Y. X. Wang, S. M. Hussain, G. P. Krestin, and M. H. Schwenk, Ferumoxytol: a new intravenous iron preparation for the treatment of iron deficiency anemia in patients with chronic kidney disease, European radiology, vol.11, issue.11, pp.70-79, 2001.

I. Hilger, In vivo applications of magnetic nanoparticle hyperthermia. International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, vol.29, pp.828-862, 2013.

P. Guardia, R. Di-corato, L. Lartigue, C. Wilhelm, A. Espinosa et al., Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment, ACS nano, vol.2012, issue.4, pp.3080-91

E. A. Perigo, G. Hemery, O. Sandre, D. Ortega, E. Garaio et al., Targeted Magnetic Intra-Lysosomal Hyperthermia produces lysosomal reactive oxygen species and causes Caspase-1 dependent cell death, Journal of Controlled Release, vol.2015, issue.4, pp.1350-63, 2011.

S. Carregal-romero, P. Guardia, X. Yu, R. Hartmann, T. Pellegrino et al., Magnetically triggered release of molecular cargo from iron oxide nanoparticle loaded microcapsules, Nanoscale, vol.7, issue.2, pp.570-576, 2015.

H. Huang, S. Delikanli, H. Zeng, D. M. Ferkey, and A. Pralle, Remote control of ion channels and neurons through magnetic-field heating of nanoparticles, Nature nanotechnology, vol.2010, issue.8, pp.602-608

M. Yamaguchi, A. Ito, A. Ono, Y. Kawabe, and M. Kamihira, Heat-Inducible Gene Expression System by Applying Alternating Magnetic Field to Magnetic Nanoparticles, Acs Synth Biol, vol.2014, issue.5, pp.273-279

J. Kolosnjaj-tabi, R. Di-corato, L. Lartigue, I. Marangon, P. Guardia et al., Heat-Generating Iron Oxide Nanocubes: Subtle "Destructurators" of the Tumoral Microenvironment, Pharmacol Res, vol.8, issue.5, pp.123-137, 2014.

S. Dutz and R. Hergt, Magnetic particle hyperthermia--a promising tumour therapy?, Nanotechnology, vol.2014, issue.45, p.452001

M. Johannsen, B. Thiesen, P. Wust, A. Jordan, K. Maier-hauff et al., Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme, Journal of neuro-oncology, vol.26, issue.8, pp.317-341, 2010.

R. J. Mannix, S. Kumar, F. Cassiola, M. Montoya-zavala, E. Feinstein et al., Validation of high gradient magnetic field based drug delivery to magnetizable implants under flow, Biochem Biophys Res Commun, vol.3, issue.1, pp.779-82, 2008.

D. H. Kim, E. A. Rozhkova, I. V. Ulasov, S. D. Bader, T. Rajh et al., Hedgehog-Like Gold-Coated Magnetic Microspheres that Strongly Inhibit Tumor Growth through Magnetomechanical Force and Photothermal Effects, Dynamic Magnetic Fields Remote-Control Apoptosis via Nanoparticle Rotation, vol.2010, pp.3192-3201, 2014.

M. Erkan, Understanding the stroma of pancreatic cancer: co-evolution of the microenvironment with epithelial carcinogenesis, The Journal of pathology, vol.2013, issue.1, pp.4-7

R. F. Hwang, T. Moore, T. Arumugam, V. Ramachandran, K. D. Amos et al., Pharmacological targeting of the protein synthesis mTOR/4E-BP1 pathway in cancer-associated fibroblasts abrogates pancreatic tumour chemoresistance, EMBO molecular medicine, vol.68, issue.3, pp.735-53, 2008.

Z. H. Zhou, C. D. Ji, H. L. Xiao, H. B. Zhao, Y. H. Cui et al., Reorganized Collagen in the Tumor Microenvironment of Gastric Cancer and Its Association with Prognosis, Journal of Cancer, vol.8, issue.8, pp.1466-1476, 2017.

S. Richard, V. Eder, G. Caputo, C. Journe, P. Ou et al., USPIO size control through microwave nonaqueous sol-gel method for neoangiogenesis T-2 MRI contrast agent, Nanomedicine, vol.11, issue.21, pp.2769-2779, 2016.

M. J. Berna, O. Seiz, J. F. Nast, D. Benten, M. Blaker et al., Cholecystokinin receptor antagonist halts progression of pancreatic cancer precursor lesions and fibrosis in mice, The Journal of biological chemistry, vol.2010, issue.50, pp.1050-1059, 2014.

, Alginate NPM: 16 µg/mL : 20% 128 µg/mL : 32%, 256 µg/mL :50% 1024 µg, p.70

D. Hanahan and R. A. Weinberg, « Hallmarks of cancer: the next generation, Cell, vol.144, issue.5, pp.646-674, 2011.

D. Ribatti and E. Crivellato, Sprouting angiogenesis, Developmental Biology, vol.372, issue.2, pp.157-165

R. M. Lafrenie, C. A. Buckner, and M. A. Bewick, « Cell adhesion and cancer: is there a potential for therapeutic intervention?, Expert Opin. Ther. Targets, vol.11, issue.6, pp.727-731, 2007.

S. Hirohashi and Y. Kanai, « Cell adhesion system and human cancer morphogenesis, Cancer Sci, vol.94, issue.7, pp.575-581, 2003.

Y. A. Fouad and C. Aanei, « Revisiting the hallmarks of cancer, American journal of cancer research, vol.7, p.21, 2017.

P. Rawla, T. Sunkara, and V. Gaduputi, « Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors », World J Oncol, vol.10, issue.1, pp.10-27, 2019.

, « Cancers du pancréas : les traitements | Fondation ARC pour la recherche sur le cancer

D. Sur,

F. Noble, « International Union of Pharmacology. XXI. Structure, Distribution, and Functions of Cholecystokinin Receptors », vol.51, pp.745-781, 1999.

S. Silvente-poirot, « The peripheral cholecystokinin receptors -European Journal of Biochemistry -Wiley Online Library, 1993.

M. Pohl, S. Silvente-poirot, J. R. Pisegna, N. I. Tarasova, and S. A. Wank, « Ligand-induced Internalization of Cholecystokinin Receptors: DEMONSTRATION OF THE IMPORTANCE OF THE CARBOXYL TERMINUS FOR LIGAND-INDUCED INTERNALIZATION OF THE RAT CHOLECYSTOKININ TYPE B RECEPTOR BUT NOT THE TYPE A RECEPTOR », Journal of Biological Chemistry, vol.272, pp.18179-18184, 1997.

R. Magnan, B. Masri, C. Escrieut, M. Foucaud, P. Cordelier et al., « Regulation of Membrane Cholecystokinin-2 Receptor by Agonists Enables Classification of Partial Agonists as Biased Agonists, Journal of Biological Chemistry, vol.286, issue.8, pp.6707-6719, 2011.

P. H. Anborgh, J. L. Seachrist, L. B. Dale, and S. S. Ferguson, « Receptor/beta-arrestin complex formation and the differential trafficking and resensitization of beta2-adrenergic and angiotensin II type 1A receptors, Mol. Endocrinol, vol.14, pp.2040-2053, 2000.

D. S. Weinberg, B. Ruggeri, M. T. Barber, S. Biswas, S. Miknyocki et al., « Cholecystokinin A and B receptors are differentially expressed in normal pancreas and pancreatic adenocarcinoma. », Journal of Clinical Investigation, vol.100, issue.3, pp.597-603, 1997.

. Rai, Heterogeneous expression of cholecystokinin and gastrin receptor in stomach and pancreatic cancer: An immunohistochemical study, J Can Res Ther, vol.12, pp.411-417, 2016.

J. P. Smith, G. Liu, V. Soundararajan, P. J. Mclaughlin, and I. S. Zagon, « Identification and characterization of CCK-B/gastrin receptors in human pancreatic cancer cell lines », Am. J. Physiol, vol.266, issue.2, pp.277-283, 1994.

R. Moonka, W. Zhou, and R. H. Bell, « Cholecystokinin-a receptor messenger RNA expression in human pancreatic cancer, Journal of Gastrointestinal Surgery, vol.3, issue.2, pp.134-140, 1999.

J. P. Smith and T. E. Solomon, Cholecystokinin and pancreatic cancer: the chicken or the egg?, American Journal of Physiology-Gastrointestinal and Liver Physiology, vol.306, issue.2, pp.91-101, 2014.

C. Tang, I. Biemond, and C. B. Lamers, « Expression of peptide receptors in human endocrine tumours of the pancreas, Gut, vol.40, issue.2, pp.267-271, 1997.

J. P. Smith, « Cholecystokinin Receptor Antagonist Halts Progression of Pancreatic Cancer Precursor Lesions and Fibrosis in Mice, Pancreas, vol.43, issue.7, pp.1050-1059, 2014.

B. Nijaguna and . Prasad, « Gene Expression Profiles in Pancreatic Intraepithelial Neoplasia Reflect the Effects of Hedgehog Signaling on Pancreatic Ductal Epithelial Cells | ». Cancer Research, 2005.

P. Clerc, « Expression of CCK2 receptors in the murine pancreas: Proliferation, transdifferentiation of acinar cells, and neoplasia, Gastroenterology, vol.122, issue.2, pp.428-437, 2002.

J. P. Smith, M. W. Hamory, M. F. Verderame, and I. S. Zagon, « Quantitative analysis of gastrin mRNA and peptide in normal and cancerous human pancreas, International Journal of Molecular Medicine, vol.2, issue.3, pp.309-324, 1998.

. Smith, Gastrin regulates growth of human pancreatic cancer in a tonic and autocrine fashion | », American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 1996.

M. Caplin, « Expression and processing of gastrin in pancreatic adenocarcinoma. », Br J Surg, vol.87, pp.1035-1040, 2000.

G. L. Matters, Growth of human pancreatic cancer is inhibited by down-regulation of gastrin gene expression, Pancreas, vol.38, 2009.

J. P. Smith, M. F. Verderame, E. N. Ballard, and I. S. Zagon, « Functional significance of gastrin gene expression in human cancer cells, Regulatory Peptides, vol.117, issue.3, pp.167-173, 2004.

J. Burks, « Cholecystokinin Receptor-Targeted Polyplex Nanoparticle Inhibits Growth and Metastasis of Pancreatic Cancer, Cellular and Molecular Gastroenterology and Hepatology, vol.6, pp.17-32, 2018.

K. K. Fino, G. L. Matters, C. O. Mcgovern, E. L. Gilius, and J. P. Smith, « Downregulation of the CCK-B receptor in pancreatic cancer cells blocks proliferation and promotes apoptosis, American Journal of Physiology-Gastrointestinal and Liver Physiology, vol.302, issue.11, pp.1244-1252

. Jp and . Smith, Cholecystokinin receptors and PANC-1 human pancreatic cancer cells | », American Journal of Physiology-Gastrointestinal and Liver, p.1993

R. O. Hynes, The Extracellular Matrix: Not Just Pretty Fibrils, vol.326, pp.1216-1219, 2009.

P. Lu, V. M. Weaver, and Z. Werb, « The extracellular matrix: A dynamic niche in cancer progression, The Journal of Cell Biology, vol.196, issue.4, pp.395-406

K. Räsänen and A. Vaheri, « Activation of fibroblasts in cancer stroma, Experimental Cell Research, vol.316, pp.2713-2722, 2010.

R. R. Langley and I. J. Fidler, « The seed and soil hypothesis revisited-The role of tumorstroma interactions in metastasis to different organs, International Journal of Cancer, vol.128, issue.11, pp.2527-2535, 2011.

F. Chen, New horizons in tumor microenvironment biology: challenges and opportunities, vol.13, 2015.

S. Goel, A. H. , .. Wong, and R. K. Jain, « Vascular Normalization as a Therapeutic Strategy for Malignant and Nonmalignant Disease, Cold Spring Harb Perspect Med, vol.2, issue.3, 2012.

A. Dutour and M. Rigaud, « Tumor endothelial cells are targets for selective therapies: In vitro and in vivo models to evaluate antiangiogenic strategies, Anticancer research, vol.25, pp.3799-807, 2005.

B. I. Terman and M. Dougher-vermazen, Biological properties of VEGF/VPF receptors, vol.15, pp.159-163, 1996.

C. Donald-m-macdonald-etpeter, Imaging of angiogenesis: from microscope to clinic -Semantic Scholar », Nature Medicine, 2003.

F. Ghiringhelli, « surveillance immune antitumorale et échappement, p.5, 2013.

S. Ostrand-rosenberg, Immune surveillance: a balance between protumor and antitumor immunity, vol.18, pp.11-18, 2008.

Y. Man, Tumor-infiltrating immune cells promoting tumor invasion and metastasis: existing theories, Journal of Cancer, vol.4, 2013.

M. Terabe and J. A. Berzofsky, « Immunoregulatory T cells in tumor immunity, Current Opinion in Immunology, vol.16, issue.2, pp.157-162, 2004.

M. Terme and C. Tanchot, Ann Pathol, vol.37, issue.1, pp.11-17, 2017.

A. Mantovani, Role of tumor-associated macrophages in tumor progression and invasion, Cancer and Metastasis Reviews, 2006.

R. Wang, « Tumor-associated macrophages provide a suitable microenvironment for non-small lung cancer invasion and progression, Lung Cancer, vol.74, issue.2, pp.188-196, 2011.

S. B. Coffelt, R. Hughes, and C. E. Lewis, « Tumor-associated macrophages: Effectors of angiogenesis and tumor progression, Biochimica et Biophysica Acta (BBA) -Reviews on Cancer, vol.1796, issue.1, pp.11-18, 2009.

J. W. Pollard, « Macrophages define the invasive microenvironment in breast cancer, J Leukoc Biol, vol.84, issue.3, pp.623-630, 2008.

A. Sica, P. Allavena, and A. Mantovani, « Cancer related inflammation: The macrophage connection, Cancer letters, vol.267, pp.204-219, 2008.

M. J. Bissell, P. A. Kenny, and D. C. Radisky, « Microenvironmental Regulators of Tissue Structure and Function Also Regulate Tumor Induction and Progression: The Role of Extracellular Matrix and Its Degrading Enzymes, Cold Spring Harbor symposia on quantitative biology, vol.70, p.343, 2005.

N. Ilan, M. Elkin, and E. I. Vlodavsky, « Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis, The International Journal of Biochemistry & Cell Biology, vol.38, pp.2018-2039, 2006.

K. Kessenbrock, Matrix metalloproteinases: regulators of the tumor microenvironment, Cell, vol.141, pp.52-67, 2010.

X. Zou, « Up-regulation of type I collagen during tumorigenesis of colorectal cancer revealed by quantitative proteomic analysis, Journal of Proteomics, vol.94, pp.473-485

D. Öhlund, C. Lundin, B. Ardnor, M. Öman, P. Naredi et al., « Type IV collagen is a tumour stroma-derived biomarker for pancreas cancer, British Journal of Cancer, vol.101, issue.1, p.91, 2009.

. Paszek, « Tensional homeostasis and the malignant phenotype. -PubMed -NCBI ». Cancer cell, 2005.

T. Armstrong, « Type I Collagen Promotes the Malignant Phenotype of Pancreatic Ductal Adenocarcinoma, Clinical cancer research : an official journal of the American Association for Cancer Research, vol.10, pp.7427-7464, 2004.

S. Berchtold, « Collagen type V promotes the malignant phenotype of pancreatic ductal adenocarcinoma, Cancer Letters, vol.356, issue.2, pp.721-732, 2015.

S. Kaushik, M. W. Pickup, and V. M. Weaver, « From transformation to metastasis: deconstructing the extracellular matrix in breast cancer, Cancer Metastasis Rev, vol.35, issue.4, pp.655-667, 2016.

Q. Xiao, G. Ge, and . Oxidase, Extracellular Matrix Remodeling and Cancer Metastasis, Cancer Microenvironment, vol.5, issue.3, p.261

Z. Zhou, C. Ji, H. Xiao, H. Zhao, Y. Cui et al., « Reorganized Collagen in the Tumor Microenvironment of Gastric Cancer and Its Association with Prognosis, J. Cancer, vol.8, issue.8, pp.1466-1476, 2017.

M. R. Ng and J. S. Brugge, « A Stiff Blow from the Stroma: Collagen Crosslinking Drives Tumor Progression, Cancer Cell, vol.16, issue.6, pp.455-457, 2009.

K. R. Levental, Matrix crosslinking forces tumor progression by enhancing integrin signaling, Cell, vol.139, pp.891-906, 2009.

P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White et al., « Collagen reorganization at the tumor-stromal interface facilitates local invasion, BMC Medicine, vol.4, p.38, 2006.

D. Kadel, Y. Zhang, H. Sun, Y. Zhao, Q. Dong et al., « Current perspectives of cancer-associated fibroblast in therapeutic resistance: potential mechanism and future strategy, Cell Biology and Toxicology, 2019.

D. Hanahan and L. M. Coussens, « Accessories to the Crime: Functions of Cells Recruited to the Tumor Microenvironment, Cancer Cell, vol.21, issue.3, pp.309-322, 2012.

M. Shimoda, K. T. Mellody, and A. Orimo, « Carcinoma-associated fibroblasts are a ratelimiting determinant for tumour progression, Seminars in Cell & Developmental Biology, vol.21, issue.1, p.19

R. Kalluri, Zeisberg « Fibroblasts in cancer, Nat Rev Cancer, 2006.

Y. Kojima, « Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts, 2010.

Y. Attieh and D. M. Vignjevic, « The hallmarks of CAFs in cancer invasion, European Journal of Cell Biology, vol.95, issue.11, pp.493-502, 2016.

D. T. Butcher, A tense situation: forcing tumour progression, Nature reviews. Cancer, vol.9, pp.108-130, 2009.

M. S. Samuel, Actomyosin-mediated cellular tension drives increased tissue stiffness and ?-catenin activation to induce epidermal hyperplasia and tumor growth, Cancer cell, vol.19, pp.776-91, 2011.

F. Calvo, « Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts », Nature Cell Biology, vol.15, issue.6, pp.637-646, 2013.

H. Sugimoto, T. M. Mundel, M. W. Kieran, and R. Kalluri, « Identification of fibroblast heterogeneity in the tumor microenvironment, Cancer Biology & Therapy, vol.5, pp.1640-1646, 2006.

A. D. Rhim, Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma, Cancer cell, vol.25, pp.735-782, 2014.

«. Özdemir and C. Berna, Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival, Cancer cell, vol.25, 2014.

M. Wang, « Role of tumor microenvironment in tumorigenesis, Journal of Cancer, vol.8, issue.5, pp.761-773, 2017.

R. Kalluri, The biology and function of fibroblasts in cancer », Nature Reviews Cancer, vol.16, issue.9, pp.582-598, 2016.

C. Chantrain and Y. A. Declerck, « Les métalloprotéases matricielles et leurs inhibiteurs synthétiques dans la progression tumorale, Med Sci, vol.18, issue.5, pp.565-575, 2002.

J. S. , « Modifying the soil to affect the seed: role of stromal-derived matrix metalloproteinases in cancer progression, Cancer Metastasis Rev, 2006.

B. Têtu, The influence of MMP-14, TIMP-2 and MMP-2 expression on breast cancer prognosis, Breast cancer research : BCR, vol.8, issue.3, p.28, 2006.

S. P. Turunen, O. Tatti-bugaeva, and E. K. Lehti, « Membrane-type matrix metalloproteases as diverse effectors of cancer progression, Biochimica et Biophysica Acta (BBA) -Molecular Cell Research, vol.1864, issue.11, 1974.

E. John and . Park, Fibroblast Activation Protein, a Dual Specificity Serine Protease Expressed in Reactive Human Tumor Stromal Fibroblasts », Journal of Biochemistry, 1999.

A. Glentis, « Cancer-associated fibroblasts induce metalloprotease-independent cancer cell invasion of the basement membrane, Nat Commun, vol.8, issue.1, pp.1-13, 2017.

H. Lee, S. R. Mullins, J. Franco-barraza, M. Valianou, E. Cukierman et al., « FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells, BMC Cancer, vol.11, p.245, 2011.

D. Pankova, « Cancer-Associated Fibroblasts Induce a Collagen Cross-link Switch in Tumor Stroma, Molecular Cancer Research, vol.14, issue.3, pp.287-295, 2016.

Y. Chen, Lysyl Hydroxylase 2 Is Secreted by Tumor Cells and Can Modify Collagen in the Extracellular Space, The Journal of biological chemistry, vol.291, pp.25799-25808, 2016.

H. E. Barker, Tumor-secreted LOXL2 activates fibroblasts through FAK signaling, Molecular cancer research : MCR, vol.11, pp.1425-1461, 2013.

S. Torres, « LOXL2 Is Highly Expressed in Cancer-Associated Fibroblasts and Associates to Poor Colon Cancer Survival, Clin Cancer Res, vol.21, pp.4892-4902, 2015.

B. Erdogan, Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin, The Journal of cell biology, vol.216, pp.3799-3816, 2017.

K. M. Riching, « 3D Collagen Alignment Limits Protrusions to Enhance Breast Cancer Cell Persistence », Biophysical Journal, vol.107, issue.11, pp.2546-2558, 2014.

A. S. Piotrowski-daspit, B. A. Nerger, A. E. Wolf, S. Sundaresan, and C. M. Nelson, Dynamics of Tissue-Induced Alignment of Fibrous Extracellular Matrix, vol.113, pp.702-713, 2017.

V. Tjomsland, « Interleukin 1? Sustains the Expression of Inflammatory Factors in Human Pancreatic Cancer Microenvironment by Targeting Cancer-Associated Fibroblasts, Neoplasia, vol.13, issue.8, p.664, 2011.

Q. Sun, « The impact of cancer-associated fibroblasts on major hallmarks of pancreatic cancer, Theranostics, vol.8, pp.5072-5087, 2018.

L. De-monte, « Intratumor T helper type 2 cell infiltrate correlates with cancerassociated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer, J Exp Med, vol.208, issue.3, pp.469-478, 2011.

D. Tang, « High expression of Galectin-1 in pancreatic stellate cells plays a role in the development and maintenance of an immunosuppressive microenvironment in pancreatic cancer, International Journal of Cancer, vol.130, issue.10, pp.2337-2348, 2012.

A. Zhang, Cancer-associated fibroblasts promote M2 polarization of macrophages in pancreatic ductal adenocarcinoma, Cancer medicine, vol.6, pp.463-470, 2017.

L. Ziani, S. Chouaib, and J. Thiery, « Alteration of the Antitumor Immune Response by Cancer-Associated Fibroblasts », Frontiers in Immunology, vol.9, 2018.

S. Zhang, « The role of transforming growth factor ? in T helper 17 differentiation, Immunology, vol.155, issue.1, pp.24-35, 2018.

R. Trotta, TGF-? Utilizes SMAD3 to Inhibit CD16-Mediated IFN-? Production and Antibody-Dependent Cellular Cytotoxicity in Human NK Cells », vol.181, p.3784, 1950.

S. S. Donatelli, TGF-?-inducible microRNA-183 silences tumor-associated natural killer cells, Proceedings of the National Academy of Sciences of the United States of America, vol.111, pp.4203-4211, 2014.

A. Vonlaufen, Pancreatic Stellate Cells: Partners in Crime with Pancreatic, 2008.

T. Murata, Interactions of Carcinoma Cells with Cancer-Associated Fibroblasts to Support Progression of Uterine Cervical Cancers, Cancer Research, vol.71, pp.6633-6642, 2011.

G. Li, K. Satyamoorthy, F. Meier, C. Berking, T. Bogenrieder et al., « Function and regulation of melanoma-stromal fibroblast interactions: when seeds meet soil, Oncogene, vol.22, pp.3162-3171, 2003.

F. Xing, J. Saidou, and K. Watabe, « Cancer associated fibroblasts (CAFs) in tumor microenvironment, Front Biosci, vol.15, pp.166-179

W. Deying, CAF-derived HGF promotes cell proliferation and drug resistance by up-regulating the c-Met/PI3K/Akt and GRP78 signalling in ovarian cancer cells, Bioscience reports, vol.37, p.20160470, 2017.

R. F. Hwang, Cancer-associated stromal fibroblasts promote pancreatic tumor progression, Cancer research, vol.68, pp.918-944, 2008.

C. H. Stuelten, Transient tumor-fibroblast interactions increase tumor cell malignancy by a TGF-Beta mediated mechanism in a mouse xenograft model of breast cancer, PloS one, vol.5, p.9832, 2010.

R. Huang, « Early events in cell adhesion and polarity during epithelialmesenchymal transition, Journal of Cell Science, 2012.

H. Cardenas, « TGF-? induces global changes in DNA methylation during the epithelial-to-mesenchymal transition in ovarian cancer cells, Epigenetics, vol.9, issue.11, pp.1461-1472, 2014.

K. Kikuta, « Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells, Biochemical and Biophysical Research Communications, vol.403, issue.3, pp.380-384

Y. S. Wu, I. Chung, W. F. Wong, A. Masamune, M. S. Sim et al., « Paracrine IL-6 signaling mediates the effects of pancreatic stellate cells on epithelial-mesenchymal transition via Stat3/Nrf2 pathway in pancreatic cancer cells, Biochimica et Biophysica Acta (BBA) -General Subjects, vol.1861, issue.2, pp.296-306, 2017.

L. Wang, « Asporin promotes pancreatic cancer cell invasion and migration by regulating the epithelial-to-mesenchymal transition (EMT) through both autocrine and paracrine mechanisms, Cancer Letters, vol.398, pp.24-36, 2017.

C. Pena, « STC1 Expression By Cancer-Associated Fibroblasts Drives Metastasis of Colorectal Cancer, Cancer Research, vol.73, issue.4, pp.1287-1297, 2013.

V. Luga, « Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration, Cell, vol.151, issue.7, pp.1542-1556

S. N. Salaria, « Palladin is Overexpressed in the Non-Neoplastic Stroma of Infiltrating Ductal Adenocarcinomas of the Pancreas, but is only Rarely Overexpressed in Neoplastic Cells, Cancer Biol Ther, vol.6, issue.3, pp.324-328, 2007.

S. M. Goicoechea, « Isoform-Specific Upregulation of Palladin in Human and Murine Pancreas Tumors, PLoS One, vol.5, 2010.

S. Goicoechea, Palladin promotes invasion of pancreatic cancer cells by enhancing invadopodia formation in cancer-associated fibroblasts, Oncogene, vol.33, pp.1265-73, 2014.

M. A. Mansour, « Special AT-rich sequence-binding protein 2 suppresses invadopodia formation in HCT116 cells via palladin inhibition, Experimental Cell Research, vol.332, issue.1, pp.78-88, 2015.

B. Grum-schwensen, « Suppression of Tumor Development and Metastasis Formation in Mice Lacking the S100A4(mts1) Gene », Cancer Res, vol.65, issue.9, pp.3772-3780, 2005.

A. Labernadie, « A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion », Nature Cell Biology, vol.19, issue.3, pp.224-237, 2017.

A. Masamune, K. Kikuta, T. Watanabe, K. Satoh, M. Hirota et al., « Hypoxia stimulates pancreatic stellate cells to induce fibrosis and angiogenesis in pancreatic cancer, Am. J. Physiol. Gastrointest. Liver Physiol, vol.295, issue.4, pp.709-717, 2008.

Z. Xu, Role of pancreatic stellate cells in pancreatic cancer metastasis, The American journal of pathology, vol.177, pp.2585-96, 2010.

, Yoichi Matsuo et al « CXCL8/IL-8 and CXCL12/SDF-1? co-operatively promote invasiveness and angiogenesis in pancreatic cancer, International Journal of Cancer, 2009.

K. Shiga, M. Hara, T. Nagasaki, T. Sato, H. Takahashi et al., Cancer-Associated Fibroblasts: Their Characteristics and Their Roles in Tumor Growth », vol.7, pp.2443-2458, 2015.

L. Tao, G. Huang, H. Song, Y. Chen, and L. Chen, « Cancer associated fibroblasts: An essential role in the tumor microenvironment, Oncology Letters, vol.14, issue.3, pp.2611-2620, 2017.

S. Pavlides, « The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma, Cell Cycle, vol.8, issue.23, pp.3984-4001, 2009.

T. Shan, « Cancer-associated fibroblasts enhance pancreatic cancer cell invasion by remodeling the metabolic conversion mechanism, Oncology Reports, vol.37, issue.4, pp.1971-1979, 2017.

H. Park, « The prognostic significance of cancer-associated fibroblasts in pancreatic ductal adenocarcinoma, Tumour Biol, vol.39, issue.10, p.1010428317718403, 2017.

K. Fujiwara, « CD271+ Subpopulation of Pancreatic Stellate Cells Correlates with Prognosis of Pancreatic Cancer and Is Regulated by Interaction with Cancer Cells, PLoS One, vol.7

N. Ikenaga, « CD10+ pancreatic stellate cells enhance the progression of pancreatic cancer, Gastroenterology, vol.139, issue.3, pp.1041-1051, 1051.

D. Öhlund, « Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer, The Journal of Experimental Medicine, 2017.

A. Kanno, secreted from stromal cells, has biphasic effect on cell migration and correlates with the epithelial to mesenchymal transition of human pancreatic cancer cells, International Journal of Cancer, vol.122, pp.2707-2718, 2008.

C. E. Meacham and S. J. Morrison, Nature, vol.501, pp.328-337, 2013.

V. S. Lebleu and R. Kalluri, « A peek into cancer-associated fibroblasts: origins, functions and translational impact, Disease Models & Mechanisms, vol.11, 2018.

M. A. Shields, S. Dangi-garimella, A. J. Redig, and H. G. Munshi, « Biochemical role of the collagen-rich tumour microenvironment in pancreatic cancer progression, Biochemical Journal, vol.441, issue.2, pp.541-552

. Cole-r-drifka, Periductal stromal collagen topology of pancreatic ductal adenocarcinoma differs from that of normal and chronic pancreatitis. », Modern Pathology, 2015.

N. Martínez-bosch, J. Vinaixa, and P. Navarro, « Immune Evasion in Pancreatic Cancer: From Mechanisms to Therapy, Cancers, vol.10, issue.6, 2018.

M. Apte, « Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture, Gut, vol.43, issue.1, pp.128-133, 1998.

M. J. Berna, « CCK1 and CCK2 Receptors Are Expressed on Pancreatic Stellate Cells and Induce Collagen Production », Journal of Biological Chemistry, vol.285, pp.38905-38914

P. A. Phillips, « Pancreatic stellate cells produce acetylcholine and may play a role in pancreatic exocrine secretion, Proceedings of the National Academy of Sciences, vol.107, pp.17397-17402, 2010.

J. P. Smith, S. Wang, S. Nadella, S. A. Jablonski, and L. M. Weiner, « Cholecystokinin receptor antagonist alters pancreatic cancer microenvironment and increases efficacy of immune checkpoint antibody therapy in mice, Cancer Immunology, Immunotherapy, vol.67, issue.2, pp.195-207, 2018.

S. Nadella, « Dietary fat stimulates pancreatic cancer growth and promotes fibrosis of the tumor microenvironment through the cholecystokinin receptor, American Journal of Physiology-Gastrointestinal and Liver Physiology, vol.315, issue.5, pp.699-712, 2018.

K. H. Paraiso and K. S. Smalley, « Fibroblast-mediated drug resistance in cancer, Biochemical Pharmacology, vol.85, issue.8, pp.1033-1041, 2013.

, « Transport of Molecules in the Tumor Interstitium: A Review | Cancer Research

V. P. Chauhan, T. Stylianopoulos, Y. Boucher, and R. K. Jain, Delivery of Molecular and Nanoscale Medicine to Tumors: Transport Barriers and Strategies, vol.2, pp.281-298, 2011.

P. P. Provenzano, C. Cuevas, A. E. Chang, V. K. Goel, D. D. et al., Enzymatic Targeting of the Stroma Ablates Physical Barriers to Treatment of Pancreatic Ductal Adenocarcinoma, Cancer Cell, vol.21, issue.3, pp.418-429, 2012.

M. A. Jacobetz, Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer, Gut, vol.62, pp.112-132, 2013.

C. Heldin, K. Rubin, K. Pietras, and A. Östman, « High interstitial fluid pressurean obstacle in cancer therapy, Nat Rev Cancer, vol.4, issue.10, pp.806-813, 2004.

E. Hessmann, Fibroblast drug scavenging increases intratumoural gemcitabine accumulation in murine pancreas cancer, Gut, vol.67, pp.497-507, 2018.

M. B. Meads, R. A. Gatenby, and W. S. Dalton, « Environment-mediated drug resistance: a major contributor to minimal residual disease », Nature Reviews Cancer, vol.9, issue.9, pp.665-674, 2009.

D. A. Senthebane, The Role of Tumor Microenvironment in Chemoresistance: To Survive, vol.18, p.1586, 2017.

V. Sahai, « Promotion of gemcitabine resistance in pancreatic cancer cells by three-dimensional collagen I through HMGA2-dependent histone acetyltransferase expression. | », Journal of Clinical Oncology, 2013.

A. J. Rice, « Matrix stiffness induces epithelial-mesenchymal transition and promotes chemoresistance in pancreatic cancer cells, vol.6, p.352, 2017.

E. H. Flach, Fibroblasts contribute to melanoma tumor growth and drug resistance, Molecular pharmaceutics, vol.8, pp.2039-2088, 2011.

G. Li, K. Satyamoorthy, and M. Herlyn, « N-Cadherin-mediated Intercellular Interactions Promote Survival and Migration of Melanoma Cells, p.8

C. Choe, Crosstalk with cancer-associated fibroblasts induces resistance of non-small cell lung cancer cells to epidermal growth factor receptor tyrosine kinase inhibition, OncoTargets and therapy, vol.8, pp.3665-78, 2015.

R. Straussman, Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion, Nature, vol.487, pp.500-504, 2012.

L. Ireland, Chemoresistance in Pancreatic Cancer Is Driven by Stroma-Derived Insulin-Like Growth Factors, Cancer research, vol.76, pp.6851-6863, 2016.

K. B. Long, IL6 Receptor Blockade Enhances Chemotherapy Efficacy in Pancreatic Ductal Adenocarcinoma, Molecular cancer therapeutics, vol.16, pp.1898-1908, 2017.

C. Duluc, « Pharmacological targeting of the protein synthesis mTOR/4E-BP1 pathway in cancer-associated fibroblasts abrogates pancreatic tumour chemoresistance », EMBO Mol Med, vol.7, issue.6, pp.735-753, 2015.

K. E. Richards, A. E. Zeleniak, M. L. Fishel, J. Wu, L. E. Littlepage et al., « Cancerassociated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells, Oncogene, vol.36, issue.13, pp.1770-1778, 2017.

M. C. Boelens, « Exosome Transfer from Stromal to Breast Cancer Cells Regulates Therapy Resistance Pathways, Cell, vol.159, issue.3, pp.499-513, 2014.

A. Yeung and C. Lam, Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1, Nature communications, vol.7, p.11150, 2016.

B. Son, S. Lee, H. Youn, E. Kim, W. Kim et al., « The role of tumor microenvironment in therapeutic resistance, Oncotarget, vol.8, issue.3, pp.3933-3945, 2016.

A. Chronopoulos, ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion, Nature communications, vol.7, p.12630, 2016.

P. Dauer, « Inactivation of Cancer-Associated-Fibroblasts Disrupts Oncogenic Signaling in Pancreatic Cancer Cells and Promotes Its Regression, Cancer Research, vol.78, issue.5, pp.1321-1333, 2018.

M. H. Sherman, « Vitamin D Receptor-Mediated Stromal Reprogramming Suppresses Pancreatitis and Enhances Pancreatic Cancer Therapy, Cell, vol.159, issue.1, pp.80-93, 2014.

C. Roma-rodrigues, R. Mendes, P. Baptista, and A. Fernandes, « Targeting Tumor Microenvironment for Cancer Therapy, International Journal of Molecular Sciences, vol.20, p.840, 2019.

I. -. Hong and . Sun, Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types, Experimental & molecular medicine, vol.48, p.242, 2016.

N. G. Kooreman, « Autologous iPSC-Based Vaccines Elicit Anti-tumor Responses In Vivo, Cell Stem Cell, vol.22, issue.4, pp.501-513, 2018.

M. G. Hanna and «. Jr, Immunotherapy with autologous tumor cell vaccines for treatment of occult disease in early stage colon cancer, Hum Vaccin Immunother, vol.8, issue.8, pp.1156-1160

Q. Song, C. Zhang, and X. Wu, « Therapeutic cancer vaccines: From initial findings to prospects, Immunology Letters, vol.196, pp.11-21, 2018.

S. Lee and K. Margolin, « Cytokines in Cancer Immunotherapy », vol.3, issue.4, pp.3856-3893, 2011.

P. Darvin, Immune checkpoint inhibitors: recent progress and potential biomarkers, Experimental & molecular medicine, vol.50, p.165, 2018.

Y. Zhao, « Losartan treatment enhances chemotherapy efficacy and reduces ascites in ovarian cancer models by normalizing the tumor stroma, vol.116, pp.2210-2219, 2019.

Y. Tang, « Depletion of collagen by losartan to improve tumor accumulation and therapeutic efficacy of photodynamic nanoplatforms |». Drug delivery and translational research, 2019.

B. Diop-frimpong, Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors, Proceedings of the National Academy of Sciences of the United States of America, vol.108, pp.2909-2923, 2011.

J. E. Murphy, Potentially curative combination of TGF-b1 inhibitor losartan and FOLFIRINOX (FFX) for locally advanced pancreatic cancer (LAPC): R0 resection rates and preliminary survival data from a prospective phase II study. | », Journal of Clinical Oncology, 2018.

K. Pietras, Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting, PLoS medicine, vol.5, p.19, 2008.

K. Pietras, K. Rubin, T. Sjoblom, E. Buchdunger, M. Sjoquist et al., Inhibition of PDGF Receptor Signaling in Tumor Stroma Enhances Antitumor Effect of Chemotherapy, p.10

E. Gherardi, W. Birchmeier, and C. Birchmeier, Vande Woude, « Targeting MET in cancer: rationale and progress », Nat. Rev. Cancer, vol.12, issue.2, pp.89-103

G. R. Blumenschein, G. B. Mills, and A. M. Gonzalez-angulo, « Targeting the Hepatocyte Growth Factor-cMET Axis in Cancer Therapy, J Clin Oncol, vol.30, pp.3287-3296, 2012.

R. Katayama, Cytotoxic activity of tivantinib (ARQ 197) is not due solely to c-MET inhibition, Cancer research, vol.73, pp.3087-96, 2013.

H. A. Wakelee, « A phase Ib/II study of XL184 (BMS 907351) with and without erlotinib (E) in patients (pts) with non-small cell lung cancer (NSCLC). », JCO, vol.28, pp.3017-3017, 2010.

J. Tanizaki, « MET Tyrosine Kinase Inhibitor Crizotinib (PF-02341066) Shows Differential Antitumor Effects in Non-small Cell Lung Cancer According to MET Alterations, Journal of Thoracic Oncology, vol.6, issue.10, pp.1624-1631, 2011.

M. Egeblab, « New functions for the matrix metalloproteinases in cancer progression », Nature Reviews cancer, 2002.

J. E. Rundhaug, « Matrix metalloproteinases and angiogenesis, Journal of Cellular and Molecular Medicine, vol.9, issue.2, pp.267-285, 2005.

B. J. Dezube, S. E. Krown, J. Y. Lee, K. S. Bauer, and D. M. Aboulafia, « Randomized Phase II Trial of Matrix Metalloproteinase Inhibitor COL-3 in AIDS-Related Kaposi's Sarcoma: An AIDS Malignancy Consortium Study », Journal of Clinical Oncology, 2016.

B. Ling, A novel immunotherapy targeting MMP-14 limits hypoxia, immune suppression and metastasis in triple-negative breast cancer models, Oncotarget, vol.8, pp.58372-58385, 2017.

R. H. Scannevin, Discovery of a highly selective chemical inhibitor of matrix metalloproteinase-9 (MMP-9) that allosterically inhibits zymogen activation, The Journal of biological chemistry, vol.292, pp.17963-17974, 2017.

S. R. Hingorani, « Phase Ib Study of PEGylated Recombinant Human Hyaluronidase and Gemcitabine in Patients with Advanced Pancreatic Cancer, Clinical Cancer Research, vol.22, pp.2848-2854, 2016.

S. R. Hingorani, « HALO 202: Randomized Phase II Study of PEGPH20 Plus Nab-Paclitaxel/Gemcitabine Versus Nab-Paclitaxel/Gemcitabine in Patients With Untreated, Metastatic Pancreatic Ductal Adenocarcinoma, J. Clin. Oncol, vol.36, issue.4, pp.359-366, 2018.

R. K. Ramanathan, Phase IB/II Randomized Study of FOLFIRINOX Plus Pegylated Recombinant Human Hyaluronidase Versus FOLFIRINOX Alone in Patients With Metastatic Pancreatic Adenocarcinoma: SWOG S1313, 2019.

T. Miyashita, « Neoadjuvant chemotherapy with gemcitabine plus nab-paclitaxel reduces the number of cancer-associated fibroblasts through depletion of pancreatic stroma, Anticancer research, vol.38, issue.1, pp.337-343, 2018.

R. Alvarez, « Stromal disrupting effects of nab-paclitaxel in pancreatic cancer, Br J Cancer, vol.109, issue.4, pp.926-933, 2013.

Y. Gao, S. Yin, X. Xie, D. Xu, and E. W. Du, « The relationship between stromal cell derived SPARC in human gastric cancer tissue and its clinicopathologic significance, Oncotarget, vol.8, 2017.

J. R. Infante, « Peritumoral Fibroblast SPARC Expression and Patient Outcome With Resectable Pancreatic Adenocarcinoma | », Journal of Clinical Oncology, 2007.

M. J. Ernsting, « Targeting of metastasis-promoting tumor-associated fibroblasts and modulation of pancreatic tumor-associated stroma with a carboxymethylcellulosedocetaxel nanoparticle, J Control Release, vol.206, pp.122-130, 2015.

W. Wang, L. Liu, J. Xu, and X. Yu, « Reflections on depletion of tumor stroma in pancreatic cancer, Biochimica et Biophysica Acta (BBA) -Reviews on Cancer, vol.1871, issue.2, pp.267-272, 2019.

W. Wang, « Intratumoral ?-SMA Enhances the Prognostic Potency of CD34 Associated with Maintenance of Microvessel Integrity in Hepatocellular Carcinoma and Pancreatic Cancer, PLoS One, vol.8, issue.8, 2013.

S. Guo, C. M. Lin, Z. Xu, L. Miao, Y. Wang et al., « Co-delivery of Cisplatin and Rapamycin for Enhanced Anticancer Therapy through Synergistic Effects and Microenvironment Modulation, ACS Nano, vol.8, issue.5, pp.4996-5009, 2014.

C. Feig, « Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer, Proc Natl Acad Sci U S A, vol.110, pp.20212-20217, 2013.

G. Valenti, « Cancer Stem Cells Regulate Cancer-Associated Fibroblasts via Activation of Hedgehog Signaling in Mammary Gland Tumors, Cancer Res, vol.77, issue.8, p.2017

G. L. Beatty, « CD40 Agonists Alter Tumor Stroma and Show Efficacy Against Pancreatic Carcinoma in Mice and Humans, Science, vol.331, pp.1612-1616, 2011.

K. P. Olive, Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer, Science, vol.324, pp.1457-61, 2009.

D. V. Catenacci, « Randomized Phase Ib/II Study of Gemcitabine Plus Placebo or Vismodegib, a Hedgehog Pathway Inhibitor, in Patients With Metastatic Pancreatic Cancer, J Clin Oncol, vol.33, pp.4284-4292, 2015.

E. J. Kim, Pilot clinical trial of hedgehog pathway inhibitor GDC-0449 (vismodegib) in combination with gemcitabine in patients with metastatic pancreatic adenocarcinoma, Clinical cancer research : an official journal of the American Association for Cancer Research, vol.20, pp.5937-5945, 2014.

A. H. Ko, A Phase I Study of FOLFIRINOX Plus IPI-926, a Hedgehog Pathway Inhibitor, for Advanced Pancreatic Adenocarcinoma, Pancreas, vol.45, pp.370-375, 2016.

A. Neese, « Stromal biology and therapy in pancreatic cancer: ready for clinical translation?, 2019.

E. Mathew, Dosage-dependent regulation of pancreatic cancer growth and angiogenesis by hedgehog signaling, Cell reports, vol.9, pp.484-94, 2014.

C. Polydorou, F. Mpekris, P. Papageorgis, C. Voutouri, and T. Stylianopoulos, Pirfenidone normalizes the tumor microenvironment to improve chemotherapy, vol.8, pp.24506-24517, 2017.

S. Kozono, Pirfenidone Inhibits Pancreatic Cancer Desmoplasia by Regulating Stellate Cells | », Cancer Research, 2013.

S. A. Ealia and M. P. Saravanakumar, « A review on the classification, characterisation, synthesis of nanoparticles and their application, IOP Conf. Ser.: Mater. Sci. Eng, vol.263, p.32019, 2017.

, « Recommandation de la Commission du 18 octobre 2011 relative à la définition des nanomatériauxTexte présentant de l'intérêt pour l'EEE », Journal Officiel de l'Union Européenne, p.3, 2011.

C. Cheung, W. T. , ;. , G. Gonçalves, G. Tobias et al., « Liposomes-Based Nanoparticles for Cancer Therapy and Bioimaging », in Nanooncology: Engineering nanomaterials for cancer therapy and diagnosis, pp.51-87, 2018.

C. C. Lee, J. A. Mackay, J. M. Fréchet, and F. C. Szoka, « Designing dendrimers for biological applications, Nat Biotechnol, vol.23, pp.1517-1526, 2005.

X. J. Gao, X. Shen, G. Xing, X. Gao, ;. et al., Fullerenes for Cancer Therapy and Bioimaging », in Nanooncology: Engineering nanomaterials for cancer therapy and diagnosis, pp.387-415, 2018.

S. Ghanbarzadeh and . Hamishehkar, « Application of Graphene and its Derivatives in Cancer Diagnosis and Treatment, Arzneimittel-Forschung/Drug Research, vol.67, 2017.

H. He, L. A. Pham-huy, P. Dramou, D. Xiao, P. Zuo et al., Carbon Nanotubes: Applications in Pharmacy and Medicine, vol.2013, 2013.

H. Pandey, R. Rani, V. Agarwal, H. Pandey, R. Rani et al., Liposome and Their Applications in Cancer Therapy, vol.59, 2016.

A. K. Sharma, A. Gothwal, P. Kesharwani, H. Alsaab, A. K. Iyer et al., Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery, Drug Discovery Today, vol.22, issue.2, pp.314-326, 2017.

L. T. , P. Paira, *. , and «. Current, Application of Quantum Dots (QD) in Cancer Therapy: A Review », Mini-Reviews in Medicinal Chemistry, pp.31-2017

H. Daraee, A. Eatemadi, E. Abbasi, S. Aval, M. Kouhi et al., Application of gold nanoparticles in biomedical and drug delivery, vol.44, pp.410-422, 2016.

L. Zhu, Z. Zhou, H. Mao, and L. Yang, « Magnetic nanoparticles for precision oncology: theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy, Nanomedicine (Lond), vol.12, issue.1, pp.73-87, 2017.

M. A. Dobrovolskaia, P. Aggarwal, J. B. Hall, and S. E. Mcneil, Preclinical Studies To Understand Nanoparticle Interaction with the Immune System and Its Potential Effects on Nanoparticle Biodistribution, vol.5, pp.487-495, 2008.

A. Albanese, C. D. Walkey, J. B. Olsen, H. Guo, A. Emili et al., Secreted Biomolecules Alter the Biological Identity and Cellular Interactions of Nanoparticles, vol.8, pp.5515-5526, 2014.

D. E. Owens and N. A. Peppas, « Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles, International Journal of Pharmaceutics, vol.307, issue.1, pp.93-102, 2006.

J. Kolosnjaj-tabi, Cycle de vie de nanoparticules magnétiques dans l'organisme, 2014.

J. P. Almeida, A. L. Chen, A. Foster, and R. Drezek, « In vivo biodistribution of nanoparticles », vol.6, pp.815-835, 2011.

G. Fullstone, J. Wood, M. Holcombe, and G. Battaglia, « Modelling the Transport of Nanoparticles under Blood Flow using an Agent-based Approach, Scientific Reports, vol.5, p.10649, 2015.

M. Gindy, R. Prud'homme, «. Gindy, and R. K. Prud'homme, Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy, Expert opinion on drug delivery, vol.6, pp.865-78, 2009.

J. L. Corchero and A. Villaverde, « Biomedical applications of distally controlled magnetic nanoparticles », Trends in Biotechnology, vol.27, issue.8, pp.468-476, 2009.

F. Danhier, O. Feron, and V. Préat, « To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery, Journal of Controlled Release, vol.148, issue.2, pp.135-146

H. Maeda, T. Sawa, and T. Konno, « Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS », Journal of Controlled Release, vol.74, issue.1, pp.47-61, 2001.

C. Corot, « Macrophage Imaging in Central Nervous System and in Carotid Atherosclerotic Plaque Using Ultrasmall Superparamagnetic Iron Oxide in Magnetic Resonance Imaging, Investigative radiology, vol.39, pp.619-644, 2004.

«. Arami and . Hamed, In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles, Chemical Society reviews, vol.44, pp.8576-607, 2015.

E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-sayed, The golden age: gold nanoparticles for biomedicine, vol.41, pp.2740-2779, 2012.

R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde et al., « Biocompatibility of Gold Nanoparticles and Their Endocytotic Fate Inside the Cellular Compartment: A Microscopic Overview, Langmuir, vol.21, issue.23, pp.10644-10654, 2005.

S. Jeon, R. Subbiah, T. Bonaedy, S. Van, K. Park et al., « Surface functionalized magnetic nanoparticles shift cell behavior with on/off magnetic fields, Journal of Cellular Physiology, vol.233, issue.2, pp.1168-1178, 2018.

X. Liu, N. Huang, H. Li, Q. Jin, and J. Ji, « Surface and Size Effects on Cell Interaction of Gold Nanoparticles with Both Phagocytic and Nonphagocytic Cells, Langmuir, vol.29, pp.9138-9148, 2013.

C. H. Choi, J. E. Zuckerman, P. Webster, and M. E. Davis, « Targeting kidney mesangium by nanoparticles of defined size, Proc Natl Acad Sci U S A, vol.108, pp.6656-6661, 2011.

X. Sun, « An Assessment of the Effects of Shell Crosslinked Nanoparticle Size, Core Composition, and Surface PEGylation on, In Vivo Biodistribution », Biomacromolecules, vol.6, issue.5, pp.2541-2554, 2005.

N. Hoshyar, S. Gray, H. Han, and G. Bao, The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. », Nanomedicine (Lond), vol.11, pp.673-692, 2016.

E. Duguet, S. Vasseur, S. Mornet, and J. Devoisselle, Magnetic Nanoparticles and Their Applications in Medicine », vol.1, pp.157-68, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00090680

A. Schroeder, « Treating metastatic cancer with nanotechnology », Nature Reviews Cancer, vol.12, issue.1, pp.39-50

A. Kunzmann, « Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells, Toxicology and Applied Pharmacology, vol.253, issue.2, pp.81-93, 2011.

G. Fleige, « In Vitro Characterization of Two Different Ultrasmall Iron Oxide Particles for Magnetic Resonance Cell Tracking, Investigative Radiology, vol.37, issue.9, pp.482-488, 2002.

C. Leuschner, C. S. Kumar, W. Hansel, W. Soboyejo, J. Zhou et al., « LHRHconjugated Magnetic Iron Oxide Nanoparticles for Detection of Breast Cancer Metastases, Breast Cancer Res Treat, vol.99, issue.2, pp.163-176, 2006.

A. Vegerhof, « Targeted Magnetic Nanoparticles for Mechanical Lysis of Tumor Cells by Low-Amplitude Alternating Magnetic Field, vol.9, p.943, 2016.

«. Choi and H. Soo, Renal clearance of quantum dots, Nature biotechnology, vol.25, pp.1165-70, 2007.

H. Choi and . Soo, Design considerations for tumour-targeted nanoparticles, Nature nanotechnology, vol.5, pp.42-49, 2010.

S. S. Yu, Size-and charge-dependent non-specific uptake of PEGylated nanoparticles by macrophages, International journal of nanomedicine, vol.7, pp.799-813, 2012.

N. Khlebtsov and L. Dykman, « Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies, Chem Soc Rev, vol.40, issue.3, pp.1647-1671, 2011.

R. Weissleder, G. Elizondo, J. Wittenberg, C. A. Rabito, H. H. Bengele et al., Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging, », Radiology, vol.175, issue.2, pp.489-493, 1990.

, Sapsford et al « Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries that Facilitate Nanotechnology | », 2013.

, Yidong Yang « Temporal and noninvasive monitoring of inflammatory-cell infiltration to myocardial infarction sites using micrometer-sized iron oxide particles, Magnetic Resonance in Medicine, 2010.

. Weishaupt, « Pulmonary hemorrhage: Imaging with a new magnetic resonance blood pool agent in conjunction with breathheld three-dimensional magnetic resonance angiography, 1999.

C. Corot, P. Robert, and J. Idée, Port, « Recent advances in iron oxide nanocrystal technology for medical imaging, Advanced Drug Delivery Reviews, vol.58, pp.1471-1504, 2006.

H. Jackson, Neurosurgery, vol.60, issue.3, pp.524-530, 2007.

P. Gas, « Essential Facts on the History of Hyperthermia and their Connections with Electromedicine », Przeglad Elektrotechniczny, vol.87, pp.37-40, 2011.

R. K. Gilchrist, R. Medal, W. D. Shorey, R. C. Hanselman, J. C. Parrott et al., Selective Inductive Heating of Lymph Nodes », vol.146, pp.596-606, 1957.

S. Luo, « Clinical trials of magnetic induction hyperthermia for treatment of tumours », Critical review, p.6, 2014.

K. Maier-hauff, « Intracranial Thermotherapy using Magnetic Nanoparticles Combined with External Beam Radiotherapy: Results of a Feasibility Study on Patients with Glioblastoma Multiforme, J Neurooncol, vol.81, issue.1, pp.53-60, 2007.

K. Maier-hauff, « Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme, J Neurooncol, vol.103, issue.2, pp.317-324, 2011.

S. Dutz and R. Hergt, « Magnetic particle hyperthermia -A promising tumour therapy?, Nanotechnology, vol.25, 2014.

A. Villanueva, « Hyperthermia HeLa Cell Treatment with Silica-Coated Manganese Oxide Nanoparticles, J. Phys. Chem. C, vol.114, issue.5, 1976.

C. Sanchez, « Targeting a G-protein-coupled receptor overexpressed in endocrine tumors by magnetic nanoparticles to induce cell death, ACS Nano, vol.8, issue.2, pp.1350-1363, 2014.

J. Carrey, B. Mehdaoui, and M. Respaud, Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization, Journal of Applied Physics, vol.109, issue.8, p.83921, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01952248

L. Polo-corrales and C. Rinaldi, « Monitoring iron oxide nanoparticle surface temperature in an alternating magnetic field using thermoresponsive fluorescent polymers, Journal of Applied Physics, vol.111, pp.7-334, 2012.

. Riedinger, Subnanometer local temperature probing and remotely controlled drug release based on azo-functionalized iron oxide nanoparticles, Nano Lett, 2013.

H. Huang, S. Delikanli, H. Zeng, D. Ferkey, and A. Pralle, « Remote control of ion channels and neurons through magnetic-field heating of nanoparticles », Nature nanotechnology, vol.5, pp.602-608, 2010.

M. Domenech, I. Marrero-berrios, M. Torres-lugo, and E. C. Rinaldi, « Lysosomal Membrane Permeabilization by Targeted Magnetic Nanoparticles in Alternating Magnetic Fields, ACS Nano, vol.7, issue.6, pp.5091-5101, 2013.

N. Hallali, P. Clerc, D. Fourmy, V. Gigoux, and J. Carrey, « Influence on cell death of high frequency motion of magnetic nanoparticles during magnetic hyperthermia experiments, Appl. Phys. Lett, vol.109, issue.3, p.32402, 2016.

Y. I. Golovin, « The dynamics of magnetic nanoparticles exposed to non-heating alternating magnetic field in biochemical applications: theoretical study », J Nanopart Res, vol.19, issue.2, p.59, 2017.

J. H. Wang and B. Li, Mechanics rules cell biology, vol.2

A. I. Gonçalves, M. S. Miranda, M. T. Rodrigues, R. L. Reis, and M. E. Gomes, Magnetic responsive cell-based strategies for diagnostics and therapeutics », vol.13, p.54001, 2018.

M. Ermolli, C. Menné, G. Pozzi, M. Serra, L. A. Clerici et al., cobalt and chromium-induced cytotoxicity and intracellular accumulation in human hacat keratinocytes, Toxicology, vol.159, issue.1, pp.23-31, 2001.

D. W. Wong, W. L. Gan, Y. K. Teo, and W. S. Lew, « Interplay of cell death signaling pathways mediated by alternating magnetic field gradient, Cell Death Discovery, vol.4, issue.1, 2018.

S. K. Hobbs, « Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment, Proceedings of the National Academy of Sciences, vol.95, pp.4607-4612, 1998.

P. Decuzzi, « Size and shape effects in the biodistribution of intravascularly injected particles, Journal of Controlled Release, vol.141, issue.3, pp.320-327

E. Zhang, M. F. Kircher, M. Koch, L. Eliasson, S. N. Goldberg et al., Dynamic Magnetic Fields Remote-Control Apoptosis via Nanoparticle Rotation, vol.8, pp.3192-3201, 2014.

M. H. Cho, « A magnetic switch for the control of cell death signalling in in vitro and in vivo systems », Nature Materials, vol.11, pp.1038-1043

A. M. Master, « Remote Actuation of Magnetic Nanoparticles For Cancer Cell Selective Treatment Through Cytoskeletal Disruption, Scientific Reports, vol.6, issue.1, 2016.

W. Li, Y. Liu, Z. Qian, and Y. Yang, « Evaluation of Tumor Treatment of Magnetic Nanoparticles Driven by Extremely Low Frequency Magnetic Field, Scientific Reports, vol.7, issue.1, 2017.

R. Brossel, A. Yahi, S. David, L. M. Velasquez, and E. Guinebretière, « Mechanical Signals Inhibit Growth of a Grafted Tumor In Vivo: Proof of Concept, PLoS One, vol.11, 2016.

I. V. Belyanina, « In Vivo Cancer Cells Elimination Guided by Aptamer-Functionalized Gold-Coated Magnetic Nanoparticles and Controlled with Low Frequency Alternating Magnetic Field, Theranostics, vol.7, issue.13, pp.3326-3337, 2017.

S. Du, J. Li, C. Du, Z. Huang, G. Chen et al., « Overendocytosis of superparamagnetic iron oxide particles increases apoptosis and triggers autophagic cell death in human osteosarcoma cell under a spinning magnetic field, Oncotarget, vol.8, issue.6, 2017.

K. Spyridopoulou, « Effect of low frequency magnetic fields on the growth of MNP-treated HT29 colon cancer cells, Nanotechnology, vol.29, p.175101, 2018.

A. I. Martínez-banderas, « Functionalized magnetic nanowires for chemical and magneto-mechanical induction of cancer cell death, Scientific Reports, vol.6, issue.1, 2016.

M. Contreras, R. Sougrat, A. Zaher, T. Ravasi, and J. Kosel, « Non-chemotoxic induction of cancer cell death using magnetic nanowires, International Journal of Nanomedicine, p.2141, 2015.

H. Chiriac, « Fe-Cr-Nb-B ferromagnetic particles with shape anisotropy for cancer cell destruction by magneto-mechanical actuation, Scientific Reports, vol.8, 2018.

M. E. Muroski, « Controlled Payload Release by Magnetic Field Triggered Neural Stem Cell Destruction for Malignant Glioma Treatment, PLoS One, vol.11, issue.1, 2016.

T. Zamay, « Noninvasive Microsurgery Using Aptamer-Functionalized Magnetic Microdisks for Tumor Cell Eradication, Nucleic acid therapeutics, vol.27, 2016.

J. Wen, « Apoptosis selectively induced in BEL-7402 cells by folic acid-modified magnetic nanoparticles combined with 100 Hz magnetic field », Int J Nanomedicine, vol.9, pp.2043-2050, 2014.

D. Kim, « Biofunctionalized magnetic-vortex microdiscs for targeted cancercell destruction », Nature Materials, vol.9, issue.2, pp.165-171

H. Ju, Y. Cui, Z. Chen, Q. Fu, M. Sun et al., « Effects of combined delivery of extremely low frequency electromagnetic field and magnetic Fe3O4 nanoparticles on hepatic cell lines, Am J Transl Res, vol.8, issue.4, pp.1838-1847, 2016.

D. Liu, L. Wang, Z. Wang, and A. Cuschieri, « Magnetoporation and Magnetolysis of Cancer Cells via Carbon Nanotubes Induced by Rotating Magnetic Fields, Nano Lett, vol.12, issue.10, pp.5117-5121, 2012.

B. Wang, « Necrosis of HepG2 cancer cells induced by the vibration of magnetic particles, Journal of Magnetism and Magnetic Materials, vol.344, pp.193-201, 2013.

M. F. Contreras, T. Ravasi, and J. Kosel, « Targeted cancer cell death induced by biofunctionalized magnetic nanowires, 2nd Middle East Conference on Biomedical Engineering, pp.47-50, 2014.

S. Leulmi, « Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane, Nanoscale, vol.7, pp.15904-15914, 2015.

Y. Cheng, « Rotating magnetic field induced oscillation of magnetic particles for in vivo mechanical destruction of malignant glioma, Journal of Controlled Release, vol.223, pp.75-84, 2016.

Y. Shen, « Elongated Nanoparticle Aggregates in Cancer Cells for Mechanical Destruction with Low Frequency Rotating Magnetic Field, Theranostics, vol.7, issue.6, pp.1735-1748, 2017.

F. , « Forced-and Self-Rotation of Magnetic Nanorods Assembly at the Cell Membrane: A Biomagnetic Torsion Pendulum, vol.13, p.1701274, 2017.

R. Mansell, « Magnetic particles with perpendicular anisotropy for mechanical cancer cell destruction, Sci Rep, vol.7, issue.1, pp.1-7, 2017.

M. Subramanian, A. Miaskowski, S. I. Jenkins, J. Lim, and J. Dobson, « Remote manipulation of magnetic nanoparticles using magnetic field gradient to promote cancer cell death, Appl. Phys. A, vol.125, p.226, 2019.

B. G. Nair, Y. Nagaoka, H. Morimoto, Y. Yoshida, T. Maekawa et al., Aptamer conjugated magnetic nanoparticles as nanosurgeons, vol.21, p.455102, 2010.

D. W. Wong, W. L. Gan, N. Liu, W. S. Lew, and . Magneto, Scientific Reports, vol.7, issue.1, 2017.

Y. I. Golovin, « Towards nanomedicines of the future: Remote magnetomechanical actuation of nanomedicines by alternating magnetic fields, Journal of Controlled Release, vol.219, pp.43-60, 2015.

Y. I. Golovin, « Selective Deformation of Single Macromolecules and Biomolecular Structures as a Method for Remote Control of Their Properties and Functions for Next-Generation Medicine, Russ. Metall, vol.2019, issue.4, pp.374-384, 2019.

D. Liu, Z. Wang, L. Wang, and A. Cuschieri, « Finite Element Study of Carbon Nanotube Induced Cell Membrane Poration for Drug and Gene Delivery », J Med Imaging Hlth Inform, vol.2, issue.2, pp.132-138

L. Vande-walle, M. Lamkanfi, and . Pyroptosis, Current Biology, vol.26, pp.568-572, 2016.

M. N. Bouchlaka, « Mechanical Disruption of Tumors by Iron Particles and Magnetic Field Application Results in Increased Anti-Tumor Immune Responses, PLoS ONE, vol.7, issue.10, p.48049, 2012.

A. O. Fung, V. Kapadia, E. Pierstorff, D. Ho, and Y. Chen, « Induction of Cell Death by Magnetic Actuation of Nickel Nanowires Internalized by Fibroblasts, The Journal of Physical Chemistry C, vol.112, pp.15085-15088, 2008.

C. Bustamante, Y. R. Chemla, N. R. Forde, and D. Izhaky, Mechanical Processes in Biochemistry, vol.73, pp.705-748, 2004.

H. Itoh, Mechanically driven ATP synthesis by F 1 -ATPase, vol.427, pp.465-468, 2004.

Y. I. Golovin, S. L. Gribanovskii, N. L. Klyachko, and A. V. Kabanov, « Nanomechanical control of the activity of enzymes immobilized on single-domain magnetic nanoparticles, Tech. Phys, vol.59, issue.6, pp.932-935, 2014.

F. Mosconi, J. F. Allemand, and V. Croquette, « Soft magnetic tweezers: A proof of principle, Review of Scientific Instruments, vol.82, issue.3, p.34302, 2011.

P. Clerc, « Targeted Magnetic Intra-Lysosomal Hyperthermia produces lysosomal reactive oxygen species and causes Caspase-1 dependent cell death », Journal of Controlled Release, vol.270, pp.120-134, 2018.

Y. Qiang, J. Liu, and E. E. Du, « Dynamic fatigue measurement of human erythrocytes using dielectrophoresis, Acta Biomaterialia, vol.57, pp.352-362, 2017.

U. Repnik, M. Hafner-?esen, and E. B. Turk, « Lysosomal membrane permeabilization in cell death: Concepts and challenges, Mitochondrion, vol.19, pp.49-57, 2014.

. Cirman, Selective Disruption of Lysosomes in HeLa Cells Triggers Apoptosis Mediated by Cleavage of Bid by Multiple Papain-like Lysosomal Cathepsins, Journal of Biological Chemistry, 2003.

C. Y. Taabazuing, M. C. Okondo, and D. A. Bachovchin, Pyroptosis and Apoptosis Pathways Engage in Bidirectional Crosstalk in Monocytes and Macrophages, vol.24, pp.507-514, 2017.

L. Galluzzi, Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death, Cell death and differentiation, vol.25, pp.486-541, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01727577

S. He and X. Wang, « RIP kinases as modulators of inflammation and immunity, Nat Immunol, vol.19, issue.9, pp.912-922, 2018.

N. Hallali, Utilisation de nanoparticules magnétiques dans les traitements antitumoraux: Au-delà de l'hyperthermie magnétique, p.207

J. Pu, C. M. Guardia, T. Keren-kaplan, and J. S. Bonifacino, « Mechanisms and functions of lysosome positioning, J Cell Sci, vol.129, issue.23, pp.4329-4339, 2016.

A. Serrano-puebla and P. Boya, « Lysosomal membrane permeabilization as a cell death mechanism in cancer cells, Biochemical Society Transactions, vol.46, issue.2, pp.207-215, 2018.

. Thoumine, « Influence of adhesion and cytoskeletal integrity on fibroblast traction», Cell Motility, 1996.

D. Robert, T. Nguyen, F. Gallet, and C. Wilhelm, « In Vivo Determination of Fluctuating Forces during Endosome Trafficking Using a Combination of Active and Passive Microrheology », vol.5, 2010.

G. Yang, R. C. Crawford, J. H. , and -. Wang, « Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions, Journal of Biomechanics, vol.37, issue.10, pp.1543-1550, 2004.

Y. He, E. Macarak, J. Korostoff, and P. Howard, Compression and Tension: Differential Effects on Matrix Accumulation by Periodontal Ligament Fibroblasts In Vitro », Connective tissue research, vol.45, pp.28-39, 2004.