J. E. Murray, J. P. Merrill, J. H. Harrison, «. Renal, . In et al., J. Am. Soc. Nephrol, p.4

, « Transplantation rénale : élargissement des critères de sélection des donneurs

D. Sur,

S. Teraoka, « Outcomes of kidney transplants from non-heart-beating deceased donors as reported to the Japan Organ Transplant Network from, Clin. Transpl, pp.91-102, 1995.

C. González-segura, « A good alternative to reduce the kidney shortage: kidneys from nonheartbeating donors, Transplantation, vol.65, issue.11, pp.1465-1470, 1998.

M. Takasato and M. H. Little, « The origin of the mammalian kidney: implications for recreating the kidney in vitro, vol.142, pp.1937-1947, 2015.

V. Gueutin, G. Deray, C. Isnard-bagnis, and E. N. Janus, « Renal physiology, 2011.

«. Le-système-urinaire,

D. Sur,

J. F. Bertram, R. N. Douglas-denton, B. Diouf, M. D. Hughson, and W. E. Hoy, Human nephron number: implications for health and disease, Pediatr. Nephrol, vol.26, issue.9, pp.1529-1533, 2011.

M. F. Schreuder and . Glomerular, Number and Function Are Influenced by Spontaneous and Induced Low Birth Weight in Rats, J. Am. Soc. Nephrol, vol.16, issue.10, pp.2913-2919, 2005.

M. Zimanyi, J. Bertram, and J. Black, « Nephron number and blood pressure in rat offspring with maternal high-protein diet, Pediatr. Nephrol, vol.17, pp.1000-1004, 2002.

L. Larsson, A. Aperia, and P. Wilton, Effect of normal development on compensatory renal growth11Dedicated to our teacher in pediatrics, Prof. Rolf Zetterström,on his 60th anniversary, vol.18, pp.29-35, 1980.

K. E. White, Research into the structure of the kidney glomerulus -making it count », Micron, vol.43, pp.1001-1009, 2012.

M. Zeisberg and R. Kalluri, Physiology of the Renal Interstitium, vol.10, pp.1831-1840, 2015.

M. P. Mohning, « Phagocytosis of microparticles by alveolar macrophages during acute lung injury requires MerTK », Am. J. Physiol.-Lung Cell. Mol. Physiol, vol.314, issue.1, pp.69-82, 2018.

G. Bianchi, U. Fox, G. F. Francesco, A. M. Giovanetti, and D. Pagetti, Blood Pressure Changes Produced by Kidney Cross-Transplantation between Spontaneously Hypertensive Rats and Normotensive Rats, vol.47, pp.435-448, 1974.

O. Patschan, B. Kuttler, U. Heemann, A. Uber, and R. Rettig, « Kidneys from normotensive donors lower blood pressure in young transplanted spontaneously hypertensive rats », Am. J. Physiol, vol.273, issue.2, pp.175-180, 1997.

M. Canu, V. Bérézowski, P. Duriez, C. Langlet, P. Mariot et al., Physiologie humaine -Tout le cours en fiches, Dunod, 2016.

H. M. Wadei and S. C. Textor, The role of the kidney in regulating arterial blood pressure, vol.8, pp.602-609, 2012.

J. Perucca and . Rein, vasopressine et pression artérielle: importance de la concentration de l'urine et du rythme nycthéméral d'excrétion d'eau et de sodium, p.219

F. Favreau, S. Giraud, D. Bon, N. Chatauret, R. Thuillier et al., ischémie reperfusion -Acteur essentiel du devenir du greffon rénal », médecine/sciences, vol.29, pp.183-188, 2013.

. Netgen, Biomarqueurs dans l'insuffisance rénale aiguë

H. Peng, Y. Mao, X. Fu, Z. Feng, and J. Xu, Comparison of biomarkers in rat renal ischemiareperfusion injury, vol.8, pp.7577-7584, 2015.

E. Melgarejo, M. A. Medina, F. Sánchez-jiménez, and J. L. , Urdiales, « Monocyte chemoattractant protein-1: a key mediator in inflammatory processes », Int. J. Biochem. Cell Biol, vol.41, issue.5, pp.998-1001, 2009.

G. H. Tesch, MCP-1/CCL2: a new diagnostic marker and therapeutic target for progressive renal injury in diabetic nephropathy, Am. J. Physiol. Renal Physiol, vol.294, issue.4, pp.697-701, 2008.

J. Mishra, « Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury, J. Am. Soc. Nephrol. JASN, vol.14, issue.10, pp.2534-2543, 2003.

T. L. Nickolas, « Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney injury, Ann. Intern. Med, vol.148, issue.11, pp.810-819, 2008.

E. Masson, « Ischémie reperfusion en transplantation rénale », EM-Consulte

D. Sur,

A. Djamali, « Oxidative stress as a common pathway to chronic tubulointerstitial injury in kidney allografts, Am. J. Physiol. Renal Physiol, vol.293, issue.2, pp.445-455, 2007.

W. C. Hooper, « The relationship between inflammation and the anticoagulant pathway: the emerging role of endothelial nitric oxide synthase (eNOS) », Curr. Pharm. Des, vol.10, issue.8, pp.923-927, 2004.

K. J. Kelly, « P53 Mediates the Apoptotic Response to GTP Depletion after Renal

. Ischemia-reperfusion, Protective Role of a p53 Inhibitor, J. Am. Soc. Nephrol, vol.14, issue.1, pp.128-138, 2003.

S. Elmore and . Apoptosis, A Review of Programmed Cell Death, Toxicol. Pathol, vol.35, issue.4, pp.495-516, 2007.

R. W. Hung and A. W. Chow, « Dissecting the "end game": clinical relevance, molecular mechanisms and laboratory assessment of apoptosis, Clin Invest Med, vol.27, issue.6, p.22, 2004.

A. Havasi and S. C. Borkan, Apoptosis and acute kidney injury, vol.80, pp.29-40, 2011.

K. J. Kelly, Z. Plotkin, and P. C. Dagher, « Guanosine supplementation reduces apoptosis and protects renal function in the setting of ischemic injury, J. Clin. Invest, vol.108, issue.9, pp.1291-1298, 2001.

C. Chien, « Adenovirus-mediated bcl-2 gene transfer inhibits renal ischemia/reperfusion induced tubular oxidative stress and apoptosis », Am. J. Transplant. Off. J. Am. Soc. Transplant. Am. Soc. Transpl. Surg, vol.5, issue.6, pp.1194-1203, 2005.

M. N. Munkonda, « Podocyte-derived microparticles promote proximal tubule fibrotic signaling via p38 MAPK and CD36, J. Extracell. Vesicles, vol.7, issue.1, 2018.

G. Wiegele, M. Brandis, and L. B. Zimmerhackl, Apoptosis and necrosis during ischaemia in renal tubular cells (LLC-PK1 and MDCK)

A. , Ren. Assoc, vol.13, issue.5, pp.1158-1167, 1998.

A. Pefanis, F. L. Ierino, J. M. Murphy, and P. J. Cowan, Regulated necrosis in kidney ischemia-reperfusion injury, vol.96, pp.291-301, 2019.

H. K. Eltzschig and T. Eckle, « Ischemia and reperfusion-from mechanism to translation, Nat. Med, vol.17, issue.11, 2011.

J. V. Bonventre and A. Zuk, « Ischemic acute renal failure: an inflammatory disease?, Kidney Int, vol.66, issue.2, pp.480-485, 2004.

C. Kurts, U. Panzer, H. Anders, and A. J. Rees, The immune system and kidney disease: basic concepts and clinical implications, vol.13, pp.738-753, 2013.

G. Ramesh and W. B. Reeves, « Inflammatory cytokines in acute renal failure, Kidney Int, vol.66, pp.56-61, 2004.

M. L. Kielar, « Maladaptive Role of IL-6 in Ischemic Acute Renal Failure, J. Am. Soc. Nephrol, vol.16, issue.11, pp.3315-3325, 2005.

E. M. Simmons, « Plasma cytokine levels predict mortality in patients with acute renal failure, Kidney Int, vol.65, issue.4, pp.1357-1365, 2004.

J. Chen, « Early interleukin 6 production by leukocytes during ischemic acute kidney injury is regulated by TLR4, Kidney Int, vol.80, issue.5, pp.504-515, 2011.

J. C. Leemans, « Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney, J. Clin. Invest, vol.115, issue.10, pp.2894-2903, 2005.

Y. Opsha, A. Brophy, and . Chapter, Blood, Blood Components, Plasma, and Plasma Products, vol.37, pp.403-418, 2015.

?. ?krajnar, M. A. Lasnik, and A. B. Zavec, « A Flow Cytometric Method for Determination of the Blood Neutrophil Fraction in Rats, J. Am. Assoc. Lab. Anim. Sci. JAALAS, vol.48, issue.2, pp.152-156, 2009.

K. P. Kumar, A. J. Nicholls, and C. H. Wong, « Partners in crime: neutrophils and monocytes/macrophages in inflammation and disease, Cell Tissue Res, vol.371, issue.3, p.551, 2018.

S. Bolisetty and A. Agarwal, « Neutrophils in acute kidney injury: not neutral any more, Kidney Int, vol.75, issue.7, pp.674-676, 2009.

A. S. Awad, Compartmentalization of neutrophils in the kidney and lung following acute ischemic kidney injury, vol.75, pp.689-698, 2009.

V. Brinkmann and A. Zychlinsky, « Neutrophil extracellular traps: Is immunity the second function of chromatin?, J. Cell Biol, vol.198, issue.5, pp.773-783, 2012.

V. Granger, L. De-chaisemartin, and S. Chollet-martin, La pêche miraculeuse des filets du neutrophile », médecine/sciences, vol.30, pp.544-549, 2014.

D. Nakazawa, « Histones and Neutrophil Extracellular Traps Enhance Tubular Necrosis and Remote Organ Injury in Ischemic AKI, J. Am. Soc. Nephrol. JASN, vol.28, issue.6, pp.1753-1768, 2017.

W. M. Raup-konsavage, Y. Wang, W. W. Wang, D. Feliers, H. Ruan et al.,

, « Neutrophil peptidyl arginine deiminase-4 has a pivotal role in ischemia/reperfusion-induced acute kidney injury, Kidney Int, vol.93, issue.2, pp.365-374, 2018.

A. Ham, « Peptidyl arginine deiminase-4 activation exacerbates kidney ischemiareperfusion injury », Am. J. Physiol. Renal Physiol, vol.307, issue.9, pp.1052-1062, 2014.

M. Rabadi, M. Kim, V. D'agati, and H. T. Lee, « Peptidyl arginine deiminase-4-deficient mice are protected against kidney and liver injury after renal ischemia and reperfusion », Am. J. Physiol. Renal Physiol, vol.311, issue.2, pp.437-449, 2016.

J. Liu and Z. Dong, Neutrophil extracellular traps in ischemic AKI: new way to kill, vol.93, pp.303-305, 2018.

S. C. Huen and L. G. Cantley, Macrophages in Renal Injury and Repair, vol.79, p.2017

D. A. Munro and J. Hughes, « The Origins and Functions of Tissue-Resident Macrophages in Kidney Development, Front. Physiol, vol.8, 2017.

S. C. Huen and L. G. Cantley, « Macrophage-mediated injury and repair after ischemic kidney injury, Pediatr. Nephrol. Berl. Ger, vol.30, issue.2, pp.199-209, 2015.

L. Li, « The chemokine receptors CCR2 and CX3CR1 mediate

, monocyte/macrophage trafficking in kidney ischemia-reperfusion injury, vol.74, pp.1526-1537, 2008.

K. Furuichi, « CCR2 signaling contributes to ischemia-reperfusion injury in kidney, J. Am. Soc. Nephrol. JASN, vol.14, issue.10, pp.2503-2515, 2003.

I. Rauch, M. Müller, and T. Decker, The regulation of inflammation by interferons and their STATs, vol.2, p.23820, 2013.

P. Pacher, J. S. Beckman, and L. Liaudet, Physiol. Rev, vol.87, issue.1, pp.315-424, 2007.

X. Zhang and D. M. Mosser, « Macrophage activation by endogenous danger signals, J. Pathol, vol.214, issue.2, pp.161-178, 2008.

T. Lawrence and G. Natoli, « Transcriptional regulation of macrophage polarization: enabling diversity with identity, Nat. Rev. Immunol, vol.11, issue.11, pp.750-761, 2011.

V. A. Fadok, D. L. Bratton, A. Konowal, P. W. Freed, J. Y. Westcott et al., « Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF », J. Clin. Invest, vol.101, issue.4, pp.890-898, 1998.

A. A. Filardy, « Proinflammatory clearance of apoptotic neutrophils induces an IL-12(low)IL-10(high) regulatory phenotype in macrophages, J. Immunol. Baltim. Md, vol.185, issue.4, pp.2044-2050, 1950.

S. Lee, « Distinct macrophage phenotypes contribute to kidney injury and repair, J. Am. Soc. Nephrol. JASN, vol.22, issue.2, pp.317-326, 2011.

S. Lassen, M. Lech, C. Römmele, H. Mittruecker, T. W. Mak et al., « Ischemia reperfusion induces IFN regulatory factor 4 in renal dendritic cells, which suppresses postischemic inflammation and prevents acute renal failure, J. Immunol. Baltim. Md, vol.185, issue.3, pp.1976-1983, 1950.

T. A. Sutton, « p53 is renoprotective after ischemic kidney injury by reducing inflammation, J. Am. Soc. Nephrol. JASN, vol.24, issue.1, pp.113-124, 2013.

D. A. Chistiakov, V. A. Myasoedova, V. V. Revin, A. N. Orekhov, and Y. V. Bobryshev, « The impact of interferon-regulatory factors to macrophage differentiation and polarization into M1 and M2, Immunobiology, vol.223, issue.1, pp.101-111, 2018.

F. O. Martinez, L. Helming, and E. S. Gordon, « Alternative activation of macrophages: an immunologic functional perspective », Annu. Rev. Immunol, vol.27, pp.451-483, 2009.

D. Burger, S. C. Schock, C. S. Thompson, A. C. Montezano, A. M. Hakim et al., Clin. Sci, vol.124, issue.7, pp.423-441, 2013.

F. Dignat-george and C. M. Boulanger, « The many faces of endothelial microparticles, Arterioscler. Thromb. Vasc. Biol, vol.31, issue.1, pp.27-33, 2011.

O. Rubin, G. Canellini, J. Delobel, N. Lion, and J. Tissot, « Red blood cell microparticles: clinical relevance », Transfus. Med. Hemotherapy Off. Organ Dtsch. Ges. Transfusionsmedizin Immunhamatologie, vol.39, issue.5, pp.342-347, 2012.

S. Cauwenberghs, M. A. Feijge, A. G. Harper, S. O. Sage, J. Curvers et al.,

. Heemskerk, Shedding of procoagulant microparticles from unstimulated platelets by integrinmediated destabilization of actin cytoskeleton, FEBS Lett, vol.580, pp.5313-5320, 2006.

D. Burger, A. C. Montezano, N. Nishigaki, Y. He, A. Carter et al., « Endothelial microparticle formation by angiotensin II is mediated via Ang II receptor type I/NADPH oxidase/ Rho kinase pathways targeted to lipid rafts, Arterioscler. Thromb. Vasc. Biol, vol.31, issue.8, pp.1898-1907, 2011.

F. Shamekhi-amiri, Microparticles in kidney diseases: focus on kidney transplantation, vol.3, 2017.

D. E. Connor, T. Exner, D. D. Ma, and J. E. Joseph, « The majority of circulating plateletderived microparticles fail to bind annexin V, lack phospholipid-dependent procoagulant activity and demonstrate greater expression of glycoprotein Ib, Thromb. Haemost, vol.103, issue.5, pp.1044-1052, 2010.

N. S. Barteneva, « Circulating microparticles: square the circle, BMC Cell Biol, vol.14, p.23, 2013.

K. Osumi, « Development and assessment of enzyme immunoassay for plateletderived microparticles, Thromb. Haemost, vol.85, issue.2, pp.326-330, 2001.

B. R. Lentz, Exposure of platelet membrane phosphatidylserine regulates blood coagulation, Prog. Lipid Res, vol.42, issue.5, pp.423-438, 2003.

A. P. Owens and N. Mackman, Microparticles in hemostasis and thrombosis, vol.108, pp.1284-1297, 2011.

A. S. Shet, Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes, vol.102, pp.2678-2683, 2003.

R. S. Kasthuri, « PF4/heparin-antibody complex induces monocyte tissue factor expression and release of tissue factor positive microparticles by activation of Fc?RI, Blood, vol.119, pp.5285-5293, 2012.

E. I. Sinauridze, « Platelet microparticle membranes have 50-to 100-fold higher specific procoagulant activity than activated platelets, Thromb. Haemost, vol.97, issue.3, pp.425-434, 2007.

S. V. Brodsky, F. Zhang, A. Nasjletti, and M. S. Goligorsky, « Endothelium-derived microparticles impair endothelial function in vitro, Am. J. Physiol. Heart Circ. Physiol, vol.286, issue.5, pp.1910-1915, 2004.

P. Horn, « Circulating Microparticles Carry a Functional Endothelial Nitric Oxide Synthase That Is Decreased in Patients With Endothelial Dysfunction, J. Am. Heart Assoc

, Cardiovasc. Cerebrovasc. Dis, vol.2, issue.1, 2013.

A. M. Mahmoud, « Endothelial microparticles prevent lipid-induced endothelial damage via Akt/eNOS signaling and reduced oxidative stress »

, Exp. Biol, vol.31, pp.4636-4648, 2017.

A. Agouni, « Sonic hedgehog carried by microparticles corrects endothelial injury through nitric oxide release », FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.21, issue.11, pp.2735-2741, 2007.

M. L. Mastronardi, H. A. Mostefai, R. Soleti, A. Agouni, and M. C. Martínez,

«. Andriantsitohaina, Microparticles from apoptotic monocytes enhance nitrosative stress in human endothelial cells, Fundam. Clin. Pharmacol, vol.25, issue.6, pp.653-660, 2011.

M. Mesri and D. C. Altieri, Leukocyte Microparticles Stimulate Endothelial Cell Cytokine Release and Tissue Factor Induction in a JNK1 Signaling Pathway, J. Biol. Chem, vol.274, pp.23111-23118, 1999.

A. Scanu, N. Molnarfi, K. J. Brandt, L. Gruaz, J. Dayer et al., « Stimulated T cells generate microparticles, which mimic cellular contact activation of human monocytes: differential regulation of pro-and anti-inflammatory cytokine production by high-density lipoproteins, J. Leukoc. Biol, vol.83, issue.4, pp.921-927, 2008.

C. Cerri, D. Chimenti, I. Conti, T. Neri, P. Paggiaro et al., « Monocyte/Macrophage-Derived Microparticles Up-Regulate Inflammatory Mediator Synthesis by Human Airway Epithelial Cells, J. Immunol, vol.177, issue.3, pp.1975-1980, 2006.

J. Eyre, J. O. Burton, M. A. Saleem, P. W. Mathieson, P. S. Topham et al., Monocyte-and Endothelial-Derived Microparticles Induce an Inflammatory Phenotype in Human Podocytes, vol.119, pp.58-66, 2011.

J. Wang, « Monocytic microparticles activate endothelial cells in an IL-1?-dependent manner, Blood, vol.118, issue.8, pp.2366-2374, 2011.

Y. Berda-haddad, « Sterile inflammation of endothelial cell-derived apoptotic bodies is mediated by interleukin-1?, Proc. Natl. Acad. Sci, vol.108, pp.20684-20689, 2011.

K. E. Happonen, The Gas6-Axl Protein Interaction Mediates Endothelial Uptake of

P. Microparticles and ». , J. Biol. Chem, vol.291, pp.10586-10601, 2016.

W. Jy, « Endothelial microparticles (EMP) bind and activate monocytes: elevated EMP-monocyte conjugates in multiple sclerosis, Front. Biosci. J. Virtual Libr, vol.9, pp.3137-3144, 2004.

O. P. Barry, D. Praticò, R. C. Savani, and G. A. Fitzgerald, « Modulation of monocyteendothelial cell interactions by platelet microparticles. », J. Clin. Invest, vol.102, issue.1, pp.136-144, 1998.

K. L. Buesing, « Endothelial microparticles induce inflammation in acute lung injury, J. Surg. Res, vol.166, issue.1, pp.32-39, 2011.

J. C. Densmore, « Endothelium-derived microparticles induce endothelial dysfunction and acute lung injury, Shock Augusta Ga, vol.26, issue.5, pp.464-471, 2006.

M. L. Mastronardi, H. A. Mostefai, F. Meziani, M. C. Martínez, and P. Asfar,

«. Andriantsitohaina, Circulating microparticles from septic shock patients exert differential tissue expression of enzymes related to inflammation and oxidative stress, Crit. Care Med, vol.39, issue.7, pp.1739-1748, 2011.

H. K. Kim, K. S. Song, J. Chung, K. R. Lee, and S. Lee, Platelet microparticles induce angiogenesis in vitro, vol.124, pp.376-384, 2004.

A. Brill, O. Dashevsky, J. Rivo, Y. Gozal, and D. Varon, « Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization », Cardiovasc. Res, vol.67, issue.1, pp.30-38, 2005.

M. N. Hussein, R. Nieuwland, C. M. Hau, L. M. Evers, E. W. Meesters et al., « Cellderived microparticles contain caspase 3 in vitro and in vivo, J. Thromb. Haemost, vol.3, issue.5, pp.888-896, 2005.

M. Canault, « Microparticles of Human Atherosclerotic Plaques Enhance the Shedding of the Tumor Necrosis Factor-? Converting Enzyme/ADAM17 Substrates, Tumor Necrosis Factor and Tumor Necrosis Factor Receptor-1 », Am. J. Pathol, vol.171, issue.5, pp.1713-1723, 2007.

C. M. Freeman, « Characterization of microparticles after hepatic ischemiareperfusion injury, PloS One, vol.9, issue.5, p.97945, 2014.

V. Faure, « Elevation of circulating endothelial microparticles in patients with chronic renal failure, J. Thromb. Haemost. JTH, vol.4, pp.566-573, 2006.

Y. Zhang, Platelet Microparticles Mediate Glomerular Endothelial Injury in Early Diabetic Nephropathy, vol.29, pp.2671-2695, 2018.

J. H. Distler, « The release of microparticles by apoptotic cells and their effects on macrophages, Apoptosis, vol.10, issue.4, pp.731-741, 2005.

A. D. Terrisse, « Internalization of microparticles by endothelial cells promotes platelet/endothelial cell interaction under flow, J. Thromb. Haemost, vol.8, pp.2810-2819, 2010.

S. K. Dasgupta, « Lactadherin and clearance of platelet-derived microvesicles, Blood, vol.113, issue.6, pp.1332-1339, 2009.

R. G. Di-scipio, M. A. Hermodson, S. G. Yates, and E. W. Davie, « A comparison of human prothrombin, factor IX (Christmas factor), factor X (Stuart factor), and protein S, Biochemistry, vol.16, issue.4, pp.698-706, 1977.

B. Dahlbäck, « Vitamin K-Dependent Protein S: Beyond the Protein C Pathway, Semin. Thromb. Hemost, 2017.

B. Dahlbäck, B. Frohm, and G. Nelsestuen, « High affinity interaction between C4b-binding protein and vitamin K-dependent protein S in the presence of calcium. Suggestion of a third component in blood regulating the interaction », J. Biol. Chem, vol.265, pp.16082-16087, 1990.

L. Suleiman, C. Négrier, and H. Boukerche, « Protein S: A multifunctional anticoagulant vitamin K-dependent protein at the crossroads of coagulation, inflammation, angiogenesis, and cancer, Crit. Rev. Oncol. Hematol, vol.88, issue.3, pp.637-654, 2013.

R. Wallin and S. M. Hutson, « Warfarin and the vitamin K-dependent gamma-carboxylation system », Trends Mol. Med, vol.10, issue.7, pp.299-302, 2004.

B. Furie, B. A. Bouchard, and B. C. Furie, « Vitamin K-dependent biosynthesis of gammacarboxyglutamic acid, Blood, vol.93, issue.6, pp.1798-1808, 1999.

O. Benzakour, A. Gely, R. Lara, and V. Coronas, « Fonctions nouvelles de Gas-6 et de la protéine S -Facteurs vitamine K-dépendants et ligands des récepteurs tyrosine kinase de la famille TAM », médecine/sciences, vol.23, pp.826-833, 2007.

B. Dahlbäck, C4b-binding protein: a forgotten factor in thrombosis and hemostasis, vol.37, pp.355-361, 2011.

B. Dahlbäck, C. A. Smith, and H. J. Müller-eberhard, « Visualization of human C4b-binding protein and its complexes with vitamin K-dependent protein S and complement protein C4b, Proc. Natl. Acad. Sci. U. S. A, vol.80, issue.11, pp.3461-3465, 1983.

J. H. Griffin, A. Gruber, and J. A. Fernández, « Reevaluation of total, free, and bound protein S and C4b-binding protein levels in plasma anticoagulated with citrate or hirudin, Blood, vol.79, pp.3203-3211

G. Manfioletti, C. Brancolini, G. Avanzi, and C. E. Schneider, « The protein encoded by a growth arrest-specific gene (gas6) is a new member of the vitamin K-dependent proteins related to protein S, a negative coregulator in the blood coagulation cascade. », Mol. Cell. Biol, vol.13, issue.8, pp.4976-4985, 1993.

I. Balogh, S. Hafizi, J. Stenhoff, K. Hansson, and B. Dahlbäck, Analysis of Gas6 in human platelets and plasma, vol.25, pp.1280-1286, 2005.

J. H. Griffin, B. V. Zlokovic, and L. O. Mosnier, Protein C anticoagulant and cytoprotective pathways, vol.95, pp.333-345, 2012.

B. Dahlbäck, Lancet Lond. Engl, vol.355, pp.1627-1632, 2000.

M. J. Heeb, R. M. Mesters, J. A. Fernández, T. M. Hackeng, R. K. Nakasone et al., « Plasma protein S residues 37-50 mediate its binding to factor Va and inhibition of blood coagulation, Thromb. Haemost, vol.110, issue.2, pp.275-282, 2013.

T. Sugo, B. Dahlbäck, A. Holmgren, and J. Stenflo, « Calcium binding of bovine protein S. Effect of thrombin cleavage and removal of the gamma-carboxyglutamic acid-containing region, J. Biol. Chem, vol.261, issue.11, pp.5116-5120, 1986.

B. Mille-baker, S. M. Rezende, R. E. Simmonds, P. J. Mason, D. A. Lane et al., « Deletion or replacement of the second EGF-like domain of protein S results in loss of APC cofactor activity, Blood, vol.101, issue.4, pp.1416-1418, 2003.

P. Nyberg and B. Dahlbäck, García de Frutos, « The SHBG-like region of protein S is crucial for factor V-dependent APC-cofactor function, FEBS Lett, vol.433, issue.2, pp.28-32, 1998.

M. J. Heeb, D. Prashun, J. H. Griffin, and B. N. Bouma, « Plasma protein S contains zinc essential for efficient activated protein C-independent anticoagulant activity and binding to factor

. Xa, but not for efficient binding to tissue factor pathway inhibitor

, Exp. Biol, vol.23, issue.7, pp.2244-2253, 2009.

R. Chattopadhyay, T. Sengupta, and R. Majumder, « Inhibition of intrinsic Xase by protein S: a novel regulatory role of protein S independent of activated protein C », Arterioscler. Thromb

, Vasc. Biol, vol.32, issue.10, pp.2387-2393, 2012.

A. Gupta, A. M. Tun, and F. Tuma, , 2019.

T. Burstyn-cohen, M. J. Heeb, and G. Lemke, « Lack of protein S in mice causes embryonic lethal coagulopathy and vascular dysgenesis, J. Clin. Invest, vol.119, issue.10, pp.2942-2953, 2009.

F. Banno, « Exacerbated venous thromboembolism in mice carrying a protein S K196E mutation, Blood, vol.126, pp.2247-2253, 2015.

C. Parinot, Etude des mécanismes extracellulaires régulant la fonction du récepteur MerTK au cours de la phagocytose rétinienne, p.184

R. M. Linger, A. K. Keating, H. S. Earp, D. K. Graham, «. Tam-receptor-tyrosine et al., Biologic Functions, Signaling, and Potential Therapeutic Targeting in Human Cancer, vol.100, pp.35-83, 2008.

H. Uehara and E. Shacter, Auto-oxidation and oligomerization of protein S on the apoptotic cell surface is required for Mer tyrosine kinase-mediated phagocytosis of apoptotic cells, J. Immunol. Baltim. Md, vol.180, issue.4, pp.2522-2530, 1950.

L. Ling, D. Templeton, and H. J. Kung, « Identification of the major autophosphorylation sites of Nyk/Mer, an NCAM-related receptor tyrosine kinase, J. Biol. Chem, vol.271, pp.18355-18362, 1996.

G. Lemke, Biology of the TAM Receptors, vol.5, pp.9076-009076, 2013.

J. H. Van-der-meer, T. Van-der-poll, and C. Van-'t-veer, TAM receptors, Gas6, and protein S: roles in inflammation and hemostasis, vol.123, pp.2460-2469, 2014.

G. Lemke and Q. Lu, « Macrophage regulation by Tyro 3 family receptors, Curr. Opin

, Immunol, vol.15, issue.1, pp.31-36, 2003.

Q. Lu and G. Lemke, « Homeostatic regulation of the immune system by receptor tyrosine kinases of the Tyro 3 family, Science, vol.293, pp.306-311, 2001.

Q. Lu, « Tyro-3 family receptors are essential regulators of mammalian spermatogenesis, Nature, vol.398, pp.723-728, 1999.

A. Angelillo-scherrer, « Role of Gas6 receptors in platelet signaling during thrombus stabilization and implications for antithrombotic therapy, J. Clin. Invest, vol.115, issue.2, pp.237-246, 2005.

F. J. Walker, « Regulation of activated protein C by a new protein. A possible function for bovine protein S », J. Biol. Chem, vol.255, pp.5521-5524, 1980.

M. J. Heeb, R. M. Mesters, G. Tans, J. Rosing, and J. H. Griffin, « Binding of protein S to factor Va associated with inhibition of prothrombinase that is independent of activated protein C », J. Biol. Chem, vol.268, issue.4, pp.2872-2877, 1993.

L. A. Law, D. K. Graham, J. D. Paola, and B. R. Branchford, GAS6/TAM Pathway Signaling in Hemostasis and Thrombosis, vol.5, p.137, 2018.

R. Van-furth, Z. A. Cohn, J. G. Hirsch, J. H. Humphrey, W. G. Spector et al., The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells* », vol.46, pp.845-852, 1972.

S. Arandjelovic and K. S. Ravichandran, « Phagocytosis of apoptotic cells in homeostasis, Nat. Immunol, vol.16, issue.9, pp.907-917, 2015.

W. Wood, « Mesenchymal cells engulf and clear apoptotic footplate cells in macrophageless PU.1 null mouse embryos, Dev. Camb. Engl, vol.127, pp.5245-5252, 2000.

M. M. Lavail, « Rod outer segment disk shedding in rat retina: relationship to cyclic lighting, Science, vol.194, pp.1071-1074, 1976.

M. R. Elliott, « Unexpected requirement for ELMO1 in clearance of apoptotic germ cells in vivo, Nature, vol.467, pp.333-337, 2010.

K. Lauber, S. G. Blumenthal, M. Waibel, and E. S. Wesselborg, Clearance of apoptotic cells: getting rid of the corpses », vol.14, pp.277-287, 2004.

». «-phosphatidylsérine and W. , , pp.18-2019

S. K. Pubmeddev, N. S. , and A. Apoptotic, Signal: Phosphatidylserine Exposure

J. L. Duncan, « An RCS-like retinal dystrophy phenotype in mer knockout mice, Invest. Ophthalmol. Vis. Sci, vol.44, issue.2, pp.826-838, 2003.

C. V. Rothlin, S. Ghosh, E. I. Zuniga, M. B. Oldstone, and G. Lemke, TAM receptors are pleiotropic inhibitors of the innate immune response, vol.131, pp.1124-1136, 2007.

C. Nishi, S. Toda, K. Segawa, and E. S. Nagata,

, Apoptotic Cells by Mouse Resident Peritoneal Macrophages, Mol. Cell. Biol, vol.34, issue.8, pp.1512-1520, 2014.

H. M. Seitz, T. D. Camenisch, G. Lemke, H. S. Earp, and G. K. Matsushima, « Macrophages and dendritic cells use different Axl/Mertk/Tyro3 receptors in clearance of apoptotic cells, J. Immunol. Baltim. Md, vol.178, issue.9, pp.5635-5642, 1950.

Y. Zhen, S. O. Priest, and W. Shao, « Opposing Roles of Tyrosine Kinase Receptors Mer and Axl Determine Clinical Outcomes in Experimental Immune-Mediated Nephritis, J. Immunol

. Baltim and . Md, , vol.197, p.2016, 1950.

I. Dransfield, A. Zagórska, E. D. Lew, K. Michail, and G. Lemke, « Mer receptor tyrosine kinase mediates both tethering and phagocytosis of apoptotic cells, Cell Death Dis, vol.6, issue.2, pp.1646-1646, 2015.

S. A. Freeman and S. Grinstein, « Phagocytosis: receptors, signal integration, and the cytoskeleton », Immunol. Rev, vol.262, issue.1, pp.193-215, 2014.

V. Marshansky and M. Futai, « The V-type H+-ATPase in vesicular trafficking: targeting, regulation and function, Curr. Opin. Cell Biol, vol.20, issue.4, pp.415-426, 2008.

C. Rosales and E. Uribe-querol, Phagocytosis: A Fundamental Process in Immunity, vol.2017, 2017.

P. L. Cohen, « Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase, J. Exp. Med, vol.196, issue.1, pp.135-140, 2002.

W. Shao, « A Protective Role of Mer Receptor Tyrosine Kinase in Nephrotoxic Serum-induced Nephritis, Clin. Immunol. Orlando Fla, vol.136, issue.2, pp.236-244, 2010.

T. D. Camenisch, B. H. Koller, H. S. Earp, and G. K. Matsushima, « A novel receptor tyrosine kinase, Mer, inhibits TNF-alpha production and lipopolysaccharide-induced endotoxic shock, J. Immunol. Baltim. Md, vol.162, issue.6, pp.3498-3503, 1950.

P. Sen, « Apoptotic cells induce Mer tyrosine kinase-dependent blockade of NF-kappaB activation in dendritic cells, Blood, vol.109, issue.2, pp.653-660, 2007.

B. Zhang, L. Fang, H. Wu, P. Ding, K. Xu et al., Mer receptor tyrosine kinase negatively regulates lipoteichoic acid-induced inflammatory response via PI3K/Akt and SOCS3 », vol.76, pp.98-107, 2016.

Y. Lee, « Inhibiting Mer receptor tyrosine kinase suppresses STAT1, SOCS1/3, and NF-?B activation and enhances inflammatory responses in lipopolysaccharide-induced acute lung injury, J. Leukoc. Biol, vol.91, issue.6, pp.921-932, 2012.

A. Yoshimura, T. Naka, and M. Kubo, « SOCS proteins, cytokine signalling and immune regulation », Nat. Rev. Immunol, vol.7, issue.6, pp.454-465, 2007.

Y. Zhen, F. D. Finkelman, and W. Shao, « Mechanism of Mer receptor tyrosine kinase inhibition of glomerular endothelial cell inflammation, J. Leukoc. Biol, vol.103, issue.4, pp.709-717, 2018.

M. Yanagita, « Essential role of Gas6 for glomerular injury in nephrotoxic nephritis, J. Clin. Invest, vol.110, issue.2, pp.239-246, 2002.

M. Tjwa, « Gas6 promotes inflammation by enhancing interactions between endothelial cells, platelets, and leukocytes, Blood, vol.111, issue.8, pp.4096-4105, 2008.

T. Shibata, D. M. Habiel, A. L. Coelho, S. L. Kunkel, N. W. Lukacs et al., « Axl receptor blockade ameliorates pulmonary pathology resulting from primary viral infection and viral exacerbation of asthma, J. Immunol. Baltim. Md, vol.192, issue.8, pp.3569-3581, 1950.

M. Leidi, « M2 macrophages phagocytose rituximab-opsonized leukemic targets more efficiently than m1 cells in vitro, J. Immunol. Baltim. Md, vol.182, issue.7, pp.4415-4422, 1950.

K. V. Myers, S. R. Amend, and K. J. Pienta, « Targeting Tyro3, Axl and MerTK (TAM receptors): implications for macrophages in the tumor microenvironment, Mol. Cancer, vol.18, issue.1

P. Ochodnicky, « Increased Circulating and Urinary Levels of Soluble TAM Receptors in Diabetic Nephropathy », Am. J. Pathol, vol.187, issue.9, pp.1971-1983, 2017.

P. L. Cohen and W. Shao, « Gas6/TAM Receptors in Systemic Lupus Erythematosus », Disease Markers, 2019.

D. Sur,

E. Thorp, T. Vaisar, M. Subramanian, L. Mautner, C. Blobel et al.,

, Mer Tyrosine Kinase Receptor Is Mediated by ADAM17 Protein through a Pathway Involving Reactive Oxygen Species, Protein Kinase C?, and p38 Mitogen-activated Protein Kinase (MAPK), J. Biol. Chem, vol.286, pp.33335-33344, 2011.

M. M. Lavail and B. A. Battelle, « Influence of eye pigmentation and light deprivation on inherited retinal dystrophy in the rat, Exp. Eye Res, vol.21, issue.2, pp.167-192, 1975.

E. Nandrot, « Homozygous deletion in the coding sequence of the c-mer gene in RCS rats unravels general mechanisms of physiological cell adhesion and apoptosis, Neurobiol. Dis, vol.7, pp.586-599, 2000.

P. M. Cruz, « Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat, Hum. Mol. Genet, vol.9, issue.4, pp.645-651, 2000.

C. Parinot and E. F. Nandrot, A Comprehensive Review of Mutations in the MERTK Proto

, Adv. Exp. Med. Biol, vol.854, pp.259-265, 2016.

R. B. Edwards and R. B. Szamier, « Defective phagocytosis of isolated rod outer segments by RCS rat retinal pigment epithelium in culture, Science, vol.197, pp.1001-1003, 1977.

N. V. Custer and D. Bok, « Pigment epithelium-photoreceptor interactions in the normal and dystrophic rat retina, Exp. Eye Res, vol.21, issue.2, pp.153-166, 1975.

J. M. Goujon, T. Hauet, E. Menet, P. Levillain, P. Babin et al., « Histological Evaluation of Proximal Tubule Cell Injury in Isolated Perfused Pig Kidneys Exposed to Cold Ischemia, J. Surg. Res, vol.82, issue.2, pp.228-233, 1999.

W. Feng, D. Yasumura, M. T. Matthes, M. M. Lavail, and D. Vollrath, « Mertk Triggers Uptake of Photoreceptor Outer Segments during Phagocytosis by Cultured Retinal Pigment Epithelial Cells, J. Biol. Chem, vol.277, pp.17016-17022, 2002.

L. Fan, L. He, Z. Cao, B. Xiang, and L. Liu, Effect of ischemia preconditioning on renal ischemia/reperfusion injury in rats, vol.38, pp.842-854

S. Ko, « Severe bilateral ischemic-reperfusion renal injury: hyperacute and acute changes in apparent diffusion coefficient, T1, and T2 mapping with immunohistochemical correlations, Sci. Rep, vol.7, issue.1, pp.1-10, 2017.

H. Wang, A. Varner, T. Aboushwareb, A. Atala, and J. J. Yoo, « Ischemia/reperfusioninduced renal failure in rats as a model for evaluating cell therapies, Ren. Fail, vol.34, issue.10, pp.1324-1332, 2012.

H. Kocoglu, H. Ozturk, H. Ozturk, F. Yilmaz, and N. Gulcu, Effect of dexmedetomidine on ischemia-reperfusion injury in rat kidney: a histopathologic study, vol.31, pp.70-74, 2009.

R. A. Zager, A. C. Johnson, and K. Becker, « Renal Cortical Lactate Dehydrogenase: A Useful, Accurate, Quantitative Marker of Tubular Injury and Acute Renal Failure, PloS One, vol.8, issue.6, p.66776, 2013.

W. K. Han, V. Bailly, R. Abichandani, R. Thadhani, and J. V. Bonventre, Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury, vol.62, pp.237-244, 2002.

A. M. Sheridan, J. V. Bonventre, and «. , Cell biology and molecular mechanisms of injury in ischemic acute renal failure, Curr. Opin. Nephrol. Hypertens, vol.9, issue.4, pp.427-434, 2000.

X. Chen, « The administration of erythropoietin attenuates kidney injury induced by ischemia/reperfusion with increased activation of Wnt/?-catenin signaling, J. Formos. Med. Assoc, vol.114, issue.5, pp.430-437, 2015.

X. Yu, L. Ge, L. Niu, X. Lian, H. Ma et al., « The Dual Role of Inducible Nitric Oxide Synthase in Myocardial Ischemia/Reperfusion Injury: Friend or Foe?, Oxidative Medicine and Cellular Longevity, 2018.

D. Sur,

H. Fatemikia, F. Ketabchi, Z. Karimi, and S. M. Moosavi, « Distant effects of unilateral renal ischemia/reperfusion on contralateral kidney but not lung in rats: the roles of ROS and iNOS », Can, J. Physiol. Pharmacol, vol.94, issue.5, pp.477-487, 2016.

I. V. Gorudko, « Neutrophil activation in response to monomeric myeloperoxidase, Biochem. Cell Biol. Biochim. Biol. Cell, vol.96, issue.5, pp.592-601, 2018.

L. Li, M. D. Okusa, and . Macrophages, dendritic cells, and kidney ischemia-reperfusion injury, Semin. Nephrol, vol.30, issue.3, pp.268-277, 2010.

T. Zhou, E. R. Prather, D. E. Garrison, and L. Zuo, « Interplay between ROS and Antioxidants during Ischemia-Reperfusion Injuries in Cardiac and Skeletal Muscle », Int. J. Mol. Sci, vol.19, issue.2, 2018.

A. Akcay, Q. Nguyen, and C. L. Edelstein, Mediators of Inflammation in Acute Kidney Injury, 2009.

K. K. Meldrum, D. R. Meldrum, X. Meng, L. Ao, and A. H. Harken, « TNF-alpha-dependent bilateral renal injury is induced by unilateral renal ischemia-reperfusion », Am. J. Physiol. Heart Circ. Physiol, vol.282, issue.2, pp.540-546, 2002.

S. Mortaza, « Detrimental hemodynamic and inflammatory effects of microparticles originating from septic rats, Crit. Care Med, vol.37, issue.6, pp.2045-2050, 2009.

H. Bao, « Platelet-derived microparticles promote endothelial cell proliferation in hypertension via miR-142-3p », FASEB J, vol.32, issue.7, pp.3912-3923, 2018.

N. L. Andrés, « Increased Microparticle Production and Impaired Microvascular Endothelial Function in Aldosterone-Salt-Treated Rats: Protective Effects of Polyphenols, PLOS ONE, vol.7, issue.7, p.39235, 2012.

N. C. Teoh, « Microparticles mediate hepatic ischemia-reperfusion injury and are the targets of Diannexin (ASP8597), PloS One, vol.9, issue.9, p.104376, 2014.

R. Lacroix, « Impact of pre-analytical parameters on the measurement of circulating microparticles: towards standardization of protocol, J. Thromb. Haemost. JTH, vol.10, issue.3, pp.437-446, 2012.

N. D. Barth, J. A. Marwick, M. J. Heeb, A. J. Gale, A. G. Rossi et al., « Augmentation of Human Monocyte Responses to Lipopolysaccharide by the Protein S and Mer/Tyro3 Receptor Tyrosine Kinase Axis, J. Immunol. Baltim. Md, vol.201, issue.9, pp.2602-2611, 1950.