A. M. Oliverio, M. A. Bradford, and N. Fierer, Identifying the microbial taxa that consistently respond to soil warming across time and space, Glob. Chang. Biol, vol.23, pp.2117-2129, 2017.

L. Y. Yampolsky, T. M. Schaer, and D. Ebert, Adaptive phenotypic plasticity and local adaptation for temperature tolerance in freshwater zooplankton, Proc. Biol. Sci, vol.281, p.20132744, 2014.

P. Jin, K. Gao, and J. Beardall, Evolutionary responses of a coccolithophorid Gephyrocapsa oceanica to ocean acidification, Evolution, vol.67, pp.1869-1878, 2013.

D. A. Hutchins, Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide, Nat. Commun, vol.6, p.8155, 2015.

N. G. Walworth, M. D. Lee, F. Fu, D. A. Hutchins, and E. A. Webb, Molecular and physiological evidence of genetic assimilation to high CO2 in the marine nitrogen fixer Trichodesmium, Proc. Natl. Acad. Sci. U. S. A, vol.113, pp.7367-7374, 2016.

J. D. Grossman and K. J. Rice, Contemporary evolution of an invasive grass in response to elevated atmospheric CO2 at a Mojave Desert FACE site, Ecol. Lett, vol.17, pp.710-716, 2014.

J. Killeen, C. Gougat-barbera, S. Krenek, and O. Kaltz, Evolutionary rescue and local adaptation under different rates of temperature increase: a combined analysis of changes in phenotype expression and genotype frequency in Paramecium microcosms, Mol. Ecol, vol.26, pp.1734-1746, 2017.

A. N. Geerts, Rapid evolution of thermal tolerance in the water flea Daphnia, Nat. Clim. Chang, vol.5, p.665, 2015.

D. Padfield, G. Yvon-durocher, A. Buckling, S. Jennings, and G. Yvon-durocher, Rapid evolution of metabolic traits explains thermal adaptation in phytoplankton, Ecol. Lett, vol.19, pp.133-142, 2016.

J. G. Monroe, Ecoevolutionary Dynamics of Carbon Cycling in the Anthropocene, Trends Ecol. Evol, vol.33, pp.213-225, 2018.

S. Collins, B. Rost, and T. A. Rynearson, Evolutionary potential of marine phytoplankton under ocean acidification, Evol. Appl, vol.7, pp.140-155, 2014.

W. R. Wieder, G. B. Bonan, and S. D. Allison, Global soil carbon projections are improved by modelling microbial processes, Nat. Clim. Chang, vol.3, p.909, 2013.

J. A. Metz, S. A. Geritz, G. Meszena, F. J. Jacobs, J. S. Heerwaarden et al., Adaptive Dynamics: A Geometrical Study of the Consequences of Nearly Faithful Reproduction, vol.50, 1995.

N. Champagnat, R. Ferrière, and S. Méléard, Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models. Theor, Popul. Biol, vol.69, pp.297-321, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00164784

H. J. Folse and S. D. Allison, Cooperation, competition, and coalitions in enzymeproducing microbes: social evolution and nutrient depolymerization rates, Front. Microbiol, vol.3, p.338, 2012.

C. Kaiser, O. Franklin, U. Dieckmann, and A. Richter, Microbial community dynamics alleviate stoichiometric constraints during litter decay, Ecol. Lett, vol.17, pp.680-690, 2014.

C. Kaiser, O. Franklin, A. Richter, and U. Dieckmann, Social dynamics within decomposer communities lead to nitrogen retention and organic matter build-up in soils, Nat. Commun, vol.6, p.8960, 2015.

E. Kisdi and S. Liu, Evolution of handling time can destroy the coexistence of cycling predators, J. Evol. Biol, vol.19, pp.49-58, 2006.

J. Harte and A. P. Kinzig, Mutualism and competition between plants and decomposers: implications for nutrient allocation in ecosystems, Am. Nat, vol.141, pp.829-846, 1993.

S. J. Franks, S. Sim, and A. E. Weis, Rapid evolution of flowering time by an annual plant in response to a climate fluctuation, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.1278-1282, 2007.

R. Abramoff, The Millennial model: in search of measurable pools and transformations for modeling soil carbon in the new century, Biogeochemistry, vol.137, pp.51-71, 2018.

P. Sollins, P. Homann, and B. A. Caldwell, Stabilization and destabilization of soil organic matter: mechanisms and controls, Geoderma, vol.74, pp.65-105, 1996.

B. N. Sulman, R. P. Phillips, A. C. Oishi, E. Shevliakova, and S. W. Pacala, Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2, Nat. Clim. Chang, vol.4, p.1099, 2014.

W. R. Wieder, J. Boehnert, and G. B. Bonan, Evaluating soil biogeochemistry parameterizations in Earth system models with observations: Soil Biogeochemistry in ESMs, Global Biogeochem. Cycles, vol.28, pp.211-222, 2014.

J. M. Melillo, Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world, Science, vol.358, pp.101-105, 2017.

R. Z. Abramoff, E. A. Davidson, and A. C. Finzi, A parsimonious modular approach to building a mechanistic belowground carbon and nitrogen model, Journal of Geophysical Research, vol.122, issue.9, pp.2418-2434, 2017.

S. D. Allison, A trait-based approach for modelling microbial litter decomposition, Ecology Letters, vol.15, issue.9, pp.1058-1070, 2012.

S. D. Allison, Modeling adaptation of carbon use efficiency in microbial communities, Frontiers in Microbiology, vol.5, p.571, 2014.

S. D. Allison and K. K. Treseder, Warming and drying suppress microbial activity and carbon cycling in boreal forest soils, Global Change Biology, vol.14, issue.12, pp.2898-2909, 2008.

S. D. Allison and P. M. Vitousek, Extracellular Enzyme Activities and Carbon Chemistry as Drivers of Tropical Plant Litter Decomposition, Biotropica, vol.36, issue.3, pp.285-296, 2004.

S. D. Allison, M. D. Wallenstein, and M. A. Bradford, Soil-carbon response to warming dependent on microbial physiology, Nature Geoscience, vol.3, p.336, 2010.

C. J. Alster, D. P. German, Y. Lu, and S. D. Allison, Microbial enzymatic responses to drought and to nitrogen addition in a southern California grassland, Soil Biology & Biochemistry, vol.64, pp.68-79, 2013.

R. Amundson, Soil Formation, Treatise on Geochemistry, vol.5, p.605, 2003.

C. Averill and B. Waring, Nitrogen limitation of decomposition and decay: How can it occur?, Global Change Biology, vol.24, issue.4, pp.1417-1427, 2018.

J. A. Baldock and J. O. Skjemstad, Role of the soil matrix and minerals in protecting natural organic materials against biological attack, Organic Geochemistry, issue.7, pp.697-710, 2000.

H. F. Birch, The effect of soil drying on humus decomposition and nitrogen availability, Plant and Soil, vol.10, issue.1, pp.9-31, 1958.

E. Blagodatskaya, S. Blagodatsky, M. Dorodnikov, and Y. Kuzyakov, Elevated atmospheric CO2 increases microbial growth rates in soil: results of three CO2 enrichment experiments, Global Change Biology, vol.16, issue.2, pp.836-848, 2010.

G. B. Bonan, P. J. Lawrence, K. W. Oleson, S. Levis, M. Jung et al., , 2011.

E. Abs and R. Ferriere, Modeling microbial dynamics and soil respiration, e?ect of climate change. in biogeochemical cycles: Anthropogenic and ecological drivers. submitted, 2018.

B. Allen, J. Gore, and M. Nowak, Spatial dilemmas of di?usible public goods. Elife, vol.2, p.1169, 2013.

. Sd-allison, A trait-based approach for modelling microbial litter decomposition, Ecology letters, vol.15, issue.9, pp.1058-1070, 2012.

. Steven-d-allison, Cheaters, di?usion and nutrients constrain decomposition by microbial enzymes in spatially structured environments, Ecology Letters, vol.8, issue.6, pp.626-635, 2005.

. Steven-d-allison, M. Matthew-d-wallenstein, and . Bradford, Soil-carbon response to warming dependent on microbial physiology, Nature Geoscience, vol.3, issue.5, p.336, 2010.

J. Charlotte, P. Alster, . Baas, N. G. Matthew-d-wallenstein, J. Johnson et al., Temperature sensitivity as a microbial trait using parameters from macromolecular rate theory, Frontiers in microbiology, vol.7, p.1821, 2016.

P. Billingsley, Convergence of probability measures, 2013.

A. Buckling, F. Harrison, M. Vos, A. Michael, A. Brockhurst et al., Siderophore-mediated cooperation and virulence in pseudomonas aeruginosa, FEMS microbiology ecology, vol.62, issue.2, pp.135-141, 2007.

N. Champagnat, R. Ferrière, and S. Méléard, Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models, Theoretical population biology, vol.69, issue.3, pp.297-321, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00164784

C. Chicone, Ordinary di?erential equations with applications, vol.34, 2006.

X. Otto, L. Cordero, . Ventouras, F. Edward, M. F. Delong et al., Public good dynamics drive evolution of iron acquisition strategies in natural bacterioplankton populations, Proceedings of the National Academy of Sciences, vol.109, issue.49, 2012.

A. Crudu, A. Debussche, A. Muller, and O. Radulescu, Convergence of stochastic gene networks to hybrid piecewise deterministic processes, The Annals of Applied Probability, vol.22, issue.5, pp.1822-1859, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00553482

A. Eric, . Davidson, A. Ivan, and . Janssens, Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, Nature, vol.440, issue.7081, p.165, 2006.

A. Dobay, . Bagheri, R. Messina, D. J. Kümmerli, and . Rankin, Interaction e?ects of cell di?usion, cell density and public goods properties on the evolution of cooperation in digital microbes, Journal of evolutionary biology, vol.27, issue.9, pp.1869-1877, 2014.

W. William, J. W. Driscoll, and . Pepper, Theory for the evolution of di?usible external goods, Evolution: International Journal of Organic Evolution, vol.64, issue.9, pp.2682-2687, 2010.

N. Stewart, T. Ethier, and . Kurtz, Markov processes: characterization and convergence, vol.282, 2009.

. Pg-falkowski, E. F. Fenchel, and . Delong, The microbial engines that drive earth'92s biogeochemical cycles, Science, vol.320, pp.1034-1039, 2008.

R. Ferriere, Spatial structure and viability of small populations. Revue d'Ecologie-La Terre et la Vie, pp.135-138, 2000.

R. Ferriere and S. Legendre, Eco-evolutionary feedbacks, adaptive dynamics and evolutionary rescue theory, Phil. Trans. R. Soc. B, vol.368, p.20120081, 1610.

R. Ferriere, J. L. Bronstein, S. Rinaldi, R. Law, and M. Gauduchon, Cheating and the evolutionary stability of mutualisms, Proceedings of the Royal Society of London B: Biological Sciences, vol.269, pp.773-780, 1493.
URL : https://hal.archives-ouvertes.fr/hal-01839182

N. Fierer, S. Michael, D. Strickland, . Liptzin, A. Mark et al., Global patterns in belowground communities, Ecology letters, vol.12, issue.11, pp.1238-1249, 2009.

J. Henry, . Folse, and . Steven-d-allison, Cooperation, competition, and coalitions in enzymeproducing microbes: social evolution and nutrient depolymerization rates, Frontiers in microbiology, vol.3, p.338, 2012.

N. Fournier and S. Méléard, A microscopic probabilistic description of a locally regulated population and macroscopic approximations, The Annals of Applied Probability, vol.14, issue.4, pp.1880-1919, 2004.

A. H. Stefan, G. Geritz, . Mesze, A. J. Johan, and . Metz, Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, Evolutionary ecology, vol.12, issue.1, pp.35-57, 1998.

. Donovan-p-german, R. B. Kathleen, M. M. Marcelo, S. Stone, and . Allison, The m ichaelis-m enten kinetics of soil extracellular enzymes in response to temperature: a crosslatitudinal study, Global Change Biology, vol.18, issue.4, pp.1468-1479, 2012.

. Ashleigh-s-gri-n, A. Stuart, A. West, and . Buckling, Cooperation and competition in pathogenic bacteria, Nature, vol.430, issue.7003, p.1024, 2004.

B. Shannon, K. J. Hagerty, . Van-groenigen, D. Steven, . Allison et al., Accelerated microbial turnover but constant growth e ciency with warming in soil, Nature Climate Change, vol.4, issue.10, p.903, 2014.

M. Peter, . Homyak, C. Joseph, E. W. Blankinship, S. M. Slessarev et al.,

P. Joshua and . Schimel, E?ects of altered dry season length and plant inputs on soluble soil carbon, Ecology, vol.99, issue.10, pp.2348-2362, 2018.

T. Julou, T. Mora, L. Guillon, V. Croquette, J. Isabelle et al., Cell-cell contacts confine public goods di?usion inside pseudomonas aeruginosa clonal microcolonies, Proceedings of the National Academy of Sciences, vol.110, issue.31, pp.12577-12582, 2013.

C. Kaiser, O. Franklin, U. Dieckmann, and A. Richter, Microbial community dynamics alleviate stoichiometric constraints during litter decay, Ecology letters, vol.17, issue.6, pp.680-690, 2014.

C. Kaiser, O. Franklin, A. Richter, and U. Dieckmann, Social dynamics within decomposer communities lead to nitrogen retention and organic matter build-up in soils, Nature communications, vol.6, p.8960, 2015.

M. Andrzej and . Kierzek, Stocks: Stochastic kinetic simulations of biochemical systems with gillespie algorithm, Bioinformatics, vol.18, issue.3, pp.470-481, 2002.

L. Arthur and . Koch, The macroeconomics of bacterial growth, 1985.

L. Mickael, M. Gac, and . Doebeli, Environmental viscosity does not a?ect the evolution of cooperation during experimental evolution of colicigenic bacteria, Evolution: International Journal of Organic Evolution, vol.64, issue.2, pp.522-533, 2010.

W. Lee, . Minus-van-baalen, A. A. Vincent, and . Jansen, Siderophore production and the evolution of investment in a public good: an adaptive dynamics approach to kin selection, Journal of theoretical biology, vol.388, pp.61-71, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02392321

A. Martin and . Nowak, Five rules for the evolution of cooperation, science, vol.314, issue.5805, pp.1560-1563, 2006.

B. Paul, K. Rainey, and . Rainey, Evolution of cooperation and conflict in experimental bacterial populations, Nature, vol.425, issue.6953, p.72, 2003.

C. Ratledge, Biodegradation of oils, fats and fatty acids, pp.89-141, 1994.

A. Ross-gillespie, A. Gardner, A. Stuart, A. S. West, and . Gri-n, Frequency dependence and cooperation: theory and a test with bacteria, The American Naturalist, vol.170, issue.3, pp.331-342, 2007.

P. Joshua, M. N. Schimel, and . Weintraub, The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model, Soil Biology and Biochemistry, vol.35, issue.4, pp.549-563, 2003.

R. L. Sinsabaugh and . Moorhead, Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition, Soil biology and biochemistry, vol.26, issue.10, pp.1305-1311, 1994.

M. Judith, J. Tisdall, and . Oades, Organic matter and water-stable aggregates in soils, Journal of soil science, vol.33, issue.2, pp.141-163, 1982.

P. Trivedi, M. Delgado-baquerizo, C. Trivedi, H. Hu, C. Ian et al., Microbial regulation of the soil carbon cycle: evidence from gene-enzyme relationships, The ISME journal, vol.10, issue.11, p.2593, 2016.

J. Gregory, ;. Velicer, . Vetter, P. A. Deming, B. B. Jumars et al., A predictive model of bacterial foraging by means of freely released extracellular enzymes, Trends in microbiology, vol.11, issue.7, pp.75-92, 1998.

A. Stuart, A. West, and . Buckling, Cooperation, virulence and siderophore production in bacterial parasites, Proceedings of the Royal Society of London B: Biological Sciences, vol.270, pp.37-44, 1510.

A. Stuart, A. S. West, A. Gri-n, S. P. Gardner, and . Diggle, Social evolution theory for microorganisms, Nature reviews microbiology, vol.4, issue.8, p.597, 2006.

G. B. William-r-wieder, S. Bonan, and . Allison, Global soil carbon projections are improved by modelling microbial processes, Nature Climate Change, vol.3, issue.10, p.909, 2013.

. William-r-wieder, E. A. Steven-d-allison, K. Davidson, O. Georgiou, Y. Hararuk et al., Explicitly representing soil microbial processes in earth system models, Global Biogeochemical Cycles, vol.29, issue.10, pp.1782-1800, 2015.

X. Zhang, G. Niu, A. S. Elshall, M. Ye, G. A. Barron-ga?ord et al., Assessing five evolving microbial enzyme models against field measurements from a semiarid savannah-what are the mechanisms of soil respiration pulses?, Geophysical Research Letters, vol.41, issue.18, pp.6428-6434, 2014.

P. G. Falkowski, T. Fenchel, and E. F. Delong, The microbial engines that drive Earth's biogeochemical cycles, Science, vol.320, pp.1034-1039, 2008.

S. A. Waksman and R. L. Starkey, The soil and the microbe

S. D. Frey, J. Lee, J. M. Melillo, and J. Six, The temperature response of soil microbial efficiency and its feedback to climate, Nat. Clim. Chang, vol.3, p.395, 2013.

B. K. Singh, R. D. Bardgett, P. Smith, and D. S. Reay, Microorganisms and climate change: terrestrial feedbacks and mitigation options, Nat. Rev. Microbiol, vol.8, pp.779-790, 2010.

E. A. Davidson and I. A. Janssens, Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, Nature, vol.440, pp.165-173, 2006.

M. A. Bradford, Thermal adaptation of soil microbial respiration to elevated temperature, Ecol. Lett, vol.11, pp.1316-1327, 2008.

C. L. Tucker, J. Bell, E. Pendall, and K. Ogle, Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming?, Glob. Chang. Biol, vol.19, pp.252-263, 2013.

C. A. Creamer, Microbial community structure mediates response of soil C decomposition to litter addition and warming, Soil Biol. Biochem, vol.80, pp.175-188, 2015.

H. Wei, Thermal acclimation of organic matter decomposition in an artificial forest soil is related to shifts in microbial community structure, Soil Biol. Biochem, vol.71, pp.1-12, 2014.

G. F. Fussmann, M. Loreau, and P. A. Abrams, Eco-evolutionary dynamics of communities and ecosystems, Funct. Ecol, vol.21, pp.465-477, 2007.

S. D. Allison, M. D. Wallenstein, and M. A. Bradford, Soil-carbon response to warming dependent on microbial physiology, Nat. Geosci, vol.3, p.336, 2010.

J. Li, G. Wang, S. D. Allison, M. A. Mayes, and Y. Luo, Soil carbon sensitivity to temperature and carbon use efficiency compared across microbial-ecosystem models of varying complexity, Biogeochemistry, vol.119, pp.67-84, 2014.

S. B. Hagerty, Accelerated microbial turnover but constant growth efficiency with warming in soil, Nat. Clim. Chang, vol.4, p.903, 2014.

D. P. German, K. R. Marcelo, M. M. Stone, and S. D. Allison, The Michaelis-Menten kinetics of soil extracellular enzymes in response to temperature: a cross-latitudinal study, Glob. Chang. Biol, vol.18, pp.1468-1479, 2012.

G. Wang, W. M. Post, and M. A. Mayes, Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses

. Appl, , vol.23, pp.255-272, 2013.

M. Vos, A. B. Wolf, S. J. Jennings, and G. A. Kowalchuk, Micro-scale determinants of bacterial diversity in soil, FEMS Microbiol. Rev, vol.37, pp.936-954, 2013.

I. M. Young, J. W. Crawford, N. Nunan, W. Otten, and A. Spiers, Chapter 4 Microbial Distribution in Soils: Physics and Scaling, Advances in Agronomy, vol.100, pp.81-121, 2008.

D. Padfield, G. Yvon-durocher, A. Buckling, S. Jennings, and G. Yvon-durocher, Rapid evolution of metabolic traits explains thermal adaptation in phytoplankton

, Ecol. Lett, vol.19, pp.133-142, 2016.

C. Schaum, Adaptation of phytoplankton to a decade of experimental warming linked to increased photosynthesis, Nat Ecol Evol, vol.1, p.94, 2017.

J. G. Monroe, Ecoevolutionary Dynamics of Carbon Cycling in the Anthropocene, Trends Ecol. Evol, vol.33, pp.213-225, 2018.

C. Ratledge, Biodegradation of oils, fats and fatty acids, Biochemistry of microbial degradation, pp.89-141, 1994.

W. Harder and L. Dijkhuizen, Physiological responses to nutrient limitation, Annu. Rev. Microbiol, vol.37, pp.1-23, 1983.

G. J. Velicer, Social strife in the microbial world, Trends Microbiol, vol.11, pp.330-337, 2003.

P. Trivedi, Microbial regulation of the soil carbon cycle: evidence from gene-enzyme relationships, ISME J, vol.10, pp.2593-2604, 2016.

P. B. Rainey and K. Rainey, Evolution of cooperation and conflict in experimental bacterial populations, Nature, vol.425, pp.72-74, 2003.

R. L. Sinsabaugh and D. L. Moorhead, Resource allocation to extracellular enzyme production: A model for nitrogen and phosphorus control of litter decomposition, Soil Biol. Biochem, vol.26, pp.1305-1311, 1994.

S. D. Allison, A trait-based approach for modelling microbial litter decomposition, Ecol. Lett, vol.15, pp.1058-1070, 2012.

M. D. Wallenstein, S. K. Mcmahon, and J. P. Schimel, Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils, Glob. Chang. Biol, vol.15, pp.1631-1639, 2009.

R. G. Burns, Soil enzymes in a changing environment: Current knowledge and future directions, Soil Biol. Biochem, vol.58, pp.216-234, 2013.

P. W. Hochachka and G. N. Somero, Biochemical Adaptation: Mechanism and Process in Physiological Evolution, 2002.

W. R. Wieder, G. B. Bonan, and S. D. Allison, Global soil carbon projections are improved by modelling microbial processes, Nat. Clim. Chang, vol.3, p.909, 2013.

R. L. Sinsabaugh, S. Manzoni, D. L. Moorhead, and A. Richter, Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling, Ecol. Lett, vol.16, pp.930-939, 2013.

M. J. Follows, S. Dutkiewicz, S. Grant, and S. W. Chisholm, Emergent biogeography of microbial communities in a model ocean, Science, vol.315, pp.1843-1846, 2007.

P. Trivedi, I. C. Anderson, and B. K. Singh, Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction, Trends Microbiol, vol.21, pp.641-651, 2013.

J. P. Schimel and M. N. Weintraub, The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model, Soil Biol

, Biochem, vol.35, pp.549-563, 2003.

J. Harte and A. P. Kinzig, Mutualism and competition between plants and decomposers: implications for nutrient allocation in ecosystems, Am. Nat, vol.141, pp.829-846, 1993.

C. Kaiser, O. Franklin, U. Dieckmann, and A. Richter, Microbial community dynamics alleviate stoichiometric constraints during litter decay, Ecol. Lett, vol.17, pp.680-690, 2014.

C. Kaiser, O. Franklin, A. Richter, and U. Dieckmann, Social dynamics within decomposer communities lead to nitrogen retention and organic matter build-up in soils, Nat. Commun, vol.6, p.8960, 2015.

R. Abramoff, The Millennial model: in search of measurable pools and transformations for modeling soil carbon in the new century, Biogeochemistry, vol.137, pp.51-71, 2018.

M. A. Bradford, Managing uncertainty in soil carbon feedbacks to climate change, Nat. Clim. Chang, vol.6, p.751, 2016.

M. W. Schmidt, Persistence of soil organic matter as an ecosystem property, Nature, vol.478, pp.49-56, 2011.

K. K. Treseder, Integrating microbial ecology into ecosystem models: challenges and priorities, Biogeochemistry, vol.109, pp.7-18, 2012.

M. M. Stone, Temperature sensitivity of soil enzyme kinetics under N-fertilization in two temperate forests, Glob. Chang. Biol, vol.18, pp.1173-1184, 2012.

S. D. Allison, Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments: Constraints on enzymatic decomposition, Ecol. Lett, vol.8, pp.626-635, 2005.

C. D. Nadell, K. Drescher, and K. R. Foster, Spatial structure, cooperation and competition in biofilms, Nat. Rev. Microbiol, vol.14, pp.589-600, 2016.

R. Ferriere and S. Legendre, Eco-evolutionary feedbacks, adaptive dynamics and evolutionary rescue theory, Philos. Trans. R. Soc. Lond. B Biol. Sci, vol.368, p.20120081, 2013.

, Extended Data Figure 3 | Parameter influence on the dependence of equilibrium C on enzyme allocation fraction, ? . a , Microbial growth efficiency, ? M . b , Enzyme production efficiency, ? Z . c , Microbial mortality rate, d M . d , Enzyme deactivation rate, d Z . e , SOC leaching temperature; and EVO effects are strong in warm ecosystems when MGE decreases with warming, as seen in Fig

J. P. Schimel and M. N. Weintraub, The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model, Soil Biol

, Biochem, vol.35, pp.549-563, 2003.

R. G. Burns, Soil enzymes in a changing environment: Current knowledge and future directions, Soil Biol. Biochem, vol.58, pp.216-234, 2013.

S. D. Allison, M. D. Wallenstein, and M. A. Bradford, Soil-carbon response to warming dependent on microbial physiology, Nat. Geosci, vol.3, p.336, 2010.

S. B. Hagerty, Accelerated microbial turnover but constant growth efficiency with warming in soil, Nat. Clim. Chang, vol.4, p.903, 2014.

J. Li, G. Wang, S. D. Allison, M. A. Mayes, and Y. Luo, Soil carbon sensitivity to temperature and carbon use efficiency compared across microbial-ecosystem models of varying complexity, Biogeochemistry, vol.119, pp.67-84, 2014.

D. P. German, K. R. Marcelo, M. M. Stone, and S. D. Allison, The Michaelis-Menten kinetics of soil extracellular enzymes in response to temperature: a cross-latitudinal study, Glob. Chang. Biol, vol.18, pp.1468-1479, 2012.

J. A. Metz, S. A. Geritz, G. Meszena, F. J. Jacobs, J. S. Heerwaarden et al., Adaptive Dynamics: A Geometrical Study of the Consequences of Nearly Faithful Reproduction, vol.50, 1995.

S. A. Geritz, E. Kisdi, G. Mesze´na, and J. A. Metz, Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree

. Ecol, , vol.12, pp.35-57, 1998.

W. W. Driscoll and J. W. Pepper, Theory for the evolution of diffusible external goods, Evolution, vol.64, pp.2682-2687, 2010.

P. E. Eliasson, The response of heterotrophic CO2 flux to soil warming, Glob. Chang. Biol, vol.11, pp.167-181, 2005.

W. Knorr, I. C. Prentice, J. I. House, and E. A. Holland, Long-term sensitivity of soil carbon turnover to warming, Nature, vol.433, pp.298-301, 2005.

M. U. Kirschbaum, The temperature dependence of organic-matter decomposition-still a topic of debate, Soil Biol. Biochem, vol.38, pp.2510-2518, 2006.

M. A. Bradford, Thermal adaptation of soil microbial respiration to elevated temperature, Ecol. Lett, vol.11, pp.1316-1327, 2008.

M. A. Bradford, Thermal adaptation of decomposer communities in warming soils, Front. Microbiol, vol.4, p.333, 2013.

S. D. Frey, J. Lee, J. M. Melillo, and J. Six, The temperature response of soil microbial efficiency and its feedback to climate, Nat. Clim. Chang, vol.3, p.395, 2013.

C. L. Tucker, J. Bell, E. Pendall, and K. Ogle, Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming?, Glob. Chang. Biol, vol.19, pp.252-263, 2013.

W. R. Wieder, G. B. Bonan, and S. D. Allison, Global soil carbon projections are improved by modelling microbial processes, Nat. Clim. Chang, vol.3, p.909, 2013.

S. D. Allison, Modeling adaptation of carbon use efficiency in microbial communities, Front. Microbiol, vol.5, p.571, 2014.

A. J. Van-noordwijk and G. De-jong, Acquisition and Allocation of Resources: Their Influence on Variation in Life History Tactics, Am. Nat, vol.128, pp.137-142, 1986.

P. A. Del-giorgio and J. J. Cole, BACTERIAL GROWTH EFFICIENCY IN NATURAL AQUATIC SYSTEMS, Annu. Rev. Ecol. Syst, vol.29, pp.503-541, 1998.

R. T. Conant, Temperature and soil organic matter decomposition ratessynthesis of current knowledge and a way forward, Glob. Chang. Biol, vol.17, pp.3392-3404, 2011.

E. A. Davidson and I. A. Janssens, Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, Nature, vol.440, pp.165-173, 2006.

N. Fierer, M. S. Strickland, D. Liptzin, M. A. Bradford, and C. C. Cleveland, Global patterns in belowground communities, Ecol. Lett, vol.12, pp.1238-1249, 2009.

J. N. Ladd, M. Amato, L. Zhou, and J. E. Schultz, Differential effects of rotation, plant residue and nitrogen fertilizer on microbial biomass and organic matter in an Australian alfisol, Soil Biol. Biochem, vol.26, pp.821-831, 1994.

M. D. Wallenstein and E. K. Hall, A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning, Biogeochemistry, vol.109, pp.35-47, 2012.

S. D. Allison, A trait-based approach for modelling microbial litter decomposition, Ecol. Lett, vol.15, pp.1058-1070, 2012.

, Impact of Microbial Evolution on Soil Carbon Global Projections Elsa Abs 1,2* , Scott R. Saleska 1, Regis Ferriere, vol.1, p.3

. Ens-psl-university, I. Cnrs, and . Paris, USA *Corresponding author, abs@biologie.ens.fr example, we found that tsl_Lmon_CCSM4_rcp85_r1i1p1_200601-205002.nc and tsl_Lmon_CCSM4_rcp85_r1i1p1_205001-210012_partial.nc were interrupted after, Interdisciplinary Global Environmental Studies (iGLOBES), vol.85721, 2008.

W. R. Wieder, Explicitly representing soil microbial processes in Earth system models: Soil microbes in earth system models, Global Biogeochem. Cycles, vol.29, pp.1782-1800, 2015.

E. Abs and R. Ferriere, review Modeling microbial dynamics and heterotrophic soil respiration -effect of climate change, Biogeochemical Cycles: Anthropogenic and Ecological Drivers

X. Zhang, Assessing five evolving microbial enzyme models against field measurements from a semiarid savannah-What are the mechanisms of soil respiration pulses?, Geophys. Res. Lett, vol.41, pp.6428-6434, 2014.

E. Abs, R. Ferriere, and H. Leman, prep Eco-evolutionary dynamics of decomposition: microbial cooperation for diffusive goods

S. D. Allison, M. D. Wallenstein, and M. A. Bradford, Soil-carbon response to warming dependent on microbial physiology, Nat. Geosci, vol.3, p.336, 2010.

J. Li, G. Wang, S. D. Allison, M. A. Mayes, and Y. Luo, Soil carbon sensitivity to temperature and carbon use efficiency compared across microbial-ecosystem models of varying complexity, Biogeochemistry, vol.119, pp.67-84, 2014.

D. P. German, K. R. Marcelo, M. M. Stone, and S. D. Allison, The Michaelis-Menten kinetics of soil extracellular enzymes in response to temperature: a crosslatitudinal study, Glob. Chang. Biol, vol.18, pp.1468-1479, 2012.

E. Abs, S. R. Scott, and R. Ferriere, Microbial evolution reshapes soil carbon feedbacks to climate change

W. R. Wieder, G. B. Bonan, and S. D. Allison, Global soil carbon projections are improved by modelling microbial processes, Nat. Clim. Chang, vol.3, p.909, 2013.

W. R. Wieder, Carbon cycle confidence and uncertainty: Exploring variation among soil biogeochemical models, Glob. Chang. Biol, vol.24, pp.1563-1579, 2018.

S. D. Allison, Modeling adaptation of carbon use efficiency in microbial communities, Front. Microbiol, vol.5, p.571, 2014.

S. Fontaine, A. Mariotti, and L. Abbadie, The priming effect of organic matter: a question of microbial competition?, Soil Biol. Biochem, 2003.

M. A. Bradford, Managing uncertainty in soil carbon feedbacks to climate change, Nat. Clim. Chang, vol.6, p.751, 2016.

S. B. Hagerty, Accelerated microbial turnover but constant growth efficiency with warming in soil, Nat. Clim. Chang, vol.4, p.903, 2014.

J. T. Lennon and S. E. Jones, Microbial seed banks: the ecological and evolutionary implications of dormancy, Nat. Rev. Microbiol, vol.9, pp.119-130, 2011.

K. J. Locey, Synthesizing traditional biogeography with microbial ecology: the importance of dormancy, J. Biogeogr, vol.31, 2010.

S. S. Epstein, Microbial awakenings, Nature, vol.457, p.1083, 2009.

R. T. Conant, Temperature and soil organic matter decomposition ratessynthesis of current knowledge and a way forward, Glob. Chang. Biol, vol.17, pp.3392-3404, 2011.

E. A. Davidson and I. A. Janssens, Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, Nature, vol.440, pp.165-173, 2006.

R. Abramoff, The Millennial model: in search of measurable pools and transformations for modeling soil carbon in the new century, Biogeochemistry, vol.137, pp.51-71, 2018.

R. G. Keil and L. M. Mayer, Mineral matrices and organic matter, 2014.

P. Sollins, P. Homann, and B. A. Caldwell, Stabilization and destabilization of soil organic matter: mechanisms and controls, Geoderma, vol.74, pp.65-105, 1996.

, Evolutionary effect (eco-evolutionary response of soil carbon relative to the ecological response) averaged over 2020 to 2100: 28.4% in biome CR, 25.4% in biome CA, 51.5% in biome WV, 38.8% in biome ME, 111.0% in biome AK. Evolutionary effect estimated by comparing projected carbon stocks in year 2100: 37, End Notes Figure 3. Global and biome-specific projections of soil carbon from 2010 to 2100. Left

. Right, ECOEVO" projections from the eco-evolutionary model, including evolutionary adaptation of the enzyme allocation fraction to temperature change at each time step (monthly). See Methods for more detail