H. Pun, Terminology for biorelated polymers and applications, 2012.

B. J. Love, Biomaterials : A Systems Approach to Engineering Concepts, 2017.

T. Srichana and A. J. Domb, Polymeric Biomaterials, Biomedical Materials, pp.83-119, 2009.

R. P. Babu, K. , and R. Seeram, Current progress on bio-based polymers and their future trends, Progress in Biomaterials, vol.2, issue.1, 2013.

L. S. Nair and C. T. Laurencin, Biodegradable polymers as biomaterials, Progress in Polymer Science, vol.32, issue.8-9, pp.762-798, 2007.

L. Bedian, A. M. Villalba-rodríguez, G. Hernández-vargas, R. Parra-saldivar, and H. M. , Bio-based materials with novel characteristics for tissue engineering applications -A review, International Journal of Biological Macromolecules, vol.98, pp.837-846, 2017.

A. F. Turbak, F. W. Snyder, and K. R. Sandberg, Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential, United States), vol.37, 1982.

F. W. Herrick, R. L. Casebier, J. K. Hamilton, and K. R. Sandberg, Microfibrillated cellulose: morphology and accessibility, United States), vol.37, 1982.

C. Endes, A critical review of the current knowledge regarding the biological impact of nanocellulose, Journal of Nanobiotechnology, vol.14, issue.1, p.78, 2016.

A. Rashad, K. Mustafa, E. B. Heggset, and K. Syverud, Cytocompatibility of Wood -Derived Cellulose Nanofibril Hydrogels with Different Surface Chemistry, Biomacromolecules, vol.18, issue.4, pp.1238-1248, 2017.

S. Saini, N. Belgacem, J. Mendes, G. Elegir, and J. Bras, Contact Antimicrobial Surface Obtained by Chemical Grafting of Microfibrillated Cellulose in Aqueous Solution Limiting Antibiotic Release, ACS Applied Materials & Interfaces, vol.7, issue.32, pp.18076-18085, 2015.

M. Jorfi and E. J. Foster, Recent advances in nanocellulose for biomedical applications, J. Appl. Polym. Sci, vol.132, issue.14, 2014.

N. Lin and A. Dufresne, Nanocellulose in biomedicine: Current status and future prospect, European Polymer Journal, vol.59, pp.302-325, 2014.

N. Halib, Potential Applications of Nanocellulose-Containing Materials in the Biomedical Field, Materials, vol.10, issue.8, p.977, 2017.

R. Kolakovic, L. Peltonen, A. Laukkanen, J. Hirvonen, and T. Laaksonen, Nanofibrillar cellulose films for controlled drug delivery, European Journal of Pharmaceutics and Biopharmaceutics, vol.82, issue.2, pp.308-315, 2012.

J. Zhao, C. Lu, X. He, X. Zhang, W. Zhang et al., Polyethylenimine -Grafted Cellulose Nanofibril Aerogels as Versatile Vehicles for Drug Delivery, ACS Appl. Mater. Interfaces, vol.7, issue.4, pp.2607-2615, 2015.

O. Aarstad, E. B. Heggset, I. S. Pedersen, S. H. Bjørnøy, K. Syverud et al., , 2014.

H. Durand, , p.111, 2019.

. Bibliography,

R. P. Babu, K. , and R. Seeram, Current progress on bio-based polymers and their future trends, Progress in Biomaterials, vol.2, issue.1, 2013.

, Bioplastics market data, European Bioplastics, 2017.

, Lead Market Initiative -speed up time-to-market of innovations and pilot new innovation policy in Europe -Growth -European Commission, Growth, p.7, 2018.

, BioPreferred|Site Map

L. Avérous and E. Pollet, Biodegradable Polymers, Environmental Silicate Nano-Biocomposites, pp.13-39, 2012.

R. L. Reis, N. M. Neves, J. F. Mano, M. E. Gomes, A. P. Marques et al., Natural-Based Polymers for Biomedical Applications, 2008.

L. Bedian, A. M. Villalba-rodríguez, G. Hernández-vargas, R. Parra-saldivar, and H. M. , Bio-based materials with novel characteristics for tissue engineering applications -A review, International Journal of Biological Macromolecules, vol.98, pp.837-846, 2017.

A. A. H?ncal and H. S. Ka?, Biomedical Science and Technology: Recent Developments in the Pharmaceutical and Medical Sciences, 1998.

J. D. Enderle and J. D. Bronzino, Introduction to Biomedical Engineering, 2012.

H. Pun, Terminology for biorelated polymers and applications, 2012.

R. Lanza, R. Langer, and J. Vacanti, Principles of Tissue Engineering Ed, vol.4, 2013.

C. Murphy, D. Little, and A. Schindeler, Cell-scaffold interactions in the bone tissue engineering triad, European Cells and Materials, vol.26, pp.120-132, 2013.

M. A. Rice, B. T. Dodson, J. A. Arthur, and K. S. Anseth, Cell -based Therapies and Tissue Engineering, Otolaryngologic Clinics of North America, vol.38, issue.2, pp.199-214, 2005.

P. X. Ma, Biomimetic materials for tissue engineering, Advanced Drug Delivery Reviews, vol.60, issue.2, pp.184-198, 2008.

E. Pi?kin, Polymer based drug delivery systems, Biomedical Science and Technology: Recent Developments in the Pharmaceutical and Medical Sciences, 1998.

D. F. Williams, On the nature of biomaterials, Biomaterials, vol.30, issue.30, pp.5897-5909, 2009.

M. Smyth, Nanocellulose based materials for Cell Culture, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01691100

B. J. Love, Biomaterials : A Systems Approach to Engineering Concepts, 2017.

T. Srichana and A. J. Domb, Polymeric Biomaterials, Biomedical Materials, pp.83-119, 2009.

A. P. Almeida, J. P. Canejo, S. N. Fernandes, C. Echeverria, P. L. Almeida et al., Cellulose-Based Biomimetics and Their Applications, Advanced Materials, vol.30, issue.19, p.1703655, 2018.

T. T. Teeri, H. Brumer, G. Daniel, and P. Gatenholm, Biomimetic engineering of cellulose -based materials, Trends in Biotechnology, vol.25, issue.7, pp.299-306, 2007.

K. Hamad, M. Kaseem, H. W. Yang, F. Deri, and Y. G. Ko, Properties and medical applications of polylactic acid: A review, Express Polymer Letters, vol.9, issue.5, pp.435-455, 2015.

L. Lim, R. Auras, and M. Rubino, Processing technologies for poly(lactic acid), Progress in Polymer Science, vol.33, issue.8, pp.820-852, 2008.

D. Silva, Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems, Chemical Engineering Journal, vol.340, pp.9-14, 2018.

B. Tyler, D. Gullotti, A. Mangraviti, T. Utsuki, and H. Brem, Polylactic acid (PLA) controlled delivery carriers for biomedical applications, Advanced Drug Delivery Reviews, vol.107, pp.163-175, 2016.

Z. Li, J. Yang, and X. J. Loh, Polyhydroxyalkanoates: opening doors for a sustainable future, NPG Asia Materials, vol.8, issue.4, pp.265-265, 2016.

P. Jambunathan and K. Zhang, Engineered biosynthesis of biodegradable polymers, J Ind Microbiol Biotechnol, vol.43, issue.8, pp.1037-1058, 2016.

J. Xu and B. Guo, Poly(butylene succinate) and its copolymers: Research, development and industrialization, Biotechnology Journal, vol.5, issue.11, pp.1149-1163, 2010.

M. Gigli, M. Fabbri, N. Lotti, R. Gamberini, B. Rimini et al., Poly(butylene succinate) -based polyesters for biomedical applications: A review, European Polymer Journal, vol.75, pp.431-460, 2016.

J. F. Kennedy, C. J. Knill, L. Liu, and P. S. Panesar, Starch and its Derived Products: Biotechnological and Biomedical Applications, pp.130-165, 2011.

A. J. Salgado, O. P. Coutinho, R. L. Reis, and J. E. Davies, In vivo response to starch-based scaffolds designed for bone tissue engineering applications, Journal of Biomedical Materials Research Part A, vol.80, issue.4, pp.983-989, 2007.

C. S. Pereira, A. M. Cunha, R. L. Reis, B. Vázquez, and J. S. Román, New starch-based thermoplastic hydrogels for use as bone cements or drug-delivery carriers, Journal of Materials Science: Materials in Medicine, vol.9, issue.12, pp.825-833, 1998.

M. E. Gomes, J. S. Godinho, D. Tchalamov, A. M. Cunha, and R. L. Reis, Alternative tissue engineering scaffolds based on starch: processing methodologies, morphology, degradation and mechanical properties, Materials Science and Engineering: C, vol.20, issue.1, pp.19-26, 2002.

K. Y. Lee and D. J. Mooney, Alginate: Properties and biomedical applications, Progress in Polymer Science, vol.37, issue.1, pp.106-126, 2012.

K. G. Mandel, B. P. Daggy, D. A. Brodie, and H. I. Jacoby, Review article: alginate -raft formulations in the treatment of heartburn and acid reflux, Aliment Pharmacol Ther, vol.14, issue.6, pp.669-690, 2000.

S. M. Selimoglu and M. Elibol, Alginate as an immobilization material for MAb production via encapsulated hybridoma cells, Critical Reviews in Biotechnology, vol.30, issue.2, pp.145-159, 2010.

J. D. Lalau, Efficacy and tolerance of calcium alginate versus vaseline gauze dressings in the treatment of diabetic foot lesions, 2008.

O. Smidsrød and G. Skja?k-br?k, Alginate as immobilization matrix for cells, Trends in Biotechnology, vol.8, pp.71-78, 1990.

R. Jayakumar, M. Prabaharan, P. T. Kumar, S. V. Nair, and H. Tamura, Biomaterials based on chitin and chitosan in wound dressing appli cations, Biotechnology Advances, vol.29, issue.3, pp.322-337, 2011.

J. Xie, Osteogenic differentiation and bone regeneration of iPSC-MSCs supported by a biomimetic nanofibrous scaffold, Acta Biomaterialia, vol.29, pp.365-379, 2016.

Y. Zhang, Q. Wang, K. Yan, Y. Qi, G. Wang et al., Preparation, characterization, and evaluation of genipin crosslinked chitosan/gelatin three -dimensional scaffolds for liver tissue engineering applications, Journal of Biomedical Materials Research Part A, vol.104, issue.8, pp.1863-1870, 2016.

M. D. Shoulders and R. T. Raines, Collagen Structure and Stability, Annual Review of Biochemistry, vol.78, issue.1, pp.929-958, 2009.

K. E. Kadler, C. Baldock, J. Bella, and R. P. Boot-handford, Collagens at a glance, Journal of Cell Science, vol.120, issue.12, pp.1955-1958, 2007.

P. , Cellulose and collagen: from fibres to tissues, Literature review, vol.8, pp.32-39, 2003.

H. Durand, , p.113, 2019.

J. Brinckmann, Collagens at a glance, Collagen, pp.1-6, 2005.

S. Ricard-blum, F. Ruggiero, and M. Van-der-rest, The Collagen Superfamily, Collagen, pp.35-84
URL : https://hal.archives-ouvertes.fr/hal-00313933

J. Engel and H. P. Bächinger, Structure, Stability and Folding of the Collagen Triple Helix, Collagen, pp.7-33

J. Bella, Collagen structure: new tricks from a very old dog, Biochemical Journal, vol.473, issue.8, pp.1001-1025, 2016.

D. E. Birk and P. Bruckner, Collagen Suprastructures, Collagen, pp.185-205

A. Abe and E. , Polymer composites, polyolefin fractionation, polymeric peptidomimetics, collagens, 2013.

Z. Yu, B. An, J. A. Ramshaw, and B. Brodsky, Bacterial collagen-like proteins that form triplehelical structures, Journal of Structural Biology, vol.186, issue.3, pp.451-461, 2014.

M. I. Rodríguez, L. G. Barroso, and M. L. Sánchez, Collagen: A review on its sources and potential cosmetic applications, Journal of Cosmetic Dermatology, vol.17, issue.1, pp.20-26, 2017.

K. Silvipriya, K. Kumar, A. Bhat, B. Kumar, A. John et al., Collagen: Animal Sources and Biomedical Application, Journal of Applied Pharmaceutical Science, pp.123-127, 2015.

E. Mocan, O. Tagadiuc, and V. Nacu, Aspects of Collagen Isolation Procedure, p.3

P. Montero and M. C. Gómez-guillén, Extracting Conditions for Megrim (Lepidorhombus boscii) Skin Collagen Affect Functional Properties of the Resulting Gelatin, Journal of Food Science, vol.65, issue.3, pp.434-438, 2000.

, Structure and rheology of gelatin and collagen gels -IOS Press, p.30, 2018.

M. C. Gómez-guillén, B. Giménez, M. E. López-caballero, and M. P. Montero, Functional and bioactive properties of collagen and gelatin from alternative sources: A review, Food Hydrocolloids, vol.25, issue.8, pp.1813-1827, 2011.

, Global Tissue Engineered Collagen Biomaterials Market: Rising Use of Collagen in Wou nd Healing Stokes Demand, finds TMR

A. Sionkowska, S. Skrzy?ski, K. ?miechowski, and A. Ko?odzi, The review of versatile application of collagen, Polymers for Advanced Technologies, vol.28, issue.1, pp.4-9, 2016.

, Global Collagen Market Size By Source | Industry Analysis Report, p.30, 2018.

E. A. Sander and V. H. Barocas, Biomimetic Collagen Tissues: Collagenous Tissue Engineering and Other Applications, Collagen, pp.475-504, 2008.

G. S. Offeddu, J. C. Ashworth, R. E. Cameron, and M. L. Oyen, Multi-scale mechanical response of freeze-dried collagen scaffolds for tissue engineering applications, Journal of the Mechanical Behavior of Biomedical Materials, vol.42, pp.19-25, 2015.

C. Dong and Y. Lv, Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives, Polymers, vol.8, issue.2, p.42, 2016.

Y. Bayon, P. Gravagna, and J. Tayot, Method for preparing two-layer bicomposite collagen material for preventing post-operative adhesions, vol.6596304, 2003.

Y. Bayon, P. Gravagna, and A. Meneghin, Biosynthetic Implant for Soft Tissue Repair, WO2009156866 (A2), 2009.

A. Gandini and M. N. Belgacem, Chapter 1 -The State of the Art, Monomers, Polymers and Composites from Renewable Resources, pp.1-16, 2008.

A. C. O'sullivan, Cellulose: the structure slowly unravels, Cellulose, vol.4, issue.3, pp.173-207, 1997.

D. N. and .. Hon, Cellulose: a random walk along its historical path, Cellulose, vol.1, issue.1, pp.1-25, 1994.

W. N. Haworth, E. L. Hirst, and H. A. Thomas, The Existence of the Cellobiose Residue in Cellulose, Nature, vol.126, issue.3177, p.438, 1930.

H. Kang, R. Liu, and Y. Huang, Cellulose derivatives and graft copolymers as blocks for functional materials, Polym. Int, vol.62, issue.3, pp.338-344, 2013.

M. Jorfi and E. J. Foster, Recent advances in nanocellulose for biomedical applications, J. Appl. Polym. Sci, vol.132, issue.14, 2015.

N. A. Hoenich, Cellulose for Medical Applications: Past, Present, and Future, BioResources, vol.1, issue.2, pp.270-280, 2007.

T. Shibata, Chapter 3:Cellulose and Its Derivatives in Medical Use, Renewable Resources for Functional Polymers and Biomaterials, pp.48-87, 2011.

R. Ek, G. Alderborn, and C. Nyström, Particle analysis of microcrystalline cellulose: Differentiation between individual particles and their agglomerates, International Journal of Pharmaceutics, vol.111, issue.1, pp.43-50, 1994.

S. Dumitriu, Polysaccharides in Medicinal Applications, 1996.

E. Sjostrom, Wood Chemistry: Fundamentals and Applications, 2013.

S. Kamel, N. Ali, K. Jahangir, S. M. Shah, and A. A. El--gendy, Pharmaceutical significance of cellulose: A review, Express Polymer Letters, vol.2, issue.11, pp.758-778, 2008.

J. Siepmann, H. Kranz, R. Bodmeier, and N. A. Peppas, HPMC-Matrices for Controlled Drug Delivery: A New Model Combining Diffusion, Swelling, and Dissolution Mechanisms and Predicting the Release Kinetics, Pharm Res, vol.16, issue.11, pp.1748-1756, 1999.

P. Colombo, R. Bettini, and N. A. Peppas, Observation of swelling process and diffusion front position during swelling in hydroxypropyl methyl cellulose (HPMC) matrices containing a soluble drug, Journal of Controlled Release, vol.61, issue.1, pp.83-91, 1999.

J. Siepmann and N. A. Peppas, Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC), Advanced Drug Delivery Reviews, p.19, 2001.

S. Lin and Y. Kawashima, Drug Release from Tablets Containing Cellulose Acetate Phthalate As an Additive or Enteric-Coating Material, Pharm Res, vol.4, issue.1, pp.70-74, 1987.

C. Chang and L. Zhang, Cellulose-based hydrogels: Present status and application prospects, Carbohydrate Polymers, vol.84, issue.1, pp.40-53, 2011.

X. Bourges, P. Weiss, G. Daculsi, and G. Legeay, Synthesis and general properties of silatedhydroxypropyl methylcellulose in prospect of biomedical use, Advances in Colloid and Interface Science, vol.99, issue.3, pp.215-228, 2002.
URL : https://hal.archives-ouvertes.fr/inserm-00198799

C. Demitri, Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid, Journal of Applied Polymer Science, vol.110, issue.4, pp.2453-2460, 2008.

R. A. Wach, H. Mitomo, F. Yoshii, and T. Kume, Hydrogel of biodegradable cellulose de rivatives. II. Effect of some factors on radiation-induced crosslinking of CMC, Journal of Applied Polymer Science, vol.81, issue.12, pp.3030-3037, 2001.

H. M. El-din, S. G. Abd-alla, and A. W. El-naggar, Swelling and drug release properties of acrylamide/carboxymethyl cellulose networks formed by gamma irradiation, Radiation Physics and Chemistry, vol.79, issue.6, pp.725-730, 2010.

T. , Nanocellulose, a tiny fiber with huge applications, Current Opinion in Biotechnology, vol.39, pp.76-88, 2016.

H. Kargarzadeh, Advances in cellulose nanomaterials, Cellulose, vol.25, issue.4, pp.2151-2189, 2018.

O. Nechyporchuk, M. N. Belgacem, and J. Bras, Production of cellulose nanofibrils: A review of recent advances, Industrial Crops and Products, 2016.

J. Pérez, J. Muñoz-dorado, T. De-la-rubia, and J. Martínez, Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview, International Microbiology, vol.5, issue.2, pp.53-63, 2002.

. Chapter, Literature review

H. Durand, , p.115, 2019.

B. G. Rånby and E. Ribi, Über den Feinbau der Zellulose, Experientia, vol.6, issue.1, pp.12-14, 1950.

B. G. Rånby, Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles, Discuss. Faraday Soc, vol.11, issue.0, pp.158-164, 1951.

R. F. Nickerson and J. A. Habrle, Cellulose Intercrystalline Structure, Industrial & Engineering Chemistry, vol.39, issue.11, pp.1507-1512, 1947.

M. M. De, S. Lima, and R. Borsali, Rodlike Cellulose Microcrystals: Structure, Properties, and Applications, vol.25, pp.771-787

A. Dufresne, Nanocellulose, From Nature to High Performance Tailored Materials, 2017.

. Iso/ts, 2017 -Nanotechnologies --Standard terms and their definition for cellulose nanomaterial, p.9, 2018.

F. W. Herrick, R. L. Casebier, J. K. Hamilton, and K. R. Sandberg, Microfibrillated cellulose: morphology and accessibility, United States), vol.37, 1982.

A. F. Turbak, F. W. Snyder, and K. R. Sandberg, Microfibril lated cellulose, a new cellulose product: properties, uses, and commercial potential, United States), vol.37, 1982.

K. L. Spence, R. A. Venditti, O. J. Rojas, Y. Habibi, and J. J. Pawlak, A comparativ e study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods, Cellulose, vol.18, issue.4, pp.1097-1111, 2011.

A. Tejado, M. N. Alam, M. Antal, H. Yang, and T. G. Van-de-ven, Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers, Cellulose, vol.19, issue.3, pp.831-842, 2012.

M. Pääkkö, Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels, Biomacromolecules, vol.8, issue.6, pp.1934-1941, 2007.

T. Saito, Y. Nishiyama, J. Putaux, M. Vignon, and A. Isogai, Homogeneous Suspensions of Individualized Microfibrils from TEMPO-Catalyzed Oxidation of Native Cellulose, Biomacromolecules, vol.7, issue.6, pp.1687-1691, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00305809

I. Besbes, S. Alila, and S. Boufi, Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: Effect of the carboxyl content, Carbohydrate Polymers, vol.84, issue.3, pp.975-983, 2011.

C. Aulin, E. Johansson, L. Wågberg, and T. Lindström, Self-Organized Films from Cellulose I Nanofibrils Using the Layer-by-Layer Technique, Biomacromolecules, vol.11, issue.4, pp.872-882, 2010.

F. Rol, M. N. Belgacem, A. Gandini, and J. Bras, Recent advances in surface -modified cellulose nanofibrils, Progress in Polymer Science, 2018.

M. Henriksson, G. Henriksson, L. A. Berglund, and T. Lindström, An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers, European Polymer Journal, vol.43, issue.8, pp.3434-3441, 2007.

O. Nechyporchuk, F. Pignon, and M. N. Belgacem, Morphological properties of nanofibrillated cellulose produced using wet grinding as an ultimate fibrillation process, J Mater Sci, vol.50, issue.2, pp.531-541, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02006247

L. R. Lynd, P. J. Weimer, W. H. Van-zyl, and I. S. Pretorius, Microbial Cellulose Utilization: Fundamentals and Biotechnology, Microbiol. Mol. Biol. Rev, vol.66, issue.3, pp.506-577, 2002.

N. J. Davis and S. L. Flitsch, Selective oxidation of monosaccharide derivatives to uronic acids, Tetrahedron Letters, vol.34, issue.7, pp.1181-1184, 1993.

A. Isogai, T. Saito, and H. Fukuzumi, TEMPO-oxidized cellulose nanofibers, Nanoscale, vol.3, issue.1, pp.71-85, 2011.

T. Saito, Individualization of Nano-Sized Plant Cellulose Fibrils by Direct Surface Carboxylation Using TEMPO Catalyst under Neutral Conditions, Biomacromolecules, vol.10, issue.7, pp.1992-1996, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00413875

T. R. Garrett, M. Bhakoo, and Z. Zhang, Bacterial adhesion and biofilms on surfaces, Progress in Natural Science, vol.18, issue.9, pp.1049-1056, 2008.

D. Klemm, Nanocelluloses: A New Family of Nature-Based Materials, Angew. Chem. Int. Ed, vol.50, issue.24, pp.5438-5466, 2011.

S. Mohanty, S. K. Nayak, B. S. Kaith, and S. Kalia, Polymer Nanocomposites based on Inorganic and Organic Nanomaterials, 2015.

D. Mamlouk and M. Gullo, Acetic Acid Bacteria: Physiology and Carbon Sources Oxidation, Indian J Microbiol, vol.53, issue.4, pp.377-384, 2013.

, Invention controls weavers of nanoscale biomaterials, p.30, 2018.

G. Helenius, H. Bäckdahl, A. Bodin, U. Nannmark, P. Gatenholm et al., In vivo biocompatibility of bacterial cellulose, J. Biomed. Mater. Res, vol.76, issue.2, pp.431-438, 2006.

N. Petersen and P. Gatenholm, Bacterial cellulose-based materials and medical devices: current state and perspectives, Applied Microbiology and Biotechnology, vol.91, issue.5, pp.1277-1286, 2011.

J. M. Rajwade, K. M. Paknikar, and J. V. Kumbhar, Applications of bacterial cellulose and its composites in biomedicine, Applied Microbiology and Biotechnology, vol.99, issue.6, pp.2491-2511, 2015.

R. J. Moon and E. J. Foster, Current characterization methods for cellulose nanomaterials, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02350540

. Kangas, Characterization of fibrillated celluloses. A short review and evaluation of characteristics with a combination of methods, Nordic Pulp and Paper Research Journal, vol.29, issue.01, pp.129-143, 2014.

J. Desmaisons, E. Boutonnet, M. Rueff, A. Dufresne, and J. Bras, A new quality index for benchmarking of different cellulose nanofibrils, Carbohydrate Polymers, vol.174, pp.318-329, 2017.

, The Global Market for Nanocellulose, 2017.

M. Märtson, J. Viljanto, T. Hurme, P. Laippala, and P. Saukko, Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat, Biomaterials, vol.20, issue.21, 1989.

M. Märtson, J. Viljanto, T. Hurme, and P. Saukko, Biocompatibility of Cell ulose Sponge with Bone, ESR, vol.30, issue.6, pp.426-432, 1998.

M. Märtson, J. Viljanto, P. Laippala, and P. Saukko, Connective Tissue Formation in Subcutaneous Cellulose Sponge Implants in the Rat, ESR, vol.30, issue.6, pp.419-425, 1998.

T. Miyamoto, S. Takahashi, H. Ito, H. Inagaki, and Y. Noishiki, Tissue biocompatibility of cellulose and its derivatives, Journal of Biomedical Materials Research, vol.23, issue.1, pp.125-133, 1989.

S. K. Bowry and T. H. Rintelen, Synthetically modi fied cellulose (SMC): a cellulosic hemodialysis membrane with minimized complement activation, ASAIO J, vol.44, issue.5, pp.579-83, 1998.

N. Lin and A. Dufresne, Nanocellulose in biomedicine: Current status and future prospect, European Polymer Journal, vol.59, pp.302-325, 2014.

T. Kovacs, An ecotoxicological characterization of nanocrystalline cellulose (NCC), Nanotoxicology, vol.4, issue.3, pp.255-270, 2010.

M. J. Clift, Investigating the Interaction of Cellulose Nanofibers Derived from Cotton with a Sophisticated 3D Human Lung Cell Coculture, p.2, 2011.

H. Norppa, Nanofibrillated cellulose: results of in vitro and in vivo toxicological assays, p.29, 2012.

J. Vartiainen, Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose, Cellulose, vol.18, issue.3, pp.775-786, 2011.

K. J. Ong, J. A. Shatkin, K. Nelson, J. D. Ede, and T. Retsina, Establishing the safety of novel bio-based cellulose nanomaterials for commercialization, NanoImpact, vol.6, pp.19-29, 2017.

K. Hannukainen, S. Suhonen, K. Savolainen, and H. Norppa, Genotoxicity of nanofibrillated cellulose in vitro as measured by enzyme comet assay, Toxicology Letters, vol.Supplement, issue.211, p.71, 2012.

L. Alexandrescu, K. Syverud, A. Gatti, and G. Chinga-carrasco, Cytotoxicity tests of cellulose nanofibril-based structures, Cellulose, vol.20, issue.4, pp.1765-1775, 2013.

K. Hua, Translational study between structure and biological response of nanocellulose from wood and green algae, RSC Advances, vol.4, issue.6, pp.2892-2903, 2014.

C. Endes, A critical review of the current knowledge regarding the biological impact of nanocellulose, Journal of Nanobiotechnology, vol.14, issue.1, p.78, 2016.

. Kangas, Environmental, Health & Safety (EHS) aspects of cellulose nanomaterials (CN) and CN-based products, Nordic Pulp and Paper Research Journal, vol.31, issue.02, pp.179-190, 2016.

M. Pitkanën, Nanofibrillar cellulose -Assessment of cytotoxic and genotoxic properties in vitro, presented at the Tappi International conference on nanotechnology for the forest products industry, 2010.

P. Kollar, Cytotoxicity and effects on inflammatory response of modified types of cellulose in macrophage-like THP-1 cells, International Immunopharmacology, vol.11, issue.8, pp.997-1001, 2011.

M. Pitkänen, Characteristics and safety of nano-sized cellulose fibrils, Cellulose, vol.21, issue.6, pp.3871-3886, 2014.

A. B. Stefaniak, M. S. Seehra, N. R. Fix, and S. S. Leonard, Lung biodurability and free radical production of cellulose nanomaterials, Inhalation Toxicology, vol.26, issue.12, pp.733-749, 2014.

M. ?oli?, D. Mihajlovi?, A. Mathew, N. Naseri, and V. Kokol, Cytocompatibility and immunomodulatory properties of wood based nanofibrillated cellulose, Cellulose, vol.22, issue.1, pp.763-778, 2015.

K. Hua, E. Ålander, T. Lindström, A. Mihranyan, M. Strømme et al., Surface Chemistry of Nanocellulose Fibers Directs Monocyte/Macrophage Response, Biomacromolecules, vol.16, issue.9, pp.2787-2795, 2015.

M. Vikman, J. Vartiainen, I. Tsitko, and P. Korhonen, Biodegradability and Compostability of Nanofibrillar Cellulose-Based Products, J Polym Environ, vol.23, issue.2, pp.206-215, 2015.

K. Hua, M. Strømme, A. Mihranyan, and N. Ferraz, Nanocellulose from green algae modulates the in vitro inflammatory response of monocytes/macrophages, Cellulose, vol.22, issue.6, pp.3673-3688, 2015.

H. R. Nordli, G. Chinga-carrasco, A. M. Rokstad, and B. Pukstad, Producing ultrapure wood cellulose nanofibrils and evaluating the cytotoxicity using human skin cells, Carbohydrate Polymers, vol.150, pp.65-73, 2016.

B. J. Harper, Impacts of chemical modification on the toxicity of diverse nanocellulose materials to developing zebrafish, Cellulose, vol.23, issue.3, pp.1763-1775, 2016.

S. Tomi?, V. Kokol, D. Mihajlovi?, A. Mir?i?, and M. ?oli?, Native cellulose nanofibrills induce immune tolerance in vitro by acting on dendritic cells, Scientific Reports, vol.6, p.31618, 2016.

J. Catalán, Genotoxic and inflammatory effects of nanofibrillated cellulose in murine lungs, Mutagenesis, vol.32, issue.1, pp.23-31, 2017.

A. L. Menas, Fibrillar vs crystalline nanocellulose pulmonary epithelial cell responses: Cytotoxicity or inflammation?, Chemosphere, vol.171, pp.671-680, 2017.

V. R. Lopes, C. Sanchez-martinez, M. Strømme, and N. Ferraz, In vitro biological responses to nanofibrillated cellulose by human dermal, lung and immune cells: surface chemistry aspect, Particle and Fibre Toxicology, vol.14, issue.1, 2017.

A. Rashad, K. Mustafa, E. B. Heggset, and K. Syverud, Cytocompatibility of Wood-Derived Cellulose Nanofibril Hydrogels with Different Surface Chemistry, Biomacromolecules, vol.18, issue.4, pp.1238-1248, 2017.

J. Liu, M. Bacher, T. Rosenau, S. Willför, and A. Mihranyan, Potentially Immunogenic Contaminants in Wood-Based and Bacterial Nanocellulose: Assessment of Endotoxin and (1,3)-?d-Glucan Levels, Biomacromolecules, vol.19, issue.1, pp.150-157, 2018.

C. Ventura, A. F. Lourenço, A. Sousa-uva, P. J. Ferreira, and M. J. Silva, Evaluating the genotoxicity of cellulose nanofibrils in a co-culture of human lung epithelial cells and monocytederived macrophages, Toxicology Letters, vol.291, pp.173-183, 2018.

M. Ogonowski, Multi-level toxicity assessment of engineered cellulose nanofibrils in Daphnia magna, Nanotoxicology, vol.12, issue.6, pp.509-521, 2018.

M. Ilves, Nanofibrillated cellulose causes acute pulmonary inflammation that subsides within a month, Nanotoxicology, vol.0, issue.0, pp.1-18, 2018.

G. Pyrgiotakis, Development of high throughput, high precision synthesis platforms and characterization methodologies for toxicological studies of nanocellulose, Cellulose, vol.25, issue.4, pp.2303-2319, 2018.

S. F. Souza, M. Mariano, D. Reis, C. B. Lombello, M. Ferreira et al., Cell interactions and cytotoxic studies of cellulose nanofibers from Curauá natural fibers, Carbohydrate Polymers, vol.201, pp.87-95, 2018.

M. Roman, Toxicity of Cellulose Nanocrystals: A Review, Industrial Biotechnology, vol.11, issue.1, pp.25-33, 2015.

A. F. Wouk, J. M. Diniz, S. M. Círio, H. Santos, E. L. Baltazar et al., Membrana biológica (Biofill) -estudo comparativo com outros agentes promotores da cicatrização da pele em suínos: aspectos clínicos, histopatológicos e morfométricos, Archives of Veterinary Science, vol.3, issue.1, 1998.

D. Klemm, D. Schumann, U. Udhardt, and S. Marsch, Bacterial synthesized cellulose Ð arti®cial blood vessels for microsurgery, Prog. Polym. Sci, p.43, 2001.

D. A. Schumann, Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes, Cellulose, vol.16, issue.5, pp.877-885, 2009.

W. Czaja, A. Krystynowicz, S. Bielecki, and R. M. Brown, Microbial cellulose -the natural power to heal wounds, Biomaterials, vol.27, issue.2, pp.145-151, 2006.

W. K. Czaja, D. J. Young, M. Kawecki, and R. M. Brown, The Future Prospects of Microbial Cellulose in Biomedical Applications, Biomacromolecules, vol.8, issue.1, pp.1-12, 2007.

W. K. Czaja, D. J. Young, M. Kawecki, and R. M. Brown, The Future Prospects of Microbial Cellulose in Biomedical Applications, Biomacromolecules, vol.8, issue.1, pp.1-12, 2007.

S. Sheykhnazari, T. Tabarsa, A. Ashori, A. Shakeri, and M. Golalipour, Bacterial synthesized cellulose nanofibers; Effects of growth times and culture mediums on the structural characteristics, Carbohydrate Polymers, vol.86, issue.3, pp.1187-1191, 2011.

N. Halib, Potential Applications of Nanocellulose-Containing Materials in the Biomedical Field, Materials, vol.10, issue.8, p.977, 2017.

S. Toivonen, Regulation of Human Pluripotent Stem Cell-Derived Hepatic Cell Phenotype by Three-Dimensional Hydrogel Models, Tissue Engineering Part A, vol.22, pp.971-984, 2016.

P. Laurén, Biomedical applications of nanofibrillar cellulose, 2018.

R. Kolakovic, L. Peltonen, A. Laukkanen, J. Hirvonen, and T. Laaksonen, Nanofibrillar cellulose films for controlled drug delivery, Literature review, vol.82, pp.308-315, 2012.

H. Durand, , pp.2019-119

R. Kolakovic, Evaluation of drug interactions with nanofibrillar cellulose, European Journal of Pharmaceutics and Biopharmaceutics, vol.85, issue.3, pp.1238-1244, 2013.

H. Valo, Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels, European Journal of Pharmaceutical Sciences, vol.50, issue.1, pp.69-77, 2013.

G. Chinga-carrasco and K. Syverud, Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels, J Biomater Appl, vol.29, issue.3, pp.423-432, 2014.

R. Kolakovic, L. Peltonen, T. Laaksonen, K. Putkisto, A. Laukkanen et al., Spray -Dried Cellulose Nanofibers as Novel Tablet Excipient, AAPS PharmSciTech, vol.12, issue.4, pp.1366-1373, 2011.

G. Sarkar, Cellulose nanofibrils/chitosan based transdermal drug delivery vehicle for controlled release of ketorolac tromethamine, New J. Chem, vol.41, issue.24, pp.15312-15319, 2017.

J. Zhao, C. Lu, X. He, X. Zhang, W. Zhang et al., Polyethylenimine -Grafted Cellulose Nanofibril Aerogels as Versatile Vehicles for Drug Delivery, ACS Appl. Mater. Interfaces, vol.7, issue.4, pp.2607-2615, 2015.

P. Laurén, Y. Lou, M. Raki, A. Urtti, K. Bergström et al., Technetium-99m-labeled nanofibrillar cellulose hydrogel for in vivo drug release, European Journal of Pharmaceutical Sciences, vol.65, pp.79-88, 2014.

A. A. Jack, The interaction of wood nanocellulose dressings and the wound pathogen P. aeruginosa, Carbohydrate Polymers, vol.157, pp.1955-1962, 2017.

K. Syverud, S. R. Pettersen, K. Draget, and G. Chinga-carrasco, Controlling the elastic modulus of cellulose nanofibril hydrogels-scaffolds with potential in tissue engineering, Cellulose, vol.22, issue.1, pp.473-481, 2015.

O. Aarstad, E. B. Heggset, I. S. Pedersen, S. H. Bjørnøy, K. Syverud et al., Mechanical Properties of Composite Hydrogels of Alginate and Cellulose Nanofibrils, Polymers, vol.9, issue.8, p.378, 2017.

V. Kuzmenko, E. Karabulut, E. Pernevik, P. Enoksson, and P. Gatenholm, Tailor-made conductive inks from cellulose nanofibrils for 3D printing of neural guidelines, Carbohydrate Polymers, vol.189, pp.22-30, 2018.

K. Chin, S. S. Ting, H. L. Ong, and M. Omar, Surface functionalized nanocellulose as a veritable inclusionary material in contemporary bioinspired applications: A review, Journal of Applied Polymer Science, vol.135, issue.13, p.46065

Y. Habibi, Key advances in the chemical modification of nanocelluloses, Chem. Soc. Rev, vol.43, issue.5, pp.1519-1542, 2014.

K. Missoum, M. N. Belgacem, and J. Bras, Nanofibrillated Cellulose Surface Modification: A Review, Materials, vol.6, issue.5, pp.1745-1766, 2013.

K. Missoum, Modification chimique de surface de NanoFibrilles de Cellulose (NFC), 2012.
URL : https://hal.archives-ouvertes.fr/tel-01072240

, Introduction and Objectives, Esterification of Polysaccharides, pp.1-3, 2006.

, Selected Examples of New Applications, Esterification of Polysaccharides, pp.181-193, 2006.

T. Mekonnen, P. Mussone, H. Khalil, and D. Bressler, Progress in bio-based plastics and plasticizing modifications, J. Mater. Chem. A, vol.1, issue.43, pp.13379-13398, 2013.

J. Sassi and H. Chanzy, Ultrastructural aspects of the acetylation of cellulose, Cellulose, vol.2, issue.2, pp.111-127, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00310744

P. Tingaut, T. Zimmermann, and F. Lopez-suevos, Synthesis and Characterization of Bionanocomposites with Tunable Properties from Poly(lactic acid) and Acetylated Microfibrillated Cellulose, Biomacromolecules, vol.11, issue.2, pp.454-464, 2010.

K. Missoum, M. Belgacem, J. Barnes, M. Brochier-salon, and J. Bras, Nanofibrillated cellulose surface grafting in ionic liquid, Soft Matter, vol.8, issue.32, pp.8338-8349, 2012.

M. Fumagalli, D. Ouhab, S. M. Boisseau, and L. Heux, Versatile Gas-Phase Reactions for Surface to Bulk Esterification of Cellulose Microfibrils Aerogels, Biomacromolecules, vol.14, issue.9, pp.3246-3255, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00903477

S. Saini, N. Belgacem, J. Mendes, G. Elegir, and J. Bras, Contact Antimicrobial Surface Obtained by Chemical Grafting of Microfibrillated Cellulose in Aqueous Solution Limiting Antibiotic Release, ACS Applied Materials & Interfaces, vol.7, issue.32, pp.18076-18085, 2015.

E. Valeur and M. Bradley, Amide bond formation: beyond the myth of coupling reagents, Chemical Society Reviews, vol.38, issue.2, pp.606-631, 2009.

C. A. Montalbetti and V. Falque, Amide bond formation and peptide coupling, Tetrahedron, vol.61, issue.46, pp.10827-10852, 2005.

A. El-faham and F. Albericio, Peptide Coupling Reagents, More than a Letter Soup, Chemical Reviews, vol.111, issue.11, pp.6557-6602, 2011.

J. Araki, M. Wada, and S. Kuga, Steric Stabilization of a Cellulose Microcrystal Suspension by Poly(ethylene glycol) Grafting, Langmuir, vol.17, issue.1, pp.21-27, 2001.

M. Bodanszky, Formation of the Peptide Bond, Peptide Chemistry, pp.55-73, 1993.

N. Nakajima and Y. Ikada, Mechanism of amide formation by carbodiimide for bioconjugation in aqueous media, Bioconjugate chemistry, vol.6, issue.1, pp.123-130, 1995.

H. Mojarradi, Coupling of substances containing a primary amine to hyaluronan via carbodiimide-mediated amidation, p.49

E. Lasseuguette, Grafting onto microfibrils of native cellulose, Cellulose, vol.15, issue.4, pp.571-580, 2008.

S. Arola, T. Tammelin, H. Setälä, A. Tullila, and M. B. Linder, Immobilization-Stabilization of Proteins on Nanofibrillated Cellulose Derivatives and Their Bioactive Film Formation, Biomacromolecules, vol.13, issue.3, pp.594-603, 2012.

E. Karabulut, T. Pettersson, M. Ankerfors, and L. Wågberg, Adhesive Layer-by-Layer Films of Carboxymethylated Cellulose Nanofibril-Dopamine Covalent Bioconjugates Inspired by Marine Mussel Threads, ACS Nano, vol.6, issue.6, pp.4731-4739, 2012.

H. Orelma, L. Johansson, I. Filpponen, O. J. Rojas, and J. Laine, Generic Method for Attaching Biomolecules via Avidin-Biotin Complexes Immobilized on Films of Regenerated and Nanofibrillar Cellulose, Biomacromolecules, vol.13, issue.9, pp.2802-2810, 2012.

H. Orelma, I. Filpponen, L. Johansson, M. Österberg, O. J. Rojas et al., Surface Functionalized Nanofibrillar Cellulose (NFC) Film as a Platform for Immunoassays and Diagnostics, Biointerphases, vol.7, issue.1, p.61, 2012.

A. Benkaddour, K. Jradi, S. Robert, and C. Daneault, Grafting of Polycaprolactone on Oxidized Nanocelluloses by Click Chemistry, Nanomaterials, vol.3, issue.1, pp.141-157, 2013.

K. Junka, J. Guo, I. Filpponen, J. Laine, and O. J. Rojas, Modification of Cellulose Nanofibrils with Luminescent Carbon Dots, Biomacromolecules, vol.15, issue.3, pp.876-881, 2014.

R. Weishaupt, TEMPO-Oxidized Nanofibrillated Cellulose as a High Density Carrier for Bioactive Molecules, Biomacromolecules, vol.16, issue.11, pp.3640-3650, 2015.

H. Orelma, Preparation of photoreactive nanocellulosic materials via benzophenone grafting, RSC Advances, vol.6, issue.88, pp.85100-85106, 2016.

S. Gorgieva, L. Girandon, and V. Kokol, Mineralization potential of cellulose-nanofibrils reinforced gelatine scaffolds for promoted calcium deposition by mesenchymal stem cells, Materials Science and Engineering: C, vol.73, pp.478-489, 2017.

R. Hollertz, V. L. Durán, P. A. Larsson, and L. Wågberg, Chemical ly modified cellulose microand nanofibrils as paper-strength additives, Literature review, vol.24, pp.3883-3899, 2017.

H. Durand, , p.121, 2019.

Y. Zhang and O. J. Rojas, Immunosensors for C-Reactive Protein Based on Ultrathin Films of Carboxylated Cellulose Nanofibrils, Biomacromolecules, vol.18, issue.2, pp.526-534, 2017.

T. Kaldéus, M. Nordenström, A. Carlmark, L. Wågberg, and E. Malmström, Insights into the EDC-mediated PEGylation of cellulose nanofibrils and their colloidal stability, Carbohydrate Polymers, vol.181, pp.871-878, 2018.

M. Meldal and C. W. Tornøe, Cu-Catalyzed Azide?Alkyne Cycloaddition, Chemical Reviews, vol.108, issue.8, pp.2952-3015, 2008.

H. C. Kolb, M. G. Finn, and K. B. Sharpless, Click Chemistry: Diverse Chemical Function from a Few Good Reactions, Angewandte Chemie International Edition, vol.40, issue.11, 2001.

R. Hoogenboom, Thiol-Yne Chemistry: A Powerful Tool for Creating Highly Functional Materials, Angewandte Chemie International Edition, vol.49, issue.20, pp.3415-3417, 2010.

C. R. Becer, R. Hoogenboom, and U. S. Schubert, Click Chemistry beyond Metal -Catalyzed Cycloaddition, Angewandte Chemie International Edition, vol.48, issue.27, pp.4900-4908, 2009.

W. Xi, T. F. Scott, C. J. Kloxin, and C. N. Bowman, Click Chemistry in Materials Science, Advanced Functional Materials, vol.24, issue.18, pp.2572-2590, 2014.

K. Solin, H. Orelma, M. Borghei, M. Vuoriluoto, R. Koivunen et al., Two-Dimensional Antifouling Fluidic Channels on Nanopapers for Biosensing, 2018.

C. E. Hoyle, A. B. Lowe, and C. N. Bowman, Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis, Chemical Society Reviews, vol.39, issue.4, p.1355, 2010.

A. Gress, A. Völkel, and H. Schlaad, Thio-Click Modification of Poly[2-(3-butenyl)-2-oxazoline, Macromolecules, vol.40, issue.22, pp.7928-7933, 2007.

P. Tingaut, R. Hauert, and T. Zimmermann, Highly efficient and straightforward functionalization of cellulose films with thiol -ene click chemistry, Journal of Materials Chemistry, vol.21, issue.40, pp.16066-16076, 2011.

B. D. Fairbanks, T. F. Scott, C. J. Kloxin, K. S. Anseth, and C. N. Bowman, Thiol?Yne Photopolymerizations: Novel Mechanism, Kinetics, and Step-Growth Formation of Highly Cross-Linked Networks, Macromolecules, vol.42, issue.1, pp.211-217, 2009.

J. R. Navarro, Multicolor Fluorescent Labeling of Cellulose Nanofibrils by Click Chemistry, Biomacromolecules, vol.16, issue.4, pp.1293-1300, 2015.

A. B. Lowe, C. E. Hoyle, and C. N. Bowman, Thiol -yne click chemistry: A powerful and versatile methodology for materials synthesis, Journal of Materials Chemistry, vol.20, issue.23, p.4745, 2010.

J. Rull-barrull, M. Halluin, E. L. Grognec, and F. Felpin, Photoresponsive cellulose paper as a molecular printboard for covalent printing, J. Mater. Chem. C, vol.5, issue.21, pp.5154-5162, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02141228

S. Mongkhontreerat, O. C. Andrén, A. Boujemaoui, and M. Malkoch, Dendritic hydrogels: From exploring various crosslinking chemistries to introducing functions and naturally abundant resources, Journal of Polymer Science Part A: Polymer Chemistry, vol.53, issue.21, pp.2431-2439, 2015.

A. Gandini, The furan/maleimide Diels-Alder reaction: A versatile click-unclick tool in macromolecular synthesis, Progress in Polymer Science, vol.38, issue.1, pp.1-29, 2013.

A. Gandini and M. N. Belgacem, Chapter 6 -Furan Derivatives and Furan Chemistry at the Service of Macromolecular Materials," in Monomers, Polymers and Composites from Renewable Resources, pp.115-152, 2008.

A. Gandini, A. J. Carvalho, E. Trovatti, R. K. Kramer, and T. M. Lacerda, Macromolecular materials based on the application of the Diels-Alder reaction to natural polymers and plant oils, European Journal of Lipid Science and Technology, vol.120, issue.1, p.1700091, 2018.

J. Ax and G. Wenz, Thermoreversible Networks by Diels-Alder Reaction of Cellulose Furoates With Bismaleimides, Macromol. Chem. Phys, vol.213, issue.2, pp.182-186, 2012.

C. García-astrain, Maleimide-grafted cellulose nanocrystals as cross-linkers for bionanocomposite hydrogels, Carbohydrate Polymers, vol.149, pp.94-101, 2016.

C. Shao, M. Wang, H. Chang, F. Xu, and J. Yang, A Self-Healing Cellulose Nanocrystal-Poly(ethylene glycol) Nanocomposite Hydrogel via Diels-Alder Click Reaction, ACS Sustainable Chemistry & Engineering, vol.5, issue.7, pp.6167-6174, 2017.

E. Trovatti, A. G. Cunha, A. J. Carvalho, and A. Gandini, Furan-modified natural rubber: A substrate for its reversible crosslinking and for clicking it onto nanocellulose, International Journal of Biological Macromolecules, vol.95, pp.762-768, 2017.

H. Durand, , 2019.

. Bibliography,

Y. Habibi, L. A. Lucia, and O. J. Rojas, Cellulose Nanocrystals: Chemistry, Self -Assembly, and Applications, vol.110, pp.3479-3500, 2010.

. Bp-p.l.c, BP Statistical Review of World Energy, 2018.

F. W. Herrick, R. L. Casebier, J. K. Hamilton, and K. R. Sandberg, Microfibrillated cellulose: morphology and accessibility, United States), vol.37, 1982.

A. F. Turbak, F. W. Snyder, and K. R. Sandberg, Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential, United States), vol.37, 1982.

A. Dufresne, Nanocellulose, From Nature to High Performance Tailored Materials, 2017.

R. Bardet and J. Bras, Cellulose Nanofibers and Their Use in Paper Industry, Materials and Energy, vol.5, pp.207-232, 2014.

D. Klemm, Nanocelluloses: A New Family of Nature-Based Materials, Angew. Chem. Int. Ed, vol.50, issue.24, pp.5438-5466, 2011.

T. , Nanocellulose, a tiny fiber with huge applications, Current Opinion in Biotechnology, vol.39, pp.76-88, 2016.

O. Nechyporchuk, M. N. Belgacem, and J. Bras, Production of cellulose nanofibrils: A review of recent advances, Industrial Crops and Products, 2016.

E. J. Foster, Current characterization methods for cellulose nanomaterials, Chemical Society Reviews, vol.47, issue.8, pp.2609-2679, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02350540

H. Kargarzadeh, Advances in cellulose nanomaterials, Cellulose, vol.25, issue.4, pp.2151-2189, 2018.

S. Boufi, I. González, M. Delgado-aguilar, Q. Tarrès, M. À. Pèlach et al., Nanofibrillated cellulose as an additive in papermaking process: A review, Carbohydrate Polymers, vol.154, pp.151-166, 2016.

C. Aulin, M. Gällstedt, and T. Lindström, Oxygen and oil barrier properties of microfibrillated cellulose films and coatings, Cellulose, vol.17, issue.3, pp.559-574, 2010.

A. Dufresne, S. Thomas, and L. A. Pothan, Biopolymer Nanocomposites: Processing, Properties, and Applications, 2013.

Z. Shi, G. O. Phillips, and G. Yang, Nanocellulose electroconductive composites, Nanoscale, vol.5, issue.8, pp.3194-3201, 2013.

M. Wu, S. Kuga, and Y. Huang, Quasi-One-Dimensional Arrangement of Silver Nanoparticles Templated by Cellulose Microfibrils, Langmuir, vol.24, issue.18, pp.10494-10497, 2008.

P. Bober, Biocomposites of Nanofibrillated Cellulose, Polypyrrole, and Silver Nanoparticles with Electroconductive and Antimicrobial Properties, vol.15, pp.3655-3663, 2014.

N. Lin and A. Dufresne, Nanocellulose in biomedicine: Current status and future prospect, European Polymer Journal, vol.59, pp.302-325, 2014.

N. Halib, Potential Applications of Nanocellulose-Containing Materials in the Biomedical Field, Materials, vol.10, issue.8, p.977, 2017.

M. Jorfi and E. J. Foster, Recent advances in nanocellulose for biomedical applications, J. Appl. Polym. Sci, vol.132, issue.14, 2015.

P. Laurén, Biomedical applications of nanofibrillar cellulose, 2018.

L. Alexandrescu, K. Syverud, A. Gatti, and G. Chinga-carrasco, Cytotoxicity tests of cellulose nanofibril-based structures, Cellulose, vol.20, issue.4, pp.1765-1775, 2013.

K. Hannukainen, S. Suhonen, K. Savolainen, and H. Norppa, Genotoxicity of nanofibrillated cellulose in vitro as measured by enzyme comet assay, Toxicology Letters, vol.Supplement, issue.211, p.71, 2012.

R. Kolakovic, L. Peltonen, T. Laaksonen, K. Putkisto, A. Laukkanen et al., Spray-Dried Cellulose Nanofibers as Novel Tablet Excipient, AAPS PharmSciTech, vol.12, issue.4, pp.1366-1373, 2011.

R. Kolakovic, L. Peltonen, A. Laukkanen, J. Hirvonen, and T. Laaksonen, Nanofibrillar cellulose films for controlled drug delivery, European Journal of Pharmaceutics and Biopharmaceutics, vol.82, issue.2, pp.308-315, 2012.

N. Lavoine, I. Desloges, and J. Bras, Microfibrillated cellulose coatings as new release systems for active packaging, Carbohydrate polymers, vol.103, pp.528-537, 2014.

N. Lavoine, V. Guillard, I. Desloges, N. Gontard, and J. Bras, Active bio-based food-packaging: Diffusion and release of active substances through and from cellulose nanofiber coating toward food-packaging design, Carbohydrate Polymers, vol.149, pp.40-50, 2016.

N. Lavoine, C. Givord, N. Tabary, I. Desloges, B. Martel et al., Elaboration of a new antibacterial bio-nano-material for food-packaging by synergistic action of cyclodextrin and microfibrillated cellulose, Innovative Food Science & Emerging Technologies, vol.26, pp.330-340, 2014.

S. Saini, N. Belgacem, J. Mendes, G. Elegir, and J. Bras, Contact Antimicrobial Surface Obtained by Chemical Grafting of Microfibrillated Cellulose in Aqueous Solution Limiting Antibiotic Release, ACS Applied Materials & Interfaces, vol.7, issue.32, pp.18076-18085, 2015.

S. Saini, C. B. Sillard, M. N. Belgacem, and J. Bras, Nisin anchored cellulose nanofiber for long term antimicrobial active food packaging, 2016.

B. A. Herbold, S. Y. Brendler-schwaab, and H. J. Ahr, Ciprofloxacin: in vivo genotoxicity studies, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol.498, issue.1-2, pp.193-205, 2001.

P. C. Appelbaum and P. A. Hunter, The fluoroquinolone antibacterials: past, present and future perspectives, International Journal of Antimicrobial Agents, vol.16, issue.1, pp.5-15, 2000.

S. L. Bronzwaer, The Relationship between Antimicrobial Use and Antimicrobial Resistance in Europe, Emerg Infect Dis, vol.8, issue.3, pp.278-282, 2002.

H. A. Ezelarab, S. H. Abbas, H. A. Hassan, G. E. , and -. A. Abuo-rahma, Recent updates of fluoroquinolones as antibacterial agents, Archiv der Pharmazie, vol.351, issue.9, p.1800141, 2018.

I. Turel and P. Bukovec, Comparison of the thermal stability of ciprofloxacin and its compounds, Thermochimica Acta, vol.287, issue.2, pp.311-318, 1996.

J. M. Andrews, Determination of minimum inhibitory concentrations, J Antimicrob Chemother, vol.48, issue.suppl_1, pp.5-16, 2001.

U. Hubicka, J. Krzek, and M. Walczak, Stability of ciprofloxacin and norfloxacin in the presence and absence of metal ions in acidic solution, Pharmaceutical Development and Technology, vol.15, issue.5, pp.532-544, 2010.

M. L. Nelson and R. T. O'connor, Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose, Journal of Applied Polymer Science, vol.8, issue.3, pp.1311-1324, 1964.

M. L. Nelson and R. T. O'connor, Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystalli nity in celluloses I and II, Journal of Applied Polymer Science, vol.8, issue.3, pp.1325-1341, 1964.

C. Y. Liang and R. H. Marchessault, Infrared spectra of crystalline polysaccharides. II. Native celluloses in the region from 640 to 1700 cm.?1, Journal of Polymer Science, vol.39, issue.135, pp.269-278, 1959.

V. L. Dorofeev, Infrared spectra and the structure of drugs of the fluoroquinolone group, Pharmaceutical Chemistry Journal, vol.38, issue.12, pp.693-697, 2004.

T. Tenhunen, Understanding the interactions of cellulose fibres and deep eutectic solvent of choline chloride and urea, Cellulose, vol.25, issue.1, pp.137-150, 2018.

. Chapter, Immobilization of active substances on cellulose nanofibrils H. Durand, 2019.

M. Jannesari, J. Varshosaz, M. Morshed, and M. Zamani, Composite poly(viny l alcohol)/poly(vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs, Int J Nanomedicine, vol.6, pp.993-1003, 2011.

J. Fu, H. Wang, Y. Zhou, and J. Wang, Antibacterial activity of ciprofloxacin-loaded zein microsphere films, Materials Science and Engineering: C, vol.29, issue.4, pp.1161-1166, 2009.

S. Marchesan, Self-assembly of ciprofloxacin and a tripeptide into an antimicrobial nanostructured hydrogel, Biomaterials, vol.34, issue.14, pp.3678-3687, 2013.

B. D. Kevadiya, Biodegradable gelatin-ciprofloxacin-montmorillonite composite hydrogels for controlled drug release and wound dressing application, Colloids and Surfaces B: Biointerfaces, vol.122, pp.175-183, 2014.

L. B. Price, A. Vogler, T. Pearson, J. D. Busch, J. M. Schupp et al., In Vitro Selection and Characterization of Bacillus anthracis Mutants with High-Level Resistance to Ciprofloxacin, Antimicrobial Agents and Chemotherapy, vol.47, issue.7, pp.2362-2365, 2003.

P. N. Markham, Inhibition of the Emergence of Ciprofloxacin Resistance in Streptococcus pneumoniae by the Multidrug Efflux Inhibitor Reserpine, 1999.

N. Lavoine, I. Desloges, B. Manship, and J. Bras, Antibacterial paperboard packaging using microfibrillated cellulose, Journal of food science and technology, vol.52, issue.9, pp.5590-5600, 2015.

F. Hoeng, A. Denneulin, and J. Bras, Use of nanocellulose in printed electronics: a review, Nanoscale, vol.8, issue.27, pp.13131-13154, 2016.

T. Saito, Y. Nishiyama, J. Putaux, M. Vignon, and A. Isogai, Homogeneous Suspensions of Individualized Microfibrils from TEMPO-Catalyzed Oxidation of Native Cellulose, Biomacromolecules, vol.7, issue.6, pp.1687-1691, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00305809

A. Isogai, T. Saito, and H. Fukuzumi, TEMPO-oxidized cellulose nanofibers, Nanoscale, vol.3, issue.1, pp.71-85, 2011.

K. Syverud, SciFinder -Potential of cellulose nanofibrils in tissue engineering -ACS abstract

H. R. Nordli, G. Chinga-carrasco, A. M. Rokstad, and B. Pukstad, Producing ultrapure wood cellulose nanofibrils and evaluating the cytotoxicity using human skin cells, Carbohydrate Polymers, vol.150, pp.65-73, 2016.

K. Syverud, S. R. Pettersen, K. Draget, and G. Chinga-carrasco, Controlling the elastic modulus of cellulose nanofibril hydrogels-scaffolds with potential in tissue engineering, Cellulose, vol.22, issue.1, pp.473-481, 2015.

D. Celebi, R. H. Guy, K. J. Edler, and J. L. Scott, Ibuprofen delivery into and through the skin from novel oxidized cellulose-based gels and conventional topical formulations, International Journal of Pharmaceutics, vol.514, issue.1, pp.238-243, 2016.

H. Valo, Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels, Metronidazole: MedlinePlus Drug Information, vol.50, pp.69-77, 2013.

&. Pubchem and . Metronidazole,

M. E. Campos-aldrete and L. Villafuerte-robles, Influence of the viscosity grade and the particle size of HPMC on metronidazole release from matrix tablets, European Journal of Pharmaceutics and Biopharmaceutics, vol.43, issue.2, pp.173-178, 1997.

O. A. Itiola and N. Pilpel, Tableting characteristics of metronidazole formulations, International Journal of Pharmaceutics, vol.31, issue.1, pp.99-105, 1986.

K. A. Gates, H. Grad, P. Birek, and P. I. Lee, A New Bioerodible Polymer Insert for the Controlled Release of Metronidazole, Pharm Res, vol.11, issue.11, pp.1605-1609, 1994.

Y. Dong, H. Paukkonen, W. Fang, E. Kontturi, T. Laaksonen et al., Entangled and colloidally stable microcrystalline cellulose matrices in controlled drug release, International Journal of Pharmaceutics, vol.548, issue.1, pp.113-119, 2018.

H. Paukkonen, Nanofibrillar cellulose hydrogels and reconstructed hydrogels as matrices for controlled drug release, International Journal of Pharmaceutics, vol.532, issue.1, pp.269-280, 2017.

J. M. Schakenraad, M. J. Hardonk, J. Feijen, I. Molenaar, and P. Nieuwenhuis, Enzymatic activity toward poly(L-lactic acid) implants, Journal of Biomedical Materials Research, vol.24, issue.5, pp.529-545, 1990.

Y. Habibi, Key advances in the chemical modification of nanocelluloses, Chem. Soc. Rev, vol.43, issue.5, pp.1519-1542, 2014.

K. Missoum, M. N. Belgacem, and J. Bras, Nanofibrillated Cellulose Surface Modification: A Review, Materials, vol.6, issue.5, pp.1745-1766, 2013.

F. Rol, M. N. Belgacem, A. Gandini, and J. Bras, Recent advances in surface -modified cellulose nanofibrils, Progress in Polymer Science, 2018.

H. C. Kolb, M. G. Finn, and K. B. Sharpless, Click Chemistry: Diverse Chemical Function from a Few Good Reactions, Angewandte Chemie International Edition, vol.40, issue.11, 2001.

J. R. Navarro, Multicolor Fluorescent Labeling of Cellulose Nanofibrils by Click Chemistry, Biomacromolecules, vol.16, issue.4, pp.1293-1300, 2015.

N. Pahimanolis, Surface functionalization of nanofibrillated cellulose using click-chemistry approach in aqueous media, Cellulose, vol.18, issue.5, pp.1201-1212, 2011.

K. S. Sharma, Glucose-Based Amphiphilic Telomers Designed to Keep Membrane Proteins Soluble in Aqueous Solutions: Synthesis and Physicochemical Characterization, Langmuir, vol.24, issue.23, pp.13581-13590, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02329735

D. Da-silva-perez, S. Montanari, and M. R. Vignon, TEMPO-Mediated Oxidation of Cellulose III, Biomacromolecules, vol.4, issue.5, pp.1417-1425, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00306892

F. Hoeng, A. Denneulin, C. Neuman, and J. Bras, Charge density modification of carboxylated cellulose nanocrystals for stable silver nanoparticles suspension preparation, Journal of Nanoparticle Research, vol.17, issue.6, 2015.

A. Lesage, M. Bardet, and L. Emsley, Through-Bond Carbon?Carbon Connectivities in Disordered Solids by NMR, J. Am. Chem. Soc, vol.121, issue.47, pp.10987-10993, 1999.

E. and J. Foster, Current characterization methods for cellulose nanomaterials, Chemical Society Reviews, vol.47, issue.8, pp.2609-2679, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02350540

N. Lavoine, J. Bras, T. Saito, and A. Isogai, Optimization of preparation of thermally stable cellulose nanofibrils via heat-induced conversion of ionic bonds to amide bonds, Journal of Polymer Science Part A: Polymer Chemistry, vol.55, issue.10, pp.1750-1756, 2017.

G. Mangiante, Green Nondegrading Approach to Alkyne-Functionalized Cellulose Fibers and Biohybrids Thereof: Synthesis and Mapping of the Derivatization, Biomacromolecules, vol.14, issue.1, pp.254-263, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00862405

U. P. Agarwal, Raman Spectroscopy of CNC-and CNF-Based Nanocomposites, pp.609-625, 2017.

R. H. Atalla and D. L. Vanderhart, The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses, Solid State Nuclear Magnetic Resonance, vol.15, issue.1, pp.1-19, 1999.

S. Montanari, M. Roumani, L. Heux, and M. R. Vignon, Topochemistry of Carboxylated Cellulose Nanocrystals Resulting from TEMPO-Mediated Oxidation, Macromolecules, vol.38, issue.5, pp.1665-1671, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00305974

A. J. Rossini, A. Zagdoun, M. Lelli, A. Lesage, C. Copéret et al., Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy, Accounts of Chemical Research, vol.46, issue.9, pp.1942-1951, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00954530

. Chapter, Immobilization of active substances on cellulose nanofibrils H. Durand, 2019.

D. Klemm, B. Heublein, H. Fink, and A. Bohn, Cellulose: Fascinating Biopolymer and Sustainable Raw Material, Angewandte Chemie International Edition, vol.44, issue.22, pp.3358-3393, 2005.

M. Jorfi and E. J. Foster, Recent advances in nanocellulose for biomedical applications, J. Appl. Polym. Sci, vol.132, issue.14, 2014.

T. Saito, Y. Nishiyama, J. Putaux, M. Vignon, and A. Isogai, Homogeneous Suspensions of Individualized Microfibrils from TEMPO-Catalyzed Oxidation of Native Cellulose, Biomacromolecules, vol.7, issue.6, pp.1687-1691, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00305809

K. Hua, Translational study between structure and biological response of nanocellulose from wood and green algae, RSC Advances, vol.4, issue.6, pp.2892-2903, 2014.

K. Missoum, Modification chimique de surface de NanoFibrilles de Cellulose (NFC), 2012.
URL : https://hal.archives-ouvertes.fr/tel-01072240

H. C. Kolb, M. G. Finn, and K. B. Sharpless, Click Chemistry: Diverse Chemical Function from a Few Good Reactions, Angewandte Chemie International Edition, vol.40, issue.11, 2001.

C. R. Becer, R. Hoogenboom, and U. S. Schubert, Click Chemistry beyond Metal -Catalyzed Cycloaddition, Angewandte Chemie International Edition, vol.48, issue.27, pp.4900-4908, 2009.

A. Gandini, A. J. Carvalho, E. Trovatti, R. K. Kramer, and T. M. Lacerda, Macromolecular materials based on the application of the Diels-Alder reaction to natural polymers and plant oils, European Journal of Lipid Science and Technology, vol.120, issue.1, p.1700091, 2018.

E. Trovatti, A. G. Cunha, A. J. Carvalho, and A. Gandini, Furan-modified natural rubber: A substrate for its reversible crosslinking and for clicking it onto nanocellulose, International Journal of Biological Macromolecules, vol.95, pp.762-768, 2017.

D. Bliman, M. Demeunynck, P. Leblond, S. Meignan, I. Baussane et al., Enzymatically Activated Glyco-Prodrugs of Doxorubicin Synthesized by a Catalysis-Free Diels-Alder Reaction, Bioconjugate Chem, vol.29, issue.7, pp.2370-2381, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02115111

N. M. Mahfouz and M. A. Hassan, Synthesis, chemical and enzymatic hydrolysis, and bioavailability evaluation in rabbits of metronidazole amino acid ester prodrugs with enhanced water solubility, Journal of Pharmacy and Pharmacology, vol.53, issue.6, pp.841-848, 2001.

C. Mura, Metronidazole prodrugs: Synthesis, physicochemical properties, stability, and ex vivo release studies, European Journal of Medicinal Chemistry, vol.46, issue.9, pp.4142-4150, 2011.

M. Johansen, B. Møllgaard, P. K. Wotton, C. Larsen, and A. Hoelgaard, In vitro evaluation of dermal prodrug delivery -transport and bioconversion of a series of aliphatic esters of metronidazole, International Journal of Pharmaceutics, vol.32, issue.2, pp.199-206, 1986.

J. Han, Design, Synthesis, and Biological Activity of Novel Dicoumarol Glucagon -like Peptide 1 Conjugates, J. Med. Chem, vol.56, issue.24, pp.9955-9968, 2013.

Q. A. Bui, T. H. Vu, V. K. Ngo, I. R. Kennedy, N. A. Lee et al., Development of an ELISA to detect clenbuterol in swine products using a new approach for hapten design, Anal Bioanal Chem, vol.408, issue.22, pp.6045-6052, 2016.

M. Rosay, Solid-state dynamic nuclear polarization at 263 GHz: spectrometer design and experimental results, Phys Chem Chem Phys, vol.12, issue.22, pp.5850-5860, 2010.

E. O. Stejskal, J. Schaefer, and J. S. Waugh, Magic-angle spinning and polarization transfer in proton-enhanced NMR, Journal of Magnetic Resonance, vol.28, issue.1, pp.105-112, 1969.

G. Metz, X. L. Wu, and S. O. Smith, Ramped-Amplitude Cross Polarization in Magic-Angle-Spinning NMR, Journal of Magnetic Resonance, Series A, vol.110, issue.2, pp.219-227, 1994.

A. Pines, M. G. Gibby, and J. S. Waugh, Proton-enhanced NMR of dilute spins in solids, J. Chem. Phys, vol.59, issue.2, pp.569-590, 1973.

D. L. Van-hyning and C. F. Zukoski, Formation Mechanisms and Aggregation Behavior of Borohydride Reduced Silver Particles, Langmuir, vol.14, issue.24, pp.7034-7046, 1998.

A. Callegari, D. Tonti, and M. Chergui, Photochemically Grown Silver Nanoparticles with Wavelength-Controlled Size and Shape, Nano Lett, vol.3, issue.11, pp.1565-1568, 2003.

M. R. El-ghobashy and N. F. Abo-talib, Spectrophotometric methods for the simultaneous determination of binary mixture of metronidazole and diloxanide furoate without prior separation, Journal of Advanced Research, vol.1, issue.4, pp.323-329, 2010.

H. M. Hafez, A. A. Elshanawany, L. M. Abdelaziz, and M. S. Mohram, Design of Experiment Utilization to Develop a Simple and Robust RP-UPLC Technique for Stability Indicating Method of Ciprofloxacin Hydrochloride and Metronidazole in Tablets, Eurasian J Anal Chem, p.23, 2015.

A. Gandini, D. Coelho, and A. J. Silvestre, Reversible click chemistry at the service of macromolecular materials. Part 1: Kinetics of the Diels-Alder reaction applied to furanmaleimide model compounds and linear polymerizations, European Polymer Journal, vol.44, issue.12, pp.4029-4036, 2008.

H. Durand, , 2019.

. Bibliography,

F. Rol, M. N. Belgacem, A. Gandini, and J. Bras, Recent advances in surface -modified cellulose nanofibrils, Progress in Polymer Science, 2018.

O. Nechyporchuk, M. N. Belgacem, and J. Bras, Production of cellulose nanofibrils: A review of recent advances, Industrial Crops and Products, 2016.

A. Dufresne, Nanocellulose, From Nature to High Performance Tailored Materials, 2017.

K. Lee, Nanocellulose and sustainability: production, properties, applications, and case studies, 2018.

D. Klemm, Nanocelluloses: A New Family of Nature-Based Materials, Angew. Chem. Int. Ed, vol.50, issue.24, pp.5438-5466, 2011.

H. Kargarzadeh, Advances in cellulose nanomaterials, Cellulose, vol.25, issue.4, pp.2151-2189, 2018.

T. , Nanocellulose, a tiny fiber with huge applications, Current Opinion in Biotechnology, vol.39, pp.76-88, 2016.

R. Bardet and J. Bras, Cellulose Nanofibers and Their Use in Paper Industry, Materials and Energy, vol.5, pp.207-232, 2014.

C. Aulin, M. Gällstedt, and T. Lindström, Oxygen and oil barrier properties of microfibrillated cellulose films and coatings, Cellulose, vol.17, issue.3, pp.559-574, 2010.

A. Dufresne, S. Thomas, and L. A. Pothan, Biopolymer Nanocomposites: Processing, Properties, and Applications, 2013.

P. Bober, Biocomposites of Nanofibrillated Cellulose, Polypyrrole, and Silver Nanoparticles with Electroconductive and Antimicrobial Properties, vol.15, pp.3655-3663, 2014.

F. Hoeng, A. Denneulin, and J. Bras, Use of nanocellulose in printed electronics: a review, Nanoscale, vol.8, issue.27, pp.13131-13154, 2016.

M. Jorfi and E. J. Foster, Recent advances in nanocellulose for biomedical applications, J. Appl. Polym. Sci, vol.132, issue.14, 2014.

N. Lin and A. Dufresne, Nanocellulose in biomedicine: Current status and future prospect, European Polymer Journal, vol.59, pp.302-325, 2014.

P. Laurén, Biomedical applications of nanofibrillar cellulose, 2018.

R. Kolakovic, L. Peltonen, A. Laukkanen, J. Hirvonen, and T. Laaksonen, Nanofibrillar cellulose films for controlled drug delivery, European Journal of Pharmaceutics and Biopharmaceutics, vol.82, issue.2, pp.308-315, 2012.

N. Lavoine, I. Desloges, and J. Bras, Microfibrillated cellulose coatings as new release systems for active packaging, Carbohydrate polymers, vol.103, pp.528-537, 2014.

N. Lavoine, I. Desloges, C. Sillard, and J. Bras, Controlled release and long-term antibacterial activity of chlorhexidine digluconate through the nanoporous network of microfibrillated cellulose, Cellulose, vol.21, issue.6, pp.4429-4442, 2014.

N. Lavoine, V. Guillard, I. Desloges, N. Gontard, and J. Bras, Active bio-based food-packaging: Diffusion and release of active substances through and from cellulose nanofiber coating toward food-packaging design, Carbohydrate Polymers, vol.149, pp.40-50, 2016.

N. Lavoine, N. Tabary, I. Desloges, B. Martel, and J. Bras, Controlled release of chlorhexidine digluconate using ?-cyclodextrin and microfibrillated cellulose, Colloids and Surfaces B: Biointerfaces, vol.121, pp.196-205, 2014.

P. C. Appelbaum and P. A. Hunter, The fluoroquinolone antibacterials: past, present and future perspectives, International Journal of Antimicrobial Agents, vol.16, issue.1, pp.5-15, 2000.

B. A. Herbold, S. Y. Brendler-schwaab, and H. J. Ahr, Ciprofloxacin: in vivo genotoxicity studies, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol.498, issue.1-2, pp.193-205, 2001.

S. Saini, N. Belgacem, J. Mendes, G. Elegir, and J. Bras, Contact Antimicrobial Surface Obtained by Chemical Grafting of Microfibrillated Cellulose in Aqueous Solution Limiting Antibiotic Release, ACS Applied Materials & Interfaces, vol.7, issue.32, pp.18076-18085, 2015.

S. Saini, C. B. Sillard, M. N. Belgacem, and J. Bras, Nisin anchored cellulose nanofiber for long term antimicrobial active food packaging, 2016.

S. Saini, M. N. Belgacem, M. B. Salon, and J. Bras, Non leaching biomimetic antimicrobial surfaces via surface functionalisation of cellulose nanofibers with aminosilane, Cellulose, pp.1-16, 2016.

M. Smyth, C. Fournier, C. Driemeier, C. Picart, E. J. Foster et al., Tunable Structural and Mechanical Properties of Cellulose Nanofiber Substrates in Aqueous Conditions for Stem Cell Culture, Biomacromolecules, vol.18, issue.7, pp.2034-2044, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01762228

M. Henriksson, L. A. Berglund, P. Isaksson, T. Lindström, and T. Nishino, Cellulose Nanopaper Structures of High Toughness, Biomacromolecules, vol.9, issue.6, pp.1579-1585, 2008.

A. Basu, J. Lindh, E. Ålander, M. Strømme, and N. Ferraz, On the use of ion -crosslinked nanocellulose hydrogels for wound healing solutions: Physicochemical properties and application-oriented biocompatibility studies, Carbohydrate Polymers, vol.174, pp.299-308, 2017.

M. Sukul, R. D. Ventura, S. H. Bae, H. J. Choi, S. Y. Lee et al., Plant-derived oxidized nanofibrillar cellulose-chitosan composite as an absorbable hemostat, Materials Letters, vol.197, pp.150-155, 2017.

M. Smyth, Nanocellulose based materials for Cell Culture, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01691100

P. N. Markham, Inhibition of the Emergence of Ciprofloxacin Resistance in Streptococcus pneumoniae by the Multidrug Efflux Inhibitor Reserpine, 1999.

D. C. Hooper and J. F. Wolfson, Fluoroquinolone Antimicrobial Agents, THE NEW ENGLAND JOURNAL OF MEDICINE, p.11, 1991.

G. Dow, A. Browne, and R. G. Sibbald, Infection in chronic wounds: controversies in diagnosis and treatment, Ostomy Wound Manage, vol.45, issue.8, pp.29-40, 1999.

E. Wassenaar, E. Schoenmaeckers, J. Raymakers, J. Van-der-palen, and S. Rakic, Mesh-fixation method and pain and quality of life after laparoscopic ventral or incisional hernia repair: a randomized trial of three fixation techniques, Surg Endosc, vol.24, issue.6, pp.1296-1302, 2010.

C. F. Bellows, A. Alder, and W. S. Helton, Abdominal wall reconstruction using biological tissue grafts: present status and future opportunities, Expert Review of Medical Devices, vol.3, issue.5, pp.657-675, 2006.

N. J. Smart and S. Bloor, Durability of Biologic Implants for Use in Hernia Repair: A Review, Surg Innov, vol.19, issue.3, pp.221-229, 2012.

F. M. Shaikh, S. K. Giri, S. Durrani, D. Waldron, and P. A. Grace, Experience with Porcine Acellular Dermal Collagen Implant in One-stage Tension-free Reconstruction of Acute and Chronic Abdominal Wall Defects, World J Surg, vol.31, issue.10, pp.1966-1972, 2007.

P. Bhanot, K. S. King, and F. P. Albino, Biologic mesh for abdominal wall reconstruction, p.57, 2014.

Y. Bayon, P. Gravagna, and J. Tayot, Method for preparing two-layer bicomposite collagen material for preventing post-operative adhesions, vol.6596304, 2003.

S. Saska, Bacterial cellulose-collagen nanocomposite for bone tissue engineering, Journal of Materials Chemistry, vol.22, issue.41, pp.22102-22112, 2012.

T. W. Steele, Collagen-cellulose composite thin films that mimic soft-tissue and allow stem-cell orientation, J Mater Sci: Mater Med, vol.24, issue.8, pp.2013-2027, 2013.

A. P. Mathew, K. Oksman, D. Pierron, and M. Harmad, Crosslinked fibrous composites based on cellulose nanofibers and collagen with in situ pH induced fibrillation, Cellulose, vol.19, issue.1, pp.139-150, 2012.

. Chapter, Development of cellulose nanofibrils materials for medical devices H. Durand, 2019.

A. P. Mathew, K. Oksman, D. Pierron, and M. Harmand, Biocompatible Fibrous Networks of Cellulose Nanofibres and Collagen Crosslinked Using Genipin: Potential as Artificial Ligament/Tendons, Macromol. Biosci, vol.13, issue.3, pp.289-298, 2013.

Y. Dong, H. Paukkonen, W. Fang, E. Kontturi, T. Laaksonen et al., Entangled and colloidally stable microcrystalline cellulose matrices in controlled drug release, International Journal of Pharmaceutics, vol.548, issue.1, pp.113-119, 2018.

H. Paukkonen, Nanofibrillar cellulose hydrogels and reconstructed hydrogels as matrices for controlled drug release, International Journal of Pharmaceutics, vol.532, issue.1, pp.269-280, 2017.

P. Medhi, Lidocaine-loaded fish scale-nanocellulose biopolymer composite microneedles, AAPS PharmSciTech, vol.18, issue.5, pp.1488-1494, 2017.

P. P. Poulet, D. Duffaut, and J. P. Lodter, Metronidazole susceptibility testing of anaerobic bacteria associated with periodontal disease, J. Clin. Periodontol, vol.26, issue.4, pp.261-263, 1999.

J. Wüst, Susceptibility of Anaerobic Bacteria to Metronidazole, Ornidazole, and Ti nidazole and Routine Susceptibility Testing by Standardized Methods, Antimicrob Agents Chemother, vol.11, issue.4, pp.631-637, 1977.

T. Saito, Y. Nishiyama, J. Putaux, M. Vignon, and A. Isogai, Homogeneous Suspensions of Individualized Microfibrils from TEMPO-Catalyzed Oxidation of Native Cellulose, Biomacromolecules, vol.7, issue.6, pp.1687-1691, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00305809

A. Isogai, T. Saito, and H. Fukuzumi, TEMPO-oxidized cellulose nanofibers, Nanoscale, vol.3, issue.1, pp.71-85, 2011.

F. Cataldo, O. Ursini, E. Lilla, and G. Angelini, Radiation-induced crosslinking of collagen gelatin into a stable hydrogel, J Radioanal Nucl Chem, vol.275, issue.1, pp.125-131, 2008.

Y. Zhang, X. Zhang, L. Xu, S. Wei, and M. Zhai, Radiation cross-linked collagen/dextran dermal scaffolds: effects of dextran on cross-linking and degradation, Journal of Biomaterials Science, vol.26, issue.3, pp.162-180, 2015.

N. A. Hoenich, Cellulose for Medical Applications: Past, Present, and Future, BioResources, vol.1, issue.2, pp.270-280, 2007.

T. Shibata, Chapter 3:Cellulose and Its Derivatives in Medical Use, Renewable Resources for Functional Polymers and Biomaterials, pp.48-87, 2011.

A. F. Turbak, F. W. Snyder, and K. R. Sandberg, Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential, United States), vol.37, 1982.

F. W. Herrick, R. L. Casebier, J. K. Hamilton, and K. R. Sandberg, Microfibrillated cellulose: morphology and accessibility, United States), vol.37, 1982.

S. Boufi, I. González, M. Delgado-aguilar, Q. Tarrès, M. À. Pèlach et al., Nanofibrillated cellulose as an additive in papermaking process: A review, Carbohydrate Polymers, vol.154, pp.151-166, 2016.

D. T. Cheung, N. Perelman, D. Tong, and M. E. Nimni, The effect of ? -irradiation on collagen molecules, isolated ?-chains, and crosslinked native fibers, Journal of Biomedical Materials Research, vol.24, issue.5, pp.581-589, 1990.

J. H. Bowes and J. A. Moss, The Effect of Gamma Radiation on Collagen, Radiation Research, vol.16, issue.3, p.211, 1962.

M. A. Khan, N. Rahman, and M. Rahman, Preparation and Characterization of Gamma Radiation Cured Gelatin-PVA Bio-Blend, Advanced Materials Research, pp.347-350, 2010.

H. Kargarzadeh, Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites, Progress in Polymer Science, vol.87, pp.197-227, 2018.

C. Zhijiang and Y. Guang, Bacterial cellulose/collagen composite: Characterization and first evaluation of cytocompatibility, Journal of Applied Polymer Science, vol.120, issue.5, pp.2938-2944, 2011.

M. Sukul, Y. Min, S. Lee, and B. Lee, Osteogenic potential of simvastatin loaded gelatinnanofibrillar cellulose-? tricalcium phosphate hydrogel scaffold in critical-sized rat calvarial defect, European Polymer Journal, vol.73, pp.308-323, 2015.

N. Lavoine, N. Tabary, I. Desloges, B. Martel, and J. Bras, Controlled release of chlorhexidine digluconate using ?-cyclodextrin and microfibrillated cellulose, Colloids and Surfaces B: Biointerfaces, vol.121, pp.196-205, 2014.

J. M. Andrews, Determination of minimum inhibitory concentrations, J Antimicrob Chemother, vol.48, issue.suppl_1, pp.5-16, 2001.

T. J. Karpanen, T. Worthington, E. R. Hendry, B. R. Conway, and P. A. Lambert, Antimicrobial efficacy of chlorhexidine digluconate alone and in combination with eucalyptus oil, tea tree oil and thymol against planktonic and biofilm cultures of Staphylococcus epidermidis, J Antimicrob Chemother, vol.62, issue.5, pp.1031-1036, 2008.

T. Koburger, N. Hübner, M. Braun, J. Siebert, and A. Kramer, Standardized comparison of antiseptic efficacy of triclosan, PVP-iodine, octenidine dihydrochloride, polyhexanide and chlorhexidine digluconate, J Antimicrob Chemother, vol.65, issue.8, pp.1712-1719, 2010.

H. Pun, Terminology for biorelated polymers and applications, 2012.

B. J. Love, Biomaterials : A Systems Approach to Engineering Concepts, 2017.

T. Srichana and A. J. Domb, Polymeric Biomaterials, Biomedical Materials, pp.83-119, 2009.

R. P. Babu, K. , and R. Seeram, Current progress on bio-based polymers and their future trends, Progress in Biomaterials, vol.2, issue.1, 2013.

L. S. Nair and C. T. Laurencin, Biodegradable polymers as biomaterials, Progress in Polymer Science, vol.32, issue.8-9, pp.762-798, 2007.

L. Bedian, A. M. Villalba-rodríguez, G. Hernández-vargas, R. Parra-saldivar, and H. M. , Biobased materials with novel characteristics for tissue engineering applications -A review, International Journal of Biological Macromolecules, vol.98, pp.837-846, 2017.

A. F. Turbak, F. W. Snyder, and K. R. Sandberg, Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential, United States), vol.37, 1982.

F. W. Herrick, R. L. Casebier, J. K. Hamilton, and K. R. Sandberg, Microfibrillated cellulose: morphology and accessibility, United States), vol.37, 1982.

C. Endes, A critical review of the current knowledge regarding the biological impact of nanocellulose, Journal of Nanobiotechnology, vol.14, issue.1, p.78, 2016.

A. Rashad, K. Mustafa, E. B. Heggset, and K. Syverud, Cytocompatibility of Wood-Derived Cellulose Nanofibril Hydrogels with Different Surface Chemistry, Biomacromolecules, vol.18, issue.4, pp.1238-1248, 2017.

S. Saini, N. Belgacem, J. Mendes, G. Elegir, and J. Bras, Contact Antimicrobial Surface Obtained by Chemical Grafting of Microfibrillated Cellulose in Aqueous Solution Limiting Antibiotic Release, ACS Applied Materials & Interfaces, vol.7, issue.32, pp.18076-18085, 2015.

M. Jorfi and E. J. Foster, Recent advances in nanocellulose for biomedical applications, J. Appl. Polym. Sci, vol.132, issue.14, 2014.

N. Lin and A. Dufresne, Nanocellulose in biomedicine: Current status and future prospect, European Polymer Journal, vol.59, pp.302-325, 2014.

N. Halib, Potential Applications of Nanocellulose-Containing Materials in the Biomedical Field, Colloids Surf. B Biointerfaces, vol.10, issue.8, pp.196-205, 2014.

. Lavoine, J. APPL. POLYM. SCI, 2014.

. Saini, Journal of materials science

D. O. Castro and B. , Mat. Sc. and Engineering C, vol.69, pp.1018-1025, 2016.

. Mcgraw-hill, Yearbook in Science & Technology, 2008.

H. Durand-1, Elisa Zeno 2 , Isabelle Baussanne 3 , Naceur Belgacem 1 , Julien Bras 1 Cellulose nanofiber surface functionalization for functional medical membrane applications LGP2, 461 rue de la papeterie, Heloïse LeDrezen, vol.1

. Univ, . Alpes, F. Lgp2, and . Grenoble, BP, vol.251

. Univ, D. Alpes, and F. Grenoble, France References

K. Missoum, M. N. Belgacem, and J. Bras, Nanofibrillated cellulose surface modification: a review, Materials, vol.6, pp.1745-1766, 2013.

N. Lin and A. Dufresne, Nanocellulose in Biomedicine: current status and future prospect, European Polymer Journal, vol.59, pp.302-325, 2014.