S. Agarwal, S. Kandula, N. Bruno, M. Wu, I. Stoica et al., Reoptimizing data parallel computing, Presented as part of the 9th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 12), pp.281-294, 2012.

Y. Al-dhuraibi, F. Paraiso, N. Djarallah, M. , and P. , Elasticity in cloud computing : state of the art and research challenges, IEEE Transactions on Services Computing, vol.11, issue.2, pp.430-447, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01529654

E. Alpaydin, Introduction to machine learning, 2014.

A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig et al., Web services agreement specification (ws-agreement), Open grid forum, vol.128, p.216, 2007.

E. Angelou, N. Papailiou, I. Konstantinou, D. Tsoumakos, and N. Koziris, , 2012.

, Automatic scaling of selective sparql joins using the tiramola system, Proceedings of the 4th International Workshop on Semantic Web Information Management, p.1

M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu et al., Spark sql : Relational data processing in spark, Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp.1383-1394, 2015.

C. Audet, G. Savard, and W. Zghal, New branch-and-cut algorithm for bilevel linear programming, Journal of Optimization Theory and Applications, vol.134, issue.2, pp.353-370, 2007.

K. K. Azumah, L. T. Sørensen, and R. Tadayoni, Hybrid cloud service selection strategies : A qualitative meta-analysis, IEEE 7th International Conference on Adaptive Science & Technology (ICAST), pp.1-8, 2018.

E. Balas, S. Ceria, and G. Cornuéjols, A lift-and-project cutting plane algorithm for mixed 0-1 programs. Mathematical programming, vol.58, pp.295-324, 1993.

E. Barrett, E. Howley, and J. Duggan, Applying reinforcement learning towards automating resource allocation and application scalability in the cloud, Concurrency and Computation : Practice and Experience, vol.25, issue.12, pp.1656-1674, 2013.

M. Bégin, B. Jones, J. Casey, E. Laure, F. Grey et al., , 2008.

, An egee comparative study : Grids and clouds-evolution or revolution, EGEE III project Report, vol.30, pp.1-33

S. Bonneau, Placement de requete (s) sql sur une architecture parallele a memoire distribuee : du statique au dynamique, vol.3, 1999.

L. Bouganim, O. Kapitskaia, and P. Valduriez, Memory-adaptive scheduling for large query execution, Proceedings of the seventh international conference on Information and knowledge management, pp.105-115, 1998.

R. Bragg, Cloud computing : When computers really rule, Tech News World, vol.12, issue.12, 2008.

N. Bruno, S. Jain, and J. Zhou, Continuous cloud-scale query optimization and processing, Proceedings of the VLDB Endowment, vol.6, pp.961-972, 2013.

V. Chang, Towards a big data system disaster recovery in a private cloud, Ad Hoc Networks, vol.35, pp.65-82, 2015.

A. Chauhan, V. Fontama, M. Hart, W. Tok, and B. Woody, Introducing Microsoft Azure HDInsight, 2014.

D. Chen, R. G. Batson, and Y. Dang, Applied integer programming, 2010.

X. Chen, Q. Y. Hao, Y. Jin, and W. C. Zhang, Database query in a share-nothing database architecture, US Patent, vol.9, p.959, 2015.

D. Cheng, X. Zhou, P. Lama, J. Wu, and C. Jiang, Cross-platform resource scheduling for spark and mapreduce on yarn, IEEE Transactions on Computers, vol.66, issue.8, pp.1341-1353, 2017.

M. Cheng, J. Li, and S. Nazarian, Drl-cloud : Deep reinforcement learning-based resource provisioning and task scheduling for cloud service providers, Proceedings of the 23rd Asia and South Pacific Design Automation Conference, pp.129-134, 2018.

T. C. Chieu, A. Mohindra, and A. A. Karve, Scalability and performance of web applications in a compute cloud, 2011 IEEE 8th International Conference on, pp.317-323, 2011.

S. Chun and B. Choi, Service models and pricing schemes for cloud computing, Cluster Computing, vol.17, pp.529-535, 2014.

C. J. Date and H. Darwen, A Guide to the SQL Standard, vol.3, 1987.

B. De-haaff, Cloud computing-the jargon is back, Cloud Computing Journal, 2008.

J. Dean and S. Ghemawat, Mapreduce : simplified data processing on large clusters, Communications of the ACM, vol.51, issue.1, pp.107-113, 2008.

X. Dutreilh, S. Kirgizov, O. Melekhova, J. Malenfant, N. Rivierre et al., Using reinforcement learning for autonomic resource allocation in clouds : towards a fully automated workflow, ICAS 2011, The Seventh International Conference on Autonomic and Autonomous Systems, pp.67-74, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01122123

R. Evans and J. Gao, Deepmind ai reduces google data centre cooling bill by 40%. DeepMind blog, p.20, 2016.

S. Farokhi, P. Jamshidi, E. B. Lakew, I. Brandic, and E. Elmroth, A hybrid cloud controller for vertical memory elasticity : A control-theoretic approach, Future Generation Computer Systems, vol.65, pp.57-72, 2016.

D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh et al., Azure accelerated networking : Smartnics in the public cloud, 15th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 18), pp.51-66, 2018.

A. Floratou, U. F. Minhas, and F. Özcan, Sql-on-hadoop : full circle back to shared-nothing database architectures, Proceedings of the VLDB Endowment, vol.7, pp.1295-1306, 2014.

V. François-lavet, P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau, , 2018.

, An introduction to deep reinforcement learning. Foundations and Trends R in Machine Learning, vol.11, pp.219-354

A. Gandhi, S. Thota, P. Dube, A. Kochut, and L. Zhang, Autoscaling for hadoop clusters, Cloud Engineering (IC2E), 2016 IEEE International Conference on, pp.109-118, 2016.

H. Garcia-molina, Database systems : the complete book, 2008.

G. Gardarin, , 2003.

S. Garfinkel, Architects of the information society : 35 years of the Laboratory for Computer Science at MIT, 1999.

M. N. Garofalakis and Y. E. Ioannidis, Multi-dimensional resource scheduling for parallel queries, ACM SIGMOD Record, vol.25, pp.365-376, 1996.

M. N. Garofalakis and Y. E. Ioannidis, Parallel query scheduling and optimization with time-and space-shared resources, SORT, vol.1, issue.T2, p.3, 1997.

J. Geelan, Twenty-one experts define cloud computing, Cloud Computing Journal, vol.4, pp.1-5, 2009.

H. Ghanbari, B. Simmons, M. Litoiu, and G. Iszlai, Exploring alternative approaches to implement an elasticity policy, Cloud Computing (CLOUD), 2011 IEEE International Conference on, pp.716-723, 2011.

D. Griebler, A. Vogel, C. A. Maron, A. M. Maliszewski, C. Schepke et al., Performance of data mining, media, and financial applications under private cloud conditions, 2018 IEEE Symposium on Computers and Communications (ISCC), pp.450-00456, 2018.

A. Gruenheid, E. Omiecinski, and L. Mark, Query optimization using column statistics in hive, Proceedings of the 15th Symposium on International Database Engineering & Applications, pp.97-105, 2011.

M. Hale and M. Egerstedty, Differentially private cloud-based multi-agent optimization with constraints, 2015 American Control Conference (ACC), pp.1235-1240, 2015.

A. Hameurlain, Traitement parallèle dans les bases de données relationnelles, 1996.

R. Han, L. Guo, M. M. Ghanem, and Y. Guo, Lightweight resource scaling for cloud applications, Cluster, Cloud and Grid Computing (CCGrid), pp.644-651, 2012.

M. Z. Hasan, E. Magana, A. Clemm, L. Tucker, and S. L. Gudreddi, Integrated and autonomic cloud resource scaling, Network Operations and Management Symposium (NOMS), pp.1327-1334, 2012.

K. A. Hua, C. Lee, and J. Peir, Interconnecting shared-everything systems for efficient parallel query processing, Proceedings of the First International Conference on Parallel and Distributed Information Systems, pp.262-270, 1991.

C. Huang, C. Shih, W. Hu, B. Lin, and C. Cheng, The improvement of auto-scaling mechanism for distributed database-a case study for mongodb, Network Operations and Management Symposium (APNOMS), 2013 15th Asia-Pacific, pp.1-3, 2013.

A. A. Ibrahim, S. Varrette, and P. Bouvry, On verifying and assuring the cloud sla by evaluating the performance of saas web services across multi-cloud providers, 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W), pp.69-70, 2018.

Y. E. Ioannidis and S. Christodoulakis, On the propagation of errors in the size of join results, vol.20, 1991.

E. Iranpour and S. Sharifian, A distributed load balancing and admission control algorithm based on fuzzy type-2 and game theory for large-scale saas cloud architectures, Future Generation Computer Systems, vol.86, pp.81-98, 2018.

M. Jarke and J. Koch, Query optimization in database systems, ACM Computing surveys (CsUR), vol.16, issue.2, pp.111-152, 1984.

S. Jha, A. Merzky, and G. Fox, Using clouds to provide grids with higher levels of abstraction and explicit support for usage modes, Concurrency and computation : Practice and Experience, vol.21, issue.8, pp.1087-1108, 2009.

L. Jin, V. Machiraju, and A. Sahai, Analysis on service level agreement of web services, p.19, 2002.

A. D. Josep, R. Katz, A. Konwinski, L. Gunho, D. Patterson et al., A view of cloud computing, Communications of the ACM, vol.53, issue.4, 2010.

N. Kabra and D. J. Dewitt, Efficient mid-query re-optimization of sub-optimal query execution plans, ACM SIGMOD Record, vol.27, pp.106-117, 1998.

S. A. Karthikeyan, Introduction to azure iaas, Practical Microsoft Azure IaaS, pp.1-38, 2018.

S. Khatua, A. Ghosh, and N. Mukherjee, Optimizing the utilization of virtual resources in cloud environment, Virtual Environments Human-Computer Interfaces and Measurement Systems (VECIMS), 2010 IEEE International Conference on, pp.82-87, 2010.

K. Kim, K. Jeon, H. Han, S. Kim, H. Jung et al., Mrbench : A benchmark for mapreduce framework, 14th IEEE International Conference on Parallel and Distributed Systems, pp.11-18, 2008.

H. Kllapi, E. Sitaridi, M. M. Tsangaris, and Y. Ioannidis, Schedule optimization for data processing flows on the cloud, Proceedings of the 2011 ACM SIGMOD International Conference on Management of data, pp.289-300, 2011.

I. Konstantinou, E. Angelou, D. Tsoumakos, C. Boumpouka, N. Koziris et al., Tiramola : elastic nosql provisioning through a cloud management platform, Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, pp.725-728, 2012.

Y. Kouki, Approche dirigée par les contrats de niveaux de service pour la gestion de l'élasticité du" nuage, 2013.

Y. Kouki and T. Ledoux, Sla-driven capacity planning for cloud applications, 4th IEEE International Conference on Cloud Computing Technology and Science Proceedings, pp.135-140, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00734417

R. M. Kretchmar, Parallel reinforcement learning, The 6th World Conference on Systemics, Cybernetics, and Informatics, 2002.

A. M. Law, W. D. Kelton, and W. D. Kelton, Simulation modeling and analysis, vol.3, 2000.

E. L. Lawler and D. E. Wood, Branch-and-bound methods : A survey, Operations research, vol.14, issue.4, pp.699-719, 1966.

N. Liu, Z. Li, J. Xu, Z. Xu, S. Lin et al., A hierarchical framework of cloud resource allocation and power management using deep reinforcement learning, 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp.372-382, 2017.

H. Ludwig, A. Keller, A. Dan, R. P. King, and R. Franck, Web service level agreement (wsla) language specification. Ibm corporation, pp.815-824, 2003.

A. Maarouf, A. Marzouk, and A. Haqiq, Practical modeling of the sla life cycle in cloud computing, 15th International Conference on Intelligent Systems Design and Applications (ISDA), pp.52-58, 2015.

M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, Algorithms for costand deadline-constrained provisioning for scientific workflow ensembles in iaas clouds, Future Generation Computer Systems, vol.48, pp.1-18, 2015.

H. Mao, M. Alizadeh, I. Menache, and S. Kandula, Resource management with deep reinforcement learning, Proceedings of the 15th ACM Workshop on Hot Topics in Networks, pp.50-56, 2016.

A. Mazrekaj, I. Shabani, and B. Sejdiu, Pricing schemes in cloud computing : an overview, International Journal of Advanced Computer Science and Applications, vol.7, issue.2, pp.80-86, 2016.

R. Mchaney, Understanding computer simulation, 2009.

M. Mehta and D. J. Dewitt, Data placement in shared-nothing parallel database systems, The VLDB Journal-The International Journal on Very Large Data Bases, vol.6, issue.1, pp.53-72, 1997.

P. Mell and T. Grance, The nist definition of cloud computing, 2011.

P. Mell and T. Grance, The nist definition of cloud computing, 2011.

T. C. Mills and T. C. Mills, Time series techniques for economists, 1991.

B. Mitschang, Query processing in database systems, 1995.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness et al., Human-level control through deep reinforcement learning, Nature, vol.518, issue.7540, p.529, 2015.

B. Nag and D. J. Dewitt, Memory allocation strategies for complex decision support queries, Conference on Information and Knowledge Management : Proceedings of the seventh international conference on Information and knowledge management (CIKM), vol.2, pp.116-123, 1998.

A. Naskos, A. Gounaris, and P. Katsaros, Cost-aware horizontal scaling of nosql databases using probabilistic model checking, Cluster Computing, vol.20, issue.3, pp.2687-2701, 2017.

A. Naskos, A. Gounaris, and I. Konstantinou, Elton : A cloud resource scalingout manager for nosql databases, IEEE 34th International Conference on Data Engineering (ICDE), pp.1641-1644, 2018.

A. Naskos, E. Stachtiari, A. Gounaris, P. Katsaros, D. Tsoumakos et al., Dependable horizontal scaling based on probabilistic model checking, 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp.31-40, 2015.

M. Nassar, Support cloud sla establishment using mde, Cloud Computing and Big Data : Technologies, Applications and Security, vol.49, p.167, 2018.

M. Padberg and G. Rinaldi, Optimization of a 532-city symmetric traveling salesman problem by branch and cut, Operations Research Letters, vol.6, issue.1, pp.1-7, 1987.

C. Pahl, Containerization and the paas cloud, IEEE Cloud Computing, vol.2, issue.3, pp.24-31, 2015.

D. F. Parkhill, Challenge of the computer utility, 1966.

V. Persico, A. Pescapé, A. Picariello, and G. Sperlí, Benchmarking big data architectures for social networks data processing using public cloud platforms, Future Generation Computer Systems, vol.89, pp.98-109, 2018.

I. Pietri, Y. Chronis, and Y. Ioannidis, Fairness in dataflow scheduling in the cloud, Information Systems, vol.83, pp.118-125, 2019.

A. Pokahr and L. Braubach, Elastic component-based applications in paas clouds, Concurrency and Computation : Practice and Experience, vol.28, issue.4, pp.1368-1384, 2016.

P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A. Barroso, Performance of database workloads on shared-memory systems with out-of-order processors, In ACM SIGPLAN Notices, vol.33, pp.307-318, 1998.

J. Rao, X. Bu, C. Xu, W. , and K. , A distributed self-learning approach for elastic provisioning of virtualized cloud resources, Modeling, Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS), pp.45-54, 2011.

J. Rao, X. Bu, C. Xu, L. Wang, Y. et al., Vconf : a reinforcement learning approach to virtual machines auto-configuration, Proceedings of the 6th international conference on Autonomic computing, pp.137-146, 2009.

B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy et al., , 2015.

, Apache tez : A unifying framework for modeling and building data processing applications, Proceedings of the 2015 ACM SIGMOD international conference on Management of Data, pp.1357-1369

C. Salagnon, Ordonnancement et placement dans les s. GBD Paralleles, 1994.

G. A. Santana, CCNA Cloud CLDFND 210-451 Official Cert Guide, 2016.

J. F. Shapiro, Group theoretic algorithms for the integer programming problem ii : Extension to a general algorithm, Operations Research, vol.16, issue.5, pp.928-947, 1968.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre et al., Mastering the game of go with deep neural networks and tree search, nature, vol.529, issue.7587, p.484, 2016.

B. Simmons, H. Ghanbari, M. Litoiu, and G. Iszlai, Managing a saas application in the cloud using paas policy sets and a strategy-tree, Proceedings of the 7th International Conference on Network and Services Management, pp.343-347, 2011.

G. L. Stavrinides and H. D. Karatza, Scheduling different types of applications in a saas cloud, Proceedings of the 6th International Symposium on Business Modeling and Software Design (BMSD'16), pp.144-151, 2016.

G. L. Stavrinides and H. D. Karatza, Performance evaluation of a saas cloud under different levels of workload computational demand variability and tardiness bounds, Simulation Modelling Practice and Theory, vol.91, pp.1-12, 2019.

H. Talebian, A. Gani, M. Sookhak, A. A. Abdelatif, A. Yousafzai et al., Optimizing virtual machine placement in iaas data centers : taxonomy, review and open issues, Cluster Computing, pp.1-42, 2019.

Z. Tan and S. Babu, Tempo : robust and self-tuning resource management in multi-tenant parallel databases, Proceedings of the VLDB Endowment, vol.9, pp.720-731, 2016.

G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani, A hybrid reinforcement learning approach to autonomic resource allocation, Autonomic Computing, 2006. ICAC'06. IEEE International Conference on, pp.65-73, 2006.

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka et al., Hive-a petabyte scale data warehouse using hadoop, Data Engineering (ICDE), 2010 IEEE 26th International Conference on, pp.996-1005, 2010.


D. Tsoumakos, I. Konstantinou, C. Boumpouka, S. Sioutas, and N. Koziris, , 2013.

, Automated, elastic resource provisioning for nosql clusters using tiramola, Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM International Symposium on, pp.34-41

P. Valduriez, Parallel database systems : Open problems and new issues. Distributed and parallel Databases, vol.1, pp.137-165, 1993.

V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar et al., Apache hadoop yarn : Yet another resource negotiator, Proceedings of the 4th annual Symposium on Cloud Computing, p.5, 2013.

A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam, K. Gupta et al., Amazon aurora : Design considerations for high throughput cloud-native relational databases, Proceedings of the 2017 ACM International Conference on Management of Data, pp.1041-1052, 2017.

A. Verma, L. Cherkasova, and R. H. Campbell, Aria : automatic resource inference and allocation for mapreduce environments, Proceedings of the 8th ACM international conference on Autonomic computing, pp.235-244, 2011.

M. Wan, C. Wu, J. Wang, Y. Qiu, L. Xin et al., Column store for gwac : A high-cadence, high-density, large-scale astronomical light curve pipeline and distributed shared-nothing database, Publications of the Astronomical Society of the Pacific, vol.128, issue.969, p.114501, 2016.

C. J. Watkins and P. Dayan, Q-learning, Machine learning, vol.8, issue.3-4, pp.279-292, 1992.

C. J. Watkins, Learning from delayed rewards, 1989.

T. White, Hadoop : The definitive guide, 2012.

Y. Xue, K. Xue, N. Gai, J. Hong, D. S. Wei et al., An attributebased controlled collaborative access control scheme for public cloud storage, IEEE Transactions on Information Forensics and Security, 2019.

S. Yangui, P. Ravindran, O. Bibani, R. H. Glitho, N. B. Hadj-alouane et al., A platform as-a-service for hybrid cloud/fog environments, 2016 IEEE International Symposium on Local and Metropolitan Area Networks (LAN-MAN), pp.1-7, 2016.

Y. Yao, H. Gao, J. Wang, B. Sheng, M. et al., New scheduling algorithms for improving performance and resource utilization in hadoop yarn clusters, IEEE Transactions on Cloud Computing, 2019.

S. Yin, A. Hameurlain, and F. Morvan, Sla definition for multi-tenant dbms and its impact on query optimization, IEEE Transactions on Knowledge and Data Engineering, vol.30, issue.11, pp.2213-2226, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02319756

B. Yu, J. E. Mitchell, and J. Pang, Solving linear programs with complementarity constraints using branch-and-cut, Mathematical Programming Computation, vol.11, issue.2, pp.267-310, 2019.

P. S. Yu and D. W. Cornell, Buffer management based on return on consumption in a multi-query environment. The VLDB Journal-The International Journal on Very Large Data Bases, vol.2, pp.1-38, 1993.

M. Zaharia, D. Borthakur, J. Sen-sarma, K. Elmeleegy, S. Shenker et al., Delay scheduling : a simple technique for achieving locality and fairness in cluster scheduling, Proceedings of the 5th European conference on Computer systems, pp.265-278, 2010.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, Spark : Cluster computing with working sets, HotCloud, vol.10, p.95, 2010.

Q. Zhang, L. Cheng, and R. Boutaba, Cloud computing : state-of-the-art and research challenges, Journal of internet services and applications, vol.1, issue.1, pp.7-18, 2010.

Y. Zhao, R. N. Calheiros, J. Bailey, and R. Sinnott, Sla-based profit optimization for resource management of big data analytics-as-a-service platforms in cloud computing environments, 2016 IEEE International Conference on Big Data (Big Data), pp.432-441, 2016.

C. Zhong and X. Yuan, Intelligent elastic scheduling algorithms for paas cloud platform based on load prediction, IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), pp.1500-1503, 2019.

Z. Zhou, J. Abawajy, M. Chowdhury, Z. Hu, K. Li et al., Minimizing sla violation and power consumption in cloud data centers using adaptive energy-aware algorithms, Future Generation Computer Systems, vol.86, pp.836-850, 2018.

. |r-m-2-|-*-t-hash-+-/, ||S M 2 ||/pd M 2 )/db sf d + // (3) (|S M 2 |/pd M 2 ) * t f ilter + // (4) (?(|S M 2 |)/pd M 2 ) * (t hash + t search )+ (?(|R M 2 | * ?

. Le-stade-m2,

, ) appliquer la sélection, ) écrire R M 2 sur le disque local, vol.2

, ? f ) * ||R M 2 ||)/db l + // (3) (||S M 2 ||/pd M 2 )/db sf d + // (4) (|S M 2 |/pd M 2 ) * t f ilter + // (5) (?(|S M 2 |)/pd M 2 ) * t hash + // (6) (((1 ? f ) * ?(||S M 2 ||

, ? f ) * ?(||S M 2 ||))/pd M 2 )/db l + // (10) (?(|S M 2 |)/pd M 2 ) * (t hash + t search )+ (?(|R M 2 | * ?

, ) appliquer la sélection, (5) appliquer la projection, (6) exécuter la phase probe, Le stade M3 (jointure one-pass) : (1) lire R M 3 à partir du disque local

. ||r-m,

. |r-m, |S M 3 |/pd M 3 ) * t f ilter + // (4) (?(|S M 3 |)/pd M 3 ) * t project + // (5) (?(|S M 3 |)/pd M 3 ) * (t hash + t search )+ (?(|R M 3 | * ?(|S M 3 |))/pd M 3 ) * t join + // (6) (?(|R M 3 | * ?

, M 3 || * ?(?

, M 3 || * ?(?(||S M 3 ||))/pd M 3 )/db l + // (9) (?(|R M 3 | * ?(|S M 3 |))/pd M 3 ) * (t hash + t search + t agg

. Le-stade-m3, ) écrire R M 3 sur le disque local, (4) lire S M 3 à partir du SFD, (5) appliquer la sélection, ) écrire S M 3 sur le disque local, vol.3

. ||r-m,

. |r-m, ||S M 3 ||/pd M 3 )/db sf d + // (4) (|S M 3 |/pd M 3 ) * t f ilter + // (5) (?(|S M 3 |) * t project + // (6) (?(|S M 3 |)/pd M 3 ) * t hash + // (7) (((1 ? f ) * ?(?

, ) (?(|S M 3 |)/pd M 3 ) * (t hash + t search )+ ((?(|R M 3 | * ?(|S M 3 |))/pd M 3 ) * t join ) + // (12) ((?(|R M 3 | * ?(|S M 3 |))/pd M 3 ) * t hash + // (13) ((?(||R M 3 || * ?(?

, Le stade R1 (agrégation one-pass) : (1) lire R R1 à partir du disque local

, |R R1 |/pd R1 ) * (t hash + t search + t agg

. Le-stade-r1,

, ) lire les données à partir du disque local, ) écrire les données sur le disque local

?. and ). ||, ) (((1 ? f ) * ||R R1 ||)/pd R1 )/db l + // (4) (|R R1 |/pd R1 ) * (t hash + t search + t agg

. Le-stade-r2, ) écrire sur le SFD. T op (R2) = ( limit(R R2 )/db l + // (1) limit(R R2 )/db sf d, ) lire à partir du disque local