Skip to Main content Skip to Navigation
Theses

AlxGa1-xN and AlN nanowires : a solution for efficient UV-C light emitting diodes

Abstract : Because of their band gap value extending from 0.68 eV (for InN) up to 3.5 eV (GaN) and 6.2 eV (AlN), nitride family is potentially well adapted to the realization of light emitting diodes (LEDs) or detectors in a wavelength range spanning from infrared to ultraviolet. In particular, the possibility to realize devices emitting in the UV C range (200-280 nm) is a current subject of interest, in relation with numerous applications such as air and water sanitization, counterfeiting detection, sensors etc… Contrary to the visible LEDs which exhibit an excellent efficiency (at least for blue emission, which, coupled to a yellow phosphor is at the base of standard white LEDs currently available on the market), UV LEDs efficiency is currently limited to a few percent, as a consequence of the lack of suitable substrates, which results in defective material, and of doping difficulties, which limit current injection. One innovative solution to overcome these difficulties consists of using nanowires (NWs): the remarkable geometry (small diameter) and aspect ratio (height/diameter) of these objects make them favorable to the realization of heterostructures free of extended defects, therefore limiting carrier non radiative recombination. Furthermore, as a major advantage, electrical doping of NWs (type n with Si, type p with Mg) is considerably eased in NWs, as a result of an improved elastic strain relaxation, which significantly pushes away the dopant incorporation limit to values higher than in 2D layers used for conventional UV LEDs to date. The combination of these advantages make UV emitting NWs a subject of intense interest, with the prospect of realizing a breakthrough in efficiency. We are partially funded by an ANR project to explore this road. In this context, the proposed PhD project will consist of growing and fully characterizing the structural and optical properties of AlxGa1-xN/ AlyGa1-yN / AlxGa1-xN NW heterostructures (cathodo- and photo-luminescence, high resolution electron microscopy, atom probe and Kelvin probe measurement, etc…) with the prospect of realizing innovative, highly efficient UV LEDs in the range 240-270 nm. The process of the final structures and their electrical characterization will be performed by CNRS-Néel, after deposition of a doped-diamond upper contact. The work will be mostly performed in the Nanophysics and semiconductor CNRS/CEA group in CEA-INAC, which has an internationally recognized expertise in the academic studies on nitride materials, in close collaboration with several academic groups in France and abroad (CNRS-Néel, CNRS-LPS, University of Valencia….).
Complete list of metadatas

Cited literature [278 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-02613852
Contributor : Abes Star :  Contact
Submitted on : Wednesday, May 20, 2020 - 2:29:10 PM
Last modification on : Tuesday, September 1, 2020 - 3:24:05 PM

File

SILADIE_2019_diffusion.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02613852, version 1

Collections

Citation

Alexandra-Madalina Siladie. AlxGa1-xN and AlN nanowires : a solution for efficient UV-C light emitting diodes. Materials Science [cond-mat.mtrl-sci]. Université Grenoble Alpes, 2019. English. ⟨NNT : 2019GREAY059⟩. ⟨tel-02613852⟩

Share

Metrics

Record views

121

Files downloads

145