energy electrons is directed towards the surface of a solid sample. The 
incident electrons are then decelerated in the sample by electron-sample interactions and their kinetic 
energy is dissipated as a variety of signals. These latter reveal information about the morphology, the 
chemical composition and the crystalline structure or orientation of the sample. SEM analysis is carried 
out under vacuum conditions to avoid collisions between the electron beam and air molecules. [116] 

Typical signals used for imaging include secondary electrons, backscattered electrons, 
cathodoluminescence, Auger electrons and characteristic X-rays. Each signal depends on the electron-
sample interaction volume and has its own imaging resolution. For example, signals due to secondary 
and Auger electrons show the best imaging resolution because they are generated in the smallest 
volume near the sample surface. Backscattered electrons are generated over a larger volume and thus 
result in images of intermediate resolution. Cathodoluminescence is generated over the largest 
volume and implies images with the poorest resolution. [116] 

In this work, investigations were carried out using a Gemini MERLIN from Zeiss. Samples were coated 
with silver paste to make them conductive. Two types of detectors were used during microstructure 
analysis. The first one is the backscattering spectrometry detector for which heavy elements appear 
brighter than light elements (atomic number contrast). The second one is the energy-dispersive X-ray 
spectroscopy detector which enables quantitative analysis of the chemical composition. 
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II.4.3.2. Energy-dispersive X-ray spectroscopy (EDX) 

EDX is an analytical technique that can be coupled with SEM. The EDX spectroscopy detects X-rays 
emitted from the sample when it is bombarded by an electron beam. During the bombardment, 
electrons are ejected from the sample surface. This leads to electron vacancies which are then filled 
by electrons from a higher energy state. An X-ray is emitted to balance the energy difference between 
the two states of the electron. [116] 

In addition to elemental characteristic X-ray peaks, an EDX spectrum also consists of a continuous 
Bremsstrahlung X-ray background. Bremsstrahlung (i.e. braking radiation) refers to the 
electromagnetic radiation produced by the deceleration of an electron when it is scattered by an atom. 
The kinetic energy of the incident electron beam is slowed down and its excitation energy is 
transformed into the energy of a Bremsstrahlung photon, satisfying the law of energy conservation. 
[117] 

The EDX technique enables qualitative analysis of the sample since each X-ray energy peak is 
characteristic of the element from which it was emitted. Elements from beryllium to uranium can be 
theoretically detected and the detection limit varies from 0.1 to a few atomic percent. Moreover, it 
allows quantitative analysis because the EDX detector measures the relative abundance of emitted X-
rays as a function of their energy. [116] 

II.5. Numerical methods 

In this work, micromagnetic simulations have been performed at the sub-grain scale on core-shell 
models using the FEMME software [65]. Furthermore, magnetization reversal has been simulated 
using the Flux 3D software in multigrain systems in either closed- or open-circuit conditions and with 
coercivity gradient. The two approaches are described in more detail in the following sections. 

II.5.1. FEMME software package 

FEMME is a commercial software supplied by the SUESSCO company and developed by T. Schrefl from 
Danube University Krems (Vienna, Austria) [65]. Basically, this code solves the LLG equation (see 
I.5.1.1) and gives, by an energy minimization procedure, the magnetization map in a ferromagnetic 
material for a given external field. 

Finite element micromagnetic simulations performed with FEMME consist of the following steps: 

- Creation of the model geometry and finite element mesh generation (Salome software) 
- Creation of input files (intrinsic magnetic properties, initial state for magnetization vectors and 

setting of simulation parameters like the external field direction and the field sweep time) 
- Computation of magnetization reversal (FEMME code) 
- Plotting of the simulated demagnetization curve 
- Visualization of magnetization reversal in the model (ParaView software) 

II.5.1.1. Mesh generation 

The Salome program [118] is used to draw and mesh the model geometry. It has to be remembered 
that the maximum mesh size should not exceed the exchange length of the considered material. In this 
work, tetrahedral meshes are used with a size ranging from 2 nm near grain boundaries to 10 nm in 
the grain core, respectively. Moreover, the model surfaces are meshed with 2-nm-sized triangles. After 
generation of the mesh, this latter is exported and further converted into FEMME input files. 
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II.5.1.2. Input files for FEMME and computation of magnetization reversal 

There are three other input files necessary to run a FEMME simulation. The first one defines the 
material parameters, the second one determines the initial state of magnetization in each grain and 
the third one gives the control parameters for the simulation. 

The material parameter file contains one line per material group, and 7 columns that correspond to 
the magnetic properties of the material. These latter are detailed in Table 19: 

Column Name Symbol Unit 

1 

Azimuthal angle of the 
uniaxial anisotropy 

axis with respect to z 
axis 

�} radians 

2 

Polar angle of the 
uniaxial anisotropy 

axis with respect to x 
axis 

�” radians 

3 
Uniaxial anisotropy 

constant 
K1 J/m3 

4 
Second anisotropy 
constant (unused) 

K2 J/m3 

5 Saturation polarization JS T 
6 Exchange constant A J/m 

7 
Gilbert damping 

constant 
�r /  

Table 19: Columns of magnetic properties in the material parameter input file. 

Similarly, the initial magnetization file has one line per material group, and 4 columns that are given in 
Table 20: 

Column Name Symbol Unit 
1 Line number l /  

2 
Unit vector of 

magnetization in x 
direction 

mX /  

3 
Unit vector of 

magnetization in y 
direction 

mY /  

4 
Unit vector of 

magnetization in z 
direction 

mZ /  

Table 20: Columns of the initial magnetization input file. 

The third input file contains all necessary parameters for the finite element calculation. A first section 
gives the problem name, the initial time and the final time of the simulation. An additional parameter 
specifies the amount of output files (time interval after which an output file is created). These 
intermediate output files are useful to follow the dynamics of the system. In addition, a second section 
�P�]�À���•���š�Z�����(�]�v�]�š�������o���u���v�š���u�}�����o���•�‰�����]�(�]���������š�����~�u���•�Z���•�]�Ì�����Y�•�X���d�Z�����o���•�š���•�����š�]�}�v�������š���]�o�•���š�Z�������Æ�š���Œ�v���o���(�]���o����
direction and value range. 
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When all input files are set, calculation of magnetization reversal is performed using the FEMME code. 
The LLG equation is resolved at each node of the mesh. The calculation gives a log-file with the time, 
the total magnetization in x, y and z direction and the external field along the x, y and z direction. The 
evolution of magnetization in the z direction as a function of the external field along the z direction 
can be plotted as the simulated demagnetization curve. 

II.5.1.3. Visualization of magnetization reversal 

Post-processing is performed using the ParaView software to observe magnetization reversal within 
the model. Images of the magnetization direction distribution can be represented for different external 
applied fields. The objective is to obtain a solid that is colored corresponding to the value of 
magnetization in z direction. In fact, magnetization vectors aligned along the +z direction and the -z 
direction correspond to red and blue domains, respectively (see Section II.5.1.4). 

II.5.1.4. Application case 

A simulation case of the demagnetization in a cubic grain system taken from the literature [119] has 
been reproduced using the FEMME software. The model consists of 8 Nd2Fe14B grains of dimensions 
100 x 100 x 100 nm3 that are separated by a GB phase of thickness 4 nm and of various nature (non-
magnetic and paramagnetic) and is represented in Fig. 37: 

 

Fig. 37: Finite element model consisting of 8 Nd2Fe14B grains separated by a 4-nm-thick GB phase. 
[119] 

The intrinsic magnetic properties for the hard magnetic phase and for the GB phase are given in Table 
21: 

Phase K1 (MJ/m3) JS (T) A (pJ/m) HA (T) Lex (nm) 
Nd2Fe14B 4.9 1.61 7.7 7.65 2.7 

Non-magnetic GB 0 0.001 0.077 0 440 
Paramagnetic GB 0 0.75 0.077 0 0.6 

Table 21: Intrinsic magnetic properties used in [119]. 

The simulations are performed with the influence of the demagnetizing field and without misalignment 
of the easy axes with respect to the external field. Tetrahedral meshes of 2 nm are used in the entire 
model. The coercivities obtained by our simulations are compared to the ones obtained in [119] in 
Table 22: 
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GB phase 
Hcj (T) - 

Simulation 
Hcj (T) - [119] 

Non-magnetic 5.6 (0°) 5.54 (0°) 
Paramagnetic 5.1 (0°) 4.79 (0°) 

Table 22: Simulated coercivities compared to the ones of the literature case. 

For the case with a paramagnetic GB phase, coercivity is overestimated in our simulation by about 0.3 
T. This comes from the fact that the meshing is not fine enough to take into account exchange 
interactions in this paramagnetic GB phase (exchange length smaller than 1 nm). The computation with 
1-nm-sized mesh elements is not possible with our informatic system. 

For the case with a non-magnetic GB phase, the simulated demagnetization curve exhibits one step 
and coercivity reaches about 5.6 T (see Fig. 38). The shape of the demagnetization curve and the 
calculated coercivity are both in good agreement with those from [119]. In this case, the mesh 
elements are largely smaller than the exchange length of the non-magnetic GB phase.  

 

Fig. 38: Simulated demagnetization curve obtained for the 8-g model with a non-magnetic GB phase. 

Furthermore, an image of the magnetization configuration is taken during magnetization reversal (see 
Fig. 39): 
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Fig. 39: Image of the magnetization configuration during magnetization reversal for a non-magnetic 
GB phase. 

The nucleation of reversed domains in the model with a non-magnetic GB phase occurs at the outer 
corners of the model. This is also in good agreement with the observations made in [119]. 

Bance et al. [36] provided an interesting assessment of the fact that reversal should occur near the 
edges in a cubic grain. They took into account that near the edge, the direction of the self-
demagnetizing field HD of the cube departs largely from the axial direction (i.e. the direction of 
magnetization). Combined with the axially oriented external field Hext, this gives rise to a total field that 
forms at a distance of 2.5 Lext from the cube border with a small angle (�\ ��� ��4-20°) with respect to the 
axial direction (depending on the cube size). Considering that nucleation starts at this distance and can 
be locally depicted by the Stoner-Wohlfarth model, they argued that the switching field Hsw is reduced 
with respect to the anisotropy field. As a consequence, the dependence of Hsw as a function of this 
angle is given by: 

�*�æ�ê
L �B�*�º  [Eq. 23.1] 

with �B
L 
c�…�‘�•�ð�6 �7�¤ 
E�•�‹�•�ð�6 �7�¤ 
g
�?�7 �6�¤

 [Eq. 23.2] 

For a cube of 100 nm, they determined a value of �\ ��close to 8° and a value of f around 0.7. Applied to 
the case simulated here for which HA = 7.65 T, this simple consideration leads to an expected switching 
field of 5.4 T. Although this result stands for an isolated cubic grain, the value obtained with the above 
model (5.54 T) is consistent. It is worth noting that the reduction of the grain coercivity with respect 
to the anisotropy field is, in this case, only correlated to the demagnetizing field and not to a possible 
degradation of the intrinsic properties (K1). 

This preliminary study made with the micromagnetic model indicates that the description of nanoscale 
grain boundaries requires very low mesh size and also that reversal of hard ferromagnetic grains should 
be simulated with very refined elements that are smaller than the exchange length (typically 3 nm) 
near grain boundaries. Such calibration of the meshing and FEMME set up is relevant for further 
simulations of Dy-diffused grains performed in Chapter IV. 

II.5.2. Flux 3D software 

While the FEMME code allows solving the LLG equation taking into account exchange interactions at 
the nanometric length scale, the simulation using FEMME of large systems consisting of several 
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thousand of micrometric grains is still beyond the capacity (memory) of current computers. 
Nevertheless, magnetostatic interactions are of some importance in polycrystalline systems made of 
hard ferromagnetic grains and should also be described for a better understanding of coercivity in hard 
magnets. Actually, in high-performance sintered Nd-Fe-B magnets, grains are mostly exchange-
decoupled and magnetization reversal spreads over the whole polycrystalline material by switching of 
individual grains. Basically, the polarization of a given grain is reversed when the local magnetic field 
exceeds the grain coercivity [120]�t[122]. As a consequence, a pattern of reversed and non-reversed 
grains that are magnetostatically coupled develops as long as demagnetization proceeds. The spatial 
homogeneity of this discrete pattern, governed by the minimization of the magnetostatic energy, is 
investigated in Chapter III with simulations performed using a standard finite element software and 
according to an original set-up described below. 

II.5.2.1. Polycrystalline model  

In this approach, the polycrystalline magnet material is depicted as a regular array of identical cubic 
grains of 10 µm width. Each grain is assumed to be homogeneously polarized along the axial direction 
and can switch from the initial positive value MS to the negative value -MS. The magnetostatic problem 
is solved by a finite element (FE) commercial software (Flux 3D, Altair) monitored by a specific Python 
script. Each grain is meshed with 64 quadratic cubic elements refined near the edges and corners (see 
Fig. 40). In order to reduce the model size, three symmetry planes (x=0, y=0 and z=0) are considered, 
allowing only 1/8 of the total volume to be actually simulated. In the following, the simulations are 
labelled with the number of grains used in each direction of the reduced model, i.e. nx x ny x nz. 

The Flux 3D code is used to solve the partial differential equation system for standard magnetostatic 
problems in which the induction B and the magnetic field H are the unknowns: 

�@�E�R���$�,�&
L �r and �N�K�P���*�,�,�&
L �,�& [Eq. 24 and 25] 

The relation between the two vectors depends on the material. Inside the volume of ferromagnetic 
grains, the relation takes into account the contribution of the polarization J while this term disappears 
in non-magnetic materials (air): 

�$�,�&
L �Á�4�*�,�,�&
E���,�& [Eq. 26] 

In the polycrystalline model, the polarization J of hard grains is only allowed to switch and should be 
considered as an input data for each sub-iteration. The problem is solved into a domain comprising the 
magnet, and in some cases the structure surrounding the magnet (closed-circuit configuration) and a 
���}�v�š���]�v�]�v�P�� �^���}�Æ�_�� �}�(�� ���]�Œ�� ���}�v��������by some specific elements that take into account the possible long 
range extension of the magnetic field in the magnet environment (so-�����o�o�������^�]�v�(�]�v�]�š�������}�Æ�_�•�X���t�Z���v������
ferromagnetic structure is present, the polarization inside the material is given by: 

�,�&
L �Á�4�ä�ï
k�*�,�,�&
o�ä�*�,�,�& [Eq. 27] 

The magnetic susceptibility �F may be a function of the magnetic field, tabulated for the selected 
materials. 
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Fig. 40: (Left) Example of a 9x9x9 array of cubic grains. (Right) Detail of a cubic grain meshed with 64 
cubic quadratic elements. 

Magnetization reversal occurs in a given grain when the projection of the local magnetic field H along 
the z-axis, averaged on the grain volume, exceeds the coercive field HC assigned to the grain. A 
Gaussian distribution of coercivity is ascribed to the individual grains of the array. The mean value <HC> 
and the standard deviation �VHc are fitted to the experimental demagnetization curves. At the beginning 
of the simulation, all the grains are polarized along the +z direction yielding the remanent state reached 
after saturation. An external magnetic field is progressively applied on the magnet by small increments 
�' H in the opposite direction. For each increment, the reversal condition is tested on all grains and, 
when fulfilled, the polarization of the grains is switched. Since each grain reversal changes the overall 
magnetostatic field, the test is repeated until achieving a stable magnetization pattern. Then, the next 
step with a new field increment is performed considering the updated grain magnetization pattern. 
Fig. 41(a) is an example of a demagnetizing curve simulated for an array composed of 10 x 10 x 5 grains. 
Increments of about 10 kA/m are used and some of them have been labelled in Fig. 41(a) according to 
their step number. Fig. 41(b) shows the evolution of the magnetostatic energy computed during the 
stabilization loop Witer for these selected steps. The results are normalized by the value of the 
magnetostatic energy calculated at the beginning of the loop W0. It can be observed that the 
magnetization always converges to a steady value corresponding to an energy minimization. 
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Fig. 41: (a) FE simulation of the demagnetization of a polycrystalline array (10 x 10 x 5 cubic grains) 
with inputs indicated in the insert. Each point (open red circle) corresponds to a sub-iteration 

performed into the principal steps defined by the increment value of �4H. (b) For some principal steps 
(labelled by their number), evolution of the ratio Witer/W0 (current energy/energy at the beginning of 

the step) during the stabilization loop. 

II.5.2.2. Comparison with results obtained by an analytical method 

The accuracy of FE simulation can be checked by comparing the results with those obtained by the 
analytical method based on the dipolar approximation [120] (see Fig. 42). An open-circuit configuration 
(i.e. an isolated magnet) should be considered in this case since the dipolar approximation is strictly 
valid when the flux lines coming from the grain assembly is not influenced by any other neighboring 
magnetic material. In the dipolar approximation, each grain is considered to be a point dipole creating 
a magnetic field in free space that is a function of the position r and of the moment carried by the 
dipole m: 

�*�,�,�&
L
�7�:�à�,�,�,�&�ä�å�&�;�?�å�. �à�,�,�,�&

�8�� �å�1
 [Eq. 28] 

The magnetic field produced at any point of the array is then computed by the summation of each 
dipolar field. The two methods (FE and analytical) give very consistent results for the open-circuit 
configuration as shown in Fig. 42 (the case corresponds to the data published in [120]). 
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Fig. 42: Comparison of the demagnetizing curves obtained numerically by the dipolar approximation 
(dotted line) and by the FE method implemented in this work (open red circles). 

II.5.2.3. Closed-circuit configuration model 

Closed-circuit configurations refer to cases where the magnet is working in �����^�•�}�o�]���_���u���P�v���š�]�������]�Œ���µ�]�š�X��
The hysteresigraph system used for magnet characterization forms a particular closed-circuit. The flux 
lines coming from the sample are channeled by the hysteresigraph yoke and by the pole pieces that 
are made of a non-linear magnetic material. For these reasons, a FE method has been implemented in 
this work for the closed-circuit simulation considering the following hysteresigraph features: (i) the 
external field is created by a coil excited by an electric current and wound around a ferromagnetic 
armature positioned laterally from the sample, (ii) the flux is channeled towards the sample thanks to 
vertical arms and planar poles having a large area compared to the sample and (iii) the magnetic field 
is determined in the mid-plane of the sample by a measuring coil. Although simple, this geometrical 
model gives a sufficient description of the hysteresigraph system (compare Fig. 43 with Fig. 33). 

Fig. 43 illustrates the 3D geometrical model simulated by FE. The sample is located between two 
symmetrical prismatic-shaped pole pieces. The yoke is roughly represented by a rectangular armature. 
Two electrical coils are wound around the external arms of the yoke. The external field applied on the 
sample is proportional to the electrical current. The current amplitude is selected in order to cover the 
range of demagnetizing field. Some details regarding the mesh are visible in Fig. 44. The size of the 
mesh elements in the parts surrounding the magnet are gradually growing from the grain dimension 
to a millimetric length scale. Eventually, the model comprises about 100 000 elements. The 
computation time is of the order of 10 hours on a standard 6-core-workstation (DELL Windows 10). 
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Fig. 43: 3D geometrical model used for the simulation in closed-circuit configuration (hysteresigraph 
measurement system). 

 

Fig. 44: Details on the mesh at the contact area between the polycrystalline magnet and the pole 
piece of the hysteresigraph system. 

All materials considered in the following simulation are assumed to follow a linear magnetic behavior 
(i.e. they exhibit a constant susceptibility and no saturation). However, it has been reported that 
localized saturation of the pole piece may occur for elevated applied field values and, in some cases, 
can affect the results [115]. A simulation run has been performed with a non-linear model applied to 



II.Fabrication of Nd-Fe-B sintered magnets, characterization and numerical methods 

63 
 

the pole piece (the magnetization curve of Fe-Co 17% is available in the material database of Flux 3D). 
The demagnetizing curves are shown in Fig. 45. It has been found that linear and non-linear models 
give similar results. Due to the large increase in the computation time for the non-linear model, further 
�•�]�u�µ�o���š�]�}�v�•���Z���À�����������v���‰���Œ�(�}�Œ�u�������Á�]�š�Z���š�Z�����o�]�v�����Œ�����‰�‰�Œ�}�Æ�]�u���š�]�}�v�X���d�Z�����•�u���o�o�����]�(�(���Œ���v���������}���•�v�[�š�����(�(�����š��
the main conclusions of the analysis. It can also be noticed that the simulated demagnetizing curve in 
closed-���]�Œ���µ�]�š�����}�v�(�]�P�µ�Œ���š�]�}�v���]�•���u�}�Œ�����^�Œ�����š���v�P�µ�o���Œ�_���š�Z���v���š�Z�������]�•�š�Œ�]���µ�š�]�}�v���}�(���P�Œ���]�v�����}���Œ���]�À�]�š�]���•�X�������•�]�����o�o�Ç�U��
the demagnetization starts when the applied field reaches the lowest grain coercivity and 
magnetization reversal abruptly propagates within the whole sample. This result points out the fact 
that the coercivity of the polycrystalline sample is much lower than the average value of the grain 
coercivity. This finding will be analyzed in more detail in Chapter III. 

 

Fig. 45: Simulation of the demagnetization of a polycrystalline sample in closed-circuit 
(hysteresigraph system) with linear and non-linear magnetic behavior assumptions for the pole 

pieces. The simulated curves have been fitted to the experimental one by an appropriate choice of the 
grain coercivity distribution parameters. 

II.5.2.4. Limitation of the polycrystalline model 

The polycrystalline model should be seen as a very simplified representation of sintered magnets. First, 
the spatial discretization of the cubic grains is not fine enough to capture the demagnetizing field 
details near grain boundaries, at a distance for which nucleation occurs. The switching field of grains 
is therefore considered as an input data disregarding details such as local orientation effects pointed 
out in the Stoner-Wohlfarth model. The second model limitation comes from the number of grains 
that can be simulated (up to 4000). However, in this approach, the grain size is not really a relevant 
factor since dipolar effects are averaged over the grain volume, making the results identical whatever 
the cube dimension. Consequently, macroscopic magnets are simulated by 3D arrays of arbitrary sized 
grains, the aspect ratio of the array being the same as the magnet. This allows the self-demagnetizing 
field to be correctly described at both magnet and grain size. Obviously, the weight of a cubic grain 
reversal in the simulation is considerably higher than the one of a real grain, making highly stepped J-
H curves (see Fig. 45). 
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III. Coercivity of polycrystalline hard magnets 

III.1. Introduction 

As pointed out in Chapter I, the demagnetization of hard ferromagnets is intricately dependent on 
their microstructure. In high-performance sintered Nd-Fe-B magnets, grains are mostly exchange-
decoupled and it is widely accepted that magnetization reversal spreads over the whole polycrystalline 
material by switching of individual grains. At the grain scale, the polarization of a given grain is 
considered to reverse abruptly when the local magnetic field exceeds the grain coercivity. This latter 
implies nucleation of reversal at nano-sized defects localized near grain boundaries. The coercive field 
also depends on the chemical composition and phase distribution of the magnet. The relationship 
between coercivity and the anisotropy field is thus strongly microstructure-dependent and can be 
partially clarified thanks to micromagnetic models. Within this scope, Chapter IV will present numerical 
simulations of magnetization reversal in Dy-diffused magnets performed with the FEMME software. 

However, at the micrometric scale, the spatial homogeneity of the grain reversal pattern is mainly 
governed by the minimization of the magnetostatic energy and cannot be, in practice, studied with the 
micromagnetic approach due to the limitation in the model size. These magnetostatic effects are of 
importance since they could lead to some misinterpretation of the demagnetization curves usually 
measured on magnets for design purposes [121], [122]. More precisely, attention has to be paid to the 
correction applied to open-circuit measurements to extract the intrinsic demagnetization curve. A 
difficulty rises from the demagnetizing field shift that is inherent to this kind of experimental technique 
and has to be removed from raw data. The first part of this chapter investigates the demagnetizing 
field in hard ferromagnets and its link with the grain reversal pattern in order to propose an updated 
protocol for the treatment of open-circuit measurements. To assess the demagnetizing field 
correction, the polycrystalline model introduced in Section II.5.2.1 is implemented. This original 
approach helps the quantitative understanding of the effects of grain reversal pattern in two different 
experimental configurations (open- and closed-circuit) widely used for coercivity measurement. Then, 
in a last part, the polycrystalline model is used to analyze the reversal patterns in non-homogeneous 
magnets, represented in that case by a duplex magnet. The objective is to anticipate the analysis of 
magnets with coercivity gradient that are obtained after Dy diffusion and detailed in Chapter IV and V. 

III.2. Study of collective magnetostatic effects: experimental 

approach 

III.2.1. Model for the demagnetization field correction 

III.2.1.1. The usual demagnetizing field correction and validity 

For ferromagnetic and ferrimagnetic materials, the internal field felt by the material is the summation 
of the external applied field and of the demagnetizing field (Hint = Happ + HD). The magnetization M is 
the source of the demagnetizing field, usually given by: 

�*�½
L 
F�0�/  [Eq. 29] 

N is a geometrical demagnetization factor and the slope of the magnetization variation with Happ is 
1/N. Apart from the special case of a sphere for which the demagnetization factors are constant and 
identical along all directions (Nx = Ny = Nz = 1/3), the values of N evolve spatially in the volume for a 
general shaped body. For parallelepipeds, analytical expressions and tables are available to supply 
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accurate values of N for a wide range of shape ratios (for instance, Aharoni [123] gave analytical 
expressions for a = b �B h). For a regular solid with a square section (a = b = 1) and a height h equal to 
0.5, the spatial distribution of Nz is plotted in Fig. 46. These values have been computed by the finite 
element method presented in Chapter II. The values of Nz lie within a range having a minimum of 0.23 
and a maximum of 0.70. The averaged values of Nz are also reported in Fig. 46 for five XY planes located 
at different heights. In the mid-plane, the averaged value is 0.47, lower than the value averaged over 
the whole body (0.5). The averaged value of Nz in the mid-plane is generally used for fluxmetric 
corrections ([Eq. 29]) in the case of a magnetization oriented along the axial direction. 

 

Fig. 46: Map of demagnetization factors Nz in XY planes at different heights (z) obtained by FE 
computation for a parallelepiped (a = b = 1 and h = 0.5). The values given below each map correspond 

to an average value in the plane. 

The equation [Eq. 29] constitutes the usual demagnetizing field correction that must be applied to 
open-circuit measurements to obtain the real demagnetization curve. For closed-circuit 
measurements, no correction is needed since the sample is part of the magnetic circuit and there is no 
demagnetizing field contribution (N=0). 

One of the assumptions for the validity of the above equation is that the magnetization generates 
surface magnetic charges (and no volume charges) that give a homogeneous contribution to HD inside 
the considered material. In soft magnetic materials, the magnetization state is homogeneous at a 
higher scale than that of magnetic domains and only surface charges contribute to HD: the usual 
demagnetizing field correction is valid. However, in hard magnets, the magnetization state is 
heterogeneous owing to the discrete switching of exchange-decoupled grains. Both surface and 
volume charges contribute to HD and the usual demagnetizing field correction is therefore not 
applicable to hard magnetic materials. 

As a consequence, another demagnetizing field evaluation is required for hard magnets. This is 
important in the perspective of defining experimental protocols to compare the properties of magnets 
measured in open-circuit to those of other magnets measured in closed-circuit. 

III.2.1.2. The demagnetizing field model (cavity field concept) 

With the help of the cavity field concept, the demagnetizing field in hard magnets can be expressed 
in terms of three contributions [53]: 

�*�½
L �*�½
�æ�è�å�Ù
E�*�½

�Ö�Ô�é
E�*�½
�Ú�å�Ô�Ü�á [Eq. 30] 

The first contribution is the usual one coming from surface magnetic charges. The second and third 
contributions are due to volume charges. They are understood by considering that individual grains 
are virtually removed from inside matter, as schematized below in Fig. 47: 
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Fig. 47: Schematic representation of a heterogeneous granular hard magnet (cavity field concept). 

The second contribution represents the field created in the thus-created cavity. The third contribution 
�Œ���‰�Œ���•���v�š�•���š�Z�����P�Œ���]�v�[�•���•���o�(-demagnetizing field. 

The first term is expressed as �*�½
�æ�è�å�Ù
L 
F�0�/ . The second term is given by �*�½

�Ö�Ô�é
L �0�Ú�/ , where Ng is 
the individual grain demagnetizing factor (taken as 1/3 for spherical grains). The third term is expressed 

as �*�½
�Ú�å�Ô�Ü�á
L 
F�0�Ú�/ �Ì and depends on the spontaneous magnetization MS and not on the mean 

magnetization M, because reversal proceeds by successive discrete switching of individual grains. Note 
that �� �H

�q�s�p�d and �� �H
�a�_�t do not cancel out, the slope of the magnetization variation is therefore affected 

and amounts to 1/(N-Ng). This constitutes the so-�����o�o������ �^�Z���Œ���������u���P�_�����}�Œ�Œ�����š�]�}�v�X���/�š���]�•���Á�}�Œ�š�Z���v�}�š�]�v�P��
that this is true when �� �H

�q�s�p�d dominates �� �H
�a�_�t, leading principally to homogeneous reversal. 

Alternatively, when �� �H
�a�_�t dominates �� �H

�q�s�p�d, magnetization reversal occurs mainly via collective 
processes. Considering that reversal may have intermediate character between fully homogeneous 
(dependence on M) and fully collective (dependence on MS), a new general expression for the cavity 
field may be defined as follows [124]: 

�*�½
�Ö�Ô�é
L �:�s
F�Ù�;�Ú�Û�â�à�0�Ú�/ 
E�Ù�Ú�Ö�â�ß�0�Ú�/ �Ì [Eq. 31] 

The parameter �D gives the weight of collective effects in the cavity field (�D=1 when fully collective, �D=0 
when fully homogeneous). The parameters �Ehom and �Ecol are phenomenological and represent the 
strength of the cavity field for homogeneous and collective reversal, respectively. The total 
demagnetizing field becomes: 

�*�½
L 
F�0�/ 
E���:�s
F�Ù�;�Ú�Û�â�à�0�Ú�/ 
E�Ù�Ú�Ö�â�ß�0�Ú�/ �Ì 
F �0�Ú�/ �Ì [Eq. 32] 

The slope of the magnetiza�š�]�}�v���À���Œ�]���š�]�}�v���]�•�����o�•�}�����(�(�����š���������v�����]�•���v�}�Á���í�l�E�[���Á�]�š�Z�W 

�0�ñ
L �0 
F�:�s
F�Ù�;�Ú�Û�â�à�0�Ú [Eq. 33] 

If the parameter �Ehom is taken equal to 1, for �D=1, the 1/N slope of the usual demagnetizing field 
correction is recovered. For �D=0, the 1/(N-Ng) �•�o�}�‰�����}�(���š�Z�����^�Z���Œ���������u���P�_�����}�Œ�Œ�����š�]�}�v���]�•���Œ�����}�À���Œ�����X 

The reduction in coercivity due to the demagnetizing field (compared to the ideal case for which 
coercivity corresponds to the nucleation field HN of the grain, HN being identical for all grains), by taking 
M=0 in [Eq. 32]), amounts to: 

�� �*�Ö
L 
k�Ù�Ú�Ö�â�ß
F �s
o�0�Ú�/ �æ [Eq. 34] 

�d�Z�����š�Z�Œ�������u���v�š�]�}�v�����������u���P�v���š�]�Ì�]�v�P���(�]���o�������}�Œ�Œ�����š�]�}�v�•���~�µ�•�µ���o�U���^�Z���Œ���������u���P�_�����v�����Á�]�š�Z�����}�o�o�����š�]�À�������(�(�����š�•�•��
are schematically represented in Fig. 48: 



III.Coercivity of polycrystalline hard magnets 

67 
 

 

Fig. 48: Schematic representation of the demagnetizing field contributions to magnetization reversal. 
Black line: reversal in the absence of any demagnetizing field effects. (Left graph) Dashed green line: 
usual demagnetizing field correction (�r = 1 and �Ehom = 1). (Middle graph) Dashed red line: so-called 

hard demag correction applicable in the absence of collective effects (�r = 0 and �Ehom = 1). (Right 
graph) Dashed blue line: intermediate correction when collective effects are considered (both �r and 

�Ehom �B 0). [124] 

The above model that takes into account collective effects in the demagnetizing field expression will 
be used in the following sections for the interpretation of demagnetization curves measured in both 
closed- and open-circuit conditions. 

III.2.2. Experimental protocol and results 

The magnets studied here are prepared by the powder metallurgy route described in Chapter II. The 
green compacts of composition (Nd,Pr)30.8Dy0.5FebalB0.99Al0.25Co1Cu0.15(Ti,Zr)0.07 (wt.%) are sintered at 
1050°C for 4 h to produce the final magnets. No post-sinter annealing is performed, so that coercivity 
is limited to the order of 1 T to allow measurements in both closed- and open-circuit conditions. 
However, even if the grain boundary phase is not optimally distributed around grains since annealing 
has not been performed, grains are still assumed to be mainly exchange-decoupled thanks to the 
presence of alloying elements that form non-magnetic phases. 

After sintering, the obtained magnets have the shape of cylinders, 10 mm in diameter and 15 mm in 
height. From these magnets, three cylinders of diameter �” = 6 mm are cut with different thicknesses: 
t = 3, 4 and 5 mm. Hereafter, the samples will be referred to as S1, S2 and S3, respectively. Note that 
the dimensions of the three samples are chosen such that they could be measured in both closed- and 
open-circuit devices. The open-circuit measurements are performed on the custom-built extraction 
magnetometer under a maximum applied of 6 T. The closed-circuit measurements are carried out on 
the hysteresigraph system following saturation under a pulsed magnetic field of 6 T. The 
measurements are performed at 292 K on samples S1 and S2 and at 300 K on sample S3. 

The hysteresis curves measured for the three samples using both the hysteresigraph system (red solid 
curve, slope: 1/�� �c�v�n

�a�j ) and the extraction magnetometer (black solid curve, slope: 1/�� �c�v�n
�m�n) are shown 

in Fig. 49. Furthermore, the open-circuit measurement with the usual demagnetizing field correction 
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(dashed blue curve, slope: 1/N) and the open-circuit measurement corrected to be parallel to the 
closed-���]�Œ���µ�]�š�����µ�Œ�À�����~�P�Œ�����v���•�}�o�]�������µ�Œ�À���U���•�o�}�‰���W���í�l�E�[) are also represented. 

 

Fig. 49: (a) Second and third quadrants of the hysteresis loop for sample S1 of thickness 3 mm. Solid 
black curve: raw open-circuit measurement without demagnetizing field correction (slope: 1/�0�Ø�ë�ã

�â�ã). 
Dashed blue curve: open-circuit measurement with the usual demagnetizing field correction (slope: 
1/N). Green solid curve: raw open-circuit measurement corrected to be parallel to the closed-circuit 
�}�v�����~�•�o�}�‰���W���í�l�E�[�•�X���Z�������•�}�o�]�������µ�Œ�À���W�����o�}�•����-circuit measurement (slope: 1/�0�Ø�ë�ã

�Ö�ß). Short dotted lines: 
tangents at H=Hc for the closed-circuit measurement and for the open-circuit measurement corrected 
�Á�]�š�Z���E�[�X���/�v�•���š�W�����}�u�‰�o���š�����Z�Ç�•�š���Œ���•�]�•���o�}�}�‰���(�}�Œ���•���u�‰le S1. (b) Same data for the sample S2 of thickness 4 

mm. (c) Same data for the sample S3 of thickness 5 mm. [124] 

The experimental magnetic characteristics determined from the above hysteresis loops are collected 
in Table 23. MS is the spontaneous magnetization taken as the magnetization measured under 6 T in 
open-circuit. �� �a

�a�j and �� �a
�m�n are the closed- and open-circuit measured coercive fields, respectively. 

�¿�� �a
�r�ä�_�ä is the difference in coercivity between the closed- and open-circuit measurements due to 

thermal activation effects [59]. �� �a
�ñ�a�j represents the closed-circuit coercive field corrected for thermal 

activation effects (taking open-circuit measurements as reference). �¿�� �a
�c�v�n is the difference between 

the closed- and open-circuit coercive fields after thermal activation correction. �� �c�v�n
�m�n and �� �c�v�n

�Ö�ß are the 
inverse of the experimental slope determined at H = Hc for the open- and closed-circuit measurement, 
respectively. 
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Sample 
t 

(mm) 
�û �� 

(kA/m) 
�ö��

���� 
(kA/m) 

�ö��
����  

(kA/m) 
�¿�ö��

���ä�	�ä 
(kA/m) 

�ö�"������ 
(kA/m) 

�¿�ö��
�
� �� 
L

�ö�"������ 
F
�ö��

���� ��(kA/m) 
�ü�
� ��

����  �ü�
� ��
����  

S1 3 1151 (1) 692 (1) 650 (1) 20 672 22 (2) 0.42 (1) 0.015 (1) 

S2 4 1165 (1) 638 (1) 599 (2) 20 618 19 (3) 0.35 (1) 0.014 (1) 

S3 5 1154 (1) 650 (2) 591 (3) 20 630 39 (3) 0.30 (1) 0.015 (1) 

Table 23: Experimental magnetic characteristics of samples S1, S2 and S3 (same diameter �” = 6 mm). 

The lower coercivity of sample S2 (as measured in closed-circuit) comes from the fact that S2 was cut 
from a magnet made in a different run than S1 and S3. This difference in coercivity has no impact on 
the current analysis since the differences between open- and closed-circuit measurements on a given 
magnet are studied here. 

For all three magnets, the coercive field at which magnetization vanishes is smaller in open-circuit 
measurements than in closed-circuit ones. However, a fully quantitative comparison between coercive 
field values is not possible, due to the different contributions of thermal activation to the measured 
coercivity in both conditions. For instance, assuming that the magnetic viscosity coefficient S�† is 
constant, two loops measured at two different characteristic times t1 and t2 are shifted in field by 
S�†Ln(t1/t 2). For Nd-Fe-B magnets with a coercive field around 1 T, the magnetic viscosity coefficient is 
estimated to 4 kA/m [59]. For closed-circuit measurements with the hysteresigraph, the characteristic 
time is t1 �C 1 s and for open-circuit measurements, it amounts to t2 �C���í�ì�ì���•�X�����•�������Œ���•�µ�o�š�U���š�Z�����Z�Ç�•�š���Œ���•�]�•��
loops measured in closed-circuit are shifted towards higher fields with respect to those measured in 
open-circuit, by approximatively 20 kA/m (corresponding to �¿�� �a

�r�ä�_�ä in Table 23). For the purpose of 
comparing demagnetizing field effects during open- and closed-circuit measurements, this field is 
subtracted from the closed-circuit coercive field and gives �� �a

�ñ�a�j, as shown in Table 23. After thermal 
activation correction, the experimental difference in coercivity �¿�� �a

�c�v�n between closed- and open-
circuit measurements reaches up to 6.6 %. 

Moreover, the inverse of the open-circuit experimental slope �� �c�v�n
�m�n is systematically smaller than the 

demagnetizing factor N (calculated from [125], see Table 24). This leads to the overcorrection (also 
referred as overskewing in literature) observed on all demagnetization curves when applying the 1/N 
usual demagnetizing field correction (dashed blue curves). It again highlights the fact that the usual 
correction is not applicable to the case of hard magnets. 

III.2.3. Analysis and model improvement 

The calculated magnetic characteristics determined from the above hysteresis loops are given in Table 
24. N is the open-circuit calculated demagnetizing factor. �� �c�v�n

�m�n 
F �� �c�v�n
�a�j  is the difference between the 

inverse of the experimental slope determined at H=Hc for the open-circuit measurement and the one 
determined for the closed-circuit measurement. �=�c�v�n

�m�n represents the contribution of collective reversal 

during open-circuit measurements. �>�a�m�j is a phenomenological parameter for collective reversal and 
is taken as 0.5. �¿�� �a

�a�_�j�a is the calculated difference between the closed- and the open-circuit coercive 
fields. 
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Sample N �ü�
� ��
���� 
F �ü�
� ��

����  
¹ �
� ��
����  
º������ �¿�ö��

���	���� (kA/m) 

S1 0.46 0.40 (1) 0.82 0.5 34.5 

S2 0.40 0.34 (1) 0.82 0.5 35.0 

S3 0.35 0.29 (1) 0.82 0.5 34.6 

Table 24: Calculated magnetic characteristics of samples S1, S2 and S3. 

The above experimental results illustrate the fact that differences in demagnetizing field effects must 
be considered when comparing closed- to open-circuit measurements. Remembering that �� �H

�q�s�p�d favors 
homogeneous reversal whereas �� �H

�a�_�t favors collective reversal, the closed-circuit configuration should 
exhibit a fully collective reversal since �� �H

�q�s�p�d = 0 in this condition. Under this hypothesis, the closed-
circuit demagnetizing field slope 1/�� �c�v�n

�a�j  should be infinite. This slope represents the distribution in 

coercive field values of individual grains. This intrinsic distribution should also affect the slope 1/�� �c�v�n
�m�n 

that characterizes the open-circuit measurement. It is eliminated in the difference �� �c�v�n
�m�n 
F�� �c�v�n

�a�j 
L
�� �� �c�v�n

�ñ . This corresponds to the green curves in Fig. 49 obtained by applying a slope correction 
(1/�� �� �c�v�n

�ñ ) to open-circuit curves, so that they become parallel to the respective closed-circuit curves. 
From [Eq. 33], it can be derived: 


F�¿�0�Ø�ë�ã
�ñ �ä�/ 
L 
F�0�/ 
F �¿�Ù�ä�Ú�Û�â�à�ä�0�Ú�/  [Eq. 35] 

Assuming that Ng = 1/3, �Ehom = 1 and �¿�=
L �=�c�v�n
�m�n 
F�=�c�v�n

�a�j , with �=�c�v�n
�a�j  = 1 (closed-circuit is supposed to 

present a fully collective reversal), the parameter �=�c�v�n
�m�n can be obtained. For all three magnets, it is of 

the order of 0.82. The absence of significant differences in the contribution of collective effects to 
reversal for the three samples may be attributed to the fact that their shape factors lie in a restricted 
range of values (see III.3.3.2). 

Experimentally, it has been observed that the coercive field is higher in closed-circuit than in open-
circuit. From [Eq. 34], the calculated reduction in coercivity in open-circuit with respect to closed-
circuit is expressed as: 

�� �*�Ö
�Ö�Ô�ß�Ö
L �:�Ù�Ø�ë�ã

�â�ã 
F �Ù�Ø�ë�ã
�Ö�ß�;�Ú�Ö�â�ß�0�Ú�/ �æ
N �:�Ù�Ø�ë�ã

�â�ã 
F �s�;�Ú�Ö�â�ß�0�Ú�/ �æ [Eq. 36] 

The above expression shows that the reduction in coercivity in open-circuit is related to a difference 
in the collective character of reversal (that is more important during closed-circuit measurements). 
�� �� �a

�a�_�j�a is proportional to �Ecol and the best agreement between the experimental and calculated 
coercive field differences is obtained by taking �Ecol �C���ì�X�ñ�X���d�Z�]�•���À���o�µ���������v���������]�v�š���Œ�‰�Œ���š�������]�v���š�Z�]�•���Á���Ç�W���]�v��
the case of collective reversal, just before its magnetization reverses, a grain is close to the boundary 
between two regions, one having a magnetization +MS and the other -MS. The cavity field, which is 
determined by two contributions of opposite signs, explains the reduced value of �Ecol compared to �Ehom 
�~�C���í�•�X 

To conclude, the above experimental work shows that differences in various contributions to the 
demagnetizing field must be considered when comparing hysteresis loops of hard magnets measured 
in open- and closed-circuit conditions. First, the slope of the magnetization variation in open-circuit is 
different from that due to usually considered demagnetizing effects. It has been demonstrated that 
this usual demagnetizing field correction is not applicable to the case of hard magnets. Furthermore, 
a reduction in the open-circuit coercive field value compared to the closed-circuit one is found, which 
is of the order of 25 kA/m for the magnets studied here. This comes from the fact that the reversal 
process is affected by how the measurement is made: i.e. reversal has less collective character in open-
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circuit than in closed-circuit. Due to the long-range nature of magnetostatic interactions, this first 
discussion is limited to a semi-quantitative understanding of demagnetizing field effects. A more 
quantitative evaluation of their strength and link with the reversal patterns requires numerical 
modeling. This constitutes the work described in the following sections. 

III.3. Study of collective magnetostatic effects: numerical approach 

The polycrystalline FE model depicted in Section II.5.2.1 aims at yielding a quantitative assessment of 
the previous formalism for the demagnetizing field that takes into account the collective effects. In this 
frame, both open- and closed-circuit configurations are simulated and the patterns of grain reversal 
are compared and discussed in the following section. 

III.3.1. Closed-circuit configuration simulation 

III.3.1.1. Model parameters 

The magnet taken as the reference for the following simulation belongs to the previous set of samples 
(S1) and has an aspect ratio (h/D) of 0.5. Three parameters have to be known for the simulation run: 
(i) the remanence of the grains, taken here as the value of the whole magnet remanence (1.3 T), (ii) 
the mean value of the grain coercivity <Hc> and (iii) the standard deviation �VHc. These last two values 
have been selected in order to fit the experimental demagnetizing curve obtained with the 
hysteresigraph system (closed-circuit measurement). 

A numerical sample made of nx=10 x ny=10 x nz=5 cubic grains (corresponding to 1/8 of the whole 
sample due to symmetries) has been considered. Fig. 50 shows the repartition of the grain coercivity 
that is randomly generated at the beginning of the simulation by a gaussian realization. 

A few trials with varied values of <Hc> and �VHc have been necessary to obtain the results reported in 
Fig. 51. The experimental and simulated demagnetizing curves are found to be consistent with the 
following values: <µ0Hc> = 1.08 T (860 kA/m) and �VHc = 0.1 T. It is worth noting that the distribution 
curve of the grain coercivity is shifted toward higher values of the applied field compared to the 
simulated demagnetizing curve: the value of the coercive field is about 700 kA/m, i.e. 160 kA/m lower 
than the value of <µ0Hc> which can be explained considering the grain reversal pattern. 

III.3.1.2. Analysis of the grain reversal pattern 

In the 3D array, demagnetization starts from the least coercive grain located in this case at the top. 
This is pointed out in Fig. 52 where first reversed grains are colored in dark grey in two consecutive 
demagnetized states. Once demagnetization starts, it rapidly propagates in the grain array by cascade 
resulting from strong magnetostatic coupling between neighboring grains. These cascades form, once 
the coercive field is reached (J = 0), large clusters of reversed grains (see Fig. 52). These effects become 
more important as the applied field approaches coercivity and generate the increasing large steps 
noticeable in the simulated demagnetizing curve (see the left pattern in Fig. 52 that depicts the first 
cascade while the right pattern details the final cascade that lead to coercivity). The cascades are the 
consequence of the local increase in the demagnetizing field felt by non-reversed grains when they are 
surrounded by top and/or bottom grains that are already reversed (see Fig. 53). In that case, the 
magnetostatic field produced by the reversed grains add in magnitude to the external applied field. 

Since this local rise in H occurs when the values of the applied field are close to the local coercive field 
(depending on coercivity distribution), it becomes more and more efficient to induce the reversal of 
the neighboring grains. The local increase in H acts only at a distance of the order of the grain size and 
is more important in the direction of the applied field.  
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These considerations explain the development of large and axial stripes, or clusters, observable on the 
grain reversal patterns. They also account for the fact that the demagnetizing curve is more 
�^�Œ�����š���v�P�µ�o���Œ�_���š�Z���v���������µ�Œ�À�����•�]�u�‰�o�Ç�����Œ���Á�v���(�Œ�}�u���š�Z�����P�Œ���]�v�����}���Œ���]�À�]�š�Ç�����]�•�š�Œ�]���µ�š�]�}�v�����v�����š�Z���š���Á�}�µ�o����describe 
the demagnetization of the grain array without magnetostatic coupling between grains (ideal curve 
plotted in blue solid line in Fig. 51). 

 

Fig. 50: Repartition of the grain coercivity in gray scale in the numerical sample used for the 
simulation of the closed-circuit configuration (arbitrary units: black = lower value, white = higher 

value), the 2D maps are given for each XZ plane starting from the mid-plane of the complete grain 
array (the numbers indicate the position of the XZ plane starting from the mid-plane towards the 

back). 

 

Fig. 51: Experimental (black solid line) and simulated (red dots) demagnetization curves in the closed-
circuit configuration compared to the grain coercivity distribution (blue solid line). 
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Fig. 52 : (Left) Grain reversal patterns for the first reversal cascade indexed in Fig. 51 (XZ plane 
labelled #7 in Fig. 50), the filled and non-filled squares in the grids refer to reversed and non-reversed 
grains, respectively. (Right) Grain reversal patterns for the final reversal cascade indexed in Fig. 51 (XZ 

plane labelled #1 in Fig. 50). 

 

Fig. 53: Schematic representation of the cascade grain reversal in closed-circuit. 

The experimental J-H curve obtained with the hysteresigraph compares well with the simulated one 
even if the first one is smoother. Our interpretation lies in the fact that the real magnet is constituted 
by a very large number of grains. When the reversal cascades occur, they should concern each time a 
small fraction of grains and the combination of a lot of separate events should lead to the smooth J-H 
curve. Thus, the polycrystalline model implemented with a limited number of grains (about 1000) 
tends to give an ideal representation of the J-H curve for which each individual grain reversal has a 
weight larger than in the real case. It is also worth underlying that cascades of grain reversal are a full 
3D process that implies more than one axial layer introduced in the simulation. Actually, a quasi-2D 
system simulated by an array made of one layer of cubic grains (nx x ny and nz=1) leads to a J-H curve 
that follows the curve deduced from the grain coercivity distribution (blue solid line in Fig. 51). 
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III.3.2. Open-circuit configuration simulation 

III.3.2.1. Shape of the J-H curve 

The numerical sample has also been simulated in open-circuit with the same grain coercivity 
realization. It allows avoiding a statistical bias that would occur when comparing simulations made 
with consecutive realizations, due to the limited number of grains in the model (500). In this case, 
reversal begins in the grains for which the cumulative effect of low coercivity and high local 
demagnetization field is critical, i.e. for which the amount [Hc/M s �t Nz] is the lowest (see mapping in 
Fig. 54). In this last term, Nz stands for the local demagnetization factor calculated for each grain at the 
first step when Hext = 0. Nz depends on the shape ratio of the magnet but is not uniform in the magnet, 
as previously reported for rectangular samples [126]. In this particular run, the first reversed grain is 
the same for the open- and closed-circuit simulations. The experimental and simulated curves are 
shown in Fig. 55 and the grain reversal patterns are reported in Fig. 56 for some selected field values. 
The open-circuit simulation exhibits different characteristics compared to the closed-circuit one. 

 

Fig. 54: Repartition of the reduced grain coercivity [Hc/M s �t Nz] in gray scale in the numerical sample 
used for the simulation in the open-circuit configuration (arbitrary units: black = lower value, white = 
higher value), the 2D maps are given for each XZ plane starting from the mid-plane of the complete 
grain array (the numbers indicate the position of the XZ plane starting from the mid-plane towards 

the back). 
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Fig. 55: Experimental (solid lines) and simulated (dots) demagnetization curves in the closed-circuit 
(red) and open-circuit (black) configurations, grain coercivity distribution (dotted blue line), the 

magnetic fields at the curve knees and at the coercive field are indicated on each curve as labels for 
the maps plotted in Fig. 56. 

 

Fig. 56: Grain reversal patterns for selected field values indicated in Fig. 55: the filled and non-filled 
squares in the grids refer to reversed and non-reversed grains, respectively (XZ planes ranked from 
the y=0 to higher y positions incremented from left to right). Simulation of a 10x10x5 grains array 
(symmetry duplicated) with �•Hc = 0.1 T. Patterns at coercive field in closed-circuit (red border) and 

patterns at coercive field in open-circuit (black border). 
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III.3.2.2. Analysis of grain reversal pattern 

The open-circuit demagnetization curve evolves almost linearly with few cascade phases. The pattern 
of grain reversal is radically different compared to the closed-circuit simulation and exhibits quasi-
regularly spaced columns of reversed grains aligned along the z-axis (see Fig. 56). This behavior is 
explained by the fact that, in the open-circuit configuration, the demagnetizing field acting on non-
reversed grains comprises the important contribution coming from the whole sample polarization. This 
self-demagnetizing field acts strongly at low fields since it depends on the average polarization M. 
Although being important in the open-circuit case, this contribution vanishes in the closed-circuit. This 
difference accounts for the quasi-linear evolution of the curve in open-circuit. This artefact can be 
removed to extract a representative magnet behavior under external field with the demagnetization 
field corrections described in Section III.2.1. 

The pattern of grain reversal corresponds in both cases to the minimization of the magnetostatic 
energy. In open-circuit, as expected, the simulation naturally leads to a pattern made of alternate 
columns with opposite polarization since this configuration tends to minimize the magnetostatic 
energy.  

It has to be pointed out that the simulated curves J(H) follows the experimental ones without any 
parameter adjustment (apart from the coercivity distribution of the grains). More interesting is the 
fact that the difference in coercivity obtained numerically between open- and closed-circuit 
configurations (�C20 kA/m) is very close to the experimental value (�C25 kA/m) reported in Section III.2.2. 

III.3.3. Discussion about collective effects 

III.3.3.1. Relation between grain reversal pattern and collective effects 

The cavity field, introduced in the previous section to describe the demagnetizing field, reflects the 
magnetostatic interactions felt by each grain (not yet reversed) from the surrounding grains. In this 
formalism, the cavity field can be seen as a combin���š�]�}�v���}�(�������^�Z�}�u�}�P���v���}�µ�•�_���š���Œ�u�U���‰�Œ�}�‰�}�Œ�š�]�}�v���o���š�}��
the average polarization M�U�����v���������^���}�o�o�����š�]�À���_���š���Œ�u���‰�Œ�}�‰�}�Œ�š�]�}�v���o���š�}��MS that accounts for the effect of 
the adjacent and non-reversed grains. 

�*�½
�Ö�Ô�é
L �:�s
F�Ù�;�Ú�Û�â�à�0�Ú�/ 
E�Ù�Ú�Ö�â�ß�0�Ú�/ �Ì [Eq. 31] 

The parameter �D gives the weight of collective effects in the cavity field. Its value was found from 
experimental data to be larger in the closed-circuit configuration, for which collective effects are 
maximal (�Dcl = 1), than in the open-circuit case for which these effects were found to be lower (�Dop = 
0.82). In this formalism, a pronounced collective character means that the cavity field experienced by 
a non-reversed grain is mostly a fraction of + NgMS. The simulation in the closed-circuit condition clearly 
shows that when reversed grains form large clusters, the second term of the cavity field (see [Eq. 31]) 
is dominant since on average non-reversed grains are surrounded by non-reversed ones, except at the 
interface with clusters. This is a strong argument supporting the previous formalism that assumed the 
role of collective effects. 

The parameter �Ehom was previously inferred to be close to unity while the last term �Ecol was assumed 
to be equal to 0.5 considering that, before its reversal, a grain is close to a boundary between two 
regions with opposite magnetization directions. This is again consistent with the grain reversal patterns 
exhibiting large clusters oriented along the axial axis. 
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It has to be pointed out that this unique fitting parameter �Dop accounts both for the slope of the M(H) 
curve in open-circuit and for the coercivity difference between open- and closed-circuit measurements 
that is given by: 

�� �*�Ö
L �:�Ù�â�ã
F �s�;�Ú�Ö�â�ß�0�Ú�/ �æ [Eq. 37] 

While this parameter value was fitted on experimental results in the previous section, an identical 
value (�Dop = 0.82) is obtained with the polycrystalline model without making any other assumption 
than the grain coercive field dispersion (�VHc = 0.1 T). 

III.3.3.2. Effect of sample aspect ratio 

The influence of the sample aspect ratio on collective effects has been analyzed by the finite element 
simulation. Table 25 below reports the different cases studied in this parametric study. The second 
and third cases correspond to the extreme values of the h/D values used in the experimental approach 
(h/D = 0.5 and h/D = 1). Two other geometries have also been modeled: the case 1 is a thin sample 
with h/D = 0.2 and the last case is an elongated one with h/D = 2. Fig. 57 compares the experimental 
demagnetization curves in open-circuit with the numerical ones for the two cases with median values 
of h/D. The difference in the slope of the curve is mainly due to the evolution of the self-
demagnetization factor that depends on the sample aspect ratio. This is confirmed by Table 25 in which 
the values of the parameter �D that accounts for the weight of collective effects have been extracted 
from the four computed demagnetization curves. For each case, the value of �D��is deduced from the 
slope of the J-�,�����µ�Œ�À�����~�E�[�����}�Œ�Œ�����š���������Ç���š�Z�����P�Œ���]�v�����}���Œ���]�À�]�š�Ç�����]�•�‰���Œ�•�]�}�v���������}�Œ���]�v�P���š�}��[Eq. 33]). The values 
of Ng = 0.33 and �Ehom = 0.5 have been kept constant. This data shows that the weight of collective 
effects, evaluated by the coefficient �D, remains nearly constant (�D = 0.82) within the range of shape 
ratio values used in the experimental study, confirming the previous analysis. For flat samples (h/D = 
0.2), the model predicts that collective effects should decrease (�D = 0.62), whereas they should 
become more important for elongated samples (�D = 0.90). The grain reversal patterns plotted for J=0 
confirm this trend, exhibiting more clusters as h/D increases (see the pattern at the mid plane for 
h/D=2, i.e. for the lowest local self-demagnetization factor <Nz>). Finally, it can be inferred that the 
behavior of an infinite elongated sample measured in open-circuit tends slowly to the case of a finite 
length sample tested in closed-circuit. 
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Aspect ratio h/D = 0.2 h/D = 0.5 h/D = 1 h/D = 2 
Size of the model 

(nx x ny x nz) 
10 x 10 x 2 10 x 10 x 5 10 x 10 x 10 10 x 10 x 20 

Apparent slope �E�[ 
of J-H curve 

0.59 0.44 0.28 0.16 

Weight of 
collective effects �D 

0.62 0.82 0.82 0.90 

Grain reversal 
pattern at J=0 

(coercivity) 
in the top XY plane 

of the sample 
    

Grain reversal 
pattern at J=0 

(coercivity) 
in the mid XY 
plane of the 

sample     

Table 25: Influence of the sample aspect ratio on collective effects. 

 

Fig. 57: Comparison of simulated and experimentally measured demagnetization curves in open-
circuit for two different aspect ratios (h/D = 0.5 and 1). 

III.3.3.3. Influence of the grain coercive dispersion on collective effects 

With this low standard deviation value, �Dop is found to be close to unity which is correlated to a reversal 
grain structure that does not form a fully homogeneous pattern, even in open-circuit. Actually, 
reversed grains tend to be aligned and form one-grain-wide columns axially oriented. It is worth noting 
that when the standard deviation is raised from 0.1 T to 0.2 T, the parameter �Dop deduced with the 
polycrystalline model becomes lower (= 0.6), meaning a reduction of the weight of collective effects. 
The simulation also shows a larger difference between coercivity values in open- and closed-circuit and 
a less inhomogeneous pattern of grain reversal is found in open-circuit (see Fig. 58). 
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Fig. 58: (Top) Demagnetizing curves in the closed-circuit (red solid line) and open-circuit (black solid 
line) configurations obtained by simulation of 10x10x5 grains array and �•Hc = 0.2 T. (Bottom) Grain 
reversed patterns at the coercive field in open-circuit, the filled and non-filled squares in the grids 
refer to reversed and non-reversed grains, respectively (XZ planes ranked from the y=0 to higher y 

positions incremented from left to right, duplicated symmetries). 

III.3.4. Experimental validation 

While the simulation of demagnetization in closed-circuit predicts large clusters of reversed grains with 
a size that exceeds largely the grain size, the open-circuit configuration tends to induce finer reversed 
zones with a length scale of the order of the grain dimension. An experimental approach has been 
implemented in order to determine if this difference in reversal pattern could be observed. For this 
purpose, a polarization mapping of the magnet has been performed on partially demagnetized 
samples. A Hall probe mounted on a three axes displacement fixture, and able to measure the three 
components of the induction field over a sample, has been used (SENIS device). The distance of the 
sensor to the sample surface is 400 µm and the displacement step is 100 µm. With these 
characteristics, only clusters of the same dimension (> 0.1 mm) can be reasonably observed. 

The test consists in comparing the induction field maps measured over the same magnet sample in the 
following conditions: (i) in the remanent state that follows magnetic saturation performed with a field 
of 7 T using a Bitter coil (ii) after demagnetization of the sample performed by the hysteresigraph 
(closed-circuit) up to the coercive field and (iii) after the complete sample demagnetization obtained 
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in an open-circuit condition via the Bitter coil operating in a mode where gradually decreasing 
hysteresis loops are followed up to the full demagnetization state. 

The maps of the induction field obtained in those three states are reported in Fig. 59 and in Fig. 60. 
The upper face of the cylindrical sample (10 mm diameter in that case) has been scanned and the axial 
component Bz is plotted. As expected, the mapping reveals only field variations with extensions larger 
than 0.1 mm. Over the saturated sample (Fig. 59), the magnetic field is very homogeneous, especially 
in the central part. No defect in the sample polarization is visible. The decrease in the Bz values 
observed near the circular edge is consistent with the axisymmetric tilt on the field direction expected 
in the free space close to a uniformly polarized sample. 

 

Fig. 59: Induction field map (BZ component, scale in mT) measured with the Hall probe over the 
sample in the remanent state after saturation. The value of BZ indicated in the insert is the spatially 

averaged value performed inside a 10 mm circle (dotted line) corresponding to the sample 
dimension. The values on axes correspond to the scanning position in mm. 

Maps of induction recorded over the sample demagnetized in the closed- and in the open-circuit 
configurations are compared in Fig. 60. In the first case, very large field heterogeneities are revealed 
with several adjacent and distinct zones having opposite polarization directions. In the second case, 
the induction field is homogeneous in the central part and keeps only small (negative) values in the 
rim region (with the same sign than the induction measured in the initial saturated state). This last 
feature results from the fact that, in open-circuit, reversal is easier to initiate at the center part of the 
sample due to a higher self-demagnetizing field factor in this zone. In Fig. 60 are also plotted the grain 
reversal patterns computed on the top XY plane of the sample, showing the appearance of large 
clusters in closed-circuit while the grain reversal pattern is more diffuse in open-circuit. 
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Fig. 60: (Left) Residual induction field maps (BZ component, scale in mT) measured with the Hall probe 
over the sample in the demagnetized state achieved in closed-circuit (top) and in open-circuit via the 
Bitter coil (down). The values of BZ indicated in the insert are the spatially averaged values performed 

inside a 10 mm circle (dotted line) corresponding to the sample dimension. The values on axes 
correspond to the scanning position in mm. (Right) Grids correspond to the grain reversal patterns 

simulated on the highest XY plane at J=0. 

The observation of large heterogeneities with the Hall probe has been reproduced with the same 
sample submitted to repeated cycles and also checked with other samples. Furthermore, the induction 
field map measured over a sample (of diameter 6 mm) after its demagnetization performed by the 
extraction magnetometer (open-circuit) up to the coercive field is reported in Fig. 61 and compared to 
the corresponding map after demagnetization in closed-circuit. In terms of homogeneity of the 
induction field, the maps in Fig. 61 are consistent with those in Fig. 60. 



III.Coercivity of polycrystalline hard magnets 

82 
 

 

Fig. 61: (Left) Residual induction field maps (BZ component, scale in mT) measured with the Hall probe 
over the sample in the demagnetized state achieved in closed-circuit. (Right) Same measurement in 

open-circuit using the extraction magnetometer. The values of BZ indicated in the insert are the 
spatially averaged values performed inside a 6 mm circle (dotted line) corresponding to the sample 

dimension. The values on axes correspond to the scanning position in mm. 

Our interpretation is that such measurement reveals large clusters in the reversal pattern that could 
be consistent with the polycrystalline model prediction. In open-circuit, field variations predicted by 
the model occur at the scale of grains and cannot be observed with this protocol. 

III.4. Magnetostatic coupling in heterogeneous magnets 

The previous results established the role of cascade effects on the shape of the demagnetizing curve 
measured in closed-circuit. Actually, the polycrystalline model predicts that demagnetization is 
triggered by the first reversed grains and that the J-�,�����µ�Œ�À�����•�Z�}�µ�o�����(�����š�µ�Œ�����Z�]�P�Z���^�•�‹�µ���Œ���v���•�•�_���]�v���š�Z����
case of a narrow dispersion of the grain coercivity. In this paragraph, two cases are considered in order 
to analyze how the J-H curve squareness can be affected by some heterogeneities in the magnet. The 
objective is to supply some interpretation elements of the experimental results obtained on specific 
samples which will be detailed in Chapter IV and V. 

III.4.1. J-H curve of a two-grain-population magnet 

III.4.1.1. Model parameters 

In this first case, the polycrystalline model is applied to a sample made of two populations of grains 
with different mean coercivity values randomly distributed in the array (10x10x5). The first population, 
with the lower coercive field, represents here a very small fraction of the total population of grains 
(fixed at 3 %) and can be considered as defects. These low coercivity grains (<µ0Hc> = 1.1 T, �VHc = 0.1T) 
are rather isolated and surrounded by high coercive grains (<µ0Hc> = 1.6 T, �VHc = 0.1T) as shown by the 
coercivity distribution map plotted in Fig. 62 (low coercive grains are filled in black). 

III.4.1.2. Analysis of grain reversal pattern 

The simulated J-H curve of this two-grain-population sample is shown in Fig. 63. The reversal of the 
high coercivity grains that are highly majoritarian (97%) is found to be anticipated. This is pointed out 
by the shift between the curve expected from the coercivity distribution and the simulated curve (gap 
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larger than 100 kA/m). The low content of defect grains (3%) has a limited impact on the first statistical 
curve but a strong one on the resulting J-H curve. 

 
 

 

Fig. 62: Repartition of the grain coercivity in gray scale in the numerical sample used for the 
simulation of the bimodal grain population magnet (arbitrary units: black = lower value, white = 

higher value), the 2D maps are drawn for each XZ plane starting from the mid-plane of the 
complete grain array (the numbers indicate the position of the XZ plane starting from the mid-

plane towards the back). 

The grain reversal patterns help understanding the degradation of the J-H curve squareness (see Fig. 
64). As expected, all low coercive grains firstly reverse (point #15) and in turn, they induce cascade 
reversals (forming axial stripes seen in points #17 and #19) that affect the surrounding high coercivity 
grains. When the sample coercive field is close (point #22), the reversal patterns again form large 
clusters as in the homogeneous grain array. The simulated curve compares to an experimental one 
obtained on a sintered sample after thermal annealing that exhibits poor squareness (see IV.1.1). Since 
the distribution of low coercivity grains corresponds to the grain characteristics obtained after 
sintering, it is believed that a few grains may remain not fully affected by the annealing and keep their 
low initial coercivity after the thermal treatment. This assumption should be validated by a more 
accurate characterization of the microstructure but it is interesting to keep in mind that the 
polycrystalline model accounts for a significant loss of the J-H curve squareness induced by a low 
content of defect grains (3%). 



III.Coercivity of polycrystalline hard magnets 

84 
 

 

Fig. 63: Simulated demagnetization curve of the bimodal grain population magnet (red open symbols 
with following inputs for low coercive grains: <µ0Hc> = 1.1 T, �•Hc = 0.1 T and for high coercive grains: 
<µ0Hc> = 1.6 T, �•Hc = 0.1 T). The coercivity distribution is indicated by the blue solid line for the whole 

magnet and by the black solid line for the population 1 alone. The dotted line corresponds to the 
experimental curve of an annealed sample chosen as reference. 

 

Fig. 64: Grain reversal patterns for the four selected field values indicated in Fig. 63. 
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III.4.2. J-H curve of duplex magnets 

III.4.2.1. Model parameters 

A second configuration has been investigated to shed light on magnetostatic coupling effects. It 
consists in a duplex magnet made of a low coercivity Nd-Fe-B magnet (HC = 1140 kA/m, 10 mm 
diameter and 5 mm height) sandwiched between two symmetrical highly coercive Nd-Fe-B magnets 
(HC = 1700 kA/m, 10 mm diameter and 10 mm height). Both regions have the same remanence (1.3 T) 
and the coercivity distribution obtained with <µ0HC> = 1.6 T and �VHc = 0.2T for the low coercive grains, 
and <µ0HC> = 2.35 T and �VHc = 0.1T for the high coercive grains is plotted in Fig. 65. 

 

 

Fig. 65: Repartition of the grain coercivity in gray scale in the numerical sample used for the 
simulation of the duplex magnet (arbitrary units: black = lower value, white = higher value). The 2D 

maps are drawn for each XZ plane starting from the mid-plane of the complete grain array. 

III.4.2.2. Analysis of grain reversal pattern 

This stack is simulated in the closed-circuit testing condition using arrays with the same shape ratio as 
the individual magnets. The experimental and simulated demagnetization curves are plotted in Fig. 66 
and show three main stages: (i) a plateau that extends up to the HK value resulting from the linear 
combination of the curves of individual magnets, (ii) a quasi-linear decrease in magnetization and (iii) 
an ab�Œ�µ�‰�š�� �o�}�•�•�� �}�(�� �u���P�v���š�]�Ì���š�]�}�v�� �o�������]�v�P�� �š�}�� �š�Z���� �^���µ�‰�o���Æ�� �u���P�v���š�_�� ���}���Œ���]�À�]�š�Ç�X�� �d�Z���� �•�]�u�µ�o���š������ ���µ�Œ�À����
obtained with values of M and H extracted at the mid-plane, which corresponds to the position of the 
measuring coil, is in good agreement with the experimental one, contrary to the case for which the 
simulated curve is plotted with the averaged values of M and H. 

The grain reversal patterns at selected field values (A-F) reported in Fig. 67 indicate that the second 
stage (ii) can in turn be decomposed into two steps. In a first step (A-D), reversal is located in the less 
coercive central magnet, its extension shows few cascades and the demagnetizing curve is found to be 
broader than the experimental curve of the individual magnet. Then, in the second step (E-F), reversal 
enters the high coercive region where grain switching occurs for field values lower than expected from 
the coercivity distribution. At the end of the second stage, cascade effects occur in the more coercive 
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magnets (F) and finally, the overall coercivity of the sample is 100 kA/m lower than the value that 
would be obtained by a simple linear combination of the respective demagnetizing curves. 

 

Fig. 66: Simulated demagnetizing curve of the duplex magnet (in red open symbols, low coercive 
grains: <µ0HC> = 1.6 T and �•Hc = 0.2 T, high coercive grains: <µ0HC> = 2.35 T and �•Hc = 0.1 T). The grain 
coercivity distribution in the duplex magnet is indicated by the black dotted line. The blue dotted lines 

correspond to the experimental curve of each magnet measured separately. 
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Fig. 67: Grain reversal patterns for the 6 selected field values indicated in Fig. 66 (A-F): the filled and 
non-filled squares in the grids refer to reversed and non-reversed grains, respectively (XZ planes 

ranked from the y=0 to higher y positions incremented from left to right). 

III.4.2.3. Influence of the axial position of the pick-up coil 

The grain reversal pattern depicted in the previous section is not homogeneous along the magnet stack 
height especially between the points A and E indexed on the J-H curve. Actually, in the second quadrant 
of the hysteresis loop, grain reversal seems logically more developed in the central magnet. This model 
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prediction has been checked by the measurement of the residual induction performed with the Hall 
probe device over the central magnet after a demagnetization run interrupted firstly near point D and 
then at the coercive field (point F). The corresponding induction maps are presented in Fig. 68. On the 
one hand, at point D, the central magnet in found to be quasi fully demagnetized (average residual 
induction is low = -63 mT) and again, large zones with opposite directions of residual magnetization 
are observed�X���K�v���š�Z�����}�š�Z���Œ���Z���v���U�����š���‰�}�]�v�š���&�U���š�Z�����^�Œ��-�u���P�v���š�]�Ì���š�]�}�v�_���}�(���š�Z�����o�}�Á�����}���Œ���]�À�]�š�Ç���u���P�v���š���]�•��
homogeneous and well advanced (the sign of the average induction is reversed as the polarization 
would be in the third quadrant, if the magnets were measured separately). 

Different J-H experimental curves have been successively measured after increasing the axial position 
of the coil sensor (with respect to the duplex magnet) by a step of 1.5 mm and starting from a 
configuration where the sensor is located at the mid plane. As can be noticed in Fig. 69, the shape of 
the J-H curve evolves with the coil height, featuring decreasing slopes (within the range representative 
for the magnet interaction) as the scanned zone is shifted from the mid plane. This result confirms the 
fact that the polarization is actually graded along the stack, being more advanced in the low coercivity 
magnet than in the high coercivity one. However, it has to be pointed out that, even at the highest coil 
position, the J-H curve remains still influenced by the central magnet. The measuring coil has a 
thickness of 2.5 mm leading to values of J and H that should be considered as averaged values over 
this height. With a height of 7.5 mm from the mid plane of the stack, the highest curve covers values 
of J and H that could be reasonably considered as inherent to the high coercivity magnet. Invalidating 
this assumption, the J-H curve recorded at this position exhibits poor squareness compared to the 
intrinsic curve of the high coercive magnet. This again supports the effect of magnetostatic interactions 
upon demagnetization of heterogeneous magnets.  

The shift of the experimental curve as a function of the sensor position has also been simulated with 
the polycrystalline model and the results, plotted in Fig. 70, are consistent with the experimental 
findings. Finally, it has to be kept in mind that the duplex magnet case chosen for the study has a strong 
property gradient (larger than the one expected in Dy-diffused magnets). Even for this extreme case, 
the shift on J-H curves observed by sweeping the pick-up coil remains limited, the coercivity being 
moved of 20-�ï�ì���l���l�u���~�C���î�9�•�X 

The main finding of the study made on heterogeneous magnets is that magnetostatic coupling 
between grains gives rise to intricate J-H curves. More precisely, the loss in squareness observed in the 
curves can be correlated to the presence of low coercivity grains. The early reversal of the weak grains 
tends to trigger grain reversal over the whole magnet. However, the J-H curve obtained with the 
hysteresigraph method, even if it is affected by the heterogeneities, would not give alone quantitative 
information about the amount and the precise repartition of the defective grains. In Chapter V, taking 
into account this remark, the polycrystalline model will be implemented and combined to advanced 
magnetic measurements to supply quantitative data about the axial profile of coercivity in Dy-diffused 
magnets. 
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Fig. 68: (Left) Residual induction field maps (BZ component, scale in mT) measured with the Hall probe 
over the low coercivity sample of the duplex magnet taken in two demagnetized states achieved in 
closed-circuit (hysteresigraph) corresponding to the points D (up) and F (down) indexed on the J-H 

curve plotted in Fig. 66. The values of BZ indicated are the spatially averaged values measured in the 
10 mm circle (dotted line) corresponding to the sample dimension. The values on the axes correspond 
to the scanning position in mm. (Right) Grids correspond to the grain reversal patterns in the XY plane 

located at the top of the high coercivity magnet and at the top of the low coercivity magnet. 
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Fig. 69: Experimental J-H curves measured on the duplex magnet (central low coercivity magnet with 
h=5mm, high coercive magnets with h=10mm, diameter 10 mm). The measuring coil is positioned in 

the middle plane (solid red curve) and then shifted upward by regular steps (t=1.5 mm). 

 

Fig. 70: Simulation of the influence of the shift of the measuring coil obtained with the polycrystalline 
model applied to the duplex magnet configuration. J and H values are averaged over a height 

equivalent to half of the thickness of the central magnet. Sensors are located at the mid-plane (open 
red circles) and at the top end of the stack (open black circles). 
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III.5. Conclusions  

Demagnetizing field effects have been studied on hysteresis loops of hard magnets measured in both 
open- and closed-circuit conditions. Experimentally, it has been observed that the slope of the 
magnetization variation in open-circuit is different from that due to usually considered demagnetizing 
effects. Furthermore, a reduction in coercivity in open-circuit compared to closed-circuit is found. 
Magnetization reversal is found to depend on the measurement type. The cavity field model developed 
here to better describe the demagnetizing field effects in hard magnets predicts that magnetization 
reversal has less collective character in open-circuit than in closed-circuit. In addition, to assess the 
demagnetizing field effects, a polycrystalline model has been implemented. The simulated difference 
in coercivity between both configuration types is in good agreement with the experimental one. 
Moreover, the simulated reversal patterns are consistent with the respective collective characters 
predicted by the cavity field model. For instance, reversal patterns in the closed-circuit condition show 
large clusters of reversed grains (fully collective process) whereas those in the open-circuit 
configuration are mainly made of alternate columns of opposite polarization (less collective character). 
Finally, the numerical polycrystalline model can reproduce and explain the shape of experimental 
demagnetization curves obtained for duplex magnets. The deterioration of squareness observed for 
these magnets can be correlated to the presence of low coercivity grains. 

The work presented in this chapter deals with two complementary and original approaches useful for 
the analysis of the demagnetizing curves obtained in open- and closed-circuit configurations. The 
formalism that accounts for collective effects and the polycrystalline finite element simulation 
developed in the frame of this thesis are supported by several experimental results. The methodology 
is implemented in the following chapters for the interpretation of the J-H curves of magnets with 
coercivity gradient. However, the approach remains of general interest in the domain of permanent 
magnet characterization. Actually, closed- and open-circuit techniques are widely used for determining 
hard magnet performance and the work could be completed in the future to supply some guidelines 
for experimenters. This work brings a quantitative understanding of the J-H curve shapes and also 
paves the way for a more detailed study of the influence of some microstructural evolutions during 
magnet manufacturing. For instance, polycrystalline magnets made of non-cubic grains (involving 
differences in the local demagnetizing factor), with size and/or alignment dispersion, as well as the 
effect of soft magnetic phases, could be investigated in a future work. 
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IV. Experimental and computational study of magnetization 

reversal in Dy-Co diffused Nd-Fe-B sintered magnets 

This chapter describes the experimental parametric study carried out about Grain Boundary Diffusion 
Process (GBDP) using Dy-Co diffusion alloys in Nd-Fe-B sintered magnets. The influence of diffusion 
time and temperature, and of annealing before and after GBDP on magnetic properties is reported. 
Moreover, microstructural observations and further magnetic measurements are performed to 
characterize the core-shell microstructure and the diffusion profile of the GBDP magnets. Finally, 
micromagnetic simulations using the FEMME software are also presented to describe magnetization 
reversal at nanoscale in a grain represented by core-shell model and to determine the influence of 
some microstructural features on the resulting magnetic properties. 

IV.1. Magnetic properties in the as-sintered state and after post-

sinter annealing (PSA) 

IV.1.1. Experimental results 

In this work, sintered magnets with the following composition (Nd,Pr,Dy)31Fe67.1B1Al0.3Co0.5Cu0.1 (wt.%) 
are used as base magnets (Dy content = 0.5 wt.%). The latter are cylindrical with a diameter of about 
10 mm and a thickness of about 5 mm. The average magnetic properties measured on 20 samples after 
sintering at 1032°C for 4 h are given in Table 26. Note that all magnetic properties presented in this 
chapter are measured at room temperature using the hysteresigraph system (i.e. closed-circuit 
configuration). 

Value JR (T) Hcj (kA/m) Hknee (kA/m) Hknee/Hcj 
(BH)max 
(kJ/m3) 

Average 1.34 832 (1.05 T) 777 (0.98 T) 0.93 335 
Standard 
deviation 

± 0.01 ± 6 ± 7 ± 0.01 ± 7 

Table 26: Magnetic properties of base magnets in the as-sintered state. 

The magnets then undergo post-sinter annealing (PSA) at different temperatures for 2 h. Different 
annealing temperatures can be tested on the same magnet owing to the coercivity reversibility (see 
Table 27 for the example of successive PSA at 530°C). In fact, a heat treatment around 900-920°C after 
PSA enables the recovery of a coercivity that is equivalent to that of the as-sintered state. As reported 
in Table 27, the remanence remains unchanged after the consecutive heat treatments. 

Heat treatment JR (T) Hcj (kA/m) 

Sintering 1032°C (4h) 1.36 824 (1.04 T) 
+ PSA 530°C (2h) 1.36 1086 (1.36 T) 

+ 920°C (3h) 1.36 816 (1.03 T) 
+ PSA 530°C (2h) 1.36 1087 (1.36 T) 

Table 27: Coercivity reversibility for successive PSA at 530°C. 

This is similar to the study of Woodcock et al. [127] that also concerned the reversible and repeatable 
increase in coercivity after successive heat treatments performed on Nd-Fe-B sintered magnets. Post-
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sinter annealing at 500°C for 1h resulted in an increase in coercivity of about 30 % and a subsequent 
heat treatment at 1050°C for 1 h led to a decrease in the coercive field with a similar magnitude. The 
process was repeated several times and coercivity changed by 30 % each time. This relative gain in 
coercivity is in good agreement with the one reported for our work in Table 27 �~�C�ï�î�9�•�X���&�µ�Œ�š�Z���Œ�u�}�Œ���U��
the remanence remained also unchanged in [127] after the successive heat treatments. With the help 
of scanning and transmission electron microscopy, these results were attributed to differences in the 
distribution of the Nd-rich phases between the low and high coercivity states. For instance, the heat 
treatment at 1050°C is far above the eutectic temperatures of Nd-Cu (520°C) and the Nd-rich phase 
(655-665°C) and at this temperature, the edges of Nd2Fe14B grains melt. During quenching, the re-
solidification of the edges of the Nd2Fe14B grains is assumed to reject the Nd-rich phases from GBs to 
the triple junctions, resulting in a poor distribution of the Nd-rich phases and thus in a low coercivity 
state. In the case of annealing at 500°C, the Nd-rich phases at triple junctions melt via eutectic 
reactions but no partial melting of Nd2Fe14B grains happens. The Nd-rich liquid then flows along the 
GBs by capillary forces, leading to an optimized distribution of the Nd-rich phases and to a high 
coercivity state. 

The demagnetization curves of the samples annealed at different temperatures (470, 500, 530, 550 
and 600°C) are shown in Fig. 71, together with a demagnetization curve of a sample in the as-sintered 
state. 

 

Fig. 71: Demagnetization curves measured after PSA at 470, 500, 530, 550 and 600°C. The black curve 
represents the demagnetization curve of the as-sintered state. 

The corresponding average magnetic properties are given in Table 28. The annealing heat treatments 
at 470, 500, 550 and 600°C are each tested on 4 different samples and the heat treatment at 530°C is 
performed on 8 different magnets. 
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PSA temperature 
(°C) 

JR 
(T) 

Hcj 
(kA/m) 

Hknee 

(kA/m) 
Hknee/Hcj 

(BH)max 
(kJ/m3) 

470 
1.34 

(± 0.003) 
1052 (1.32 T) 

(± 13) 
899 (1.13 T) 

(± 1) 
0.86 

(± 0.01) 
346 
(± 2) 

500 
1.33 

(± 0.002) 
1092 (1.37 T) 

(± 6) 
915 (1.15 T) 

(± 3) 
0.84 

(± 0.002) 
339 
(± 1) 

530 
1.35 

(± 0.01) 
1105 (1.39 T) 

(± 15) 
918 (1.15 T) 

(± 10) 
0.83 

(± 0.01) 
351 
(± 7) 

550 
1.35 

(± 0.01) 
961 (1.21 T) 

(± 39) 
828 (1.04 T) 

(± 16) 
0.86 

(± 0.02) 
348 
(± 5) 

600 
1.36 

(± 0.002) 
862 (1.08 T) 

(± 7) 
796 (1.00 T) 

(± 2) 
0.92 

(± 0.01) 
355 
(± 2) 

Table 28: Magnetic properties after PSA at 470, 500, 530, 550 and 600°C. The ± values between 
parentheses correspond to the standard deviation. 

After PSA, remanence remains almost unchanged but coercivity shows remarkable improvement 
compared to that of the as-sintered state. The (BH)max figure of merit is also increased compared to 
that of the as-sintered state but does not vary too much between the different PSA (since (BH)max 
depends on the square of remanence if µ0HC,J > JR/2). However, the rectangularity of the 
demagnetization curves is systematically lowered after PSA (except for PSA at 600°C). By plotting the 
evolution of coercivity with the PSA temperature (see Fig. 72), it can be observed that an optimum of 
coercivity exists for a specific annealing temperature: 

 

Fig. 72: Evolution of coercivity with the PSA temperature. The black solid line represents the average 
coercivity of the as-sintered state. 
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For the studied base composition, coercivity is the highest after PSA performed at 530°C (gain of 33 % 
in Hcj with respect to the as-sintered state). Nevertheless, coercivity also shows high sensitivity to the 
chosen PSA temperature. For instance, a huge drop in the coercive �(�]���o�����~�}�(�������}�µ�š���í�ñ�ì���l���l�u���C���í�ð���9�•���]�•��
observed between the optimal temperature of 530°C and 550°C. This is problematic for industrial 
processes since the perfect control of the temperature inside industrial furnaces is challenging. 

Below the optimal temperature (from 470°C to 530°C), coercivity increases steadily. This behavior is 
triggered by the Cu addition in the magnet base composition (0.1 wt.%) and is attributed to the gradual 
formation of Nd-Cu or Nd-Fe-Cu eutectic phases during PSA via the following r�������š�]�}�v�•�W���>�� �^ Nd + 
�E�����µ�����š���C���ñ�ì�ì�£�������v���� �>���^  Nd + NdCu + Nd6Fe13���µ�����š���C���ð�ô�ì�£����[128], [129] identified in the pseudo-
binary phase diagram (see Fig. 73). Moreover, Cu is known to improve the wettability of the Nd-rich 
phase at GBs by reducing the melting temperature of this phase [39]. Coercivity after PSA increases 
with the better wettability of the Nd-rich phase. 

 

Fig. 73: Pseudo-binary phase diagram (30 at.% Cu) extracted from the ternary Nd-Cu-Fe phase 
diagram (�w denotes Nd6Fe13Cu phase). [129] 

The early works of Sagawa et al. [130] attributed the sudden drop in coercivity above the optimal 
temperature to a lower efficiency of the eutectic reaction (between Nd and Nd2Fe14B phases in this 
case) to remove nanoscale defects by the phase separation process. It is worth noting that the optimal 
annealing temperature in the present study is very close to the temperature of the deep eutectic 
reaction found in the Nd-Cu binary phase diagram (520°C). Similar results have been obtained for the 
same magnet composition in the thesis of B. Hugonnet [131]. 

Several investigations on annealing have been performed by TEM on magnets with similar 
compositions. Vial et al. [7] showed that a thin interphase with a complex chemistry forms at grain 
boundaries and that this phase could be non-magnetic. Finally, the general mechanism accounting for 
the increase in coercivity is attributed to the two following processes: (i) grain exchange decoupling 
thanks to the efficient wettability of the Nd-rich phase and (ii) curing of defects due to the eutectic 
reaction and the subsequent phase separation. 
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IV.1.2. FEMME simulations: sintering vs PSA 

The shape of the J-H curves reported in Fig. 71 suggests that two kinds of defects could be effective on 
the studied magnets after sintering: (i) a majority of nanoscale defects located at grain boundaries and 
that can be partially removed during annealing and (ii) some dispersed and more extended defects 
that could hardly be cured by thermal treatment. The presence of these two defect populations could 
explain the poor squareness of the J-H curves since demagnetization always starts from the stronger 
defects. The objective of the micromagnetic simulation is to compare the harmfulness of such a defect 
in exchange-coupled and -decoupled grains. 

IV.1.2.1. Description of the model 

Preliminary micromagnetic simulations are performed with the FEMME software package to simulate 
magnetization reversal in a simple model depicted in Fig. 74. The model is composed of 8 cubic 
Nd2Fe14B hard magnetic grains of dimensions 60 x 60 x 60 nm3. Furthermore, the grains are separated 
by a 2-nm-thick GB phase of various nature. A defect (pure Fe) of dimensions 60 x 4 x 4 nm3 is localized 
in one of the grains to act as the nucleation zone for magnetization reversal (i.e. so that reversal always 
starts in the grain that contains the defect). This is original compared to the case of a Nd2Fe14B grain 
with near zero anisotropy that is more often used in literature for nucleation [48], [106]. In Fig. 74, 
only 2 grains are represented for simplification reasons. 

 

Fig. 74: Cubic model used for preliminary FEMME simulations. 

The input parameters for the Nd2Fe14B grains, the GB phase and the defect are summarized in Table 
29, with the respective exchange lengths. 

Phase K1 (MJ/m3) JS (T) A (pJ/m) Lex (nm) 
Nd2Fe14B [81] 4.3 1.61 7.7 �C���ï 

Non-magnetic GB phase 
[132] 

0 0.001 0.077 �C���ð�ð�ì 

Soft ferromagnetic GB 
phase [132] 

0 0.75 2.5 �C���ï 

Defect (pure Fe) [133] 0 2 20.7 �C���ð 

Table 29: Intrinsic magnetic properties at 300 K of the different phases of the model. 
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As mentioned in Chapter II, the mesh size of the finite element model has to be of the order of the 
exchange length of the simulated material. In this work, tetrahedral meshes with a size between 2 nm 
(edges of Nd2Fe14B grains, GB phase and defect) and 10 nm (center of Nd2Fe14B grains) are used. 

IV.1.2.2. Simulated demagnetization curves: sintering vs PSA 

Two different cases are simulated, depending on the nature of the GB phase: soft ferromagnetic or 
non-magnetic. The simulated demagnetization curves are shown in Fig. 75. 

 

Fig. 75: Simulated demagnetization curves corresponding to a soft ferromagnetic (solid red curve) and 
to a non-magnetic (solid blue curve) GB phase. 

The case with a soft ferromagnetic GB phase is equivalent to the as-sintered state (discontinuous GB 
�‰�Z���•���� 
Y�����Æ���Z���v�P��-coupled grains) whereas the case with a non-magnetic GB phase is similar to the 
microstructural state after optimal post-sinter ���v�v�����o�]�v�P���~���}�v�š�]�v�µ�}�µ�•���'�����‰�Z���•����
Y�����Æ���Z���v�P��-decoupled 
grains). The defect involved in the reversal nucleation is kept effective in both cases. As observed in 
Fig. 75, for a soft-ferromagnetic GB phase, magnetization reversal occurs in one step while for a non-
magnetic GB phase, it proceeds in several steps. It can also be observed that magnetization reversal 
starts later for a soft-ferromagnetic GB phase, which is unexpected. This can be inferred from the fact 
that the GB phase has a thickness of 2 nm, which is lower than the exchange length, and so that 
magnetic domains remain pinned at the GB phase (as reported in [47]). Moreover, the shape of the 
simulated demagnetization curves is in good agreement with the experimental ones: rectangularity is 
close to unity when the GB phase is soft ferromagnetic and is deteriorated when the GB phase is non-
magnetic (step reversal). The shapes of the simulated demagnetization curves are consistent with the 
ones computed in [47] and [48] for which extremely sharp and highly squared demagnetization curve 
is obtained for a standard sintered magnet (exchange coupling) while round shape curve is simulated 
for a Ga-doped magnet (exchange decoupling). 
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Furthermore, the gain in coercivity is about 44 % for the case with a non-magnetic GB phase with 
respect to the case with a soft-ferromagnetic GB phase. The simulated gain in coercivity is higher than 
the experimental one (33 %) because of the smaller volume proportion of defects in the simulation 
model. The same reason also explains the higher values found for the simulated coercivities. 

IV.2. Magnetic properties after GBDP and post-diffusion annealing 

(PDA) 

IV.2.1. GBDP using intermetallic compound vs eutectic alloy 

After PSA, GBDP is performed on Nd-Fe-B sintered magnets using the Dy66Co34 eutectic alloy and the 
Dy63Co37 intermetallic compound (see Fig. 30). Diffusion is done along the easy axis direction and at 
920°C for 3h (see Section II.3.1). Afterwards, the diffused magnets undergo a post-diffusion annealing 
(PDA) at 530°C for 2h. This PDA is crucial since it has been shown that a heat treatment around 900°C 
leads to a coercivity (microstructural state) that is equivalent to that of the as-sintered state (see Table 
27). Moreover, Kim et al. [96] reached a coercivity of about 3 T by subsequent PDA on Dy-containing 
(7.5 wt.%) magnets and claimed that this PDA was required because of the discontinuity of the Nd-rich 
phase (characterized by HAADF-STEM) after GBDP using Dy vapor. 

The demagnetization curves corresponding to the four thermal treatments are shown for both 
diffusion sources in Fig. 76: 

 

Fig. 76: (Left) Demagnetization curves measured for the magnet diffused with the eutectic alloy: after 
sintering (black solid curve), after optimal PSA (green solid curve), after GBDP (blue solid curve) and 

after PDA (red solid curve). (Right) Same measurements for the magnet diffused with the intermetallic 
compound. 

The coercive fields measured after each fabrication step are given in Table 30: 
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Magnet Fabrication step Hcj (kA/m) 

Diffused with the eutectic alloy 
Dy66Co34 (at.%) 

As-sintered 833 (1.05 T) 
+ PSA 530°C (2h) 1093 (1.37 T) 

+ GBDP 920°C (3h) 1197 (1.50 T) 
+ PDA 530°C (2h) 1394 (1.75 T) 

Diffused with the intermetallic 
compound Dy63Co37 (at.%) 

As-sintered 826 (1.04 T) 
+ PSA 530°C (2h) 1103 (1.39 T) 

+ GBDP 920°C (3h) 1309 (1.64 T) 
+ PDA 530°C (2h) 1461 (1.84 T) 

Table 30: Coercivity measured after each fabrication step for the magnets diffused with the eutectic 
alloy and the intermetallic compound. 

In the following, the coercivity after optimal PSA is taken as reference. For the eutectic alloy, Dy-Co 
diffusion leads to an increase in coercivity of about 10 %, while Dy-Co diffusion combined with PDA 
raises the coercive field by about 28 %. In the case of the intermetallic compound, Dy-Co diffusion 
leads to an increase in coercivity of around 19 %, while combined with PDA, it raises the coercive field 
by almost 33 %. The more important gain in coercivity for GBDP with the intermetallic compound can 
be attributed to its easier grinding, compared to the eutectic alloy, leading to a more homogeneous 
deposition of the powder at the magnet surfaces (see Fig. 77) and to a more efficient diffusion process. 
The next results will therefore concern GBDP performed with the intermetallic compound Dy63Co37. 

 

Fig. 77: (Left) Image of the surface state of a magnet diffused with the eutectic alloy Dy66Co34. (Right) 
Same for a magnet diffused with the intermetallic compound Dy63Co37. 

IV.2.2. Influence of diffusion time on magnetic properties 

A parametric study has been carried out to analyze the influence of some experimental features on 
magnetic properties. The first studied parameter is the diffusion time. For that, GBDP at 920°C for 3 h 
and for 12 h has been performed on different Nd-Fe-B sintered magnets. Afterwards, these latter 
undergo the same PDA at 530°C for 2 h. The demagnetization curves of the magnets diffused for 
different times are shown in Fig. 78. The normalized polarization is plotted as a function of the applied 
field to focus the discussion on the coercivity changes. 
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Fig. 78: Influence of diffusion time on coercivity for GBDP using Dy63Co37 intermetallic compound. 

The corresponding magnetic properties are given in Table 31: 

Fabrication step JR (T) Hcj (kA/m) Hknee/Hcj (BH)max (kJ/m3) 
GBDP 920°C (3h) 1.33 1241 (1.56 T) 0.72 338 
+ PDA 530°C (2h) 1.34 1454 (1.83 T) 0.66 345 
GBDP 920°C (12h) 1.30 1224 (1.54 T) 0.72 322 
+ PDA 530°C (2h) 1.30 1443 (1.81 T) 0.65 326 

Table 31: Magnetic properties after GBDP at 920°C for 3 and 12 h, and after PDA at 530°C for 2h. 

Compared to GBDP for 3 h, the remanence is smaller after GBDP for 12 h because Dy penetrates more 
into the hard magnetic grains and antiferromagnetic coupling is therefore more important. Moreover, 
no coercivity enhancement is measured after 12-hour-diffusion, coming from a saturation effect of Dy 
in Nd2Fe14B grains. The rectangularity is also decreased after GBDP (with respect to the rectangularity 
after optimal PSA) and further deteriorated after PDA. 

IV.2.3. Influence of diffusion temperature on magnetic properties 

The second studied parameter is the diffusion temperature. GBDP at 870°C for 3 h is compared to 
GBDP at 920°C for 3h. Again, the magnets undergo the same PDA at 530°C for 2 h. The demagnetization 
curves for the magnets diffused at different temperatures are shown in Fig. 79: 
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Fig. 79: Influence of diffusion temperature on coercivity for GBDP using Dy63Co37 intermetallic 
compound. 

The corresponding magnetic properties are given in Table 32: 

Fabrication step JR (T) Hcj (kA/m) Hknee/Hcj (BH)max (kJ/m3) 
GBDP 870°C (3h) 1.33 1172 (1.47 T) 0.75 339 
+ PDA 530°C (2h) 1.34 1375 (1.73 T) 0.68 347 
GBDP 920°C (3h) 1.33 1241 (1.56 T) 0.72 338 
+ PDA 530°C (2h) 1.34 1454 (1.83 T) 0.66 345 

Table 32: Magnetic properties after GBDP at 870°C and 920°C for 3 h, and after PDA at 530°C for 2h. 

Compared to GBDP at 920°C, the remanence remains unchanged after GBDP at 870°C. Higher 
coercivity is measured after diffusion at 920°C than at 870°C owing to the more efficient diffusion 
process and thus the improved distribution of Dy in the magnet microstructure. 

IV.2.4. Influence of PDA on magnetic properties 

The last studied parameter is the PDA temperature. As shown before, the optimal annealing 
temperature prior to Dy-Co diffusion depends strongly on the magnet composition and is therefore 
expected to change after Dy-Co diffusion. For these experiments, GBDP at 920°C for 3 h is performed. 
Afterwards, different PDA at 500, 530, 550 and 600°C for 2 h are carried out. For each PDA, the 
corresponding magnetic properties are given in Table 33:  

Fabrication step JR (T) Hcj (kA/m) Hknee/Hcj (BH)max (kJ/m3) 
PDA 500°C (2h) 1.34 1457 (1.83 T) 0.68 344 
PDA 530°C (2h) 1.34 1454 (1.83 T) 0.66 345 
PDA 550°C (2h) 1.33 1455 (1.83 T) 0.69 341 
PDA 600°C (2h) 1.32 1280 (1.61 T) 0.76 337 

Table 33: Magnetic properties after PDA at 500, 530, 550 and 600°C for 2h. 

The evolution of coercivity with the PDA temperature can be directly compared to the one with the 
PSA temperature in Fig. 80: 
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Fig. 80: Evolution of coercivity with the PDA temperature (compared to the one with the PSA 
temperature). 

The optimum of coercivity can be reached after PDA at a temperature ranging between 500 and 550°C. 
Compared to non-diffused samples, coercivity shows less sensitivity to the annealing temperature 
after GBDP, which is interesting for industrial processes. 

The particular microstructural changes at GBs during thermal annealing in Dy-diffused samples 
reported by Sepehri-Amin et al. [80] help understanding this behavior. Actually, the authors noticed 
that the Nd atoms of the hard magnetic phase replaced by Dy atoms are rejected to GBs and form a 
continuous Nd-rich layer of width 4 nm that enhances exchange decoupling between grains. Kim et al. 
[96] showed that this layer continues to form during PDA and accounts for a coercivity enhancement 
that is less sensitive to the wetting process involving Cu. 

The demagnetization curves measured after GBDP and after PDA (red curves in Fig. 78 and Fig. 79 ) 
exhibit deteriorated rectangularity (0.68 after optimal PDA), which is detrimental for potential 
applications. Generally, the appearance of microstructural heterogeneities, and more particularly 
grain size dispersion, explains these degraded J-H curves with low squareness [134], [135]. For 
instance, Bittner et al. [135] studied the grain size reduction in sintered magnets by the He jet-mill 
process and measured J-H curves with poor rectangularity. In this case, they reported abnormal grain 
growth leading to two grain populations with large and low coercivity grains (10 µm-sized) distributed 
between high coercivity grains (less than 2 µm). Even if the shape of the J-H curves is very similar to 
the J-H curves obtained here after Dy diffusion, the involved heterogeneity is different since abnormal 
grain growth can be excluded in our case. Indeed, a reference sample undergoing the same diffusion 
heat treatment but without Dy-Co coating exhibits a non-degraded J-H curve. The shape of the 
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experimentally measured demagnetization curves will be explained in the following sections with the 
help of microstructural characterization and numerical simulations. 

IV.2.5. M(T) measurements 

As mentioned in II.3.1, Co substitutes to Fe of the hard magnetic phase in Nd-Fe-B sintered magnets 
and increases the Curie temperature. Measurements of the magnetization evolution with temperature 
(see II.4.1.3) under an applied field of 1 T have been performed to indirectly evaluate the penetration 
of Co in the hard magnetic grains. The measured magnets have been diffused in the three above 
experimental conditions (870°C-3h, 920°C-3h and 920°C-12h) and further annealed at 530°C for 2 h. 
The measurement of a magnet in the optimal PSA state is taken as a reference. The Curie temperature 
of each sample can be determined by plotting the evolution of the second derivative of magnetization 
(with respect to temperature) with temperature (see Fig. 81). The corresponding M(T) measurements 
are also given in Fig. 81. 

 

Fig. 81: Evolution of the second derivative of magnetization (with respect to temperature) with 
temperature for the magnets diffused in three different experimental conditions and for a reference 

magnet. (Inset) Corresponding evolution of magnetization with temperature. 

The Curie temperature is defined here as the x-coordinate of the maximum point of the second 
derivative of M. The Curie temperatures of the magnets after GBDP (332, 336 and 337°C for 870°C-3h, 
920°C-3h and 920°C-12h, respectively) are slightly higher than that of the reference magnet (330°C). 
Zhang et al. [136] reported a Curie temperature around 310°C for Nd-Fe-B sintered magnets 
undergoing the intergranular addition of the intermetallic compound Dy82.3Co17.7 (wt.%). In addition, 
Chen et al. [101] performed GBDP on Nd-Fe-B sintered magnets using the Dy60Co40 (at.%) alloy and 
observed a Curie temperature of about 320°C. The increase of the Curie temperature after GBDP in 
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[101], [136] (+ 2-8°C with respect to the reference magnet) is in good agreement with the one in this 
work (+ 2-7°C). 

Because the Curie temperature of Dy2Fe14B is only 13°C higher than that of Nd2Fe14B, the observed 
increase of the Curie temperature essentially results from the diffusion of Co into the hard magnetic 
phase. In this work, the addition of Co in the magnet microstructure during GBDP is very small (i.e. 
about 0.2 wt.%), explaining the very small increase of the Curie temperature. This is also consistent 
with the results reported in V.1.4. and obtained using a diffusion model for Co. 

IV.2.6. Characterization of microstructure and coercivity profiles 

IV.2.6.1. Microstructural characterization: SEM-EDX 

Microstructural characterization is carried out on magnets diffused at 870°C-3h, 920°C-3h, 920°C-12h 
and further annealed at 530°C-2h. The SEM images using backscattered electron contrast shown in Fig. 
82 are taken at various distances from the coated surface: 100, 200, 800 et 2000 µm. The observations 
are performed along the easy axis direction and with the following features: accelerating voltage of 5 
kV, working distance of about 10 mm and 5000 x magnification. 

 

Fig. 82: BSE-SEM images taken at various distances from the coated surface for the magnets diffused 
in three different conditions. 

The grains located in the vicinity of the coated surface (i.e. in the first 50 µm, not shown in Fig. 82) 
appear brighter than the grains further away, indicating a higher atomic weight due to Dy. After this 
zone (from 100 µm for all samples), the typical core-shell microstructure of the (Nd,Dy)2Fe14B grains is 
observed. The average grain size and thickness of the Dy-enriched shells determined by image analysis 
(intercept method) are given in Table 34 for each BSE-SEM image. 
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  100 µm 200 µm 800 µm 2000 µm 

870°C-3h 

Average grain 
size (µm) 

5.2 ± 0.9 4 ± 0.6 4.2 ± 1.6 4.4 ± 0.6 

Average thickness 
of Dy shell (µm) 

1 ± 0.3 0.3 ± 0.2 /  /  

920°C-3h 

Average grain 
size (µm) 

4.5 ± 0.6* 4.4 ± 0.8 4.4 ± 0.7 4.8 ± 1.6 

Average thickness 
of Dy shell (µm) 

1.2 ± 0.3* 1 ± 0.3 /  /  

920°C-12h 

Average grain 
size (µm) 

4.7 ± 0.9 5.8 ± 1.5 4.1 ± 1.1 4.4 ± 0.8 

Average thickness 
of Dy shell (µm) 

1.6 ± 0.3 1.3 ± 0.4 /  /  

Table 34: Average grain size and thickness of the Dy-rich shells determined from Fig. 82 by image 
analysis. 

*The intercept method has only been performed on certain grains i.e. on those exhibiting a clear core-
shell structure. 

In addition, EDX maps of Dy are shown in Fig. 83 for all samples at a distance of 50, 100, 200, 400, 800 
and 2000 µm from the coated surface. 

 

Fig. 83: EDX maps of Dy at various distances of the coated surface for all samples.  

For the 870°C-3h diffused magnet, the thickness of the Dy-enriched shells rapidly decreases for a 
distance between 100 and 200 µm from the coated surface (see Fig. 82 and Fig. 83) and these 
structures are no longer observed after 200 µm. For the 920°C-3h diffused magnet, the Dy-enriched 
shells are still µm-thick after 200 µm from the coated surface and disappear after 400 µm. For the 
920°C-12h diffused magnets, the thickness of the Dy-shells is more important than the two former 
magnets in the near surface region (100-200 µm) and according to Fig. 83, the core-shell structure is 
still observed at 400 µm with µm-thick Dy shells. These latter are observable until 600 µm from the 
coated surface (not shown here) and at 800 µm, Dy is only present at grain boundaries. According to 
Fig. 83, the 870°C-3h-200 µm, 920°C-3h-400 µm and 920°C-12h-800 µm EDX maps of Dy show a similar 
microstructural state. The concentration profiles of these three maps will be more detailed in the 
following. 

The EDX maps of Dy and Nd at a distance of 100 µm are given with their respective concentration 
profiles along a line in Fig. 84 for each sample. The line starts from a Nd2Fe14B grain and crosses a Dy-
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enriched shell until reaching the neighboring Nd2Fe14B grain. The normalized weight percentages are 
given for Dy and Nd (the wt.% of Fe is not reported in Fig. 84 since it is predominant).  

 

Fig. 84: EDX maps of Dy and Nd at a distance of 100 µm for each sample with the corresponding BSE-
SEM image and concentration profiles along a line. 

According to Fig. 84, the elemental maps of Nd and Dy reveal that the formation of the (Nd,Dy)2Fe14B 
shells is attributed to the replacement of Nd by Dy in the outer regions of the Nd2Fe14B grains. The 
amount of Dy relatively close to the coated surface in each sample can be directly compared. As shown 
by the concentration profiles, it is equivalent in the Nd2Fe14B grains and the Dy-enriched shells (10-15 
wt.%) for the 870°C-3h and the 920°C-3h diffused magnets. The amount of Dy is smaller than the one 
of Nd for these two magnets. However, for the 920°C-12h diffused magnet, the amount of Dy becomes 
more important in the Dy-enriched shell (> 20 wt.%) than the one of Nd. It is also particularly higher in 
the Nd2Fe14���� ���}�Œ���•�� �~�C�� �í�ì�� �Á�š�X�9�•�X�� �d�Z�]�•�� ���}�u���•�� �(�Œ�}�u�� �š�Z���� �•���š�µ�Œ���š�]�}�v�� ���(�(�����š�� �u���v�š�]�}�v������ �]�v IV.2.2. The 
penetration of Dy into the hard magnetic grains is the most pronounced for the 920°C-12h diffused 
magnet. 

Moreover, the EDX maps of Dy and Nd are shown in Fig. 85 at various distances from the coated 
surface, but for a microstructural state that is similar between all diffused magnets (i.e. for which Dy 
is only found at grain boundaries). 
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Fig. 85: EDX maps of Dy and Nd at various distances for a similar microstructural state between all 
diffused magnets, with the corresponding BSE-SEM image and concentration profiles along a line. 

The concentration profiles of Dy in Fig. 85 �•�Z�}�Á���š�Z���š���]�š���]�•���‰�Œ���•���v�š�����š�����‹�µ�]�À���o���v�š���Á���]�P�Z�š���‰���Œ�����v�š���P���•���~�C��
5 wt.%) in the Dy-enriched regions for the 870°C-3h, 920°C-3h and 920°C-12h at a distance of 200, 400 
and 800 µm from the coated surface, respectively. This shows again that the Dy diffusion is the most 
important for the 920°C-12h magnet. 

The gains in coercivity obtained in this thesis are compared to the ones from the work of Kim et al. [96] 
to discuss the role of PDA in the coercivity enhancement (see Fig. 86). The coercivity increases in Fig. 
86 are those reported for GBDP performed at 920°C for 3h using the intermetallic Dy-Co compound 
(see IV.2.1). In [96], the reported gains in coercivity were about 75 % and 19 % after PDA at 520°C for 
1h (with respect to annealing before GBDP) for Dy-free and Dy-containing Nd-Fe-B sintered magnets, 
respectively. For Dy-containing magnets, the amount of Dy in the microstructure in [96] (base Dy 
composition + Dy diffusion) was much higher than the �}�v�����Œ���‰�}�Œ�š�������]�v���š�Z�]�•���š�Z���•�]�•���~�C���ô���Á�š�X�9���À�•���C���í�X�ï��
wt.%), partially explaining the very high coercivity in the as-sintered state and after PDA. For Dy-free 
�u���P�v���š�•�U���]�š���Á���•���•�š�]�o�o���Z�]�P�Z���Œ���~�C���î�X�ô���Á�š�X�9���À�•���C���í�X�ï���Á�š�X�9�•�����µ�š���š�Z�������}���Œ���]�À�]�š�Ç���]�u�‰�Œ�}�À���u���v�š�•���u�����•�µ�Œ���������(�š���Œ��
each fabrication step are in good agreement with ours. 
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Fig. 86: Coercivity improvements after GBDP performed at 920°C for 3h and after PDA compared to 
the ones from the work of Kim et al. [96]. 

The microstructure changes responsible for the coercivity enhancement after PDA were also detailed 
in [96] (see Fig. 87). The very high coercivity of 3 T achieved for Dy-containing magnets was explained 
by the formation of Nd-rich phases with higher Nd content and by a higher Dy concentration achieved 
at the interface between the Nd-rich phases and the formed secondary Dy-rich shell (compared to Dy-
free magnets). Moreover, the GB phase is thicker in the case of Dy-containing magnets after PDA 
because of the more important rejection of Nd to GBs by the substantial increase in Dy substitution. 
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Fig. 87: Schematic illustration of the microstructures changes after PDA performed on Dy-free and Dy-
containing Nd-Fe-B sintered magnets. [96] 

IV.2.6.2. Coercivity profile of diffused magnets 

In addition to microstructural observation for the diffusion profile of Dy, further magnetic 
measurements are carried out on the 920°C-3h and 920°C-12h diffused magnets. These latter are 
polished to remove different thicknesses of the material and coercivity is measured after each 
polishing step. This gives information about the coercivity profile of those magnets that will be later 
discussed with the help of the above EDX maps of Dy. 

From the practical point of view, the polishing steps consist in the removal of 200, 400, 750 and 1250 
µm on each side of the diffused magnet. Polishing is performed with a SiC #240 disk at a velocity of 40-
50 rpm. 
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Prior to the measurements on the diffused magnets, a measurement is done on a reference magnet 
(in the optimal PSA state) to check the influence of the polishing on the shape of the demagnetization 
curve. The measurement is performed after removal of 250 µm on each side of the reference magnet 
and is shown in Fig. 88: 

  

Fig. 88: Measurement of the demagnetization curve after polishing on a reference magnet. 

The removal of 250 µm on each side of the magnet has no major influence on its remanence or 
coercivity, as well as the shape of the demagnetization curve. As a result, the same measurements can 
be applied to the case of diffused magnets. The demagnetization curves obtained after successive 
polishing on the 920°C-3h diffused magnet are shown in Fig. 89. Note that the normalized polarization 
is again plotted as a function of the applied field to focus on the coercivity changes. 

 

Fig. 89: Measurements of the demagnetization curve after successive polishing on the 920°C-3h 
diffused magnet. 
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From Fig. 89, the values of coercivity after each polishing step for the 920°C-3h diffused magnet are 
reported in Table 35. The values of Hk,1 and Hk,2 reported for each demagnetization curve are 
determined with the help of tangents, as shown in Fig. 88. 

As pointed out in the previous section, the gap between Hk,1 and Hk,2 values reflects the level of 
�Z���š���Œ�}�P���v���]�š�Ç���]�v���š�Z�����u�]���Œ�}�•�š�Œ�µ���š�µ�Œ���X���/�š���]�•���Á�}�Œ�š�Z���v�}�š�]�v�P���š�Z���š���š�Z�]�•���P���‰���]�•�����o�Œ�������Ç���Z�]�P�Z���~�C���ï�ï�ì���l���l�u�•���(�}�Œ��
the base magnet (before Dy diffusion). The gap between Hk,1 and Hk,2 gradually increases as the 
thickness of the removed layer decreases to finally reach a maximal value of 650 kA/m. It is also 
interesting that the value of Hk,1 which refers to the first knee of the J-H curves remains nearly constant 
whatever the thickness of the removed layer. It could be assumed that Hk,1 corresponds to defects 
already present in the magnet before GBDP and that are not fully removed during PDA. 

Magnet 
Removed thickness 
on each side (µm) 

Hk,1 (kA/m) Hk,2 (kA/m) Hcj (kA/m) 

GBDP 920°C-3h 
+ PDA 550°C 

0 700 1349 1424 (1.79 T) 
200 677 1309 1367 (1.72 T) 
400 670 1278 1346 (1.69 T) 
750 703 1235 1305 (1.64 T) 
1250 690 1197 1269 (1.59 T) 

PSA 530°C 0 752 1081 1099 (1.38 T) 

Table 35: Values of Hk,1, Hk,2 and coercivity after each polishing step for the 920°C-3h diffused and 
reference magnets. 

For the 920°C-3h diffused magnet, the loss in coercivity is the highest for the removal of the first 200 
�R�u���}�v���������Z���•�]�������~�C��- 4 %), then decreases between 200 and 40�ì���R�u���~�C��- 1.5 %) and remains constant 
�~�C��- 3 %) after 400 µm. 

The demagnetization curves obtained after successive polishing on the 920°C-12h diffused magnet are 
shown in Fig. 90. 

 

Fig. 90: Measurements of the demagnetization curve after successive polishing on the 920°C-12h 
diffused magnet. 
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The corresponding values of coercivity after each polishing step for the 920°C-12h diffused magnet are 
reported in Table 36. 

Magnet 
Removed thickness 
on each side (µm) 

Hk,1 (kA/m) Hk,2 (kA/m) Hcj (kA/m) 

GBDP 920°C-
12h + PDA 

530°C 

0 690 1304 1385 (1.74 T) 
200 693 1304 1367 (1.72 T) 
400 692 1276 1340 (1.68 T) 
750 695 1220 1280 (1.61 T) 
1250 697 1177 1251 (1.57 T) 

PSA 530°C 0 724 1040 1087 (1.37 T) 

Table 36: Values of Hk,1, Hk,2 and coercivity after each polishing step for the 920°C-12h diffused and 
reference magnets. 

For the 920°C-12h diffused magnet, a small reduction in coercivity is observed after the removal of the 
�(�]�Œ�•�š���î�ì�ì���R�u���}�v���������Z���•�]�������~�C��- 1.3 %). It increases between �î�ì�ì�����v�����ð�ì�ì���R�u���~�C��- 2 %), reaches a maximum 
�����š�Á�����v���ð�ì�ì�����v�����ó�ñ�ì���R�u���~�C��- �ð�X�ñ���9�•�����v�����š�Z���v���������Œ�����•���•���š�}���C��- 2.3 % after 750 µm. 

In the following, the coercivity of the non-polished diffused magnet Hcj,0 is taken as reference (= 1424 
kA/m for the 920°C-3h diffused magnet, = 1385 kA/m for the 920°C-12h diffused magnet). The 
evolution of the ratio Hcj/Hcj,0 with the removed thickness on each side is plotted in Fig. 91 for both 
diffused magnets. Furthermore, the EDX mappings of Dy are also shown in Fig. 91 to shed light on the 
link between microstructural characterization and the coercivity measurement. 

 

Fig. 91: Evolution of the ratio Hcj/Hcj,0 with the removed thickness for the 920°C-3h and 920°C-12h 
diffused magnets and respective EDX maps of Dy. 
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The losses in coercivity reported in Table 35 and Table 36 can be explained with the help of Fig. 91 by 
correlation with the EDX mappings of Dy. As shown before, the highest loss in coercivity is observed 
for the first 200 µm in the case of the 920°C-3h diffused magnet. For instance, the EDX map of Dy 
corresponding to the non-polished magnet reveals saturation in Dy at/near the coated surface and the 
EDX map at 200 µm from the coated surface shows the reduced localization of Dy at grain boundaries. 
The same conclusion can be drawn for the 920°C-12h diffused magnet for the polishing between 400 
and 750 µm on each side (from clear core-shell structures to reduced localization at grain boundaries). 

Micromagnetic simulations are here required to understand the link between the local composition 
and the macroscopic coercivity measurement. This can be studied at the grain scale by calculations 
performed on a simple model that is representative of the core-shell structure experimentally found 
in Dy-diffused Nd-Fe-B sintered magnets, but at a smaller scale due to computational limits. Numerical 
modelling is also a helpful tool to explain the shape of the experimental demagnetization curves of Dy-
diffused magnets, i.e. to explain the deterioration of rectangularity. 

IV.2.7. FEMME simulations: core-shell model 

IV.2.7.1. Scope of the numerical simulation 

Micromagnetic simulations are performed at the grain scale on a core-shell model using the FEMME 
software. The objective is to determine the role of a non-magnetic GB phase and of the Dy-rich shell 
(thickness and concentration of Dy) on coercivity in such structures. 

IV.2.7.2. Description of the model 

To simulate magnetization reversal in a core-shell structure, the model (see Fig. 92) is based on the 
one described in IV.1.2.1. It is composed of 8 cubic grains, each one consisting of a Nd2Fe14B hard 
magnetic core surrounded by a (Nd,Dy)2Fe14B shell of various thickness (5-10 nm). The grains are again 
separated by a 2-nm-thick GB phase of various nature. The defect is still localized in one of the grains 
to act as the nucleation zone for magnetization reversal. 

 

Fig. 92: Cubic model representative of a core-shell structure. 

The input parameters for the Nd2Fe14B grains, the GB phase and the defect are the same as in Table 
29. The intrinsic magnetic properties for the different Dy-rich shells considered in the simulations are 
given in Table 37. The parameters at 300 K for the (Nd53Dy47)2Fe14B phase are taken from [81]. The K1 
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and JS parameters at 300 K for the (Nd90Dy10)2Fe14B and (Nd76.5Dy23.5)2Fe14B phases are calculated by 
linear interpolations between the values for Nd2Fe14B and (Nd53Dy47)2Fe14B phases, according to [82], 
[106]. The A parameter is also determined by linear interpolation, which can be questionable. 
However, the exchange stiffness of the Dy-rich shell has no major influence on the simulated 
demagnetization curve and it also lies in a restricted range of values. In addition, the chosen 
(Nd53Dy47)2Fe14B composition for the Dy shell can be justified by the EDX analyses in IV.2.6.1 (crossing 
of the Dy and Nd concentration profiles in the shell region). The (Nd90Dy10)2Fe14B and 
(Nd76.5Dy23.5)2Fe14B compositions correspond to a very local anisotropy enhancement and to the 
intermediate case, respectively. 

Phase K1 (MJ/m3) JS (T) A (pJ/m) Lex (nm) 
(Nd53Dy47)2Fe14B [81] 5.17 1.15 8.7 �C���ð 

(Nd90Dy10)2Fe14B 4.5 1.51 7.9 �C���ï 
(Nd76.5Dy23.5)2Fe14B 4.7 1.38 8.2 �C���ï 

Table 37: Intrinsic magnetic properties at 300 K of the Dy-rich shells. 

Tetrahedral meshes are used with the same size as in IV.1.2.1 for the Nd2Fe14B grains, the GB phase 
and the defect. For the Dy-rich shells, meshes with a size of 2 nm are also used. 

In the following, the impact of some model parameters on magnetization reversal is reported: the 
thickness and content in Dy of the Dy-rich shell and the nature of the GB phase. 

IV.2.7.3. Influence of thickness/content in Dy of Dy-rich shell on magnetization reversal 

The first studied parameter is the thickness of the Dy-rich shell. In the following simulations, the GB 
phase is set to be non-magnetic (see Table 29 for parameters), so that the Nd2Fe14B grains are 
exchange-decoupled. Two different thicknesses are tested for the Dy-rich shell: 5 and 10 nm. 
Furthermore, the impact of the content in Dy of the Dy-rich shell is also reported. For that, simulations 
with different compositions for the Dy-rich shell are carried out: 10, 23.5 and 47 at.% of Dy. The 
simulated demagnetization curves are shown in Fig. 93. 
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Fig. 93: Simulated demagnetization curves showing the influence of the Dy-rich shell thickness and 
content in Dy on magnetization reversal. The red numbers correspond to the screenshots in Fig. 94. 

In Fig. 93, all simulated demagnetization curves exhibit a stepwise behavior for magnetization reversal. 
Neither thickness nor content in Dy of the Dy-rich shell have an influence on this stepwise behavior. 
However, this latter can be attributed to the presence of the non-magnetic GB phase in the model. For 
instance, some images of the magnetization direction distribution are represented at different field 
values in Fig. 94 for the reference case with a (Nd53Dy47)2Fe14B shell of thickness 5 nm. 

 

Fig. 94: Magnetization configuration during reversal for the case with a (Nd53Dy47)2Fe14B shell of 
thickness 5 nm and a non-magnetic GB phase (dark blue solid curve in Fig. 93). 

From Fig. 94, magnetization reversal starts from the defect and propagates in the rest of the grain that 
contains the defect (1st step: images 1 and 2). Owing to its non-magnetic nature, reversed domains are 
pinned at the GB phase and a higher applied field is required for depinning. Then, reversed domains 
propagate in the above neighboring grain and 2 grains are thus completely reversed (2nd step: images 
3 and 4). After further pinning and depinning processes, reversal of all the remaining grains happens 
(3rd step). The image 5 corresponds to the magnetization distribution at the coercive field, for which 
equipartition of blue and red domains is observed. This discrete switching of individual grains in the 
case of a non-magnetic GB phase is in good agreement with the idea developed in the work of Dobrynin 
et al. [120]. 
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Compared to the simulated case with no Dy shell (dashed black curve in Fig. 93), the above simulations 
show that the (Nd,Dy)2Fe14B shell efficiently hinders nucleation of reversed domains from the defect 
(when the content in Dy of the Dy-rich shell is higher than 10 at.%). For instance, the simulated case 
with a Dy10 shell of thickness 5 nm shows very small improvement in coercivity, since its thickness is of 
the same order of magnitude than the one of the defect (4 nm) and because of its low content in Dy. 
The Dy-rich shell also delays the reversal propagation from the first grain to neighboring grains, which 
leads to coercivity enhancement. In fact, the gain in coercivity for the simulated cases with a Dy shell 
of thickness 10 nm is about 30 % and is in good agreement with the experimental one reported in 
IV.2.1 after GBDP using the intermetallic compound and further PDA (+ 33%). 

According to Fig. 93, the reversal of the first grain (that contains the defect) essentially depends on the 
content of Dy in the Dy shell. The propagation (2nd and 3rd) steps are in addition determined by the 
thickness of the Dy shell. Indeed, the curves in Fig. 93 with a thicker Dy shell exhibit higher coercivity, 
even if the content in Dy of the Dy shell is smaller (i.e. Dy23.5 10 nm case shows higher coercivity than 
Dy47 5 nm case). 

IV.2.7.4. Influence of GB phase nature on magnetization reversal 

The above section has already given some information about the impact of a non-magnetic GB phase 
on magnetization reversal of the studied core-shell model. An additional case with a soft ferromagnetic 
GB phase is simulated and is compared to the reference case of Fig. 93 (Dy47 5 nm GB non-magnetic). 
For this computation, the considered Dy shell is therefore the (Nd53Dy47)2Fe14B phase with a thickness 
of 5 nm. The simulated demagnetization curve for a soft ferromagnetic GB phase is given in Fig. 95. 
This case corresponds to GBDP without further annealing, which is still efficient for coercivity 
enhancement, as experimentally observed. 

 

Fig. 95: Simulated demagnetization curves showing the influence of the GB phase nature on 
magnetization reversal. The red numbers correspond to the screenshots in Fig. 96. 
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The simulation highlights the fact that the stepwise behavior of magnetization reversal essentially 
depends on the nature of the GB phase. Indeed, the model with a soft-ferromagnetic GB phase exhibits 
magnetization reversal in one step. The screenshots of the magnetization configuration during reversal 
for the case with a soft ferromagnetic GB phase are shown in Fig. 96: 

 

Fig. 96: Magnetization configuration during reversal for the case with a (Nd53Dy47)2Fe14B shell of 
thickness 5 nm and a soft ferromagnetic GB phase (red solid curve in Fig. 95). 

From Fig. 96, magnetization reversal starts again from the defect zone but propagates in several grains 
at the same time (images 1 to 3). Meanwhile propagation, nucleation of additional reversed domains 
occurs at the corners of grains (white domains on image 2). Coercivity therefore decreases a lot when 
the GB phase is soft-ferromagnetic (- 26% with respect to the case with a non-magnetic GB phase). 

IV.3. Conclusions 

Core-shell microstructures have been obtained by GBDP on Nd-Fe-B sintered magnets using a Dy-Co 
intermetallic compound. An experimental parametric study has been done to determine the influence 
of diffusion time, temperature and of post-diffusion annealing on coercivity. Diffusion performed at 
higher temperatures (920°C vs 870°C) leads to a better distribution of Dy in the microstructure and 
hence to better coercivity. Diffusion for a longer duration (�í�î���Z���À�•���ï���Z�•�����}���•�v�[�š���Œ���•�µ�o�š���]�v�����v���]�u�‰�Œ�}�À���u���v�š��
of coercivity because of a saturation effect in Dy. In addition, a post-diffusion annealing enables further 
coercivity enhancement and lower sensitivity to the annealing temperature (compared to the 
coercivity dependence with annealing before GBDP). Microstructural observations in complement to 
magnetic measurements were performed to characterize the diffusion and coercivity profiles and to 
establish the link between the local composition and the measured coercive field. Furthermore, 
micromagnetic simulations have been carried out at the grain scale on a simple core-shell model. By 
introducing a defect in the model, its impact on the reversal of exchange-coupled and decoupled grains 
has been studied. Microstructural features such as the content in Dy and thickness of the Dy shell, as 
well as the nature of the GB phase, have a major influence on the simulated demagnetization curves. 
On the one hand, nucleation of magnetization reversal from the defect zone essentially depends on 
the content in Dy of the Dy shell (hindered with the increase of Dy content) while the increase of the 
Dy shell thickness delays the propagation of reversal, leading to coercivity enhancement. On the other 
hand, the nature of the GB phase determines the stepwise behavior/shape of the demagnetization 
curves. These first computations reproduce well the shape of the experimentally measured 
demagnetization curves (i.e. the deterioration of rectangularity after annealing and GBDP). For 
instance, the decreased rectangularity can be explained by the presence of a non-magnetic GB phase 
that results in exchange decoupling between grains (= stepwise reversal). The simulations are also in 
good agreement with the experimental gains in coercivity. 

The next chapter deals with the analysis of the Dy distributions with the help of a diffusion model. The 
purpose is to correlate the local Dy content to specific values of coercive fields that will be used as 
input parameters for simulations performed with the previously described polycrystalline model. 
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Magnetization reversal will therefore be simulated on multigrain systems representative of magnets 
with coercivity gradient to further compare the simulated and experimental demagnetization curves 
obtained for the 870°C-3h, 920°C-3h and 920°C-12h diffused magnets. 
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V. Discussion: coercivity of graded magnets 

The objective of this chapter is to propose a discussion on the coercivity of polycrystalline Nd-Fe-B 
sintered magnets covering the different scales that have been investigated. Actually, it has been shown 
that the magnet coercivity can be seen as a combination of several physical processes, which justifies 
considering this property as extrinsic. Schematically, the triggering of magnetization reversal starts 
near grain boundaries at the nanoscale and affects an activation volume of several nm3. Then, reversal 
propagates into the grain volume, leading to a complete grain switching for a critical value of the 
applied field. Finally, magnetostatic interactions between grains generate specific grain reversal 
patterns in the sintered parts. These patterns are governed by the demagnetizing field and lead to 
second quadrant J-H curves with shapes depending on the measurement conditions. Consequently, 
the experimental coercive field value (Hext for J=0) obtained by hysteresigraph measurement needs 
further assessment and interpretation. 

In the previous chapter, the influence of thermal treatments (annealing, GBDP of Dy) on the triggering 
of reversal and the switching field has been described via magnetic measurements and numerical 
modelling at the nanoscale. This chapter enlarges the analysis to the effect of large grain 
heterogeneities, as observed after Dy diffusion and unavoidable for magnets with a thickness larger 
than 2-3 mm. In the first part, the Dy distributions are analyzed via a diffusion model in order to 
estimate the Dy concentration in grains and at different depths. Then, after ascribing to the grains 
some critical values for the switching field that are related to the local Dy content, the polycrystalline 
model is implemented for the simulation of J-H curves in closed-circuit. The simulation allows 
understanding the large local values of switching fields that are relevant at the grain scale, compared 
to the coercive field measured on the magnet. 

V.1. Modelling of diffusion profiles  

The diffusion of Dy and Co from the surface coating into the volume of sintered magnets is expected 
to occur preferentially along grain boundaries (GBs) since, at the temperature of the diffusion 
treatment (> 850°C), the Nd-rich phase located at GBs is in the liquid state. Actually, diffusion in a liquid 
phase is generally considered as a faster process than solid-state transport [137]. 

This assumption is consistent with the chemical element mapping (see Fig. 84 and Fig. 85 in Chapter 
IV) showing that the large Nd-rich precipitates, clearly visible at triple junctions after sintering, become 
also Dy-rich after diffusion, revealing a preferential path for the heavy rare-earth elements. However, 
the Dy element diffuses also from GBs into the volume of Nd2Fe14B grains. The competition between 
grain boundary diffusion and volume diffusion results in the previously described core-shell structure. 
Both mechanisms are controlled by specific values of diffusion coefficients. Since the diffusivities could 
be different between the two mechanisms, the diffusion fronts (and their evolution with temperature 
and time) could be complex. They could strongly differ from the well-known concentration profile 
resulting from a single diffusion process that occurs in a semi-infinite and homogeneous body. 

V.1.1. Diffusion model hypothesis 

V.1.1.1. Diffusion in a bi-crystal 

Different models have been proposed in literature to account for the combination of grain boundary 
and volume diffusion mechanisms. The first model has been introduced by Fisher [138] who considered 
a simple geometrical representation of the grain boundary consisting in two semi-infinite planar 
crystals separated by a thin horizontal layer (located at x=0, see Fig. 97). Diffusion occurs from the top 
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line (located at y=0) of the bi-���Œ�Ç�•�š���o�����v�����]�•�����•�•�µ�u�������š�}���(�}�o�o�}�Á���&�]���l�[�•���o���Á���]�v���������Z���u�����]�µ�u���~�o�}�Á�����]�(�(�µ�•�]�À�]�š�Ç��
Dv in grains and high diffusivity Dj in GBs). At the initial state, the concentration is ascribed to be equal 
to 1 at the top line (y=0) and is zero in the volume. Fisher obtained the following analytical expression 
for the concentration profile: 
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The reduced coordinates are expressed as (with a being the half width of the grain boundary): 
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Fig. 97: Bi-crystal model for the calculation of the Dy profile in a polycrystalline sample by mixed 
diffusion (volume/grain boundary) of elements from the surface. The red line illustrates the shape of 

iso-concentration lines (from [138]). 

The concentration is given in [Eq. 38] as a product of two distinct terms. The first one (error function) 
depicts the lateral profile in grains with respect to the x-coordinate and represents therefore the 
consumption by the grains of the diffused species. The second term takes into account diffusion along 
the grain boundary (i.e. along the y-axis). The attenuation of the penetration profile is described with 
the exponential function (i.e. the factor �E). When the factor �E is small, the iso-concentration lines tend 
to be flat, diffusion being controlled by volume diffusion and limited to a thin layer under the sample 
surface. On the contrary, when the factor �E is high, the diffusion along GBs is predominant and the iso-
concentration lines become very steep (sharp) near GBs. This last regime is preferred for optimizing 
the Dy diffusion. 

The Fisher approximation stands when the concentration profile remains flat along the thickness of 
the grain boundary (along the x-axis) and for an infinite source of Dy available at the sample surface. 
Whipple [139] improved the model for large GBs (non-flat profile) and Suzuoka [140] gave a solution 
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taking into account the consumption of the diffused element. However, these last two formalisms are 
more complicated and the solutions require numerical evaluation. As a first approach, the Fisher 
approximation has been implemented in this study in order to establish some main trends. 

V.1.1.2. Application to the diffusion of Dy in sintered magnets 

In sintered magnets, diffusion annealing is carried out within a range of temperature for which a liquid 
phase forms at GBs via the eutectic reaction between the Nd-rich phases localized at GBs and the 
Nd2Fe14B grains. The eutectic reaction occurs at 677°C [130] and the resulting liquid phase tends to 
wet the GBs before the onset of the precursor melting (TM(Dy63Co37) = 734°C). For this reason, the 
diffusion process of Dy in magnets can hardly be modeled by the penetration of a liquid alloy formed 
at the top surface and penetrating into the bulk along GBs. The process differs also from the case of 
an element diffusing in the solid state and preferentially at GBs. In the first case, the diffusion process 
is controlled by the wetting of GBs by the precursor alloy and is driven by the surface energy balance 
[141], [142]. In the second situation, solid state diffusion occurs along very thin GBs (2a = 0.5 nm) and 
the activation energy of GBDP is about half that of the volume diffusion [143]. 

The values of diffusion coefficients Dv and Dj are the key parameters in this model. For the volume 
diffusion of Dy in Nd2Fe14B grains, the following expression has been proposed by Campos et al. [144] 
for the coefficient Dv: 
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The diffusion coefficient Dj has been evaluated by Loewe et al. [94] for some rare-earth elements (Dy, 
�d���Y�•�����š���õ�ì�ì�£�����(�Œ�}�u�����}���Œcivity profiles (Dj = 1.1 10-10 m2.s-1, i.e. Dj/Dv �C���í�ì7). In the following, it has been 
assumed that the value of Dj ���À�}�o�À���•���(�Œ�}�u���š�Z�����^�‰�]�À�}�š�_���š���u�‰���Œ���š�µ�Œ�����}�(���õ�ì�ì�£���U���������}�Œ���]�v�P���š�}�����v�����Œ�Œ�Z���v�]�µ�•��
law, with an activation energy Qj of 315 kJ/mol equivalent to the bulk diffusion. The exact activation 
energy is still unknown but the following trends are not drastically changed with another values of Qj 
due to the narrow range of temperature studied (50 °C). 

Some other geometrical parameters required for the calculation of the Dy volumetric concentration 
and the ratio between Nd and Dy atoms are given in Table 38. It has to be noticed that the width of 
the grain boundary has been taken here as 2a=20 nm, which is a large value regarding the grain 
boundary thickness revealed by TEM analysis [80]. Since the grains are partially melted at 900°C at 
their surface and form channels for Dy diffusion, a larger value for the grain boundary thickness can 
be reasonably assumed during the diffusion heat treatment. This value also corresponds to an 
estimation made from the STEM-EDX lines performed on GBs by Loewe et al. [94]. 

Parameters Numerical value 
Mass of Dy63Co37 alloy deposited on the top surface of the magnet 20 mg 

Diameter of the sample 10 mm 
Estimated thickness of the Dy63Co37 alloy layer deposited on the surface 200 µm 

Molar concentration of Dy in the deposited layer 6.47 (x 10-3 mol.cm-3) 
Molar concentration of Nd in the Nd2Fe14B phase 13.9 (x 10-3 mol.cm-3) 

Grain size 5 µm 
Grain boundary thickness for the GB diffusion path (2a) 20 nm 

Factor �E��in [Eq. 38] (920°C / 3h) 4.105 

Table 38: Geometrical data for the computation of the Dy concentration profile with the Fisher model. 
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V.1.2. Results 

V.1.2.1. Lateral concentration profile in grains 

The lateral Dy concentration profiles (along the x-axis) obtained with the Fisher model are 
representative of the Dy penetration in grains. The profiles are plotted in Fig. 98 at different depths 
(100, 200, 400 and 800 µm) for the three experimental diffusion conditions (870°C-3h, 920°C-3h and 
920°C-12h). 
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Fig. 98: Dy concentration profile (relative to the surface) obtained with the Fisher model for the three experimental diffusion conditions.
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From these curves, the values of the Dy concentration, averaged over a shell of width 1 µm located at 
the grain rim, have been calculated and reported in Table 39. Three color coded groups have been 
distinguished among the previous 12 cases: (i) high concentration shells (CDy > 0.25), (ii) medium (0.10 
< CDy < 0.25) and (iii) low diffused shells (CDy �C���ì�X�í�ì�•�X��Table 39 regroups the computed data that are 
superposed to the corresponding EDX maps of Dy given as guidelines. 

 

Table 39: Dy volumetric concentration (normalized to Dy surface concentration) averaged over 1-µm-
thick shell from the Fisher model. Corresponding Dy elemental maps obtained by SEM-EDX. 

It is worth noting that the different positions (from the sample surface) of the high Dy concentration 
shells predicted by the model correspond well with most of the SEM-EDX mappings showing enriched 
and contrasted Dy shells. The trend is the same for intermediate and low Dy concentration shells. The 
width of the Dy-rich shell is also well depicted by the model, as illustrated by the threshold values 
reported in Table 40. 

 100 µm 200 µm 400 µm 800 µm 
870°C-3h 0.26 µm 0.2 µm 0.18 µm /  
920°C-3h 0.6 µm 0.44 µm 0.2 µm /  
920°C-12h > 1 µm > 1 µm 0.75 µm /  

Table 40: Distance from the grain boundary in µm below which the Dy/Nd-init ratio exceeds the 
threshold value of 0.1 considered as an indicator of the width of the Dy-rich shell visible on SEM-EDX 

elemental maps. 

V.1.2.2. Comparison with SEM-EDX quantitative analyses 

Fig. 100, Fig. 101 and Fig. 102 compare the Dy/Nd profiles measured by SEM-EDX to the depletion 
calculated for the three diffusion conditions in the grain volume. For each condition, two cases have 
been selected: (i) the grain concentration profile near the surface (100 µm) and (ii) the profile at a 

 100 µm 200 µm 400 µm 800 µm 
870°C-3h 0.14 0.09 0.04 0.01 
920°C-3h 0.30 0.22 0.12 0.03 
920°C-12h 0.52 0.42 0.26 0.11 

 100 µm 200 µm 400 µm 800 µm 

870 °C 
�t 3h 

    

920°C 
�t 3h 

    

920°C 
�t 12h 
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depth corresponding t�}���š�Z�����]�v�š���Œ�u�����]���š�������À���Œ���P���������Ç�����}�v�š���v�š���~�����C���ì�X�í�•���‰�Œ���À�]�}�µ�•�o�Ç���]�����v�š�]�(�]�������]�v��Table 
39. At 920°C, the experimental profile in grains near the surface exhibits a large plateau followed by a 
rapid decrease in the Dy content (see Fig. 100 (up)). This profile shape differs strongly from the 
calculated depletion line and reveals a different mechanism for the Dy penetration into the grain, as 
already inferred by several authors. Near the sample surface, as the Dy concentration is high, a large 
amount of Nd is rejected to the GB phase and forms a thick liquid phase as the eutectic reaction 
proceeds (see (b) in Fig. 99). During cooling, the liquid phase solidifies and tends to transform into large 
and stepped shells with quasi homogeneous Dy content (see (c) in Fig. 99). [98] 

 

Fig. 99: Schematic representation of the possible mechanism for the replacement of Nd by Dy. [98] 

The effect is more pronounced after 12 h (see Fig. 102 up)) at 920°C. However, the discrepancy tends 
to decrease for lower Dy content, i.e. for the profiles measured at 400 and 800 µm from the surface 
for 920°C-3h and 920°C-12 h, respectively, and for the profiles measured at 100 and 200 µm for 870°C-
3h. For all these cases, the agreement between the model and the quantitative SEM-EDX analyses for 
Dy and Nd is quite good. 

 

Fig. 100: Dy/Nd depletion in grain volume at 100 µm and 400 µm for the sample diffused at 920°C-3h. 
(Left) Measured (open symbols) and calculated (solid line) concentration profiles. (Right) SEM-EDX 

maps of Nd and Dy with the localization of the profile line. 
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Fig. 101: Dy/Nd depletion in grain volume at 100 µm and 200 µm for the sample diffused at 870°C-3h. 
(Left) Measured (open symbols) and calculated (solid line) concentration profiles. (Right) SEM-EDX 

maps of Nd and Dy with the localization of the profile line. 

 

Fig. 102: Dy/Nd depletion in grain volume at 100 µm and 800 µm for the sample diffused at 920°C-
12h. (Left) Measured (open symbols) and calculated (solid line) concentration profiles. (Right) SEM-

EDX maps of Nd and Dy with the localization of the profile line. 
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V.1.3. Impact on coercivity profile 

In the previous sections, the diffusion model has been implemented to estimate the Dy content in 
grains as a function of depth and diffusion conditions. Table 41 provides the ratio of Dy atoms over the 
initial Nd atoms calculated in the 1-µm-wide grain shells. The values are deduced from data of Table 
39. Since the grain coercivity enhancement depends mostly on the Dy/Nd ratio, Table 41 supplies a 
first overview of the distribution of the coercivity improvement that could be expected in the magnet 
after GBDP. For instance, Loewe et al. [79] found that the local switching field is enhanced by 250 kA/m 
�~�C�ì�X�ï�í���d�•���Á�]�š�Z�������Œ���š�]�}�����Ç�l�E�������‹�µ���o���š�}���ì�X�í�î���]�v���š�Ze shell (averaged over 1-µm-depth). It is worth noting 
that this last value is obtained for similar diffusion conditions (900°C-6h-100µm). 

 100 µm 200 µm 400 µm 800 µm 
870°C-3h 0.07 (+ 0.18 T) 0.04 (+ 0.10 T) 0.02 (+ 0.05 T) 0.00 
920°C-3h 0.14 (+ 0.36 T) 0.10 (+ 0.26 T) 0.05 (+ 0.13 T) 0.01 
920°C-12h 0.24 (+ 0.62 T) 0.19 (+ 0.49 T) 0.12 (+ 0.31 T) 0.05 (+ 0.13 T) 

Table 41: Dy/Nd-init ratio averaged over 1-µm-thick grain shell of Dy diffused sample estimated with 
the Fisher model. The values between parentheses reflect the estimation of the coercivity increase 

due to the local Dy enrichment. 

The core-shell structures disappear in the SEM analyses at a depth larger than 800 µm. Considering a 
Dy enrichment effective only until 800 µm, as suggested by the data of Table 41, it would tend to 
minimize the actual depth of the magnet for which coercivity is enhanced. Actually, several authors 
[79], [96] observed a local coercivity enhancement up to 2.5-3 mm from the surface in diffused 
samples, i.e. at a distance from the surface for which the Dy enrichment is not visible by SEM due to 
the resolution limitation. However, using STEM-EDX analysis, Loewe et al. [79] reported a local Dy 
concentration of 0.4 at.% at 10 nm from GBs located at 1.5 mm from the sample surface. This 
corresponds to an atomic ratio Dy/Nd-init equal to 0.03 (Nd-init corresponds to the atomic content of 
Nd in the Nd2Fe14B phase before diffusion and is mentioned since Dy substitutes to Nd in the diffused 
region while the Nd in excess is rejected to GBs [80]). With this low Dy content, the coercivity 
enhancement is still significant (150 �l���l�u���C���ì�X�í�õ���d�•�X���&�Œ�}�u���š�Z�]�•�������š���U���]�š���Z���•���������v�����•�•�µ�u�������Z���Œ�����š�Z���š���š�Z����
threshold for a grain coercivity enhancement corresponds to a minimum penetration of 10 nm in the 
grain with a ratio Dy/Nd-�]�v�]�š���C���ì�X�ì�í�X 

Fig. 103 plots the evolution of the Dy/Nd ratio at 10 nm from the GB with the depth for the three 
diffusion conditions calculated with the Fisher model. According to the curves, the critical depths for 
coercivity enhancement are estimated to be 1, 1.5 and 2 mm for the 870°C-3h, 920°C-3h and 920°C-
12h diffusion conditions, respectively. 

Kim et al. [96] showed that Dy can still penetrate the magnet beyond this limit. Up to a depth of 
3.25 mm, Dy is detected at GBs by STEM-EDX. A fine shell of 2 nm width with a content of Dy = 0.1 at.% 
is also formed during PDA performed at 520°C. However, as noticed in Chapter IV thanks to 
micromagnetic modelling, such a fine Dy shell should not be efficient enough to improve (or restore) 
the grain coercivity when a defect (i.e. a phase with low magnetocrystalline anisotropy) of 4 nm width 
is introduced. It has been inferred that the behavior of the magnets investigated in this study could be 
explained by a two-population distribution of defects affecting their coercivity. The influence of the 
smaller defects could be alleviated by the heat treatments while the larger ones remain harmful. Even 
if the larger defects have not been directly observed, this assumption is consistent with previous 
findings [131]. As pointed out in Chapter III, the shape of the experimental J-H curves after annealing 
(and without Dy diffusion) could be accounted with a low content of defective grains (< 3 %). 
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For this reason, it has been assumed that the inner part of thick diffused magnets (depth = 2.5 mm) 
studied here keeps the same coercivity as the base magnet, even if a small amount of Dy can penetrate 
up to the center of the samples. These elements have been considered in Table 41 that provides the 
basis for the demagnetization simulations exposed in the next section. 

Finally, the total amount of Dy atoms that penetrate into the magnet by diffusion during the 
experiment has been extracted from the calculated profiles and compared to the amount of Dy initially 
available at the free surface. The results are indicated in Table 42 and show that, for the last diffusion 
condition (920°C-12h), all Dy atoms have been consumed and the initial amount is even not sufficient 
to lead to the theoretical profile plotted in Fig. 103. As a consequence, the coercivity enhancement 
predicted by the Fisher model should be overestimated for this sample. 

 

Fig. 103: Evolution of the Dy enrichment calculated at 10 nm from the grain boundary with the 
distance from the sample surface with the Fisher model for the three diffusion conditions. 

 0-100  
µm 

100-200 
µm 

200-400 
µm 

400-800 
µm 

Total 

870°C-3h 0.11 0.07 0.04 0.01 0.23 
920°C-3h 0.21 0.16 0.20 0.18 0.75 
920°C-12h 0.35 0.28 0.41 0.44 1.48 

Table 42: Fraction of the total Dy atoms initially available at the free surface and diffused in 
successive slices distributed from the sample surface. 

V.1.4. Diffusion of Co 

Cook et al. [145] reported that the diffusion coefficient of Co in Nd2Fe14B is two orders of magnitude 
higher than the diffusion coefficient of Dy at 950°C. The Fisher model has therefore been used with 
values of Dv and Dj 100 times higher than the values used for Dy in order to estimate the impact on the 
concentration profiles. The results are plotted in Fig. 104. Unlike for Dy, the concentration profile of 
Co is very flat and the Co/Fe ratio is low (around 1 %). Furthermore, this result highly overestimates 
the Co content since the calculation shows that all the available Co atoms, deposited at the free 
surface, should be rapidly consumed (after a few minutes at 920°C). These elements confirm that Co 
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should be very difficult to be detected by SEM-EDX in the diffused samples and should be quasi-
homogeneously distributed into the magnet. Moreover, the influence on the Curie temperature is very 
low (�' TC �C���õ�£�����(�}�Œ�����}�l�&�����A���í�9��[130]). 

 

Fig. 104: Evolution of the Co enrichment calculated at 2.5 µm from the grain boundary (grain center) 
with the distance from the sample surface with the Fisher model for the 920°C-3h diffusion condition. 

(Insert) Grain concentration profile at 400 µm. 

V.2. Polycrystalline model applied to Dy-diffused thick magnets 

V.2.1. Description of the geometrical model 

The polycrystalline finite element model is implemented in this section to quantitatively analyze the 
magnetic properties of Dy-diffused samples. In the following simulation cases, different arrays of cubic 
grains made of stacks of grain layers are considered, each grain layer exhibiting its own coercivity 
distribution (function of <HC> and �VHc). At the mid-plane of a given array, the first layer is assumed to 
have the same properties as the non-diffused material. Then, the coercivity values of the upper layers 
of the array are ascribed to be higher, reflecting the coercivity profile of the Dy-diffused sample. The 
model is assessed on its ability to describe the shape of J-H curves measured by the hysteresigraph 
system. 

V.2.1.1. 3D-array models with graded properties 

As mentioned in Chapter II (see II.5.2.4), only several thousands of grains can be described with the 
finite element model. Moreover, the aspect ratio of the sample (height = 5 mm, diameter = 10 mm) 
has to be kept in the geometrical model in order to correctly reflect the demagnetizing field effects. 
Considering these constraints, the model cannot reproduce simultaneously the distance along which 
the property profile is observed (2.5 mm) and the grain size (5 µm). 

As pointed out previously, the grain size is not a relevant parameter of the model as long as the 
objective of the model is to deal with dipolar interactions. With a reduced number of grains compared 
to actual samples, the model is thus able to take into account magnetostatic interactions in a layered 
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sample as long as the geometrical aspect ratio remains representative of the real sample. These 
considerations lead to the selection of the two following polycrystalline model configurations 
described in Table 43: 

Layer 
Number of grains in layer 

nx x ny = 10 x 10 
Configuration #1 

Number of grains in layer 
nx x ny = 20 x 20 
Configuration #2 

Grain coercivity distribution 
parameters 

1 2 4 <µ0Hc> = 1.6 T - �VHc= 0.2 T 
2 1 2 <µ0Hc> = 2.0 T - �VHc= 0.1 T 
3 1 2 <µ0Hc> = 2.2 T - �VHc= 0.1 T 
4 1 2 <µ0Hc> = 2.4 T - �VHc= 0.1 T 

Table 43: Polycrystalline model configurations for simulated magnetization reversal in Dy-diffused 
samples. 

These 3D arrays are scaled by the number of grains (nx x ny in Table 43 denotes the number of grains 
in the 2D grid of each layer and represents a quarter of the full grid thanks to in-plane symmetries). In 
configuration #1, the first layer which represents the half-height of the central zone (unaffected by the 
Dy diffusion) consists of two sub-layers of grains of the same type. Then, each upper layer affected by 
the Dy diffusion is made of a one-grain-high array. This leads to a total number of grains equal to 500 
for configuration #1. However, with only one grain in the layer thickness, the cascade effects are poorly 
described. In configuration #2, there are twice as many layers in order to improve the grain reversal 
pattern, leading to a total number of grains of 4000 and to a significant rise in the computation time 
(see Fig. 105). 

 

Fig. 105: Computation time as a function of the number of grains considered in the simulation. 

V.2.1.2. Evolution of the geometrical model by layer removal  

The simulation of the demagnetization is performed in closed-circuit and involves different runs 
starting from the calculation of the J-H curve of the first isolated layer (stack #1), followed by the 
computation of the J-H curve with the stacking of layers #1 and #2 (stack #2) and so on until the 
computation of the complete stack (stack #4). The Gaussian realization is performed once at the 
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beginning of the simulation in order to ascribe the same grain coercivity distribution to a given layer 
during the whole sequence. This approach allows the description of the effect of a layer removal from 
the whole sample and the results could be compared to the magnetic measurements performed after 
consecutive sample polishing (see IV.2.6.2). For instance, the stack #3 simulation is representative of 
the magnetic measurement performed after the first polishing (up to a depth corresponding to the 
external layer) while the non-polished sample is described by the stack #4. 

V.2.2. Results: grain reversal patterns in a graded sample 

V.2.2.1. Demagnetization curves 

Fig. 106 shows the grain coercivity in the graded numerical sample for configuration #1 (model with 
500 grains, nx = 10 x ny = 10 x nz = 5) and the evolution of the J-H curves obtained for the four stacks. It 
can be noticed that the J-H curves are highly stepped because of the small number of grains used in 
the model. More striking is the fact that the steps (i.e. the sudden drops in the polarization curve 
followed by a plateau), already observed during the demagnetization of the first stack (central zone), 
seem to translate to other J-H curves with an enlargement of the step width. This result reveals that 
the grain reversal, once initiated in the central part, tends to extend upwards to the higher coercive 
�o���Ç���Œ�•�X���d�Z�����P�Œ���]�v���Œ���À���Œ�•���o���]�v���š�Z�����o�}�Á�����}���Œ���]�À�����Œ���P�]�}�v���]�•���Z�}�Á���À���Œ���š�Œ�]�P�P���Œ�������Á�]�š�Z�������^�����o���Ç�_���~i.e. the first 
reversal occurs for higher fields) compared to the situation occurring in the non-diffused magnet. 

This situation is emphasized by the evolution of the grain reversal pattern simulated for the whole 
magnet (stack #4). Four points (A-D) are selected on the J-H curve (see Fig. 107) to highlight some 
important stages in the demagnetization process of the graded sample. The first grains that reverse at 
point A are the lowest coercivity grains located in the central zone (see Fig. 108). Until point B, grain 
�•�Á�]�š���Z�]�v�P���Z���‰�‰���v�•���u���]�v�o�Ç���]�v���š�Z�]�•���o���Ç���Œ���Á�]�š�Z�����������o���Ç�]�v�P�����(�(�����š�����µ�����š�}���š�Z�����u���P�v���š�}�•�š���š�]�����^�•�Z�]���o���]�v�P�_���}�(��
�š�Z�����µ�‰�‰���Œ���o���Ç���Œ�•�X�����(�š���Œ���š�Z�]�•���^�‰�]�À�}�š�_���‰�}�]�v�š�����U���Œ���À���Œ�•���o���‰�Œ�}�‰���P���š���•�������•�]�o�Ç���š�}�Á���Œ���•���š�Z�������v���•���}�(���š�Z�����u���P�v���š��
(point C) and coercivity (point D) is obtained at a field much lower (�' �,�� �C�� �î�ì�ì�� �l���l�u�•�� �š�Z���v�� �š�Z���� �}�v����
expected from the grain coercivity distribution (represented by the dashed line in Fig. 107). 

 

    stack #4      stack #3      stack #2      stack #1 
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Fig. 106: Demagnetization curves simulated for the four stacks with magnetic properties given in 
Table 43 (configuration #1). The distribution of grain coercivity is illustrated by the XZ patterns in gray 

scale (black = lower values, white = higher values) for each stack. 

 

Fig. 107: Demagnetization curves simulated for stack #4 with magnetics properties given in Table 43 
and for two positions of the pick-up coil relative to the sample. The dashed line represents the 

expected J-H curve with no magnetostatic interactions. 
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Fig. 108: Grain reversal patterns for the four selected points of the J-H curve labelled in Fig. 107. 

This behavior is very similar to the case of the duplex magnet described in Chapter III that constituted 
a simple model of graded magnets. However, in the present case, the J-H curves that have been 
recorded along the sample height (simulated for stack #4) do not exhibit a significant shift (see Fig. 
107). This comes from the large size of the sensor used for the J-H recording, especially the height 
along which the fields are integrated, which is equal to the half of the sample thickness (as in the real 
situation). The values of J and H plotted on the curves are thus smoothed along the axial direction. This 
fact is confirmed by direct magnetic measurements performed with the hysteresigraph system on the 
diffused samples. Actually, the pick-up coil has been displaced axially along the magnet axis without 
observing an evolution of the experimental J-H curve shape. 

The calculation with more grains per layer allows checking that the results obtained with configuration 
#1 are not affected by some numerical artefacts due to the lower number of grains per layer. The 
results for configuration #2 are plotted in Fig. 109 and confirm the previous trend, i.e. the pronounced 
influence of the lowest coercive layer on the shape of the whole sample J-H curve. 
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stack #4     stack #3      stack #2          stack #1 

 

Fig. 109: Demagnetization curves simulated for the four stacks with magnetics properties given in 
Table 43 (configuration #2). The distribution of grain coercivity is illustrated by the XZ patterns in gray 

scale (black = lower values, white = higher values). The grain reversal patterns at selected points of 
the J-H curve are also given. 

V.2.2.1. Comparison with results obtained for 920°C-3h diffusion 

The simulation of the J-H curve for stack #4 compares well with the experimental data obtained on the 
whole magnet sample diffused at 920°C for 3h. Fig. 109 reports the experimental demagnetization 
curves measured for the non-polished sample after GBDP and the base sample measured before GBDP. 
These two extreme curves are actually the upper and lower bounds for the set of J-H curves measured 
after successive polishing runs. Even if the curves do not superpose perfectly with the simulation (since 
no fitting of grain coercivity distribution parameters has been performed), the main features of the 
experimental curves are reasonably well reproduced by the model. First, the total increment in the 
magnet coercive field after diffusion is correctly accounted for by the simulation. Then, the shape of 
the experimental curve after GBDP is also well reproduced, especially the decomposition of the J-H 
curve into three quasi-linear regions characterized by increasing slopes (flat region 1 from 0 to 800 
kA/m, region 2 with slow linear decrease in J followed region 3 with a rapid drop of J). Regarding the 
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intermediate region, the simulation reproduces the shift towards higher field values of the connection 
point between regions 2 and 3, as observed experimentally on the polished sample. 

This last result is better illustrated by the arrow drawn in Fig. 109 showing the evolution of point B. 
This latter is representative of the transition from the stage for which grain reversal in the central 
magnet is delayed to the stage for which cascade reversal propagates to upper layers. The slope in this 
transition region evolves between the base magnet and the diffused thick magnet curve as a 
combination of the following features: 

- The transition between regions 1 and 2, labelled by the point A, occurs at the same field value 
whatever the stack. The critical field values depend on low coercive grains in the central 
magnet. 

- The transition between regions 2 and 3 shifts towards higher field values as a result of the 
delaying effect. 

- The height of the polarization drops occurring in region 2 tends to decrease as the weight of 
the central region is reduced (i.e. as the sample becomes thicker). 

In the simulations, this combination leads to a J-H curve for stack #4 that exhibits a poor squareness 
ratio, as the one measured for the whole magnet sample. 

V.2.2.2. Correlation with the experimental residual induction map  

Residual induction mapping has been performed on the sample after GBDP (without polishing) with 
the Hall probe in three different states: (i) the remanent state after saturation, (ii) a partial 
demagnetization state obtained before the second knee of the J-H curve and (iii) the state achieved at 
the coercive field. The top face of the sample has been scanned and the results are given in Fig. 110. 
Before reaching the second knee (point 2 for which J/JS = 0.82), the residual induction at the top surface 
(Bz,moy = -356 mT) is very close to the one obtained at the remanent state (point 1 for which Bz,moy = -
366 mT), confirming that demagnetization occurs mainly in the magnet core. The recoil curve 
performed for this intermediate value clearly shows that an irreversible demagnetization has occurred 
�]�v�� �š�Z���� �u���P�v���š�� �(�}�Œ�� �š�Z�]�•�� ���‰�‰�o�]������ �(�]���o���� �À���o�µ���� �~�C 1100 kA/m), although this cannot be observed on the 
residual induction map. 

When the coercive field is reached (point 3 for which J/JS=0), mapping reveals large heterogeneities in 
the sample magnetization that are consistent with the appearance of clusters. The simulated grain 
reversal patterns in two particular XY planes (i.e. the top plane and the plane located at the limit of the 
enhanced coercivity zone) are plotted in Fig. 111 for comparison. The correlation of the model 
prediction with the experimental data confirms that the simulation correctly describes the main 
features of the demagnetization curve of Dy-diffused magnets. 
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Fig. 110: Residual induction map at the top of a Dy-diffused sample at three selected stages (1-
remanent state, 2-partial demagnetization before recoil, 3-coercivity state) .Bz,moy denotes the 

averaged value of the residual induction measured in the scanned plane (400 µm over the sample). 

 
Top XY plane 

 

 
Limit of the enhanced coercivity zone 

 
Top XY plane 

 

 
Limit of the enhanced coercivity zone 

Point 2 (J/Js = 0.82) Point 3 (J/Js = 0) 

Fig. 111: Grain reversal patterns simulated for stack #4 and for two selected points of the J-H curve 
from Fig. 110 (XY planes at the top surface and at the interface with the non-enhanced coercivity 

zone). 
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V.2.2.3. Comparison with magnetic property gradient obtained after polishing 

The measurements of the J-H curves after successive polishing runs, performed on the same diffused 
sample, give a valuable insight into the coercivity profile resulting from Dy diffusion and provide a basis 
to establish some correlations with microstructural observations. The question arises about the 
agreement between the coercivity value measured after material removal (on thin samples) and the 
local coercivity value (i.e. the coercivity of the top plane after polishing). Since this latter data cannot 
be directly determined, this section aims at inferring the gradient of coercive field that would be 
consistent with the magnetic properties measured on polished samples. 

The first line of Table 44 gives the coercive field values of each layer considered separately, i.e. the 
mean grain coercivity <µ0Hc> used as an input data for the simulation. Then, the coercive field values 
calculated from the contribution of each layer considering their respective coercive field distribution 
weighted according to their volume are listed. This pondered value would stand for the coercive field 
of the corresponding stack without any magnetostatic interactions (between grains of the same layer 
and between layers). Finally, the values obtained by simulation for each stack taking into account 
magnetostatic interactions are reported. The experimental values are also mentioned in Table 44, but 
they should be considered as indicative values, since no fitting procedure has been performed. 
Furthermore, since the layer thickness ratios do not coincide perfectly with the simulation, the 
reported values in the last line in Table 44 have been obtained by interpolation of experimental data. 

Stack Stack #1 Stack #2 Stack #3 Stack #4 
Coercivity of the external layer of the stack 

(kA/m) 
1273 

(1.60 T) 
1591 

(2.00 T) 
1750 

(2.20 T) 
1910 

(2.40 T) 
Coercivity of the stack without magnetostatic 

interactions (kA/m) 
1273 

(1.60 T) 
1380 

(1.73 T) 
1500 

(1.88 T) 
1591 

(2.00 T) 
Coercivity of the stack with magnetostatic 
interactions for configuration #1 (kA/m) 

1115 
(1.40 T) 

1186 
(1.49 T) 

1248 
(1.57 T) 

1351 
(1.70 T) 

Coercivity of the stack with magnetostatic 
interactions for configuration #2 (kA/m) 

1087 
(1.37 T) 

1185 
(1.49 T) 

1288 
(1.62 T) 

1335 
(1.68 T) 

Coercivity measured for the polished sample 
(kA/m) 

1137 
(1.43 T) 

1280 
(1.61 T) 

1340 
(1.68 T) 

1435 
(1.80 T) 

Table 44: Coercivity values for the different stacks. 

Table 44 highlights the fact that the values of the local coercivity at a given height, estimated by the 
value of the grain coercivity ascribed to this layer, is much higher than the coercivity of the stack 
considered as a whole. Logically, the difference rises with the spread of magnetic properties along the 
stack and reaches a maximum of about 500 kA/m for stack #4. The weight combination of layers 
accounts for 50-60 % of this difference whereas 40-50 % comes from magnetostatic interactions. 

Finally, it can be reasonably assumed that the coercive field of the material located beneath the surface 
of the Dy-diffused sample, until a depth of 1 mm (difference between stack #4 and stack #3), should 
be much higher than the apparent value measured on the whole sample, the difference being 
predicted by the model to be of the order of 300-400 kA/m. 

V.2.3. Results for other diffusion conditions 

According to the discussion about the Dy concentration profile after GBDP and its influence on the 
local coercivity, the following set of input data has been established for the simulation runs. The 
sample geometry and slicing remain the same for the three diffusion conditions. The only variation 
concerns the coercivity ascribed to the different layers as indicated in Table 45. 
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Layer 
Grain coercivity 

distribution parameters 
920°C-3h 

Grain coercivity 
distribution parameters 

920°C-12h 

Grain coercivity 
distribution parameters 

870°C-3h 
1 (2) <µ0Hc> = 1.6 T - �VHc= 0.2 T <µ0Hc> = 1.6 T - �VHc= 0.2 T <µ0Hc> = 1.6 T - �VHc= 0.2 T 
2 (1) <µ0Hc> = 2.0 T - �VHc= 0.1 T <µ0Hc> = 2.2 T - �VHc= 0.1 T <µ0Hc> = 1.6 T - �VHc= 0.1 T 
3 (1) <µ0Hc> = 2.2 T - �VHc= 0.1 T <µ0Hc> = 2.4 T - �VHc= 0.1 T <µ0Hc> = 2.0 T - �VHc= 0.1 T 
4 (1) <µ0Hc> = 2.4 T - �VHc= 0.1 T <µ0Hc> = 2.6 T - �VHc= 0.1 T <µ0Hc> = 2.2 T - �VHc= 0.1 T 

Table 45: Polycrystalline model configurations for simulated magnetization reversal in Dy-diffused 
samples corresponding to the three experimental diffusion conditions (nx x ny = 10 x 10). 

 

Fig. 112: Demagnetization curves obtained by simulation for the input data reported in Table 45. 

The simulated demagnetization curves are plotted in Fig. 112. The J-H curves for 920°C-3h and 12h are 
found to be close exhibiting a quasi-superposition until the point B and a small difference in the 
���}���Œ���]�À���� �(�]���o���� �À���o�µ���•�� �~�C�ò�ì���l���l�u�•�X�� �d�Z�]�•�� �P���‰���]�•�� �u�}�Œ���� �]�u�‰�}�Œ�š���v�š�� �š�Z���v�� �(�}�Œ���š�Z���� ���Æ�‰���Œ�]�u���v�š���o�� ���µ�Œ�À���•�� �~�•������
dotted lines in Fig. 112 taken from IV.2.2). This can be explained by the fact that the simulation poorly 
takes into account the Dy saturation effect. Actually, it has been estimated that all the available Dy 
should penetrate the sample after only 5 h of diffusion treatment at 920°C. This limitation could explain 
why the experimental J-H curves for the 920°C-3h and 920°C-12h cases are very close. The simulated 
J-H curve for 870°C-3h is as expected shifted towards lower field values and the difference with the 
result at 920°C (�' �,���C���í�ì�ì���l���l�u�•���]�•�����}�v�•�]�•�š���v�š���Á�]�š�Z���š�Z�������Æ�‰���Œ�]�u���v�š���o���Œ���•�µ�o�š�•���~�' �,���C���ó�ì���l���l�u, see IV.2.3). 
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V.3. Conclusions 

GBDP performed with Dy-Co alloy improves coercivity only over a few millimeters. The limitation 
comes from the consumption of the heavy rare-earth elements in the grain volume. Actually, at 920°C 
more than 75 % of the available Dy atoms diffuse in a thin layer (800-µm-thick) localized beneath the 
surface where the diffusion alloy is deposited. The increase of diffusion time at 920°C leads to a Dy 
saturation effect without any observed improvement in coercivity. The reduction of the diffusion 
temperature by 50°C decreases the penetration depth and requires longer diffusion time to complete 
the thermal treatment. Finally, it can be stated that the optimal diffusion temperature is around 900-
920°C, confirming the previous study of Loewe [94] performed with different precursor alloys. 

The ideal case for Dy diffusion would be achieved with a deep penetration of the diffusing species 
along GBs, combined with a small consumption of Dy by grains, so that Dy remains localized in thin 
shells of 10 to 100 nm width at the grain rim. This will ensure that the Dy feeding could be low (0.8 % 
wt.) and efficient for coercivity enhancement, even for thick magnets. The close examination of [Eq. 
38] shows that this optimal case corresponds to large values of the factor �E. Ascribing the lateral 
diffusion inside grains to be of the order of the GB thickness (a = 10 nm), this involves fulfillment of the 

following condition: 
¥�&�é�P
N�=. Then, the Dy concentration near GBs would be homogeneous over 
large depths (d > 1 mm) if the argument of the exponential term of [Eq. 38] remained lower than 1, i.e. 
if the ratio of the diffusion coefficients satisfied: �&�Ý �&�é�¤ 
P�>�@�=�¤ �?�6. With the selected target, this ratio 
should be �&�Ý �&�é�¤ 
P�s�r�5�4. The values of Dj and Dv considered in the Fisher model, and consistent with 
the experimental results, lead to a ratio three orders of magnitude lower than the ideal value, 
explaining the poor efficiency of GBDP applied to very thick magnets. 

Several authors showed that the enrichment of GBs by Nd atoms rejected from the matrix after Dy 
substitution is also an efficient way to improve the grain coercivity. Besides the anisotropy increase in 
the shells coming from the Dy atoms, the Nd layer formed at GBs tends to enhance grain decoupling. 
The chemistry of the GB phases after Dy diffusion and its evolution during post-diffusion annealing 
should be investigated in more detail. This could be helpful for the selection of alloying elements and 
for defining new strategies to improve diffusion at GBs. 

The heterogeneous distribution of Dy in the microstructure has a deleterious impact on the resistance 
to demagnetization of the magnet. The polycrystalline model provides a better understanding of the 
grain reversal sequence, starting in graded magnets from the less coercive grains and propagating 
towards upper layers via magnetostatic interactions. When the coercivity gradient is large, as in the 5-
mm-thick magnets studied in this work, the coercivity of the whole magnet, measured in closed-circuit, 
is 100-200 kA/m lower than the value expected without considering magnetostatic interactions. This 
result means that a specific dimensioning approach is required when using thick Dy-diffused magnets 
in electrical devices [146]. 
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 Conclusions and prospects 

The objective of this thesis was to gain a better understanding of coercivity in Nd-Fe-B sintered 
magnets by coupling experimental and numerical approaches. 

It is widely accepted that Nd2Fe14B gains are mostly exchange-decoupled and that magnetization 
reversal occurs via discrete switching. However, magnetostatic interactions between grains also play 
an important role in the demagnetization process of such materials. The first part of the work was 
focused on the study of demagnetizing field effects in Nd-Fe-B sintered magnets. Two different 
experimental configurations (open- and closed-circuit) used for coercivity measurement have been 
compared experimentally and numerically. First of all, it has been shown that the usual demagnetizing 
field correction required for open-circuit measurements is not applicable to hard magnets. A new 
expression for the demagnetization field has been established with the help of the cavity field model. 
Experimentally, the hysteresis loops measured in open-circuit showed a coercivity reduction compared 
to those measured in closed-circuit. According to the cavity field model, it has been predicted that 
magnetization reversal in closed-circuit has a higher collective character than in open-circuit. The 
demagnetization process is strongly affected by the measurement type. Moreover, a finite element 
polycrystalline model has been implemented to assess the differences in the demagnetizing field 
effects for both configurations. The simulated difference in coercivity was in good agreement with the 
experimental one. Furthermore, the simulated reversal patterns were also consistent with the 
previous experimental findings: they showed large clusters of reversed grains in the closed-circuit 
condition whereas columns of reversed grains were found in open-circuit. 

The occurrence of collective effects during demagnetization of Nd-Fe-B sintered magnets has been 
predicted by the cavity field model. However, further experimental characterization of these effects is 
required to complete the study. The SENIS Hall probe used in this work enabled the indirect 
observation of these collective effects (clusters of reversed grains) but a direct evaluation could be 
performed using other techniques. For example, magnetic force microscopy (MFM) and magneto-
optical Kerr effect (MOKE) microscopy are powerful tools that may serve in the better understanding 
of magnetization reversal. The greater importance of collective effects during reversal in closed-circuit 
compared to open-circuit could be quantitatively assessed using these imaging techniques. Moreover, 
computations with FEMME and Flux3D software could be coupled to consider both exchange and 
magnetostatic interactions and thus further improve the accuracy of the developed polycrystalline 
model. These suggested improvements would enable the definition of guidelines for experimenters in 
the comparison of the coercive field values measured in open- and closed-circuit conditions. 

The second part of the work concerned the experimental and computational study of magnetization 
reversal in Dy-Co diffused Nd-Fe-B sintered magnets. The main purpose here was to understand the 
shape of the demagnetization curves measured after Dy diffusion that showed deteriorated 
rectangularity. Experimentally, it has been observed that the intermetallic compound Dy63Co37 is easier 
to grind and leads to more efficient diffusion compared to the eutectic alloy Dy66Co34. An experimental 
parametric study has been carried out to determine the influence of diffusion time, temperature and 
of post-diffusion annealing on coercivity. The latter has shown lower sensitivity to the post-diffusion 
annealing temperature compared to the post-sintering annealing one. The typical core-shell 
microstructure developed in diffusion treated magnets was characterized by SEM-EDX for three 
different diffusion conditions and at several depths. Complementary magnetic measurements were 
also performed to establish the corresponding coercivity profiles. In addition, micromagnetic 
simulations helped in determining the influence of some microstructural features on magnetization 
reversal, in a simple core-shell model. A defect has been introduced in the model to study its impact 
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on grain reversal. The Dy shell enables coercivity enhancement since it delays magnetization reversal 
from a grain to its neighbors. The nature of the grain boundary phase determines the shape of the 
simulated demagnetization curves. For instance, the decreased rectangularity after Dy diffusion and 
after subsequent annealing has been explained by the presence of a non-magnetic grain boundary 
phase that decouples grains and leads to the observed step-like reversal. Consequently, the 
simulations reproduced well the shape of the experimentally measured demagnetization curves, but 
also the experimental gains in coercivity. Finally, magnetization reversal has been simulated in the case 
of magnets with coercivity gradient (i.e. diffused in the three different conditions) using the 
polycrystalline model. The Fisher diffusion model along with the SEM-EDX analyses provided the 
switching field values ascribed to each layer in the model. The simulated demagnetization curves were 
also in good agreement with the experimental ones and their shape was explained by the pronounced 
influence of the layer with lowest coercivity. 

The grain boundary phase controls coercive properties of Nd-Fe-B sintered magnets. Further fine and 
structural characterization such as transmission electron microscopy and 3D atom probe tomography 
could be used to study the evolution of the chemical composition at grain boundaries after each 
fabrication step (particularly after post-diffusion annealing). The interactions between the additional 
elements (Cu, Al and Co) and Dy could be further investigated. This could help in the improvement of 
diffusion along grain boundaries, rather than in the volume of Nd2Fe14B grains. In addition, the impact 
of Co on the corrosion resistance of Dy-Co diffused magnets could be assessed. Concerning 
simulations, further calculations could be performed using the polycrystalline model with some 
microstructural heterogeneities (abnormal grain growth, soft phases). Furthermore, the grain 
boundary diffusion process performed on 5-mm-thick Nd-Fe-B sintered magnets led to high coercivity 
gradients within the microstructure and this heterogeneous distribution of Dy had a bad impact on the 
magnet�[�•��coercivity. The same study could therefore be performed on thinner magnets with a 
homogeneous distribution of Dy to compare the shape of demagnetization curves. Alternatively, the 
powder blending method with Dy-Co and Nd-Fe-B powders is also of interest but requires an excellent 
and simultaneous control of the sintering and diffusion heat treatments. 
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Abstract - Résumé 

Nd-Fe-B permanent magnets are the most powerful among all commercially available magnets. They play 
a significant role in energy applications, such as motors of electric vehicles and generators of windmills. 
Their outstanding properties come from the excellent intrinsic magnetic properties of the Nd2Fe14B phase 
and from their microstructure. However, electrical machines operate at about 120-180°C and extrinsic 
magnetic properties such as coercivity and remanence decrease rapidly with temperature. One way of 
improving coercivity of Nd-Fe-B sintered magnets is to substitute Nd with a heavy rare earth such as Dy, so 
as to increase the magnetocrystalline anisotropy. However, Dy is a strategic element and a major objective 
of the research community is therefore to develop Nd-Fe-B magnets that possess excellent extrinsic 
magnetic properties with a reduced content of Dy. This requires a better understanding of the link between 
microstructure and coercivity. The key point is the control of the grain size and the distribution of secondary 
phases at grain boundaries to prevent magnetization reversal and magnetic coupling. The first part of this 
thesis concerns a comparison of open-circuit and closed-circuit magnetization measurements carried out 
on Nd-Fe-B sintered magnets. The observed differences in coercivity values are discussed in terms of 
magnetic viscosity and demagnetizing field effects. The second part deals with the grain boundary diffusion 
process performed on Nd-Fe-B sintered magnets using Dy-Co alloys. Microstructural observations and 
magnetic measurements have been carried out to characterize the diffusion and coercivity profiles and to 
establish the link between local variations in composition and coercivity. Moreover, micromagnetic 
simulations have been performed to describe magnetization reversal at the nanoscale in a simple core-shell 
model. The last part constitutes a discussion about coercivity in graded magnets via a diffusion model and 
further simulations on a polycrystalline model. 

Keywords: Nd-Fe-B, coercivity, microstructure, demagnetizing field, micromagnetism, grain boundary 
diffusion process 

Les aimants permanents Nd-Fe-B sont actuellement les plus puissants du marché. Ils sont indispensables 
pour des applications telles que les moteurs des véhicules électriques ou les générateurs des éoliennes. 
Leurs propriétés exceptionnelles viennent des propriétés magnétiques intrinsèques de la phase Nd2Fe14B 
et de leur microstructure. Cependant, les machines électriques fonctionnent entre 120 et 180°C et les 
propriétés magnétiques extrinsèques telles que la coercitivité et la rémanence diminuent avec la 
�š���u�‰� �Œ���š�µ�Œ���X���h�v���u�}�Ç���v�����[���u� �o�]�}�Œ���Œ���o�������}���Œ���]�š�]�À�]�š� �������•�����]�u���v�š�• frittés Nd-Fe-B est la substitution du Nd par 
�����•���š���Œ�Œ���•���Œ���Œ���•���o�}�µ�Œ�����•�����}�u�u�����o�������Ç�U�����(�]�v�����[���µ�P�u���v�š���Œ���o�[���v�]�•�}�š�Œ�}�‰�]�����u���P�v� �š�}���Œ�]�•�š���o�o�]�v���X���E� ���v�u�}�]�v�•�U���o�������Ç��
est un matériau critique et un objectif majeur de la recherche est actuellement de développer des aimants 
�‰�}�•�•� �����v�š�����[���Æ�����o�o���v�š���•���‰�Œ�}�‰�Œ�]� �š� �•���u���P�v� �š�]�‹�µ���•�����Æ�š�Œ�]�v�•���‹�µ���•�����š�����}�v�š���v���v�š���‰���µ�����������Ç�X�������o�����v� �����•�•�]�š�����µ�v����
meilleure compréhension du lien entre microstructure et coercitivité. Dans les aimants frittés Nd-Fe-B, un 
des points-clés est le contrôle de la taille de grain et de la répartition des phases secondaires aux joints de 
�P�Œ���]�v�•���������(�����}�v�������o�]�u�]�š���Œ���o�����v�µ���o� ���š�]�}�v�����µ���Œ���š�}�µ�Œ�v���u���v�š���������o�[���]�u���v�š���š�]�}�v�����š�������P���Œ���v�š�]�Œ���µ�v�����}�v����� ���}�µ�‰�o���P����
magnétique des grains. La première partie de la thèse est une étude comparative des caractérisations 
magnétiques en circuit ouvert et fermé réalisées sur des aimants frittés Nd-Fe-B. Les différences de 
���}���Œ���]�š�]�À�]�š� ���}���•���Œ�À� ���•���•�}�v�š�����Æ�‰�o�]�‹�µ� ���•���‰���Œ���o���•���‰�Z� �v�}�u���v���•���������À�]�•���}�•�]�š� ���u���P�v� �š�]�‹�µ�������š�����[���(�(���š�•�����������Z���u�‰��
démagnétisant. La deuxième partie traite du procédé de diffusion aux joints de grains appliqué aux aimants 
frittés Nd-Fe-B et utilisant des alliages Dy-Co. Des caractérisations microstructurales ont été réalisées en 
complément de mesures magnétiques afin de déterminer les profils de diffusion et de coercitivité, et ainsi 
���[� �š�����o�]�Œ�� �o���� �o�]���v�� ���v�š�Œ���� �o���•�� �À���Œ�]���š�]�}�v�•�� �o�}�����o���•�� ������ ���}�u�‰�}�•�]�š�]�}�v�� ���Z�]�u�]�‹�µ���� ���š�� �o���� ���Z���u�‰�� ���}���Œ���]�š�]�(�X�� ������ �‰�o�µ�•�U�� �����•��
�•�]�u�µ�o���š�]�}�v�•�� �u�]���Œ�}�u���P�v� �š�]�‹�µ���•�� �}�v�š�� �‰���Œ�u�]�•�� ������ ��� ���Œ�]�Œ���� �o���� �Œ���š�}�µ�Œ�v���u���v�š�� ������ �o�[���]�u���v�š���š�]�}�v�� ���� �o�[� ���Z���o�o����
nanométrique dans u�v���u�}�����o�����•�]�u�‰�o�]�(�]� �����ˆ�µ�Œ-coquille. Enfin, la dernière partie de la thèse constitue une 
discussion sur la coercitivité des aimants diffusés au Dy-���}�� �~���� �P�Œ�����]���v�š�� ������ ���Z���u�‰�� ���}���Œ���]�š�]�(�•�� ���� �o�[���]������ ���[�µ�v��
modèle de diffusion et de simulations sur un modèle polycristallin. 

Mots-clés : Nd-Fe-B, coercitivité, microstructure, champ démagnétisant, micromagnétisme, diffusion aux 
joints de grain 


