
HAL Id: tel-02626899
https://theses.hal.science/tel-02626899

Submitted on 26 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Terrestrial Laser Scanner Noise Analysis, Modelling and
Detection

Romain Rombourg

To cite this version:
Romain Rombourg. Terrestrial Laser Scanner Noise Analysis, Modelling and Detection. Signal and
Image Processing. Université Grenoble Alpes, 2019. English. �NNT : 2019GREAM064�. �tel-02626899�

https://theses.hal.science/tel-02626899
https://hal.archives-ouvertes.fr






Remerciements
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fait énormément de choses pour moi, m’octroyer cette chance bien sûr,
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Abstract

In this thesis, we focused on several topics related to noise detection
in point clouds generated by Terrestrial Laser Scanners (TLS): first, the
projection methods to compute an image from a TLS scan; second, the
detection of sky noise, i.e. noise produced when a Amplitude Modulated
Continuous Wave TLS measures range only from background radiation;
and finally, the detection of mixed point noise, i.e. points acquired when
the TLS was receiving return signals from several different surfaces. To
tackle these challenges, we first analysed how the TLS samples space
and deduced properties on how the local point cloud density evolves
with respect to the elevation. This allowed us to show the limits of usual
noise detection techniques and oriented our focus on 2D non density
based detection techniques. We then defined a theoretical framework to
analyse projection methods, unavoidable foundations for 2D detection
methods. This framework allowed us to bring to light two fundamental
properties that should be satisfied by a projection. Following these prop-
erties, we designed a projection algorithm that satisfied them as much
as possible. We then defined a way to quantify projection quality and
compared our proposed algorithm with the most widely used algorithm
and showed that this method is not adapted. Our proposed projection
on the contrary showed very good results. Since the sky noise has never
been studied in previous works, we formally analysed it to build some
theoretical foundations for sky detection. The analysis allowed us to show
theoretically and experimentally that the range distribution of sky noise
is independent of the underlying properties of the background radiation
signal. From our projection and the discovered properties, we designed
a sky detector and a mixed point detector. The detectors were tested via
an extensive validation in controlled conditions. The results showed that
our proposed detectors combined with the proposed projection are able
to correctly detect almost all presented noise with few bad detection for
the sky detectors and a reasonable amount of them for the mixed point
detector.
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Résumé

Dans cette thèse, nous nous sommes concentrés sur plusieurs sujets
liés à la détection du bruit dans les nuages de points générés par les
scanners laser terrestres (TLS) : premièrement, les méthodes de projection
pour calculer une image à partir d’un balayage TLS ; deuxièmement, la
détection du bruit du ciel, c’est-à-dire le bruit produit lorsqu’une mesure
d’un TLS à onde continue modulée en amplitude n’est effectuée que sur
du rayonnement ambiant ; et enfin, la détection du bruit de points mixtes,
c’est-à-dire les points acquis lorsque le TLS reçoit des signaux de retour de
plusieurs surfaces différentes. Pour relever ces défis, nous avons d’abord
analysé l’échantillonnage de l’espace du TLS et déduit des propriétés sur
la densité locale de points en fonction de l’élévation, ce qui nous a per-
mis de montrer les limites des techniques classiques de détection. Nous
avons ensuite défini un cadre théorique pour analyser les méthodes de
projection, fondements des méthodes de détection 2D. Ce cadre nous a
permis de mettre en évidence deux propriétés fondamentales devant être
satisfaites par une projection. En se basant sur ces propriétés, nous avons
conçu un algorithme de projection les satisfaisant au mieux. Nous avons
ensuite défini une quantification de la qualité d’une projection et comparé
notre algorithme avec l’algorithme classique et montré que la méthode
classique n’est pas adaptée. La projection proposée a quant à elle donné
de très bons résultats. Comme le bruit du ciel n’a jamais été étudié dans de
précédents travaux, nous l’avons formellement analysé pour construire
des bases théoriques pour la détection du ciel. L’analyse nous a permis
de montrer théoriquement et expérimentalement que la distribution de
distance du bruit de ciel est indépendante des propriétés sous-jacentes
du rayonnement ambiant. À partir de notre projection et des propriétés
découvertes, nous avons conçu un détecteur de ciel et un détecteur de
points mixtes. Les détecteurs ont été testés via une validation approfondie
en conditions contrôlées. Les résultats ont montré que nos détecteurs com-
binés à notre projection sont capables de détecter correctement presque
tout le bruit présenté avec peu de mauvaises détections pour le détecteur
de ciel et une quantité raisonnable pour le détecteur de point mixte.
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(a) Before reconstruction (b) After reconstruction

Figure 1.3 – Example of a topologically consistent tree structure derived
from TLS point cloud data. This example is given for a ca. 19 m tall and
5 m3 oak tree before (Left) and after (Right) its surface reconstruction.
(source Casella, Rombourg et al. [2019], unpublished data).

possible or impractical measurement of some data such as tree leaf area
distribution (Béland et al. [2011]).

1.2 TLS advantages and limitations

Most TLS applications exploit its ability to directly output a 3D rep-
resentation of the scene along with its precision and dense sampling
capacities. Also, being an active acquisition method, its output is much
more robust to scene illumination conditions than passive methods (e.g.
photogrammetry). Obviously all these advantages come with some lim-
itations. For example the TLS takes a few minutes to scan the scene,
meaning that any moving target will create incoherent series of points
(e.g. moving tree branches due to wind or a car moving in the street). As
pointed out by Lafarge [2015], noise and outlier removal is a common and
crucial problem for any point cloud based procedure like 3D modelling
of urban scenes or tree modelling. In TLS acquired point clouds, outliers
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(hereafter called noise since we will not be interested in the surface noise
problematic in this thesis) can be produced by several physical processes
and we will focus on the two main causes.

The mixed point challenge

A renown and important problem are the mixed points or mixed pixels.
They occur at the edge of every object visible from the TLS point of view.
They are caused by the fact that the laser beam used to acquire the distance
measurements is not a perfect mathematical line (thus with no volume or
surface). This implies that, when the laser is partially projected on two
or more surfaces, their measurement will get mixed resulting in a point
that does not have any physical reality. This noise can take several forms
depending on the acquisition technology and the properties of the surfaces
that created it. On top of creating noisy points, this phenomenon creates
an edge loss, meaning a zone on the edge of every object where points
are uncertain. Filtering the uncertain points leads to a loss in the object
dimensions, the aforementioned edge loss. In modelling applications the
noisy points lead to erroneous models and in measuring applications edge
loss drastically reduces the possible precision. Thats why the detection of
mixed points have been of great interest in the literature. According to
Huber et al. [2010], this problem is still not properly solved.

Figure 1.4 – Example of mixed point noise, in blue the valid points, in red
the mixed points



6 CHAPTER 1. INTRODUCTION

The sky point problem

Mixed points are not the only type of noisy points that can be found in
a TLS scan. Another noise, in this document called sky points, arises in
scans taken with the AMCW (Amplitude Modulated Continuous Wave)
technology. This technology, the fastest, most precise and cheapest, cannot
easily differentiate a real laser return from a lost return (e.g. laser shot
towards the sky or a surface very far away). This leads to random points
whenever the scanner does not get a return. Sky points are poorly detected
by commercial software. Although the remaining spurious points can
be easily detected, this inconstant procedure leads to irregular edge loss,
impairing applications like gap fraction estimation in forestry.

Figure 1.5 – Example of sky noise, in blue the valid points, in red the sky
points

A fragile base : the equirectangular projection

Most state of the art noise filters rely on a projection of the 3D scan
onto a 2D image (Cai et al. [2005], Tang et al. [2007], Cifuentes et al. [2014],
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Eysn et al. [2013] etc ...). This approach, is also used in the literature for
other applications (Houshiar et al. [2013], Houshiar and Nüchter [2015],
Käshammer and Nüchter [2015] etc ...). Since equirectangular mapping
uses scanning directions to compute image positions, the sampling pre-
cision will have a direct impact on this class of methods. Unfortunately,
sampling directions are affected by a jitter type noise (sampling time
errors) and numerical instabilities brought by the spherical change of
coordinates. These errors makes the output of a classic equirectangular
projection inconsistent. Especially, as Käshammer and Nüchter [2015]
noted, errors can induce point losses and displacement in the resulting
image. The displacement themselves lead to erroneous computation for
any method based on local neighbourhood analysis.

Contributions

In this thesis we tackle the equirectangular projection problem, the
detection of sky point and mixed points.

On the equirectangular projection we propose a new algorithm for
equirectangular mapping of TLS scans able to deal with the sampling
anomalies. To do so the formalism of equirectangular projection is investi-
gated and adapted for spherical TLS scanning. Generated maps by our
algorithm are compared with those generated by the mainly used projec-
tion algorithm (as defined by Marinus of Tyre in 100 A.C). The mapping
quality is analysed using two properties that we formally define : the
point loss as a result of the projection and the neighbourhood coherence,
indicating the correctness of a local neighborhood.

To tackle the sky noise detection problem we analyse the physical
phenomenon producing it. The analysis allows us to find a core property
of the sky noise. The property is theoretically and experimentally proved.
Based on the newly defined equirectangular projection methods we de-
velop two new independent noise detection methods. The first is aimed
at detecting sky noise only. Thanks to the found sky property we designe
it to be robust against differences in sky illumination conditions between
scans. It is also made configurable to have optimal performances for all
albedos. The second is designed for mixed point filtering.

These filters are backed with an analysis on the filter edge loss and its
capacity to correctly label noise points in controlled conditions, mimicking
forestry and civil applications. Reference point cloud labelling is done
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without expert intervention and using a newly and presented edge loss
model taking into account the real shape of the beam and the discrete
nature of TLS sampling.

1.3 Outline of the thesis

We give in this section the outline of the thesis. In chapter 2 we will
present the background theory needed for this study. This includes the
TLS measurement principles and an analysis of TLS point cloud density.

We then present 3 a literature review of TLS noise filtering techniques
and equirectangular image projections.

After this, in chapter 4 we will formally define the equirectangular
projection for discrete point clouds. This formalism will then be adapted
for LiDAR acquired data and, based on this formalism, a new equirect-
angular projection algorithm was derived to satisfy two fundamental
properties introduced in the formalism : the lossless property (as few
point as possible should be lost due to the projection algorithm) and the
coherence property (local visual neighbourhood should be conserved in
the projection). Finally the proposed algorithm was evaluated against the
classical projection method using two new metric based on the lossless
and coherence properties.

In chapter 5 will be presented two new filtering methods using the
projection algorithm presented in chapter 4. The first will be aimed at
detecting sky points. The proposed method was designed to be robust
against changes in sky illumination changes from scan to scan. The aim of
this filter is to capture sky point while leaving the mixed points undetected.
Secondly we will introduce a new mixed point filtering scheme, the filter
was designed to be plastic in term of its trade-off between resolution
power (smallest object it can resolve) and filtering consistency (capacity
to correctly recognise all noise). Based on the problems raised in 4 the
equations it uses were made insensitive to azimuth coordinates drift near
the scanning poles.

Then in chapter 6 we will present the experimental procedure used
for filter evaluation in controlled conditions. We first present the general
procedure and material used for the experiments. Then we devise a frame-
work for reference noise-labelled point cloud creation where the focus is
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to have an automated, model based, reference labelling and avoid expert
based modelling (in an attempt to be as objective as possible). In this
framework we first semi automatically reconstructed the scanned objects
in every scan, then, based on a new edge loss model, we automatically
labelled the point clouds. The results using the filters proposed in chapter
5 and the previously defined experimental framework are then presented
and discussed.

We finish in Chapter 7 by presenting a summary of our contributions,
an analysis of the limitations of this works and we open some perspec-
tives and possible future works. Part of this work has been presented
in the International Conference on Functional-Structural Plant Growth
Modeling, Simulation, Visualization and Applications (Qingdao, China,
2016) and the ”6ieme édition de l’atelier T-LiDAR pour la communauté
francophone” workshop (Avignon, France, 2016). More details can be
found in Appendix B
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CHAPTER 2. TERRESTRIAL LASER SCANNERS : SCANNING

PRINCIPLES

In this chapter we will present the theoretical concepts surrounding
laser scanning and Terrestrial laser scanners. We also present here a
detailed analysis of the sampling pattern used by Terrestrial laser scanner
and its properties.

2.1 Distance measurement

The TLS is part of the laser scanning technologies. Laser scanning
sensors send a laser towards the target and analyse the reflected light to
measure the distance between the sensor and the target. We will now
review the three main distance measurement technologies used in laser
scanning.

Triangulation

Triangulation based distance measurement uses the offset between the
emitting source (the laser) and the receiving device (usually an optical
position sensor) to determine the distance to the object. As seen in figure
2.1, knowing the offset between the laser and the detector and the dis-
tance between the lens and the detector (which are all chosen during the
conception, thus known), the distance to the object is proportional to the
dot position on the detector. Although very precise, this technology only
allows for short distance measurement due to its measurement principle.

Figure 2.1 – Triangulation LiDAR principle

Pulse based

Pulse based distance measurement, is part of the TOF (Time Of Flight)
methods. It uses the time needed for the light to go from the laser source to
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the object, then back to the detector. As their name suggests, pulse based
LiDAR emits a short duration pulse (in the tenth of nanoseconds), records
the exact time of emission temission. When an energy peak is recorded on
the sensor (normally caused by the laser being reflected and captured by
the sensor), the exact time treception is recorded and the range (or distance)
R is computed by :

R = c(treception − temission) (2.1)

where c is the speed of light in the air (299, 710, 559m/s at 1550 nm or
299, 709, 708m/s at 670 nm).

To achieve millimeter precision, the time circuits need to have a pre-
cision of 10ps or less, making these LiDAR expensive and limited in
precision. However this measurement principle allows for the highest
maximum distance measurement (which is only limited by the time the
LiDAR waits for a return and the energy of the emitted pulse). For bet-
ter precision scanners using this technology make several measurement,
making them slow in comparison to the others.

Phase-shift based

Phase based (or AMCW, Amplitude Modulated Continuous Wave)
sensors illuminate the object with a continuous light wave modulated in
amplitude. The phase shift between the outgoing and incoming waves is
then proportional to the light time of flight. Range is obtained by :

R =
λm
2

∆φ

τ
(2.2)

where λm = c/fm is the modulation wavelength, fm, the modulation
frequency and ∆φ the phase shift between the outgoing and the incoming
waves.

Measurement precision is then entirely defined by the modulation
wavelength and the phase measurement precision. Since phase measures
are very precise, precision is usually limited by λm. Modulation wave-
length also determines the maximum measurable distance Rmax due to
the ambiguity on the phase :

Rmax =
λm
2

(2.3)
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Theorem 1. Density bounds theorem

∀δ ∈
[
0,
τ

2

]
, ∀θ, D∗(θ) ≤ D(δ, θ) ≤ D∗(θ)

sinc
(
δ
2

)

Theorem 2. Density approximation theorem

∀ε > 0, ∃δlim ≥
√
24ε s.t. ∀δ ≤ δlim, ∀θ, Err(δ, θ) ≤ ε

As shown in table 2.1 density augmentation is negligible for 0 ≤ θ ≤
2τ
36

. Rises above 1.1 (10% augmentation) for θ > 3τ
36

and above 2 (100%
augmentation) for θ > 6τ

36
.

For resolutions under τ
100

, i.e. more than 100 points per turn, the
relative error between D(δ, θ) and D∗(θ) is inferior to 1.6 10−4. The error is
even more negligible for usual resolution values. For resolutions of more
than 10000 points per turn, the maximal error is in the 10−8 order thus
fully negligible.

θ(rad) θ(o) D∗(θ)

0 0 1
τ
36

10 1.02
2τ
36

20 1.06
3τ
36

30 1.15
4τ
36

40 1.31
5τ
36

50 1.56
6τ
36

60 2
7τ
36

70 2.92
8τ
36

80 5.76
τ
4

90 ∞

Table 2.1 – Density augmentation factor values for different elevations
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2.3 Laser beam and edge loss model

Laser beam model

A laser beam is a spatially coherent (i.e it does not destructively in-
terfere with itself) electromagnetic wave, usually almost monochromatic
(with a very narrow spectrum), emitted by a laser device. This wave has
the property to have a small focus and a small divergence. The Helmholtz
equations in paraxial approximation yields that the intensity as a function
of the distance along the beam axis and the radial distance from the beam
axis is described by Equation (2.10) (see e.g. Milonni and Eberly [2010]) :

I(r, R) = I0

(
w0

w(R)

)
exp

(
−2 r2

w(R)2

)
(2.10)

w(R) = w0

√√√√√1 +



λ
(
R−Rw

0

)

πw0
2




2

(2.11)

with :

• I the laser intensity (Watt/m2)

• r the radial distance from the beam axis (m)

• R the axial distance from the laser exit (m)

• λ the light wavelength (m)

• Rw
0

the axial distance where the beam is at maximum focus

• w0 radial distance at which the intensity drop under 1/e2 at R = Rw
0

• I0 the maximum beam intensity (at R = Rw
0

and r = 0)

The Equation (2.10) shows that the intensity profile along a beam
diameter in a plane perpendicular to the beam direction of propagation at
a distance R will follow a Gaussian g :

g(r) = A exp

(
−2 r2

w(R)2

)
(2.12)

where A is the maximum intensity along the diameter. An example of
an intensity profile is given figure 2.7.
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1/e convention

This convention is similar to the 1/e2 convention except that the beam
radius is defined as the distance between the beam axis and the radial
position were the intensity falls under Ae−1 where A is the maximum
intensity along the diameter. Deriving its expression from Equation (2.12)
yields :

w1/e(R) =

√
2w0

2

√√√√√1 +



λ
(
R−Rw

0

)

πw0
2




2

(2.14)

FWHM convention

The FWHM convention stands for Full Width at Half Maximum con-
vention. As its name states, the beam radius is defined as the distance
between the beam axis and the radial position were the intensity falls
under A

2
where A is the maximum intensity along the diameter. Deriving

its expression from Equation (2.12) yields :

wFWHM(R) =

√
ln 2

2
w0

√√√√√1 +



λ
(
R−Rw

0

)

πw0
2




2

(2.15)

where ln(x) denotes the natural logarithm of x.

Other conventions exists, especially for non gaussian beams, but we
will focus on the three presented here. Also, if not specified, the 1/e2

convention is used in this document.

The conversions from the 1/e and the FWHM to the 1/e2 conventions
are given Equations (2.16) and (2.17) :

w1/e2(R) =
√
2 w1/e(R) (2.16)

w1/e2(R) =

√
2

ln 2
wFWHM(R) (2.17)

Figure 2.8 shows how the different conventions are defined with re-
spect to the gaussian intensity profile.
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Θ1/e2 =
√
2 Θ1/e (2.20)

Θ1/e2 =

√
2

ln 2
ΘFWHM (2.21)

Footprint models

To derive a footprint model, i.e. using the gaussian beam model, one
must estimate the beam parameters λ, w0 and Rw

0

. In TLS datasheets,
these information are unfortunately rarely available. As an example we
will now derive the footprint models for 3 TLS of 3 different TLS brands :

• Leica P-50 (Leica Geosystems)

• FARO Focus S350 (FARO Technologies Inc.)

• RIEGL VZ-400i (RIEGL Laser Measurement Systems)

In the manufacturers datasheets (Leica Geosystems, FARO Technolo-
gies Inc., RIEGL Laser Measurement Systems) three parameters are usu-
ally provided, the wavelength λ, the beam diameter at exit w(0), the beam
divergence Θ and the beam diameter convention. The given parameters
are summed up in Table 2.3.

Leica P-50 FARO FOCUS S350 RIEGL VZ-400i

Wavelength λ (nm) 1550 1550 1550

Announced

divergence (mrad)
0.23 0.3 0.35

Announced beam

diameter at exit

(mm)

3.5 2.12 7

Used convention

for beam diameter
FWHM 1/e 1/e2

Table 2.3 – Provided laser parameters in datasheets for the Leica P-50, the
FARO FOCUS S350 and the RIEGL VZ-400i

The given parameters must then be converted to the 1/e2 convention
and the waist size w0 and the focus distance Rw

0

can be computed using
Equations (2.22) and (2.23).
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w0 =
λ

π tan(Θ)
(2.22)

Rw
0

=
1

tan(Θ)

√
w(0)2 − w0

2 (2.23)

We give Table 2.4 the computed parameters. One must note that the
values given by FARO are impossible for a real beam, indeed the beam
diameter given is too small for the given divergence. The smallest possible
diameter was then taken as the beam diameter at exit.

LEICA P-50 FARO Focus S350 Riegl VZ-400i

Wavelength (nm) 1550 1550 1550

Announced

divergence (mrad)
0.23 0.3 0.35

Announced beam

diameter at exit

(mm)

3.5 2.12 7

Used convention

for beam width
FWHM 1/e 1/e2

1/e2

divergence (mrad)
0.39 0.42 0.35

1/e2 beam

diameter at exit

(mm)

5.94 3∗ 7

Computed 1/e2

waist size (mm)
5.05 4.65 5.63

Computed focus

distance (m)
8 0∗ 11.8

Table 2.4 – Provided and computed laser parameters in datasheets for the
Leica P-50, the FARO FOCUS S350 and the RIEGL VZ-400i. The * marked
value are values incompatible with a real laser, i.e. this case the given
diameter is too small for the given divergence. We then took the smallest
compatible value.

Using the computed parameters we give Figure 2.9 the beam profiles.
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In this chapter we analyse previous works on TLS scans noise detec-
tion, listing their strengths and weaknesses. Note that these points are
sometimes called outliers depending on the community. Here we will not
address the surface noise filtering problematic (Digne and De Franchis
[2017]) i.e. the correction of small deviations around the real surface.

3.1 3D based methods

The methods presented here operate directly on the scan, processing
the 3D points without projecting or transforming them first.

Density based methods

In Raumonen et al. [2013], a sphere of a set radius (here 1.5cm) was
defined at each point, if the sphere contained too little points (here 3
points) the associated point was filtered. Additionally, a partition of the
point cloud was used to filter the point cloud using its connectivity. The
partition is a set of small patches covering the point cloud and each point
belongs to one and only one patch. The point cloud was covered with
larger spheres (3cm radius) and each patch covered by less than three balls
are considered not connected to the rest of the point cloud and filtered.

• Pros : This method should not over-filter for the highest scanner
resolution, it is fast and works on co-registered point clouds (point
clouds of a given object taken from different points of view regis-
tered in a single basis)

• Cons : This method is sensible to the varying point density in the
point cloud and it will have trouble filtering noise points close to
a non-noisy surface. Series of points extending from a surface to
another (case of mixed points generated by two surfaces close to one
another, well known phenomena, reported for example in Adams
and Probert [1996] or Tuley et al. [2005]) will also be problematic
since their density and connectivity to the rest of the scan will still
be high. Also since the filtering is performed on the registered scans,
the methods may collapse in the presence of sky noise. Finally, this
method is influenced by a lot of parameters (4 filter parameters, 2
partition parameters), they are not easy to tune and dependant on
the object to be filtered geometry and scanner parameters (resolution,
number of co-registered positions).
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Hackenberg et al. [2015] proposed a method where a random point
was chosen in the scan and a cluster was created. All the neighbours
closer than d (d a distance threshold, d = 5mm was used in this paper)
were added to the cluster. This operation was iterated until no new point
could be added to the cluster, a new random point was chosen and a new
cluster was created, these steps were repeated until every point belonged
to a cluster. Noise is finally filtered by removing all clusters containing
only one point.

• Pros : The filtering is dependant on only one parameter. This method
may allow the retrieval of small components (at the cost of not
filtering points close to the actual surfaces). It works on co-registered
scans

• Cons : Similar problems to Raumonen et al. [2013], This method
may yield different filtering quality depending on the elevation
angle (due increase in point density) and resolution (at constant d
parameter). This method will have difficulties detecting the noise
close to actual surfaces.

Angle based method

In Tuley et al. [2005] for each scan point, a box was generated behind it.
The box is oriented along the viewing direction and positioned so that the
interest point is at the center of the front face (face perpendicular to the
viewing direction with the lowest depth). The box size and orientation
is user defined by 4 parameters : its depth (dimension along the viewing
direction), width, height (dimensions orthogonal to the viewing direction)
and roll angle (rotation angle around the viewing direction). A PCA was
performed on the points in the box (points of interest included). Based
on this, two different features (surfaceness and surface normal) and 6
labelling schemes were explored. If a certain criterion was met on the
considered feature(its value was above a user defined threshold)then the
chosen labelling scheme was applied. The surfaceness feature is defined
with the PCA coefficients and describes if the point sample is mostly 2D.
The surface normal is the angle between the eigenvector with the lowest
eigenvalue and the viewing direction. The labelling schemes tested were :
naive (marked the interest point only), aggressive (marked all points in the
box), accumulator (the number of time a point should be marked with the
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aggressive scheme was recorded and it was labelled as noise is it exceeds
a user defined threshold), exclusive (marked like aggressive except for
the interest point), blind window (marked like aggressive except for a
depth near the interest point) and blind exclusive window (marked like
aggressive except for a depth near the interest point and the interest point).
All marked points were filtered.

• Pros : -

• Cons : This method depends on many parameters (box size, orien-
tation, various thresholds) which themselves depend on the scene
geometry. It exhibited poor performances (high false positive rates
for acceptable true positive rates) and is computationally heavy.

Learning based method

Rakotosaona et al. [2019] proposed a deep learning based method to
detect and remove outliers (e.g. outliers points obtained after a stereo
reconstruction, possibly mixed point noise and sky noise) and mitigate
surface noise (small variations around the real surface). They use two
different networks trained for two different purposes. The first network is
trained to detect and remove outliers and the second to correct variation
due to surface noise and biases. We will focus on the first network since it
is the one performing the task we are interested in. The network takes as
an input a small subset of points centered around a given point, it then
outputs the probability that that point is an outlier. The training is done
via synthetic data artificially corrupted or scans of higher quality. The
outliers were generated as a Gaussian noise with a deviation equal to 20%
of the object.

• Pros : Very good performances

• Cons : Needs properly labelled scan parts with different object
shapes for training. Although it is an obvious prerequisite for a
learning method, several problems may arise when applying this
technique to TLS scans. For good performances the training exam-
ples must closely represent noise distribution. However the noise
range distribution of the mixed point noise is very sensitive to the
distances of the involved surfaces (Wang et al. [2016]). Also the
network is designed for point cloud with uniform density, and as
we have proved in Chapter 2 the point density varies greatly in a
given TLS scan.
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3.2 2D based methods

The methods presented in this section operate on scans projected in 2D.
Thus they process a different neighborhood and require a scan-to-image
projection method.

Density based method

Cifuentes et al. [2014] projected the scan as an equirectangular range
image, and, for each point, its neighbourhood in a 3 by 3 window was
analysed. If less than a% (the allocation threshold) of the points contained
in the window had an absolute distance difference lower than a distance
threshold d then the centre point of the window was classified as noise.

• Pros : The output of this method is dependant on only two parame-
ters (maybe 3 if the window size is considered, which was not done
in the article)

• Cons : The output is highly dependent on local density of points,
which for noisy points can be influenced by the distance to the target
and its elevation angle, the distance between the foreground and
background object for mixed points and the scanner resolution. For
valid points scanner resolution, distance to the target, elevation
angle and incidence angle may induce false detection. This lead to
many different parameter combinations depending on the situation
(as shown in Table 4 of the article).

TIN based methods

Three variants of the TIN (Triangular Irregular Network) based method
were analysed by Tang et al. [2007] :

Variant 1 : Discontinuity triangles

First a triangular irregular network (TIN) is computed : on the equirect-
angular projection neighbours in the 4-neighbouring (up-down-left-right)
are connected and for each square the two point on the shortest diagonal
in 3D are connected. Discontinuity triangles are detected as all triangles
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with one of their edge longer than a specified threshold. Every triangle
adjacent to a previously detected discontinuity triangle is also labelled as
a discontinuity triangle. All discontinuity triangle edges are removed and
every unconnected point is detected as noise.

• Pros : The result of this method is only dependant on one parameter

• Cons : This method will have trouble detecting noise points close to
the real surface (especially for mixed points generated by surfaces
close to one another at high resolution or elevation angle).

Variant 2 : Triangle normals

For each triangle of the TIN the angle between the viewing direction at
the triangle centroid was computed. Every triangle with an angle superior
to a user defined threshold, or adjacent to such a triangle were marked
as discontinuity triangles. All edges belonging to a discontinuity triangle
were removed and all unconnected points were labelled as noise

• Pros : This method is robust against density changes, uses the most
relevant neighbouring relations, depends on only one parameter
and showed the best performances overall between all the tested
filters in Tang et al. [2007]. This filter was used in Larkins et al.
[2009].

• Cons : The authors showed that it is hard to find a compromise on
the angle parameter to detect points close to the real surface and
keep a low false positive rate (false positive detection caused by
surface noise). Also the method being extremely local (only the
immediate neighbours are considered) and influenced by the trian-
gulation method (here the smallest diagonals are connected, thus
some triangles are ignored) it may be highly impacted by surface
noise.

Variant 3 : Cone

Using the equirectangular projection, the 8-neighbourhood (same than
a 3 by 3 window) around each point was analysed. For each point a
cone directed by the viewing direction and of an user defined angle was
casted at each point. If more than a user defined number of points in the
8-neighbourhood was inside the cone then the point was labelled as noise.



3.3. TLS SCANS PROJECTIONS 33

• Pros : The filtering quality depends only on two parameters. Gives
some of the best overall performances among the filters tested in
Tang et al. [2007].

• Cons : On every case tested in Tang et al. [2007] the normal filter
performed better, especially on scenes presenting small edges (small
distances between the foreground and background), also the normal
filter result depends only on one parameter.

3.3 TLS scans projections

To apply a 2D filtering method, the 3D point cloud needs to be pro-
jected on a 2D grid i.e. an image. The acquisition process of the TLS being
spherical, the projection of the 3D point cloud is similar to the problem
of projecting the earth surface onto a flat map. This mapping problem
has been extensively studied since the antiquity and multiple projecting
schemes were developed. The projections were developed in the context
of navigation and cartography and, in this application, the main preoc-
cupations were distance conservation (equidistant), shape preservation
(conformal) and local area conservation (equiarea). One or several of these
properties were were achieved at the price of massive distortions and/or
un-mappable portions of the globe. Although, in the context of TLS scans
projections the conformal, equidistant and equiarea properties are of little
interest. The aforementioned filtering techniques are all based on the
visual neighborhood i.e. close scanning directions should stay close in
the resulting projection. A simple and very commonly used projection
is the equirectangular projection. In this projection the horizontal (resp.
vertical) position on the map is a linear function of the azimuth (resp.
elevation). Contrary to the usual mapping of the earth surface (thus a
continuous surface) to a map, new constrains and paradigms emerges
when mapping a 3D scan i.e. a discrete object to a map. Indeed several
pixels can be mapped to a single pixel, making the projection constrains
lighter but as Houshiar et al. [2015] reports better results are achieved in
most applications with finer image resolution. Also, since a TLS scans sur-
rounding space with a regular angular step, a one to one correspondence
between a scan and an image, with no point loss and good neighbourhood
properties should exist (Houshiar and Nüchter [2015]). In practice, as
Käshammer and Nüchter [2015] reported, scanning process and scene
irregularities induce point losses and pixels displacement. This problem
was partially avoided by Eysn et al. [2013] by interpolating scan coordi-
nates before storing them in the image pixels. This method allows to get
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back to the less constrained continuous case but has several drawbacks.
First since the coordinates are interpolated, the original scan data is lost
(which is a problem in a application where the scan data must only be
”translated” in a 2D format such as compression in Houshiar and Nüchter
[2015]). Second interpolated will still produce neighbourhood errors if the
coordinates were altered by some scene or scanning process irregularities.

3.4 Conclusions

As we have seen during this chapter the mixed point noise detection
problem as been widely studied and many techniques were explored.
Although most techniques are not well suited for TLS point cloud pro-
cessing. Indeed most techniques are sensitive to density variations in
the scan which are prominent in TLS scans. The best suited techniques
are the 2D angle based methods. Indeed, the use of a local processing in
the equirectangular projection allows a method to implicitly be adaptive
to density augmentation with the elevation. Also the angle feature is
robust against density augmentation. However the method proposed by
Tang et al. [2007] is based on a TIN, a structure only allowing for very
local information processing, making the method lack in robustness. In
Chapter 5 we will propose a detection method trying to overcome these
problems.

To the best of our knowledge the sky noise problematic was not dis-
cussed in the literature. We thus propose in Chapter 5 to analyse the
phenomenon and develop a detection method specialised to capture only
this kind of noise.

The equirectangular projection is a common and well know projection
and lots of applications rely on its properties. Käshammer and Nüchter
[2015] reports several inconsistencies when applying this projection to
TLS scans. We propose in Chapter 4 to investigate, quantify and solve
these problems.
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where δrθ and δrϕ define the angular steps. Thus a 3D point Pi is mapped
to (u, v) if and only if :

θ − δrθ
2
< θi ≤ θ +

δrθ
2

(4.1)

ϕ− δrϕ
2
< ϕi ≤ ϕ+

δrϕ
2

(4.2)

A natural choice for equirectangular projection of TLS scans is :

δrθ = δrϕ = δ (4.3)

where δ is the scan angular resolution.

From this we can write the following two properties, defining the
neighbourhood coherence, for the projection T :

T : S → N
∗2

P 7→ (u, v)

Property 1 (Line coherence).

∀(Pi, Pj) ∈ S2, |θi − θj| < δ ⇐⇒
{
T (Pi) = (uk, vi)

T (Pj) = (uk, vj)

Meaning that for any pair of points in the scan, the projection T must
map these points to the same line uk, if and only if they have a close
enough elevation (a difference lower than the angular resolution).

Property 2 (Column coherence).

∀(Pi, Pj) ∈ S2, |ϕi − ϕj| < δ ⇐⇒
{
T (Pi) = (ui, vk)

T (Pj) = (uj, vk)

Meaning that for any pair of point in the scan, the projection T must
map these points to the same column vk, if and only if they have a close
enough azimuth (a difference lower than the angular resolution).
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Neighbourhood coherence is central in assuring that a local method
applied on an equirectangular image (e.g. Cai et al. [2005], Tang et al.
[2007], Cifuentes et al. [2014]) uses meaningful groups of pixel for each
computation.

A laser scanner with no mechanical or numerical imperfection should
sample every direction it has access to only once. Then every point in S
should be mapped to a unique map position (or pixel). We can thus add
the following desired property to T :

Property 3 (Lossless).

∀(Pi, Pj) ∈ S2, Pi 6= Pj ⇐⇒ T (Pi) 6= T (Pj)

∀Pi ∈ S, ∃(u, v) ∈ N
∗2, T (Pi) = (u, v)

Meaning that two distinct points must be mapped to two distinct
pixels, and every point must be mapped to a pixel.

An equirectangular projection function T satisfying all three properties
is called a perfect projection.

We will now see that this formulation is not adapted for LiDAR data
and how classical equirectangular approaches fail to yield coherent results.

Adaptation for TLS data

A classical but naive approach to define a projection fulfilling proper-
ties 1, 2 and 3 (section 4.1) is to define a set grid G and to compute a pixel
position directly from the point coordinates. For example, the grid can be
defined by a δ angular step and the association of (maxS(θ),maxS(ϕ)) to
the grid position (1, 1). Then the map coordinates (ui, vi) of a point Pi are
given by :

ui = 1 + round

(
maxS(θ)− θi

δ

)
(4.4)

vi = 1 + round

(
maxS(ϕ)− ϕi

δ

)
(4.5)

In practice this naive approach satisfies none of the three properties
stated above because of rounding approximations and mechanical errors.
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Especially numerical instabilities in the spherical base make the azimuth
inconsistent for map coordinates calculation (figure 4.2), assigning in-
consistent column indices for extreme elevations (close to the zenith or
nadir).

Figure 4.2 – Recorded azimuth versus recorded elevation for a scan in
ultra resolution ( τ

4
10−4). In blue green red and purple are the values of

azimuth versus elevation for four consecutive scanner eye turns (each
color corresponds to the points acquired during a specific turn)

To overcome this issue we modify the properties desired for the
equirectangular projection based on how the scanner operates. The kth col-
umn in the equirectangular map is now defined as all the points acquired
during the kth turn of the scanner eye. Property 2 becomes :

Property 4 (Column coherence adapted for LiDAR).

∀(Pi, Pj) ∈ S2, (Pi, Pj) ∈ tk ⇐⇒
{
T (Pi) = (ui, vk)

T (Pj) = (uj, vk)

with tk the set of points acquired during the kth turn of the scanner
eye.
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Note that this description implies that for a full scan of τ in elevation
by τ

2
in azimuth (full sphere) the columns will describe a span of τ

2
(instead

of the usual τ ) and the lines a span of τ (instead of τ
2
).
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4.2 Equirectangular projection algorithm

In this section we present a new equirectangular projection algorithm
for LiDAR scans based on the properties presented in section 4.1. The
algorithm steps and workflow is summarised in figure 4.3.

Preparing the data

In this section we will describe the first three steps of our projection
algorithm :

• Conversion to spherical coordinates

• Elevation regularisation and Resolution estimation

• Filtering of numerical instabilities

Conversion to spherical coordinates

The equirectangular projection maps directions (represented by a cou-
ple (θ, ϕ) ) to pixel positions. The first step for such a projection is to
convert the Cartesian coordinates into spherical coordinates, where the
directions appear explicitly. To do so we used the spherical base equations
presented in section 2.1, where :

R =
√
x2 + y2 + z2 (4.6)

θ = arctan

(
z√

x2 + y2

)
(4.7)

ϕ = atan2(y, x) (4.8)

Elevation regularisation and resolution estimation

As previously stated, the line indices must describe a τ span. Eleva-
tions were recomputed to satisfy a τ span. Since S is sorted in acquisition
order, the elevation of points acquired during the same eye turn have :

• A positive forward difference if they were acquired during the ”ris-
ing” phase (from nadir, i.e. θ = − τ

4
, to zenith, i.e. θ = τ

4
)

• A negative forward difference if they were acquired during the
”falling” phase (from zenith to nadir)
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where the forward difference of an elevation value θi is defined as
θi+1 − θi. Elevations can be regularised by assigning the interval

[
0; τ

2

]
to

the elevations of points acquired in ”rising” phase and the interval
[
τ
2
; τ
]

for the elevations of points acquired in ”falling” phase. Note that a rising
phase and a falling phase are necessarily separated by a local extremum
in elevation. Also note that the spherical basis equations are not redefined
to yield regular elevations. Indeed if one chooses to define the elevation
as in equation (4.9) :

θ = atan2
(
z, sign (y)

√
x2 + y2

)
(4.9)

the elevations would directly have a τ span but would be highly
unstable for small y values. For numerical stability we decided to keep
the original and highly stable elevation formulation and to regularise it
afterwards.

To regularise elevation, the median of the elevation forward differences
between two local extrema were computed for every consecutive extrema
pairs. If the median was positive then the elevation section was considered
to be in a ”rising” phase, otherwise it was considered to be in a ”falling”
phase. Note that since we use all local extrema, all forward differences
signs must be identical in an elevation section. The medians were stored
in a list δList to estimate the resolution. Indeed, in a normally working
scanner, most consecutive elevation points will be spaced by a δ interval
(with some zero mean noise). Then a good estimator for δ is :

δ̂TLS = median (δList) (4.10)

Algorithm 1 shows the carried procedure to regularise the elevation
and estimate the resolution.
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Algorithm 1 Elevation regularisation and resolution estimation

Input θ : Elevation list for the scan S
Output Regθ : Regularised elevation list ; δ : Estimated resolution

1: extremaList← the list of index for the local extrema in θ
2: Nextrema ← length of extremaList
3: δList← {}
4: θreg ← {}
5: for each i in [1, Nextrema − 1] do
6: start← extremaList(i) + 1
7: stop← extremaList(i+ 1)− 1
8: θList← All θj values for j ∈ [start, stop]
9: dθList← All forward difference values for θList

10: r ← median (dθList)
11: add |r| to δList
12: if r > 0 then
13: θList← τ

4
+ θList

14: else
15: θList← 3τ

4
− θList

16: end if
17: add θList to Regθ
18: end for
19: δ ← median (δList)

An example of regularised elevation for the first 80000 points of a scan
taken with a 0.009 o angular resolution is given Figure 4.4.

Filtering of numerical instabilities

To insure robustness in the following procedures, numerically unstable
elevation values need to be filtered. Analysing equation (4.7) reveals that
θ is unstable (meaning that small changes in x, y or z lead to meaningful

changes in θ) only if z → 0 and
√
x2 + y2 → 0, thus if R→ 0. Then points

with a range lower than a threshold Rthreshold were discarded to account
for numerical instabilities. This partly breaks the lossless property, but as
we will see this method allows us in practice to get much closer to being
lossless than the naive method. Also the loss is in a perfectly defined and
usually uninteresting area, i.e. a few centimeters from the exit of the laser.
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Figure 4.4 – Elevation regularisation, In blue the original Elevation values,
in orange the regularised values.

Column indices computation

Our equirectangular mapping method uses the acquisition order (usual
order of a raw scan : point order in the scan file follows the order in which
points were acquired) instead of the azimuth for column indexing. A full
turn of the scanner eye can be identified as all points between two local
minima in elevation. We can compute the column indices by assigning the
index 1 to all the points acquired between the first scan point and the next
local minimum (excluded), the index 2 to all the points acquired between
the first local minimum (included) and the third (excluded) etc...Finally
any point will have a column index equal to the number of local minima
that precedes it plus one (included itself if it is a local minimum). Figure
4.5 shows an example of column index computation for the first 80000
points of a scan taken with a 0.009 o angular resolution.
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Algorithm 2 Column index computation

Input Regθ : Regularised elevation list for the scan S
Output C : Column index list

1: minimumInd ← the indicator for the local minima in Regθ (i.e.
minimumIndi = 1 if Regθi is a local minima and minimumIndi = 0
otherwise)

2: l ← the length of Regθ
3: for each i in [1, l] do
4: Ci ←

∑
j≤i

minimumIndj

5: end for
6: C ← C − C1 + 1

Figure 4.5 – Column index computation.

Line indices computation

Elevation jump detection

Line indices were computed by finding sets of points with almost
constant elevation. Sets of points with almost constant elevation were
detected by sorting the points elevation in ascending order and looking
for ”plateaus” (see Figure 4.6 for an example of a part of a scans elevation
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sorted in ascending order). Note that we applied the sorting permutation
to the point list and the column index list for the final image index as-
signment. In practice, sampling irregularities and column misalignment
(when the sampling of two consecutive column did not start at the exact
same elevation), may cause the elevation jump value to vary. In the ex-
ample given Figure 4.7, δ would not be a good choice for jump detection
since it would miss all jumps.

Figure 4.6 – Sorted elevation values.

The jump value θthreshold was initialized as θthreshold = δ and a jump
was detected at the kth position if :

Θk+1 −Θk ≥ θthreshold (4.11)

Where Θ denotes the sorted elevation list. θthreshold was then a fitting jump
value if it detected at least all the real jumps in the scan, thus if each line
(sets of points between two jumps) contained less than Ncolumn points,
with Ncolumn the number of columns (otherwise it could be split). The
jump detection procedure was performed with lower and lower θthreshold
values until this condition was met ( δ

10
was subtracted to θthreshold at each

unsuccessful iteration). Note that if θthreshold = 0 the procedure cannot fail
and will consider that a jump is present between each point.
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Figure 4.7 – Elevation jump values.

Algorithm 3 Line index computation

Input Θ : Regularised and sorted elevation list for the scan S ; C Column
index list ; δ : Estimated scan resolution

Output jumpIdx : Elevation jump index list
1: Ncolumn ← max(C)
2: NcolumnMax ← Ncolumn + 1
3: dΘ← all forward difference values for Θ
4: frac← 1
5: while NcolumnMax > Ncolumn do
6: θthreshold ← frac δ
7: jumpIdx← all indices i where dΘi ≥ θthreshold
8: djumpIdx← all forward difference values for jumpIdx
9: NcolumnMax ← max(djumpIdx)

10: frac← frac− 0.1
11: end while
12: K ← the length of jumpIdx
13: N ← the length of Θ
14: if jumpIdxK 6= N then
15: Add N to jumpIdx
16: end if
17: Add 0 at the beginning of jumpIdx
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Line correction

At this stage we have no guarantee that only real jumps were detected.
Consequently a line merging procedure was then carried. If a false jump
detection exists, then at least one of the two lines it delimits are at least
half empty (it contains less than Ncolumn

2
points). For each potential false

jump, neighbouring lines were verified to check if the current line and an
adjacent line could be merged. Lines can be merged if they do not have
any column index in common and if the elevation differences stay within
the angular resolution interval. Finally, lines were merged by ignoring the
detected jump that separates them. After verifying every potential false
jump, a new detection was performed and the full line merging process
was repeated until no new or no potential false jump were detected. The
line correction procedure is given with more details in algorithms 4, 5
and 6. Every point from the first point in the sorted list to the first jump
(included) were assigned the index 1, every point from the first jump
(excluded) to the second (included) were assigned the index 2, etc. A
point line index is then equal to 1 plus the number of jumps that precedes
it (itself excluded). Finally each point was assigned to the coordinates
given by its line and column index. Note than a range (resp. intensity)
map is obtained by considering only the range (resp. intensity) for each
point. In the rest of this thesis we will refer to map coordinates as pixels
and to 3D coordinates + return intensity as points.
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Algorithm 5 Line correction (merge checking function)

Input Θ : Regularised and sorted elevation list for the scan S ; C Column
index list ; δ : Estimated scan resolution ; jumpIdx : Elevation jump
index list

Output mergePrev : Boolean value indicating if the lines i and i− 1 can
be merged, mergeNext : Boolean value indicating if the lines i and
i+ 1 can be merged

1: function CHECKMERGE(Θ, C, jumpIdx, i)
2: mergePrev ← false
3: mergeNext← false
4: (θline, Cline)← GetLine(Θ, C, jumpIdx, i)
5: if i− 1 > 0 then
6: (θPrev, CPrev)← GetLine(Θ, C, jumpIdx, i− 1)
7: maxθPrev ← max (max(θline),max(θPrev))
8: minθPrev ← min (min(θline),min(θPrev))
9: if no element of Cline is in CPrev then

10: colOk ← true
11: else
12: colOk ← false
13: end if
14: if maxθPrev −minθPrev ≤ δ and colOk then
15: mergePrev ← true
16: end if
17: end if
18: njump ← the length of jumpIdx
19: if i+ 2 < njump and then
20: (θNext, CNext)← GetLine(Θ, C, jumpIdx, i+ 1)
21: maxθNext ← max (max(θline),max(θNext))
22: minθNext ← min (min(θline),min(θNext))
23: if no element of Cline is in CNext then
24: colOk ← true
25: else
26: colOk ← false
27: end if
28: if maxθNext −minθNext ≤ δ and colOk then
29: mergeNext← true
30: end if
31: end if
32: return (mergePrev,mergeNext)
33: end function
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Algorithm 4 Line correction

Input Θ : Regularised and sorted elevation list for the scan S ; C Column
index list ; δ : Estimated scan resolution ; jumpIdx : Elevation jump
index list

Output L : Line index list
1: function LINEINDEX(Θ, C, jumpIdx, δ)
2: Ncolumn ← max(C)
3: dJump← all forward difference values for jumpIdx
4: falseJumps← all indices i where dJumpi ≤ Ncolumn

2

5: falseJumpsPrev ← {}
6: nfalse ← the length of falseJumps
7: while nfalse > 0 and falseJumpsPrev 6= falseJumps do
8: for each i ∈ [1, nfalse] do
9: j ← the ith element of falseJump

10: (mergeP,mergeN)←CheckMerge (Θ, C, jumpIdx, j)
11: if mergeP and mergeN then
12: (θline, Cline)← GetLine(Θ, C, jumpIdx, j)
13: (θPrev, CPrev)← GetLine(Θ, C, jumpIdx, j − 1)
14: (θNext, CNext)← GetLine(Θ, C, jumpIdx, j + 1)
15: if |median(θline) − median(θPrev)| ≤ |median(θline) −

median(θNext)| then
16: remove the jth element of jumpIdx
17: else
18: remove the j + 1th element of jumpIdx
19: end if
20: else if mergeP then
21: remove the jth element of jumpIdx
22: else if mergeN then
23: remove the j + 1th element of jumpIdx
24: end if
25: end for
26: falseJumpsPrev ← falseJumps
27: dJump← all forward difference values for jumpIdx
28: falseJumps← all indices i where dJumpi ≤ Ncolumn

2

29: end while
30: jumpInd ← the jump indicator (i.e. jumpIndi = 1 if i ∈ jumpIdx

and jumpIndi = 0 otherwise)
31: l ← the length of Θ
32: for each i ∈ [1, l] do
33: Li ←

∑
j≤i

jumpIndj

34: end for
35: L← L− L1 + 1
36: return L
37: end function
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Algorithm 6 Line correction (get line function)

Input Θ : Regularised and sorted elevation list for the scan S ; C Column
index list ; jumpIdx : Elevation jump index list ; i Line number

Output θline Elevation list for line i ; Cline Column index list for line i
1: function GETLINE(Θ, C, jumpIdx, i)
2: start← jumpIdxi
3: stop← jumpIdxi+1

4: θline ← all Θi values for i ∈ [start, stop− 1]
5: Cline ← all Ci values for i ∈ [start, stop− 1]
6: return (θline, Cline)
7: end function

An example of range map and intensity map obtained through this
method is given figure 4.8.
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Figure 4.8 – Equirectangular Range image (left) and intensity image (right).
Values displayed as grayscaled, lowest black, highest white.
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4.3 Projection evaluation

We will now define a framework, based on the formalism proposed in
section 4.1, to quantitatively evaluate the quality of a given equirectangu-
lar projection.

Evaluation principle

Three properties are expected from an equirectangular projection :

• Line coherence (Property 1)

• Column coherence (Property 4)

• Lossless transformation (Property 3)

Lossless evaluation : Lossless property can easily be evaluated by
computing, for a given projection T applied on a given scan S, the fraction
of scan points assigned to a pixel in the produced map ρl(T, S) :

ρl(T, S) =
Nmap

Nscan

(4.12)

with Nmap the number of assigned pixels in the produced map and
Nscan the original number of point in the scan.

Coherence evaluation : The coherence properties were evaluated by
quantifying the fraction of pixels in the produced map with a perfectly
correct neighbourhood (meaning that all neighbours are correctly placed).
A neighbourhood of a pixel p of size n, Wn(p), is defined as the set of
pixels in a n by n pixels window centered on p. To make sense the fol-
lowing evaluation needs to be carried on continuous scans, meaning scans
where all directions accessible to the scanner are sampled (meaning all
directions between the set azimuth and elevation boundaries). In such
scans, neighbourhood correctness can be computed from the acquisition
number of each pixel.

In a continuous scan S, consider two points, Pi and Pi+j (j ∈ Z)
acquired during the same eye turn t. Considering property 4 these points
should be mapped to the same column v. Remember that Pi and Pi+j have
acquisition numbers i and i+j. Following this, the mapping of Pi and Pi+j
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by T is coherent if and only if T (Pi) = (u, v) and T (Pi+j) = (u+ j, v), since
we are in a continuous scan. Finally, if imap denotes the acquisition number
map produced with a transformation T on S (thus imap(T (Pi)) = i), any
pair of pixels at positions (u, v) and (u+ j, v) are coherent if and only if :

imap(u+ j, v)− imap(u, v) = j (4.13)

For a continuous scan, the number of points per eye turn Nturn is :

Nturn =

⌊
θspan
δ

⌋
(4.14)

with θspan the elevation span of the scan i.e. the difference between the
set elevation boundaries.

Consider two points Pi and Pi+kNturn
(k ∈ Z). Since k full eye turns

were performed between the acquisition of Pi and Pi+kNturn
they will be

sampled at the same elevation. From property 1, Pi and Pi+kNturn
should

be mapped to the same line u. Then the mapping of Pi and Pi+kNturn
by

T is coherent if and only if T (Pi) = (u, v) and T (Pi+kNturn
) = (u, v + k).

Finally any pair of pixels at positions (u, v) and (u, v + k) are coherent if
and only if :

imap(u, v + k)− imap(u, v) = kNturn (4.15)

Then a pixel p at position (u, v) is coherent for its neighbourhoodWn(p)
if and only if it is coherent with all other pixels in Wn(p). If C(T, S;Wn)
denotes the set of all coherent pixels produced by T on S for a neighbour-
hood Wn we have from equations 4.13 and 4.15 :

C(T, S;Wn) = {p, p at (u, v) | ∀j ∀k, (u+ j, v + k) ∈ Wn(p),

imap(u+ j, v + k)− imap(u, v) = kNturn + j} (4.16)

And the coherence of a projection T on a scan S for a neighbourhood
Wn, ρc(T, S;Wn) is :

ρc(T, S;Wn) =
|C(T, S;Wn)|

Nmap

(4.17)
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where |X| is the number of elements in the set X .

This methodology could be used to evaluate any neighbourhood. Ex-
perimentally, the analysis was carried on the most common neighbour-
hoods, W3, W5 and W7. Also note that any ”bigger” neighbourhood (i.e.
involving more pixels) than W7 will necessarily have worse coherence
since the coherence on W7 would also have to be satisfied. Indeed since
for any neighbourhood we have :

Property 5. ∀p ∀n ∀m, n < m =⇒ Wn(p) ⊆ Wm(p)

we can deduce :

Property 6. ∀T ∀S, n < m =⇒ |C(T, S;Wn)| ≥ |C(T, S;Wm)|

and finally :

Property 7. ∀T ∀S, n < m =⇒ ρc(T, S;Wn) ≥ ρc(T, S;Wm)

To quantify the loss of coherence with the elevation or the azimuth,
we can look at local coherence values, i.e. the ratio of coherent pixels per
line or per column. We define the zenithal coherence cθ(T, S;Wn; θi) and
the azimuthal coherence cϕ(T, S;Wn;ϕi) as :

cθ(T, S;Wn; θLi
) =
|C(T, S;Wn;Li)|

|Li|
(4.18)

cϕ(T, S;Wn;ϕCi
) =
|C(T, S;Wn;Ci)|

|Ci|
(4.19)

with :

θLi
= median

k,Pk∈Li

(θk) (4.20)

ϕCi
= median

k,Pk∈Ci

(ϕk) (4.21)

Experimental setup

Projection evaluation was done on four different scans highlighting
different scanning conditions :

• Indoor scanning : Few ”sky points”, making the point sampling
more regular.
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• Outdoor scanning : Lots of ”sky points”, which are numerically
unstable, and thus hard to map correctly (because more unstable).

• Ultra High angular resolution : The highest angular resolution reach-
able by our scanner ( τ

4
10−4), with 40000 points acquired per eye turn.

• High angular resolution : Lower resolution than the Ultra one
( τ
2
10−4), with 20000 points acquired per eye turn.

Table 4.1 summarises the parameters of each of the four used scans for
the evaluation.

Scan δTLS (rad) Scan condition θspan (rad) ϕspan (rad)

S1 Ultra : τ
4
10−4 Indoor τ 0.28

S2 Ultra : τ
4
10−4 Outdoor τ 0.26

S3 High : τ
2
10−4 Indoor τ

4
0.35

S4 High : τ
2
10−4 Outdoor τ τ

2

Table 4.1 – Scans setups.

For each scan and neighbourhood size, the lossless coefficient ρl and
coherence ρc were computed for the naive transformation Tnaive and the
proposed transformation Torder.

For fair and meaningful comparison, Tnaive was redefined with equa-
tion 4.22 and 4.23 to have a full eye turn per column :

ui = 1 + round

(
θi −minS(θreg)

δ

)
(4.22)

vi = 1 + round

(
maxS(|ϕ|)− |ϕi|

δ

)
(4.23)

where θreg are the regularised elevation values.

Projection comparison results

Table 4.2 presents the results of the proposed evaluation. Here we
can see that in all scans around 10% of the points are lost with the naive
transformation due to rounding errors and sampling irregularities, except
in the trivial narrox panorama, indoor case of S3. The proposed trans-
formation consistently loose around 0.1% on all scans. Coherence results



58 CHAPTER 4. EQUIRECTANGULAR PROJECTION

show that the naive transformation is highly impacted by sky points,
especially for higher resolutions and wider neighbourhood. The proposed
transformation shows almost no impact on coherence even on the widest
neighbourhood tested.

Tnaive Torder

ρl ρc ρl ρc

W3

S1 0.906 0.731 1 0.999

S2 0.881 0.532 0.999 0.997

S3 0.997 0.988 0.999 0.997

S4 0.905 0.654 0.999 0.999

W5

S1 0.906 0.666 1 0.997

S2 0.881 0.344 0.999 0.992

S3 0.997 0.980 0.999 0.995

S4 0.905 0.554 0.999 0.996

W7

S1 0.906 0.627 1 0.995

S2 0.881 0.283 0.999 0.987

S3 0.997 0.973 0.999 0.993

S4 0.905 0.504 0.999 0.993

Table 4.2 – Projection results for W3, W5 and W7 neighbourhoods.

Figures 4.9 to 4.12 show azimuthal and zenithal coherence results
for each scan, neighbourhood and transformation. We can see that the
zenithal coherence consistently drops when the elevation approaches
the zenith ( τ

2
rad) or the nadir (0 or τ rad) on the naive transformation.

As stated in section 4.1 this may be caused by numerical instabilities
in azimuth at these extremes elevations. The zenithal coherence of the
proposed method shows no significant discrepancy, except for elevations
close to the nadir. This is probably the consequence of mixed points ac-
quired on the scanner ”skirt”. Indeed these mixed points tend to be at very
low distances and thus are filtered before being assigned, which in turn
impacts the coherence. Drops in coherence on the naive transformation in
S2 and S4 are caused by sky points.

Regarding the azimuthal coherence, no specific pattern emerges which
seems to indicate that the image coherence does not change as the scanner
head rotates. Incoherent azimuth values for the naive transformation are
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caused by the azimuth drift as the elevation approaches the zenith or the
nadir.

In every scan the naive transformation coherence values are highly im-
pacted by the neighbourhood size. However the proposed transformation
shows little to no effect of the neighbourhood size.
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(a) S1,W3, ϕ (b) S1,W3, θ

(c) S1,W5, ϕ (d) S1,W5, θ

(e) S1,W7, ϕ (f) S1,W7, θ

Figure 4.9 – Projection coherence for S1. In blue the coherence of the
proposed method, in orange the coherence of the naive method.
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(a) S2,W3, ϕ (b) S2,W3, θ

(c) S2,W5, ϕ (d) S2,W5, θ

(e) S2,W7, ϕ (f) S2,W7, θ

Figure 4.10 – Projection coherence for S2. In blue the coherence of the
proposed method, in orange the coherence of the naive method.
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(a) S3,W3, ϕ (b) S4,W3, θ

(c) S3,W5, ϕ (d) S3,W5, θ

(e) S3,W7, ϕ (f) S3,W7, θ

Figure 4.11 – Projection coherence for S4. In blue the coherence of the
proposed method, in orange the coherence of the naive method.
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(a) S4,W3, ϕ (b) S4,W3, θ

(c) S4,W5, ϕ (d) S4,W5, θ

(e) S4,W7, ϕ (f) S4,W7, θ

Figure 4.12 – Projection coherence for S4. In blue the coherence of the
proposed method, in orange the coherence of the naive method.
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4.4 Discussion and conclusions

In the following section, the viability of the naive and the proposed
transformation are discussed. Lossless coefficients and coherence results
for the naive transformation (or any transformation relying solely on the
elevation and especially azimuth values, e.g. interpolation methods Eysn
et al. [2013]) show that, except for the trivial narrow panorama, indoor
case of S3 :

• About 10% of points are randomly lost in all conditions;

• Even on the smallest possible neighbourhood (W3), coherence drops
to 73% in favorable conditions and to 53% in harder scan conditions.

Regarding the loss, the main problem is the fact that the loss is sig-
nificant and random, meaning that points with critical importance (e.g.
edge points in measure application) may be lost, thus tampering with
subsequent applications. Coherence results show that the naive projec-
tion method is ill suited for any application relying on a local processing
(e.g. Liang et al. [2016], Tang et al. [2007]). Indeed, on the smallest neigh-
bourhood, from 27% to 47% of the points will not be computed with
meaningful values (true neighbours). If the application relies on a wider
neighbourhood (W7 and wider) most values will be meaningless (from
38% to 72%).

On the other hand the proposed transformation showed good perfor-
mance in both the lossless property and the coherence :

• About 0.1% of points are lost due to the numerical instabilities
filtering;

• The lowest coherence observed was 98.7% on a W7 neighbourhood,
otherwise all coherence were above 99%.

We thus show significant improvements in the fact that, first less points
are lost in the transformation process (from 10% to 0.1%) and second the
point loss is in a known volume, namely a sphere, centered on the scanner
eye and with a radius Rthreshold (Rthreshold = 2cm in our experiments). The
point loss being minimal and perfectly localised it does not affect any
other processing of the point cloud. The computed image coherence was
impacted neither by the scanning conditions (indoor or outdoor), nor by
the resolution nor by the neighbourhood size.

The main limitations of our approach is that our algorithm needs the
scan to be in acquisition order to work.
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To sum up, in this chapter we proposed :

• A theoretical framework for discrete equirectangular projection of
LiDAR scans that establishes two core properties for equirectangular
projection (lossless and coherence);

• An algorithm to perform an equirectangular projection fulfilling the
most important properties previously defined;

• An evaluation framework to quantify how a projection satisfies the
lossless and the coherence properties;

• A quantitative comparison between the classic and commonly used
transformation and the proposed transformation in various scanning
conditions.

We Showed that the classic, naive projection is ill suited when dealing
with point clouds with wide elevation panoramas or in outdoor scanning
conditions. From now on, all proposed filtering methods will rely on the
proposed transformation for image computation.
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5.1 Sky noise analysis

In this section we will formally analyse the acquisition of sky points.
This will allow us to extract some core properties of the ranges and inten-
sities of sky points.

AMCW Range measurement

Sky noise is produced when an AMCW TLS tries to acquire a point
and does not get any return signal. The range and intensity measurement
methods are then applied on a random signal, implying a random range
and intensity. To characterise the range noise, we must first describe
how an AMCW TLS computes its distance. The model presented here is
derived from Wang et al. [2016]. To compute the distance the TLS uses the
phase-shift method presented 2.1. Although as we have seen, the TLS is
then limited to an ambiguity distance Rmax :

Rmax =
λm
2

(5.1)

with λm the modulation wavelength. The range standard deviation
on a normal measure is also proportional to λm. To reconcile these two
problems the TLS uses several modulation wavelengths. A short wave-
lengths for precision and several longer wavelengths to lift the ambiguity
(or unwrap the phase) on the short wavelength measurement. The model
presented in Wang et al. [2016] uses 3 wavelengths, we will here do the
same. The following notations will be used :

• λm0 the longest modulation wavelength

• λm1 the intermediate modulation wavelength

• λm2 the shortest modulation wavelength

• φ0 phase measurement with λm0

• φ1 phase measurement with λm1

• φ2 phase measurement with λm2

• n1 the unwrap number for λm1

• n2 the unwrap number for λm2

• R the measured distance

Considering the phase unwrapping procedure the distance is given by
:
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R =
λm2

2

(
φ2

τ
+ n2

)
(5.2)

To compute the unwrap numbers we consider the following equations
:

λm0

2

φ0

τ
=
λm1

2

(
φ1

τ
+ n1

)
(5.3)

λm1

2

(
φ1

τ
+ n1

)
=
λm2

2

(
φ2

τ
+ n2

)
(5.4)

which yields :

n1 =

⌊
λm0

λm1

φ0

τ
− φ1

τ

⌋
(5.5)

n2 =

⌊
λm1

λm2

(
φ1

τ
+ n1

)
− φ2

τ

⌋
(5.6)

where ⌊x⌋ is the closest integer inferior to x.

We must now discuss how the phase is measured. Let s(t) be the sent
intensity signal and r(t) be the reflected signal measured by the TLS. The
sent signal is a cosine with a an amplitude a and pulsation ω = 2πc

λm
:

s(t) = a cos(ωt) (5.7)

In the case of a non altered measure, the received signal is a cosine
with amplitude A, offset B, pulsation ω = 2πc

λm
and phase φ:

r(t) = B + A cos(ωt− φ) (5.8)

The four buckets methods consists in computing the cross-correlation
C(x) and using four samples of C to estimate φ, A and B. The cross-
correlation between s(t) and r(t) is given by :

C(x) = lim
p→∞

1

p

∫ p

2

−
p

2

s(t)r(t+ x)dt (5.9)
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For a non altered measure we have :

C(x) =
aA

2
cos(ωx+ φ) + B (5.10)

Or equivalently with ψ = ωx ;

C(ψ) =
aA

2
cos(ψ + φ) + B (5.11)

Finally with four equidistant samples of C, at ψ1, ψ2, ψ3 and ψ4 where
ψi = (i − 1) τ

4
(i.e. C1 = C(0), C2 = C

(
τ
4

)
, C3 = C

(
τ
2

)
, C4 = C

(
3τ
4

)
) we

have :

φ = arctan2(C4 − C2, C1 − C3) (5.12)

A =
1

2a

√
(C3 − C1)

2 +(C0 − C2)
2 (5.13)

B =
1

4
(C0 + C1 + C2 + C4) (5.14)

and :

arctan2 : R→ [0, τ ] (5.15)

(y, x) 7→





arctan
(
y
x

)
if x > 0, y > 0

arctan
(
y
x

)
+ τ if x > 0, y < 0

arctan
(
y
x

)
+ τ

2
if x < 0, y > 0

arctan
(
y
x

)
+ τ

2
if x < 0, y < 0

(5.16)

The full range measurement procedure is summarised in Frame 5.1.

We will see in the following section how this procedure influences φ
and R if r(t) is a random signal.
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Frame 5.1 – Range measurement procedure

For a single range measurement, the TLS :

1. measures a received signal r(t) for several time periods T
(T = λm

c
),

2. estimates the cross-correlation between r(t) and s(t) the sent
signal,

3. samples the cross-correlation function at four equidistant points
ψ1, ψ2, ψ3 and ψ4 where ψi = (i− 1) τ

4
,

4. computes φ with Equation (5.12),

5. repeats steps 1 through 4 for all modulation wavelengths,

6. computes the range R with Equations (5.5), (5.6) and (5.2).

Sky range noise

During the acquisition of a sky point the TLS is only receiving back-
ground radiation. The background radiation is a random process X(t)
that we will consider stationary (it keeps the same probability distribution
at all time) and with finite variance i.e. :

∀(t1, t2), fX(t1) = fX(t2) (5.17)

∀t, var [X(t)] = E
[
(X(t)− E[X(t)])2

]
<∞ (5.18)

E[X] =

∫

R

xfX(x) dx (5.19)

where fV is the probability density function of the random variable
V and E[V ] is the expected value of the r.v (random variable) V . This
assumption is perfectly valid since a sky point is acquired by measuring
background radiation in a single direction and for a very short time. We
will denote the probability density function describingX(t) as fX , E[X(t)]
as µ .

Following the measurement chain presented in Frame 5.1 up to step 4
withX(t) as its input (r(t) = X(t)), I found a core property of the sky noise.
This property is presented in Theorem 3, where Φ is the random variable
representing the measured phase and U(a, b) the uniform distribution
between a and b.
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Theorem 3. Phase distribution theorem
r(t) is a stationary random process with finite variance =⇒ Φ ∼ U(0, τ)

The proof being seven pages long, it is given in Appendix A.2. Note
that Theorem 3 implies that, in the case of an acquisition from background
radiation (or a signal with very bad signal to noise ratio), the range distri-
bution is independent of the noise characteristics.

We can now use Theorem 3 to simulate an acquisition of sky points.
We acquired the sky range distribution in a manually cropped scan. The
reference distribution was approximated with the normalised histogram
computed from approximately 27 million points in 377 bins. The bin
number was found using Terrell’s rule (Terrell and Scott [1985]) i.e. nbins =⌊

3
√
2Ndata

⌋
,Ndata the number of data points used to compute the histogram.

The distribution of the simulated range will then be compared to the
reference range distribution.

The application of Theorem 3 yields :

Φ0 ∼ U(0, τ) (5.20)

Φ1 ∼ U(0, τ) (5.21)

Φ2 ∼ U(0, τ) (5.22)

Then ifR denotes the measured range random variable, we have :

R =
λm2

2

(
Φ2

τ
+

⌊
λm1

λm2

(
Φ1

τ
+

⌊
λm0

λm1

Φ0

τ
− Φ1

τ

⌋)
− Φ2

τ

⌋)
(5.23)

The TLS modulation wavelengths were extracted by measuring some
point cloud features. The longest wavelength λm0 can be estimated as the
maximal measured length divided by 2. Then if (Ri)i∈[1,Ndata] is the set of
measured distances :

λ̂m0 = 2max
i

(Ri) (5.24)

The shortest wavelength can be estimated by analysing some mixed
point measurements. Indeed looking at Equation (5.2) shows that noisy
distance measurement may exhibit sudden λm2

2
jumps. Such jumps were
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manually measured in some scans and if Rjump is the jump distance, we
have :

λ̂m2 = 2Rjump (5.25)

Finally, analysing Equation (5.23) reveals that the minimum possible
value forR,Rmin is :

Rmin = −λm1 + λm2

2
(5.26)

Then if Rmin is the minimum measured distance, λm1 can be estimated
by Equation (5.27).

λ̂m1 = −2Rmin − λ̂m2 (5.27)

Although as we’ll see later, this method needs to be slightly adjusted
because of the way the TLS deals with negative range (the method still
relies on the same property).

For our TLS, a Leica HDS6100, the estimations yielded :

λm0 = 158m

λm1 = 15m

λm2 = 1.44m

We produced 6697830 samples of Φ0, Φ1 and Φ2 to compute the same
number of samples of R from Equation (5.23). That number of samples
was chosen to have the same number of bins as the reference histogram.

We present Figure 5.1 the observed distribution and the simulated
range distribution.

As we can see in Figure 5.1, the simulated and observed distributions
are perfectly matching for R > 8m. The discrepancy can be explained by
the fact that Equation (5.23) can yield negative values, which is incompat-
ible as a range value. To correct it, we suppose that the TLS addsRmin to
any negative range value computed. Considering this procedure, λm1 can
be estimated using Rp, the most probable range value.

λ̂m1 = 2Rp − λ̂m2 (5.28)
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Also, recomputing the simulated range distribution with the negative
range correction yields the distribution shown Figure 5.2.

Using this correction procedure yields exactly the observed distri-
bution. As we have seen, Theorem 3 allowed us to simulate a range
acquisition with the same distribution. Finally all these evidences allows
us to conclude that the sky range noise distribution is independent from
the background radiation characteristics.

5.2 Sky noise detection

Two properties of the sky noise oriented the conception of the sky
detector. First, any sky point is recorded from a diffuse illumination sig-
nal and any correctly recorded point will receive this diffuse component
on top of the energy from the return signal, making the sky points the
lowest intensity returns in the scan. Second, as we have seen in Section
5.1 the range produced by a sky noise acquisition is not influenced by
the illumination characteristics but only by the scanner modulation wave-
lengths. The sky range distribution has very high variance (in our case
about 500m2) and most probably some of the highest in the scan. Indeed
let’s consider a set Rd of n points where one half is at a distance R and the
other half at a distance R+d (making it the highest variance configuration
for such distances). The empirical range variance of this set of points is
given Equation (5.29).

var(Rd) =
n

n− 1

d2

4
(5.29)

As we can see in Equation (5.29) the empirical variance of these points
will only get to the same order of magnitude as the sky range variance
for range transition of about 20m (d ≥ 20) which are expected to be
uncommon.

Filtering principle

To detect sky points independently the previously computed range
and intensity maps were used using the method described in Chapter
4. First, based on the local range variance, a partial sky detection was
performed to estimate a sky intensity profile. Then an intensity threshold
was computed using the intensity profile. Finally the sky was identified
as all points with an intensity lower than the computed threshold.
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For each pixel p in the range map Rmap local variance was computed
by taking a square window centred on p with side w, noted W (p) , and as-
sociating to p the unbiased empirical variance of the range values Rmap(pi)
of non empty pixels contained in W (p) :

var(p) =
1

NW (p)− 1

∑

pi∈W (p)


Rmap(pi)−

1

NW (p)

∑

pj∈W (p)

Rmap(pj)


 (5.30)

With NW (p) the number of scan points mapped to a pixel in W (p).
Note that NW (p) was used instead of w2 to ignore empty pixels in the
range image, caused by the discarded points. Note that, for a given point
class (i.e. points at a given range with a given surface noise, sky points,
etc) the distribution of the empirical variance of that class will tend toward
a χ2 distribution. As shown by Jouini et al. [2011], χ2 distributions are
well approximated by Log-Normal distributions. From this, computing
the distribution of the log variance will yield a mixture of Gaussian where
the Gaussian with the highest mean log variance will represent the sky
range variance.

The log variance distribution was approximated by computing the
histogram of the computed log variance values using the Terell-Scott rule
(Terrell and Scott [1985]) (the number of bins nbins =

⌊
3
√
2Ndata

⌋
).

A first sky detection was performed by thresholding the variance map
with the log variance at which the mode of highest log variance was found
(see Figure 5.3 for an example).

The sky intensity distribution was estimated with the intensity his-
togram, HI , of the previously detected sky (example Figure 5.4).

An intensity threshold, TI , was computed from the cumulative inten-
sity histogram SHI

:

SHI
(I) =

∑

x<I

HI(x) (5.31)

TI satisfies : SHI
(TI) = ρskyNdetected with Ndetected the number of points

detected with the variance threshold and ρsky a user defined parameter
used to filter non sky intensities. A second detection is performed by
thresholding the intensity image and labelling as sky all pixels with an
intensity inferior to TI

At this point a few sparse undetected sky points were expected. Miss-
ing sky points are detected with a w by w sliding window. For each
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undetected pixel p in the sky image, if more than half of the window
surrounding p were labelled as sky then p labelled as sky. This process

was repeated until less than Nmap

1000
new sky points were detected.
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5.3 Mixed point detection

We built our detector on the range map Rmap using a w by w pixel
sliding window, with w a user defined parameter. For each pixel p of
Rmap and each window size s (s ∈ [3, w], s odd), the angles βjk,lm between
the laser beam direction at P (3D point mapped at p) and the normal to
the triangles formed by P and two 3D points, Pj,k and Pl,m mapped to
two chosen neighbours of p, pj,k and pl,m were computed. Neighbours
were taken in order while circulating clockwise on the s sized window
border (see Figure 5.5 for a visual representation). Let P = (R, θ, ϕ, I)
be mapped to the pixel p at coordinates (u, v), Pj,k = (Rj,k, θj,k, ϕj,k, Ij,k)
and Pl,m = (Rl,m, θl,m, ϕl,m, Il,m) be mapped respectively to pj,k and pl,m at

coordinates (u+ j, v+k) and (u+ l, v+m), (j, k, l,m) ∈ Z
4. We have, with

a perfect scanner sampling :

(a) Step 1 (b) Step 2 (c) Step 3

(d) Step 9 (e) Step 10 (f) Step 11

Figure 5.5 – Neighbour choice for the mixed point detector with w = 5.
The first 8 steps focus on the 3 by 3 window then the remaining 16 steps
focus on the 5 by 5 window border.
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P = R




cos θ cosϕ

cos θ sinϕ

sin θ


 = R #»u0 (5.32)

Pj,k = Rj,k




cos (θ + jδ) cos (ϕ + kδ)

cos (θ + jδ) sin (ϕ + kδ)

sin (θ + jδ)


 (5.33)

By keeping the 1st order term of the Taylor expansion :

Pj,k = Rj,k (
#»u0 + jδ #»u1 + kδ #»u2) (5.34)

With :

#»u1 =



−sin θ cosϕ
sin θ sinϕ

cos θ


 (5.35)

#»u2 =



−cos θ sinϕ
cos θ cosϕ

0


 (5.36)

The angle βjk,lm is given by :

cos (βjk,lm) =
(Pj,k − P ) ∧ (Pl,m − P )∥∥(Pj,k − P ) ∧ (Pl,m − P )

∥∥ ·
P

‖P‖ (5.37)

Where ∧ is the cross product and · the dot product.
Let :

dj,k = Rj,k −R (5.38)

A = δ
(
ldj,kRl,m − jdl,mRj,k

)
(5.39)

B = δ
(
mdj,kRl,m − kdl,mRj,k

)
cos θ (5.40)

C = δ2TLSRj,kRl,m (jm− kl) cos θ (5.41)
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By inserting (5.34) in (5.37) we have :

cos (βjk,lm) =
C√

A2 +B2 + C2
(5.42)

We thus expressed βjk,lm independently of the azimuth under the
condition that the angular sampling is perfect, which is almost true for the
elevation. All the βjk,lm values were computed following (5.42). The pixel
p was classified as mixed point if more than half of the w2 − 1 computed
angle values were above a user defined threshold βthreshold.

5.4 Discussion and conclusions

In this section we presented an analysis for sky noise, exhibiting its
core property presented in Theorem 3 which can be summarized as : The
measured phase will follow a uniform distribution in [0, τ ] whatever the
properties of the random input signal (e.g. distribution, mean, variance
etc.) as long as this signal is stationary and with finite variance. This prop-
erty has several interesting implications, for example, since the range is
only dependant on the measured phases and the modulation wavelengths,
then the range noise distribution is only dependant on the modulation
wavelengths. Also since it only relies on the fact that the input signal is
stationary and with finite variance and on the fact that the device uses
the four buckets methods, it can be applied to other devices, e.g. a TOF
camera. This theorem is supported by a proof presented in Appendix A.2
and solid experimental evidence where it allowed to simulate a range
distribution that matches perfectly with the observed distribution.

From the discovered properties of the sky noise we designed a detector
with two parameters w, a window size and ρsky the fraction of the sky
distribution to keep. Higher window parameter allows to have a better
defined sky log variance mode but fewer points will be detected for the in-
tensity distribution estimation. Since the variance mode is clearly defined
even for low w values, we advice to use low w values to maximise the
number of detected points for the intensity distribution estimation. Higher
ρsky allow for better detection with a higher chance of false positives (since
higher ρsky imply a higher intensity threshold value).

Based on the detector proposed by Tang et al. [2007] we designed a new
mixed point detector using a wider neighbourhood for more robustness
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with two parameters : w,a window size and βthreshold a threshold angle
value. Higher window parameter allows the use of more triangles for
mixed point detection allowing more robustness, however it also reduces
the detector resolution, i.e. the size of the smallest, non noisy, object it
can classify has non noise. The detector resolution δdetector (in pixel size)
can be easily deduced from the detector principle : δdetector =

w
2

. Indeed,
if a given object takes less than half the window, it will necessarily be
classified as noise since less than half of the triangle will even be on the
object. The second detector parameter βthreshold will control the detector
capacity to correctly label points. Lower βthreshold will allow for more noise
detection with a higher risk of false detection and higher βthreshold will
allow for lower risk of false detection with higher risk of non detection of
noise.
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6.1 Experimental setup

Material

Experiments were conducted on scans taken with a phase-based Leica
HDS6100. It scans using a red laser with a wavelength between 650nm and
690 nm Kaasalainen et al. [2011] with an angular resolution ranging from
5000 pts/turn (2π10−4 rad, resolution ”L” - low) to 40000 pts/turn (π

2
10−4

rad, resolution ”U” - ultra high). In these experiments scans were taken
using the ultra resolution and subsampled (using the equirectangular
projection) to every other resolution accessible to the Leica HDS6100 (see
table 6.1). The targets used in our experimental setup were made with
Canson paper sheets and their reflectivities were measured with a Spectral
evolution SM-2500 manufactured by Spectral Evolution.

Two different setups were used considering the parameters driving
the noise patterns (see table 2). The sky noise detector evaluation was
performed on scans taken outdoor, on a rooftop to have purely sky noise
and the mixed point detector performance was assessed on scans taken
indoor to avoid sky noise influence. The chosen reflectivities cover a wide
range of applications, with low reflectivities (green and brown paper,
showing refelctivities of 9% and 21%) common to forestry applications
and high refelectivy (white paper at 94% albedo) for civil engineering
applications. Scanning ranges go from close range (9m) to mid range
(about 30m) again common in forestry and civil engineering applications.
The acquisitions parameters (distance to the scanner, incidence angle on
the targets etc) are summed up in table 6.2 and 6.3.

Resolution U - Ultra H - High M - Medium L - Low

Angular sampling

(fraction of 2π)
1
4
10−4 1

2
10−4 10−4 2.10−4

Points per revolution 40000 20000 10000 5000

Table 6.1 – Resolution table

Experimental procedure

Each outdoor resp. indoor setup was filtered with the sky resp. mixed-
point filter with different sets of filters parameters presented in table
6.4.
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Shape Cylinder Circular hole

Diameters (mm) 21.5, 36, 68, 105, 250 40, 90, 230, 480

Color (albedo % at 670nm) white (94), brown (21), green (9)

Table 6.2 – Target parameters

Type Indoor Outdoor

Distance from scanner to setup (m) 9, 16, 21, 27 9, 15, 21, 27

Distance from first target to second target (m) 1, 2, 3, 4, 5 N/A

Incidence angle on the first target (fraction of 2π) N/A 0, 1
12

, 1
8

Table 6.3 – Acquisition parameters

W 3, 5, 7, 9, 11, 13, 15

Sky filter parameters
ρsky (%)

10, 20, 30, 40, 50, 60,

70, 80, 85, 90, 91, 92,

93, 94, 95, 96, 97, 98, 99, 100

W 3, 5, 7, 9, 11, 13, 15
Mixed-point filter

parameters βthreshold (o)
20, 40, 60, 70, 75, 80, 81, 82

83, 84, 85, 86, 87, 88, 89, 90

Table 6.4 – Filter parameters tested

In each filtered scan, were evaluated : the diameter, in pixel in the
equirectagular image, of the hole or cylinder and the number of true
positives, false positives, true negatives and false negatives (details on their
definition in table 6.5). Pixel size was chosen for the analysis since it
is a more adapted measure to assess the filter performance. Indeed, a
1m diameter cylinder at 10m will have the same pixel diameter in the
image than a 2m diameter cylinder at 20m. From the measured and
estimated diameters a linear regression analysis was carried to assess the
global performance of each parameter. The true positives, false positives,
true negatives and false negatives were used to compute the true positive
rates (or sensitivity) and the false positive rate (or fall-out) for a Receiver
Operating Characteristic analysis. Both analysis will be detailed in the
following sections.
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Reference

Valid Noise

Valid True negative False negativeFilter

Result Noise False positive True positive

Table 6.5 – Definitions of true positives, false positives, true negatives and false
negatives

6.2 Reference construction

Filter performance were evaluated against reference labelled scans.
The usual approach is to have an expert label the scans based on visual
inspection. The proposed analysis was based on semi-automatically gen-
erated references and automatic labelling based on a footprint model. This
evaluation provided an objective framework to assess filter performance.
In this section the reference construction methods will be described fol-
lowed by the footprint model description.

Cylinder references

All cylinders were recreated in each scene by first manually extracting
them separately. Then, each cylinder axis was computed thanks to a
PCA. For each color slice, the cylinder points were projected on a plane
perpendicular to the cylinder axis. Points that were not obviously on the
cylinder were then manually discarded. The position of a circle, with its
radius constrained to be equal to the measured radius, was optimised to
minimise the distance with the projected points (least square geometric
fit with constrained radius). The circle positions for each color slice
were manually adjusted and the filtering was revised until the centers
alignment error with the cylinder axis (meaning the distance between the
centers and their projection on the cylinder axis) was below 10−4m for all
centers. Finally the centers were projected on the cylinder axis to yield
their final position.

Hole references

Each circle with its frame was manually extracted. An arbitrary over
filtered version on each circle was selected to fit a plane corresponding
to the wood board for that hole (note that the plane was not fitted on the
whole board since it was not perfectly flat). The references were done man-
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ually, using 3DReshaper, by placing on the scan a circle with a fixed radius,
equal to the real radius measured on the setup. The placement was done
to minimise the maximum intensity inside the circle. Indeed, as stated in
section 5.2, sky noise should correspond to the lowest observed intensities,
or more specifically, any intensity recorded on the board should be lower
than an intensity recorded entirely or partially in the sky. Note that the
projection on the plane was done following the scans directions, thus the
projection P ′ = (R′, θ′, ϕ′) of a point P = (R, θ, ϕ) on a plane Π is given
by :

Π : y = aΠx+ bΠz + cΠ (6.1)

θ′ = θ (6.2)

ϕ′ = ϕ (6.3)

R′ =
cΠ

cos (θ) sin (ϕ)− aΠ cos (θ) cos (ϕ)− bΠ sin (θ)
(6.4)

Footprint model

To correctly evaluate the filters, the reference shapes were recreated in
the scans and raw scan point were labelled as non noisy, sky noise and
mixed point noise depending on their position. A point was labelled as
non noisy if, considering its acquisition direction, the laser footprint was
integrally formed on the cylinder, rectangle or the holes frame depending
on the case. A point was labelled as sky noise if the laser footprint was
integrally lost in the sky. Finally a point was labelled as mixed point noise
if the footprint lied partially on the considered object. To calculate the
angular size of the mixed point noise zone, the laser was modelled as a
Gaussian beam. Beam waist size, w0 (smallest footprint radius across the
beam) and collimation distance Rw0

(distance were the footprint radius
equals the waist) are usually not provided in the LiDAR datasheets. Equa-
tions were thus derived to compute them from a footprint radii measures
at different distances. At least three measures are required, in our case
a measure at R = 1m, R = 25m and R = 50m were provided in the
datasheet. The equation of the footprint radius w as a function of distance
from the laser exit is given by :

w(R) = w0

√√√√1 +

(
λ(R−Rw

0

)

πw2
0

)2

(6.5)
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With λ the laser wavelength. Equivalently :

w2(R) = w2
0 +

λ2

π2w2
0

R2
w0
− 2

λ2

π2w2
0

Rw0
R +

λ2

π2w2
0

R2 (6.6)

Let :

A =
λ2

π2w2
0

(6.7)

B = −2 λ2

π2w2
0

Rw0
(6.8)

C = w2
0 +

λ2

π2w2
0

R2
w0

(6.9)

And wk be the kth observation of the footprint radius at distance Rk,
then :




w2
0

...

w2
n


 =




R2
0 R0 1

...
...

...

R2
n Rn 1






A

B

C


 (6.10)

And :



A

B

C


 =




R2
0 R0 1

...
...

...

R2
n Rn 1




†


w2
0

...

w2
n


 (6.11)

Where M † =
(
MTM

)−1
MT is the pseudo-inverse of M .

Finally :

w0 =
λ

π
√
A

(6.12)

Rw
0

= − B

2
√
A

(6.13)

Then consider the laser beam pointing towards a straight edge at
a distance R (meaning that the beam center line and the edge line are
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Figure 6.1 – Gaussian laser beam model.

secant), and let ψ be the minimal angle the scanner needs to turn in any
direction (even not accessible to the laser) to have the laser footprint not
formed on the edge at all, here after called the unconstrained angular edge
loss (figures 6.1, 6.2), then :

R sinψ = w0

√√√√√1 +



λ
(
R cosψ −Rw

0

)

πw0
2




2

(6.14)

Solving equation (6.14) for ψ yields (details given in Appendix A.3) :

cosψ =

K2Rw
0

+

√
K4R2

w
0

+ (1 +K2)
(
R2 − w0

2 −K2R2
w

0

)

(1 +K2)R
(6.15)

K =
λ

πw0

(6.16)

To estimate the edge loss the real sampling pattern or the LiDAR must
be accounted for. It follows a spherical, regular and discrete angular
sampling. Then the loss can be more easily expressed in terms of ”angular
loss” or number of points that would be acquired as mixed points while
rotating from the edge in the azimuthal or zenithal directions. Considering
this direction restriction, the loss is conditioned by the angle γ the edge
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L = R

√
tan (ψθ)

2 + tan
(
ψϕ

)2
(6.21)

6.3 Result extraction and analysis

The goal being to evaluate the filter performance, the methods chosen
to compute diameters must not be robust against under or over filtering
and outliers. In this section will be described the methods used to compute
the results and the analysis carried on the extracted values.

Result extraction

Cylinder diameters

All diameter measures were converted in pixel size for this analysis.
To compute pixel sizes, angular size must be evaluated first. Given a
cylinder of radius r, its angular size α at a distance R is given by :

α = 2arcsin

(
r

r +R

)
(6.22)

Any angular size α can be converted in a pixel diameter dpixel, rep-
resenting the number of pixels occupied this diameter represents in the
equirectangular map :

dpixel =
⌊α
δ

⌋
(6.23)

Considering the objective of each filter, i.e. filtering all mixed points
for the mix point filter and filtering all the sky points for the sky filter,
suiting target pixel diameters values must be computed. Due to the edge
loss effect, target diameters will be slightly lower, resp. higher, for the
mixed-point, resp. sky, filter than the real diameter. Diameters are reduced
in the mixed point case, since if all mixed point are removed, the diameter
will be shortened by 2L, with L defined in equation (6.21). In angular
measurement, if α− is the angular span where the footprint can entirely be
formed on the cylinder for a cylinder of radius r at distance R and d−pixel,
its pixel converted measure, we have :
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α− = max

(
α− 2δ

⌈
ψ

δ

⌉
; 0

)
(6.24)

d−pixel =
⌊α−

δ

⌋
(6.25)

Inversely, if α+ is the angular span where the footprint intercepts, at
least partially, the cylinder and d+pixel its pixel converted measure, we have
:

α+ = α + 2δ

⌈
ψ

δ

⌉
(6.26)

d+pixel =
⌊α+

δ

⌋
(6.27)

where ψ is defined in equation (6.16) and assuming γ = 0
In the filtered scans cylinder diameters were directly computed in

pixel units by counting the number of consecutive valid pixels for a single
cylinder slice in the image in the ϕ direction (along the lines) for all the
lines and taking their median. Let pest be that pixel number.

Hole diameters
The same precautions must be taken when evaluating the sky filter

on holes. As with the cylinder diameters, hole areas, or solid angles, will
be slightly diminished since sky point are defined as points where the
laser beam was not intercepted at all. A radius loss of L will then be
observed. The corrected hole radius r− of a circle of radius r at distance R
considering the edge loss is :

r− = r −R tan

(
δ

⌈
ψ

δ

⌉)
(6.28)

The corrected radius in pixel units, rpixel is then :

rpixel =
r−

R tan (δ)
(6.29)

As the incidence angle on the hole panel ε increases, the circular hole
will form an ellipse of increasing eccentricity. For the evaluation of the sky
filter, the biggest window size fitting in the original hole wmax, and the re-
constructed hole west were computed. This was done to have comparable
scale compared to the other evaluations.
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The ellipse formed in the image has a semi-major axis a and semi-
minor axis b :

a = rpixel (6.30)

b = rpixel cos (ε) (6.31)

The area of the maximum size square Amax inscribed in the ellipse is
given by :

Amax =
4a2b2

a2 + b2
(6.32)

thus its side wmax is :

wmax =
2rpixel
R tan (δ)

√
cos (ε)2

1 + cos (ε)2
(6.33)

To compute west from filtered scans, points labelled as noise were
projected on the board computed plane following equation (6.4), then
triangulated using a Delaunay triangulation. The hole area Atri was
estimated by summing the area of each triangle. Finally, the west was
estimated by :

west =
2
√

Atri

π

R tan (δ)

√
cos (ε)2

1 + cos (ε)2
(6.34)

Table 6.6 shows a summary of the values of interest and their estimated
counterpart for the two filters.

Value of interest Estimated value from scans

Sky filter, holes wmax west

Sky filter, cylinders d+pixel pest

Mixed-points filter, cylinders d−pixel pest

Table 6.6 – Values of interest analysed in every filter-setup case
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Result analysis

Two approaches were used to assess filter performance. First a regres-
sion analysis was performed to extract global trends. For each (δ, Albedo,
W , ρsky) or (δ, Albedo, W , βthreshold) combination, depending on the filter,
linear regressions of the values of interest versus estimated values were
computed. From the regressions, slope, intercept and Root Mean Square
Error (RMSE) were analysed. If X = (x1, . . . , xn) is the set of data of an
interest value (here Ω−

pixel, d
+
pixel or d−pixel) of one parameter configuration

and Y = (y1, . . . , yn) the set of data of the corresponding estimated value,
we have :

x =
1

n

∑

x∈X

x (6.35)

slope =

n∑
i=1

(yi − y) (xi − x)
n∑

i=1

(xi − x)2
(6.36)

intercept = y − slope x (6.37)

ŷi = slope xi + intercept (6.38)

RMSE =

√√√√
n∑

i=1

(yi − ŷi)2

n
(6.39)

A detailed analysis was then carried with a Receiver Operating Char-
acteristic (ROC) analysis. In this analysis data was grouped into pixel size
classes shown in table 6.7, and for each (δ, Albedo, W , ρsky) or (δ, Albedo,
W , βthreshold) combination true positive rates tpr and false positive rates
fpr of every scan in this category were computed from true positives TP ,
true negatives TN , false positives FP and false negatives FN numbers of
each scans. Mean tpr (tpr) and fpr (fpr) were computed for each category.

tpr =
TP

TP + FN
(6.40)

fpr =
FP

FP + TN
(6.41)

Finally a score was computed from the tpr and fpr values. In ROC
analysis a detector, that for a given parameter has tpr = 1 and fpr = 0
or tpr = 0 and fpr = 1 acheives perfectly right (or perfectly wrong)
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6.4 Sky filter results

In this section we will present the results of the regression and the
ROC analysis for the sky filter on cylinder targets and hole targets. We
only present in this document the results for the brown paper and for the
Ultra and High resolutions for the ROC analysis. The results for all colors
and resolutions are available at https://github.com/rrombourg/
Chapter6_Results.

Sky filter on holes

Figures 6.4 through 6.7 show the regression results for the brown part
of the board (21% albedo) for all four resolutions. slope, intercept and
RMSE point to a consistent result degradation as the resolution goes from
Ultra to Low. Resolution also increased the effect of the window, high W
values (W > 9) on Medium or Low resolutions resulted in poor diameter
estimation and worse filter consistency for all pixel sizes (increasedRMSE).
Regression results showed little effect of albedo on filter quality.

Figures 6.8 to 6.12 present ROC analysis results for the brown part of
the board in Ultra and High resolution, other resolutions showed similar
behaviours. The number of data points used to compute each value is
presented figure 6.14. The window parameter had little effect whatever the
object sizes present in the Ultra and High scans but filtering performance
was highly degraded on small objects (psize ∈ [1, 3]) filtered with high
window parameters (W > 5) this effect can only be seen in Medium and
Low scans since the lowest pixel sizes were not present otherwise. For all
resolutions and pixel sizes, tpr as well as fpr increased with increasing
ρsky, with best detection performance for ρsky ∈ [90, 99] for all object sizes.
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Sky filter on cylinders

Figures 6.15 through 6.18 show the regression results for the brown
slice (21% albedo) for all four resolutions. slope, intercept andRMSE point
to a consistent result degradation as the resolution goes from Ultra to Low.
According to the regression results window had little impact in Ultra and
High resolution for high enough ρsky (≥ 90). Concerning Medium and
Low resolution, window above 9 lead to reduced filter consistency, i.e.
increased RMSE, high slope and low intercept indicating over-filtering of
small elements and under-filtering of larger ones. Note that parameters
configurations with 0 slope, intercept and RMSE indicate a configuration
where all estimated diameters were equal to 0 (indicating strong over-
filtering). Regression results showed little of albedo on filter quality.

Figures 6.19 to 6.21 present ROC analysis results for the brown slice in
Ultra and High resolution, other resolutions showed similar behaviours.
The number of data points used to compute each value is presented
figure 6.22. The window parameter had no effect whatever the object
sizes present in the Ultra and High scans but filtering performance was
highly degraded on small objects (psize ∈ [1, 3]) filtered with high window
parameters (W > 5) this effect can only be seen in Medium and Low scans
since the lowest pixel sizes were not present otherwise. For all resolutions
and pixel sizes, tpr as well as fpr increased with increasing ρsky, with good
compromise (score > 80) for ρsky ∈ [90, 99].
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6.5 Mixed-point filter results

In this section we will present the results of the regression and the
ROC analysis for the mixed-point filter on cylinder targets. As stated in
the previous section, we only present in this document the results for
the brown paper and for the Ultra and High resolutions for the ROC
analysis. The results for all colors and resolutions are available at https:
//github.com/rrombourg/Chapter6_Results.

Figures 6.23 through 6.26 show the regression results for the brown
cylinder slice for all four resolutions. slope, intercept and RMSE point to
a consistent result degradation as the resolution goes from Ultra to Low,
especially for Medium and Low resolutions. Window had little impact in
Ultra and High resolution for high enough βthreshold (≥ 75). For Medium
and Low resolution, window above 9 lead to reduced filter consistency
and increase in over-filtering for low βthreshold. For mixed-point the filter
regression results showed little effect of albedo on filter quality.

Figures 6.27 to 6.31 present ROC analysis results for the brown slice in
Ultra and High resolution, other resolutions showed similar behaviours.
The number of data points used to compute each value is presented figure
6.33. The window parameter had little effect on [4− 6] and ≥ 7 pixel size
categories objects in the Ultra and High scans. For all resolutions and
pixel sizes, tpr as well as fpr decreased with increasing βthreshold, with best
compromise for βthreshold ∈ [75, 83]. The filter consistently showed fpr
around 40% and tpr around 90% for the best compromises.
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6.6 Discussion

In the following section will be presented the discussion of the results
found in the filter experimentation.

Sky filter discussion

Results showed that the proposed sky noise detector could consistently
detect almost all noise with few false positives and for all tested object
colors :

• In Ultra resolution the best compromised was achieved for ρsky = 99
and W = 5 with tpr = 97% and fpr = 16%

• In High resolution the best compromised was achieved for ρsky = 99
and W = 3 with tpr = 96% and fpr = 7%

• In Medium resolution the best compromised was achieved for ρsky =
99 and W = 3 with tpr = 91% and fpr = 5%

• In Low resolution the best compromised was achieved for ρsky = 93
and W = 3 with tpr = 97% and fpr = 17%

As stated previously the filter had good detection performances for all
resolution for W = 3 and ρsky ∈ [90, 99]. Cylinder results showed poorer
performance than the holes results. This could be caused by the reference
point classification. Indeed, reference construction for the cylinder targets
was much more prone to errors, especially for small cylinders due to
the quasi nonexistence of visual cues and points that could be declared
non-noisy with just visual inspection. Drop in performances could have
also been caused by the drop in intensity at the border of the cylinder
(itself due to the rapid increase in incidence angle), making sky intensities
and cylinder intensities closer. Also the small performance difference
between colored targets seems to indicates that even for albedos as low as
9% (at 670nm for our green target) the intensity differences are sufficient
for the filter to work properly.

Mixed-point filter discussion

The best found compromises were :

• In Ultra resolution the best compromised was achieved for βthreshold =
60 and W = 3 with tpr = 94% and fpr = 69%

• In High resolution the best compromised was achieved for βthreshold =
75 and W = 3 with tpr = 88% and fpr = 64%
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• In Medium resolution the best compromised was achieved for βthreshold =
83 and W = 3 with tpr = 91% and fpr = 53%

• In Low resolution the best compromised was achieved for βthreshold =
85 and W = 3 with tpr = 95% and fpr = 45%

Although most of the noise was detected in every best compromise
case, false positive rates were much higher for this filter. This may be
caused by the fact that these results are very sensitive to the reference
positioning since here only the object border, thus very few points, are
labelled as noise. The parameters extracted as best compromises here,
take into account the score for every object size with the same weight, this
induces that pixel size results computed from very few members may be
noisy and interfere in the final result. We also need to note that the highest
size class for this study was 7 pixels, which is still very small (about 3 cm
at 27m), bigger pixel sizes may have yielded better results. The effect of
window size versus pixel size is very apparent, it is clear that if W

2
< psize

the detection performances are consistently bad (with high false positive
rates), which is perfectly explained by how the filter operates. Indeed if
the object to be filtered occupies less than half of the filter window it is
impossible for a valid point to have less than half of the window triangles
computed angles to be under the threshold.
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In this thesis, we proposed several contributions in the domain of TLS
point cloud noise modelling and detection. We focused on sky noise, (i.e.
noise produced when a AMCW TLS does not get any return) and mixed
point noise (i.e. points computed when the TLS was receiving several
different return signals).

We first analysed in Chapter 2, how the TLS samples space and de-
duced properties on how the local point cloud density evolves with re-
spect to the elevation. This allowed us to show the limits of classical
density based noise detection techniques. We then oriented our focus on
2D non density based detection techniques.
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We review in Chapter 3 the main noise detection techniques and their
advantages and inconvenient. Our previous density analysis allowed
to pinpoint how most techniques are ill suited for TLS scanning noise
detection. We also review the equirectangular projection techniques,
applications and the problems reported in the literature when they are
applied to TLS scans.

Then, we defined in Chapter 4 a theoretical framework to analyse
projection methods, unavoidable foundations for 2D detection methods.
This framework allowed us to bring to light two fundamental properties
that should be satisfied by a projection. Following these properties, we
designed a projection algorithm that satisfied them as much as possible.
We then defined a way to quantify projection quality and compared our
proposed algorithm with the widely used classic algorithm.

After that, in Chapter 5 we formally analysed sky noise and extracted
its fundamental properties. From our projection and the discovered prop-
erties, we designed a sky detector and a mixed point detector.

Finally, in Chapter 6 we evaluated our detectors in controlled condi-
tions with an experimental setup reflecting various real world conditions.
This analysis allowed us to show the efficiency of our detectors and the
optimal ways to configure them.

In the following, we first provide a summary of our contributions.
Then, we present the limitations of this work and finally, we provide some
interesting future research directions.

7.1 Summary of contributions

Density analysis

To analyse the point cloud density we proposed a model allowing to
compute the density augmentation factor, i.e. by how much the point
density at the horizon (zero elevation) is multiplied as a function of the
elevation and the scan resolution. Deeper analysis allowed us to derive a
simpler, resolution independent, model and we expressed the error bound
between the complete and the simplified model.

Our density model showed that more that two thirds of any full
panorama scan, is at least 10% denser that its horizon density, and one
third is more than twice as dense as the horizon density, making classical



7.1. SUMMARY OF CONTRIBUTIONS 133

density based noise detection more and more inefficient as the elevation
grows.

Equirectangular projection

Any image based noise detector must first project scan data on a 2D
grid (image) and then locally process that image. Among all projections
the equirectangular projection is the most used for its neighbouring prop-
erties where neighbours in the projection are angular neighbours (neigh-
bours in the visual field). As Käshammer and Nüchter [2015] pointed
out, the classic equirectangular projection algorithm was bringing sev-
eral distortions and point losses. We thus decided to create a theoretical
framework to properly study and define what is a good equirectangular
projection applied to TLS scans. That framework allowed us to extract 2
essentials property :

• Lossless projection : Every scan point must be mapped to a unique
image pixel

• Coherent projection : All points need to be correctly placed with
respect to each other. This property can be divided in two sub
properties :

– Line coherence : All points with a close enough elevation must
be mapped to the same line

– Column coherence : All points acquired during a single eye
turn must be mapped to the same column

Taking these properties as guidelines, we built an algorithm that com-
putes a scan equirectangular projection that satisfies these properties as
much as possible.

To evaluate and compare the classic and the proposed projection, we
proposed a new framework allowing to quantify the quality of a projection
via two numeric indicators reflecting how much a given projection satisfies
the aforementioned properties :

• Lossless coefficient : The fraction of points mapped to the image

• Coherence coefficient : For a given neighbourhood size, indicates
the fraction of points with an entirely correct neighbourhood (i.e. all
points in the given neighbourhood are correctly placed with respect
to each other)
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Frame 7.1 – Fundamental sky noise property

The measured phase will follow a uniform distribution in [0, τ ] what-
ever the properties of the random input signal (e.g. distribution,
mean, variance etc.) as long as this signal is stationary and with finite
variance.

The lossless coefficient is easily interpreted as a point loss. The coher-
ence coefficient can be interpreted as a fraction of points, where any local
processing in the defined neighbourhood will use coherent sets of points.

Using our evaluation framework we compared the classic equirectan-
gular projection algorithm and the proposed algorithm on four test scans
(representing different scanning conditions, like small or large panoramas,
indoor or outdoor scanning). The results revealed that the classic projec-
tion was unsuitable for 2D detectors, indeed the analysis showed a point
loss of about 10% on all scans and a coherence always under 73%, except
for the trivial case of a small indoor panorama. The proposed method
showed a point loss under 0.1% and a coherence always above 99%.

We concluded that the classic projection cannot be used, except for
trivial cases but the proposed projection showed almost excellent results
in all cases proving that its perfectly fitted for 2D noise detection.

Sky range noise analysis

To tackle the noise detection problem we first focus on the sky noise.
A point of sky noise (a sky point) is point acquired when an AMCW TLS
does not get any return signal.

Since that subject was never addressed in the literature, we started
by modelling the phenomenon. To model sky noise we considered that,
during a sky point acquisition, the TLS was receiving a random station-
ary signal with finite variance, a coherent hypothesis with background
radiation modelling. From this input signal we followed the range mea-
surement process used by the TLS, the four buckets method.

This model allowed us to extract a fundamental property of the sky
noise (or any noise produced by the acquisition of a random stationary
signal with finite variance) showed in Frame 7.1
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Also the fundamental sky property is true for any device using the four
buckets methods (e.g. TOF camera). A theoretical proof of this property
was proposed to support its validity.

Using this property we were able to simulate an acquisition of sky
points. The range distribution of the simulated points was compared with
a range distribution of sky points manually extracted from a scan acquired
with a Leica HDS6100. This comparison showed perfect similarity be-
tween the distribution obtained from our simulation and the distribution
obtained from the scanner.

We thus demonstrated by theory and experiments that the sky noise
range distribution is always the same, whatever the scan and is only
dependant on the modulation wavelengths used by the TLS.

Noise detectors

Sky noise detector

The previously developed sky noise model allowed us to build a sky
noise detector to try to solve the sky noise problem.

The designed sky detector operates in 4 steps :

1. Local range variance computation and estimation of the log range
variance distribution

2. Extraction of points with a log variance higher that the log variance
of the mode of highest log variance

3. Estimation of the sky intensity distribution from the previously
extracted points and computation of an intensity threshold for sky
detection

4. Detection of isolated points not detected by the intensity threshold

Mixed point noise detector

We then focused on the detection of mixed points, i.e. points acquired
when the TLS laser beam hits multiple targets at once. The mixed point
detection and modelling problem was widely addressed in the literature.
However Huber et al. [2010] points out that this problem is still not fully
solved, and that there is still room for improvements.
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We decided to base our mixed point detector on the detector proposed
by Tang et al. [2007]. Tang’s detector showed good performances but it
only uses very local information and can adapt the neighbourhood it uses
for its computations (which can be important if the detector is used on
scans with different resolutions).

The proposed detector and the detector proposed by Tang et al. [2007]
rely on computing, for every point, the angle between the acquisition
direction at that point and the normal to a triangle formed by that point
and two of its neighbours. To define the triangles Tang et al. [2007]
used a Triangular Irregular Network, which only defines triangles via the
immediate neighbourhood of every points (4 or 8 neighbourhood). Our
algorithm uses a sliding window of size given by the user, and consider all
triangles that have the window central point as a vertex. This allows for
more robustness, especially for ”low” resolutions (low angular resolution,
i.e. high number of points per turn).

Evaluation in controlled conditions

To evaluate the proposed detectors we proceeded to an evaluation in
controlled conditions. Our evaluation focused on two classes of objects :

• Cylinders of different diameters

• Holes of different diameters in a planar object

Several different acquisition conditions were tested : resolution, dis-
tance to the studied object, object size and object reflectivity.

The evaluation was based on two complementary approaches :

• Reconstruct the object from the filtered point cloud (filtering a point
cloud is removing all detected noise) and compare its dimension
with the real object

• Receiver Operating Characteristic (ROC) type analysis, which com-
pares the algorithm labelling (which points it labelled as noise) with
a reference labelling

We chose for this analysis not to make the reference labelling by hand
(expert labelling) but we went for an automatic labelling.

For the automatic labelling we proposed an edge loss and footprint
model allowing better precision than the classical models (conical beam)
since it takes into consideration the true shape of the laser beam (under the
Gaussian beam approximation) and the discrete nature of TLS sampling.
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Using our proposed edge loss model, we were able to automatically
label points from semi-automatically recreated cylinders or holes as our
reference objects to obtain our reference labelling.

Mixed point detector results

The mixed point detector evaluation showed that it was consistently
capable to detect almost all noise (high true positive rates) but with a
tendency to over detect (high false positive rates, especially for high points
per turn setups). Although, as we will develop in the limitations, part are
those results may have been caused by imprecision when recreating the
reference objects and the size classes chosen for the analysis.

Sky noise detector results

Sky noise detector analysis revealed good performances for both types
of analysis (reconstruction and ROC) and allowed us to extract optimal
parameters as a function of TLS resolution. The analysis also showed
that the detector could consistently detect almost all noise with few false
positives and for all tested resolutions and object reflectivity. Finally the
analyses allowed to show the robustness of the detector against external
parameter variations (resolution, object size, etc) and internal parameter
variations (close results for all windows and ρsky ≥ 90%).

7.2 Limitations

Access to the raw data

The proposed detection methods rely on the proposed equirectangular
projection. This projection uses the acquisition order for better projection
quality. Then the projection must be applied to raw data since usual
manufacturer software automatically rearrange the point cloud. This can
be a real hindrance since some manufacturers do not provide any tool to
extract raw data without using their software.

Experimental setup : references

We tried to evaluate our detector without using an expert labelling
since mixed points (especially mixed points that imply mostly one surface)
can be hard to distinguish from valid points. We circumvented that
problem by reconstructing the objects being studied in all scans and using
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our proposed edge loss model to create labelled references. However,
since zones with mixed points are very narrow, this analysis was very
sensitive to reference placement and some objects (especially cylinders at
high distance) were impossible to recreate without placing them manually.
To use a similar analysis one can compute, via our proposed formulae
and models, the pixel size (taking the noise into account) of every objects.
Every object with a pixel size superior to 10 should be properly recreated
using our framework.

7.3 Future works

Order independent projection

We showed in Chapter 4 the importance of the projection method
in any image based method. However, as we exposed in the limitation
section, our proposed projection method can be inapplicable if one does
not have access to the raw data or the scan in acquisition order. Then we
think that the study of equirectangular projection for TLS would be very
valuable since so much application rely on an equirectangular projection.

Image based compression

One of the very profitable areas that could benefit from good equirect-
angular projection is point cloud compression. Indeed Houshiar and
Nüchter [2015] already started to explore image based compression with
very promising results. Using more efficient projections would allow for
fast, almost lossless and effective compression. Indeed, lossless compres-
sion schemes like PNG compression rely on the local similarity of the
image to attain good compression rates. Projections with good coherence
and lossless properties would allow for a better exploitation of local simi-
larities often found in natural scenes (e.g. planar objects) with minimal
loss.

Mixed point noise correction

Although capital for most applications, noise detection and removal
still can degrade some important point cloud features. Indeed, by defini-
tion mixed points happen at object edges which can be critical for object
size determination. A better approach for AMCW TLS would be to de-
tect and correct noise. Noise correction as already been attempted (e.g.



7.3. FUTURE WORKS 139

Larkins et al. [2009]) but no correction methods was based on an actual
range measurement model. Using a TLS range measurement model could
allow for accurate mixed point range correction.

TLS modulation wavelength estimation

To apply TLS range measurement model based techniques one must
know the modulation wavelengths used by the TLS. As we have discussed
in Chapter 5 some modulation wavelengths can be extracted by measuring
some point cloud features. However some of these features like the
jump distance can be very hard to measure accurately. As we proved
in Chapter 5 the range distribution of sky points is only dependant on
the modulation wavelengths, then further analysis may yield methods to
precisely compute modulation wavelengths from an estimated sky range
distribution.
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X. Liang, V. Kankare, J. Hyyppä, Y. Wang, A. Kukko, H. Haggrén, X. Yu,
H. Kaartinen, A. Jaakkola, F. Guan, et al. Terrestrial laser scanning
in forest inventories. ISPRS Journal of Photogrammetry and Remote
Sensing, 115:63–77, 2016. (Cited on pages 2, 3, and 64.)

P. Milonni and J. Eberly. Laser resonators and gaussian beams. In Laser
Physics, chapter 7, pages 269–329. John Wiley & Sons, Ltd, 2010. (Cited
on page 20.)

W. Mukupa, G. W. Roberts, C. M. Hancock, and K. Al-Manasir. A review
of the use of terrestrial laser scanning application for change detection



144 BIBLIOGRAPHY

and deformation monitoring of structures. Survey Review, 49(353):
99–116, 2017. (Cited on page 2.)

M.-J. Rakotosaona, V. La Barbera, P. Guerrero, N. J. Mitra, and M. Ovs-
janikov. Pointcleannet: Learning to denoise and remove outliers from
dense point clouds. In Computer Graphics Forum. Wiley Online Library,
2019. (Cited on page 30.)
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Appendix A

Proofs

A.1 Proofs of the spherical density Theorems

Density function

To compute the local point cloud density, consider a cone C with
directing axis(OP ) with O the point cloud origin and P a scan point, and
aperture angle α. Let’s fist compute the number of points N captured
inside of the cone. The number of points inside C on the line of constant
elevation n is given by :

n =
2α

δϕ
(A.1)

(A.2)

where δϕ is the angle between two point at the same elevation and
with azimuth ϕ and ϕ + δ. Let P1 and P2 be two points at coordinates
(R1, θ, ϕ) and(R2, θ, ϕ + δ), we have :

P1 = R1




cos(θ) cos(ϕ)

cos(θ) sin(ϕ)

sin(θ)


 (A.3)

P2 = R2




cos(θ) cos(ϕ + δ)

cos(θ) sin(ϕ + δ)

sin(θ)


 (A.4)
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#»u1 =




cos(θ) cos(ϕ)

cos(θ) sin(ϕ)

sin(θ)


 (A.5)

#»u2 =




cos(θ) cos(ϕ + δ)

cos(θ) sin(ϕ + δ)

sin(θ)


 (A.6)

δϕ = arccos( #»u1 · #»u2) (A.7)

#»u1 · #»u2 =cos(θ)2(cos(ϕ) cos(ϕ + δ) + sin(ϕ) sin(ϕ + δ)) + sin(θ)2 (A.8)

#»u1 · #»u2 = cos(θ)2 cos(ϕ + δ − ϕ) + sin(θ)2 (A.9)
#»u1 · #»u2 = cos(θ)2 cos(δ) + sin(θ)2 (A.10)

Finally :

δϕ(δ, θ) = arccos
(
cos(θ)2 cos(δ) + sin(θ)2

)
(A.11)

The number of lines of constant elevation that passes through C m is
given by :

m =
2α

δ
(A.12)

(A.13)

We can compute the number of points in C by summing the number of
points per line of constant elevation. The number of points captured in C
in a line, k lines above the line passing through the cone axis nk is given
in Equation (A.14)

nk(δ, θ) = n(δ, θ)

√
1−
(
kδ

α

)2

(A.14)
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Finally the number of points in C is given Equation (A.15)

N(δ, θ) = 2n(δ, θ)

m
2∑

k=0

√
1−
(
kδ

α

)2

(A.15)

The number of points at θ = 0 is from Equation (A.15) :

N(δ, 0) =
4α

δ

m
2∑

k=0

√
1−
(
kδ

α

)2

(A.16)

And finally we can deduce the density augmentation factor D i.e. the
factor by which the point density at θ = 0 is multiplied :

D(δ, θ) =
N(δ, θ)

N(δ, 0)
=

δ

δϕ(δ, θ)
(A.17)

Let :

D(δ, θ) =
δ

arccos
(
cos(δ) cos(θ)2 + sin(θ)2

)

Since δ represents the scanner resolution, we will usually have δ ≪ 1
and δ > 0. Let’s consider :

lim
δ→0

D(δ, θ) = lim
δ→0

δ

arccos
(
cos(δ) cos(θ)2 + sin(θ)2

) (A.18)

Using l’Hôpital’s rule :

lim
δ→0

D(δ, θ) = lim
δ→0

√
1−
(
cos(δ) cos(θ)2 + sin(θ)2

)2

sin(δ) cos(θ)2
(A.19)

lim
δ→0

D(δ, θ) = lim
δ→0

√
1−
(
cos(δ)2 cos(θ)4 + 2 cos(δ) cos(θ)2 sin(θ)2 + sin(θ)4

)

sin(δ) cos(θ)2

(A.20)
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Taylor expansion :

lim
δ→0

D(δ, θ) = lim
δ→0

√
1−
(
(1− δ2) cos(θ)4 + 2

(
1− δ2

2

)
cos(θ)2 sin(θ)2 + sin(θ)4

)

δ cos(θ)2

(A.21)

lim
δ→0

D(δ, θ) = lim
δ→0

√
1− 1 + δ2

(
cos(θ)4 + cos(θ)2 sin(θ)2

)

δ cos(θ)2
(A.22)

lim
δ→0

D(δ, θ) = lim
δ→0

√
δ2 cos(θ)2

(
cos(θ)2 + sin(θ)2

)

δ cos(θ)2
(A.23)

lim
δ→0

D(δ, θ) =
1

cos(θ)
(A.24)

Let

D∗(θ) = lim
δ→0

D(δ, θ) =
1

cos(θ)
(A.25)

We will then prove the density theorems using the notations in this
section.

Proof of the Density bounds theorem

Theorem 1. Density bounds theorem

∀δ ∈
[
0,
τ

2

]
, ∀θ, D∗(θ) ≤ D(δ, θ) ≤ D∗(θ)

sinc
(
δ
2

)

Proof. Let’s consider Err the relative error between D and D∗ :

Err(δ, θ) =
D(δ, θ)−D∗(θ)

D(δ, θ)
(A.26)

To prove Theorem 1 we must prove that Err is bounded and express
its bounds.

Let’s consider :

f(δ, θ) =
D(δ, θ)

D∗(θ)
=

δ cos(θ)

arccos
(
cos(δ) cos(θ)2 + sin(θ)2

) (A.27)
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Let’s compute f(δ, θ) for θ = 0 and θ = π
2

f(δ, 0) = 1 (A.28)

lim
θ→π

2

f(δ, θ) = lim
θ→π

2

δ cos(θ)

arccos
(
cos(δ) cos(θ)2 + sin(θ)2

) (A.29)

lim
θ→π

2

f(δ, θ) = lim
t→0

δ cos
(
π
2
− t
)

arccos
(
cos(δ) cos

(
π
2
− t
)2

+ sin
(
π
2
− t
)2) (A.30)

lim
θ→π

2

f(δ, θ) = lim
t→0

δ sin(t)

arccos
(
cos(δ) sin(t)2 + cos(t)2

) (A.31)

Using l’Hôpital’s rule :

lim
θ→π

2

f(δ, θ) = lim
t→0

δ cos(t)

√
1−
(
cos(δ) sin(t)2 + cos(t)2

)2

2(1− cos(δ)) sin(t) cos(t)
(A.32)

Taylor expansion :

lim
θ→π

2

f(δ, θ) = lim
t→0

δ
√

1−(cos(δ)t2 + 1− t2)2

2(1− cos(δ)) t
(A.33)

lim
θ→π

2

f(δ, θ) = lim
t→0

δ
√

1−(1 + 2(cos(δ)− 1) t2)

2(1− cos(δ)) t
(A.34)

lim
θ→π

2

f(δ, θ) =

√
2

2

δ√
1− cos(δ)

(A.35)

If f(δ, θ) is monotonic in θ, then :

∀δ, ∀θ, 1 ≤ f(δ, θ) ≤
√
2

2

δ√
1− cos(δ)

(A.36)

We must now prove that f is monotonic in θ. We have :
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∂f

∂θ
(δ, θ) = F (δ, θ)G(δ, θ) (A.37)

F (δ, θ) =
2(1− cos(δ)) cos(θ)2√

1−
(
cos(δ) cos(θ)2 + sin(θ)2

)2 − arccos
(
cos(δ) cos(θ)2 + sin(θ)2

)

(A.38)

G(δ, θ) =
δ sin(θ)

arccos
(
cos(δ) cos(θ)2 + sin(θ)2

)2 (A.39)

It is obvious that G is positive for δ > 0 and θ ∈
[
0, τ

2

]
.

Let :

h(δ, θ) = cos(δ) cos(θ)2 + sin(θ)2 (A.40)

then :

h(δ, θ) = 1−(1− cos(δ)) cos(θ)2 (A.41)

Thus h(δ, θ) has the same monotonicity than − cos(θ)2 for θ ∈
[
0, τ

4

]
i.e.

monotonically increasing. Also h(δ, 0) = cos(δ) and cos(δ) > 0 thus h(δ, θ)
is positive for θ ∈

[
0, τ

4

]
and cos(δ) ≤ h(δ, θ) ≤ 1.

from (A.41) :

cos(θ)2 =
1− h(δ, θ)
1− cos(δ)

(A.42)

By substituting (A.42) in (A.38) :

F (δ, θ) =
2(1− h(δ, θ))√
1− h(δ, θ)2

− arccos(h(δ, θ)) (A.43)

Let :

g(x) =
2(1− x)√
1− x2

− arccos(x) (A.44)

We have :
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F (δ, θ) =(g ◦ h)(δ, θ) (A.45)

And :

dg

dx
(x) =

x− 1

(1 + x)
√
1− x2

(A.46)

lim
x→1

g(x) = lim
x→1

2(1− x)√
1− x2

− arccos(x) (A.47)

lim
x→1

g(x) = lim
t→0

2(1− 1 + t)√
1−(1− t)2

− arccos(1− t) (A.48)

lim
x→1

g(x) = lim
t→0

2t√
2t− t2

(A.49)

lim
x→1

g(x) = lim
t→0

√
t

2√
2− t (A.50)

lim
x→1

g(x) = 0 (A.51)

dg
dx
(x) is negative for x ∈ [0, 1] and lim

x→1
g(x) = 0 thus g(x) is positive

and monotonically decreasing for x ∈ [0, 1].

Since g(x) is monotonically decreasing and positive for x ∈ [0, 1] and
h(δ, θ) is monotonically increasing and 0 ≤ h(δ, θ) ≤ 1 for θ ∈

[
0, τ

4

]
, then

(g ◦ h)(δ, θ) is positive and monotonically decreasing for θ ∈
[
0, τ

4

]
.

Thus we have proven that ∂f
∂θ
(δ, θ) is positive for θ ∈

[
0, τ

4

]
, then f(δ, θ)

is monotonically increasing for θ ∈
[
0, τ

4

]
which proves that :

∀δ, ∀θ, 1 ≤ f(δ, θ) ≤
√
2

2

δ√
1− cos(δ)

(A.52)

From (A.52) we can deduce the following bounds on Err(δ, θ) :

∀δ, ∀θ, 0 ≤ Err(δ, θ) ≤ 1−
√
2

√
1− cos(δ)

δ
(A.53)
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And we have, for δ ∈ [0, τ
2
]

√
2

√
1− cos(δ)

δ
=
√
2

√
1−
(
cos
(
δ
2

)2 − sin
(
δ
2

)2)

δ
(A.54)

=
√
2

√
1−
(
1− 2 sin

(
δ
2

)2)

δ
(A.55)

=
2 sin

(
δ
2

)

δ
(A.56)

= sinc

(
δ

2

)
(A.57)

and finally :

∀δ ∈
[
0,
τ

2

]
, ∀θ, 0 ≤ Err(δ, θ) ≤ 1− sinc

(
δ

2

)
(A.58)

Then rearranging Equation (A.58) yields Equation (A.59)

∀δ ∈
[
0,
τ

2

]
, ∀θ, D∗(θ) ≤ D(δ, θ) ≤ D∗(θ)

sinc
(
δ
2

) (A.59)

Proving Theorem 1

Proof of the Density approximation theorem

Theorem 2. Density approximation theorem

∀ε > 0, ∃δlim ≥
√
24ε s.t. ∀δ ≤ δlim, ∀θ, Err(δ, θ) ≤ ε

Proof. For δ ≪ 1 the Taylor series applied to the upper bound of Err
given by Theorem 1 yields :

1− sinc

(
δ

2

)
= 1−

(
1− δ2

24
+O

(
δ4
))

(A.60)

1− sinc

(
δ

2

)
=
δ2

24
−O

(
δ4
)

(A.61)

1− sinc

(
δ

2

)
≤ δ2

24
(A.62)
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Therefore, from Equation (A.58) and (A.62) :

Err(δ, θ) ≤ δ2

24
(A.63)

(A.64)

Then for a given error tolerance ε :

δ2

24
≤ ε =⇒ Err(δ, θ) ≤ ε (A.65)

From proposition (A.65) it follows that :

∀θ, Err
(√

24ε, θ
)
≤ ε (A.66)

(A.67)

And finally :

∀θ, ∀ε > 0, ∀δ ≤
√
24ε, Err(δ, θ) ≤ ε (A.68)

Which proves Theorem 2
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A.2 Proof of the Phase distribution Theorem

Theorem 3. Phase distribution theorem
r(t) is a stationary random process with finite variance =⇒ Φ ∼ U(0, τ)

Proof. During the acquisition of a sky point we have r(t) = X(t). The TLS
must discretise all signals for numeric processing, we’ll use the following
notations :

• n the number of samples recorded per period

• N the number of periods on which the cross-correlation is computed

• K the total number of samples used to compute a cross-correlation
value (K = nN )

• Xi = r
(
i τ
n

)
a recorded sample

• C(i) a point of the discrete cross-correlation

• Φ the measured phase random variable

The discretised sent signal s(i) is given by :

s(i) = a cos

(
iτ

n

)
(A.69)

The discrete cross correlation is given by :

C(i) =
1

K

K
2∑

k=−K
2

s(k)Xi+k (A.70)

Note that :

∀θ, ∀k, cos(θ) = cos(θ + kτ) (A.71)

∀θ, ∀k, cos(θ) = cos(−kτ − θ) (A.72)

From Equations (A.71) and (A.72) we have :

∀i, ∀k, s(i) = s(i+ kn) (A.73)

∀i, ∀k, s(i) = s(−kn− i) (A.74)
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Using the properties given Equations (A.73) and (A.74), Equation
(A.70) can be rewritten as :

C(i) =
1

nN

n
2∑

j=0

s(j)
N∑

k=−N

(Xi+j+kn +Xi−j−kn) (A.75)

Let :

Yi,j =
1

N

N∑

k=−N

(Xi+j+kn +Xi−j−kn) (A.76)

Since all Xi are independent, identically distributed with mean µ and
with finite variance σ2, for big enough N (in practice, here N > 15 is
enough), we can apply the Central Limit Theorem :

∀(i, j), Yi,j ∼ N
(
2µ,

2σ2

N

)
(A.77)

where N (µ, σ2) is the normal distribution with mean µ and variance
σ2.

Equation (A.75) can now be written as :

C(i) =
1

n

n
2∑

j=0

s(j)Yi,j (A.78)

Then :

C(i) ∼ N


2µ

n

n
2∑

j=0

s(j),
2σ2

n2N

n
2∑

j=0

s(j)2


 (A.79)

We have now characterised the cross-correlation if r(t) is a stationary
random process with finite variance, completing step 2 of the process
presented Frame 5.1. We must now determine how the cross-correlation
will impact the phase calculation.

Let :
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U =
2µ

n

n
2∑

j=0

s(j) (A.80)

Σ =
2σ2

n2N

n
2∑

j=0

s(j)2 (A.81)

∀i,Wi ∼ N (0, 1) (A.82)

Then the cross-correlation signal can be written as :

C(i) = U + ΣWi (A.83)

Considering that the phase is computed with Equation (5.12). Let the
four sampling point be :

i1 = 0 (A.84)

i2 =
n

4
(A.85)

i2 =
n

2
(A.86)

i4 =
3n

4
(A.87)

Let Γ be the r.v. described by :

Γ = arctan

(
C(i4)− C(i2)
C(i1)− C(i3)

)
(A.88)

Using (A.83) yields :

Γ = arctan

(
Wi4 −Wi2

Wi1 −Wi2

)
(A.89)

And the difference of two normal distribution is again a normal distri-
bution :

Γ = arctan

(
2W ′

1

2W ′
2

)
(A.90)

Γ = arctan

(
W ′

1

W ′
2

)
(A.91)

W ′
i ∼ N (0, 1) (A.92)
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Let :

Z =
W ′

1

W ′
2

(A.93)

Then Z follows a standard Cauchy distribution,

Z ∼ Cauchy(0, 1) (A.94)

and

Γ = arctan(Z) (A.95)

If FZ is the cumulative distribution function for the r.v. Z, we have :

FZ(z) = P(Z ≤ z) (A.96)

FZ(z) =
1

π
arctan(z) +

1

2
(A.97)

And if FΓ is the cumulative distribution function for the r.v. Γ, we have
:

FΓ(γ) = P(Γ ≤ γ) (A.98)

FΓ(γ) = P(arctan(Z) ≤ γ) (A.99)

(A.100)

Since γ ∈
[
− τ

4
, τ
4

]
:

arctan(Z) ≤ γ ⇐⇒ Z ≤ tan(γ) (A.101)

Equation (A.101) implies :

FΓ(γ) = P(Γ ≤ γ) (A.102)

FΓ(γ) = P(arctan(Z) ≤ γ) (A.103)

FΓ(γ) = P(Z ≤ tan(γ)) (A.104)

FΓ(γ) = FZ(tan(γ)) (A.105)

FΓ(γ) =
γ

π
+

1

2
(A.106)

fΓ(γ) =
1

π
(A.107)

Γ ∼ U
(
−τ
4
,
τ

4

)
(A.108)

We know that :

Φ = arctan2(W ′
1,W

′
2) (A.109)

To determine the distribution of Φ we must consider each sign case for
arctan2(W ′

2,W
′
1).
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Case W ′
1 > 0 and W ′

2 > 0

In that case we have :

Φ = arctan

(
W ′

1

W ′
2

)
(A.110)

LetW1 be the proposition W ′
1 > 0,W ′

2 > 0. Such restrictions on W ′
1 and

W ′
2 implies restrictions on Φ :

W1 ⇐⇒ Φ ∈
[
0,
τ

4

]
(A.111)

And for φ ∈
[
0, τ

4

]

P(Φ ≤ φ) = P(Γ ≤ φ | W1)P(W1) (A.112)

P(Φ ≤ φ) = 2P(0 ≤ Γ ≤ φ)
1

4
(A.113)

P(Φ ≤ φ) =
1

2
(P(Γ ≤ φ)− P(Γ ≤ 0)) (A.114)

From Equations (A.111) and (A.114) we have :

∀φ ≤ τ

4
,P(Φ ≤ φ) =

φ

τ
(A.115)

Case W ′
1 > 0 and W ′

2 < 0

In that case we have :

Φ = arctan

(
W ′

1

W ′
2

)
+
τ

2
(A.116)

LetW2 be the proposition W ′
1 > 0,W ′

2 < 0. Such restrictions on W ′
1 and

W ′
2 implies restrictions on Φ :

W2 ⇐⇒ Φ ∈
[τ
4
,
τ

2

]
(A.117)

And for φ ∈
[
τ
4
, τ
2

]
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P(Φ ≤ φ) = P

(
Φ ≤ τ

4

)
+ P

(
Γ +

τ

2
≤ φ | W2

)
P(W2) (A.118)

P(Φ ≤ φ) =
1

4
+ P

(
Γ ≤ φ− τ

2
| W2

) 1

4
(A.119)

P(Φ ≤ φ) =
1

4
+

1

4

(
2P
(
Γ ≤ φ− τ

2

))
(A.120)

P(Φ ≤ φ) =
1

4
+

1

4

(
4φ

τ
− 1

)
(A.121)

P(Φ ≤ φ) =
φ

τ
(A.122)

From Equations (A.117) and (A.122) we have :

∀φ ∈
[τ
4
,
τ

2

]
,P(Φ ≤ φ) =

φ

τ
(A.123)

Case, W ′
1 < 0 and W ′

2 < 0

In that case we have :

Φ = arctan

(
W ′

1

W ′
2

)
+
τ

2
(A.124)

LetW3 be the proposition W ′
1 < 0,W ′

2 < 0. Such restrictions on W ′
1 and

W ′
2 implies restrictions on Φ :

W3 ⇐⇒ Φ ∈
[
τ

2
,
3τ

4

]
(A.125)

And for φ ∈
[
τ
2
, 3τ

4

]

P(Φ ≤ φ) = P

(
Φ ≤ τ

2

)
+ P

(
Γ +

τ

2
≤ φ | W3

)
P(W3) (A.126)

P(Φ ≤ φ) =
1

2
+ P

(
Γ ≤ φ− τ

2
| W3

) 1

4
(A.127)

P(Φ ≤ φ) =
1

2
+

1

4

(
2P
(
0 ≤ Γ ≤ φ− τ

2

))
(A.128)

P(Φ ≤ φ) =
1

2
+

1

2

(
P

(
Γ ≤ φ− τ

2

)
− P(Γ ≤ 0)

)
(A.129)

P(Φ ≤ φ) =
1

2
+

1

2

(
2φ

τ
− 1

)
(A.130)

P(Φ ≤ φ) =
φ

τ
(A.131)
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From Equations (A.125) and (A.131) we have :

∀φ ∈
[
τ

2
,
3τ

4

]
,P(Φ ≤ φ) =

φ

τ
(A.132)

Case, W ′
1 < 0 and W ′

2 > 0

In that case we have :

Φ = arctan

(
W ′

1

W ′
2

)
+ τ (A.133)

LetW4 be the proposition W ′
1 < 0,W ′

2 > 0. Such restrictions on W ′
1 and

W ′
2 implies restrictions on Φ :

W4 ⇐⇒ Φ ∈
[
3τ

4
, τ

]
(A.134)

And for φ ∈
[
3τ
4
, τ
]

P(Φ ≤ φ) = P

(
Φ ≤ 3τ

4

)
+ P(Γ + τ ≤ φ | W4)P(W4) (A.135)

P(Φ ≤ φ) =
3

4
+ P(Γ ≤ φ− τ | W4)

1

4
(A.136)

P(Φ ≤ φ) =
3

4
+

1

4
(2P(Γ ≤ φ− τ)) (A.137)

P(Φ ≤ φ) =
3

4
+

1

4

(
4φ

τ
− 3

)
(A.138)

P(Φ ≤ φ) =
φ

τ
(A.139)

From Equations (A.134) and (A.139) we have :

∀φ ∈
[
3τ

4
, τ

]
,P(Φ ≤ φ) =

φ

τ
(A.140)

Finally we proved that :

∀φ ∈ [0, τ ] ,P(Φ ≤ φ) =
φ

τ
(A.141)
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Thus the cumulative distribution function of Φ is :

FΦ(φ) =
φ

τ
(A.142)

(A.143)

and the probability density function is :

fΦ(φ) =
1

τ
(A.144)

and Φ is uniformly distributed in [0, τ ]

Φ ∼ U(0, τ) (A.145)

Proving Theorem 3
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A.3 Unconstrained angular edge loss

Developing equation (6.14) :

R sinψ = w0

√√√√√1 +



λ
(
R cosψ −Rw

0

)

πw2
0




2

⇐⇒ R2 sin2 ψ = w2
0 +

λ2
(
R cosψ −Rw

0

)2

π2w2
0

⇐⇒ R2
(
1− cos2 ψ

)
= w2

0 +
λ2

π2w2
0

(
R2 cos2 ψ − 2Rw

0

R cosψ +R2
w

0

)

⇐⇒
(
1 +

λ2

π2w2
0

)
R2 cos2 ψ − 2

λ2Rw
0
R

π2w2
0

cosψ −R2 + w2
0 +

λ2R2
w

0

π2w2
0

= 0

Let :

K =
λ

πw0

Let δ be the reduced discriminant of the polynomial in cosψ, then :

δ = K4R2R2
w

0

−
(
1 +K2

)
R2
(
−R2 + w2

0 +K2R2
w

0

)

and finally :

cosψ =

K2Rw
0

±
√
K4R2

w
0

+ (1 +K2)
(
R2 − w0

2 −K2R2
w

0

)

(1 +K2)R

We must now discuss which polynomial solution must be chosen.
Since we are in a paraxial approximation we must have :

λ≪ w0 (A.146)

From Equation (A.146) we deduce :

K ≪ 1 (A.147)
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For TLS devices the minimal beam radius will be in the order of
millimeters and the targets to be studied will be at least a few meters from
the laser exit, it follows that :

w0
2 ≪ R2 (A.148)

We also know that, for TLS devices, the laser focus distance Rw
0

will
be, at most, one order of magnitude higher than the distance to the targets,
therefore :

K2R2
w

0

≪ R2 (A.149)

From Equations (A.147), (A.148) and (A.149) we have :

(
1 +K2

) (
R2 − w0

2 −K2R2
w

0

)
> 0 (A.150)

Equation (A.150) implies :

√
K4R2

w
0

+ (1 +K2)
(
R2 − w0

2 −K2R2
w

0

)
> K2Rw

0

(A.151)

From Equation (A.151) and since we must have 0 ≤ ψ ≤ τ
4

(i.e. cosψ ≥
0) we conclude that :

cosψ =

K2Rw
0

+

√
K4R2

w
0

+ (1 +K2)
(
R2 − w0

2 −K2R2
w

0

)

(1 +K2)R
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We present here the extended abstracts of the different communica-
tions of that work

B.1 2016 IEEE International Conference on

Functional-Structural Plant Growth

Modeling, Simulation, Visualization and

Applications (FSPMA 2016, Qingdao,

China)

A point-cloud classification method to assess biases in tLiDAR-based
forest canopy gap fraction estimates

Romain Rombourg1,2, Eric Casella2, Franck Hétroy-Wheeler1 and Helen
Mckay2

1 Université Grenoble Alpes and Inria, Laboratoire Jean Kuntzmann, Montbonnot-Saint-Martin,
38330, France

2 Forest Research, Centre for Sustainable Forestry and Climate Change, Farnham, GU10 4LH,
UK

Corresponding author: romain.rombourg@gmail.com

New ground-based monitoring techniques are required for reporting
of forest carbon stocks and fluxes at largest spatial and temporal scales.
Terrestrial laser (TLS) scanning technologies have recently been tested
in several forest inventories and were reported as alternative tools to
rapidly provide more accurate and more detailed biometrics parame-
ters and structural characteristics of vegetation than traditional methods.
More than stem forms, tree heights and crown volumes; estimates for e.g.,
total above-ground volumes, branching patterns and the characteristics of

167
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the leaf area display in space have been reported for isolated plants and
forest canopies from TLS readings. Nevertheless, TLS are also subject to
measurement uncertainties taking place at the range-finder step-process
during a point-cloud acquisition. Scans and TLS characteristics, spatial
heterogeneity in the geometrical and physical properties of vegetation
and environmental factors all contribute to signal-to-noise and ranging
artifacts observed in TLS point-cloud data, which influence the resolv-
ing power of the techniques in providing relevant information to forest
managers. This study considers the development of point classification
and correction algorithms tuned to TLS vegetation assessment in forest
environments to address limits in the single return phase-shift laser tech-
nology. Our development activities were based on raw TLS data. Sky
points (occurring wherever the laser beam is not reflected) and mixed
points (occurring at spatial discontinuities wherever the laser beam foot-
print lies partially on more than one component) were classified after
computing depth and intensity images from a point-cloud. The recorded
range (depth) and its returning intensity value were then allocated to the
pixel underlying the path of the fired laser beam. High variance found
in the depth image was used to detect isolated sky points. An intensity
threshold was then computed according to their intensity value. All points
in the intensity image under this threshold were then classified as sky
points and filtered. A point was classified as a mixed point from the depth
image by computing the angles between the laser beam direction and the
normal to the triangles formed by the point and its neighbors, if more than
half on these angles are above a given threshold the point is labeled as a
mixed point. In order to correct the location of the detected mixed points,
we proved that their position is driven by a small set of equations. For
each mixed point, we used the distances from the TLS to the components
hit, the intensity of the neighboring points and our mixed point model
to compute which component intercepted most of the laser beam at this
point, and move it on this component. Any uncorrected mixed point is
filtered at the end of the procedure. Algorithms were developed from
data collected under controlled conditions (i.e., considering scans and
TLS characteristics and the spatial complexity of vegetation) and assessed
against TLS readings recorded in forest environments. Overall, we were
able to detect all the noise in the point-cloud with a limited number of
wrong detection. First results show that the model may allow us to correct
up to 80% of the mixed point, significantly increasing the point cloud
quality.
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New ground-based monitoring techniques are required for reporting
of forest carbon stocks and fluxes at largest spatial and temporal scales.
Terrestrial laser scanning (TLS) technologies have recently been tested in
several forest inventories to provide tree mock-ups from recorded point-
cloud data (see e.g., Raumonen et al., 2015). For this purpose, geometrical
reconstruction methods have been proposed and reported results have
shown that TLS technologies can overcome limitations from traditional
methods in estimating biometric parameters, standing biomasses and
the structural characteristics of vegetation (see e.g., Casella et al., 2013).
Nevertheless, the quality of the post-processing routines used to filter
noise and ranging artefacts, generally reported in point-cloud data, may
influence the resolving power of these reconstruction methods.

This study considers a comprehensive analysis of the effects of veg-
etation, scans and TLS characteristics, point-cloud filtering techniques
and model parameterisation on the quality of the reconstructed mock-ups
from point-cloud data.

Our analysis was based on raw point-clouds recorded by a single-
return phase-shift Leica HDS-6100 TLS on four 80-year-old temperate
deciduous tree species (Birch, Hornbeam, Larch and Oak). Scans were
performed during winter-time in dried and low wind speed (less than
1 m s-1) conditions. Three trees were recorded per spp. from six scan
positions around each tree and with three TLS sampling resolution levels
(0.018-0.072) at each scan position. Trees were then harvested and their
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dry mass was measured. An empirical function describing the vertical
profile in over-bark wood density was described from each single tree.
Point-clouds were filtered using both a commercial and an alternative
filtering method developed for this study (see Rombourg et al., 2016)
before point-cloud co-registrations were applied. Tree mock-ups were
then computed by the method described in Raumonen et al. (2013) and
Raumonen et al. (2015) and standing biomasses estimated.

Filtering options provided by the commercial software were sub-
optimal, yielding overestimations in biomass estimates (up to 2 fold)
for coarse and fine branches (diameters less than 7 cm). The number
of scan positions, the TLS sampling resolution and the tested model pa-
rameters all influenced the quality of the reconstructed mock-ups. After
applying our filtering method to the point-clouds, neither the TLS sam-
pling resolution, nor the model parameters have any influence on the
quality of the reconstructed mock-ups. Biomass estimates were generally
underestimated, but gradually reached less than 5% difference to actual
values with increasing the number of TLS positions around the trees. The
quality of the resulting tree mock-ups was finally assessed throughout the
hemispherical photography technique using the method of Casella et al.
(2013).

Casella, E. et al. (2013). tLiDAR methodologies can overcome limitations
in estimating forest canopy LAI from conventional hemispherical photograph
analyses. 7th International Conference on FSPM, Saariselk, Finland.

Raumonen, P. et al. (2013) Fast automatic precision tree models from terres-
trial laser scanner data. Remote Sens. 5, 491520.

Raumonen, P. et al. (2015) Massive-scale tree modelling from TLS data.
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, Volume II-3/W4, 2015.

Rombourg, R. et al. (2016) A point-cloud classification method to assess
biases in tLiDAR-based forest canopy gap fraction estimates. 1st International
conference on FSPMA, Qingdao, China
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De nouvelles méthodes sont requises pour estimer les flux et stocks
de carbone à de plus grandes échelles. Les scanners laser terrestres (TLS),
testés sur plusieurs inventaires forestiers, ont montré quils étaient capa-
bles de fournir rapidement des paramètres biométriques et structurels de
la végétation de manière plus précise que les méthodes traditionnelles.
Cependant, ces scanners sont sujets à de nombreuses sources derreurs
dues à lintéraction entre le processus dacquisition et les hétérogénéités
physiques et spatiales de la végétation. Ces facteurs créent des arte-
facts dans la mesure de distance, entravant les méthodes mentionnées
précédemment. Cette étude se focalise sur le développent dalgorithmes
de classification adaptés aux scènes forestières acquises via un scanner
laser à modulation damplitude. Notre développement sest basé sur les
scans bruts. Les points de ”ciel” (pas de retour laser) et les points ”mixtes”
(tir laser intercepté par plusieurs objets) ont été classifiés à partir dimages
de profondeur et dintensité obtenues à partir dun scan. Dans ces images,
la position dun pixel représente la direction de tir du laser et sa valeur la
profondeur ou intensité. Les pixels présentant les plus hautes variances
locales dans limage de profondeur permettent disoler un échantillon de
points de ciel. Ces points permettent de calculer un seuil dintensité. Tous
les points sous ce seuil sont marqués comme points de ciel et filtrés. Un
point est classifié comme point mixte en calculant les angles entre la di-
rection du tir laser et les normales aux triangles formés par ce point et
ses voisins dans limage de profondeur. Si plus de la moitié des angles
calculés sont au dessus dun seuil donné, le point est marqué comme
mixte. Les algorithmes ont été développés, testés et évalués sur des scans
forestiers et sur des scans en conditions contrlées (définies en considérant
les propriétés physiques et spatiales des environnements forestiers). Nous
avons été capable de détecter tout le bruit dans la majorité des cas avec
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une nombre limité de fausses détections. Ce travail sera suivi par le
développement dune méthode de correction des points mixtes basée sur
un modèle mathématique du phénomène.

B.4 3D Tree Models For Forest Dynamics

meeting (2020, Helsinki, Finland)

Sensitivity analysis of an automated processing chain and uncertainty
in the prediction of tree above ground biomass from TLS data

Eric Casella1, Romain Rombourg1,2, Pasi Raumonen3, Franck
Hétroy-Wheeler4 and Markku Åkerblom3

1 Forest Research, Centre for Sustainable Forestry and Climate Change, Farnham, GU10 4LH,
UK

2 Université Grenoble Alpes and Inria, Laboratoire Jean Kuntzmann, Montbonnot-Saint-Martin,
38330, France

3 Mathematics, Tampere University, Korkeakoulunkatu 10, 33720 Tampere, Finland
4 Department of Computer Science, University of Strasbourg, 67081, France

Corresponding author: eric.casella@forestresearch.gov.uk

The above ground volume (AGV) measurement of a sampled tree is a
fundamental input to provide predictions of forest, woodland and urban
resources, but it is generally biased by country-specific merchantable
thresholds. Terrestrial laser scanners (TLS) have been demonstrated to be
promising for non-destructive and accurate measurements. Actually, there
have been recent procedural approaches to develop automated processing
chains for extracting tree metrics from TLS data. A sensitivity analysis of
an automated chain on 12 parameters is presented here to report effects
of TLS and scan acquisition characteristics and routines used for data
filtering and volume estimates on AGBiomass predictions. This analysis
was based on data recorded by a Leica HDS-6100 on Oak, Hornbeam,
Birch and Larch during winters 2014-16. Three trees were recorded per
spp. from six scan positions around each tree and with three TLS sampling
resolutions (0.072-0.018o) per position. Scanned trees were felled, then
measured in detail and stratified into lower stem (Ls), coarse (Cb, diameter
ge 7 cm) and small (Sb, lt 7 cm) branch sections. When compared against
ground data, this analysis indicated a consistent pattern across all trees
for DBH (r2 = 0.98, bias < 0.001m), tree height (r2 = 0.89, bias > −0.63m)
or AGBs (r2 = 0.98, bias < 4; r2 = 0.99, bias > −34; r2 = 0.96, bias < 8kg
for Ls, Cb and Sb, respectively) with a TLS resolution of 0.018o driving
improved fits for h (+5%), AGBCb (+13%) and AGBSb (+27%) and 6 scan
positions driving improved fits forAGBCb (+56%) andAGBSb (+36%). The




	Contents
	List of Figures
	List of Tables
	List of Symbols and Acronyms
	Introduction
	The TLS, an essential tool
	TLS advantages and limitations
	Outline of the thesis

	Terrestrial Laser Scanners : scanning principles
	Distance measurement
	Sampling principle
	Laser beam and edge loss model

	Previous works
	3D based methods
	2D based methods
	TLS scans projections
	Conclusions

	Equirectangular projection
	Equirectangular projection formal definition
	Equirectangular projection algorithm
	Projection evaluation
	Discussion and conclusions

	Sky and Mixed point filtering
	Sky noise analysis
	Sky noise detection
	Mixed point detection
	Discussion and conclusions

	Detection evaluation in controlled conditions
	Experimental setup
	Reference construction
	Result extraction and analysis
	Sky filter results
	Mixed-point filter results
	Discussion

	Conclusion
	Summary of contributions
	Limitations
	Future works

	Bibliography
	Proofs
	Proofs of the spherical density Theorems
	Proof of the Phase distribution Theorem
	Unconstrained angular edge loss

	Communications
	FSPMA 2016
	FSPMA 2016
	6ieme atelier T-LiDAR
	3DFDYN
	Video communication


