, Filtering of data: how and how much should our data be filtered to eliminate false positives that would bias our counting. -Application of the ? c counting strategy: what is the best way to obtain a ? c curve (from experimental or simulated data), and what is the range of stoichiometries that can be determined?

, There are yet many obstacles to overcome until we can perform reliable molecular counting using FPs. However, the field will greatly benefit from new studies applying previously developed approaches. This collective experience, as much as cutting-edge developments, will contribute to eventually making qPALM a standard

, Update parameters" is pressed). The length of the phase (i.e. number of cycles performed) is written under "Time (frames), The resulting text file is organized in "phases", which consist of consecutive cycles without changes in parameters (a new phase is created each time

, You can edit all parameters in the file manually for later use with auto-control (see next section)

, However, since we are running a french version of Labview, remember to use commas (",") as decimal separators, since points will not be recognized as such. You can also suppress phases

, Using auto-control

, Auto-control allows the software to read and execute a sequence of laser patterns from a text file (in the same format as produced by Recording)

, If you edit and save the text file, the changes should be immediately visible in Labview. To start the experiment, press "Run". Phase number and duration are displayed in the auto-control panel, as well as a progression bar for the current phase. Note that if you are running in auto-control mode, you cannot manually modify lasers or EMCCD parameters

E. and A. , Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung, Archiv für Mikroskopische Anatomie, vol.9, pp.413-418, 1873.

C. P. Toseland, Fluorescent labeling and modification of proteins, Journal of chemical biology, vol.6, pp.85-95, 2013.

M. Byrdin, C. Duan, D. Bourgeois, and K. Brettel, A Long-Lived Triplet State Is the Entrance Gateway to Oxidative Photochemistry in Green Fluorescent Proteins, Journal of the American Chemical Society, vol.140, p.164, 1920.
URL : https://hal.archives-ouvertes.fr/hal-01726154

O. Shimomura, The discovery of aequorin and green fluorescent protein, Journal of Microscopy, vol.217, p.16, 2005.

J. G. Morin and J. W. Hastings, Energy transfer in a bioluminescent system, Journal of Cellular Physiology, vol.77, p.16, 1971.

M. Ormö, A. B. Cubitt, K. Kallio, L. A. Gross, R. Y. Tsien et al., Crystal Structure of the Aequorea victoria Green Fluorescent Protein, Science, vol.273, p.21, 1996.

F. Yang, L. G. Moss, and G. N. Phillips, The molecular structure of green fluorescent protein, Nature Biotechnology, vol.14, p.22, 1996.

K. Brejc, T. K. Sixma, P. A. Kitts, S. R. Kain, R. Y. Tsien et al., Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein, Proceedings of the National Academy of Sciences of the United States of America, vol.94, p.18, 1997.

J. Dong, *. Solntsev, ,. O. Poizat, M. Laren, and *. Tolbert, The Meta-Green Fluorescent Protein Chromophore, p.17, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00281324

D. P. Barondeau, C. D. Putnam, C. J. Kassmann, J. A. Tainer, and E. D. Getzoff, Mechanism and energetics of green fluorescent protein chromophore synthesis revealed by trapped intermediate structures, Proceedings of the National Academy of Sciences of the United States of America, vol.100, pp.12111-12117, 2003.

S. J. Remington, Fluorescent proteins: maturation, photochemistry and photophysics, Current Opinion in Structural Biology, vol.16, pp.714-721, 2006.

A. B. Cubitt, R. Heim, S. R. Adams, A. E. Boyd, L. A. Gross et al., Understanding, improving and using green fluorescent proteins, Trends in Biochemical Sciences, vol.20, p.17, 1995.

R. Y. Tsien, THE GREEN FLUORESCENT PROTEIN, Annual Review of Biochemistry, vol.67, p.18, 1998.

L. Zhang, N. Hetal, J. W. Patel, R. M. Lappe, and *. Wachter, Reaction Progress of Chromophore Biogenesis in Green Fluorescent Protein, vol.17, p.18, 2006.

M. Chattoraj, B. A. King, G. U. Bublitz, and S. G. Boxer, Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer, Proceedings of the National Academy of Sciences of the United States of America, vol.93, pp.8362-8369, 1996.

M. V. Matz, A. F. Fradkov, Y. A. Labas, A. P. Savitsky, A. G. Zaraisky et al., Fluorescent proteins from nonbioluminescent Anthozoa species, Nature Biotechnology, vol.17, p.21, 1999.

A. Salih, A. Larkum, G. Cox, M. Kühl, and O. Hoegh-guldberg, Fluorescent pigments in corals are photoprotective, vol.408, pp.850-853, 2000.

S. Kawaguti, Effect of the green fluorescent pigment on the productivity of the reef corals, Micronesica, vol.5, issue.313, p.19, 1969.

D. Schlichter, H. W. Fricke, and W. Weber, Light harvesting by wavelength transformation in a symbiotic coral of the Red Sea twilight zone, Marine Biology, vol.91, issue.3, p.19, 1986.

P. J. Cranfill, B. R. Sell, M. A. Baird, J. R. Allen, Z. Lavagnino et al., Quantitative assessment of fluorescent proteins, Nature Methods, vol.13, pp.557-562, 2016.

C. Duan, V. Adam, M. Byrdin, J. Ridard, S. Kieffer-jaquinod et al., Structural Evidence for a Two-Regime Photobleaching Mechanism in a Reversibly Switchable Fluorescent Protein, Journal of the American Chemical Society, vol.135, pp.15841-15850, 1920.
URL : https://hal.archives-ouvertes.fr/hal-01322350

V. Adam, R. Berardozzi, M. Byrdin, and D. Bourgeois, Phototransformable fluorescent proteins: Future challenges, Current Opinion in Chemical Biology, vol.20, p.33, 1920.
URL : https://hal.archives-ouvertes.fr/hal-01321271

R. Heim, A. B. Cubitt, and R. Y. Tsien, Improved green fluorescence, Nature, vol.373, pp.663-664, 1921.

B. P. Cormack, R. H. Valdivia, and S. Falkow, FACS-optimized mutants of the green fluorescent protein (GFP), Gene, vol.173, pp.33-38, 1921.

J. P. Levy, R. R. Muldoon, S. Zolotukhin, and C. J. Link, Retroviral transfer and expression of a humanized, red-shifted green fluorescent protein gene into human tumor cells, Nature Biotechnology, vol.14, pp.610-614, 1921.

D. S. Bindels, L. Haarbosch, L. Van-weeren, M. Postma, K. E. Wiese et al., mScarlet: a bright monomeric red fluorescent protein for cellular imaging, Nature Methods, vol.14, pp.53-56, 1921.
URL : https://hal.archives-ouvertes.fr/hal-01494322

R. Heim, D. C. Prasher, and R. Y. Tsien, Wavelength mutations and posttranslational autoxidation of green fluorescent protein, Proceedings of the National Academy of Sciences of the United States of America, vol.91, p.33, 1994.

R. E. Campbell, O. Tour, A. E. Palmer, P. A. Steinbach, G. S. Baird et al., A monomeric red fluorescent protein, Proceedings of the National Academy of Sciences of the United States of America, vol.99, pp.7877-82, 1922.

N. C. Shaner, The mFruit Collection of Monomeric Fluorescent Proteins, Clinical Chemistry, vol.59, pp.440-441, 1922.

D. Shcherbo, I. I. Shemiakina, A. V. Ryabova, K. E. Luker, B. T. Schmidt et al., Near-infrared fluorescent proteins, Nature Methods, vol.7, p.22, 2010.

G. S. Filonov, K. D. Piatkevich, L. Ting, J. Zhang, K. Kim et al., Bright and stable near-infrared fluorescent protein for in vivo imaging, Nature Biotechnology, vol.29, pp.757-761, 1922.

D. A. Zacharias, J. D. Violin, A. C. Newton, and R. Y. Tsien, Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells, Science, vol.296, pp.913-919, 1922.

D. C. Prasher, V. K. Eckenrode, W. W. Ward, F. G. Prendergast, and M. J. Cormier, Primary structure of the Aequorea victoria green-fluorescent protein, Gene, vol.111, pp.229-233, 1922.

M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, Green fluorescent protein as a marker for gene expression, Science, vol.263, pp.802-807, 1922.

J. Lippincott-schwartz and C. L. Smith, Insights into secretory and endocytic membrane traffic using green fluorescent protein chimeras, Current Opinion in Neurobiology, vol.7, pp.631-639, 1923.

D. M. Raskin and P. A. De-boer, MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in Escherichia coli, Journal of bacteriology, vol.181, pp.6419-6443, 1923.

P. Van-roessel and A. H. Brand, Imaging into the future: visualizing gene expression and protein interactions with fluorescent proteins, Nature Cell Biology, vol.4, pp.15-20, 1923.

T. Förster, Zwischenmolekulare Energiewanderung und Fluoreszenz, Annalen der Physik, vol.437, pp.55-75, 1924.

L. Stryer and R. P. Haugland, Energy transfer: a spectroscopic ruler, Proceedings of the National Academy of Sciences of the United States of America, vol.58, pp.719-745, 1924.

D. E. Clapham, Calcium signaling, Cell, vol.80, pp.259-268, 1924.

J. M. Kendall and M. N. Badminton, Aequorea victoria bioluminescence moves into an exciting new era, Trends in Biotechnology, vol.16, pp.216-224, 1924.

A. Miyawaki, J. Llopis, R. Heim, J. M. Mccaffery, J. A. Adams et al., Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin, Nature, vol.388, pp.882-887, 1924.

B. G. Oscar, W. Liu, Y. Zhao, L. Tang, Y. Wang et al., Excitedstate structural dynamics of a dual-emission calmodulin-green fluorescent protein sensor for calcium ion imaging, Proceedings of the National Academy of Sciences, vol.111, pp.10191-10196, 1924.

Y. Qian, K. D. Piatkevich, B. Mc-larney, A. S. Abdelfattah, S. Mehta et al., A genetically encoded near-infrared fluorescent calcium ion indicator, Nature Methods, vol.16, pp.171-174, 1924.

R. Bizzarri, M. Serresi, S. Luin, and F. Beltram, Green fluorescent protein based pH indicators for in vivo use: A review, Analytical and Bioanalytical Chemistry, vol.393, pp.1107-1122, 1925.

R. M. Dickson, A. B. Cubitt, R. Y. Tsien, and W. E. Moerner, On/off blinking and switching behaviour of single molecules of green fluorescent protein, Nature, vol.388, p.42, 1997.

M. B. Elowitz, M. G. Surette, P. Wolf, J. Stock, and S. Leibler, Photoactivation turns green fluorescent protein red, Current Biology, vol.7, p.30, 1997.

A. M. Bogdanov, A. S. Mishin, I. V. Yampolsky, V. V. Belousov, D. M. Chudakov et al., Green fluorescent proteins are light-induced electron donors, Nature Chemical Biology, vol.5, p.30, 2009.

R. Ando, H. Mizuno, and A. Miyawaki, Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting, Science, vol.306, p.33, 2004.

R. Ando, H. Hama, M. Yamamoto-hino, H. Mizuno, and A. Miyawaki, An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein, Proceedings of the National Academy of Sciences of the United States of America, vol.99, p.34, 1931.

J. Wiedenmann, S. Ivanchenko, F. Oswald, F. Schmitt, C. Röcker et al., EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion, Proceedings of the National Academy of Sciences, vol.101, p.159, 1931.

G. H. Patterson and J. Lippincott-schwartz, A photoactivatable GFP for selective photolabeling of proteins and cells, Science, vol.297, p.31, 2002.

F. V. Subach, G. H. Patterson, S. Manley, J. M. Gillette, J. Lippincott-schwartz et al., Photoactivatable mCherry for high-resolution two-color fluorescence microscopy, Nature Methods, vol.6, p.33, 2009.

M. Andresen, A. C. Stiel, J. Fölling, D. Wenzel, A. Schönle et al., Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy, Nature Biotechnology, vol.26, p.33, 2008.

T. Brakemann, A. C. Stiel, G. Weber, M. Andresen, I. Testa et al., A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching, Nature Biotechnology, vol.29, p.33, 2011.

T. Grotjohann, I. Testa, M. Leutenegger, H. Bock, N. T. Urban et al., Diffraction-unlimited all-optical imaging and writing with a photochromic GFP, Nature, vol.478, p.33, 2011.

T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling et al., , vol.1, p.33, 2012.

M. E. Khatib, A. Martins, D. Bourgeois, J. Colletier, and V. Adam, Rational design of ultrastable and reversibly photoswitchable fluorescent proteins for super-resolution imaging of the bacterial periplasm, Scientific Reports, vol.6, p.33, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01280266

M. Zhang, H. Chang, Y. Zhang, J. Yu, L. Wu et al., Rational design of true monomeric and bright photoactivatable fluorescent proteins, Nature Methods, vol.9, p.88, 2012.

S. A. Mckinney, C. S. Murphy, K. L. Hazelwood, M. W. Davidson, and L. L. Looger, A bright and photostable photoconvertible fluorescent protein, Nature Methods, vol.6, p.35, 2009.

D. M. Chudakov, S. Lukyanov, and K. A. Lukyanov, Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2, Nature Protocols, vol.2, p.34, 2007.

A. L. Mcevoy, H. Hoi, M. Bates, E. Platonova, P. J. Cranfill et al., mMaple: A Photoconvertible Fluorescent Protein for Use in Multiple Imaging Modalities, PLoS ONE, vol.7, p.34, 2012.

M. Byrdin and D. Bourgeois, The CAL(AI)2DOSCOPE: a microspectrophotometer for accurate recording of correlated absorbance and fluorescence emission spectra, Spectroscopy Europe, vol.28, issue.6, p.34, 2016.

N. Coquelle, M. Sliwa, J. Woodhouse, G. Schirò, V. Adam et al., Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography, Nature Chemistry, vol.10, p.153, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01618533

M. G. Paez-segala, M. G. Sun, G. Shtengel, S. Viswanathan, M. A. Baird et al., Fixation-resistant photoactivatable fluorescent proteins for CLEM, Nature Methods, vol.12, p.88, 2015.

V. Adam, M. Lelimousin, S. Boehme, G. Desfonds, K. Nienhaus et al., Structural characterization of IrisFP, an optical highlighter undergoing multiple photo-induced transformations, Proceedings of the National Academy of Sciences of the United States of America, vol.105, p.90, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02389620

J. Fuchs, S. Böhme, F. Oswald, P. N. Hedde, M. Krause et al., A photoactivatable marker protein for pulse-chase imaging with superresolution, Nature Methods, vol.7, p.36, 2010.

B. Moeyaert, N. Nguyen, E. Bich, . De, S. Zitter et al., Green-to-Red Photoconvertible Dronpa Mutant for Multimodal Super-resolution Fluorescence Microscopy, ACS Nano, vol.8, p.36, 2014.

N. Durisic, L. Laparra-cuervo, Á. Sandoval-Álvarez, J. S. Borbely, and M. Lakadamyali, Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate, Nature Methods, vol.11, p.100, 2014.

P. Schwille, S. Kummer, A. A. Heikal, W. E. Moerner, and W. W. Webb, Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins, Proceedings of the National Academy of Sciences of the United States of America, vol.97, p.37, 2000.

N. V. Klementieva, A. I. Pavlikov, A. A. Moiseev, N. G. Bozhanova, N. M. Mishina et al., Intrinsic blinking of red fluorescent proteins for super-resolution microscopy, Chemical Communications, vol.53, p.37, 2017.

P. Annibale, M. Scarselli, A. Kodiyan, and A. Radenovic, Photoactivatable Fluorescent Protein mEos2 Displays Repeated Photoactivation after a Long-Lived Dark State in the Red Photoconverted Form, The Journal of Physical Chemistry Letters, vol.1, p.164, 1937.

S. Lee, J. Y. Shin, A. Lee, and C. Bustamante, Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM), Proceedings of the National Academy of Sciences, vol.109, issue.43, p.147, 2012.

R. Berardozzi, V. Adam, A. Martins, and D. Bourgeois, Arginine 66 Controls Dark-State Formation in Green-to-Red Photoconvertible Fluorescent Proteins, Journal of the American Chemical Society, vol.138, issue.2, p.164, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01266594

V. Adam, P. Carpentier, S. Violot, M. Lelimousin, C. Darnault et al., Structural Basis of X-ray-Induced Transient Photobleaching in a Photoactivatable Green Fluorescent Protein, Journal of the American Chemical Society, vol.131, p.37, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00474158

A. Roy, M. J. Field, V. Adam, and D. Bourgeois, The nature of transient dark states in a photoactivatable fluorescent protein, Journal of the American Chemical Society, vol.133, issue.46, p.151, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02389684

F. Malvezzi-campeggi, M. Jahnz, K. G. Heinze, P. Dittrich, and P. Schwille, Light-Induced Flickering of DsRed Provides Evidence for Distinct and Interconvertible Fluorescent States, Biophysical Journal, vol.81, p.39, 2001.

U. Endesfelder, S. Malkusch, B. Flottmann, J. Mondry, P. Liguzinski et al., Chemically Induced Photoswitching of Fluorescent ProbesA General Concept for Super-Resolution Microscopy, Molecules, vol.16, p.39, 2011.

T. N. Baldering, M. S. Dietz, K. Gatterdam, C. Karathanasis, R. Wieneke et al., Synthetic and genetic dimers as quantification ruler for single-molecule counting with PALM, Molecular Biology of the Cell, vol.30, p.39, 2019.

J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann et al., A Reducing and Oxidizing System Minimizes Photobleaching and Blinking of Fluorescent Dyes, Angewandte Chemie International Edition, vol.47, p.39, 2008.

M. Heilemann, S. Vandelinde, M. Schüttpelz, R. Kasper, B. Seefeldt et al., Subdiffraction-Resolution Fluorescence Imaging with Conventional Fluorescent Probes, Angewandte Chemie International Edition, vol.47, p.39, 2008.

A. Jiménez-banzo, S. Nonell, J. Hofkens, and C. Flors, Singlet Oxygen Photosensitization by EGFP and its Chromophore HBDI, Biophysical Journal, vol.94, p.39, 2008.

W. P. Dempsey, L. Georgieva, P. M. Helbling, A. Y. Sonay, T. V. Truong et al., In vivo single-cell labeling by confined primed conversion, Nature Methods, vol.12, p.40, 2015.

M. A. Mohr, A. Y. Kobitski, L. R. Sabater, K. Nienhaus, C. J. Obara et al., Rational Engineering of Photoconvertible Fluorescent Proteins for Dual-Color Fluorescence Nanoscopy Enabled by a Triplet-State Mechanism of Primed Conversion, Angewandte Chemie International Edition, vol.56, p.40, 2017.

E. Betzig and J. K. Trautman, Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit, Science, vol.257, p.41, 1992.

R. Heintzmann and C. G. Cremer, Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating, International Society for Optics and Photonics, vol.3568, p.41, 1999.

M. G. Gustafsson, Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy, Journal of Microscopy, vol.198, p.41, 2000.

S. W. Hell and J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy, Optics Letters, vol.19, p.41, 1994.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych et al., Imaging Intracellular Fluorescent Proteins at Nanometer Resolution, Science, vol.313, p.42, 2006.

S. T. Hess, T. P. Girirajan, and M. D. Mason, Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy, Biophysical Journal, vol.91, p.42, 2006.

W. E. Moerner and L. Kador, Optical detection and spectroscopy of single molecules in a solid, Physical Review Letters, vol.62, p.42, 1989.

M. Orrit and J. Bernard, Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal, Physical Review Letters, vol.65, p.42, 1990.

H. Nyquist, Certain Topics in Telegraph Transmission Theory, Transactions of the American Institute of Electrical Engineers, vol.47, p.42, 1928.

M. J. Rust, M. Bates, and X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nature Methods, vol.3, p.42, 2006.

A. Sharonov and R. M. Hochstrasser, Wide-field subdiffraction imaging by accumulated binding of diffusing probes, Proceedings of the National Academy of Sciences, vol.103, p.42, 2006.

M. Heilemann, S. Vandelinde, M. Schüttpelz, R. Kasper, B. Seefeldt et al., Subdiffraction-Resolution Fluorescence Imaging with Conventional Fluorescent Probes, Angewandte Chemie International Edition, vol.47, p.42, 2008.

J. B. Grimm, B. P. English, H. Choi, A. K. Muthusamy, B. P. Mehl et al., Bright photoactivatable fluorophores for single-molecule imaging, Nature Methods, vol.13, p.124, 1942.

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI), Proceedings of the National Academy of Sciences of the United States of America, vol.106, p.44, 2009.

D. T. Burnette, P. Sengupta, Y. Dai, J. Lippincott-schwartz, and B. Kachar, Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules, Proceedings of the National Academy of Sciences of the United States of America, vol.108, p.44, 2011.

S. J. Holden, S. Uphoff, and A. N. Kapanidis, DAOSTORM: an algorithm for high-density super-resolution microscopy, Nature Methods, vol.8, p.44, 2011.

F. Huang, S. L. Schwartz, J. M. Byars, and K. A. Lidke, Simultaneous multiple-emitter fitting for single molecule super-resolution imaging, Biomedical Optics Express, vol.2, p.44, 2011.

S. Cox, E. Rosten, J. Monypenny, T. Jovanovic-talisman, D. T. Burnette et al., Bayesian localization microscopy reveals nanoscale podosome dynamics, Nature Methods, vol.9, p.44, 2012.

L. Zhu, W. Zhang, D. Elnatan, and B. Huang, Faster STORM using compressed sensing, Nature Methods, vol.9, p.44, 2012.

N. Gustafsson, S. Culley, G. Ashdown, D. M. Owen, P. M. Pereira et al., Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations, Nature Communications, vol.7, p.44, 2016.

R. J. Marsh, K. Pfisterer, P. Bennett, L. M. Hirvonen, M. Gautel et al., Artifact-free high-density localization microscopy analysis, Nature Methods, vol.15, p.44, 2018.

J. Macqueen, Some methods for classification and analysis of multivariate observations, Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol.1, p.45, 1967.

M. Ester, H. Kriegel, J. Sander, and X. Xu, A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, p.45, 1996.

Q. Du, V. Faber, and M. Gunzburger, Centroidal Voronoi Tessellations: Applications and Algorithms, SIAM Review, p.45, 2005.

P. Annibale, S. Vanni, M. Scarselli, U. Rothlisberger, and A. Radenovic, Identification of clustering artifacts in photoactivated localization microscopy, Nature Methods, vol.8, p.131, 2011.

S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess et al., High-density mapping of single-molecule trajectories with photoactivated localization microscopy, Nature Methods, vol.5, pp.155-157, 2008.

D. Alcor, G. Gouzer, and A. Triller, Single-particle tracking methods for the study of membrane receptors dynamics, European Journal of Neuroscience, vol.30, p.49, 2009.

A. N. Kapanidis, S. Uphoff, and M. Stracy, Understanding Protein Mobility in Bacteria by Tracking Single Molecules, Journal of Molecular Biology, vol.46, 2018.

A. Kusumi, T. A. Tsunoyama, K. M. Hirosawa, R. S. Kasai, and T. K. Fujiwara, Tracking single molecules at work in living cells, Nature Chemical Biology, vol.10, p.49, 2014.

D. Calebiro, F. Rieken, J. Wagner, T. Sungkaworn, U. Zabel et al., Single-molecule analysis of fluorescently labeled G-protein-coupled receptors reveals complexes with distinct dynamics and organization, Proceedings of the National Academy of Sciences of the United States of America, vol.110, p.49, 2013.

J. Elf, G. Li, and X. S. Xie, Probing transcription factor dynamics at the single-molecule level in a living cell, Science, vol.316, p.49, 2007.

K. A. Tanaka, K. G. Suzuki, Y. M. Shirai, S. T. Shibutani, M. S. Miyahara et al., Membrane molecules mobile even after chemical fixation, Nature Methods, vol.7, p.50, 2010.

F. Fricke, J. Beaudouin, R. Eils, and M. Heilemann, One, two or three? Probing the stoichiometry of membrane proteins by single-molecule localization microscopy, Scientific Reports, vol.5, p.133, 1952.

P. Annibale, S. Vanni, M. Scarselli, U. Rothlisberger, and A. Radenovic, Quantitative Photo Activated Localization Microscopy: Unraveling the Effects of Photoblinking, PLoS ONE, vol.6, p.55, 2011.

C. Coltharp, R. P. Kessler, and J. Xiao, Accurate Construction of Photoactivated Localization Microscopy (PALM) Images for Quantitative Measurements, PLoS ONE, vol.7, p.53, 2012.

E. M. Puchner, J. M. Walter, R. Kasper, B. Huang, and W. A. Lim, Counting molecules in single organelles with superresolution microscopy allows tracking of the endosome maturation trajectory, Proceedings of the National Academy of Sciences of the United States of America, vol.110, p.53, 2013.

S. Avilov, R. Berardozzi, M. S. Gunewardene, V. Adam, S. T. Hess et al., In cellulo evaluation of phototransformation quantum yields in fluorescent proteins used as markers for single-molecule localization microscopy, PloS One, vol.9, issue.6, p.110, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01093348

G. C. Rollins, J. Y. Shin, C. Bustamante, and S. Pressé, Stochastic approach to the molecular counting problem in superresolution microscopy, Proceedings of the National Academy of Sciences of the United States of America, vol.112, p.134, 2015.

J. V. Thevathasan, M. Kahnwald, K. Cie?li?ski, P. Hoess, S. K. Peneti et al., Nuclear pores as versatile reference standards for quantitative superresolution microscopy, vol.53, p.134, 2019.

G. Hummer, F. Fricke, and M. Heilemann, Model-independent counting of molecules in single-molecule localization microscopy, Molecular Biology of the Cell, vol.27, p.133, 2016.

T. N. Baldering, M. S. Dietz, K. Gatterdam, C. Karathanasis, R. Wieneke et al., Synthetic and genetic dimers as quantification ruler for single-molecule counting with PALM, Molecular Biology of the Cell, vol.30, p.53, 2019.

D. G. Gibson, L. Young, R. Chuang, J. C. Venter, C. A. Hutchison et al., Enzymatic assembly of DNA molecules up to several hundred kilobases, Nature Methods, vol.6, p.65, 2009.

M. Cotlet, J. Hofkens, F. Köhn, J. Michiels, G. Dirix et al., Collective effects in individual oligomers of the red fluorescent coral protein DsRed, Chemical Physics Letters, vol.336, p.67, 2001.

S. Habuchi, R. Ando, P. Dedecker, W. Verheijen, H. Mizuno et al., Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa, vol.102, p.98, 2005.

N. Limpan, T. Prodpran, S. Benjakul, and S. Prasarpran, Properties of biodegradable blend films based on fish myofibrillar protein and polyvinyl alcohol as influenced by blend composition and pH level, Journal of Food Engineering, vol.100, p.67, 2010.

R. M. Dickson, D. J. Norris, Y. Tzeng, and W. E. Moerner, Three-Dimensional Imaging of Single Molecules Solvated in Pores of Poly(acrylamide) Gels, Science, vol.274, issue.5289, p.68, 1996.

S. Schäfer, P. Dittrich, E. Petrov, and P. Schwille, Single molecule fluorescence imaging of the photoinduced conversion and bleaching behavior of the fluorescent protein Kaede, Microscopy Research and Technique, vol.69, issue.3, p.159, 2006.

S. Caglio and P. G. Righetti, On the pH dependence of polymerization efficiency, as investigated by capillary zone electrophoresis, Electrophoresis, vol.14, p.68, 1993.

T. Mizutani, Decreased Activity of Proteins Adsorbed Onto Glass Surfaces with Porous Glass as a Reference, Journal of Pharmaceutical Sciences, vol.69, p.68, 1980.

J. T. Fourkas, Rapid determination of the three-dimensional orientation of single molecules, Optics Letters, vol.26, p.102, 2001.

M. Ovesný, P. Kí?ek, J. Borkovec, Z. ?vindrych, and G. M. Hagen, ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging, Bioinformatics, vol.30, issue.16, p.79, 2014.

H. Chang, M. Zhang, W. Ji, J. Chen, Y. Zhang et al., A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications, Proceedings of the National Academy of Sciences of the United States of America, vol.109, p.91, 2012.

F. Urbach, The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids, Physical Review, vol.92, issue.5, p.93, 1953.

B. Roubinet, M. Weber, H. Shojaei, M. Bates, M. L. Bossi et al., Fluorescent Photoswitchable Diarylethenes for Biolabeling and Single-Molecule Localization Microscopies with Optical Superresolution, Journal of the American Chemical Society, vol.139, issue.19, p.93, 2017.

Y. Arai, S. Ito, H. Fujita, Y. Yoneda, T. Kaji et al., One-colour control of activation, excitation and deactivation of a fluorescent diarylethene derivative in super-resolution microscopy, Chemical Communications, vol.53, issue.29, p.93, 2017.

M. Andresen, A. C. Stiel, S. Trowitzsch, G. Weber, C. Eggeling et al., Structural basis for reversible photoswitching in Dronpa, Proceedings of the National Academy of Sciences, p.98, 2007.

F. C. Zanacchi, C. Manzo, A. S. Alvarez, N. D. Derr, M. F. Garcia-parajo et al., A DNA origami platform for quantifying protein copy number in superresolution, Nature Methods, vol.14, p.134, 2017.

U. Kanjee and W. A. Houry, Mechanisms of Acid Resistance in Escherichia coli, Annual Review of Microbiology, vol.67, issue.1, p.135, 2013.

B. Kastner, N. Fischer, M. M. Golas, B. Sander, P. Dube et al., GraFix: sample preparation for single-particle electron cryomicroscopy, Nature Methods, vol.5, p.137, 2008.

A. Mukherjee, K. K. Ray, C. Phadnis, A. Layek, S. Bera et al., Insights on heterogeneity in blinking mechanisms and non-ergodicity using sub-ensemble statistical analysis of single quantum-dots, The Journal of Chemical Physics, vol.151, p.143, 2019.

J. Chang, M. Romei, and S. Boxer, Structural Evidence of Photoisomerization Pathways in Fluorescent Proteins, vol.153, p.165, 2019.

, son attitude toujours positive et ses remarques toujours pertinentes ; c'est grâceà toi que durant ces trois ans j'ai pu prendre plaisirà découvrir la photophysique, età me creuser la tête sur toutes les questions passionnantes que l'on a pu aborder. Tu m'as apprisà regarder derrière les questions apparemment insolubles, et a toujours chercher les détails, jusqu'au "clic" de compréhension. Merci ! Un grand merci aussià l'équipe Pixel : Virgile, Joël, Sasha, Martin, Ninon, sans qui mes journées n'auraient pasété les mêmes

, This thesis would also not have been the same without our scientific collaborators, so many thanks to Elke De Zitter, Viola Mönkenmöller, Siewert Hugelier and Peter Dedecker, for your patience, and for all the work done

, I'm really proud of the work we've achieved. Vielen dank auch zu Jörg Enderlein, wer mir zweimal in Göttingen wilkommen hat; es war immer ein Vergnügen und wirklich interessant

, La recherche ne fait pas tout dans une thèse, et j'aiété très heureux de pouvoirégalement enseigner ; et pour a je voudrais vraiment remercier Claire Durmort, qui m'en a donné la possibilité, et Pierre Cavailles, Véronique Frachet et Cécile Batandier pour leur aide

P. Merci-aussià, Chauvet de m'avoir permis de venir parlerà sesélèves le temps d'un cours, ca aété une expérience vraiment nouvelle et enrichissante

, Rien n'aurait non plusété pareil si je n'avais pas rencontré ici des gens fantastiques avec qui parler de plein de choses le soir autour d'une bière ou d'un pho

, Et enfin, mercià Lisa pour ton soutien, and cheers to new adventures coming soon! Chapeau !