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Abstract

The continuously increasing demand of electrical energy has led to the conception
of power systems of great complexity that may extend even through entire coun-
tries. In the vast majority of large-scale power systems the main primary source
of energy are fossil fuels. Nonetheless, environmental concerns are pushing a major
change in electric energy production practices, with a marked shift from fossil fuels
to renewables and from centralized architectures to more distributed ones. One of
the main challenges that distributed power systems face are the stability problems
arising from the presence of the so-calle@onstant Power Loads(CPLs). These
loads, which are commonly found in information and communication technology
facilities, are known to reduce the e ective damping of the circuits that energize
them, which can cause voltage oscillations or even voltage collapse. In this thesis,
the main contributions are focused in understanding and solving diverse problems
found in the analysis and control of electrical power systems containing CPLs. The
contributions are listed as follows. (i) Simply veri able conditions are proposed to
certify the non existenceof steady states in general, multi-port, alternating current
(AC) networks with a distributed array of CPLs. These conditions, which are based
on Linear Matrix Inequalities (LMIs), allow to discard the values of the loads' pow-
ers that would certainly produce a voltage collapse in the whole network. (ii) For
general models of some modern power systems, including High-Voltage Direct Cur-
rent (HVDC) transmission networks and microgrids, it is shown that if equilibria
exist, then there is a characteristic high-voltage equilibrium that dominates, entry-
wise, all the other ones. Furthermore, for the case of AC power systems under the
standard decoupling assumption, this characteristic equilibrium is shown to be long-
term stable. (iii) A class of port-Hamiltonian systems, in which the control variables
act directly on the power balance equation, is explored. These systems are shown
to be shifted passive when their trajectories are constrained to easily de nable sets.
The latter properties are exploited to analyze the stability of their|intrinsically

non zero|equilibria. It is also shown that the stability of multi-port DC electrical
networks and synchronous generators, both with CPLs, can be naturally studied
with the proposed framework. (iv) The problem of regulating the output voltage of
the versatile DC buck-boost converter feeding annknown CPL is addressed. One
of the main obstacles for conventional linear control design stems from the fact that
the system's model is non-minimum phase with respect to each of its state variables.
As a possible solution to this problem, this thesis reports a nonlinear, adaptive con-
troller that is able to render a desired equilibrium asymptotically stable; furthermore
an estimate of the region of attraction can be computed. (v) The last contribution
concerns the active damping of a DC small-scale power system with a CPL. Instead
of connecting impractical, energetically ine cient passive elements to the existing
network, the addition of a controlled DC-DC power converter is explored. The main



contribution reported here is the design of a nonlinear, observer-based control law
for the converter. The novelty of the proposal lies in the non necessity of measuring
the network’s electrical current nor the value of the CPL, highlighting its practical
applicability. The e ectiveness of the control scheme is further validated through
experiments on a real DC network.
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Chapter 1

Overview

The energy needs of a modern society are mainly supplied in the form of electrical
energy [4]. The commercial use of electricity began in the late 1870's with very
small scale networks that provided enough energy to supply arc lamps for lighthouse
illumination and street lighting [56]. In order to satisfy the ever increasing demand
of electrical energy, industrially developed societies have built large and complex
power systems that can extend through entire countries [4, 56].

Electric energy is traditionally produced in thermal power plants, where a com-
bustion process ofossil fuelsrelease thermal energy that is transformed into consumer-
useful electric energy. The most common fuels used in the commercial production
of electricity are coal, natural gas, nuclear fuel and oil [56, 67, 40]. The combustion
of fossil fuels in electric power plants represents a major contributor of greenhouse
gases emission to the atmosphere [67, 90, 15, 29]. Furthermore, it is considered
that the emission of greenhouse gases from human activity is one of the biggest
responsible factors in climate change and global warming [15, 63, 87].

A number of strategies have been proposed to reduce greenhouse gas emissions
in the electric industry, for example, to increase the number of nuclear plants or
to remove the carbon dioxide from exhaust gases of traditional thermal generation
[67]. A radical alternative to these options consists in changing from traditional
fossil-fueled electric plants to renewable energies-based ones. Renewable energies
are energy sources that are continually replenished by nature and derived directly
from the sun (e.g. thermal, photo-electric), indirectly from the sun (e.g. wind,
hydropower, biomass), or from other natural movements and mechanisms of the
environment (e.g. geothermal) [36].

Renewable energy markets have been continuously growing during the last years.
The deployment of established technologies, such as hydro, as well as newer tech-
nologies, such as wind and solar, has risen quickly, which has increased con dence
in the technologies and reduced costs [36].

The increasing penetration of renewable energy markets may require a major
shift to current electric production practices. The thermal power plants of a tradi-
tional electric system are generally large in terms of power and located far from the
end-consumers. To e ciently transport the electricity through large distances, the
operation voltages must be tapped up to very high levels using a complex system of
substations and transmission grids. Conversely, renewable energy sources tend to be
very small in terms of capacity with respect to thermal power plants, which implies
that in order to supply the same amount of electric energy, many renewable energy
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sources must be installed. Nonetheless, due to a low energy density, these sources
are situated in a distributed array rather than a centralized one as in traditional
power plants [67].

Recent advances in power electronics have elucidated possible answers to the
guestion of how to better integrate renewable sources into the conventional power
system. A proposal that has gained much attention is the concept @hicrogrid
[62]. A microgrid consists of a collection of generation units|mostly based on
renewable energy sources|residential loads and energy storage elements that can
be operated either interconnected/disconnected to/from the main grid [62]. The
reader is referred to [96, 97] for a more extensive discussion on microgrids.

1.1 The problem

In many electric power distribution systems and particularly in microgrids, stability
problems may occur when a major proportion of the loads are electronic equipment.
This kind of equipment is usually powered by cascade distributed architectures which
are characterized by the presence of di erent voltage levels and power electronic con-
verters. These converters act as interfaces between sections of di erent voltages in
which, at last stage, loads are a combination of power electronic converters tightly
regulating their output voltage, behaving as Constant Power Loads (CPLs). This
architectures are common in information and communication technology facilities
where the many telecom switches, wireless communication base stations, and data
center servers act as CPLs [38, 59, 122]. It is well-known that CPLs introduce
a destabilizing e ect that gives rise to signi cant oscillations or even voltage col-
lapse [38], and hence they are considered to be the most challenging component of
the standard load model|referred to as the ZIP model [106, 30] in power system
stability analysis.

Stability assessment in networks containing CPLs is a defying challenge, mainly
because of the nonlinearities introduced by the dynamics of this kind of load, but also
by the nonlinear nature of electronic converters itself. Additionally, the uncertainties
associated with renewable energies and the interconnection of several subsystems
further aggravate the problem. Hence, the overall system stability can be di cult
to be ensured, even if individual subsystems are stable [109].

Considering the relevant economical and environmental implications of understand-
ing the conditions ensuring the stable and safe operation of networks containing
Constant Power Loads, this thesis is concerned with this objective

1.2 A general literature review

The main objective of a power system is to provide electric energy to the consumers
in a reliable manner, with a minimum cost, minimum ecological impact, and with
speci ed quality standards [56, 67]. Stability analysis of a power system is concerned
with the system's ability to withstand perturbations and still be able to ful Il its
main objective [4]. Typical disturbances in power systems are, for example, changes
in the demand, outages of power plants, or failures in the transmission system [56].
Given the high complexity of the power system of a modern society, the problem
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of guaranteeing a safe and stable operation of the system is still an active research
eld [39, 61, 98, 117, 41].

A sine gqua noncondition to perform stability analyses, and for the correct op-
eration of power systems, is thexistence of a steady statthat, moreover, should
be robust in the presence of perturbations [56]. The analysis of these equilibria is
complicated by the presence of CPLs, which introduce \strong" nonlinearities. This
motivates the development of new methods to analyze their the existence of steady
states. In [69, 9, 14] some analysis ekistenceof equilibria is carried out, whereas
in [106], su cient conditions are derived for all operating points of purely resistive
networks with constant power loads to lie in a desirable set. It should be pointed out
that the power systems community debates now new de nitions of stability, which
move away from the equilibrium-disturbance-equilibrium paradigm [57]. However,
analysis of equilibria in direct current and alternating current systems is still an
active research eld; seee.g, [74] and [123].

Stability analysishas been carried out in [3, 9] using linearization methods, see
also [69]. In [10], and recently in [20], the Brayton-Moser potential theory [16] is
employed, where, however, constraints on individual grid components are imposed.
Moreover, as shown in [69], the provided estimate of the region of attraction (ROA)
of the equilibria based on the Brayton-Moser potential is rather conservative.

Regarding the stabilization of networks with CPLs, there are two main ap-
proaches, respectively referred gmssiveand active dampingmethods. For a passive
stabilization, additional hardware is connected to the networke.g, a resistor may
be connected in parallel with the CPL or a larger capacitive e ect can be obtained
by including additional lters [59, 21]. However, the main drawback of these ap-
proaches is that they are typically energetically ine cient and the added cost or size
may not be practical. On the other hand, active damping methods aim at achieving
the same behavior of these passive components through the modi cation of existing
or added control loops [59, 122, 68, 46, 7].

1.3 Main contributions and outline

The main contributions of this thesis are on the analysis and control of networks
containing constant power loads and they can be listed as follows.

C1 The problem ofexistence of equilibrieof a general class of alternating current
networks that have a distributed array of constant power loads is addressed.
This thesis provides algebraicnecessaryconditions on the power values of the
loads for the existence of equilibria, that is, if these conditions are met, then
the network does not admit a sinusoidal equilibrium regime. By exploiting
the framework of quadratic forms[86, 118] these conditions are expressed in
terms of the feasibility of simple linear matrix inequalities (LMIs) for which
reliable software is available. Additionally, a re nement is made for the case
of one-ported networks where a condition that is botimecessaryand su cient
for the existence of equilibria is reported.

C2 It is shown that general models of alternating current and direct current net-
works with constant power loads.e.g, multi-terminal high voltage transmis-
sion systems and microgrids, are described in steady state by a nonlinear vector
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eld that, when is associated to a set of ordinary di erential equations, ex-
hibits properties of monotonicity. These properties are then used to establish
that if the aforementioned models admit steady state solutions, then one of
them dominates, component-wise, all the other ones. Furthermore, for the
case of alternating current networks under some rather standarmecoupling
assumptions, this equilibrium is shown to beroltage regular see [65, 45].

C3 A class of port-Hamiltonian systems in which the control variables act di-
rectly on the power balance equation is explored; these systems are then
coined power-controlled Hamiltonian systems In these dynamical systems,
the equilibrium points are intrinsically non-zero, which hampers the use of
the known passivity properties of more conventional port-Hamiltonian sys-
tems (with constant input matrix) to analyze their stability. The conditions
under which these systems arshifted passiveare studied; this is further used
to perform a stability analysis on the system's equilibria. Interestingly, in case
that the Hamiltonian is quadratic, an estimate of the region of attraction can
be provided. These results are applied to study the stability of a general class
of direct current electrical networks with constant power loads, and of a syn-
chronous generator modeled by the improved swing equation connected to a
constant power load.

C4 The problem of regulating the output voltage of the widely popular and versa-
tile DC buck-boost converter is addressed; the converter is assumed to supply
energy to a CPL. The bilinear model describing this network is shown to be
non-minimum phase with respect to each of the state variables, which compli-
cates the design of linear controllers. A novel nonlinear, adaptive control law
is designed following the Interconnection and Damping Assignment Passivity-
Based Control (IDA-PBC) design methodology. The controller is rendered
adaptive by incorporating an online estimator of the|practically di cult to
measure|value of the constant power load.

C5 The stabilization of a DC microgrid whose main electric power source is con-
nected to a constant power load is explored. The source is assumed be non-
controllable and hence the network is rst augmented by adding a controllable
power converter. Then, an adaptive observer-based nonlinear control law, that
provably achieves the overall network’s stabilization, is proposed to control the
converter. The design is particularly challenging due to the existence of states
that are di cult to measure in a practical scenario|the current of the DC
network|and due to the unknown power consumption of the load. The the-
oretical developments have been validated through physical experiments on a
real small-scale, DC network; these experimental results are also reported in
the thesis.

The rest of the thesis is structured as follows. Some preliminaries on nonlinear
dynamical systems and power systems are presented in Chapter 2. The main con-
tributions, from C1 to C5, are reported in chapters 3 to 7, respectively. The thesis
is concluded with Chapter 8, which contains a brief summary and a discussion on
plausible future research.
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Chapter 2

Preliminaries and models

Synopsis This chapter presents the notation and theoretical foundations that are
used throughout the thesis. The content regarding nonlinear dynamical systems
reported in Section 2.2 is the base of the stability analysis of Chapters 4 and 5 and
of the control design that is reported in Chapters 6 and 7. The concepts of passivity
presented in section 2.2.2 and the port-Hamiltonian framework introduced in section
2.2.3 are also extensively used in the latter chapter. The brief introduction to electric
power systems in Section 2.3 is helpful to better understand the developments that
are presented in Chapters 3 and 4.

2.1 Notation and mathematical foundations

Sets and Numbers: The sets of natural, real and complex numbers are denoted
by N, R, and C, respectively. The notationx 2 A R means thatx is a member
of A and that A is a subset ofR. A complex numberz 2 % is usually written in
its Cartesian form asz = a+ jb, wherea;b2 R and | = 1 is the imaginary
unit, conj(z) denotes its complex conjugate, and the real and imaginary parts af
are denoted by Ref) and Im(z), respectively. For a setV, with a nite number of
elements,jVj denotes its cardinality.

Vectors and Matrices:  The Euclideann-space is denoted byr" and anyx 2 R"
Is written as ann 1 matrix X = col(Xy; Xo; :::; Xn); the notation col(x;) or stack(x;)
is considered equivalent in the text. The positive orthant ofR" is denoted by
K} = fx 2 R": x; > 08ig. The n-vectors of all unit and all zero entries are
written as 1, and 0,, respectively; whenever clear from the context, the sub-index
n may be dropped. Then n identity matrix is I,. Given x 2 R", diag(x) denotes
a diagonal matr|i3< with x on the diggonal; an equivalent notation is diag(). For
X2 R", kxky = L jxij, kxko = (L, x?)¥2, and kxk; = max; jxij. Inequalities
between real,n-vectors is meant component-wise.

An m n matrix A of real (complex) entries is denotedbp 2 R™ " (A2 C™ ").
For A 2 R™ " its transpose isA”. For B 2 C™ ", its conjugate transpose iB".
For a square, symmetric matrixA, its smallest and largest eigenvalues are denoted by

«A) and (A), respectively. The nullspace of a matrix is denoted by ke&(). For

1The structure and content of this chapter borrows heavily from the analogous chapters of the
theses [96, 105, 78, 131], yet primary bibliographic sources are signaled whenever necessary.
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A Az A2 R N diag(Ag; Ag; i Ay) is a block-diagonal matrix of appropriate
size.

Functions: The notation f : A R ! R means thatf maps the domainA
into R. A function f of argument x is denoted byx 7! f(x) yet, for ease of
notation, f (x) may be used to represent the function itself. For a vector eld
f :R"! R™, the partial derivative of f; with respect to x; is equivalently written
as%(;) andr y fi(x). The Jacobian matrix off is written asr f (x); the argument

x is omitted whenever clear from the context and, for the particular case when
m =1, r f (X) represents the transposed gradient df. For a mapF :R"! R" ™
and the distinguished vectorx 2 R", F = F (X)jx=x; analogously, forf : R" | Rk,

rf =rf(X)jx=x. Inthe text, every function is assumed to be su ciently smooth.

Graph Theory 2: A nite , undirected graphis de ned as a pairG = (V; E) where

V = f1;2;::;;ng is the set of vertices (also referred as nodes, or busds),V V s
the set of edges (or branches, or lines). The set of edges consists of elements of the
form (i;j ) such thati;j =1;2;:::;nandi 6 j.2 Two verticesi;j 2V are said to be
adjacentif fi;j g 2 E; in this case, the edgéi; g is said to beincident with vertices

I and j. The neighborhood\; V of a vertexi 2V isthe setfj 2V : fi;jg2Eg

A path of length m in G is a sequence of distinct vertice$vi,;vi,; ;5 vi, 0 V
such that for k = 0;1;::;;m 1, the verticesv;, and v, ,, are adjacent, that is,
fvi:Vi., 0 2 E; the verticesv;, and v;,, are called theend verticesof the path. A
graph G is said to beconnectedif, for every pair of (di erent) vertices in V, there is

a path that has them as its end vertices; notice that the graphs considered in this
thesis do not admit self loopsi.e., foranyi 2V, fi;ig Z2E.

Although this thesis deals only with simple graphs, the following discussion is
pertinent for the analysis carried in Section 2.3. An orientatioro of the edges
set E assigns a direction to the edges in the sense that: E ! f 1;1g, with
o(i;j) = o(j;1). An edge is said to originate in (tail) and terminate in j (head) if
o(i;j ) =1, and vice versa ifo(i;j ) = 1. Assume that the edges of a simple grapgh
have beerarbitrarily oriented and that a unique number 2 f 1;2;:::;jEjg is assigned
to each edgefi;j g 2 E, then the node-to-edge,ncidence matrix B 2 R"E | is
de ned as

8
< -1 ifi is the tail of the edge associated to,
B=[d:]; d0 = 1 ifiisthe head of the edge associated i (2.1)
0 otherwise.

Notice that for x 2 R", B>x 2 RI® s the vector of edge-wise di erences; Xj.
Assume now that, together with the edge and vertex sets, a functiom : E! R

is given that associates a value to each edge, then the resulting graph, denoted as
G = (V;E;w), is aweighted graph The weightedgraph Laplacian matrix associated
with the weighted graphG = (V; E;w) is de ned as

L= BWB” 2R" " (2.2)

whereW is ajEj jEj diagonal matrix, with w(*), ~ = 1;2;:::;jE], on the diagonal.

2The information of this section has been taken from [72, Chapter 2].
3The notation fi;j g is used in the sequel to identify the pair (;j) 2 E and (j;i) 2 E as the
same edge.
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The discussion on weighted, simple graphs is wrapped-up with the following claim,
which is instrumental in this thesis; see [72, Chapter 2].

() If the graph is connected, then kerB”) = ker(L) = span(1,), and alln 1
non-zero eigenvalues df are strictly positive.

More information about graph theory can be found in [13] and [12].

2.2 Nonlinear dynamical systems

LetJ RbeanintervalandX R",U R™ opensubsets. Lef :J X U!
R"andh:J X U! R¥ be continuously di erentiable. The dynamical systems
that are studied in this work are represented by a system of rst-order ordinary
di erential equations (ODESs) of the form

x(t) = f(t;x(t); u(t));
y(t) = h(t;x(t); u(t));

where the dot denotes di erentiation with respect to the independent variablé,
which in the text represents the time, the dependent variable is the state vectar,

u is an input signal, which is used to represent either a control signal or a distur-
bance, andy may codify variables of particular interest as, for example, physically
measurable variables. A system in the form of equation (2.3) is accompanied, but
usually not written together, by a third equation, namely

(2.3)

X(to) = Xo; (to;Xo) 2J X (2.4)

which is called aninitial condition. In the text, the initial condition is always
speci ed when making reference tgarticular solutions of (2.3). For the purposes
of the thesis, the set) is usually represented by an interval of the formd; 1 ).

In some scenarios, the ODEs under study do not depend explicitly érand do
not include the input nor the output vectors. In that case, the second equation in
(2.3) is dropped and the independent variablé and the input u are omitted from
the arguments off , giving the following reduced form of (2.3).

x(t) = f(x(1): (2.5)

The ODEs written in this form are referred asautonomousor time-invariant sys-
tems. A particular property of time-invariant systems is that they are invariant
with respect to shifts in the time origin to; notice that changing the time variable
fromtto =1t tgdoes not change the right hand side of (2.5). Hence, without
loss of generality, it is assumed throughout tha =[0;1 ) and that t, O, unless
speci ed otherwise.

An important concept used in the text is that of equilibrium point. For the
system (2.5) notice that iff (xo) = O for some xo 2 R", then the constant function

:R! R" dened by (t) X is a solution of (2.5). This kind of solutions are
also referred assteady state a rest point, or a zero (of the associated vector eld).
Given the possibly nonlinear nature of the vector eld , a given system may have a
single equilibrium point, nite or in nitely many of them, or none. An equilibrium

9
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point can be eitherisolated which means that there are no other equilibrium points
in its vicinity, or there could also be acontinuum of them.

When the input vector is considered in (2.3), but still in the time-invariant
context, the concept of equilibrium pair is also relevant. The pain¢u) 2 X U is
said to be anequilibrium pair of (2.3) if and only if for a givenx 2 X there exists
u2 U such thatf (x;u) =0,.

2.2.1 Stability in the sense of Lyapunov

The following stability concept and results are stated for autonomous ODEs under
the assumption thatx 0, is an equilibrium point. This is done without loss of
generality since ifx 2 R" nf0,g is an equilibrium point of (2.5), then the equivalent
systemz(t) = f (z), with z(t) := x(t) x, has an equilibrium at the origin.

De nition 2.1.  The equilibrium point x =0, of (2.5) is
stable if, for each > 0, there exists > 0 such that

kx(Ok< ) k x()k<; 8 O

unstable if it is not stable, and
asymptotically stable if it is stable and can be chosen such that

kx(QO)k < ) tI!ilm x(t)=0:

The following theorem and its proof can be found in [54, Chapter 4].

Theorem 2.1. Let the origin be an equilibrium point of (2.5) and letD X be
an open set containing it. LetV : D! R be a continuously di erentiable function
such that

V(@0)=0and V(x) > 0inDnf0,g (2.6)
V(x) 0inD: (2.7)

Then, the origin is stable. Moreover, if
\L(x)< 0inDnf0,g (2.8)

then the origin is asymptotically stable.

A continuously di erentiable function V (x) satisfying (2.6) and (2.7) is called a
Lyapunov functionand we may refer to it asstrict Lyapunov function if the stronger
condition (2.8) is met. In many physical systems however the condition (2.8) may
not be met, nonetheless, asymptotic stability can still be concluded by means of
LaSalle's invariance principle which is presented next; see [54, Chapter 4.2] for a
proof of Theorem 2.2.

De nition 2.2. A setM is said to beinvariant if
x(0)2M ) x(t)2M ; 8
and positively invariant if

x(0)2M ) x(t)2M; 8t> O

10
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Theorem 2.2. Let X be acompact set that is positively invariant with respect
to (2.5). LetV : X ! R be continuously di erentiable function satisfying (2.7). Let
F be the set of all points inX where\.(x) =0. Let M be the largest invariant set
in F. Then every solution starting in approachesM ast!1

De nition 2.3.  Let (t;Xxo) denote a solution of (2.5) with initial conditionxq 2 X .
Assume that x 2 X is an equilibrium point. Then, the region (or domain) of
attraction of x is de ned as the set of pointss 2 X for which (t;s) is de ned for
alt Oandlimy,; (t;s)= x.

Lyapunov functions can be used to obtain subsets of the region of attraction.
Indeed, letD X be open and suppose 2 D is an equilibrium point. Assume that
V :D! R s a strict Lyapunov function forx and that .=fx2D : V(x) «cg
is a bounded set. Then, . is positively invariant and every solution with initial
condition Xg 2 . approachesx ast goes to in nity. Consequently, . is contained
in the region of attraction of x.

2.2.2 Passive systems

The topics of this and the following subsection are heavily referred in Chapter 5;

see [94] and [95] for more details about passive and port-Hamiltonian systems.
The following two concepts concern systems of the form (2.3) under the assump-

tion that neither f nor h depend explicitly ont, and that k m, i.e., that the size

of the input and output vectors is the same.

De nition 2.4. A dynamic system of the formx_= f(x;u) and y = h(x;u) is
said to bepassiveif there exists a di erentiable storage functionS : X ! R, with
S(x) Oforallx 2 X, satisfying the di erential dissipation inequality

S(x) u7y; (2.9)
along all solutionsx 2 X corresponding to input functionsu 2 U.

For physical systems, the right-hand of inequality (2.9) is usually interpreted as
the supplied powerand S(x) as the stored energy The system is calledosslessf
(2.9) is satis ed with an equality. Hence, a passive system cannot store more energy
than it is supplied with and, in the lossless case, the stored energy is exactly equal
to the supplied one [95, Chapter 7].

De nition 2.5. Consider the dynamic systenx = f (x; u) with input u and output

y = h(x;u). Let (x;u) 2 E denote an equilibrium pair of the system and de ne
y := h(x; u). Then the system is said to beshifted passivef there exists a function
S:X! R,S(x) O0forallx2X, such that

SO) (U uiy ) (2.10)
along all solutionsx 2 X .

Remark 2.1. Shifted passivity is a particular case of the more general property of
incremental passivity[32, 85],i.e., the latter implies the former. Incremental pas-
sivity is established with respect totwo arbitrary input-output pairs of the system,
whereas in shifted passivity only one input-output pair is arbitrary and the other

11
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one is xed to a given non-zero equilibrium X; u) 2 E. While incremental passiv-

ity is used for well-posedness results in closed-loop con gurations and for deriving
the convergence of solutions to each other, the more modest requirement of shifted
passivity is used to analyze the system behavior for non-zero constant input, and in
particular its stability with respect to the corresponding non-zero equilibrium.
Shifted passivity with respect toany (x; u) was coined in [6] agquilibrium indepen-
dent passivity

2.2.3 Port-Hamiltonian systems

In this work, a port-Hamiltonian systemis a dynamical system admitting the form
[95, Chapter 4.2]

Xx=(J(X) RMX)rHX+g(X)u; x2X;u2U
y =g (x)r H(x);

where then n matricesJ(x) = J”(x) and R(x) = R”(x) have entries depending
smoothly onx. The matrix J(x) is referred as theinterconnection matrix and R(x)
Is called thedamping matrix The continuously di erentiable function H : X I R
is the Hamiltonian.* The speci ¢ output y de ned is usually referred asnatural
output.

(2.11)

Remark 2.2. Port-Hamiltonian systems are passive. Indeed, assume that the
Hamiltonian H(x) 0O for all x 2 X and compute

(r HX)” [(J(x)  R(X))r H(x)+ g(x)u]
(r HX)"R(X)r Hx)+ u’y
u’y;

H(x)

which establish the passivity claim with respect the input-output pair (1;y) and
storage functionH . The interpretation of this is that the increase in the stored
energyH (x) is always smaller than or equal to the supplied powar’y.

Theorem 2.3. For a port-Hamiltonian system assume thaH (x) is convex. Then
the system isshifted passivef the matricesJ, R and g are all constant.

The proof of this theorem, which can be deduced from [49, Remark 3], relies on
the use of the storage function

H(x)= H(x) (x x)°r H(x) H(X): (2.12)

This function is referred here ashifted Hamiltonian and it is closely related to
the Bregman distancewith respect to an equilibrium point; see [17]. These concepts
are used in Chapter 5 of this thesis to establish shifted passivity of a class of port-
Hamiltonian systems in which the matrixg(x) is not necessarily constant.

“Recall that for a scalar function H, its transposed gradient is denoted byr H.

12
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2.3 Electric Power Grids

This work treats both direct current (DC) and alternating current (AC) electric
power systems. In a DC system, the relevant variables of interest are voltages and
currents and at a steady state they shall remaigonstantwith respect to time. The
variables of interest are the same in AC power systems, nonetheless at a steady state
they have a sinusoidal characteristic of the forn& sin(wpt + ), whereA is the am-
plitude, wy is the angular frequencyand is the phase However, a given sinusoidal
signalx(t) = Asin(wot+ ) is more conveniently represented as the complex number
Ael , which is called thephasorof x(t); see [31, Chapter 7.2] for more details on
phasorial representation of sinusoidal signals.

An AC power grid is modeled in steady state as an simple, connected and
complex-weighted graphG = (V; E; w), whereV is the set of busesandE V V
is the set of transmission lines. The buses are partitioned in two mutually exclusive
setsasvV = L[S with L being theload buses andS the generationbuses and their
cardinality is conveniently expressed by the numbems := jLj and m := |Sj, for a
total of n + m buses. The weight function of the graphw, is de ned as complex-
valued admittance w(fi;j g) := g; + jbj 2 C, whereg; is the conductanceand b
the susceptancef the line associated to the edgti;j g; these parameters codify the
resistive and inductive e ects of said line, respectively. The incidence matrix of the
network is denoted aB 2 R("*™ Bl and is built assuming an arbitrary orientation
of the network's associated graph.

The phasors of voltage and current of thg-th element in L are denoted, re-
spectively, asV, 2 C and I; 2 C. Conversely, the variablesv®* 2 C and I 2 C
respectively denote those same phasors for eack S. In addition, each transmis-
sion linefj; k g has an associated voltage di erence, ® and a currentij 2 C.

Regarding the elements oE consider the following remark.

Remark 2.3. For each loadj 2 L there exists a functionF; : C C! C such that

F (Vv ;1) =0: (2.13)
The structure of F; depends on the model adopted; here, the conventional ZIP-
load model is used: ZIP is a composition of a constant impedance (Z), constant
current (I) and constant power(P) load. Nonetheless, the focus is, primarily, on
constant power loads, hence, the other two terms are dropped in certain cases.
Particularly, in Chapter 3, the loads are assumed to be purely constant power loads
and F; takes the form

F (V1) = Viconj(l;)+ S j 2L; (2.14)

whereS; 2 C is the load's complex power, whose re#l; := Re(S;) and imaginary
Q; :=Im( §;) parts are calledactive and reactive power; a detailed explanation of the
physical meaning of these terms can be found in [31, Chapter 7.7]. In the literature
of power systems, these kind of buses are referred as PQ buses.

Regarding the elements 08, consider the following assumption.

5In Chapter 3, the buses are referred as ports.
8For convenience, the directions of reference for this di erence are taken as the same as those
used in the de nition of the incidence matrix.

13
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Assumption 2.1. There exists, inS, a unigue bus for which the voltage phasor is
known a priori, that is, the phase angle and the magnitude are both speci edIn
addition, for the other elements inS a standard PV model can be adopted; in the
latter kind of buses, referred as voltage-controlled buses, the active power injection
and the magnitude of the voltage phasor are assumed to be known.

The aforementioned partition of V allows the incidence matrixB to be row-
partitioned as
_ BL .
B = Be (2.15)
where B, 2 R"Ei js the loads-to-lines incidence matrix andBs 2 R™E s the
sources-to-lines incidence matrix. Then, from Kirchho 's and Ohm's laws the fol-

lowing equivalences are established.

. col(V,);
col(Vik )ik )2e = B CO&%E; :
| |
. col(l,); 2.16
Beol(ijc ) x)2e = coIEI :s;:j; : ( )

Ol (1 )¢k g2e = AT (Vik )tk g2e €O (Vik )y jk goe -
After the elimination of col (ijc );y 4oz @and col (jk )¢y ge from (2.16), it follows that
CO|(Vi\)i2|_ _ col( i\)i2L )
COl(\/is)izs a CO|(| is)iZS (217)
where the matrix Y := Bdiag(yjx )k )2e B> admits the block-decomposition
BL d?ag(yjk)fj;k g2e By BLd?ag(yjk )ik g2e B .
Bsdiag(Vik )rjk g2e B{  Bsdiag(Vik )tjk goe Bs

Yii Y12 .
Yo Yo

(2.18)

due to (2.15). Since the network is assumed to be connected, it can be shown that
the Hermitian parts of the matrices

Y11 = Brdiag(yjk )sjk goe By

and
Y22 = Bsdiag(Vik )fjk g2e Bs
are positive semi-de nite, respectively.

Remark 2.4. For power networks in which all the elements il are PQ buses (see
Remark 2.3) andS is uniquely conformed by a slack node, the matrice¥;; and
Y, can be shown to be positive de nite if each transmission line is assumed to be
\lossy", i.e., if g; > O for all fi;j g 2 E; the latter scenario is the one considered
in Chapter 3 and the conditionY;; > 0 is re ected in the expression (3.2) of said
chapter. The described scenario regarding the conforming elementsLofnd S is
pertinent for the analysis of existence of equilibria in AC distribution networks as
studied, for example, in [123] and [14].

"This type of bus is referred as aslacknode in [67, Section 3.6.2].

14
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Combining (2.17) and (2.18), the following expression is isolated
Yllc:Ol(Vi\)iZL + Y12CO|(ViS)i23 = COI(li‘)iZL ; (219)

which combined with an speci ¢ load model, for example (2.14), provides th&C
power ow equations of the network. The solvability of the power ow equations
IS necessary and su cient for the existence of a sinusoidal steady state of specic
frequency! . For the purposes of Chapter 3, the model (2.19) is used. However, a
simpli ed expression that is used in Chapter 4 is developed next.

Assume that L is conformed of PQ buses only. Denote the load voltage phasor
in a polar form asV, = E;¢ i and write Y;; = G + jB,® whereG 2 R" " is the
conductance matrix, andB 2 R" " is the susceptance matrix. Then, a widely used
expression of the power ow equations reads as

X X
P = Bij EiEj sin( j)+ Gij EiEj cos( i j); i2L
s 1% | _ (2.20)
Qi = BijEiEjcos(i )+  GjEEsin(; ), i2L:
jaL j2L

By invoking the so-calleddecoupling assumptior{see [56, Chapter 14.3.3] and [99,
Assumption 1]), reading as

(i) the phase angle dierences; ; are constant and approximately zero,

and further assuming that the transmission lines are purely inductive,e., G =0 2
R" ", then (2.20) can be simpli ed as
X
P = BijEiEj sin(i j) i2L
12y (2.21)
Qi= BijEiEj; i2L:
j2L

These are called thelecoupled power ow equationand each of them may be referred
as to active power ow and reactive power ow, respectively. Notice that the second
equation in (2.21) is equivalent to
X
Q=E  Bj(Ei E); (2.22)
j2L

which is an expression used in Chapter 4 to analyze the existence of equilibria
assuming a ZIP-load model for the reactive powe®;.*°

Remark 2.5. The power ow equations of DC power systems can be obtained as
a particular case of the AC power ow. Indeed, if in the latter equations the funda-
mental frequency is assumed to ble, = 0, then all the signals becomeeal constants
and the complex, phasorial notation can be dropped. The buses representing sources

8The subindices ()11 are dropped in the matricesG and B for simplicity reasons.

9See the developments presented in [67, Chapter 3.5] and [105, Chapter 2.2].

0This expression can be derived by recalling the properties of the incidence matrix discussed
by the end of Section 2.1.
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would now be DC voltage-controlledj.e., assigning a constant voltage value to the
source buses, and for every transmission line the admittance value would have only
its real part, i.e., the conductance. The DC equivalent of the constant power load
(2.14) would now specify only the active power and the reactive power would be
zero. Consequently, the combination of (2.14) and (2.19) would provide a set of
real, quadratic equations for either col{/, )i or col(l; )iz .
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Chapter 3

Equilibria of LTI-AC Networks
with CPLs

Synopsis Given a multi-port, linear AC network with instantaneous constant
power loadsthis chapter identi es a set of active and reactive load powers for which
there is no steady stateoperating condition|in this case it is said that the power
load isinadmissible The identi cation is given in terms of feasibility of simple linear
matrix inequalities, hence it can be easily veri ed with existing software. For one-
or two-port networks the proposed feasibility test isiecessary and su cientfor load
power admissibility with the test for the former case depending only on the network
data. Two benchmark numerical examples illustrate the results.

3.1 Introduction

This chapter explores the problem of existence of equilibria of linear time-invariant
(LT1), multi-port AC circuits with instantaneous constant power loads (CPLs). This
type of analysis is essential to identify proper operative conditions of the network
and could be further used in the controller design of the di erent equipment in it.
Existence of equilibria for AC networks containing CPLs has been studied within
the context of the well-known power- ow (or load- ow) equations. In [5], su cient
conditions for the existence of solutions are given, under the assumption that the
CPLs constrains only the active power term. Within the same context, in [23]
su cient conditions for existence and uniqueness of solutions are given for radial
networks, i.e., with a single energy source, considering a simultaneous treatment of
the active and reactive power terms of the loads. More recently, in [73], using the im-
plicit function theorem, su cient conditions for the existence of equilibria are given
for a lossless network. In Section IV of the same paper, the authors proposse-
essaryconditions for existence of equilibria based on convex relaxation techniques.
Using this approach, the authors give an index on how the power values should be
modi ed so the network could potentially attain an equilibrium regime. The pa-
per [107] explores, for general multi-port, resistive networks with constant power
devices and of arbitrary topology, a su cient condition on the circuit parameters
which guarantees that any load ow solution, if exists, belongs to a specied set.
Back to AC networks, in [14], using xed-point theorems, su cient conditions for
existence of a unique equilibrium state are derived. In [126], su cient conditions
for the solvability of the power- ow equations are given using bifurcation theory.

18
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Su cient conditions for existence of a unique high-voltage power ow solution of
lossless networks are proposed in [103, 104]; an iterative algorithm to approximate
this solution is also considered. More recently, in [52], the authors show that the
load ow equations of unbalanced, polyphase power systems can be written as a set
of quadratic equations of several variables; under certain assumptions the authors
then propose a decoupling of this algebraic system and provide conditions for their
solvability.

In this chapter, necessaryconditions on the CPLs active and reactive powers,
for existence of equilibria of general multi-port AC networks, are proposed. If these
conditions are not satis ed, the loads are called inadmissible. For one- or two-port
networks with free reactive (or active) power these conditions are alswo cient |
providing a full characterization of the power that can be extracted from the AC
network through the CPLs. Using the framework ofjuadratic formgsee [86] and
[118]|these conditions are expressed in terms of the feasibility of simple linear
matrix inequalities (LMIs), for which reliable software is available. Moreover, for
single-port networks, the admissibility test depends only on the network data, avoid-
ing the need for an LMI analysis.

The contributions presented here are an extension, to the case of AC networks,
of the results on DC power systems reported in [9]; see also [91]. The extension is
non-trivial for two main reasons: (i) The mappings associated with the quadratic
equations, whose solvability has to be studied in this problem, haeemplexdomain
and co-domain|in contrast with the ones of DC networks where these sets are real.
It is shown, however, that these complex quadratic equations are equivalent to a
set of real quadratic ones that can, in certain practical scenarios, have twice the
number of unknowns than equations, stymieing the application of the tools used for
DC networks, which treat the case of same number of equations and unknowns. (ii)
The characterization of CPLs in AC networks involve the simultaneous treatment
of an active and reactive component, whereas in DC networks only active power is
considered.

The remainder of the chapter is structured as follows. In Section 3.2 the prob-
lem addressed in the chapter is formulated and the di erence with respect to DC
networks is highlighted. Section 3.3 contains three lemmata that are instrumental
to establish the main results. Section 3.4 gives necessary conditions for existence of
equilibria for multi-port networks. In Section 3.5 necessary and su cient conditions
for the case of one- or two-port networks are studied and in Section 3.6 these previ-
ous results are used to provide a characterization of the admissible and inadmissible
loads, while in Section 3.7 the results are illustrated with two benchmark exam-
ples. The chapter is wrapped-up in Section 3.8 with a brief summary. To enhance
readability all proofs are given in technical appendices at the end of the chapter.

3.2 Problem Formulation

3.2.1 Mathematical model of AC networks with CPLs

This chapter deals with LTI AC electrical networks with CPLs working in sinusoidal
steady state at a frequency o 0; see Fig. 3.1. The description of this regime in
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is1 4{ }7 i1+

Figure 3.1: Schematic representation of multi-port AC LTI electrical networks with
n external voltage and current sources feeding CPLs.

the frequency domain i$
V(j'o) = Gt o)l (! o) + K(j'o); (3.1)

where€ V 2 C™ and| 2 C™ are the vectors of generalized Fourier transforms of the
port voltages and injected currents, respectively, an&k 2 C™ captures the e ect
of the AC sources, all evaluated at the frequency,. Equation (3.1) can also be
seen as the Thevenin equivalent model of tha-port AC linear network including
the voltage and current sources and, therf; 2 C™ ™ should be interpreted as the
frequency domain impedance matrix of the network at the frequendy.

In virtue of Remark 2.4 in the previous chapter, the following expression holds.

G(j!)+ G"j!')>0; 8 2R; (3.2)
the reader is reminded that ()™ denotes the complex conjugate transpose.
The complex power of tha-th CPL is de ned as the complex number

S =P +jQ; i2f1:::mg; (3.3)

whereP; 2 R and Q; 2 R are the active and reactive power at tha th port,
respectively. Then, the CPLs constraint the network through the nonlinear relation

V,conj(l;) + S =0; (3.4)

where conj() is the complex conjugate. In equation (3.4), and throughout the rest
of the chapter, the qualieri 2f 1;::: mg is omitted.

It is established then that a necessary and su cient condition for the existence
of a sinusoidal steady{state (at a given frequencyy) is that the complexequations
(3.1), (3.3) and (3.4) have a solution, which is the question addressed in this chapter.

LA comprehensive development of this description is followed in the chapter of preliminaries;
see, particularly, Assumption 2.1 and Remark 2.4.
2To simplify the notation the argument j! ¢ is omitted in the sequel.
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3.2.2 Compact representation and comparison with DC net-
works

Notice that, eliminating the voltage vectorV, the system of equations (3.1), (3.3)
and (3.4) can be compactly represented by the set cbmplex quadratic equations

fi(l1)=0; (3.5)
where the complex mapping$; : C" ! C are de ned as
fi(1)=1" ee€G | +I"K;g + S;; (3.6)

whereg 2 R™ is the i-th Euclidean basis vector. The fact that the mappings
fi() have complex domain and co-domain represents a major technical di culty to
establish conditions for existence of solutions of equations (3.5), (3.6).

This situation should be contrasted with the case of DC networks where the
mappings have real domain and co-domain. Indeed, there existc@nstant steady
state if and only if the real quadratic equations#;(l) = 0 have a real solution, with
the mappings#; : R™ ! R given by

#(1):=1"[ee GO + 17 sig + P;; (3.7)

wherel 2 R™ are the currents,G(0) 2 R™ ™ is the DC gain of the impedance
matrix, and s; 2 R are the external (voltage or current) DC sources; see [9].

3.2.3 Considered scenario and characterization of the loads

Finding conditions for the solvability of equations (3.5) and (3.6), for arbitrary
Pi; Qi; G and K, is a nonlinear analysis daunting task. In practical scenarios, how-
ever, the values ofP; and-or Q; are xed and conditions onG and K, such that an
equilibrium exists, are looked fol Interestingly, it is shown next that this makes the
problem mathematically tractable. The powers?; and Q; for which an equilibrium
exists are said to beadmissible otherwise, they are callednadmissible

To state the problem formulation in a compact manner, de ne the vectors

P := col(Py;:::;Pyn) 2 R
Q
S

I |
O O
e o
© 0
o
<~ 3
~ S
Q7

which are assumedjiven Then, the conditions under whichP and-or Q belong to
either one of the following sets are identi ed.

Ptao R™ denotes the set ofP that are inadmissible for allQ. That is, if
P 2 Pgpqthere is no steady state no matter whaQ is.

Qs R™is the set ofQ that are inadmissible for allP. That is, if Q 2 Qkap
there is no steady state no matter whaP is.

S' R™ RM™ represents the set of R; Q) that are inadmissible. That is, if
(P;Q) 2 S! there is no steady state.

3Nominal values of G and K are usually available too.
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The rst contribution is the de nition of LMIs|parameterised in P and Q|
whose feasibilityimplies that P and-or Q belong to either one of the aforementioned
sets.

A second contribution is that, for the case of one- or two-port networkg,e.,
m 2, afull characterization of the following sets is provided.

Pfso R™ setofP that are admissible for some&. That is, if P 2 P £qthere
is aQ (that can be computed) for which there is a steady state.

Q2p R™ setofQ that are admissible for somé®. That is, if Q 2 P £spthere
is aP (that can be computed) for which there is a steady state.

(For m=1) S# R™ R™ set of (P;Q) that are admissible. That is, if
(P; Q) 2 SAthere is a steady state.

By full characterization of the sets it is meant that

PEoIP fao= R™  (form 2)

Qfsp[ Q Fap= R™  (form  2)
SA[S'=R™ R™ (form=1):

In other words, that the conditions of admissibility for P or Q are necessary and
su cient .

From the practical viewpoint, the inadmissibility setsP{,oand Qp,p allows to
rule out \bad" PsandQs, respectively. The seS' is useful in the scenario when the
devices at the ports transfer constant power with a speci ed power factor RE P—I
in which caseS is xed. Another scenario of practical interest where the se§' is
instrumental is whenP is xed (possibly some elements zero) and songg are xed
and the others are free. The main question in this case is if some speci c values of
the free Q; can enlargethe set of admissibleP.

Finally, for m 2, the setsPfs,and Qfgp provide a complete answer to the
admissibility question whenP is xed and Q is free and, vice versa, whelq is
xed and P is free, respectively. Additionally, for the special casem = 1, a full
characterization of the setS” is provided. See Section 3.5 for an illustration of these
scenarios in two numerical examples.

3.3 Three Preliminary Lemmata

This section presents three lemmata that are instrumental to establish the main
results of the chapter. The rst lemma shows that them complex quadratic equa-
tions (3.5) and (3.6) admit a solution if and only if a system of & real quadratic
equations with 2n unknowns are solvable. In AC networks the complex power has
active and reactive components, which in some practical situations may give rise
to a new situation where the number of equations is di erent from the number of
unknowns. The second lemma gives necessary conditions for the solvability of such a
system of equations and is an extension of Lemma 1 of [9], where these numbers are
the same. Finally, the third lemma shows that these conditions are alsu cient if

the number of equations is smaller than three|provided an additional assumption

is veri ed. The latter always holds true in DC networks, but it has to be veri ed in

the AC case.
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3.3.1 A real representation of (3.5), (3.6)

To streamline the presentation of the following lemma, de ne the real mappings
g;hi :R°™! R

g(d) := ¢ Ad+2dh + 2P,

hi(d) ;= & Bid+2d>§ +2Q;; (3.8)
where

g.= Reflg . RefKige ., _ ImiKge

' h Imflg '~ ImfKige ' R:efKiga
A_._ ee RefGg+RefGg> ee ImfGg+IimfGg”

"~ ege ImfGg ImfGg” e e RefGg+RefGg” i

. ii>|fG+| fGg” ii>RfG Ref Gg™ .
§i'_ e?e? rIT‘\:engg+rp{ef(3gg> Zizf In$f63+lmefeg> (3.9)

Lemma 3.1. The set of complex mappings$; : C™ ! C given in (3.6) veri es

g(d) =Reffi(l)g
h(d) = Im ££,(1)g: (3.10)

Consequently,

9l 2C™jfi(1)=0 , 9 d2 R jg(d)= hi(d)=0:

The proof of this lemma can be established by direct, but lengthy, computations.

3.3.2 Necessary condition for the solution of quadratic equa-
tions

Lemma 3.2. Consider the real mappings, : R"! Rwheré k2 " :=1,2;:::; 0,
Vi(X) i= X AX +2x7 b + G; (3.11)

x2 R", b 2R" ¢ 2R, and A are symmetricn n matrices withn  2|not
necessarily equal to. De ne the following (n+1) (n + 1) real matrices

A b
Ay = : 3.12
Then, the following implication is true.
X
9ty 2 Rjj tkAc>0)f x2R"jw(x)=0; 8kg= ?: (3.13)
k=1

Remark 3.1. Lemma 3.2, which givesiecessaryconditions for existence of solutions
of * quadratic equations withn unknowns, is an extension of Lemma 1 presented in
[9]; therein, the particular casen = " is treated.

“4In the sequel, the clari cation that k 2 | is omitted.
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3.3.3 Su cient condition for the solution of two equations
Lemma 3.3. Consider two mappings/;1(X); Vo(X) as given in (3.11) and two matrices
A1;A, asin (3.12). Assume there exists;; s, 2 R, such that
S1A1 + S A, > 0 (3.14)
Then, the following implication is true.
91,1, 2 Rjt;1A1+ 1A, >0
(f x2R"jwvi(x)= va(x)=0g= ?: (3.15)

Remark 3.2. Lemma 3.3, which givesu cient conditions for existence of solutions
of two quadratic equations with n unknowns, is related with Proposition 3 of [9]
where the condition (3.14) is not explicitly stated because it is always satis ed in
DC networks. However, as explained in Section 3.5, this is not always the case for
AC networks. Notice that the need for (3.14) is clearly stated in Theorem 2.2 of [86].
Moreover, as indicated in Remark 3.1, in Proposition 3 of [9] only the particular case
n="is treated.

Remark 3.3. Invoking Lemma 3.2, it can be seen that the \only if* condition (3.15)
for two-port equations is actually an \if and only if*|with the \if" part holding even
without (3.14).

3.4 Necessary Conditions For Existence of a Steady
State for m-port Networks

A direct application of Lemmata 3.1 and 3.2 provides a way to determine thia-
admissibility of P and-or Q from the feasibility of parameterised LMIs. Also, an
interpretation of the results in terms of the extracted active power is given.

3.4.1 An LMlI-based inadmissibility condition

Proposition 3.1. Fix P;Q 2 R™. If there exist T = diag(t;)Z, 2 R™ ™ and
T =diag (t)Z, 2 R™ ™ such that

Rp(T)+ Ro(T) > 0; (3.16)
whereRp(T) and Ro(T) are (2m+1) (2m + 1) real matrices given by

2 3
TRefGg+RefGg™ T TImfGg+ImfGg™ T TRefKg

Rp(T):= 4TImfGg ImfGg>T TRefGg+RefGg T  TImfK g5 (3.17)
RefK g™ T ImfKg>T 2P> Tlnm
and , 5
TImfGg+ImfGg™T TRefGg RefGg>T TImfKg
Ro(T):= 4 TRefGg+RefGg>T TImfGg+ImfGg”T  TRefKg5: (3.18)
ImfKg> T RefKg™ T 2Q° Tlm

Then, there is nosinusoidal steady state for the network.

Remark 3.4. In Proposition 3.1 the values ofP and Q are xed a priori, then the
positivity condition (3.16) is a simple LMI in (T;T) for which reliable software is
available. Otherwise, it represents &ilinear matrix inequality in ( T; T; P; Q), whose
solution is far from trivial.
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3.4.2 Bound on the extracted active power

In this subsection it is assumed that the active power ows only from the network
to the loads, then an upper bound on the admissible overall extracted power is
provided.

To streamline the result, de ne the Zn  2m real, symmetric matrix

Ref Gg + Ref Gg” ImfGg + Imf Gg”

M= ImfGy +ImfGg RefGg+RefGg

(3.19)

that, in view of (3.2), is positive de nite.

Proposition 3.2. Suppose that all the CPLs extract active power from the network,
that is P; 0. A necessarycondition for the existence of a sinusoidal steady state
is that the overall extracted power is upper bounded as follows

x 1 RefKg ., ; RefKg .

' 2 ImfKg ImfKg - (3.20)

The condition above is similar to the necessary condition for existence otan-
stant steady state regime for LTI DC networks with CPLs presented in Proposition
2 of [9]. The condition for DC networks is the existence ofgositive de nite diagonal
matrix T such that

X 1
ti P; é(TK)>[TG(0)+ G”(0)T] 'TK: (3.21)

i=1

To compare this bound with (3.20) recall that in the DC casé o = 0 and the vector
of external sourceXK is reallwhose elements were denoted as; in (3.7). Therefore,
(3.20) reduces to (3.21) but withT = I,,. The presence of the free matrid makes
the bound for DC networks tighter.

3.5 Necessary and Su cient Conditions for Load
Admissibility for One- or Two-port Networks

To make the conditions for existence of a steady state not only necessary, but also
su cient , in this section the case of one- or two-port networks,e., m 2, Is
considered. In [9], Proposition 3, a similar scenario is treated for DC networks.
However, as indicated in Remark 3.2, this proposition is inapplicable in the AC case,
hence the need to invoke Lemma 3.3, which requires the veri cation of condition
(3.14).

As done in the previous section, the scenarios wheeis xed and Q is free or,
vice versa, whereQ is xed and P is free, are considered. Lastly, for the particular
case ofm =1, both P and Q are assumed xed. The latter case is presented rst,
since it is a natural complement to Proposition 3.1 [fom = 1].
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3.5.1 Single-port networks with xed active and reactive
power

The next result pertains to single-port networks and gives two di erent necessary
and su cient conditions for a pair (P; Q) to be admissible. The rst condition is
given in the spirit of Proposition 3.1, that is, it relates the existence of a sinusoidal
steady state with the feasibility of an LMI. In addition, a radically di erent condi-
tion is given exclusively in terms of the data of the problem.

Proposition 3.3. For a one-port network x P and Q. Then, the following three
statements areequivalent

The system admits a sinusoidal steady state.
There are no real scalar§ and T such that

Rp(T)+ Ro(T) > O: (3.22)

The inequality
iKj?> 2(SjjGj + Ref conj(S)Go) ; (3.23)
holds true, wherej j is the magnitude of the complex number.

It is important to underscore that inequality (3.23) is written only in terms of
the original parametersof the system, that isG; K and S, and it does not include
additional variables. Also, this inequality reduces to the necessary and su cient
condition for existence of equilibria for LTI DC circuits for the casen = 1 presented
in [91], Section II.

3.5.2 Two-port networks with free active or reactive power

Suppose that the network is constrained to satisfy the active power demand but the
reactive power isunconstrained i.e., the reactive power termQ can be arbitrarily
assigned. Now, as seen from (3.8), the quadratic mapping¢d) are independent
of the reactive powerQ and the quadratic mappingsh;(d) are independent of the
active powerP. Since theQ is free the equationdh;(d) = O are trivialised, reducing
to the de nition

Q= (@ Bid+ o),

whered 2 R?M is the solution of the equationsy (d) = 0. The case where the network
Is constrained to satisfy a given reactive power, with unconstrained active power, is
analogous to the scenario just described and now the existence of a sinusoidal steady
state is equivalent to the solvability of the systenh;(d) = 0.

For two-port networks there are only two quadratic equations, in which case,
Lemma 3.3 states that their solvability isequivalentto the feasibility of its associ-
ated LMI|provided condition (3.14) is satis ed.

Proposition 3.4. For a two-port network, x P and supposeQ is unconstrained.
The following two statements areequivalent
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The network admits a sinusoidal steady state.

There is no diagonal matrixT such that Rp(T) > O:

Proposition 3.5. For a two-port network, x Q and supposeP unconstrained.
Assumethere existsst; 8, 2 R, such that

8B, + 45,8, > O (3.24)
The following two statements areequivalent

The network admits a sinusoidal steady state.

There is no diagonal matrix T such that Rq(T) > O:

Remark 3.5. Notice from the propositions above that for the case of xed reactive
power the additional assumption (3.24) is imposed on the network. This assumption
is absent when the active power is xed|a distinction that is clari ed in the proofs.

It is worth remarking that (3.24) is veri ed in both benchmark examples given in
Section 3.6.

Remark 3.6. Unfortunately, for m 2, conditions that are simultaneouslyneces-
sary and su cient for power load admissibility, when bothP and Q are xed, are
not provided in this chapter. This stems from the fact that the proof of su ciency
relies, either on Finsler's Lemma as in Lemma 3.3 or on establishiognvexityof the
image of the mapping de ned by the quadratic equations as done in Proposition 3 of
[9]. To the extent of the author's knowledge, there are no general results concerning
the (global) convexity of these mappings nor extensions of Finsler's Lemma when
there are more than two equations. As explained in Subsection 3.2.2 this corre-
sponds in the AC case to single-port networks, while in the DC case is applicable to
two-port networks.

3.6 Admissibility and Inadmissibility Sets

The results of Propositions 3.1 and 3.3-3.5 are applied in this section to identify the
sets that characterize the admissible and inadmissible loads described in Subsection
3.2.3.

3.6.1 Inadmissibility sets for  m-port networks

The identi cation of the inadmissibility sets Pg,q Qpapand S' follows as a direct
corollary of Proposition 3.1. First, notice thatRp (0) = 0 and Rq(0) = 0. Therefore,
setting T =0 in (3.16), Rp(T) > 0 implies the non-existence of a sinusoidal steady
state for the system|with a similar situation for Rq(T) > 0 and T = 0. Second,
matrix Rp is independent ofQ and matrix Rq is independent ofP. On the other
hand, matrix Rp (T) + Rq(T) is dependent on bothP and Q simultaneously.

In view of the observations above it is clear that the following implications hold:
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9 TsuchthatRp(T)>0 ) P 2P,
9 TsuchthatRo(T)>0) Q2QkL
9 T; TsuchthatRp(T)+ Ro(T)>0) (P;Q)2S'.

3.6.2 Admissibility sets for one- or two-port networks

The following characterization for the admissibility sets described in Section 3.2
follows directly from Propositions 3.3-3.5.

(m 2)@T suchthatRp(T) > 0, P 2Pf,

(m 2) @T such thatRo(T) > 0, Q2Q2s

(m=1) @T;T such thatRp(T)+ Ro(T) > 0, (P;Q)2SA
(m=1) (3.23) holds , (P;Q)2SA

3.7 Two lllustrative Examples

3.7.1 A single-port RLC circuit

The linear RLC circuit shown in Fig. 3.2 has been previously used in studies with
CPLs [9], but considering aconstant voltage source instead of a sinusoidal AC
voltage source as in the present chapter. If the voltage source is de ned as

Vg = P 2V cos( ot) V; (3.25)

then G and K, evaluated aj! o, are given by

G = ri+ jL 1Wo
(1+ :—i |_1C1W(2))+ j r1C1+ I;—Cl Wo
K = Vg

1+ LiCwd)+j rCi+ &2 Wo.

K fc

Using the circuit parameters from Table 3.1, and with the particular value of; =
5 k, the above expressions result in

G =0:0412 +j0:0238 K =24:3592 j0:6219

Sincem = 1, Proposition 3.3 gives a full characterization of the se$” for this circuit
either in terms of the feasibility of the LMI (3.22) or via the simple inequality (3.23).

Fig. 3.3 shows the feasibility and infeasibility regions on th®-Q plane for the
condition given in (3.22). The graph has been obtained by taking xed values of
P and Q in the discretized set [05000] [ 124004300]. According to Proposition
3.3, any pair (P; Q) in the infeasibility region corresponds to an admissible pair.g.,
(P; Q) 2 SA On the other hand, any pair P; Q) in the feasibility region corresponds
to an inadmissible pair,i.e., (P;Q) 2 S'.

In Fig. 3.4 the exactboundary of existence of solutions df;j(l) = O|that was
computed numerically|land the feasibility boundary of the inequality (3.23) are
shown; as predicted by the theory they are identical and also coincide with the
boundary of of the plot shown in Fig. 3.3.
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I L1

\ Aml

+ icpl +

Vg Ci ——W1 I¢ g CPL

Figure 3.2: AC Linear RLC circuit with a CPL.

Table 3.1: Parameters for the circuit in Figs. 3.2 and 3.5

r =0:04 L;=780 H|C;=2:0mF Vg=24V
r, =0:06 L,=98:0 H|C,=1.0mF | !,=2 50 rad-s

6;000 [ infeasibility
I feasibility
4,500
z .,
3,000

1;500

2400 9.400 6400 3400 400 2600
Q [var]

Figure 3.3: Feasibility and infeasibility regions oRp (T)+ Rg(T) > 0 for the circuit
of Fig. 3.2.

6:0001- —>— admis. boundary of gj(d)= hj(d)=0
’ —6— feas. boundary of jKj2 2(jSjiGj+RefS Gg)
4:500}- -
<3000/ . o I
o 1,500 = “}.:.“I“:'i“é

S \ \ \ \ &
82;400 9400 6400 3400 400 2,600
Q [var]

Figure 3.4: Boundary of the admissibility setS* and feasibility boundary of the
inequality jKj?> 2 (jSjjGj + Ref conj(S)Gg).
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ra L1 iy rz L2 in
+|Cp|2 +

Vg Ci. = — V2 CPL>

Figure 3.5: LTI AC circuit with two CPLs.

3.7.2 A two-port system

Fig. 3.5 shows an LTI circuit with two CPLs and the AC source of equation (3.25).
In this case, the matrix G and the vectorK are

G = 1 N11(j! o) N12(j! o) .
dj'o) n21(j'o) n22(j'o)

Vg (@ 13L2Co)+ j! oCarz)
d(j! o) 1

K =

where

Nu(' o) = (( Calirp Coloro)! §+ry)
+j( CoLilo! 3+ (Carara+ L1)! o);

N12(j! o) = N21(j! o) = ra+ jloly;

Np(j! o) =(( CiLirz  Cilarg)! §+ ri+r13)
+j( Cililp! 3+ (Carara+ L1+ L2)!o);

d(j! 0) = (C1Colilo! g+ ( CiCararp Cili  Coly
Colo)! 5+1)+ j(( CiCoLira CiColory)'j

+(Carp+ Corg + Carp)! o):

Using the circuit parameters of Table 3.1, these matrices result in

Go10 2 %185+j2345 4269 +)2:287
- 4:269 +2:287 10469 +)5:219 °

24526 j0:.953 |

24738 j1:433 "

Fig. 3.6 shows the feasibility and infeasibility regions on thE;-P, plane for the
condition Rp(T) > 0. The graph was obtained by taking xed values folP;; P, in
the discretized set [0p4000] [0;2000]. It is concluded that the dark gray area is
containedin the setP'FAQ That is, for all values of P, and P, in this area, the circuit
of Fig. 3.5does notadmit a steady state operating regime|this independentlyof
the values ofQ; and Q.

Fig. 3.7 shows the feasibility and infeasibility regions on th®,-Q, plane for the
condition Rg(T) > 0. The gridding for Q;; Q. was taken this time in the discretized
set

K =

[ 500010000] [ 500Q 10000}
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[ infeasibility
[ feasibility

0 1:000 2;:000 3:000
P1 [W]

Figure 3.6: Feasibility and infeasibility regions oRp (T) > O for the circuit of Fig.
3.5.

[ infeasibility
I feasibility

Q2 [var]

5000 2500 O 2,500 5;000 7;500 10,000
Q1 [var]

Figure 3.7: Feasibility and infeasibility regions oRq(T) > 0 for the circuit of Fig.
3.5.
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Figure 3.8: Comparison between di erent boundaries of admissibility and feasibility
for the two-port network of Fig. 3.5 on theP;-P, plane.
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Figure 3.9: Comparison between di erent boundaries of admissibility and feasibility
for the two-port network of Fig. 3.5 on theQ; Q; plane.

The same conclusion as above applies to valuesf and Q. in the dark gray area,
which is containedin the set Qj,p

Recall that for a two port system, non{feasibility of the LMI Rp(T) > O in
Proposition 3.2 is necessary and su cient for existence of equilibria when is xed
and Q is free|similarly Rqg(T) > 0 is the necessary and su cient test wherQ is
xed and P is free. To corroborate this fact, it is drawn with a gray line in Fig.
3.8, the numerically exactboundary of existence of solutions for R&/; conj(l;)g =

P;, on the planeP;-P,. As predicted by the theory, it exactly coincides (up to

some numerical glitches) with the feasibility/infeasibility boundary of the condition
Rp(T) > 0O, drawn also in gray but with a circle marker.

Analogously, the numerically exact boundary of existence of solutions for

ImfV; conj(li)g=Q

on the planeQ;-Q-, is shown in Fig. 3.9 to coincide with the feasibility/infeasibility
boundary for the conditionRq(T) > O.

It should be underscored that the admissibility region fol? and Q is not the
union of their separate admissible regions. That is, even if values fBrand Q are
taken inside their respective admissible regionse., under the gray curves in Figs.
3.8 and 3.9, respectively, this does not imply that the system will have an equilibrium
for these power values. The reason is that such boundaries were obtained solving
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the real and the imaginary part of (3.4)independentlyand not simultaneously. The
black curves with an "x' marker in Figs. 3.8 and 3.9 represent the numerically exact
boundaries of existence for (3.4), solving its real and imaginary parggmultaneously
and taking xed values of Q; = 1000 and Q, = O for the former, and taking xed
values ofP; = 500 and P, = 500 for the latter. It can be observed that in both
cases the admissibility regions are reduced. However, they are bounded by the
feasibility/infeasibility boundaries of Rp(T) > 0 and Rq(T) > O.

Finally, the black curves with circle marker in Figs. 3.8 and 3.9 correspond to
the feasibility/infeasibility boundaries of the LMI

Rp(T)+ Rq(T)> 0

plotted for some xed values ofP and Q, respectively. Although not predicted by
the theory, they coincide with the boundaries of numerically exact solution of the
guadratic equations (3.4) for these xed values.

3.8 Summary

For general, multi-port, linear AC networks with constant power loads, this chap-
ter has proposed conditions that are necessary for load admissibilitye., if this
conditions are satis ed, then the networkdoes notadmit a sinusoidal steady state
regime at certain speci ed frequency. For the case of one- or two-port networks and
free active (or reactive) power of the CPLs' components, these conditions are also
su cient. Interestingly, for single-port networks the admissibility condition can be
tested directly from the data of the problem. Similarly to the case of DC networks
[9, 91] the analysis boils down to the study of solvability of a set of quadratic equa-
tions in several variables. In the DC case these equations de ne mappings fr&H

to R, while in the AC case the mappings are fron€™ to C, which as it has been
veri ed here, may give rise to a di erent mathematical problem in certain situations;
see Section 3.5.2.

Technical Appendices of the Chapter
3.A Proof of Lemma 3.2

To streamline the presentation, de ne the set
E = fx2R"jw(x)=0; 8kg;

wherevg(x) is de ned in (3.11).

The proof of the implication (3.13) is established by contraposition. Therefore,
suppose thatE, is not empty. It is proven next that there are no real numbergy
such that )

X
tkAx > O: (3.26)
k=1
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Take x 2 E, and tx arbitrarily. Since vi(x) = 0, then txvk(x) = 0. This implies that
X
tvk(x) =0: (3.27)
k=1

De ne the vector z := col(x; 1) 2 R"*1. Then, using (3.12), equation (3.27) can be

represented in matrix form as
!
X
z tyAx z=0: (3.28)
k=1

Since z is a non-zero vector, (3.28) contradicts inequality (3.26) for an arbitrary
selection ofty, completing the proof.

3.B Proof of Lemma 3.3

The proof invokes Finsler's Lemma, in particular Statement | of the Main Theorem
in [118] that, using the notation of Lemma 3.3, reads as follows:

9ty;t, 2 Rjt1A1+t2A2>0
f 2R™j A, = A, =0g=f0g; (3.29)

whereA 1; A, are given by (3.12). Notice that this theorem pertains to homogeneous
guadratic forms while, because of the presence of the terms B + ¢, the equations
of interest in the chapter,e.g, (3.11), are non-homogeneous.

To adapt Finsler's Theorem to handle this case, de ne theeal mappingsws; w; :
R" R! R

wi(X;y) := X AX +2X7 by + ¢y?
Wo(X;Y) 1= X7 AX +2X7 by + Cy?
and the set
Ev:=f(Xy) 2R Rjwi(Xy) = wa(xy)=0g: (3.30)

First, it is proven that under condition (3.14), the following equivalenceholds:
E=fx2R"jvi(x)=w(x)=0g=? , E , = f(0,;0): (3.31)

() ) The proof is by contraposition, therefore, suppose there is r@gon-zero vector
(x;y) 2 Ey. Consider rst the case wheny = 0, then x 6 0 necessarily. Since
w1 (X; 0) = wy(x; 0) = 0 This implies that

X" A1Xx = X" Ayx =0:
Let s1;S, 2 R arbitrary. Then, the following expression holds
X~ (S1A1 + SHA,) X = 0: (3.32)

However, this contradicts (3.14). Assume now thay 6 0. In this case it follows
that § 2 E,. Hence,E, 6 ?, completing the proof.
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(( ) Once again by contraposition. Hence, suppose th&, 6 ? and takex 2 E,,
then (x; 1) is anon-zerovector in E, and, consequentlyg, 6 f0,g, completing the
proof.

The proof of the implication (3.15) follows next. Suppos&, = ?. Then, the
equivalence (3.31) implies thakg, = f(0,;0)g. Recalling that

wi(xy) = AL wa(xy) = Az
with = (x;y), Finsler's Lemma ensures the existence of;t; 2 R such that
1AL+ LA, > 0 (333)

Hence, the lemma is proved.

3.C Proof of Proposition 3.1

De ne the following (2m +1) (2m + 1) real matrices

A B Bi g
A= o B o= ; .34
I ﬁ> 2P| ) ] q) 2Q| (3 3 )
Notice that
S d
gd= o 1 A |
_ d .
hi(d= o 1 B 1 (3.35)
Suppose there exist;;t; such that®
xn xn
tiA\i + ti§i > 0:
i=1 i=1
Referring to Lemma 3.2 with =2m, x = d and
V1= 01000 Vm = Oms Ve = Das il Vo = hig;

it is concluded that there are no solutions for the system
gi(d) = hi(d) =0:
This implies that there is no sinusoidal steady state for the network. The proof is

completed noting that

xn
tA = Rp(T);  tiBi = Ro(T): (3.36)
i=1 i=1
5The symbol t; is introduced for ease of reference in the subsequent material.
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3.D Proof of Proposition 3.2

Consider the matrix Rp, given in (3.17), forT = I,,. Notice that the uppermost
corner of Rp is given byM, de ned in (3.19). SinceM > 0, it follows that Rp > 0

if and only if the Schur complement oM is positive. The proof is completed noting
that the latter is equivalent to (3.20).

3.E Proof of Proposition 3.3

The equivalence between the rst two statements is a direct corollary of the last
statement in Lemma 3.3, which states that for =2 (that is m = 1)

u(d) = hy(d)=0 , 9 tytyjtiA+t:B1> 0

The proof is completed invoking the identity (3.36) withT = t;; T = t;.
The equivalence with the last statement is shown next. Towards this end, re-
write the model of the network in complex form as

Gjl j? + conj(1)K + S=0: (3.37)

Inequality (3.2) implies that G 6 0. Divide (3.37) by G and split it into real and
imaginary parts. Then, the complex equation (3.37) is equivalent to

X2+ y?+ ax+ by+ P°=0 (3.38)
bx ay+ Q°=0 (3.39)
where
R=arjo 2=P%jQ% 1=x+iy

Suppose thata 6 0, then from (3.39) y is obtained as

_ bx+ Q°
~a

: (3.40)

Substituting the above value fory into (3.38), the following quadratic equation for
X is obtained.

@+ P)x?+ 2bQ%+ a(a®+ b)) x+ Q%+ abQP+ a?P® =0: (3.41)

This equation has areal solution if and only if its discriminant is non-negative, that
is, if and only if

2bQP+ a(@+ 1) ° 4@+ B)(QZ + abQP+ a?PY:

Develop the left and right-hand side expressions, then the inequality above is equiv-
alent to

47Q% + 4abQfa® + ) + a%(a® + k)2
43°Q% + 4Q% + 4abPa® + ) + 4a?PYa? + )
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which can be written in a simpli ed form as
(a®+ )2 4PYa®+ 1Y) 4Q% O

This expression holds if and only if

P
(@+ ) 2(P°+ P2+ Q®): (3.42)
Notice that
_ K,
PO PRef Gg+ QImfGg_
iGJ? ’
Q0= QRefGg PImfGg.
iGJ? |
Then, inequality (3.42) can be equivalently written in the original coe cients as in
in (3.23).
Now suppose thata= 0. If b6 0, then from (3.39) it follows that
_ Q°
X = b

If this value of x is substituted into (3.38), then, a quadratic equation fory is
obtained:

Py? + By + Q%+ KPP° =0:

This equation has a real solution if and only if its discriminant is non negative, that
is if and only if

b 4 Q%+ KPP° O
This inequality is equivalent to

?? 4PY¥) 4Q% o
which holds if and only if

? 2 PO+ PET QT

Clearly, the above expression corresponds with (3.42) by takirag= 0.

To conclude the proof, suppose that = 0 and b = 0 simultaneously. In this
case, system conformed by equations (3.38) and (3.39), has a solution if and only if
Q°=0and P® 0. This last case has little practical relevance since &= 0 and
b= 0 simultaneously, thenK = 0, which would correspond to a single-port network
without a source.
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3.F Proofs of Propositions 3.4 and 3.5
The proofs follow as direct corollaries of Lemma 3.3. First, notice that

0i(d) = g(d)=0 , 9 ty;t, such thatt;A; + t,A,> 0
hl(d) = hz(d) =0, 9 t;;t such thattlBl + t,B, > 0;

and

t1A1+ t,b A, = Rp (dlag (tl, tz))
t1B1 + B, = RQ (dlag (tl,tz)) :

It only remains to verify (3.14). For Proposition 3.4, it follows that
Al + Az = M;

with M, given in (3.19), being positive de nite. Therefore, (3.14) is satis ed with
s; = s, = 1. On the other hand, for Proposition 3.5 it is not clear when there exists
%1:% 2 R such that

91@1 + @2@2 > 0;

with B1; B, given in (3.9). Therefore, it is necessary to impose assumption (3.24).
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Chapter 4

Decoupled AC power ow and DC
power networks with CPLs

Synopsis  In AC and DC power systems with constant power loads, the analysis
of existence of steady states is cast as the analysis of solutions of a set of nonlinear
algebraic equations of the fornf (x) = 0, wheref : R" ! R". In this chapter, the
vector eld f is associated to the ordinary di erential equationx = f (x) and by
invoking advanced concepts of dynamical systems theory and e ectively exploiting
some exhibited monotonicity features, the following traits are established. (i) Proof
that, if there are equilibria, there is adistinguishedone that is stable and attractive,
and give conditions such that it is unique. (ii) Establishment of a simple on-line
procedure to decide whether equilibria exist or not, and to compute the distinguished
one. (iii) Proof that the method is also applicable for the case when the parameters
of the system are not exactly known. It is shown how the proposed tool can be
applied to the analysis of voltage regularity in AC power systems, and to the study
of existence of steady states of multi-terminal high-voltage DC systems and DC
microgrids.

4.1 Introduction

This chapter explores a methodological approach to determine the existence and
stability of the equilibria in diverse power systems problems. The speci ¢ problems
are enlisted as

P1 Analysis of voltage regularity in AC power systems with \light" active power
load. The study of this important property, also called \static (or long-term)
voltage stability” [56, Chapter 14] or \loadability limit" [119, Chapter 7], is
standard in the power systems community.

P2 Study of existence of steady states of two emerging power system concepts,
namely multi-terminal high-voltage (MT-HV) DC networks [120, 50] and DC
microgrids [37, 33].

P3 In addition, if stationary voltage solutions exist, the proposed method also
allows to identify the solution with the highest voltage magnitudes, which is
the desired operating condition in these applications.

LProf David Hill is graciously acknowledged for suggesting this, most appropriate, terminology.
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In these three examples, the key problem is the study of a nonlinear algebraic
equationf (x) = 0, with f : R" I R", where only solutionsx with positive com-
ponents are of interest. The approach adopted in the chapter is to associate to
f (x) the ordinary di erential equation (ODE) x = f (x), which is shown to be well-
de ned on the positive orthant of R", and to apply to it tools of dynamical systems
[43]]in particular, monotone systems [114]|to study existence and stability of its
equilibria, which are the solutions of the primal algebraic equation.

The main contributions of this chapter are the proofs of the following properties
of the ODE.

C1 If there are no equilibria then, in all the solutions of the ODE, one or more
components converge to zero in nite time.

C2 If equilibria exist, there is a distinguished equilibrium, sa)ma, among them
that dominates component-wise all the other ones. This equilibriumay IS
stable and attracts all trajectories that start in a certain well-de ned domain.
Moreover, physically-interpretable conditions on the problem data that ensure
Xmax IS the only stable equilibrium, are provided.

C3 By solving a system oh convex algebraic inequalities im positive unknowns,
a set of initial conditions are explicitly identi ed. These initial conditions
posses the following properties. (i) All trajectories starting there monotoni-
cally decay in all components. (ii) Either some component converges to zero
in a nite time for all those trajectories or, for all of them, all components re-
main separated from zero on the in nite time horizon. Moreover, in the latter
case, the trajectory is forward complete and converges g, An additional
outcome of this analysis is the generation of an estimate for the domain of
attraction of asymptotically stable equilibia.

C4 Proof that the method is applicable even if the parameters df(x) are un-
known, and only upper and lower bounds for them are available.

In [34], the authors propose conditions for the solvability of a nely parameter-
ized quadratic equations that contain, as a particular case, the kind of nonlinear
equations studied in the present chapter. Nonetheless, a standing assumption in
that paper is that a solution exists and the focus is to derive conditions under
which the solutions belong to a certain pre-speci ed set. Conversely, in this chap-
ter the existence of solutions is not taken for granted; instead the conditions under
which they exist (or not) are given. Additionally, the identi cation of the dominant
equilibrium Xyax and the analysis of its regularity properties|from the viewpoint
of reactive power ow analysis|is carried out thanks to the stability identi cation
of the ODE's equilibria; the latter central analytical aspect reported in this chapter
cannot be addressed with the tools used in [34]. More recently, in [123], analytical
conditions for the existence of solutions of the (fullpower ow equations are givert.
However, by invoking the standard \decoupling” assumption, only the problem of
reactive power ow is addressed in the present chapter. Finally, in [1], the au-
thors propose anumerical methodto solve the load ow equations, which is by now

2Recall the preliminaries on power systems in Chapter 2.
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standard and implemented in many commercial software packages, suchlCagSi-
lent PowerFactory Nevertheless, as already mentioned, this problem is beyond the
scope of this chapter.

The remainder of the chapter is organized as follows. Section 4.2 describes the
ODE x = f (x) of interest and gives the main theoretical results pertaining to it,
with some practical extensions given in Section 4.3. In Section 4.4 these results are
illustrated with three canonical power systems examples. Section 4.5 presents some
numerical simulation results. The chapter is wrapped-up with a brief summary in
Section 4.6. To enhance readability, all proofs of the technical results are given in a
technical appendix at the end of the chapter.

4.2 Analysis of the ODE of Interest

As indicated in the introduction, one of the main interests of the chapter is the
analysis of voltage regularity of steady solutions of AC power systems (under the
common decoupling assumption [56]), and on the study of the existence of steady
states of MT-HVDC networks as well as DC microgrids|the three of them with
CPLs. In Section 4.3, it is shown that these studies boil down to the analysis of
solutions of the following algebraic equations ix 2 K73

81X + @2Xz + +ainxn+XH=Wi; i2f1:::;ng; (4.1)
i
wherea; 2 R, w; 2 Randh 2 R. These equations can be written in compact form
as
AX + stack XH w=0: (4.2)
i

In the chapter, the following assumption is adopted.

Assumption 4.1. The matrix A = A~ is positive de nite, its o -diagonal elements
are non-positive andp 6 0 for all i.

To study the solutions of (4.2), the following ODE is considered.

x=f(x):= Ax stack H + w: (4.3)

Xi

The main interest of the chapter is in studying the existence, and stability, of the
equilibria of (4.3). In particular, the answers to the following questions are provided.

Q1 When do equilibria exist? Is it possible to o er a simple test to establish their
existence?

Q2 If there are equilibria, is there a distinguished element among them?
Q3 Is this equilibrium stable and/or attractive?

Q4 If it is attractive, can its domain of attraction be estimated?

3Recall from the preliminaries that K? denotes the positive orthant of R".
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Q5 Isit possible to propose a simple procedure to compute this special equilibrium
using the system data A; b; w)?

Q6 Are there other stable equilibria?

Instrumental to answer to the queries Q1-Q6 is the fact that the system (4.3) is
monotone. That is, for any two solutionsx,( ); Xp( ) of (4.3), de ned on a common
interval [0; T], the inequality x5(0)  x,(0) implies that x,(t)  Xxp(t) 8t 2 [O; T].
This can be veri ed by noticing that equation (4.3) satis es the necessary and suf-
cient condition for monotonicity [114, Proposition 1.1 and Remark 1.1, Ch. Il]

@f(x)
@x
In the sequel x(t; Xo) denotes the solution of (4.3) with initial conditionsx(0) =
Xo > 0, and use the following.

0; 8i6j, 8x2K?: (4.4)

De nition 4.1.  An equilibrium x > 0 of (4.3) is said to be attractive from above
if for any Xo X, the solution x(t; Xo) is de ned on [0;1 ) and converges tox as
t!'1 . The equilibrium is said to be hyperbolic if the Jacobian matrix f (x) has
no eigenvalue with zero real part [43].

Remark 4.1. Along the lines of the standard Kron reduction, the ndings of the
chapter can be extended to the case where some of the coe cietifsare equal to
zero?

The proof of this remark is given in Appendix 4.A.

4.2.1 The simplest example
To gain an understanding of some key traits of possible results, it is instructive to
start with the simplest casen = 1. Then, x 2 R and (4.3) is the scalar equation

X = ax $+ w; (4.5)

and a > 0;b 6 0. Feasible behaviors of the system are exhaustively described in
Figure 4.1.
The following can be inferred from this gure.

B1 The system either has no equilibria, or it has nitely many equilibria, or it has
a single equilibrium.

B2 If the system has equilibria, the rightmost of them is attractive from above.

B3 Non-hyperbolic equilibria may be attractive from above but unstable; more-
over, there may be no other equilibria.

B4 Hyperbolic and attractive from above equilibria are stable.

B5 If b > 0, globally attractive equilibria do not exist.

It is shown next that several of the traits occurring in the scalar case are inherited
by the n-th order ODE (4.3).

4An anonymous reviewer is acknowledged for indicating this.
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f (x) f(x)
Caseb< 0 Caseb >0
Xq w 2p ab< 0
. x‘(t) I 0in nite time
X < X
(@) (b)
f (x) f(x)
Caseb >0 Caseb >0
w 2ID ab=0 w 2p ab> 0

x(t)! 0 x(t)! Xxs
¥ Z . oA

x(t)! 0 x(t)! xy

Iy /('UN
©

Figure 4.1. Feasible behaviors of the one-dimensional system (4.5): (a) A unique
globally attractive equilibrium Xs; (b) No equilibria, all solutions converge to zero in

a nite time t¢; (c) Unigue unstable equilibriumx,, which is attractive from above,
whereas any solution starting on the left diverges from, and converges to 0 in a
nite time; (d) Two equilibria, the smallest of which x, is unstable, whereas the

larger onexs is stable and attractive from above.

(d)
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4.2.2 An extra assumption

The situation described in item B3 above may happen in the general casee|g,
considering a diagonal matrixA. However, some evidence suggesting that this situ-
ation \almost never" occurs is now given. This forms a ground to treat the opposite
situation as \typical”, \regular”, and \prevalent" and to pay special attention to it.

To be specic, a case where item B3 is impossible is identi ed.

Assumption 4.2. There are no non-hyperbolic equilibria of the system (4.3). In
other words, the following set identity holds
8 h [ 9
< det A diag % =0;~
X 2K!" | L= (4.6)
: w= Ax +stack 2

The lemma below proves that Assumption 4.2 is almost surely true.

Lemma 4.1. For any givenA and b 6 0, the set of allw 2 R" for which Assump-
tion 4.2 does not hold has zero Lebesgue measure and is howhere dense.

Proof. See Appendix 4.A at the end of the chapter.

4.2.3 Main results on the system (4.3)

The rst claim contains a qualitative analysis of the system.

Proposition 4.1. Consider the system (4.3) verifying Assumption 4.1. One and
only one of the following two mutually exclusive statements holds.

S1 There are no equilibriax, either stable or unstable, and any solutiorx( ) is
de ned only on a nite time interval [0;t;) [0;1 ), since there exists at
least one coordinatex; such that x;(t) ! 0;x;(t) ! 1 ast! tf. Such a
coordinate is necessarily associated with > 0.5

S2 Equilibria x¢ do exist. One of themxXma> 0 veries Xmax  X; 8k, and is
attractive from above.

Suppose that Assumption 4.2 is also met. Then in the case S2 there are nitely
many equilibria and xax is locally asymptotically stable. If in addition all b's are
of the same sign, then there are no other stable equilibria apart froRax

Proof. See Appendix 4.D at the end of the chapter.

Lemma 4.1 allows to claim that the traits described in the last two sentences of
Proposition 4.1 occur almost surely.

A constructive test to identify which of the cases S1 or S2 holds, as well as a
method to nd Xmaxin the case S2, are presented. To this end, the following concept
is introduced.

SThis implies that the case in claim S1 does not occur ity < 0, 8 j.

44



Chapter 4. Decoupled AC power ow and DC power networks with CPLs

De nition 4.2. A solution x( ) of the ODE (4.3) is said to bedistinguishedif its
initial condition lives in the set

E:= x2K"jAx> stack hwi + h & 6 4.7)

Xj

If b > O for all i, then the set (4.7) reduces to the (convex open polyhedral) cone
X 2K" jAx > stack (hwii) .

Proposition 4.2. Consider the system (4.3) verifying Assumption 4.1.
| The set E is non-empty, consequently there are distinguished solutions.

I All such solutions strictly decay, in the sense thatx(t) < O, for all t in the
domain of de nition of x( ).

1 One and only one of the following two mutually exclusive statements holds
simultaneously for all distinguished solutionx( ):

i For a nite time t; 2 (0;1 ), some coordinatex;( ) approaches zero, that

IS,
lim xi(t) = 0; (4.8)

and the solutionx( ) is de ned only on a nite time interval [O;t;).

il There is no coordinate approaching zero, the solution is de ned on;[D ),
and the following limit exists and veri es

tI'ilm X(t) > 0 (4.9
This limit is the same for all distinguished solutions.
IV If the case lll.i holds for a distinguished solution, the situation S1 from Propo-

sition 4.1 occurs.

V If the case Ill.ii holds for a distinguished solution, the situation S2 from Propo-
sition 4.1 occurs, and the dominant equilibriumxyaxis equal to the limit (4.9).

Proof. See Appendix 4.D at the end of the chapter.

Remark 4.2 (Additional properties of (4.3)).

P1 In IlLi, there may be several components; with the described property, but
not all of them necessarily possess it.

P2 The claim S1 in Proposition 4.1 and IV in Proposition 4.2 yield that (4.8) is
necessarily associated withy > 0 andx;(t) ! 1 ast! t;.

P3 Regarding the claim S2 in Proposition 4.1 the basin of attraction of the equi-
librium Xmax cONtains all statesx  Xmax Under Assumption 4.2, this basin is

open.

5The operator h i denotes the clipping function hai := maxf a; Og.
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P4 The linear programming problem of nding elements in the set
Xx2K!jAx> 0

has been widely studied in the literature [28, 100, 11]. There is a whole
variety of computationally e cient methods to solve this problem, including
the Fourier-Motzkin elimination, the simplex method, interior-point/barrier-
like approaches, and many others; for a recent survey, the reader is referred to
[35].

4.3 A Numerical Procedure and a Robustness Anal-
ysis

With the aim of extending the realm of application of the previous results, this
section addresses the issues of numerical computation and robustness of the claims.
Additionally, explicit answers to the questions raised at the beginning of Section 4.2
are given.

4.3.1 A numerical procedure to verify Propositions 4.1 and
4.2

Proposition 4.2 suggests a computational procedure to verify whether the system
has equilibria and, if they do exist, to nd the dominant oneXxma.x among them.
Speci cally, it su ces to nd an element of the set E de ned in (4.7), to launch the
solution of the di erential equation (4.3) from this vector, and to check whether|as
the solution decays|there is a coordinate approaching zero or, conversely, all of
them remain separated from zero. In the last case, the solution has a limit, which
is precisely the dominant equilibrium of the system.

The statement | of Proposition 4.2 ensures that the rst step of this algorithm,
l.e., generating an element of the seE de ned in (4.7), is feasible. Technically, this
step consists in solving a system of feasible convex inequalities given by

h hi X

hwii +

ajX; <0, xi>0; 8i:
j=1

This problem falls within the area of convex programming and so there is an arma-
mentarium of e ective tools to solve it. Nevertheless, this problem can be further
simpli ed through transition from nonlinear convex inequalities to linear ones, mod-

ulo closed-form solution of nitely many scalar quadratic equations. The basis for
this is given by the following lemma, whose proof is given in Appendix 4.B.

Lemma 4.2. Pick any vector z > 0 such that Az > 0.” Then, the scaled vector
X := z veries x 2 E, provided that

q :
hwii + w2 + 4(Az); 220
> —: 8i: 4.10
2(A2) (410
“In Appendix 4.B it is shown that, under Assumption 4.1, this system of linear inequalities is
feasible.
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For any i with i > 0O, relation (4.10) simpli es into

hwii
(Az);

4.3.2 Robustness visa-vis uncertain parameters

The proposition below extends the results of Proposition 4.1 to the case where the
parametersC = (A;fhg;w) of the system (4.2) are not known, but only their
component-wise bounds are availableg.,

A" A A; B h Bbh; w w w: (4.11)

To streamline the presentation of the proposition, de ne the bounding set€ :=
(A ;fh giw ):

Proposition 4.3. Suppose thatC veri es Assumption 4.1, and (4.11) holds. Then,
the following statements are true.

i If the case of claim S1 from Proposition 4.1 holds fd€", this case also holds
for both Cand C .

ii If the case S2 from Proposition 4.1 hold foC , this case also holds for both
CandC'.

+

iii In the situation ii, the dominant equilibria X,,,, Xmax Xmax€lated toC ;C;C",
respectively, are such that

Xmax  Xmax  Xmaw (4.12)
Moreover, X! Xmax@SAT ! A ;B! bh;wt !l ow.
Proof. See Appendix 4.D at the end of the chapter.

Proposition 4.3 can be used to estimate the distance from the initial state2 E
of the employed distinguished solution to the dominant equilibriunx,.« This can be
done pickingC and noting that, due to (4.12) and Il in Proposition 4.2, the distance
of interest does not exceekix XK. Certainly, C 's with easily computablex,, . are
of especial interest. An example is obtained via \zerBing” all o -diagonal elements

of Ain Cif forany i eitherb < Oorhh > 0andw; 2 ajh. Then

w+" W Zan

X = stack
max Za"

Thanks to S2 in Proposition 4.1 and (4.12)x,,,,,Can be used, instead of a vector
from the set (4.7), as the initial state when seekingnax via integration of the ODE
(4.3). An example of this situation, happens wheily > 0 8i. Then, in (4.11), take
A* == A;jw* = w, and i > O arbitrarily close to 0, and moreover, nally let
b ! O+. Then, by using Lemma 4.3, it can be shown that integration of the ODE
can be started withA 1w provided that A w > 0.

47



Chapter 4. Decoupled AC power ow and DC power networks with CPLs

4.3.3 Answers to the queries Q1-Q6 in Section 4.2

Now, the previous discussion of this section is put into a nutshell by giving a synopsis
of the answers to Q1-Q6.
Answer to Q1

Equilibria exist if and only if neither distinguished solution of the ODE (4.3)
approaches the boundary of the positive coni€ for a nite time.

To check this existence criterion, it su ces to examine the behavior of an
arbitrary distinguished solution.

To accomplish the latter, a solutionx 2 R" for a certain convex or a less
conservative linear programming problem should be found and then the ODE
(4.3) should be integrated from this vectoix.

Answer to Q2

There exists a distinguished equilibriumxmay that satis €s Xmax  Xeq, fOr any
other system's equilibrium,Xeq.

Answer to Q3

The equilibrium X« is attractive from above and \almost surely” is stable
and locally asymptotically stable.

Answer to Q4

This domain covers the set (4.7); the latter set contains any vector built as is
discussed in Lemma 4.2.

Answer to Q5

It su ces to invoke the solution of the ODE (4.3) from the answer to Q1 and
to compute it until it converges.

Answer to Q6

If in (4.2), all b's are of the same sign and Assumption 4.2 holds, there are no
other stable equilibria.

4.4 Application to Some Canonical Power Sys-
tems

In this section, the results of Section 4.2 are applied to three di erent problems of
power systems containing constant power loads. These comprise the standard volt-
age stability (in a static sense) of AC power systems with \light" active power load
and the study of existence of equilibria of MT-HVDC networks and DC microgrids
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4.4.1 \oltage stability (in a static sense) of AC power sys-
tems

The standard static analysis of voltage stability in AC power systems assumes the
dynamics is in steady state, and concentrates its attention on the algebraic equations
relating the active and reactive power, with the voltages and the phase angles|the
well-known power ow equations. In [121] it was rst suggested to investigate the
sign of the real parts of the eigenvalues of the power ow Jacobian matrix as an
indicator of voltage stability. This sensitivity analysis of the voltage magnitudes
with respect to changes in the active and reactive power ows is the prevailing
approach to analyze voltage stability in AC networks as explained in power systems
textbooks, i.e., [56, Chapter 14] and [119, Chapter 7]. In this subsection it is shown
how the analysis framework developed in Section 4.2 can be applied to carry out this
analysis, for the particular case of power systems with \light" active power load.
Consider a high-voltage AC power network withn 1 PQ nodes. Denote by
Vi > 0, ; and Q; the voltage magnitude, phase angle and the reactive power load
demand at nodei, respectively. The analysis is restricted to scenarios in which the
following standard \light" active power load (also called \decoupling™) assumption
is satis ed [56, Chapter 14.3.3], [99, Assumption 1].

Assumption 4.3. j Oforalli;j 2f1;:::;ng.

With Assumption 4.3, the reactive power ow at nodei is given by [56, 108, 98]

X" . .
Qzei = Vi JBji(Mi V),
j=1

whereB; < 0if nodesi andj are connected via a power line anB;; = 0 otherwise.
The reactive power demand)zp i at the i-th node is described by a, so-called, ZIP
model, namely

Qzri = YiVZ+ kVi+ Q :

The term ZIP load refers to a parallel connection of a constant susceptante2 R,
a constant reactive currentk; 2 R, and a constant powerQ; 2 R load. Then, the
(algebraic) reactive power balance equation is obtained as

X0
YiVZ+kVi+ Q =V BV V) i2fLii;ng; (4.13)
j=1
which by de ning x :=stack(V;) 2K?; A2 R" " with
X“ - . - .
Aj = IBil Y iy Ay =] Byj;
j=1
w = stack(ki); b = Qj; (4.14)

8The reader is referred here to Chapter 2 for a detailed derivation of the power ow equations
and particularly to the developments leading to equation (2.22) which appears by the end said
chapter.
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can be rewritten as (4.2). If the reasonable assumption that; < O for at least one
node is considered, then the matriA satis es Assumption 4.1.

Consider the following notion of voltage stability, called voltage regularity|also
referred as static (or long-term) voltage stabilty|for the system (4.2) with the pa-
rameters (4.14), which relates the analysis of Section 4.2 to standard power system
practice, see [56, Chapter 14], [119, Chapter 7] and the more recent work [108].

De nition 4.3  (cf. [65, 45]) A positive root x of the system (4.2) is voltage-regular
if the Jacobianr f(x) ,_ ., with f(x) given in (4.3) with the parameters (4.14), is
Hurwitz.

The following remarks concerning the application of the results of Section 4.2 to
this particular problem are in order.

R1 The coecients Ik are the constant reactive powers extracted or injected
into the network, being positive (capacitive) in the former case, and negative
(inductive) in the latter. As indicated in Section 4.2, sharper results|i.e.,
that Xmax IS the only stable equilibrium, and a simpler structure of the seE
of initial conditions for the distinguished solutions|are available if the signs
of the coe cients y are known. Hence, the proposed conditions have a direct
interpretation in terms of reactive power demand.

R2 The solution X, Of the system (4.13) represents the physically admissible
steady state with the highest values of voltage magnitudes at each node, which
is the usually desired high-voltage operating point.

R3 Lemma 4.5 in the Appendix implies that the Jacobian of the dynamics (4.3)
evaluated at any stable equilibrium point is Hurwitz. Hence, if case V of
Proposition 4.2 applies then the dominant equilibrium is voltage-regular in the
sense of De nition 4.3. Consequently, Proposition 4.2 provides a constructive
procedure to evaluate the existence of a unique dominant and voltage-regular
solution in power systems with constant power loads.

4.4.2 Multi-terminal HVDC transmission networks with con-
stant power devices

An MT-HVDC network with n power-controlled nodes R-nodes) ands voltage-
controlled nodes ¥-nodes), interconnected byn resistive-inductive (RL) transmis-
sion lines, can be modeled by [92]

le= 1 h(V);
LL= RI + BV +ByW; (4.15)
CuyL=1, Bpl GV,
wherel; 2 R", V 2K?,1 2 R™ and W 2 R®. The matricesR, L, G, C, and
are diagonal, positive de nite of appropriate sizes. The physical meaning of each

state variable and of every matrix of parameters is given in Table 4.1. Furthermore,
B = stack (By;Bp) 2 RS*™ M denotes the, appropriately split, node-edge incidence
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Table 4.1: Nomenclature for the model (4.15).

State variables

I P -nodes injected currents
P-nodes voltages
I Line currents

Parameters

L Line inductances

C P-nodes shunt capacitances

R Line resistances

G P-nodes shunt conductances
Converter time constants

W V-nodes voltages

matrix of the network.° The open-loop current injection at the power terminals is
described by
P;
h(V) =stack — ;
(V) v
where P; 2 R denotes the power setpoint® See also [132] for a systematic model
procedure of HVDC systems using the port-Hamiltonian framework.
By simple algebraic computations, it can be shown that (4.15) admits an equi-
librium if and only if the algebraic equations

0= h(V) BpR B +G V BpR ByW; (4.16)

have real solutions forvV 2 K. Notice that (4.16) is equivalent to the right hand
side of (4.3) ifx := V and

A:=BpR 'B; + G; h:= P; w:= B pR ByW:

Given that Bp is an incidence matrix,R and G are diagonal positive de nite matri-
ces, then, the termBpR !B; is a Laplacian matrix and thus it is positive semidef-
inite. Consequently, A = A~ is positive de nite and Assumption 4.1 is satis ed
and the results of Section 4.2 can be used to analyze the existence of equilibria of
the dynamical system (4.15). This, through the computation of the solutions of
x = f(x), taking f as the right hand side of (4.16).

As in Remark R1 of the previous example, the coe cients b are the powers
extracted or injected into the network, being negative in the former case and positive
in the latter; the observation of Remark R2 is also applicable in this example.

4.4.3 DC microgrids with constant power loads

A model of a DC microgrid, with n 1 converter-based distributed generation
units, interconnected bym 1 resistive-inductive (RL) transmission lines, can be

9Recall the preliminaries on graph theory and on power systems reported in Chapter 2.

10The rst equation in (4.15) represents the simpli ed converter dynamics, see [92, Section |,
equation (18)] and [92, Figure 4]. The converter usually has a PI current control, see the equations
(27) and (28) of [92]. For simplicity, the analysis of this chapter is restricted to to study equilibria of
the network without the PI. Nonetheless, the presented methodology applies also to the closed-loop
scenario.
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Table 4.2: Nomenclature for the model (4.17).

State variables

I Generated currents
Load and bus voltages
| Line currents

Parameters
L: Filter inductances
L Line inductances
C Shunt capacitances
R; Filter resistances
R Line resistances

External variables

u Control input (converter voltage)
Y;: Constant impedance k;: Constant current
P;i: Constant power

IZIP

written as [26]
Lile= Rily V +u;
C\VL= 1+ Bl lzp(V); (4.17)
L= B~V RI;
wherel; 2 R", V2 K?; u2 K" andl 2 R™ as well asR¢, R, L, L and C, are
diagonal, positive de nite matrices of appropriate size; the physical meaning of each

term appears in Table 4.2. Denote by 2 R" ™, the node-edge incidence matrix of
the network. The load demand is described by a ZIP modadlg.,

l2p (V) = YV + k + stack 5— :

whereY 2 R" " is a diagonal positive semi-de nite matrix,k 2 R" is a constant
vector, andP; 2 R.
Some simple calculations show that, for a givean = u constant, the dynamical
system (4.17) admits a real steady state if and only if, the algebraic equations
Oh=R*u V BRIBV Ig(V); (4.18)
have real solutions forv 2 K?. De ning x := V and
A=R'Y+BR B ;h:=P; w=R,u k

the system (4.18) can be written in the form (4.2). Similarly as for the MT-HVDC
model, it can be shown thatA is a positive de nite matrix and, hence, satis es the
conditions in Assumption 4.1. Therefore, the results of Section 4.2 can be applied
to study the solutions of the steady state equation (4.18).

Once again, Remarks R1 and R2 of Subsection 4.4.1 are also applicable here.

4.5 Numerical simulations

In this section, some numerical simulations that illustrate the results reported in
Section 4.2 are presented.

52



Chapter 4. Decoupled AC power ow and DC power networks with CPLs

4.5.1 An RLC circuit with constant power loads

The electrical network shown in Fig. 4.2 has been used in [9] as a benchmark
example to study the existence of its equilibria. In steady state, this network is
described by the system of quadratic equations

z Yv+ u;

. (4.19)
vizi=PRi>01=1;2

wherez; is the current through the inductorL;, v; is the voltage across the capacitor
Ci, P; is the power of thei th CPL, and

141 1
Y = I ri iz Tu=
rz

oF|m

De ne
x:= L A=Y h=P;wi=u
Vo

then, the algebraic system (4.19) can be equivalently written in the form of (4.2),
and hence its solvability can be studied through the computation of distinguished
solutions, x(t; X,), of the ODE (4.3).

To analyze the existence of steady states using Proposition 4.2, rstitis necessary
to identify the set E,** which for this example is given by

1 1 1
E= x2K! : —+ — X1 —Xo2> —; —X1+ —Xx>>0 ;
r2 n 2 r ) 2

or in a simpler form by

r{+r rE
(r. 2)x1 2

E= x2K[! : E<Xx;1<X3<
M r

This set is illustrated in Fig. 4.3a for the parameters' values of Table 4.3; a
distinguished solution of the ODEx = f (x) is also plotted.
The method is tested in three steps: rst, an initial condition

Xo = (25:01; 25.77);

which belongs to the sek is taken; then, two di erent values for CPLs' powers are
xed, which are codi ed by the vector b; and nally, for each of these values ob,
the associated distinguished solution is computed and its behavior, observed.

Fix b= (500;450). The plot of the associated distinguished solution is shown in
Fig. 4.3c; notice that none of its components is approaching to zero having then the
case llLii of Proposition 4.2: the network admits equilibria. Furthermorex(t; Xo)
asymptotically converges toXmax = (22:24;20.95). The latter equilibrium is the
only ODE's stable equilibrium, fact which is established from Proposition 4.1 by
observing thath > 0 for all i.

The described procedure is repeated now xing = (3000; 1000). The plot of
the associated distinguished solution is shown in Fig. 4.3d; its second component,

1See equation (4.7).

53



Chapter 4. Decoupled AC power ow and DC power networks with CPLs

Table 4.3: Simulation Parameters of the multi-port network of Fig. 4.2.

EN) ri() Li(uH) Cyi(mF)

24 ofer: 78 2
r () La(pH) Cy(mF)
0:06 98 1

icI +
+ '¢cplo

— V2 CPL>

Figure 4.2: DC Linear RLC circuit with two CPLS

denoted byx,(t), converges to zero in nite time, hence, falling in the scenario Ill.i
of Proposition 4.2: the network has no equilibria.
A graphical comparison that clearly illustrates the radically di erent behavior
between the former and the latter distinguished solutions is shown in Fig. 4.3e.
Finally, the consistency of the method with respect to thenalytical necessary
and su cient condition for existence of equilibria presented in [9, Proposition 1 and
3] is underscored: the shadowed region shown in Fig. 4.3b, which represents the
values ofb for which equilibria exist, can be obtained using this condition.

4.5.2 An HVDC transmission system

This subsection carries out a numerical evaluation of the existence (and approxima-
tion) of equilibrium points for the particular HYDC system presented as an example
in [92, Fig. 5]. The network, whose associated graph is shown in Fig. 4.4, consists in
four nodesN = fV1;Pq; P,; P3g, whereV; is a voltage controlled node, with voltage
v = E, and P, P, and P5 are power-controlled nodes, with poweP;, P,, and

Ps, respectively. The network edges, representing the RL transmission lines, are
c = fq; ;i g, with each ¢ having an associated pair of parameters;(L;). An
incidence matrix B = stack (By; Bp) is de ned, where

BV: 1 0

0
2 3
1

05:
1

BP:4

OoOFr o
= O O
oor
H|_\O =

Table 4.4: Numerical parameters associated with the edges for the network in Fig.
4.4.

Transmission line| e e e e, e
ri () ‘0.9576 1.4365 1.9153 1.9153 0.9576
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Figure 4.3: Simulation results for the RLC circuit of Fig. 4.2: (a) plot of a portion of
the setE and a distinguished solution converging tXax (b) Set of positive values
(shadowed region) for If; ) for which the network admits an equilibrium. (c)
Distinguished solutionx(t; xo), with b = (500; 450), converging to the equilibrium
point Xmax (d) Distinguished solution x(t; Xo), taking b = (3000;1000), with one

of its components converging to zero in nite time: the system has no equilibrium
points. (e) Phase-space plot of the distinguished solutiox(t; xo) for two di erent
values ofb: one feasible and another one infeasible. Convergencetqyis observed

in the former (solid curve), and convergence of the second component to zero is

visualized in the latter (dashed curve).
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Figure 4.4: Associated graph for the HVDC network studied in [92, Section V].

Then, the elements of the algebraic system (4.16), which is codi ed bBy(x) = 0,
with x = V, are given by

2 3
1+ 2+ L 0 i
ra I's r
A=4 0 ,+ L4+ 1 1 5.
ry ra ra !
1 1 s+ 1+ L4+ L
s rg ra ra Is
E E E
b= stack(P;); w=stack —;—;— ;
r3 ry rp

wherer; and ; are the diagonal elements of the matriceR and G, respectively.
Taking the numerical values shown in Tables 4.5 and 4.4, and through Lemma
4.2, an initial condition Xg 2 E is computed as

Xo = 10° stack(6:66; 4:66;5:99):

The particular solution x(t; Xo) of x = f (x) is shown in Fig. 4.5. Clearly, none of
its components converges to zero. Then, by Proposition 4.2, it is established that
the limit of this solution is the dominant equilibrium point, Xma Of the system; its
numerical value is given by

Xmax= 10° stack(4:0054 3:9991 4:0043)

7 10° T T T T
—e—x1(t)

—a— X (t
6 105 2(t) | |

——x3(t)

x(t) [V]

5 10° | n

I

4 10°

t [s]

Figure 4.5: Distinguished solutiorx(t; xo) converging to an equilibrium point. Once
again, from Proposition 4.2 it is established thak(t; Xg) ! Xmaxast!l
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Table 4.5: Numerical parameters associated with the nodes for the network in Fig.
4.4.

Power converter| V; Py P, P3
V& (kv) 400 - - -
P (MW) - -160 140 -180
i (US) - 0.02290 0.02290 0.3435
4.6 Summary

A systematic methodology to analyze the behavior the ODE (4.3) is presented in
the chapter. Exploiting the fact that this ODE describes a monotone dynamical
system, all possible scenarios for existence of its equilibria and, under minor extra
assumptions, for their stability and uniqueness, have been described. It has been
proven that if equilibria exist, then, there is a distinguished one, denoted by
which dominates|component-wise|all the other ones and attracts all the ODE
trajectories starting from a well-de ned domain. It has been further provided an
algorithm to establish whether solutions of the ODE will converge t&max0r not and
shown that the procedure is applicable even in the case when the system parameters
are only known to live in a polytope.

These results have been applied to study the voltage regularity of \lightly" loaded
AC power systems and to give conditions for existence of equilibria in DC microgrids
and MT-HVDC networks|all of them containing CPLs.

Finally, it has been demonstrated though supporting numerical experiments on
two benchmark power system models that the methodology performs very satisfac-
torily for realistic power system parameterizations.

Technical Appendices of the Chapter
4.A Proofs of Remark 4.1 and Lemma 4.1

Proof of Remark 4.1: Suppose that system (4.2) meets Assumption 4.1 except for
the claim b 6 0 8i. It is shown next that this system can be reduced to an
equivalent one that has the same structure of (4.2), of a lower order, and that
satis es Assumption 4.1 in full, including the claimb 6 O 8i.

To this endpit su ces to eliminate every variable x, with b = 0 by using (4.1):
Xk = A [Wi i6k & Xj]. This shapes any remaining equation (4.1) (with & k)
into X

Qj  AkdTaxk Xt h=x=w  wak=ak |6 Kk
i6k

In the left-hand side, the matrix A, of the linear part is symmetric and its o -
diagonal elements; ayxag=ax 08i 6 j;i;j 6 k sinceay > 0 for the positive
de nite matrix A. Meanwhile, a symmetric matrixA is positive de nite if and only
if A is Hurwitz. By [18, Theorem 9.5], this is also equivalent to the fact that the
equationAz = bhas a ur,gque rootz 0 wheneverb 0. The equationA;z = bis
equivalent to the system jn:1 aj X; = hifi 6 kandOotherwise. Since this system

57



Chapter 4. Decoupled AC power ow and DC power networks with CPLs

has a unique nonnegative solutiom, and dropping X, in x results in the solutionz,
it is seen thatA, is positive de nite.

Consecutively eliminating allx; with h = 0, an equivalent system (4.2), that
meets Assumption 4.1 in full, is obtained.

Proof of Lemma 4.1: Theset (= z2 R":det A diag(z) =0 is closed and
for any i and givenz;'s with j 6 i, its section

has no more thann elements. So the measure of is zero by the Fubini theorem.
The function x 2 K7 7! g(x) := stack bx; ? di eomorphically maps K7 onto an
open subset ofR". Hence the inverse image » := g () is closed, has the zero
measure and, due to these two properties, is nowhere dense.

Let C be the set of all critical points of the semi-algebraic map [2%] 2 K] 7!
h(x) := Ax+stack hx; 2 2 R", i.e., points x such that the Jacobian matrix r h(x)
is singular. By the extended Sard theorem [58], the set of critical valué$C) has
the zero measure and is nowhere dense. Meanwhile, the restrictlgn ¢ is a local
di eomorphism and so the imageh( x n C) is nowhere dense and has the zero
Lebesgue measure. It remains to note that the set @fs for which Assumption 4.2
does not hold lies inh( »nC) [ h(C).

4.B Proof of Lemma 4.2

Consider rst the following lemma and its proof.
Lemma 4.3. The following system of inequalities is feasible
Az > 0, z>0: (4.20)

Proof. Suppose that the system (4.20) is infeasible. Then two open convex cones
AK? and K? are disjoint and so can be separated by a hyperplane: there exists

2 R"; 60 (4.21)
such that
“x 0 8x2KT; >x 0 8x2AKI:

By continuity argument, these inequalities extend on the closures of the concerned
sets:

>X 0 8x2K,=fx:xi Og;

>X 0 8x2AK! AK,:
Here the rst relation implies that 2 K;) A 2 AK, and so ~A 0 by
the second one. SincA is positive de nite by Assumption 4.1, the last inequality

yields that =0, in violation of the second relation from (4.21). This contradiction
completes the proof.
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Based on any solutiore of (4.20), a solution of (4.7) can be built in the fornx := z
by picking > 0 so that for all i,

(Az), > hwii + hzt_“ L 2Az), hwi hzl > 0
| q . |
hwii + hwii2 +4(Az), 22

Z

>
’ 2(AZ)|

Since such a choice of is feasible, the proof of Lemma 4.2 is hence completed.

4.C Claims underlying Propositions 4.1 and 4.2

This section, considering a&C*-map g : K" ! R", provides a general study of the
ODE
x=9(x); x2KE; (4.22)

under the following.

Assumption 4.4. Foranyx 2 K7, the o -diagonal elements of the Jacobian matrix
r g(x) are nonnegative.

Assumption 4.5. For any x 2 K7, the Jacobian matrixr g(x) is symmetric.

For the convenience of the reader, some facts that are instrumental in the pre-
sented study are recalled. The rst group of them re ects that the system (4.22) is
monotone?’?

Proposition 4.4. Let Assumption 4.4 hold and let the order in R" be either or
>. For any solutionsx;(t); X»(t); x(t) of (4.22) denedon [Q ]; > O, the following
relations hold

X2(0)  x1(0)) Xxao(t) xq(t) 8t 2 [0; ]; (4.23)

x(0) 0) x(t) 08t2][0; [;
x(0) 0) x(t) 08t2[0; (424
X+« >0 "™ g(x+)>0)) the domain
+ = fx:x Xx,gis positively invariant: (4.25)

Proof. Relation (4.23) is given by [114, Prop. 1.1 and Rem. 1.1, Ch. 3], whereas
(4.24) is due to [114, Prop. 2.1, Ch. 3]. To prove (4.25), consider the maxi-
mal solution xy(t);t 2 [0; ) of (4.22) starting from x,(0) = X.. Sincexy(0) =
g(x+)>0, (4.24) guarantees thatx,( ) constantly increasesx,(t)>0 8t 2 [0; ) and
soxy(t)>x, 8t 2 (0; ). Now let a solutionx(t);t 2 [0; ]; 2 (0;1) startin ..
Then x(0) x,(0) and by (4.23),x(t) Xxy(t)>x, ift> 0. Sox(t) 2 . for any
t2[0; ]\ [O; ). It remains to show that < if < 1.

Suppose to the contrary that . Letting t! , itis seen that kxy(t)k ! 1
by [43, Theorem 3.1, Ch. ll] sincey(t) X+ > 0. Sox(t) xy(t))k x(t)k'1l
However, kx(t)k ' k x( )k < 1 . This contradiction completes the proof.

12See [114] for a de nition.
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Let x(t;a);t 2 [0; ,) stand for the maximal solution of (4.22) that starts att = 0
with a > 0. The distance infpa kx  x% from point x 2 R" to a setA R" is
denoted bydist (x; A).

Corollary 4.1. Whenever O<a; a a,itfollowsthat ;, minf ,; 0.
The following lemma is a trivial corollary of [18, Theorem 9.5

Lemma 4.4. A nonsingular matrix A = A> with nonnegative o -diagonal elements
is Hurwitz if
Ah>0) h O (4.26)

Lemma 4.5. Let Assumptions 4.4 and 4.5 hold. Suppose that a solutiax(t);t 2
[0;1 ) of (4.22) decaysx(t) < 0 8t and converges tox > O ast! 1 . Then x
Is an equilibrium of the ODE (4.22). If this equilibrium is hyperbolic, it is locally
asymptotically stable.

Proof. The rst claim is given by [114, Prop. 2.1, Ch. 3]. By Lemma 4.4, it su ces
to show that A := r g(x) meets (4.26) to prove the second claim. Suppose to the
contrary that Ah > 0 andh; > 0 for somei andh 2 R". For x? := x+ "h and small
enough" > 0, it follows that g(x%) = g(x) + "Ah + o(") = "Ah + o(") > 0;x% > 0,
x% > x;,andx(0) 2 , = fx :x>x?g. Since the set . is positively invariant
by (4.25), x(t) 2 + ) x(t) >x-; > X;, in violation of x(t) ! xast!1 . This
contradiction completes the proof.

For any x° x%2 R", itis denoted by x%x% :=fx2 R":x° x x%,.

Lemma 4.6. Suppose that Assumption 4.4 holds and > 0 is a locally asymptoti-
cally stable equilibrium. Its domain of attraction A(x) K T is open and

a%a’2 A(x)ra® a% aa® AX): (4.27)

Proof. Let B(r;x) stand for the open ball with a radius ofr > 0 centered atx.
For any a 2 A(x), it follows that , = 1 and x(t;a) ! x ast! 1l , whereas
B(2";x) A(x)forasuciently small "> 0 sincex is locally asymptotically stable.
Clearly, there is > 0 such thatx(;a) 2 B("; x). By [43, Theorem 2.1, Ch. V],
there exists > 0 such that wheneverka¥ ak < , the solution x( ;&) is de ned
atleaston [Q Jandkx(;aY) x(;a)k<". Itfollows that x(;a¥) 2 B(2"; x) and
sox( ;&) isin fact de ned on [0;1 ) and converges tax ast ! 1 . Thus, it is seen
that ka¥ ak< ) a2 A(x), i.e., the setA(x) is open.
Let a2 a%a® . By Corollary 4.1 and (4.23), . = 1 andx(t;a% x(t;a)

x(t;a% 8t 0. Lettingt!1 shows thatx(t;a) ! x and soa2 A(x).

Lemma 4.7. LetXx X, and let D '= X ;X. beanopen (in ) set such
that

) x%x% D 8x%x%2 D.

3 An anonymous reviewer is acknowledged for indicating this.
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i) either x 2D orx; 2D.
i) D6 .

Then there exists a continuous magM : !  suchthat M [] = nD and
M[x]=x 8x2

Proof. Let X, 2 D for the de niteness; thenx 62D by i) and iii). It can be assumed
that 0 = X < X,. Denote by ,( ):= maxfx ;0g, where :=stack(1;:::;1)
and the max is meant component-wise. Then, k) := 0: x()2D =
[0; (X)); x 2 D, where 0O< (x) < 1. For x 62D, put (x) :=0. Itis shown
rst that the function () is continuous on . To this end, it su ces to prove that
(x) = whenever
x=lim x; x¥K2 : and = lim  (xX):
ki1 ki1

Passing to a subsequence ensures that eitheér 62D 8k or x< 2 D 8k. In the rst
case,x 62D sinceD is open. Then (x)=0= (x¥)= . Let x*k 2 D 8k. Since
«[ (x¥)] 62D and D is open, lettingk ! 1 yields [ 162D ) (X) . So
the claim holds if =0. If > 0, pick0O< < . Then < (xfork 1 |,
i.e., y( )2 D. Letx; be thei-th component ofx 2 RP. Then

2 := max 0: x() () =max x xK +
IZXi
Here the second max is over a nonempty set sincex( ) 2 D 630. Thus Q! as
k!l .Byi, x(92Dandso (x) =) (x 8< ) (¥
) (X)= . Thus the function () is continuous indeed. The needed majd is

given by M (x) .= [ (X)].

Lemma 4.8. Let Assumption 4.4 hold and O< X X+;X 6 X, be two locally
asymptotically stable equilibria. Then there exists a third equilibriumx in between
them X X X+;X6X ;X

Proof. Denote by :=[X ;X.], like in Lemma 4.7. By Lemma 4.6, the seD :=
A(X )\ meets the assumptions of Lemma 4.7, which associat& with a map
M . Since the setdD are open and disjoint, they do not cover the connected set
. So the set = n(D [ D)) ofall xed points ofthe mapM = M M.

is non-empty and compact. For alla 2 , the solution x(;a)is dened on [G1 )
by Corollary 4.1 andx(t;a) 2 by (4.23). So the ow f (a):= x(t;a)g: o is well
de ned on , acts from into , and is continuous by [43, Theorem 2.1, Ch. V].
The setsD are positively and negatively invariant with respect to it:

a2b ) (@2D 8 0
a2 ~ 9t 0: (892D ) a2D :

It follows that IS positively invariant with respect to this ow. By the Brouwer
xed point theorem, the continuous map { M : ! has a xed point

1n Dbrief, this lemma says that is a retract of the convex set .
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a=  M(a)2 . Since M(a) 2 and ( ) , it is seen thata; 2

and soM (&) = a; and a = (&).
Since is compact, there exists a sequendey > Ogﬁz1 such thatt, ! 0 and

a, ! xask!1l forsome pointx 2 . Sincex 62 |, it follows that x 6 X ;
meanwhilex 2 ) X X  X.. Furthermore,
ACHER:" Z ki1
0= ————— =1t  dx(ta)ldt!"™ g(x):
k 0

Thus, it is seen thatg(x) =0, i.e., x is an equilibrium.

4.0  Proofs of Propositions 4.1, 4.2, and 4.3

The system (4.3) under Assumption 4.1 is studied next.

Lemma 4.9. Suppose thaty belongs to the set (4.7). There exists 2 (0; 1) such
that the domain () := fx:0<x  ygis globally absorbing,i.e., the following
statements hold:

i This domain is positively invariant: if a solution starts in (), it does not
leave ( );

i Any solution de ned on [0;1 ) eventually enters () and then never leaves
this set.

Proof. Thanks to (4.7), there exists > 0 such that
h hi

Ay > stack hw;i + +3 (4.28)

The value 2 (0;1) is picked so close to 1 that for any, the following holds.
[ 1w + 0 1h biy, '+ o: (4.29)
Let x( ) be a solution of (4.3). By the Danskin theorem [27], the functiofft) :=

tion holds

%t) = rig%&(t)w.; where

[(t) := fi:x(t)=y = %t)g:
If i 2 1(t) and j, it follows that x;(t) = y;%t);X;(t) y; %t), and
t X t b
VS + . - 4+ .
a; X (t) . {_éj_ﬂ XJ() xi(t) Wi

: Oby Asm. 4.1

(4.30)

4.3
x(t)
|

X b
RKt) aiyi+ &y %t) "—+ w,

j6i yi
(4.28) i
o%t) twi+ 12

— +3  + %t) 1hyl+ hwii
= (t) f [%t) 1lwi+ %t)g

[%t)  %%t) l]hyihi + %t) : (4.31)
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Hence whenevefft) 2 (0;1),

Xi(t) wnut) f [ 1wi.+ g
(4.29)

e )

So (4.30) implies that%t) > ) %t) ot) : 15 Claims (i) and (ii) are
immediate from this entailment.

Lemma 4.10. Claim Il of Proposition 4.2 holds.

Proof. This is immediate from (4.24) since for any distinguished solutior( ) and
y = x(0),

x(0) @) Ay + stack E + W

i 4.7
h bi + hwi (<)O:

Ay + stack

Lemma 4.11. Suppose that a solutiorx( ) of (4.3) cannot be extended from [0 )
with < 1 totheright. Thenthereisi suchthath > Oandx;(t) ! O;x(t)! 1
ast !

Proof. By Lemma 4.2, there is a solutiory > 0 for (4.7). Via multiplying y by a large
enough factor, it is ensured thaty > x (0). Let x-( ) be the distinguished solution
starting with x-(0) = y. By Lemma 4.10,x-(t) yfort 0, andx(t) x-(t) on
the intersection of the domains of de nitions ofx( ) and x- by (4.23). Then by

[43, Theorem 3.1, Ch. I1],x(t) converges to the boundary oK? ast ! and is
bounded, i.e.,
minx;(t)! Oast! ; Cc:= sup kx(t)k< 1: (4.32)
! t2[0; )

P
Putting W :=max; jwij+c jaj, itis seen that

x( = XJ %O gt W
2 ROk
h < 07 x(t) % xi(t) W>O0; (4.33)
b > 0" x(t) % ) xi(t) %(t) <0 (4.34)

) x{() xH(t) b( 8 2[5 ):

15 In fact, this holds for almost all t such that the premises are true.

63



Chapter 4. Decoupled AC power ow and DC power networks with CPLs

Due to (4.33), xi(t) is separated from zero ith < 0. So by (4.32), there exists

such thath > 0 and for any" > 0, arbitrarily small left vicinity (  ; ); 0 of
contains pointst with x;(t) <". Then for " < thwj formula (4.34) guarantees that
Xi(t) <" 8t%°2 (t; ). Overall, itis seen thatx;(t)! 0 ast! cthenx;(t) ! 1
ast! by (4.34).

Lemma 4.12. Suppose that Assumption 4.2 holds. Then the following claims hold
true.

I) Stable equilibria of (4.3) (if exist) are locally asymptotically stable.

i) Let 0 <X x® x* be equilibria of (4.3). Ifx are stable and all's are
of the same signx? is also stable.

Proof. By Assumption 4.2 and (4.3), the Jacobian matrix

r f(x) ._A(k) .._ A +diag (Zk,) ; (4.35)

k := k(x) := stack bx;
has no eigenvalues with the zero real part at any equilibrium. So for any stable
equilibrium x, the matrix (4.35) is Hurwitz and sox is locally asymptotically stable.
Since A(k)” = A(K) by Assumption 4.1, A(k) is Hurwitz if and only if the following
guadratic form in h 2 R" is negative de nite

X0
Q(h):= h>Ah+  ki(x)h%

i=1

Thus both forms Q, are negative de nite. Meanwhile,k;(x°) ki(x ) 8i if b >
0 8i, whereask;(x°) ki(x*) 8i if b < 08i. In any case,Q.o is upper estimated
by a negative de nite quadratic form (eitherQ, or Q4+ ) and so is negative de nite
as well.

Corollary 4.2. Suppose that Assumption 4.2 holds, & x©  x® are stable
equilibria of (4.3) and allh's are of the same sign. Thex©@ = x@,

Proof. Suppose to the contrary thatx©® 6 x®. By Lemma 4.8 and (i) of Lemma 4.12,
there exists one more equilibriumx®=? in betweenx© and x®, i.e., x@ x(=2

x® and x*72 6 x©;x® By (ii) of Lemma 4.12, this newcoming equilibriunx=2)

is stable. This allows to repeat the foregoing arguments rst fox©® and x®*= and
second forx®=? and x®. As a result, it is seen that there exist two more stable
equilibria x®™ 2 x©@:x(@=2)  gnd xC=) 2 x@=2:x® that dier from all pre-
viously introduced equilibria. This allows to repeat the foregoing arguments once
more to show that there exist stable equilibriax(*=8); x=8): x(6=8). x(7=8) gych that
x(=8  x0=8g80 i j 8andx(™® & xU=8 80 i;j 8i 6 j. By contin-
uing likewise, a stable equilibriumx(") is assigned to any number 2 [0; 1] whose
representation in the base-2 numeral system is nitei.e., number representable in
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equilibria are pairwise distinct and depend om monotonically: x(  x(* whenever
O r % 1.

Since all they lie in the compact set x©;x® | there is a sequencéryg;.,
of pairwise distinct numbersr's for which 9x = lim .,y x("J, Thenx 2 x©@:x®
and sox > 0 andf(x) =lim,; f[x("J)] =0, i.e., x is an equilibrium. Then the
Jacobian matrix r f (x) is nonsingular, as was remarked just after (4.35). However,
this implies that in a su ciently small vicinity V of x, the equationf (x) = 0 has no
roots apart from x in violation of x(") 2 Vv 8k 1 andx(x) 8 x(") 8k 6 |. The
contradiction obtained completes the proof.

Proof of Proposition 4.2: Claim | is given by Lemma 4.2.
Claim Il is justi ed by Lemma 4.10.

For Claim Ill, let x(t);t 2 [O;t;) be a distinguished solution. Ifty < 1 , then IlLi
of Proposition 4.2 holds by Lemma 4.11. Suppose that = 1 . Then the limit x
from (4.9) exists due to Claim I, andx 0. It is shown next that in fact x > 0.

Suppose to the contrary thatx; = 0 for somei. Thenx;(t)! Oast!1 ,(4.33)
means thath > 0, and (4.34) (where = 1 now) implies that kx( )k? assumes
negative values for large enough. This assures thatx > 0 and so (4.9) does hold.
By Lemma 4.5,x is an equilibrium.

Now suppose that Ill.i holds for a distinguished solutiorx,( ). Suppose that
there is another distinguished solutiorx( ) for which IlL.i is not true. Then x() is
dened on [G1 ) by Lemma 4.11 and als®x = limy; x(t) > 0 by the foregoing.
By (ii) of Lemma 4.9 (with y := Xy(0)), x( ) Xy(0)  xy(0) for large enough

By applying (4.23) to xi(t) = x(t+ ) and x(t) = X(t), is follows that
X(t+ ) Xy(t) and sox;(t) goes to zero in a nite time, in violation of x > 0
and I1. This contradiction proves that Ill.i holds simultaneously for all distinguished
solutions.

Since lll.i and IILii are mutually exclusive and complementary, it is noticed that
either I11.i holds for all distinguished solutions, or IlLii holds for all of them.
Let IlLii hold. As it has been shown in the paragraph prior to the previous

paragraph,x(t+ ) Xxy(t) for any two distinguished solutionsx( ) and xy( ). Hence
limys  x(t)  limgr Xy(t). By ipping x() and xy( ) here, it is appreciated that
these limits coincide,i.e., the limit (4.9) is the same for all distinguished solutions.

Claim IV follows from Lemmata 4.9 and 4.11 since any equilibrium is related to a
constant solution de ned on [Q1 ).

To establish Claim V, suppose that IlLii holds. Letxnax Stand for the limit (4.9).
By (4.9) and Lemma 4.5 Xaxis an equilibrium. Consider a solutiorx( ) de ned on
[0;1 ) and a distinguished solutionx,( ). By retracing the above arguments based
on (ii) of Lemma 4.9, is is observed thak(&+ t)  xy(t) 8 0 for some& O.
By considering here a constant solutiox( ) and letting t ' 1, it follows that Xmax
dominates any other equilibrium.

Let X(0) Xmax BY (4.23),X(t) XmaxOn the domain of de nition of x( ) and
so =[0 ;1 )bylLemmad4.11. Thus, itis observed thakmax X(&*+t)  X,(t) 8t
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0 for some& 0. It follows that x(t) ! Xmaxast!1l ,i.e., the equilibrium Xpmnaxis
attractive from above by De nition 4.1.

Proof of Proposition 4.1: This proposition is immediate from Proposition 4.2, ex-
cept for the concluding claims that refer to Assumption 4.2.

Let this assumption and S2 in Proposition 4.1 hold. Ther . is locally asymp-
totically stable by Lemma 4.5 and Claims Il, V in Proposition 4.2. The last sentence
of Proposition 4.1 is given by Corollary 4.2. It remains to show that there exist only

nitely many equilibria xX.

Suppose the contrary. Since all equilibria lie in the compact séx : 0 X
Xmad, there exists an in nite sequenced x*<gl., of pairwise di erent equilibria that
convergesx®s | x ast ! 1 to a point x 0. The estimates (4.33), (4.34)
applied to any equiybrium solution x( ) assure thatx; | Qj=(2W) on it, where
W :=max; jwj+c ;jajj andcis any upper bound orkx(t)k. For the solutions
related to the convergent and so bounded sequente*sgl.,, this bound can be
chosen common. As a result, it is inferred thax > 0 and sof (x) = lim g1 f[xk] =
0, i.e., x is an equilibrium. Then the Jacobian matrixr f (x) is nonsingular, as was
remarked just after (4.35). This implies that in a su ciently small vicinity V of x,
the equationf (x) = 0 has no roots apart fromx, in violation of xk 2 V 8s 1
and x*s 6 x% 8s 6 r. This contradiction completes the proof.

Proof of Proposition 4.3: Let f ();f();f*() be dened by (4.3) forC , C, C,
respectively. Retracing the proof of Lemma 4.2 demonstrates existencead? K !
such that
maxfth b i;h hih Q'ig

a ;

A™a > stack maxthw; i;hwiihw; ig +

By De nition 4.2, the solutions of x = f (x) and x = f (x ) that start with a are
distinguished for the respective ODEs (4.3). Here (x) f(x) f*(x)8x 2K?"
due to (4.11). So by [115, Theorem 8.1, Ch. ll],

x (1) x(t) x"(t);

where each inequality holds whenever its both sides are de ned for the concerted
So the claims i-iii are immediate from I11-V in Proposition 4.2.

NowletA* ! A ;B! b ;w"! w . Forthe left hand sides of these relations,
there exist respective constant upper bound&* ;ﬁ* :W* that satisfy Assumption 4.1.
Let Xmax be the dominant equilibrium related to these bounds. By (4.12)X.«
Xmax  Rmax @Nd so the variety ofx; .S is bounded. For any limit point x of x; .S,
it holds that 0 <x ., X and x is the equilibrium of the C -related system by the
continuity argument. So X, = X by the de nition of the dominant equilibrium.

Thus all limit points of x}..s are the same and equ&,,,. Hencex} ! Xmax

max
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Chapter 5

Power-Controlled Hamiltonian
Systems: Application to Power
Systems with CPLs

Synopsis  This chapter explores a type of port-Hamiltonian system in which the
controller or disturbance acts directly on the system's power balance equation|
a scenario that appears in many practical applications. A suitable framework is
provided to model these systems and to investigate their shifted passivity properties,
based on which a stability analysis is carried out. The applicability of the results is
illustrated with the stability analysis of electrical circuits with constant power loads.

5.1 Introduction

In recent years, port-Hamiltonian (pH) modeling of physical systems has gained ex-
tensive attention. pH systems theory provides a systematic framework for modeling
and analysis of physical systems and processes [93, 70, 84, 82, 95]. Typically, the
external inputs (controls or disturbances) in pH systems act on the ow variables|
that is on the derivative of the energy storing coordinates. However, in some cases
of practical interest, the external inputs act on the systemgower balance equa-
tion, either as a control variable, or as power that is extracted from (or injected
to) the system. These kind of systems are referred Bewer-controlled Hamiltonian
(PwH) systems. R,H systems cannot be modeled with constant control input matri-
ces, which is the scenario considered in [49]. Consequently, to analyze its passivity
properties, the development of new mathematical tools is required.

The objectives of the chapter are to propose a suitable framework to model
PwH systems and to develop analytical tools to infer stability properties of their|
intrinsically non-zero|equilibrium points. The latter objective is achieved by iden-
tifying a class of R,H systems that are shifted passive [93]. Following [49], a shifted
storage function is used to address this issue. This shifted function is closely related
to the notion of availability function used in thermodynamics [2, 51], and is associ-
ated with the Bregman divergence of the Hamiltonian with respect to an equilibrium
of the system for constant non-zero input [17]. Therefore, the shifted Hamiltonian
Is used as a candidate Lyapunov function, which is based on the physical energy of
the system, and, unlike the Brayton-Moser potential, is trivially computed. Two
immediate corollaries of the shifted passivity property are: (i) that the shifted equi-
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librium can be stabilized with simple PI controllers [49]; (ii) that in the uncontrolled
case, when a constant input power or load is imposed, stability of this equilibrium
can be established. This chapter focuses on the latter issue, that was rst studied in
the standard pH systems framework in [70]. Furthermore, the framework proposed
in the chapter allows to give an analytic characterization of an estimate of the ROA
in the case of a quadratic Hamiltonian and a positive de nite dissipation matrix.

The remainder of this chapter is organized as follows. The proposed model for
PwH systems is introduced in Section 5.2. The main result, that is, the derivation
of conditions for their shifted passivity, is provided in Section 5.3. The stability
analysis is given in Section 5.4. The utility of the main result is illustrated in
Section 5.5 with its application to electrical systems with CPLs, and in Section 5.6
with the application to synchronous generators. Finally, some concluding remarks
are provided in Section 5.7.

5.2 Model

Consider the pH system driven by theow f 2 R™ [93]

x=(J R)r H(x)+ Bf

e=B7r H(x);
wherex 2 R" is the state vector (withn m), e2 R™ is theeort, H is the
system Hamiltonian (energy) function, and then n constantmatricesJ = J~
and R 0, are the structure and the dissipation matrices, respectively. The pH
system satis es the power-balance

H=r H>X)Rr HX)+ € f:

Now consider the scenario where the external signals act directly on the power
balance equation of the system. De ne theontrol power inputu 2 R™ as the
element-wise product of e ort and ow, i.e., u := diag(e)diag (f )1,,. Hence,f =
diag (€) *u. Without loss of generality, by re-arranging the actuated and the non-
actuated states, the constant matrixB is de ned as

I'm
B = : 5.1
0(n m) m ( )
Accordingly, the vectorr H is decomposed into

Gu(x) .
Go(x)

whereGy(x) 2 R™ is associated with the actuated states. It follows that

rH=

Bf = Bdiag(e) *u= Bdiag B™r H(x) ‘u

= Bdiag (G,(x)) ‘u
= G(X)u;
where thepower input matrix G(x) 2 R" ™ is de ned as

diag (Gu(x)) * .
O(n m) m -

G(x) = (5.2)
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The input matrix G(x) is well-de ned in the set * characterized as
T=fx 2 R" : diag (Gy(x)) > Og:
Then the dynamics of the Power-controlled Hamiltonian (RH) system is given by
X=(J R)rHX)+ G(xX)u; x2 *; (5.3)

with the rst m components ok corresponding to thepower controlled states. Then
it is easy to see that the power balance equation takes the form

H=r H X)RrH(X)+ 1 u;

implying that the natural output corresponding to the input u is given as the con-
stant vector 1, in accordance with the fact that the total supplied power is Ju.
The natural operating points for R,H systems are non-zero equilibria corresponding
to non-zero constant inputs u. Therefore, it is convenient to describe the system
dynamics using the shifted model. Towards this end, the following steady-state
relation is identi ed.

E=f(x;u)2R" R™: (J R)r Hx)+ G(X)u=0g;
Following [49], the shifted Hamiltonian is de ned as
H(x):=H(x) (x X)>rH H; (5.4)

which is, in fact, the Bregman divergence of the Hamiltonian with respect t® [17].
This function, as shown below, is instrumental to obtain a suitable representation
of the shifted dynamics.

Lemma 5.1. Fix (x;u) 2 E, then the system (5.3), with the input matrix G as
de ned in (5.2), can be rewritten as

h [
x=J R+Z(Xx) rH (X)+ G(X)(u u); (5.5)

where
Z(x) := Gdiag (u)G~ (x) : (5.6)
Proof. Subtracting the steady-state equation from (5.3) gives

x=(J R)rHXxX) r H +GXu Gu :

Notice that
rH (X)=r H(x) r H; (5.7)

it follows that
x=(J R)rH (x)+ G(x)u Gu

G(x)u+ G(X)u
=(J R)rH (x)+ G(X)(u u)

+ G(x) Gu
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Observe that

G(x) G u= diag(r H(x)) diag r H GG’ (x)Bu
= Gdiag(uW)G (x) r H(x) r H
= Z(X)rH ;

whereB is given in (5.1) and the fact that for alla; b2 R", it holds that diag (a)b=
diag (b)a has been used. Hence

Xx= J R+Z(Xx) rH (x)+ G(X)(u u);

as claimed.

The natural output of the shifted model (5.5) is de ned as
y=G (X)rH (x): (5.8)

The next section investigates the conditions under which the system (5.5), with
output (5.8), satis es the following notion of shifted passivity; this concept is studied
for general and pH systems in [93].

De nition 5.1. Consider the system (5.5) with output (5.8). Let &; u) 2 E and
deney = G>(X)rH (x). Then, the system isshifted passivaf the mapping (u
u) 7! (y ) is passive,i.e., if there exists a functionS : R" ! R, S(x) 0 8x,
such that, along trajectories of (5.5), satis es

S=(rsS )’ x (u uy vy (5.9)

for all (x;u) 2 R" RM1

5.3 Main Result: Shifted Passivity

This section explores the passivity properties of the mapping u 7'y vy dened
by the P,,H model (5.5), (5.8)|where vy is the value of the outputy at an equilibrium
point.

To establish the shifted passivity property, the trajectories are further restricted
to be inside the set

pi=fx2 T 1 R+Z(x) O0g; (5.10)
that is the closure of the open set
pi=fx2 T 1 R+ Z(x)>0g: (5.11)

Assumption 5.1. The set , de ned in (5.10) is non-empty.

1This concept is also de ned in Chapter 2, however, it is included here to enhance readability.
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Theorem 5.1. Consider the system (5.3), (5.8), where Assumption 5.1 holds. Fix
(x;u) 2 E, and the corresponding outputy. For all trajectoriesx 2 , it holds that

H o (y y)(u u: (5.12)

Moreover, if H is convex, the system is shifted passive [93)e., the mapping (u
u) 7! (y y)is passive.

Proof. Using Lemma 5.1, the system can be written as in (5.5). Therefore,
H=rH > R+Z(X) rH +y (u u):
Notice that y = 0. Indeed, using (5.7) in (5.8),y can be written as
y=G (X) rHXX) r H ;

and hencey = 0. The proof of (5.12) is completed restricting the trajectories to
satisfyx 2 . To establish the passivity claim, notice that sincéd is convex,H (x)
has a minimum atx, and hence is non-negative.

Remark 5.1. In case the control input includes only powesources i.e.,
diag(u) ©;

it can be seen from (5.6) and the fact thatx 2 *, that Z(x) 0, and hence

p = ©. Inthis case, Assumption 5.1 is trivially satis ed.
Therefore, throughout this chapter, the cases where at least one control input ele-
ment is acting as a power loadi.e., diag(u) O, is investigated. Although, in this
case, Assumption 5.1 might be restrictive, it is shown that it is satis ed for both of
the numerical case studies. Furthermore, a suitable control design, and in particular
Pl controllers, can guarantee , to be non-empty. As the focus of the chapter is on
modeling and stability of the uncontrolled system, the control design is not pursued
here.

Remark 5.2. Theorem 5.1 holds also for systems with an additional constant input,
le.,

x=(J R)r H(x)+ G(X)u+ uc;

since the constant inputu. 2 R" disappears in the shifted model (5.5).

5.4 Stability Analysis for Constant Inputs

Consider the system (5.3) with a constant inputu = u. Then the dynamics reads
as

x=(J R)rHX)+ G(X)u: (5.13)

In this section is investigated the local stability of the equilibria of the system (5.13),
that is, points x such that (x; u) 2 E. Then, an estimate of their region of attraction
(ROA) is provided. To establish these results, Assumption 5.1 is strengthened as
follows.

Assumption 5.2. The set , de ned in (5.11) is non-empty.

Naturally, only equilibrium points x 2 , are considered.
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5.4.1 Local stability

Using the result of Theorem 5.1, consider the following corollary:

Corollary 5.1. Consider the system (5.13) satisfying Assumption 5.2, and having
apointx 2 , such that (x;u) 2 E andr ?H(x) > 0. Then, the equilibriumx = x
of the system (5.13) is asymptotically stable.

Proof. SinceR+ Z(x) > 0 andr ?H(x) > 0, there exists a ballB(x), centered inx,
such thatH(x) > 0 andR+ Z(x) > O for all x 2 B(x), x 6 X. Moreover,H satis es
H=rH ~ R+Z(x) rH <0, 8x2B(x); x6 x;

making it a strict Lyapunov function. This completes the proof.

Remark 5.3. The physical interpretation of Assumption 5.2 is that the system
should have a non-zero damping on all states. Apparently this assumption is re-
strictive in many cases, however, it can be relaxed to Assumption 5.1 iidatectabil-
ity condition is satis ed, guaranteeing asymptotic stability by the use of LaSalle's
Invariance principle; see [95, Chapter 8].

5.4.2 Characterizing an estimate of the ROA

As is well-known, all bounded level sets of Lyapunov functions are invariant sets.
However, the proof of asymptotic stability is restricted to the domain ,. Conse-
quently, to provide an estimate of the ROA ofx it is necessary to nd a constantk
such that the corresponding sublevel set d

Ly :=fx2R": H(x) <k; k> 0g; (5.14)

is bounded and is contained in ,. To solve this, otherwise daunting task, two
additional assumptions are made on the system.

Assumption 5.3. The dissipation matrix is positive de nite, that is, R > 0.

Given this assumption, it is possible to construct a set|de ned in terms of lower
bounds on the elements of H |that is strictly contained in .

Lemma 5.2. Take Assumption 5.3 as true. Then the set de ned as

)
diag G, ‘diag(u)

= X2 . diag (Gy(x)) > TR ;

(5.15)

is contained in .
Proof. For all x 2 it holds that

nfRglm +diag G, ‘diag(u)diag(Gy(x)) *> 0
Recall from (5.1) thatB = Iy, On (n m) " . Then
nfRg+ Bdiag G, ‘diag(u)diag(Gy(x)) ‘B> > 0;
where the fact that ,fRg> 0 is used. Hence
nfRgl, + Gdiag (U)G” (x) > 0;

The proof is completed by noticing that the second left-hand term above B(x),
and by recalling that R mfRal,.
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A second assumption is on the Hamiltonian.

Assumption 5.4. The Hamiltonian is quadratic of the form
H(x) = %X>|\/| X; M >0 (5.16)
In this case, the shifted Hamiltonian (5.4) reduces to
1 >
H(x) = E(X X)"M (X X): (5.17)
Moreover, all the sublevel set$ i, given in (5.14), arebounded Therefore, in view

of Lemma 5.2, it is necessary to nd a constank. > 0 such thatL, , and this
sublevel set provides an estimate of the ROA of.

Theorem 5.2. Consider the system (5.13) with Assumptions 5.3 and 5.4 satis ed.
Assume thatx 2 where is given by (5.15). De ne

1 N 20
Ke = 5 Mg i, Mx)i =
with u
i .= maxfQ; megGuig;

where M x); and G,, are thei-th element of the vectorsM x and G,. Then, an
estimate of the ROA of the equilibrium x is the sublevel setL,, of the shifted
Hamiltonian function H(x) de ned in (5.17).

Proof. From (5.17),
H(x)=%(M X M x)°M Mx M x):

Hence, ,
MXx M xj
HOO) 5 g
with j j the Euclidean norm. This bound, together withH (x) < k., ensures that
foralli2f1, ;mg,
(MX)i (Mx))?< (i (Mx))*

Notice that since x 2 , it follows that (M x); > ;. Hence ; (M Xx); < 0.
Consequently,

i (M X)i< (M X)i (M X)i< i+(|V| X)i:

The left hand side of the inequality above guaranteedV x); > ;. Therefore, using
Lemma 5.2, it follows thatR + Z(x) > 0. The proof is completed by noticing that
the latter ensuresH (x) is a strict Lyapunov function of the system.
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Figure 5.1: Single-Port DC circuit connected to a CPL.

5.5 Application to DC Networks with Constant
Power Loads (CPL)

In this section the proposed method is applied to study the stability of equilibria of
single-port and multi-port DC networks with CPLs.

5.5.1 Single-port system

A schematic representation of a DC network with a single CPL is shown in Figure
5.1. Observe that the combination of the resistive load, and the CPL, acts as a
ZIP load connected to the capacitorlC. In view of Remark 5.2, the current sink is
omitted for brevity.

De ne the state vector x = col(q;"' ), where q is the capacitor's electric charge
and' is the inductor's magnetic ux. Then the system can be modeled by

x=(J RIrHX+GXu+u.; x2 *; (5.18)

with H = Ix>M x and

M = (5.19)

(elells

1.
10"

and uc = col(0;vg), u= P, whereP > 0 is the power extracted by the CPL. The
input matrix is

[@¥-1le}

G(qg;') =
which is well de ned in the set
*=1(q;") 2 R?jgq > 0g:

Notice that the power balance equation takes the form

= R b v ey

dissipated power  external power

The equilibria of the system (5.18), (5.19) are computed in the following lemma.
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Lemma 5.3. The system (5.18)-(5.19) admits two equilibria given by

Vg + P— FoV, P—
=C ¢} : [J— pYg
® rID(r\ +rp) ° r(r-+rp)
and v, P— FoVg+
= Cr. = LRV :
G rp(r‘ +r,) r(r +rp)
where
. + r-
= v APt ),
'p
The equilibrium points are real if and only if 0 or equivalently
rpV2
P Piyi Pipi= b 5.20
max max 4r(r + rp) ( )

Through straightforward computations, it can be shown that the Jacobian of the
vector eld in the right hand side of (5.18) has a positive eigenvalue at the equilib-
rium point (q,;" v), and hence this equilibrium is unstable. Furthermore, it can be
shown that for small values of the load power, the Jacobian is negative de nite at
the equilibrium point (gs;" ).

Considering the results of Lemma 5.3, the equilibriumc;’ ) is proposed as
the candidate for nonlinear stability analysis. To use the results of Corollary 5.1,
compute

" #
1 c?p
R+ Z(q;')= "' 0 Gsq . : (5.21)
Next, observe thatR + Z(qs;" s) > 0 if and only if
. vy
P< Priaxi I:)ns"lax - (rp + 2I")2 : (5'22)

Hence, according to Corollary 5.1, if the condition (5.22) is satis ed, then the
equilibrium (as; "' s) is asymptotically stable. Notice that if P < minf P2 ,,; Pyax0,
then the existence of the asymptotically stable equilibrium pointd;; " <) is guaran-
teed.

Remark 5.4. Letv:= & denote the voltage of the CPL at the equilibrium ;" ).

Then the physical equivalent of the term % in (5.21), is the inverse of a nonlinear
negative resistor with the resistance

C’P 1_v
9 P

reeL (V) = v

This resistor is in parallel with ry, i.e.,

R+Z(a:')= "o

wherergq(Vv) := % fchl ) 'is the equivalent resistor. Interestingly, the physical

interpretation of the condition (5.22) is that the equivalent resistance is positive
(and thus a passive element) at the equilibrium pointi.e., req(v) > 0.
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As the dissipation matrix R is diagonal, and the Hamiltonian of the states are
decoupled, the largesk in (5.14)|and hence the largest Ly contained in p|can
be constructed explicitly.

To streamline the presentation of the result, consider the constants

Ui

= X 5.23
I Ri Gy, ( )

and the constant vectors

= col(XqXa, X 1;M—‘;xi+1; 'Xn) (5.24)
i

Corollary 5.2. Consider the system (5.13) with the quadratic Hamiltonian (5.16)
with diagonalR > 0 andM > 0. Assume thatx 2 . De ne

ke:= min  HCYH ;

with (5.23) and (5.24). Then, an estimate of the ROA of the equilibriunx is the
sublevel setl y, of the shifted Hamiltonian function H (x) de ned in (5.17).

Proof. The proof follows analogously to the proof of Theorem 5.2, and hence is
omitted.

Remark 5.5. Notice that the setLy in the case considered in the corollary is the
ellipsoid

4= <1 (5.25)

=y

Now, using Corollary 5.2, an estimate of the ROA ofd;"' s) can be derived.
Bearing in mind that the dissipation matrix R is diagonal, and using Lemma 5.2,
p IS computed as

p=f(4')2R* 1 0> GminG;

where
cz_ P
Omin == Prpa= Ps

max

> 0: (5.26)

Remark 5.6. The interpretation of (5.26) is that the closer the load power td3 .,
is, the smaller the ROA is. According to (5.22), this means that, with a xedqs,
larger resistances: and r, result in a larger ROA. Hence, in the proposed method,
small parasitic elements provide a small region of attraction in the absence of the

load resistance and the voltage source output resistance.

Now assume that (5.22) holds. Using Corollary 5.2, the séft, with
Ka = H(Gnin; " s)

is an estimate of the ROA. Furthermore, using (5.25), this set can be written as the

oval

L N T (5.27)
2Ckg 2K,
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Table 5.1: Simulation Parameters of the Single-Port CPL

voV) () () L(pH) C(mF) P(kw)
24 004 01 78 2 1

Figure 5.2: Phase plane of the system (5.18)-(5.19) with the parameters given in
Table 5.1.

This set guaranteesy > gmi, for all solutions starting within the oval.

The results are evaluated by a numerical example of the network shown in Figure
5.1, with the parameters given in Table 5.1. The maximal power for existence of
the equilibrium and its local stability is computed asPS,, = 2:57kW and P;,, =
2:33 kW, respectively. Notice that the CPL satis es the conditions (5.20) and (5.22),
since

P<P,

max < Pr?]ax

Figure 5.2 shows the phase plane of the system (5.18)-(5.19). The estimate of
the ROA (the oval (5.27)) is shown in blue, and all other converging solutions are
shown in light gray. It is evident that the proposed method provides an appropriate
estimate of the ROA, as the solutions just beneath this region (in dark gray), diverge
from the equilibrium.

5.5.2 Multi-port networks

The stability of a complete multi-port DC network with CPLs can be investigated
in a similar fashion. It is assumed that the capacitors and the inductors are not
ideal, i.e., it is considered that all the inductors have a resistance in series and the
capacitors posses a resistor in parallel. Moreover, it is assumed that the constant
power loads are connected to a capacitor in parallel. This feature amounts to the
capacitive e ect of the input Iters for this type of loads; see [10, 20, 22]. L&k 2 R'
represent the currents through the inductors, andvc 2 R® denote the voltages
across the capacitors, wheré and ¢ are the number of inductors and capacitors,
respectively. With a little abuse of notation, de ne the state vectorx = col(q;"') 2
R®! and the control vectoru = P 2 R, whereq?2 R® denotes the electric charge
of the capacitors, and 2 R' denotes the magnetic ux of the inductors. Then the
network dynamics of a multi-port network admits a port-Hamiltonian representation
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given by
x=(J R)r H(x)+ G(x)u+ uc;

with H = 2x>M x and

M = J = 1R:

ct o0 | o > Y
0o Lt 0 0

0 .
Z 1

whereC> 02 R® candL > 02 R' ! are matrices associated with the magnitude
of capacitors and inductors (and mutual inductances)Y 2 R° candZ 2 R' !
are positive de nite matrices associated with the resistances, and2 R' ¢ is the
matrix associated with the network topology. The vectomu, 2 R®! is constant and

its components are linear combinations of the voltages and currents of the sources
in the network. Similar to the case of the single-porRLC circuit with a CPL, and
using Theorem 5.2, an ellipsoid can be computed here as an estimate of the ROA.

5.6 Application to a Synchronous Generator Con-
nected to a CPL

In this section, the results are applied to the case of a synchronous generator con-
nected to a CPL. This system can be modeled By

p=(J R)r H(p)+ G(p)u+ uc (5.28)

with
1.

M
p=M!;J =0;R=Dy+ Dg; G(p)= —
L P (5.29)
H=Sp5u= Polc= m+ Dl

wherep > 0 is the angular momentumM > 0 is the total moment of inertia of the

turbine and generator rotor,! 2 R, is the rotor shaft velocity,! > 0 is the angular

velocity associated with the nominal frequency of 50HA),, > 0 is the damping

coe cient of the mechanical lossesPy4 > 0 is the damping-torque coe cient of the

damper windings, , > 0 is the constant mechanical torque (physical input), and
Pe Is the constant power load.

Let
=( Dg! + m)2 4(Dg+ Dp)Pe;

and assume that > 0, i.e.,

(Dd! + m)z_

Pe < :
¢ 4(Dd+ Dm)

Then, the dynamics (5.28), (5.29) has the following two equilibria

, _ Dg + m+'O__ , _Dd + p__

ST T D+ D) | YT T 2(Dg+ Dp)

2This model is called the improved swing equationin [130, 76]. An inverter with a capacitive
inertia can be modeled by similar dynamics; see [77].
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Table 5.2: Simulation Parameters of the Synchronous Generator (p.u.)

M Dmn Dy Pe m
02 10° 104 3 00027

Figure 5.3: Solutions of the system (5.28),(5.29) with di erent initial conditions.

Moreover,
Pe
R+Z(1)=Dg+ Dm
. S-
The equilibrium point I = ! ¢ is asymptotically stable since
+ |
R+Z(1g= m*Dat

s
Through straightforward computations, it can be shown that the set , in (5.11)

can be written as
p=fl 2R, 11> 1,g: (5.30)

In this set, the shifted HamiltonianH = %M (! !)?is strictly decreasing. There-
fore the solutions tend to the equilibrium! ¢ and move away from the point!
when time increases. Consequently the set, in (5.30) is forward invariant, and
represents an estimate of the ROA.

Figure 5.3 shows the trajectories of a number of solutions of the system (5.28)-
(5.29), with the parameters given by Table 5.2, and with di erent initial conditions.
It is clear that the proposed method successfully identi es a very precise estimate of
the ROA (blue), as all the solutions starting from outside the ROA estimate (black)
diverge from the equilibrium. The result, which is derived from the systematic
approach proposed in the chapter, shows an improvement over the results of [76],
as both derived ROAs have the same lower bound, while here, the estimate has no
upper bound.

Interestingly, it can be shown that any solution that does not start in ,, diverges
from the stable equilibrium! s. Therefore, here, the set ; is not only an estimate,
but is the exact region of attraction.
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5.7 Summary

This chapter has explored a class of pH systems in which the control input (or
disturbance) acts on the power of the system. These systems have been referred here
as Power-controlled Hamiltonian (R,H) systems. First, a model for such systems
was proposed, and second, a condition for shifted passivity was derived. Using these
results, the stability of equilibria was investigated. Furthermore, an estimate of the
region of attraction was derived for R H systems with quadratic Hamiltonian.

The proposed modeling procedure and stability analysis were illustrated with
two cases of practical interest: A DC circuit and a synchronous generator, both
connected to constant power loads. The validity and utility of the proposed method
was con rmed by numerical simulations of these case studies.
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Chapter 6

Voltage Control of a Buck-Boost
Converter

Synopsis  This chapter addresses the problem of regulating the output voltage
of a DC-DC buck-boost converter that supplies electric energy to a constant power
load. The model of the network is a nonlinear, second order dynamical system
that is shown to be non-minimum phase with respect to both states. Moreover, to
design a high-performance controller, the knowledge of the extracted load power,
which is di cult to measure in industrial applications, is required. In this chapter,

an adaptive interconnection and damping assignment passivity-based control|that
incorporates the immersion and invariance parameter estimator for the load power|

Is proposed to stabilize the system around a desired equilibrium. Some detailed
simulations are provided to validate the transient behavior of the proposed controller
and compare it with the performance of a classical proportional-derivative scheme.

6.1 Introduction

The DC-DC buck-boost power converter is increasingly utilized in power distri-
bution systems since it can step up or down the voltage between the source and
load, providing exibility in choosing the voltage rating of the DC source [125, 116,
124]. Although the control of these converters in the face of classical loads is well-
understood, this is not the case when constant power loads (CPLs) are considered.
This scenario signi cantly di ers from the classical one and poses a new challenge
to control theorist, see [9, 71, 38, 53, 80, 128] for further discussion on the topic
and [110] for a recent literature review. It should be underscored that the typical
application of this device requires large variations of the operating point|therefore,
the dynamic description of its behavior cannot be captured by a linearized model,
requiring instead a nonlinear one.

To address the voltage regulation of a buck-boost converter with a CPL, several
technigues have been proposed in the power electronics literature, but without a
nonlinear stability analysis. In [88], the active-damping approach is utilized to
address the negative impedance instability problem raised by the CPL. The main
idea of this method is that a virtual resistance is considered in the original circuit to
increase the system damping. However, the stability result is obtained by applying
small-signal analysis, which is valid only in a small neighborhood of the operating
point. A new nonlinear feedback controller, which is called \Loop Cancellation", has
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been proposed to stabilize the buck-boost converter by \canceling the destabilizing
behavior caused by CPL" [89]. The control problem turns into the design of a
controller for the linear system by using loop cancellation method. However, the
construction is based on feedback linearization [47] that, as is well-known, is highly
non-robust. A sliding mode controller is designed in [111] for this problem. However,
for the considered nonlinear system, the stability result is obtained by adopting the
linear system theory. In addition, as it is widely acknowledged, the drawbacks of this
method are that the proposed control law su ers from chattering and its relay action
injects a high switching gain. The deleterious e ect of these factors is illustrated in
experiments shown in [111], which exhibit a very poor performance.

Aware of the need to deal with the intrinsic nonlinearities of power converters
some authors of this community have applied passivity-based controllers (PBCs),
which is a natural candidate in these applications. Unfortunately, in many of these
reports the theoretical requirements of the PBC methodology are not rigorously
respected. For instance, in [60], the well-known standard PBC [83] is used for the
buck-boost with a CPL. Unfortunately, the given result is theoretically incorrect
due to the fact that the authors fail to validate the stability of the zero dynamics
of the system with respect to the controlled output that, as explained in [83], is an
essential step for the stability analysis and, as shown in this chapter, it turns out to
be violated.

An additional drawback of the existing results is that all of them require the
knowledge of the power extracted by the CPL, which is dicult to measure in
industrial applications. Designing an estimator for the power is a hard task because
the original system is nonlinear and the only available measurements are the inductor
current and the output voltage.

In this chapter, the well-known interconnection and damping assignment (IDA)
PBC, rstreported in [82] and reviewed in [81], is applied to stabilize the buck-boost
converter with a CPL. The main contributions are enlisted as follows.

1) Derivation of an IDA-PBC that ensures the desired operating point is a (lo-
cally) asymptotically stable equilibrium with a guaranteed region of attraction.

2) Design of an estimator of the load's power, which is based on the Immersion
and Invariance (1&l) technique[8] and has guaranteed stability properties, to
make the IDA-PBC adaptive.

3) Proof that the zero dynamics of the system, with respect to both states, is
unstable|limiting the achievable performance of classical PD controllers to
\low-gain tunings".

The rest of the chapter is organized as follows. Section 6.2 contains the model
of the system and the analysis of its zero dynamics with respect to its two states.
Section 6.3 proposes the IDA-PBC assuming that the power extraction of the load
is known. To make the latter scheme adaptive, in Section 6.4 an on-line power
estimator is designed and some simulations, carried out in MATLAB, are provided
in Section 6.5. The chapter is wrapped-up with some concluding remarks in Section
6.6. To enhance readability, the derivation of the IDA-PBC, that is conceptually
simple but computationally involved, is given in a Technical Appendix at the end
of the chapter.
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Figure 6.1: Circuit representation of the DC-DC buck-boost converter with a CPL

6.2 System Model, Problem Formation and Zero
Dynamics Analysis

In this section, the average modélof the buck-boost converter supplying electric
energy to a CPL is presented and an analysis of its zero dynamics is carried out.

6.2.1 Model of buck-boost converter with a CPL

The topology of a buck-boost converter supplying electric energy to a CPL is shown
in Fig. 6.1. Under the standard assumption that it operates in continuous conduc-
tion mode, the average model is given by

L% = (1 u)v+ UuE;
dv . P
Ca =1 wi v (6.1)

wherei > 0 is the current through the inductorL, v > 0O the voltage across the
capacitor C, P 0 the power extracted by the CPL,E > 0 is the input voltage
and u 2 [0;1] is the converter's duty ratio, which is the control signal.

Some simple calculations show that the assignable equilibrium set is given by

E== (;v)2R?:i P \%+é =0;v>0 : (6.2)

6.2.2 Control problem formulation
Consider the system (6.1) verifying the following conditions.

Assumption 6.1. The power loadP is unknownbut the parametersL;C and E
are known and xed.

Assumption 6.2. The state (j; V) is available for measurement.

Fix a desired output voltage-, > 0 and compute the associated assignable equilib-
rium point (i-; Vv,) 2 E. Design a static state-feedback control law with the following
features.

(F1) (i»;v-) is an asymptotically stable equilibrium of the closed-loop, with a well-
de ned region of attraction.

1The reader is referred to the introduction of [112] for a detailed explanation on average models
of power converters in general.
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(F2) It is possible to de ne a subset , in the positive orthant of R?, which is
positively-invariant and inside the region of attraction of the equilibrium. That
is, a set inside the positive orthant verifying

[((@:vE)2 ) ()2 8t 0]
im (10 V(D) = (i2iv2):

To simplify the notation, and without loss of generality, a normalized model of
the system is to be used. This normalized form is obtained through the change of
coordinates

X1 =

X = 2V; (6.3)

and doing thetime scalechange = pt—T that yields the model

x1= (1 uxz+u

D
Xo=(1 u)xy — (6.4)
X2
where r
P L.
E2 C’

Also, (9 denotes di() and all signals are expressed in the new time scale The
assignable equilibrium se€ in the coordinatesx is given by

E = x2R%: xq XE D=0; x,>0 (6.5)
2
Notice that, under Assumptions 6.1 and 6.2, the control problem is translated
into the design of a state feedback for the system (6.4), with unknowd, such that
a givenx-, 2 E, is asymptotically stable.
It is important to recall that the signal of interest is the output voltage v, there-
fore, for the xed x», > 0, the x;» > 0 is de ned via

X172 = R + D: (66)
X272
Remark 6.1. As indicated by Assumption 6.1, the value for the input voltagee is
assumed to be known and xed. A non-trivial extension of the present work would
imply the relaxation of this assumption. It is worth mentioning that this problem
has been addressed in [64] and [113] but for the casestaindard impedance loads

6.2.3 Stability analysis of the systems zero dynamics

The design of a stabilizing controller for (6.4) is complicated by the fact that, as
shown in the proposition below, its zero dynamics with respect to both states is
unstable This means that, if the controller injects high gain, the closed-loop system
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will be unstablégas it stems from the fact that the poles will move towards the un-
stable zeros. This situation hampers the design of high performance PD controllers,
which require high proportional gains to speed up the transients. See Section 6.5
for an illustration of this fact.

Proposition 6.1. Consider the system (6.4) and an assignable equilibriurs 2 E;.
The zero dynamics with respect to the outputx; X3, Or X X, are unstable.
Proof Fixing x; = X3, and using the rst equation in (6.4), it follows that

X2 )
X2+1’

which substituted in the second equation of (6.4) yields the zero dynamics

D

m(xz X22) =1 S(X2): (6.7)

)SZZ

The slope ofs(x,) evaluated atx, = X, gives

D

SAX2)jxp=x0 = mi

Sincex,, > 0, this is a positive number proving that the equilibriumx,, of the
dynamics (6.7) is unstable|as claimed by the proposition.

Analogously, by xing X, = X», and using the second equation of (6.4) the expression

D

u=1 o (6.8)
is obtained, which substituted in the rst equation of (6.4) yields
x3=1 X1z D = W(Xq): (6.9)
X1

Proceeding as done for the case above, it follows that

X172 D .
X%

WO(Xl)jXF X12 —

The proof is completed noting from (6.5) thatx,, = D(1 + %) > D and the slope
IS, again, positive.

The proof that the zero dynamics of (6.4) with respect tok; X3, iS unstable
invalidates the stability claim made in Section IV of [60]. In that paper, a standard
PBC is designed XxingX; = Xj». It is well-known [83] that this kind of controller
implements an inversion of the systems zero dynamics, therefore the controller will
be unstable if the zero dynamics is unstable, which is the case of the PBC of [60].
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6.3 |IDA-PBC design

In this section, the IDA-PBC approach is proposed to stabilize the buck-boost con-
verter feeding a CPL by assuming that the power of the load), is known. This
condition is later relaxed in Proposition 6.4, where an estimator dd is added to
the IDA-PBC.

To make this chapter self-contained the main result of the IDA-PBC methodology
and its proof are presented next. For more details on IDA-PBC the reader is referred
to [81].

Proposition 6.2. Consider the nonlinear system
x = f(x)+ g(x)u (6.10)
with state x 2 R" and controlu 2 R™ and a desired operating point
X,2fx2 R": ¢’ (X)f (x)=0g;

whereg’ (x) is a full rank left annihilator of g(x). Fix the target dynamics as

X = Fg(X)r Hq(x); (6.11)
wherer Hy(x) = 4% ~ with the function Hq(x) a solution of the PDE
g’ (X)[f (x)  Fa()r Ha(x)] = 0; (6.12)
verifying
X, =arg minf Hq(Xx)g; (6.13)

and the matrix Fq4(x) is such that
Fq (X)+ Fy4(x) < 0; 8x: (6.14)

Then, the system (6.10) in closed-loop with

u(x) :=[g” (x)g()] *g” CAIFa()r Ha(x)  f(X)] (6.15)
has an asymptotically stable equilibrium atx, with strict Lyapunov function Hy4(x).
g (x)

Proof From the fact that the n  n matrix is full rank, the following

97 (x)
equivalence holds.

f(x)+ g(xX)u(x) = Fg(x)r Hg(x) , (6.12); (6.15).

Hence, the closed-loop is given by (6.11). Now, (6.13) ensukgx) is positive def-
inite (with respect to x,). Computing the derivative of Hq4(x) along the trajectories
of (6.11) and invoking (6.14) it follows that

Hqa = (r Ha(x))” Fa()r Hq(x) < 0; 8x 6 X

and, therefore,H4(x) is a strict Lyapunov function for the closed-loop system, com-
pleting the proof.

The next proposition is a direct application of IDA-PBC that provides a solution
to considered problem.
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Proposition 6.3. Consider the system (6.4) under Assumption 6.2. Further assume
that D is knownand satis es the bounds
2

0<D< popZ—: (6.16)
21 + Xoo

Fix X2, > 0 and computex;, > 0 from equation (6.6). De ne the IDA-PBC

1
u= —(uy + up); (6.17)
Uo
where
U= Xi(x2+1)? I+ x5 %
U= 2X5+ X5 XiXo 2X2+ X3 Kki(2x2+1) 2 ko + X5 + X3
X 2) D(xe*+1) 2G+x3+Xp ; 1 (6.18)
p_ 4 5 5 X1
U= 2DXiXz 2x3+ X3(2x, + 1)arctanh @qizA :
X3+ 2

Kk, is a tuning gain satisfying

) : b

> .
ky > maxt 4D2(xzp+1)2 X35 2D2(x22+1) 9 (6.19)
X292 X322

with the constants a; and ky de ned in Appendix 6.E, andk; is a constant de ned
in Appendix 6.F.
Then, the following claims hold true.

P1: X, is an asymptotically stable equilibrium of the closed-loop system, with Lya-
punov function

1 P_ P
Hq(x) = 5 Xo¥ 2D arctan -2+
0 1

D arctanh @A

X

NN

2
X1+
a
g +

24 %5

k1
2

M)

(x3 + X5 + k)2 (6.20)
1 2 2 . .

P2: There exists a su ciently small positive constantc such that the sublevel set
of the function Hy(x)

« = TX2 R%: Hy(x) cg; (6.21)

is strictly contained in the positive orthant of R? , being hence an estimate
of the region of attraction. That is, for all x(0) 2 , it follows that x(t)
x;8t 0y and limy;  X(t) = Xo.

Proof. See Appendix 6.A.
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6.4 Adaptive IDA-PBC Using an Immersion and
Invariance Power Estimator

In this section, the case of unknown poweD is considered and an estimator of this
parameter, based on the 1&I technique [8], is presented.

Proposition 6.4. Consider the model (6.4), under Assumptions 6.1 and 6.2, in
closed-loop with an adaptive version of the control (6.17), which is de ned as

1 .
U= (Ut W)y g (6.22)
Uo

where ug, u; and u, are de ned in (6.18) and Iﬁ(t) is an on-line estimate ofD,
generated with the I&I estimator

1
D= §x§+D.; (6.23)
1
Dy = x1x2(1 u)+ > ’x5 Dy; (6.24)

where > 0 is a free parameter. Then, there existel"" such that for all k; > k "
the overall system has armasymptotically stableequilibrium at (x; D) = (x»;D) .
Moreover, for all initial conditions of the closed-loop system and aD, (0), then

D(t) = e 'D(0); (6.25)

whereD := D D is the parameter estimation error.
Proof. See Appendix 6.B.

Remark 6.2. The experimental implementation of the proposed controller, de-
scribed by egs. (6.17) and (6.22), requires an Iinitialisation stage that will ramp-up
the output voltage to a neighbourhood of the input voltage. Nonetheless, this is a
very common practice in many applications.

6.5 Simulation Results

In this section the performance of the proposed adaptive IDA-PBC is illustrated via
some computer simulations. Moreover, its transient behavior is compared with the
one of a PD controller that has been designed adopting the classical linearization
technique.

In simulations, the boost mode and buck mode are tested under the proposed
IDA-PBC, respectively. The system parameters of the boost mode are given in [60],
which read asP =61:25W,C =500 F,L =470 H,E=10V, v» =40 V. The
desired equilibrium is xed asx», = (0:7423 4): Additionally, the system parameters
of the buck mode are chosen @88 =6 W, E =25V, v, = 15 V and the desired
equilibrium is xed as x, = (0:01489 0:6). For simplicity, only the scaled system
(6.4) is simulated; however, depending on the context, the plots are shown either
for x or for the original coordinates {; v)|recalling that they are simply related by
the scaling factors given in (6.3).
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6.5.1 PD controller

To underscore the limitations of the PD controller and the di culties related with
its tuning, the local stability analysis of such a controller is presented. From (6.4),
the error dynamics is obtained as

= (1 e UW)(e+ Xp)+ e+ U
D .
€+ Xp

=1 e U)(er+ X)

with error functions
€1 = X1 X127, €= X2 X272, € = U Uop;

and u, ;= X2 A standard PD controller for the error dynamics is given by

1+ X207

e = Kpér + kgey; (6.26)

wherekp; kg are tuning gains. Notice that, for the computation ofxs,, the imple-
mentation of this controller requires the knowledge ob. The Jacobian matrix of
the closed-loop systeme = F (e), evaluated at the equilibrium point, is given by

I e,F1(€) 1 & Fi(€)

J:
r 81F2(e) r ezFZ(e)
" e=0 #
_ Kp(1+ X22) ka+ KaXzo 1>
= 1 Dkp(1+ X22) D (_ 1+ Kkgx22(1+ X22)) )
1+X27 X272 Xg?
wherer ¢ Fj(e) := @JF—S’). The matrix J is Hurwitz if and only if its trace is negative

and its determinant is positive, which are given by

D .
X3,

1(3)= Kyl + X)) KD+ D)+

D 1
detJ) = ky— kgt ——:
W=, 97 Gr1?
De ning the positive constants
X292 1
m, = = b= —
D 1
m, = —; b= ——:
? X5, & (1+ X20)?

The trace-determinant stability conditions can be written as the two-sided in-
equality
M2kp + 0 > Kg > mky + by; (6.27)
which is a conic section in the plan&y k,, that reveals the con icting role of the
two gains. Notice that the extracted powerD enters in the rst slope m; in the
denominator, while it appears in the nominator inm,|rendering harder the gain
tuning task regarding this uncertain parameter.
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Figure 6.2: Phase plot of the system with the IDA-PBC K; = 0:01) under boost
mode, three sublevel sets, and trajectories (red) for di erent initial conditions.

6.5.2 [IDA-PBC vs PD: Phase plots and transient response

The state-space of the closed-loop system, both with the non-adaptive IDA-PBC
(6.4) and with PD controller (6.26), is a subset of th&R?. Then, it is possible to get
the global picture of the behavior of these controllers by drawing the phase plot in
both cases.

Boost mode operation:  In Fig. 6.2 is shown the phase plot of the closed-loop sys-
tem under the designed IDA-PBC, where a particular value of the design parameter
k; has been taken. In the same gure, some trajectories for di erent initial con-
ditions are also shown and three sublevel sets2|which are positively-invariant.
The selectedk; satisfy (6.19) since, for this cases; > maxf 0:1208  0.058. It
can be seen that the state trajectories for initial conditions starting in , remain
there and converge to the desired equilibrium point,, marked in the plot as a blue
point. Moreover, the phase portrait gives an idea of the region of attraction of this
equilibrium. Clearly, the latter does not cover whole positive orthant oR?. Indeed,

it is possible to show that the closed-loop vector eld has another equilibrium in the
positive orthant of R? that corresponds to a saddle point, which is illustrated as a
red point in the same plot.

Buck mode operation:  Fig. 6.3 shows the phase plot of the system in a buck mode
operation, under the proposed IDA-PBC controller. The the control parametek,

is chosen to satisfy inequality (6.19). It can be concluded from this and the previous
gure that the designed controller has a good performance in both modes of the
buck-boost converter.

2see equation (6.21)
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Figure 6.3: Phase portrait of the system with the IDA-PBC k; = 0:01) under buck
mode, three sublevel sets, and trajectories (red) for di erent initial conditions.

Buck mode (PD controller) In Fig. 6.4 is presented the phase plot of the system
in closed-loop with the PD controller of equation (6.26). The controller's parameters
are chosen ak, = 0:4,kg = 1.5, which satisfy the condition (6.27), numerically
given in this scenario by

0:03%k, +0:04> k4 > 6:735&, + 0:0588

Only those trajectories starting very close to the equilibrium remain in the positive
orthant of R? and converge tax,. Compared with Fig. 6.2, the IDA-PBC provides a
much bigger region of attraction and, moreover, gives explicit estimates of it. Other
values for the gainsk, and ky have been tried yielding very similar inadmissible
behaviors and are hence not reported here.
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Figure 6.4: Phase portrait of the system with a PD controller.

Transient response comparison:  Considering once again the boost mode, in Fig.
6.5 the transient responses of the output voltage and the duty ratio u under the
IDA-PBC and the PD controller, taking the same initial condition ofx(0) = (0 :4; 3:9)
are presented. The control gains ark; = 0:01 for the former andk, = 0:4;kq =

1.5 for the latter. It can be observed that the IDA-PBC has a faster transient
performance with a smaller control signal.

Figure 6.5: Response curves of DC-DC buck-boost converter with a CPL for the
IDA-PBC and the PD controller.
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6.5.3 Adaptive IDA-PBC with time-varying D

For the boost mode, Fig. 6.6 shows the proles of the output voltage and the
inductor current for the adaptive IDA-PBC|for di erent values of the control gain

k, and adaptation gain = 1|in the face of step changes in the extracted power
D. It is seen that increasing the control gairk,; reduces the convergence time of
the output voltage. It is also shown that the output voltage recovers very fast from
the variations of the powerD, always converging to the desired equilibrium. This
is due to the fact that, as predicted by the theory, the power estimate converges|
exponentially fast|to the true value independently of the control signal. It should
be remarked that the PD controller becomes unstable in this scenario.

Figure 6.6: Response curves for the adaptive IDA-PBC with = 1 to changes in the
power D: (a) output voltage|with (b) and (c) zooms for itjand (d) the inductor
current.

In Fig. 6.7 the step changes in the poweD and the estimatel) for di erent
values of the adaptation gain, with the initial condition (0) = D(0), are shown.
As predicted by the theory, for a larger , the speed of convergence of the estimator
is faster. Notice, however, that in the selection of, there is a tradeo between
convergence speed and noise sensitivity.
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Figure 6.7: Transient performance of the estimat® under step changes of the
parameterD for various adaptation gains and a zoom of the rst step.

6.6 Summary

The challenging problem of regulation of the output voltage of a buck-boost con-
verter supplying electric energy to a CPL with unknown power has been addressed
in this chapter. First, assuming the power is known, an IDA-PBC that renders a
desired equilibrium point asymptotically stable has been proposed. Subsequently,
an on-line 1&l estimator with global convergence property has been presented to
renders the scheme adaptive, preserving the asymptotic stability property. It has
also been illustrated the performance limitations of the classical PD controller stem-
ming from the fact that, due to the presence of the CPL, the system is non-minimum
phase. Some realistic simulations have been provided to con rm the e ectiveness of
the proposed method.

Technical Appendices of the Chapter
6.A Proof of Proposition 6.3

Proof of Claim P1: It is shown rst that the control (6.17) can be derived using the
IDA-PBC method of Proposition 6.2.
First, assign the matrix Fy4 as

X2 2X2
— X Xo+1 .
Fd(X) th 2X2:L X1 ’
X2+1 (x2+1) 2

that, for x in the positive orthant of R?, satis es the condition (6.14)3 Now, observe
that the system (6.4) can be rewritten in the form (6.10), with

f= % 5 og= e

X1 X3

31t is well-known [81] that a key step for the successful application of the method is a suitable
selection of this matrix, which is usually guided by the study of the solvability of the PDE (6.12).
See [44] for some guidelines for its selection in this example.
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The left annihilator of g(x) is then g’ (x) := [ X1 X, + 1]. It follows that the PDE
(6.12) can be written explicitly as

D
Xol x,Ha(X) +2X1r x,Hg(X)= D x1+ X—: (6.28)
2

Using the symbolic language Mathematica, the solution of the PDE (6.28) is com-
puted as

1 p_ b
Hq(x) = 5 Xt 2D arctan 24
0 1

D arctanh @A

X

x
NN

2
1+

M)

X2
q O

2 X2+ %

2
where () is any function with argument x2 + % , Which is selected as

Ky

(2):= 7(Z+ k2)?;

with k; and k; arbitrary constants.

The existence of constant&; and k, guaranteeing thatx- is a critical point of Hy
and that, furthermore, is a local minimum of it, are veri ed next.

Evaluate the gradient ofHy(x), shown in Appendix 6.C, at the equilibriumx-*
and substitute k, as presented in Appendix 6.F, which results im Hgj,_, = 0,
implying that x- is a critical point of Hyg. '

Now, a su cient condition for x», to be a local minimum ofHy, is that

M = r 2Hgjx=x, > O
Beingr 2Hq a2 2 real matrix,® the above condition is equivalent to
my; > 0; det(M) > 0O;

where my; is the (1,1) entry of M. Regarding these expressions, the following
equivalences hold.

4D2 (Xz? + 1) 2
X5,
2D2 (XZ? + 1)
X3
27?

Mi1 = 8o+ Ki

X4
detM) = by + k; =2

where a; and by are real constants de ned in Appendix 6.E. Notice that both ex-
pressions are linear with respect t&; and that, furthermore, the coe cients of k;
are positive if
X2

2?

0<Dc< = :
2 1+ X

“Recall equation (6.6).
SFor completeness, the entries of 2Hq4 are included in Appendix 6.D.
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Consequently,M > 0 if and only if the latter inequality on D, and

o by
S .
ky > maxi AD2(xppt1)2 i, 2D2(xpe1) O
X22 X229

my; > 0 N det(M) > 0

are satis ed simultaneously, which hold by assumption. The proof is completed
showing that the IDA-PBC (6.17) results replacing the data in (6.15).

Proof of Claim P2: It has been shown thatHy(x) has a positive de nite Hessian
matrix at X, therefore it is locallyconvex Then, for su ciently small c, the sublevel
set  denedin (6.21) is bounded and strictly contained in the positive orthant of
R?. The proof is completed recalling that sublevel sets of strict Lyapunov functions
are inside the region of attraction of the equilibrium.

6.B Proof of Proposition 6.4

Computing the time-derivative of the estimation error,D, along the trajectories of
(6.4), and using the expression (6.23), it follows that
= xx+Dy
= XX u+ D+ Dy
Substituting (6.24) in the last equation yields

1
>= D+§2x§ D,

= D”
from which (6.25) follows immediately.

To prove the asymptotic stability of (x; D) = ( x»; D), the adaptive controller (6.22)
is written as

1 .
0:= —(Ur+ U)jp p:
Uo
Then, the following holds
0= ujD (exact) + (X; D);

whereujp exacty denotes the controller (6.17). That is, the controller that assumes
an exact knowledge oD is recovered, plus an additive disturbance(x; D); the
mapping can be proved to satisfy (x; 0) = 0.

Invoking the proof of Proposition 6.3, the closed-loop system is now a cascaded
system of the form

Fa(x)r Ha(x) + g(x) (x; D;ky)
D;

X
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where

is the systems input matrix. The signalD(t) tends to zero exponentially fast for all

initial conditions, and for su ciently large ki, i.e., such that (6.19) is satis ed, the

system above withD = 0 is asymptotically stable. Invoking well-known results of
asymptotic stability of cascaded systemse.g, Proposition 4.1 of [101], the proof of
(local) asymptotic stability is completed.

6.C Explicit form of r Hgy

D(x>+1
M xoHa = Kixs 2 ko + x§ + X3 %
0 it
P 2Dx ; arctanh @rx—lizA
X3+ 2

(2 + x3) >

r . Hy= ————————= + kX5 + kyx5x, + 2k kox —
Xz d x3 + 2x3x, 2012 1112 1h2%z 5

P 2Dx, arctanh @21 A

X

NN

2
X1t

(23 + x3) >

M)

98



Chapter 6. Voltage Control of a Buck-Boost Converter

6.D Components of the Hessian matrix ~ r 2Hgq

0 1
6" 2D arctanh @2 A x2
x2+ 72

2 — 2
ufemdled oy =

p— 2
2D @" 1 " xlg 372A X1
g

2
@G+x932 1 4,

4D (X2 + 1) X1
@3+,

+ky X342 x2+ ks
1

P 2D arctanh @-—x2__A

2 2\ 3=
(2x{ + x3) 32
DX »X?2
r X1X2Hd = p ) 271 5 + 2k1X2X1
5 2 X = 2 2\ 3= X
2 xi+ F FP(2x{+x3)%7 1 _Tx2+li2
O 1 1 2
P~ @ A
3 2D arctanh LA XX
X
xi+ £ D 2DX» (X2 + 1)
2 2\ 5=2 2 7t 2 2\ 2
(2X1 + X3) 2X7 + X3 (2x1 + X3)
2 o= kox? + Dx1 D (x2 +1) (2x§ +3x3) X3
rx,Md = KiXj 3 2 3 2w ) 2
X35+ 2X9X> (X3 + 2X5X2)

Dx3x4

pP- 2 . 2

202 X2+ 2 3+ x3)F2 1
o 7

p _
—2D arctanh @;X_lizA

24 %2
X1t 3

3
+ —k1X2 + 2k1k2 + —
N b

3° 2D arctanh @1 A x32

2, %2
Xt 3

222G+ x5
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6.E Values of the constants ag and .

3
X2s

— 0 0q .
ao - (2D2(X25+1) 2"')(‘215)3 (aO * a09 '
8= 2D%(Xas+1) "+ Xzs 2D% (xos + 1) (3Xas +4) + X35

r.
p— 2 2, ¢4 D i+1
a’= 6 2D3Xps(Xas +1) 2 &Xziﬁmamtanh @: X2s _
2s

1 X2s
2 = 24 —<£S
D X2s +1 + 2

_ X3
b) - Z(Dz(st+22I.)2+X‘2‘S)3 (tg + b89
= 4D*(Xos +1) 2(Xos (Xos +5) +5) 2D 2 (3Xys + 4) X

bpC= 3p 2DX s Xas 2D2(Xgs + 1)
r

1

- 1

2 2, y4 D —/—+1
2D (xZSX+1) *X2s arctanh @: X2s _ A + ng
2s

1 X25
2 = 24 —£S
D X2s +1 * 2

6.F Value of the constant k,

o= 1 (K% KZY
2

where 0 2 2 2 4 2
p — 2D 2 1) 2 4 D _1 +1
kgoz 2Dx g,) M arctanh @r X22 X A
’ X232 1 X22
D2 —=—+1 2+-22
X22 2

kOL  2D2(xp +1) 2+ x4, 4D*Ky (Xop + 1) *

+4D2k1 (Xz? + 1) 2X‘21? + Xg? klxg? 1
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Chapter 7

Damping Injection on a
Small-scale, DC Power System

Synopsis This chapter explores a nonlinear, adaptive controller aimed at in-
creasing the stability margin of a direct-current (DC), small-scale, electrical net-
work containing an unknown constant power load. Due to its negative incremental
impedance, this load reduces the e ective damping of the network, which may lead
to voltage oscillations and even to voltage collapse. To overcome this drawback this
chapter considers the incorporation of a controlled DC-DC power converter in par-
allel with the load. The design of the control law for the converter is particularly
challenging due to the existence of states that are di cult to measure in a practical
context, and due to the presence of unknown parameters. To tackle these obstacles,
a standard input-output linearization stage, in combination with a suitably tailored
adaptive observer, is proposed. The good performance of the controller is evaluated
through experiments on a small-scale network.

7.1 Introduction

Various techniques have been explored for the stabilization of DC networks with
CPLsJa survey may be found in [109]. These techniques are categorized into pas-
sive and active damping methods: the former are based on open-loop hardware al-
terations, whereas the latter imply the modi cation of existing|or added|control
loops. In an active damping strategy the control loops can be modied at three
di erent network's positions [109]: at the source's side, at the load's side, and at a
midpoint between them. In the present chapter, the interest is in using the latter
approach, which was rstly explored in [19], [129], and [55], for the stabilization of
a small-scale network with a single CPL. In these references the network's stabi-
lization is achieved by adding acontrolled power converter in parallel with the load
and then designing a suitable feedback control law for it: in [19] the converter is
modeled as a simple controlled current source and a linear control law is designed to
stabilize the overall network; a similar approach, but using a full model for the power
converter, is used in [129]. Their stabilization result is based on the linearization of
the network's dynamics. Lastly, in [55] a large signal stability analysis, but using
approximate techniques, such as the Takagi-Sugeno fuzzy model, is carried out to
evaluate the performance of a linear controller.

The main contribution of this chapter is described next. Following [19] and [129],
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the stabilization problem for a small-scale DC network supplying electrical energy
to a CPL is studied here. First, the network is augmented by placing a controlled
power converter between the load and the source. Then, for the converter's con-
troller design, instead of relying on linear-feedback techniques, this chapter proposes
an adaptive observer-based nonlinear control law that provably achieves overall net-
work's stabilization. The control design is particularly challenging due to the ex-
istence of unmeasured states|the current of the DC network|and the unknown
power of the CPL. The construction of the proposed controller is based on the use
of standardinput-output linearization to which a suitably tailored adaptive observer

Is added; its good performance is evaluated via experiments on a small-scale DC
network.

The stabilization problem addressed here, as well as the proposed controller
topology, have previously been studied in [66], wherefall state-feedbaclkadaptive
passivity-based control has been proposed. As discussed in Subsection 7.4.1, besides
the impractical requirement of full state measurement, the approach adopted in
that paper su ers from signi cant energy e ciency drawbacks, which renders the
proposed controller design practically unfeasible. Both limitations are overcome in
this chapter.

The rest of the chapter is structured as follows. In Section 7.2 the model of
the system under study is presented and its stability properties are summarized.
The proposed controller con guration, adopted from [19] and [129], is presented in
Section 7.3. The main contributions of the chapter are developed in Section 7.4 and
some preliminary realistic simulations are shown in Section 7.5. The results of two
physical experimental are reported in Section 7.6 and the chapter is wrapped-up
with a brief summary in Section 7.7.

7.2 Problem Formulation

7.2.1 Description of the system without the shunt damper

The electrical circuit diagram of the network under study is shown in Fig. 7.1.
It represents a simpli ed model of a DC power system and has been used in the
literature, e.g, in [129], [79] and [127], to study the stability problems associated
with CPLs. It is composed of a DC voltage source supplying energy to an instan-
taneous CPL and the transmission line is simply represented by the lossy inductor
L; > 0. The CPL is assumed to be connected through the bus capacitG; > 0.
The network's dynamics are described by

Lixs= rixg Xo+ Ej
P 7.1
Cixo=X1 —; (7.1)
X2

wherex; and X, denote the current throughL; and the voltage acros<, respec-
tively. The constant parameter P corresponds to the power extracted from, or
injected to, the network by the CPL, being positive in the former case and negative
in the latter|in the sequel, only the case P 0 is studied. The state space for this
system is de ned as the set

f(X1;X2) 2 R?: X, > 0g:
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Figure 7.1: A DC source supplying power to an instantaneous CPL.

7.2.2 Equilibrium analysis

From [66], the properties of this network are enlisted as follows.

P1 The system (7.1) has two real equilibria if and only if

E2

E2 4P o, P —:
1 4r1

(7.2)

P2 One equilibrium corresponds to a high voltage/low current characteristic,
which is stable only if
E2C1L1r1

L+ C? 73

wheneverC; < 4.
1
P3 If Cy > 4—}; the strict satisfaction of (7.2) is su cient for asymptotic stability
1
of the equilibrium in P2.

Notice that if P is negative,i.e., if the load behaves as a constant powesource
then the expressions (7.2) and (7.3) are simultaneously satis ed; consequently, this
scenario poses no treat regarding voltage collapse nor network's instability, hence
the focus on the cas® 0.

7.2.3 Objectives and methodology

To introduce and support the methodology used in the chapter, the following re-
marks are enlisted; see [66].

R1 Observe from P2 that if the capacitanc&, is not big enough then, in order to
maintain the system's stability, the power extraction from the CPL must be
strictly smaller than the upper bound for existence of equilibria given in (7.3).

R2 P3 suggests a passive method to enlarge the domain of value® dbr which
stability is ensured. It consists in increasing the e ective capacitanc€,,
which can be achieved with theopen-loopparallel interconnection of a suitable
capacitor and the CPL. Some disadvantages of this approach are reviewed in
[19, Section II1.A].

In view of these remarks thecontrol objectivesare speci ed as follows.
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O1 Regulate the voltagex, around a constant value.
02 Relax the upper bound forP established in (7.3).
O3 Achieve these objectives without the knowledge &f.

Following the work of [19] and [129], to achieve these objectives a power converter
is connected in parallel with the CPL and design a control strategy that stabilizes
the overall network to a desired equilibrium point. The detailed description of the
augmented circuit is carried out in the next section and the presentation of the
control law|which is the main contribution of the chapter|is done in Section 7.4.

7.3 Augmented Circuit Model

As proposed in [19] and [129], the network of Fig. 7.1 is augmented by adding a
controlled DC-DC power converter in parallel with the load, which results in the
circuit shown in Fig. 7.2. The converter, which in the sequel is referred to afunt
damper, is composed of two complementary switchesand (1 u), a lossy inductor

L, > 0, a capacitorC, > 0, and a resistorrz > 0; the latter models the losses
associated with the switching devices.

Figure 7.2: The network of Fig. 7.1 is augmented by adding a power converter in
parallel with the load.

The averaged dynamic model of the augmented system is given by

LiXs = riXy Xo+ E;
P
Cixo=X1 — Xs
X2 (7.4)
LoXz = Ta2X3 UXg4+ Xp;
Coxa= £ Xg+ uxg

rs

where x3 is the current through L,, X4 is the voltage acros<C,, and u 2 (0;1)|
which is the system's control variable|represents a duty cycle. The state space of
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the system is given as

X =fx2R*: x,> 0; x4> 0g:
It shall be underscored thatx,|being the current of a reduced model of the network|
IS not measurableand the powerP is unknown

For future reference, the system (7.4) is written in an input-a ne form,x = f (x) +
g(x)u, by de ning

3 2 3
X1 P X3 0
fF(x):= § A é; g9(x) := g x_é? (7.5)
Lo 3 Lo L2
()& &
r3/ Cs Co

the i-th entries of which are denoted a$; or g, respectively.

7.4 Main results

This section reports a nonlinear, adaptive, state-feedback controller that is such
that the augmented network of Fig. 7.2 complies with the control objectives de-
scribed in Subsection 7.2.3. Towards this end, rst the existence of equilibria of
(7.4) is analyzed and constraints, on the system's parameters, for their physical fea-
sibility are established. Secondly, under the assumption that; can be measured,
and the constant parameterP is known, a full-information input-output lineariza-
tion controller [48], that asymptotically stabilizes a speci ed equilibrium state, is
presented. Finally, this controller is complemented with an observer for; and an
on-line estimator for P |yielding an adaptive, state-feedback controller design.

7.4.1 Existence of equilibria

A pair (x;u) 2 X (0;1) is an equilibrium of (7.4) if and only if it belongs to the
set
E=f(x;uy2X R: f(xX)+ gxX)u=0g;

where the mappingd and g are given in (7.5). An important issue in the design is
to ensure that the power consumptionof the shunt damper is minimal. In order to
carry-out this analysis, it is convenient to parametrizex in terms of u, as follows.

Proposition 7.1. Consider the augmented circuit model (7.4). Fix & u< 1 as a
desired steady state duty cycle. Then the following conditions hold true.

Cl1l (x;u) 2 E if and only if
(P)=E*, 4Pry 1 O (7.6)

where
\1 = r3U2+ r{+ ro,; \2 = r3U2+ Il
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and h .
1 . p_p___|
X1= —— E(2+2ry) > (P);
2r11
1 PP .
Xz:fl[ > (P)+ E 3
|
NG (7.7)
X3= 57— —P—=—+E ;
2 2 |
P
X4=E —pL—P)+E
2 2

C2 The power dissipated at the shunt damper in steady stateég., the quantity

1
PL(P) = rox3+ r_X‘Z‘;
3

p—P F 2
—p(‘_—)+E
2

r
x

w
c

PN

attains a maximum atP =0 ifand only if ( P) > 0.

Proof. The proof of the rst claim follows from straightforward algebraic calcula-

tions. For the second claim consider |

p L
dP.(P) _ 2rqrsu {P) +E
- < M M <—

dP 1 (P) 2

which is strictly negative if and only if ( P) > 0, implying that P, (P) is a strictly
decreasing function oP. Hence, it attains a maximum atP = 0.

In [66], the equilibria (x; u) 2 E are parametrized in terms of,, not in terms of
u, as follows

E X2
X1 = :
1 "
Pri EXp+ X3
xg= 1 =Xt X, (7.8)
Xz
1P
Xa= —— I3 1(X2;P) 2(x2; P);

rXo
where

1(X2;P) = [Pri+ xo( E + X2)];
2(X2;P) 1= Prara+ Xo[ Era+(ry+ ra)xsf:

Then, the equilibrium x, associated tox, = % Is singled out for stabilization.
This choice allows the stable operation of the network in a wide range of values of
P. Unfortunately, the steady-state shunt-damper's power dissipation is given in this
case byE?=4r, P, which implies a very low energetic e ciency wherP is small.

The parametrization proposed in equation (7.7) implies a more involved alge-
braic expression for the damper's power losses, nonetheless, with an appropriate
selection ofu these losses can be made considerable inferior with respect to the ap-
proach adopted in [66]. The e ectiveness of this choice is illustrated in the numerical
experiments presented in Section 7.6.
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7.4.2 Design of a full information stabilizing control law

This subsection presents a static, state-feedback control law that renders asymptot-
ically stable the equilibrium point (7.7). For its design it is assumed thaP 0 is
knownand u 2 (0;1) is xed so (7.6) holds.

Following the ideas presented in [24, Section 1V], a new input is introduced:

W = XjaUj;

which allows rewriting the system (7.4) in the cascade form shown in Fig 7.3, where

8
< Ll)il = rX; X+ E
13 .. C1>$2 = X1 XP—2 X3 (79)
" Loxz = MoXz+ Xo Wi
and
iCoxa = ()Xat SWXE (7.10)

Figure 7.3: Block diagram for the cascaded interconnection between the subsystems
(7.9) and (7.10).

The next proposition presents a control law that ensures voltage regulation and
exponential stability of an equilibrium point of 3.

Proposition 7.2. Fix the constant desired voltagex, > 0. Consider the system
(7.9) in closed-loop with the static-state feedback

W(X1; X2; X3, P) = h LoCi[ (X2 Xxp)+ f z(xllgxz;x3)]

o (7.11)
+ X2 IaXg Lo fi(X1;X2)+ x—zzfz(xl;xzxs) ;

where > 0 and > 0 are design parameters, and the mappinds are de ned in
(7.5).
Then the output voltage error

Y= X X, (7.12)

veri es
y+ y+ vy =0; (7.13)

ensuring limy;  y(t) = 0 (exp.) Moreover, the equilibrium point (X1; X»; X3) de ned
in (7.8) is exponentially stable.

Proof. See Appendix 7.A at the end of the chapter.

The next proposition establishes the stability of the overall system.
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Proposition 7.3. Fix the constant desired voltagex, > 0. Consider the system
(7.9), (7.10) in closed-loop with the static-state feedback (7.11). Assume the sys-
tem’'s initial condition is su ciently close to the equilibrium x de ned in (7.8). Then,
Xq(t) > 0, for allt 0 and limy; x(t) = x, exponentially.

Proof. See Appendix 7.B at the end of the chapter.

As a direct application of Propositions 7.2 and 7.3, the full-information input-
output linearizing controller of the overall dynamics (7.4) is presented next.

Proposition 7.4. Consider the system (7.4) in closed-loop with the static state-
feedback control law
U= ZW(X1;Xz; X3; P); (7.14)

wherew is given in (7.11). Then,x 2 E is a locally, exponentially stable equilibrium
point of the closed-loop system.

7.4.3 Stabilization with unknown CPL power

An adaptive version of controller (7.14) is established now by adding abserverfor
X1 and an on-lineestimator for the constant parameterP, which are now assumed
to be unmeasured and unknown, respectively.

Proposition 7.5. Consider the system (7.1) and assume that, is positive and
belongs to the interval k3" ; x5'®]. De ne the adaptive observer

E Xo r
= — 22 I+ kP KiXoRi + KiXoXa:
Ll Ll Lll 1 1A2A1 1A2A3

@ = kP + koXoR1  koXoXs;
1 (7.15)
— 2.
Ri=q + éklclxz,
1
Iﬁ =G Eszlxg;
wherek; and k, are such that
M
<k 0;
xPxLy (7.16)

Ti(x2%)  2Ta(x3™) <kz < T1(x3™) + 2 To(x3™);

where

Ik 1L, +2r
Tl(l ) = l| ;Ll l;
19—
T2(| ) = L, > Ik 1Lqirg + r%:
Then

Jm jR,(1) - xa (1) =0;  lim Bt)= P;
exponentially.

Proof. See Appendix 7.C at the end of the chapter.
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The stability of the system (7.4) in closed-loop with an adaptive version of the
control law (7.14) is established next.

Proposition 7.6. Let k; and k, be such that (7.16) hold. Fixu and computex
from (7.7). De ne the adaptivecontrol law

u= iw(kl;xz;x; P); (7.17)

wherew is given in (7.11), andx}, P are generated by the adaptive observer (7.15).
Then, (x;%1;P) = (x;x1;P) is an asymptotically stable equilibrium point of the
overall system.

Proof. See Appendix 7.D at the end of the chapter.

Remark 7.1. A key extension with respect to the research done in [66] is the use of
an adaptive, observer-based feedback law, the implementation of which requires only
the measurement of the variablex, and x3, which is easy to obtain in a physical
setup.

Remark 7.2. The computation of the control law (7.11), (7.17) requires the knowl-
edge ofx,, which is dependent on the unknownP; see equation (7.7). In the
experiments reported in Section 7.6, the value of, is computed from the estimate
of P, i.e. P, discretely, not continuously in time. This approach is common in
hierarchical and supervisory control of AC and DC microgrids [42] and prevents
introducing x, to the controller if an overshoot of the time-varying signaP occurs,

it also simpli es the controller design.

Remark 7.3. Through direct, but lengthy, computations, it can be shown that the
condition (7.16) may be replaced by the conditions

8ri(xg™" + x|
(% xpm)2’ (7.18)
Ti(x3™)  2T(X5™) <Ko < T4 (XT®) + 2 To(x3™):

O<k;<

7.5 Numerical simulations

This sections reports two simulations that illustrate the good performance of the

proposed controller. The physical parameters of the system (7.4) are given in Table
7.1, and the parameters for the adaptive output-feedback controller of equation
(7.11), (7.15), (7.17) are selected as

2
=3 10" = 7 k, =10; k, = 25:

In all simulations a saturation function has been used to keep?2 (0; 1).

7.5.1 Simulation 1

The valueu = 0:5 is xed and the equilibrium point to be stabilizedx is computed
via (7.7) for P = 0. The initial condition has been xed at that equilibrium point.
Then, att = 3 s, a step change in the CPL power, from® =0 W to P =479 W, is
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introduced, this yields anew equilibrium point to be stabilized: Xjp=479. Addition-
ally, att = 6 s, the CPL is stepped down to 0 W once again. It should be pointed out
that P = 479 W still veri es the necessary and su cient condition for existence of
equilibria of the network without the shunt damper established in Subsection 7.2.2.
However, it is well above thenecessarybound for stability given in (7.3), which is
given by
EZC]_L 11
(Li+ Curd)?

Hence, without the shunt damper the equilibria are unstable.

=276:9 W:

Table 7.1: Parameters for the circuit in Fig. 7.2

ri =0:3 L,=850 H|C;=200 F|E =240V
rr=5m L,=100 H | C,=10mF | rz3=1k

Fig. 7.4 shows the time history of each component of the stateagainst their
equilibrium values, respectively; a zoom of these plots around the second transient is
shown in Fig. 7.5. Itis clear from these gures that fast convergence is achieved. In
Figs. 7.6 and 7.7 are plotted the control variablel. It can be seen from the gures
that, except from some peaks at the instants of power change where the saturation
enters into play, the control signal remains all the time within the admissible bounds.
The gures also show the errors in the state and parameter estimates, which converge
to zero very fast. Finally, the plots of the power consumption of the shunt damper,
i.e., the product P_ = Xx,X3, shows that the controller is energetically e cient.

7.5.2 Simulation 2

This simulation shows in detail the performance of the adaptive observer. The
simulation starts from the initial condition x(0) = Xjp-19, then, att =3 s, a large
step change in the CPL power, fronP =10 W to P =300 W, is introduced. Figs.
7.8 and 7.9 show the excellent performance of the state observer and the slightly
slower tracking of the power estimator.

7.6 Experimental validation

In order to investigate the practical feasibility of the proposed control scheme, an
experimental setup has been designed and built according to the electrical scheme
shown in Fig. 7.2. The test bench is composed of a DC voltage source Delta
Elektronika SM-52-AR-60, the passive components of the RLC circuit{, L, and
C,), a DC boost converter and a custom-designed and built CPL. The CPL has a
maximum allowed currentlox = 40A and a maximum power in steady state of
Pmax = 900 W. The physical setup of the experiments is shown in Fig. 7.10.

The measured parameters of the system are the same as in Table 7.1, except for
r, that in the physical setup isr; = 0:314 . The gains of the adaptive controller
are the same as in section 7.5.

It is underscored that the CPL has been designed to approximate an ideal alge-
braic behavior,i.e., with a much wider bandwidth than the expected dynamics of
the whole system. Particularly, in a LTspice simulation with an ideal DC voltage
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Figure 7.4: Time history of the components aft (blue curves) against their reference
values (in dashed red) for Simulation 1. Convergence is achieved despite the step
change in the CPL's power.

Figure 7.5: Zoom around the second transient of the plots in Fig. 7.4.
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Figure 7.6: Time history ofu, the power estimation errorP, the observer errorxr
and the power losse® = x, X3 (in blue) against their respective reference values
(in dashed red) for Simulation 1.

Figure 7.7: Zoom around the second transient of the plots in Fig. 7.6.
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Figure 7.8: Time history of Xy and P (in blue) against their respective reference
values, x; and P (in dashed red), in Simulation 2. Fast convergence is achieved
after the step change in the CPL's power.

Figure 7.9: Zoom around the transient, now of the estimation errors, of the plots in
Fig. 7.8.
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Figure 7.10: Experimental test bench. The DC voltage source is not shown here.

Table 7.2: Parameters of the experimental setup of Fig. 7.10.

r,=0:314 L,=850 H|C;=200 F|E=240V
rr=5m L,=100 H | C,=1:.0 mF r3=1k

source, the CPL settling time for a power step change ig = 7 s. In an exper-
imental test, with the CPL directly connected to the DC voltage source, the time
response to a power step change is under-damped, with an approximate settling time
of ts = 75 s . This change in the load dynamics stems from the non-ideal behavior
of the DC voltage source, particularly due to its controlled output impedance.

The adaptive control law of equation (7.17) has been discretized in time using
the bilinear transformation (trapezoidal integration) and implemented in a digital
signal processor (DSP) Tl TMS320F28379D using the automatic code generation
tools of Simulink?

7.6.1 Experiment 1: system without the shunt damper

The electrical system without shunt damper is tested rst; see Fig. 7.1. The ob-
jective of this experiment is twofold: (1) to analyze the maximum power that can
be demanded by the CPL before the system turns unstable and (2) to illustrate a
reduced region of attraction with respect to the closed-loop system.

Fig. 7.11 shows the response of the system without the shunt damper to a step
change of the load's power fron? = 250 W to P = 336 W. The behavior is highly
oscillatory, but stable contradicting the predicted necessarybound for stability that
is presented in (7.3), which reads aB < 2769 W. This contradiction is explained
due to the nite bandwidth of the real CPL.

In Fig. 7.12 the system response is shown for a step change of the CPL friens

1The algebraic loops that appear in the equations after the discretization in time have been
solved analytically before doing the automatic code generation.
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250 W to P = 338 W, where an unstable behavior is observedlt is concluded then
that the upper bound for the system's stability is within the interval [336338] W.

The unstable behavior of the system without the shunt damper to a power step
change fromP = 10W to P = 300 W can be observed in Fig. 7.13. Notice that
even if the load's power is lower than the necessary upper bound for stability, a
drastic load change can also destabilize the system. Clearly, in this scenario, the
former system's equilibrium lies outside the domain of attraction of the latter one.
This behavior is to be contrasted with respect to the operation with the controlled
shunt damper, which is discussed next.

Figure 7.11: System response to a step frolm=250W to P = 336 W without the
controlled shunt damper. The blue curve (above) corresponds to the voltagg; the
red curve (below), the currentx;.

2In all the unstable experiments the CPL stops,i.e., abruptly goes to zero, either because the
current goes outside of the operating range, which is [810] A, or because the voltage at the CPL
input terminals falls below the safety limit, which has been situated at a value considerably lower
than that corresponding to the maximum power (12 V).
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Figure 7.12: System response to a step from=250W to P = 338 W without the
controlled shunt damper. The blue curve (above) corresponds to the voltageg; the
red curve (below), the currentx;,.

Figure 7.13: System response to a step from=10W to P = 300 W without the
controlled shunt damper. The blue curve (above) corresponds to the voltagg; the
red curve (below), the currentx;.
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7.6.2 Experiment 2: system with the controlled shunt damper

The stable response of the system with the controlled shunt damper in the presence
of a step change in the CPL's power, fronP = 250W to P = 380W, is shown in
Fig. 7.14. Notice that the CPL power is stepped up to a value much bigger than
those reported forExperiment 1 yet the system is able to keep operating in a stable
manner, which implies a relaxation of the necessary bound for stability of the system
in without the shunt damper.

The system response to a CPL step change frof = 10W to P = 300W is
shown in Fig. 7.15, where a stable behavior is observed. By making a comparison
with the results reported in Fig. 7.13, it can be concluded that the domain of
attraction of the system with the controlled shunt damper has been successfully
increased with respect to its operation without the shunt damper.

To study the energetic e ciency of the proposed active damping scheme, Fig.
7.16 reports the measured power consumption of the shunt damper during its oper-
ation and in the presence of a step change in the CPL's power fradm= 10W to
P = 300W. Clearly, a low power consumption is evidenced. Before the change in
the CPL's power, when the system is in steady state, it can appreciated that the
power losses are nearly zero (approximately 4 W), these losses are due to the passive
components of the converter and the mosfets switching losses. During the rst 2 ms
of the transient, the average power is negative, that is, the shunt damper is injects
power to the system to stabilize it. After the transient the system reaches another
stable equilibrium and the average power losses of the damper return to a minimum.

Finally, from successive experiments with di erent power steps in the CPL, it
has been determined that the experimental limit for the stable operation of the
system with the controlled shunt damper is in the range [410, 420] W. This value
represents, approximately, the 90% of the range of power for existence of equilibrium
in the system, which from (7.2) reads a® < 4586 W.2 Clearly, the former value is
drastically superior with respect to the operation of the network without the shunt
damper.

SWithout taking into account the power needed to supply the operating losses of the boost
converter.
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Figure 7.14: System response to a step from = 250W to P = 380 W with the
controlled shunt damper. The blue curve (above) corresponds to the voltageg; the
red curve (below), the currentx;,.

Figure 7.15: System response to a step from = 10W to P = 300 W with the
controlled shunt damper. The blue curve (above) corresponds to the voltagg; the
red curve (below), the currentx;.
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Figure 7.16: Measured power consumption of the shunt damper (Bottom gure).
The closed-loop system is subject to a step change in the load's power filerns 10 W
to P =300W.

7.7  Summary

In this chapter, a nonlinear stabilization method for a DC small-scale power system
that supplies electric energy to a CPL has been explored. By adding a controlled
DC-DC power converter in parallel with the load and using standard input-output
linearization with a suitable tailored adaptive observer, a nonlinear adaptive control
law for the stabilization of the overall network has been proposed. Furthermore,
the proposed design permits the stable operation of the network for a wide range
of values of the CPL and is able to relax some necessary stability bounds that are
imposed if the system were to be operated without the shunt damper. Finally, the
good performance of the controller has been validated through experiments on a
real small-scale DC network.

Technical Appendices of the Chapter
7.A Proof of Proposition 7.2

From (7.9) a and (7.12) it follows that

1 P
=X, = — X — Xz = Fo(Xq1:X0:X3);
Y=Xo C, 1 %o 3 2(X1; X2; X3)
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and

2

o rxa xp+ E)

y=1F ;4 &(x1 o X3 O (7.19)
ﬁ( Xz + X2 W)

x

If w(Xy;Xz;X3) is substituted from equation (7.11) into equation (7.19), then (7.13)
is obtained, which clearly is an asymptotically stable system.

To show that the equilibrium (X1; X5; X3) is asymptotically stable, the zero dy-
namics of 12 with output y is analyzed, which is the dynamics of 2 restricted to
the set

Z = f(Xy;x2;%3): y=0 * y=0g

P
= fX1;X0;X3) 1 Xo= Xo N X3 = Xg X—g:
2

Restricting the dynamics ofx; to Z yields

Lixg= rixg X2+ E;j
= ri(Xs  Xp):
Therefore,x; ! x;. Now, in Z, it holds that x3 = x; )f’—z, hencexs! X; )f’—z = Xs.
7.B  Proof of Proposition 7.3
With the change of coordinates = %szﬁ, the system #is equivalent to
2
z= Z + WX3: (7.20)

rsCx

From Proposition 7.2, it follows that X3 is an exponentially stable equilibrium point
of 13 in closed-loop with (7.11). Then, the termwxs remains bounded and con-
verges, exponentially, to the valueuxsx,. The latter limit is computed from the
steady state expression

FoXz3 UXg+ Xo =0:
It follows trivially from equation (7.20) that

rsC, rsCx

z! > (wx3z) !

(UX4X3) :

at an exponential rate. Using the steady state expression

1
UXz —X4=0;
rs

it can be concluded that any solutionx, of # is positive for all time and converges
exponentially to x4 > 0 as long as it starts su ciently close toxg.
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7.C Proof of Proposition 7.5

The derivatives of the errorsxt:=%; X; and P := P P are given by
¥ = =X KiXoxt + KPP
Ls (7.21)
= kzp + k2X2X‘1:

To show that the origin of (7.21) is exponentially stable, consider then the Lyapunov
function candidate

1., 1
V= 22+ ZP?
217 3

and its derivative with respect tot, along the trajectories of (7.21), given by

L= %1% + PP
r
= 2 ko + kP
L1
kzpz + kzXzX‘lp

>
_ X1 X1 .
- P— M (XZ) P— y

where
-+ kixo 3(K1 + koxz) :

M (X2) =
(x2) %(kl"' koX2) ka

Clearly, V is a strict Lyapunov function if and only if M (xz) > 0. The latter is
satis ed if and only if

[—11 + k1X2 > 0;
1
detftM (x2)g = kz [—1 + KiXo Z(kl kox2)® > 0;
1

hold simultaneously. Through lengthy but direct computations, it can be veri ed
that these conditions hold|in the domain x; 2 [xJ"";x5®]| whenever (7.16) (or
(7.18)) hold. This concludes the proof.

7.D Proof of Proposition 7.6

Recall from the proof of Proposition 7.5 that the observer's error dynamics is given
by (7.21). On the other hand, it can be shown through lengthy (but straightforward)
computations that (7.4) in closed-loop with (7.17) has the form

W(X1; X2; X3; P)
X4

x= f(x)+ g(x) +g(x) (X; %1; P); (7.22)
where the mapping is such that (x; 0;0) = 0 for all x.

From Proposition 7.4 it follows that if 0 for all t, then x is an asymptotically
stable equilibrium of (7.22). Furthermore, Proposition 7.5 establishes that the origin
of the observer's error dynamics is exponentially stable. Consequently, invoking [102,
Proposition 4.1], it is concluded that §; x;; P) = ( x; 0; 0) is an asymptotically stable
equilibrium point of the overall system.
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Chapter 8

Conclusions

This thesis has explored di erent problems that emerge in the analysis and control
of electrical power systems with constant power loads. The novel contributions of
the present document, which are aimed at better understanding and possibly solve
these problems, are summarized in the following list.

For general multi-port linear AC networks with constant power loads, neces-
sary LMI-based conditions for the existence of a sinusoidal steady state regime
have been established. For one- or two-port networks and free active (or re-
active) power of the load's components, these conditions are also su cient.
Particularly, for single-port networks, the admissibility condition can be tested
directly from the data of the problem.

These results may be extended in two main directions: (i) establish if the
proposed LMI test is also su cient for existence of steady states, and (ii) if a
steady state exists, study its stability or attractivity properties.

For general models in modern and conventional AC and DC power systems, it
has been shown that their steady states satisfy a system of nonlinear algebraic
equations whose vector eld, when associated to an ODE, possesses properties
of monotonicity. It has been established that if these models do admit steady
states, then there is a distinguished one that dominates, component-wise, all
the other ones and that furthermore is asymptotically stable. An algorithm to
verify if the solutions of the ODE will converge to the distinguished equilibrium

or not has also been proposed. In the treated power system models, the latter
results imply the existence of a high-voltage steady state that is alsmltage
regular.

The analysis of diverse ODES' integration technique to identify e cient ways of
implementing the proposed numerical algorithm when dealing with large-scale
systems is an interesting path of future research.

A class of port-Hamiltonian systems, in which the control input directly acts

on the power balance equation, has been extensively investigated. These sys-
tems, coinedpower-controlled Hamiltonian systemshave been shown to be
shifted passive, as long as the trajectories remain in a clearly specied set.
The exhibited shifted passivity properties have been used to establish the sta-
bility of the intrinsically non zero equilibrium and to even provide an easy
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to compute domain of attraction of them, under some simplifying assump-
tions. The introduced framework has been applied to analyze the stability of
DC power systems with constant power loads that include general multi-port
networks and the synchronous generator.

As a line of further research, the design of simple, high-performance con-
trollers with guaranteed stability domains may be explored. In addition, the
more general case of state-dependent interconnection and dissipation matrices
[75], needs to be further investigated. Also the applicability of the methodol-
ogy to AC circuits with constant power loads and higher order models of the
synchronous generator [39] may be addressed.

The control problem of regulating the output voltage of a buck-boost converter
supplying electric energy to a CPL with unknown power has been addressed.
A control law designed following the IDA-PBC technique in combination of
an online estimator for the load power, has been presented. Moreover, per-
formance limitations of classical PD controller have also been reviewed. In
addition, the e ectiveness of the proposed control scheme has been veri ed
through realistic simulations.

The designed control law is of great algebraic complexity, which may stymie
its practical application, hence further research can be carried out to simplify
it. Furthermore, the design of a current observer to remove the need for its
measurement, which is an issue of practical interest, may also be investigated.

The nonlinear active dampingof a DC small-scale power system with a CPL
has been addressed. The proposed scheme considers the addition of a con-
trolled DC-DC power converter for which a nonlinear adaptive control law is
designed. The stable operation of the network for a wide range of values of
the CPL is guaranteed, and a clear extension of the CPL's operation range,
with respect to the open-loop case, is veri ed. Moreover, the performance of
the controller has been validated through experiments on a real small-scale
DC network.

Some directions of further research include: (i) computation of estimates of the
region of attraction, (ii) analyze the robustness against parameter uncertainty,
and (iii) extend the analysis to networks with several loads distributed in a
meshed topology.
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Appendix A

Resune substantiel en langue
frarcaise

A.1 Introduction

Les besoins enenergie d'une socee moderne sont principalement fournis sous forme
denergie electrique [4]. L'utilisation commerciale de lelectricie a commene a

la n des anrees 1870 avec des eseaux de tes petite taille fournissant su sam-
ment denergie pour alimenter les lampesa arc destirees a leclairage des phares
maritimes eta leclairage des rues [56]. A n de satisfaire la demande croissante
en energie electrique, des sociees industriellement cevelopgees ont construit des
sysemes electriques tes vastes et complexes pouvant setendre a des pays entiers
[4, 56].

Lenergieelectrique est traditionnellement produite dans des centrales thermiques,
al un processus de combustion de combustibles fossiles likere de lenergie thermique
qui est transformee en energie electrique utile pour le consommateur. Les com-
bustibles les plus couramment utilis dans la production commerciale delectricie
sont le charbon, le gaz naturel, le combustible nuckaire et le petrole [56, 67, 40].
La combustion de combustibles fossiles dans les centraleselectriques repesente une
source majeure demissions de gaza e et de serre dans l'atmosptere [67, 90, 15,
29]. En outre, il est consicee que lesemissions de gaza e et de serre provenant des
activies humaines sont I'un des principaux facteurs responsables du changement
climatique et du echau ement de la plarete [15, 63, 87].

Dierentes straegies ontet proposes pour eduire lesemissions de gaza ef-
fet de serre dans l'industrie electrique, par exemple, augmenter le nombre de cen-
trales nuckaires ou eliminer le dioxyde de carbone des gaz dechappement de la
cereration thermique traditionnelle gracea une technologie de captage et de stock-
age specialie [67] . Une alternative radicale a ces strakgies consiste a passer
des centrales electriques traditionnelles alimentes aux combustibles fossiles aux
energies renouvelables. Lesenergies renouvelables sont des sources denergie contin-
uellement reconstitlees par la nature et cerivees directement du soleil (thermique,
photeelectrique, par exemple), indirectement du soleil (vent, energie hydraulique,
biomasse) ou d'autres mouvements et mecanismes naturels de I'environnement (geo
thermique, par exemple) [36].

Les marches des energies renouvelables ont connu une croissance continue au
cours des derneres anrees. Le ceploiement de technologies eprouwees, telles que
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I'nydreelectricie, ainsi que de nouvelles technologies, telles que leolien et le solaire,
a rapidement augment, ce qui a renfore la con ance dans les technologies et eduit
les coots [36].

La peretration croissante des marches des energies renouvelables recessite un
changement majeur des pratiques de productionelectrique actuelles. Les centrales
thermiques d'un syseme electrique traditionnel ont gereralement une tes grande
puissance et se trouvent tes loin des consommateurs. Pour transporter e cace-
ment lelectricie sur de grandes distances, les tensions de fonctionnement doivent
étre augmenesa des niveaux teselewsa l'aide d'un syseme complexe de sous-
stations et de eseaux de transport. Inversement, les sources denergie renouvelables
tendenta &tre tes petites en termes de capacie en ce qui concerne les centrales
thermiques, ce qui implique que, pour fournir la m&me quantie denergieelectrique,
de nombreuses sources denergie renouvelables doivent &tre instalees. Neanmoins,
en raison d'une faible densie denergie, ces sources sont eparties d'une manere
distribee plutdt que centrali'e comme dans les installations traditionnelles [67].

Les proges ecents de lelectronique de puissance ontelucice les eponses pos-
siblesa la question de comment mieux inegrer les sources denergie renouvelables
dans le reseaux ekctrique conventionnel. Le concept adeicroeseaux [62] a beau-
coup retenu l'attention. Un microeseau est constitte d'un ensemble d'unies de
production|principalement bases sur des sources denergie renouvelables|de char-
ges esidentielles et deements de stockage denergie qui pouvent &tre opees en
conneceks ou ceconneces du eseau ekctrique principal [62]. Le lecteur est invie
a consulter les travaux [96, 97] pour une discussion plus approfondie sur les mi-
croeseaux.

A.2 Le probéme

Dans de nombreux sysemes de distribution denergieelectrique, en particulier dans
les microeseaux, des probemes de stabilie peuvent survenir lorsqu'une propor-
tion importante des charges est constittee dequipements electroniques. Ce type
dequipement est gereralement alimente par des architectures distribtees en cascade
caraceriees par la pesence de dierents niveaux de tension et de convertisseurs
electroniques de puissance. Ces convertisseurs agissent comme des interfaces entre
des sections de tensions dierentes dans lesquelles, au dernieretage, les charges sont
une combinaison de convertisseurselectroniques de puissance egulantetroitement
sa tension de sortie, se comportant comme des chargesa puissance constante. Ces
architectures sont communs dans les installations de technologies de l'information
et de la communication as de nombreux commutateurs de eecommunication, sta-
tions de base de communications sans | et serveurs de centres de donrees agissent
comme des chargesa puissance constante [38, 59, 122]. Il est bien connu que les
chargesa puissance constante introduisent un e et destabilisateur qui provoque des
oscillations importantes ou un e ondrement du eseau [38]. lls constituent donc le
composant le plus dicile du mocele de charge standard, appeé ZIP. model [106,
30] dans l'analyse de la stabilie du syseme d'alimentation.

Levaluation de la stabilie dans les eseaux contenant des chargesa puissance
constante est un ce de taille, principalement en raison des non-lirearies introduites
par la dynamique de ce type de charge, maisegalement par la nature non lireaire des
convertisseurselectroniques eux-mémes. De plus, les incertitudes lees auxenergies
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renouvelables eta l'interconnexion de plusieurs sous-sysemes aggravent encore le
probeme. Par conequent, la stabilie globale du syseme peut &tre di cilea assurer,
meéme si les sous-sysemes individuels sont stables [109].

Consicerant les implications economiques et environnementales pertinentes de la
compehension des conditions assurant le fonctionnement stable et sOr des eseaux
contenant des chargesa puissance constante, cette these s'ineressea cet objectif.

A.3 Une examination grerale de la literature

L'objectif principal d'un syseme electrique est de fournir de lenergie electrique
aux consommateurs de manere able, avec un co0t minimal, un impactecologique
minimal et des normes de qualie speciees [56, 67]. L'analyse de la stabilie d'un
sysemeelectrique concerne sa capaciea esister aux perturbations tout en perme-
ttant de remplir son objectif principal [4]. Les perturbations typiques des sysemes
electriques sont, par exemple, des modi cations de la demande, des pannes de cen-
trales ou des cefaillances du syseme de transmission [56]. Compte tenu de la grande
complexie du sysemeenergetique d'une socet moderne, le probeme de la garantie
d'un fonctionnement sar et stable du syseme reste un domaine de recherche actif
[39, 61, 98, 117, 41].

Une condition tes importante pour e ectuer des analyses de stabilie et pour
le bon fonctionnement des sysemeselectriques est l'existence d'unetat stable qui,
de plus, devrait etre robuste en pesence de perturbations [56]. L'analyse de ces
equilibres est compligee par la pesence de charges de puissance constante, qui
introduisent des \fortes" non lirearies. Cela motive le ceveloppement de nouvelles
nmethodes pour analyser |'existence detats stationnaires. En [69, 9, 14] une analyse
de existencedequilibres est e ectiee alors que, dans [106], des conditions su santes
sont e nies pour que tous les points de fonctionnement de eseaux purement esistifs
soient maintenus. Il esta noter que la communaut des sysemeselectriques cebat
actuellement de nouvelles c nitions de la stabilie, qui seloignent du paradigme
equilibre-perturbationequilibre [57]. Cependant, I'analyse des equilibres dans les
sysemesa courant continu et alternatif est toujours un domaine de recherche actif;
voir, e.g, [74] et [123].

Une analyse de stabilie a et eporee dans [3, 9] a l'aide de nethodes de
lirearisation, voir aussi [69]. Dans [10] et ecemment dans [20], la theorie du po-
tentiel de Brayton-Moser [16]ee employee, mais les contraintes qui garantissent la
stabilie du syseme sont imposes aux composants individuels du méme. De plus,
comme indigle dans [69], I'estimation fournie de la egion d'attraction desequilibres
base sur le potentiel de Brayton-Moser est plutdt conservatrice.

Il existe deux nethodes principales de stabilisation des eseaux avec des charges
de puissance constantes. Elles sont respectivement appekes nethodes d'amorti-
ssement actif et passif. Pour une stabilisation passive, un maeriel suppkmentaire
est connece au eseaug.g, une esistance peut etre connecte en paralele avec la
chargea puissance constante ou un e et capacitif plus important peut etre obtenu en
incluant des ltres suppkementaires [59, 21]. Cependant, le principal inconwenient de
ces approches est qu'elles sont gereralement ine caces du point de vueenergetique
et que les colts ou la taille suppkementaires risquent de ne pas &tre pratiques. D'autre
part, les methodes d'amortissement actif visenta obtenir le méme comportement de
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ces composants passifs par la modi cation de boucles de commande cep existantes
Oou suppkmentaires.

A.4 Principales contributions et organisation

Les principales contributions de cette these portent sur I'analyse et le contrble de
eseaux contenant des charges de puissance constantes. Elles peuvent étre eperto-
rees comme suit.

C1l Le probeme de l'existence dequilibres d'une classe gererale de eseaux a
courant alternatif qui energize des charges a puissance constante est traie.
Cette trese fournit des conditions recessaires sur les valeurs de puissance des
charges pour l'existence dequilibres, c'esta-dire que si ces conditions ne sont
pas remplies, le eseau n‘admet pas de egime dequilibre sinusodal. En ex-
ploitant le cadre deformes quadratique$§d6, 118], ces conditions sont exprinees
en termes de faisabilie d'iregalies lireaires de matrices, pour lesquelles des
logiciels ables sont disponible. De plus, un ra nement est appore pour le
cas des eseauxa port unique ai une conditiona la foisecessaireet su sante
pour I'existence dequilibres est signake.

C2 On montre que des moctles gereraux des eseaux de courant alternatif et
de courant continu avec des chargesa puissance constante|qui incluent des
sysemes de transmission haute tension multi-terminaux et des microeseaux|
sont cecrits en egime stationnaire par un champ vectoriel non lireaire qui,
lorsqu'il est assocea un ensemble dequations dierentielles ordinaires, pe-
sente des proprees de monotonie. Ces proprees sont ensuite utiliees pour
etablir que si les moceles susmentionres admettent des solutions dequilibre,
I'un d'eux domine, en termes de composants, tous les autres. En outre, dans le
cas de eseauxa courant alternatif sous certaines hypotheses plutdt standard,
cetequilibre s'awere etre voltage regular voir [65, 45].

C3 Une classe de sysemes port-Hamiltoniens dans lesquels les variables de controle
agissent directement sur lequation du rapport de puissance est exploee; ces
sysemes sont ensuite appeksysemes Hamiltoniens controks par puissance
Dans ces sysemes dynamiques, les points dequilibre sont intrinsequement
non nuls, ce qui empéche l'utilisation des proprees de passivie connues de
sysemes plus classiques port-hamiltoniens (avec matricea entees constantes)
pour analyser leur stabilie. Les conditions dans lesquelles ces sysemes sont
shifted passivesont etudees; Cette nethode estegalement utilisee pour ef-
fectuer une analyse de stabilie desequilibres du syseme. Fait ineressant,
dans le cas ai I'Hamiltonien est quadratique, une estimation de la egion
d'attraction peut etre fournie. Ces kesultats sont appliqles a letude de la
stabilie d'une classe gererale de eseauxelectriguesa courant continu et d'un
gererateur synchrone, avec des chargesa puissance constante.

C4 Le probeme de la egulation de la tension de sortie du tes populaire et polyva-
lent convertisseur DC buck-boost est aborde, dans I'hypotlese au il fournit de
lenergiea une charge de puissance constante. Le moctle bilireaire decrivant
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ce eseau s'awere etre une phase non minimale par rapporta chacune des vari-
ables detat, ce qui complique la conception des contrbleurs lireaires. Une
nouvelle loi de contrble adaptatif, non lireaire, est corcue conformementa la
methodologie de conception IDA-PBC. Le contrbleur est rendu adaptatif en
incorporant un estimateur en ligne pour la valeur|pratiquement di cile a
mesurer|de la chargea puissance constante.

C5 La stabilisation d'un microeseaua courant continu dont la source d'alimenta-
tion principale est conneceea une chargea puissance constante est exploee.
La sourceetant suppose non controlable, le eseau est d'abord augmene par
I'ajout d'un convertisseur de puissance contrblable. Ensuite, une loi de com-
mande non lireaire et adaptative, qui permet de stabiliser le eseau dans son
ensemble, est proposee pour contrbler le convertisseur. La conception est par-
ticulerement di cile en raison de I'existence détats di cilesa mesurer dans
un senario pratique|le courant du eseaua courant continu|et en raison de
la consommation denergie inconnue de la charge. Il convient de souligner que
les developpements theoriques ontete valices par des experiments physiques
sur un eseaua courant continua petite echelle; ces esultats exgerimentaux
sont rappores dans la trese.

Le reste de la these est structue comme suit. Quelques peliminaires sur les
sysemes dynamiques non lireaires et les sysemes electriques sont pesenes au
chapitre 2. Les principales contributions, de Cla C5, sont rapporees dans les
chapitres 3a 7, respectivement. La these se termine par le chapitre 8, qui contient
un bref esune et une discussion sur les recherches futures plausibles.

A.5 Des publications

Cette these est base sur les articles suivants, dont certains ont cepet publes ou
sont en cours de evision.

J1 Juan E. Machado, Robert Grito, Nikita Barabanov, Romeo Ortega, and Boris
Polyak, \On Existence of Equilibria of Multi-Port Linear AC Networks With
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