S. Berrih-aknin, L. Panse, and R. , Myasthenia gravis: a comprehensive review of immune dysregulation and etiological mechanisms, J Autoimmun, vol.52, pp.90-100, 2014.

A. Marx, F. Pfister, B. Schalke, G. Saruhan-direskeneli, A. Melms et al., The different roles of the thymus in the pathogenesis of the various myasthenia gravis subtypes, Autoimmun Rev, vol.12, pp.875-84, 2013.

A. Méraouna, G. Cizeron-clairac, L. Panse, R. Bismuth, J. Truffault et al., The chemokine CXCL13 is a key molecule in autoimmune Myasthenia Gravis, Blood, vol.108, pp.432-472, 2006.

S. Berrih-aknin, N. Ruhlmann, J. Bismuth, G. Cizeron-clairac, E. Zelman et al., CCL21 overexpressed on lymphatic vessels drives thymic hyperplasia in myasthenia, Ann Neurol, vol.66, pp.521-552, 2009.

P. Cufi, N. Dragin, N. Ruhlmann, J. M. Weiss, E. Fadel et al., Central role of interferon-beta in thymic events leading to myasthenia gravis, J Autoimmun, vol.52, pp.44-52, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01514459

P. Cavalcante, P. Cufi, R. Mantegazza, S. Berrih-aknin, P. Bernasconi et al., Etiology of myasthenia gravis: innate immunity signature in pathological thymus, Autoimmun Rev, vol.12, pp.863-74, 2013.

J. Q. Chen, G. Papp, P. Szodoray, and M. Zeher, The role of microRNAs in the pathogenesis of autoimmune diseases, Autoimmun Rev, vol.15, pp.1171-80, 2016.

J. Winter, S. Jung, S. Keller, R. I. Gregory, and S. Diederichs, Many roads to maturity: microRNA biogenesis pathways and their regulation, Nat Cell Biol, vol.11, pp.228-262, 2009.

M. S. Ebert and P. A. Sharp, Roles for microRNAs in conferring robustness to biological processes, Cell, vol.149, pp.515-539, 2012.

L. F. Gulyaeva and N. E. Kushlinskiy, Regulatory mechanisms of microRNA expression, J Transl Med, vol.14, p.143, 2016.

A. S. Papadopoulou, J. Dooley, M. A. Linterman, W. Pierson, O. Ucar et al., The thymic epithelial microRNA network elevates the threshold for infection-associated thymic involution via miR-29a mediated suppression of the IFN-alpha receptor, Nat Immunol, vol.13, pp.181-188, 2012.

I. S. Khan, R. T. Taniguchi, K. J. Fasano, M. S. Anderson, and L. T. Jeker, Canonical microRNAs in thymic epithelial cells promote central tolerance, Eur J Immunol, vol.44, pp.1313-1322, 2014.

S. Zuklys, C. E. Mayer, S. Zhanybekova, H. E. Stefanski, G. Nusspaumer et al., MicroRNAs control the maintenance of thymic epithelia and their competence for T lineage commitment and thymocyte selection, J Immunol, vol.189, pp.3894-904, 2012.

O. Ucar, L. Tykocinski, J. Dooley, A. Liston, and B. Kyewski, An evolutionarily conserved mutual interdependence between Aire and microRNAs in promiscuous gene expression, Eur J Immunol, vol.43, pp.1769-78, 2013.

S. Belkaya, R. L. Silge, A. R. Hoover, J. J. Medeiros, J. L. Eitson et al., Dynamic modulation of thymic microRNAs in response to stress, PLoS One, vol.6, p.27580, 2011.

L. Linhares-lacerda, C. C. Palu, M. Ribeiro-alves, B. D. Paredes, A. Morrot et al., Differential expression of microRNAs in thymic epithelial cells from Trypanosoma cruzi acutely infected mice: putative role in thymic atrophy, Front Immunol, vol.6, p.428, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01881328

A. Bisognin, G. Sales, A. Coppe, S. Bortoluzzi, and C. Romualdi, MAGIA(2): from miRNA and genes expression data integrative analysis to microRNA-transcription factor mixed regulatory circuits (2012 update), Nucleic Acids Res, vol.40, pp.13-21, 2012.

L. Panse, R. Cizeron-clairac, G. Bismuth, J. Berrih-aknin, and S. , Microarrays reveal distinct gene signatures in the thymus of seropositive and seronegative myasthenia gravis patients and the role of CC chemokine ligand 21 in thymic hyperplasia, J Immunol, vol.177, pp.7868-79, 2006.

V. Agarwal, G. W. Bell, J. W. Nam, and D. P. Bartel, Predicting effective microRNA target sites in mammalian mRNAs, Elife, vol.4, 2015.

M. D. Paraskevopoulou, G. Georgakilas, N. Kostoulas, I. S. Vlachos, T. Vergoulis et al., DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows, Nucleic Acids Res, vol.41, pp.169-73, 2013.

P. Cufi, N. Dragin, J. M. Weiss, P. Martinez-martinez, D. Baets et al., Implication of double-stranded RNA signaling in the etiology of autoimmune myasthenia gravis, Ann Neurol, vol.73, pp.281-93, 2013.

M. L. Kim, J. J. Chae, Y. H. Park, D. Nardo, D. Stirzaker et al., Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-1beta, J Exp Med, vol.212, pp.927-965, 2015.

A. C. Wheeler, D. B. Bailey, E. Berry-kravis, J. Greenberg, M. Losh et al., Associated features in females with an FMR1 premutation, J Neurodev Disord, vol.6, p.30, 2014.

N. Chunjie, N. Huijuan, Y. Zhao, W. Jianzhao, and Z. Xiaojian, Disease-specific signature of serum miR-20b and its targets IL-8 and IL-25, in myasthenia gravis patients, Eur Cytokine Netw, vol.26, pp.61-67, 2015.

Y. Xin, H. Cai, T. Lu, Y. Zhang, Y. Yang et al., miR-20b inhibits T cell proliferation and activation via NFAT signaling pathway in thymoma-associated myasthenia gravis, Biomed Res Int, p.9595718, 2016.

E. Zhu, X. Wang, B. Zheng, Q. Wang, J. Hao et al., miR-20b suppresses Th17 differentiation and the pathogenesis of experimental autoimmune encephalomyelitis by targeting RORgammat and STAT3, J Immunol, vol.192, pp.5599-609, 2014.

J. Lou, Y. Wang, Z. Zhang, and W. Qiu, MiR-20b inhibits mycobacterium tuberculosis induced inflammation in the lung of mice through targeting NLRP3, Exp Cell Res, vol.358, pp.120-128, 2017.

J. Ingwersen, T. Menge, B. Wingerath, D. Kaya, J. Graf et al., Natalizumab restores aberrant miRNA expression profile in multiple sclerosis and reveals a critical role for miR-20b, Ann Clin Transl Neurol, vol.2, pp.43-55, 2015.

J. Li, D. Qiu, Z. Chen, W. Du, J. Liu et al., Altered expression of miR-125a-5p in thymoma-associated myasthenia gravis and its down-regulation of foxp3 expression in Jurkat cells, Immunol Lett, vol.172, pp.47-55, 2016.

T. Nishi, S. Yokoyama, S. Takamori, T. Matsuo, D. Murakami et al., Thymoma in patient with myasthenia gravis has significantly fewer Forkhead box P3 positive lymphocytes than that without one, Kurume Med J, vol.61, pp.65-71, 2015.

A. Balandina, S. Lecart, P. Dartevelle, and A. Saoudi, Berrih-Aknin S. Functional defect of regulatory CD4(+)CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis, Blood, vol.105, pp.735-776, 2005.

S. Jander and G. Stoll, Increased serum levels of the interferon-gamma-inducing cytokine interleukin-18 in myasthenia gravis, Neurology, vol.59, pp.287-296, 2002.

M. C. Souroujon, P. K. Maiti, T. Feferman, S. H. Im, L. Raveh et al., Suppression of myasthenia gravis by antigen-specific mucosal tolerance and modulation of cytokines and costimulatory factors, Ann N Y Acad Sci, vol.998, pp.533-539, 2003.

M. Zhang, L. L. Peng, Y. Wang, J. S. Wang, J. Liu et al., Roles of A20 in autoimmune diseases, Immunol Res, vol.64, pp.337-381, 2016.

S. W. Kim, K. Ramasamy, H. Bouamar, A. P. Lin, D. Jiang et al., MicroRNAs miR-125a and miR-125b constitutively activate the NF-kappaB pathway by targeting the tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20), Proc Natl Acad Sci U S A, vol.109, pp.7865-70, 2012.

J. A. Hamerman, J. Pottle, M. Ni, Y. He, Z. Y. Zhang et al., Negative regulation of TLR signaling in myeloid cells-implications for autoimmune diseases, Immunol Rev, vol.269, pp.212-239, 2016.

N. Avidan, L. Panse, R. Harbo, H. F. Bernasconi, P. Poulas et al., VAV1 and BAFF, via NFkappaB pathway, are genetic risk factors for myasthenia gravis, Ann Clin Transl Neurol, vol.1, pp.329-368, 2014.

Y. Oshikawa, M. Jinnin, T. Makino, I. Kajihara, K. Makino et al., Decreased miR-7 expression in the skin and sera of patients with dermatomyositis, Acta Derm Venereol, vol.93, pp.273-279, 2013.

A. Vaknin-dembinsky, H. Charbit, L. Brill, O. Abramsky, D. Gur-wahnon et al., Circulating microRNAs as biomarkers for rituximab therapy, in neuromyelitis optica (NMO), J Neuroinflammation, vol.13, p.179, 2016.

H. T. Nguyen, G. Dalmasso, Y. Yan, H. Laroui, S. Dahan et al., MicroRNA-7 modulates CD98 expression during intestinal epithelial cell differentiation, J Biol Chem, vol.285, pp.1479-89, 2010.

H. Kurobe, C. Liu, T. Ueno, F. Saito, I. Ohigashi et al., CCR7-dependent cortexto-medulla migration of positively selected thymocytes is essential for establishing central tolerance, Immunity, vol.24, pp.165-77, 2006.

D. Larizza, V. Calcaterra, and M. Martinetti, Autoimmune stigmata in Turner syndrome: when lacks an X chromosome, J Autoimmun, vol.33, pp.25-30, 2009.

T. I. Winarni, W. Chonchaiya, T. A. Sumekar, P. Ashwood, G. M. Morales et al., Immune-mediated disorders among women carriers of fragile X premutation alleles, Am J Med Genet A, vol.158, pp.2473-81, 2012.

D. I. Pretto, J. S. Eid, C. M. Yrigollen, H. T. Tang, E. W. Loomis et al., Differential increases of specific FMR1 mRNA isoforms in premutation carriers, J Med Genet, vol.52, pp.42-52, 2015.

A. Naumann, N. Hochstein, S. Weber, E. Fanning, and W. Doerfler, A distinct DNAmethylation boundary in the 5?-upstream sequence of the FMR1 promoter binds nuclear proteins and is lost in fragile X syndrome, Am J Hum Genet, vol.85, pp.606-622, 2009.

S. Lanni, M. Goracci, L. Borrelli, G. Mancano, P. Chiurazzi et al., Role of CTCF protein in regulating FMR1 locus transcription, PLoS Genet, vol.9, p.1003601, 2013.

C. He, X. Zhao, H. Jiang, Z. Zhong, and R. Xu, Demethylation of miR-10b plays a suppressive role in ccRCC cells, Int J Clin Exp Pathol, vol.8, pp.10595-604, 2015.

M. Y. Balkhi, O. H. Iwenofu, N. Bakkar, K. J. Ladner, D. S. Chandler et al., acts as a decoy in sarcomas to protect the tumor suppressor A20 mRNA from degradation by, HuR. Sci Signal, vol.6, p.63, 2013.

S. Berrih-aknin, N. Ruhlmann, J. Bismuth, G. Cizeron-clairac, E. Zelman et al., CCL21 overexpressed on lymphatic vessels drives thymic hyperplasia in myasthenia, Ann Neurol, vol.66, pp.521-531, 2009.

D. L. Boone, E. E. Turer, E. G. Lee, R. C. Ahmad, M. T. Wheeler et al., The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses, Nat Immunol, vol.5, pp.1052-1060, 2004.

P. Cavalcante, M. Barberis, M. Cannone, F. Baggi, C. Antozzi et al., Detection of poliovirus-infected macrophages in thymus of patients with myasthenia gravis, Neurology, vol.74, pp.1118-1126, 2010.

P. Cavalcante, B. Serafini, B. Rosicarelli, L. Maggi, M. Barberis et al., Epstein-Barr virus persistence and reactivation in myasthenia gravis thymus, Ann Neurol, vol.67, pp.726-738, 2010.

M. A. Cron, S. Maillard, F. Delisle, N. Samson, F. Truffault et al., Analysis of microRNA expression in the thymus of Myasthenia Gravis patients opens new research avenues, Autoimmun Rev, vol.17, pp.588-600, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01844365

P. Cufi, N. Dragin, N. Ruhlmann, J. M. Weiss, E. Fadel et al., Central role of interferon-beta in thymic events leading to myasthenia gravis, J Autoimmun, vol.52, pp.44-52, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01514459

P. Cufi, N. Dragin, J. M. Weiss, P. Martinez-martinez, D. Baets et al., Implication of double-stranded RNA signaling in the etiology of autoimmune myasthenia gravis, Ann Neurol, vol.73, pp.281-293, 2013.

N. E. Gilhus, Myasthenia Gravis, N Engl J Med, vol.375, pp.2570-2581, 2016.

N. E. Gilhus, G. O. Skeie, F. Romi, K. Lazaridis, P. Zisimopoulou et al., Myasthenia gravisautoantibody characteristics and their implications for therapy, Nat Rev Neurol, vol.12, pp.259-268, 2016.

A. Gradolatto, D. Nazzal, M. Foti, J. Bismuth, F. Truffault et al., Defects of immunoregulatory mechanisms in myasthenia gravis: role of IL-17, Ann N Y Acad Sci, vol.1274, pp.40-47, 2012.

P. K. Gregersen, R. Kosoy, A. T. Lee, J. Lamb, J. Sussman et al., Risk for myasthenia gravis maps to a (151) Pro-->Ala change in TNIP1 and to human leukocyte antigen-B*08, Ann Neurol, vol.72, pp.927-935, 2012.

N. E. Gilhus and . Myasthenia-gravis, N Engl J Med, vol.375, issue.26, pp.2570-81, 2016.

S. Berrih-aknin, N. Ruhlmann, and J. Bismuth, CCL21 overexpressed on lymphatic vessels drives thymic hyperplasia in myasthenia, Ann Neurol, vol.66, issue.4, pp.521-552, 2009.

J. M. Weiss, P. Cufi, and J. Bismuth, SDF-1/CXCL12 recruits B cells and antigen-presenting cells to the thymus of autoimmune myasthenia gravis patients, Immunobiology, vol.218, issue.3, pp.373-81, 2013.

M. A. Cron, S. Maillard, and J. Villegas, Thymus involvement in early-onset myasthenia gravis
URL : https://hal.archives-ouvertes.fr/hal-01789833

, Ann N Y Acad Sci, vol.1412, issue.1, pp.137-182, 2018.

A. Vincent and J. Newsom-davis, Acetylcholine receptor antibody as a diagnostic test for myasthenia gravis: results in 153 validated cases and 2967 diagnostic assays, J Neurol Neurosurg Psychiatry, vol.48, issue.12, pp.1246-52, 1985.

F. Truffault, V. De-montpreville, B. Eymard, T. Sharshar, L. Panse et al., Thymic Germinal Centers and Corticosteroids in Myasthenia Gravis: an Immunopathological Study in 1035 Cases and a Critical Review, Clin Rev Allergy Immunol, vol.52, issue.1, pp.108-132, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01338400

A. Meraouna, G. Cizeron-clairac, and R. L. Panse, The chemokine CXCL13 is a key molecule in autoimmune myasthenia gravis, Blood, vol.108, issue.2, pp.432-472, 2006.

G. I. Wolfe, H. J. Kaminski, and I. B. Aban, Randomized Trial of Thymectomy in Myasthenia Gravis, N Engl J Med, vol.375, issue.6, pp.511-533, 2016.

T. Punga, L. Panse, R. Andersson, M. Truffault, F. Berrih-aknin et al., Circulating miRNAs in myasthenia gravis: miR-150-5p as a new potential biomarker, Ann Clin Transl Neurol, vol.1, issue.1, pp.49-58, 2014.

L. Sabre, P. Maddison, G. Sadalage, P. A. Ambrose, and A. R. Punga, Circulating microRNA miR-21-5p, miR-150-5p and miR-30e-5p correlate with clinical status in late onset myasthenia gravis, J Neuroimmunol, 2018.

B. Zhou, S. Wang, C. Mayr, D. P. Bartel, and H. F. Lodish, miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely, Proc Natl Acad Sci, vol.104, issue.17, pp.7080-7085, 2007.

C. Xiao, D. P. Calado, and G. Galler, MiR-150 Controls B Cell Differentiation by Targeting the Transcription Factor c-Myb, Cell, vol.131, issue.1, pp.146-59, 2007.

N. L. Smith, E. M. Wissink, A. Grimson, and B. D. Rudd, miR-150 Regulates Differentiation and Cytolytic Effector Function in CD8+ T cells, Sci Rep, vol.5, p.16399, 2015.

N. A. Bezman, T. Chakraborty, T. Bender, and L. L. Lanier, miR-150 regulates the development of NK and iNKT cells, J Exp Med, vol.208, issue.13, pp.2717-2748, 2011.

B. Kroesen, N. Teteloshvili, and K. Smigielska-czepiel, Immuno-miRs: Critical regulators of Tcell development, function and ageing, Immunology, 2014.

P. De-candia, T. A. Gorletta, and T. , Intracellular Modulation, Extracellular Disposal and Serum Increase of MiR-150 Mark Lymphocyte Activation, PLoS ONE, vol.8, issue.9, p.75348, 2013.

S. Belkaya, R. L. Silge, and A. R. Hoover, Dynamic Modulation of Thymic MicroRNAs in Response to Stress, PLoS ONE, vol.6, issue.11, p.27580, 2011.

A. Palagani, K. Op-de-beeck, and S. Naulaerts, Ectopic MicroRNA-150-5p Transcription Sensitizes Glucocorticoid Therapy Response in MM1S Multiple Myeloma Cells but Fails to Overcome Hormone Therapy Resistance in MM1R Cells, PLoS ONE, vol.9, issue.12, p.113842, 2014.

R. Gandhi, B. Healy, and T. Gholipour, Circulating MicroRNAs as biomarkers for disease staging in multiple sclerosis, Ann Neurol, vol.73, issue.6, pp.729-769, 2013.

S. U. Munshi, H. Panda, P. Holla, B. B. Rewari, and S. Jameel, MicroRNA-150 Is a Potential Biomarker of HIV/AIDS Disease Progression and Therapy, PLoS ONE, vol.9, issue.5, p.95920, 2014.

S. Wang, J. Yin, and T. Li, Upregulated circulating miR-150 is associated with the risk of intrahepatic cholangiocarcinoma, Oncol Rep, vol.33, issue.2, pp.819-844, 2015.

Y. Ma, P. Zhang, and F. Wang, miR-150 as a potential biomarker associated with prognosis and therapeutic outcome in colorectal cancer, Gut, vol.61, issue.10, pp.1447-53, 2012.

I. Alevizos, A. S. Turner, R. J. Illei, and G. G. , MicroRNA expression profiles as biomarkers of minor salivary gland inflammation and dysfunction in Sjogren's syndrome, Arthritis Rheum, vol.63, issue.2, pp.535-579, 2011.

H. Zhou, S. A. Hasni, and P. Perez, miR-150 promotes renal fibrosis in lupus nephritis by downregulating SOCS1, J Am Soc Nephrol, vol.24, issue.7, pp.1073-87, 2013.

P. De-candia, T. A. Pagani, M. Abrignani, and S. , Serum microRNAs as biomarkers of human lymphocyte activation in health and disease, Front Immunol, vol.5, 2014.

N. Dragin, J. Bismuth, and G. Cizeron-clairac, Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases, J Clin Invest, vol.126, issue.4, pp.1525-1562, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01310502

A. V. Gualeni, C. C. Volpi, A. Carbone, and A. Gloghini, A novel semi-automated in situ hybridisation protocol for microRNA detection in paraffin embedded tissue sections, J Clin Pathol, vol.68, issue.8, pp.661-665, 2015.

D. English and B. R. Andersen, Single-step separation of red blood cells. Granulocytes and mononuclear leukocytes on discontinuous density gradients of Ficoll-Hypaque, J Immunol Methods, vol.5, issue.3, pp.249-52, 1974.

M. Takahashi, V. R. Contu, and C. Kabuta, SIDT2 mediates gymnosis, the uptake of naked singlestranded oligonucleotides into living cells, RNA Biol, vol.14, issue.11, pp.1534-1577, 2017.

Z. Chen, E. Stelekati, and M. Kurachi, miR-150 Regulates Memory CD8 T Cell Differentiation via c-Myb, Cell Rep, vol.20, issue.11, pp.2584-97, 2017.

L. P. Tan, M. Wang, and J. L. Robertus, miRNA profiling of B-cell subsets: specific miRNA profile for germinal center B cells with variation between centroblasts and centrocytes, Lab Invest, vol.89, issue.6, pp.708-724, 2009.

X. Wang, N. Angelis, and S. L. Thein, MYB -A regulatory factor in hematopoiesis, Gene, vol.665, pp.6-17, 2018.

M. Gustafsson, D. R. Gawel, and L. Alfredsson, A validated gene regulatory network and GWAS identifies early regulators of T cell-associated diseases, Sci Transl Med, vol.7, issue.313, pp.313-178, 2015.

F. Truffault, S. Cohen-kaminsky, I. Khalil, P. Levasseur, and S. Berrih-aknin, Altered intrathymic T-cell repertoire in human myasthenia gravis, Ann Neurol, vol.41, issue.6, pp.731-772, 1997.

T. P. Bender, C. S. Kremer, M. Kraus, T. Buch, and K. Rajewsky, Critical functions for c-Myb at three checkpoints during thymocyte development, Nat Immunol, vol.5, issue.7, pp.721-730, 2004.

C. J. Molin, L. Sabre, C. Weis, T. Punga, and A. R. Punga, Thymectomy lowers the myasthenia gravis biomarker miR-150-5p, Neurol Neuroimmunol Neuroinflamm, vol.5, issue.3, 2018.

A. P. Lopes, M. R. Hillen, and E. Chouri, Circulating small non-coding RNAs reflect IFN status and B cell hyperactivity in patients with primary Sjogren's syndrome, PLoS ONE, vol.13, issue.2, p.193157, 2018.

H. Li and G. Ding, Elevated Serum Inflammatory Cytokines in Lupus Nephritis Patients, in Association with Promoted hsa-miR-125a, Clin Lab, vol.62, issue.4, pp.631-639, 2016.

B. Stamatopoulos, M. Van-damme, and E. Crompot, Opposite prognostic significance of cellular and serum circulating microRNA-150 in Chronic Lymphocytic Leukemia patients, Mol Med, 2015.

J. Q. Chen, G. Papp, and S. Poliska, MicroRNA expression profiles identify disease-specific alterations in systemic lupus erythematosus and primary Sjogren's syndrome, PLoS ONE, vol.12, issue.3, p.174585, 2017.

J. Li, Y. Wan, and Q. Guo, Altered microRNA expression profile with miR-146a upregulation in CD4+ T cells from patients with rheumatoid arthritis, Arthritis Res Ther, vol.12, issue.3, p.81, 2010.

M. C. Lu, N. S. Lai, and H. C. Chen, Decreased microRNA(miR)-145 and increased miR-224 expression in T cells from patients with systemic lupus erythematosus involved in lupus immunopathogenesis, Clin Exp Immunol, vol.171, issue.1, pp.91-100, 2013.

J. Huang, F. Wang, and E. Argyris, Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes, Nat Med, vol.13, issue.10, pp.1241-1248, 2007.

B. C. King, J. L. Esguerra, E. Golec, L. Eliasson, C. Kemper et al., CD46 Activation Regulates miR-150-Mediated Control of GLUT1 Expression and Cytokine Secretion in Human CD4+ T Cells, J Immunol, 2016.

J. D. Arroyo, J. R. Chevillet, and E. M. Kroh, Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types, Proc Natl Acad Sci U S A, vol.108, issue.12, p.357, 2011.

D. M. Pegtel, K. Cosmopoulos, and D. A. Thorley-lawson, Functional delivery of viral miRNAs via exosomes, Proc Natl Acad Sci U S A, vol.107, issue.14, pp.6328-6361, 2010.

A. Dias-;-d'a-i-o and E. Et-e, Effe to Regulato T Cell Diffe e tiatio a d I u e Homeostasis Depend on the Transcription Factor Myb, Immunity, vol.46, issue.1, pp.78-91, 2017.

K. T. Greig, S. Carotta, and S. L. Nutt, Critical roles for c-Myb in hematopoietic progenitor cells, Semin Immunol, vol.20, issue.4, pp.247-56, 2008.

J. G. Izant and H. Weintraub, Inhibition of thymidine kinase gene expression by anti-sense RNA: a molecular approach to genetic analysis, Cell, vol.36, pp.1007-1022, 1984.

A. R. Van-der-krol, P. E. Lenting, J. Veenstra, I. M. Van-der-meer, R. E. Koes et al., An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation, Nature, vol.333, p.866, 1988.

C. Napoli, C. Lemieux, and R. Jorgensen, Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans, Plant Cell, vol.2, pp.279-89, 1990.

A. Fire, D. Albertson, S. W. Harrison, and D. G. Moerman, Production of antisense RNA leads to effective and specific inhibition of gene expression in C. elegans muscle, Development, vol.113, pp.503-517, 1991.

B. Wightman, I. Ha, and G. Ruvkun, Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans, Cell, vol.75, pp.855-62, 1993.

R. C. Lee, R. L. Feinbaum, and A. V. , The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, vol.75, pp.843-54, 1993.
URL : https://hal.archives-ouvertes.fr/in2p3-00597159

A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature, vol.391, pp.806-817, 1998.

A. Khvorova, A. Reynolds, and S. D. Jayasena, Functional siRNAs and miRNAs Exhibit Strand Bias, Cell, vol.115, pp.209-225, 2003.

M. S. Ebert and P. A. Sharp, Roles for microRNAs in conferring robustness to biological processes, Cell, vol.149, pp.515-539, 2012.

I. Daugaard and T. B. Hansen, Biogenesis and Function of Ago-Associated RNAs, Trends Genet, vol.33, pp.208-227, 2017.

W. Jia, W. Chen, and J. Kang, The functions of microRNAs and long non-coding RNAs in embryonic and induced pluripotent stem cells, Genomics Proteomics Bioinformatics, vol.11, pp.275-83, 2013.

M. Lagos-quintana, R. Rauhut, W. Lendeckel, and T. Tuschl, Identification of novel genes coding for small expressed RNAs, Science, vol.294, pp.853-861, 2001.

A. V. Bartel, B. Bartel, D. P. Burge, C. B. Carrington, J. C. Chen et al., A uniform system for microRNA annotation, RNA, vol.9, pp.277-286, 2003.

S. Roush and F. J. Slack, The let-7 family of microRNAs, Trends Cell Biol, vol.18, pp.505-521, 2008.

M. Ha and V. N. Kim, Regulation of microRNA biogenesis, Nat Rev Mol Cell Biol, vol.15, pp.509-533, 2014.

T. A. Nguyen, M. H. Jo, Y. G. Choi, J. Park, S. C. Kwon et al., Functional Anatomy of the Human Microprocessor, Cell, vol.161, pp.1374-87, 2015.

E. Lund, S. Guttinger, A. Calado, J. E. Dahlberg, and U. Kutay, Nuclear export of microRNA precursors, Science, vol.303, pp.95-103, 2004.

R. Yi, Y. Qin, I. G. Macara, and B. R. Cullen, Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs, Genes Dev, vol.17, pp.3011-3017, 2003.

W. Ross, C. Tambe, A. Kidwell-mary, A. , N. Cameron et al., Dicer-TRBP Complex Formation Ensures Accurate Mammalian MicroRNA Biogenesis, Mol Cell, vol.57, pp.397-407, 2015.

G. Meister, Argonaute proteins: functional insights and emerging roles, Nat Rev Genet, vol.14, pp.447-59, 2013.

S. Iwasaki, M. Kobayashi, M. Yoda, Y. Sakaguchi, S. Katsuma et al., Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes, Mol Cell, vol.39, pp.292-301, 2010.

D. S. Schwarz, G. Hutvagner, T. Du, Z. Xu, N. Aronin et al., Asymmetry in the assembly of the RNAi enzyme complex, Cell, vol.115, pp.199-208, 2003.

K. Rogers and X. Chen, Biogenesis, turnover, and mode of action of plant microRNAs, Plant Cell, vol.25, pp.2383-99, 2013.

W. Filipowicz, S. N. Bhattacharyya, and N. Sonenberg, Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight, Nat Rev Genet, vol.9, pp.102-116, 2008.

S. L. Ameres and P. D. Zamore, Diversifying microRNA sequence and function, Nat Rev Mol Cell Biol, vol.14, pp.475-88, 2013.

K. Okamura, J. W. Hagen, H. Duan, D. M. Tyler, and E. C. Lai, The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila, Cell, vol.130, pp.89-100, 2007.

J. G. Ruby, C. H. Jan, and D. P. Bartel, Intronic microRNA precursors that bypass Drosha processing, Nature, vol.448, pp.83-89, 2007.

M. S. Jurica and M. J. Moore, Pre-mRNA splicing: awash in a sea of proteins, Mol Cell, vol.12, pp.5-14, 2003.

J. O. Westholm and E. C. Lai, Mirtrons: microRNA biogenesis via splicing, Biochimie, vol.93, pp.1897-904, 2011.

J. Winter, S. Jung, S. Keller, R. I. Gregory, and S. Diederichs, Many roads to maturity: microRNA biogenesis pathways and their regulation, Nat Cell Biol, vol.11, pp.228-262, 2009.

J. S. Yang, T. Maurin, N. Robine, K. D. Rasmussen, K. L. Jeffrey et al., Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis, Proc Natl Acad Sci U S A, vol.107, pp.15163-15171, 2010.

S. Cheloufi, D. Santos, C. O. Chong, M. M. Hannon, and G. J. , A dicer-independent miRNA biogenesis pathway that requires Ago catalysis, Nature, vol.465, pp.584-593, 2010.

D. Cifuentes, H. Xue, D. W. Taylor, H. Patnode, Y. Mishima et al., A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity, Science, vol.328, pp.1694-1702, 2010.

M. Yoda, D. Cifuentes, N. Izumi, Y. Sakaguchi, T. Suzuki et al., Poly(A)-specific ribonuclease mediates 3'-end trimming of Argonaute2-cleaved precursor microRNAs, Cell Rep, vol.5, pp.715-741, 2013.

Z. Li and T. M. Rana, Therapeutic targeting of microRNAs: current status and future challenges, Nat Rev Drug Discov, vol.13, pp.622-660, 2014.

T. B. Hansen, M. T. Veno, T. I. Jensen, A. Schaefer, C. K. Damgaard et al., Argonauteassociated short introns are a novel class of gene regulators, Nat Commun, vol.7, p.11538, 2016.

F. Ozsolak, L. L. Poling, Z. Wang, H. Liu, X. S. Liu et al., Chromatin structure analyses identify miRNA promoters, Genes Dev, vol.22, pp.3172-83, 2008.

C. Baer, R. Claus, and C. Plass, Genome-wide epigenetic regulation of miRNAs in cancer, Cancer Res, vol.73, pp.473-480, 2013.

A. M. Monteys, R. M. Spengler, J. Wan, L. Tecedor, K. A. Lennox et al., Structure and activity of putative intronic miRNA promoters, RNA, vol.16, pp.495-505, 2010.

B. N. Davis-dusenbery and A. Hata, Mechanisms of control of microRNA biogenesis, J Biochem, vol.148, pp.381-92, 2010.

G. K. Scott, M. D. Mattie, C. E. Berger, S. C. Benz, and C. C. Benz, Rapid alteration of microRNA levels by histone deacetylase inhibition, Cancer Res, vol.66, pp.1277-81, 2006.

X. Tang, Y. Zhang, L. Tucker, and B. Ramratnam, Phosphorylation of the RNase III enzyme Drosha at Serine300 or Serine302 is required for its nuclear localization, Nucleic Acids Res, vol.38, pp.6610-6619, 2010.

K. M. Herbert, G. Pimienta, S. J. Degregorio, A. Alexandrov, and J. A. Steitz, Phosphorylation of DGCR8 increases its intracellular stability and induces a progrowth miRNA profile, Cell Rep, vol.5, pp.1070-81, 2013.

X. Tang, M. Li, L. Tucker, and B. Ramratnam, Glycogen synthase kinase 3 beta (GSK3beta) phosphorylates the RNAase III enzyme Drosha at S300 and S302, PLoS ONE, vol.6, p.20391, 2011.

Z. Paroo, X. Ye, S. Chen, and Q. Liu, Phosphorylation of the human microRNA-generating complex mediates MAPK/Erk signaling, Cell, vol.139, pp.112-134, 2009.

T. Wada, J. Kikuchi, and Y. Furukawa, Histone deacetylase 1 enhances microRNA processing via deacetylation of DGCR8, EMBO Rep, vol.13, pp.142-151, 2012.

R. I. Gregory, K. P. Yan, G. Amuthan, T. Chendrimada, B. Doratotaj et al., The Microprocessor complex mediates the genesis of microRNAs, Nature, vol.432, pp.235-275, 2004.

J. L. Wiesen and T. B. Tomasi, Dicer is regulated by cellular stresses and interferons, Mol Immunol, vol.46, pp.1222-1230, 2009.

H. Ota, M. Sakurai, R. Gupta, L. Valente, B. Wulff et al., ADAR1 Forms a Complex with Dicer to Promote MicroRNA Processing and RNA-Induced Gene Silencing, Cell, vol.153, pp.575-89, 2013.

S. W. Knight and B. L. Bass, The role of RNA editing by ADARs in RNAi, Mol Cell, vol.10, pp.809-826, 2002.

S. R. Horman, M. M. Janas, C. Litterst, B. Wang, I. J. Macrae et al., Akt-mediated phosphorylation of argonaute 2 downregulates cleavage and upregulates translational repression of MicroRNA targets, Mol Cell, vol.50, pp.356-67, 2013.

Y. Zeng, H. Sankala, X. Zhang, and P. R. Graves, Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies, Biochem J, vol.413, pp.429-465, 2008.

J. Shen, W. Xia, Y. B. Khotskaya, L. Huo, K. Nakanishi et al., EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2, Nature, vol.497, pp.383-390, 2013.

A. K. Leung, S. Vyas, J. E. Rood, A. Bhutkar, P. A. Sharp et al., ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm, Mol Cell, vol.42, pp.489-99, 2011.

G. J. Seo, R. P. Kincaid, T. Phanaksri, J. M. Burke, J. M. Pare et al., Reciprocal inhibition between intracellular antiviral signaling and the RNAi machinery in mammalian cells, Cell Host Microbe, vol.14, pp.435-480, 2013.

D. P. Bartel, MicroRNAs: target recognition and regulatory functions, Cell, vol.136, pp.215-248, 2009.

J. Brennecke, A. Stark, R. B. Russell, and S. M. Cohen, Principles of MicroRNA-Target Recognition, PLoS Biol, vol.3, p.85, 2005.

J. R. Lytle, T. A. Yario, and J. A. Steitz, Target mRNAs are repressed as efficiently by microRNAbinding sites in the 5' UTR as in the 3' UTR, Proc Natl Acad Sci, vol.104, pp.9667-72, 2007.

L. P. Lim, N. C. Lau, P. Garrett-engele, A. Grimson, J. M. Schelter et al., Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs, Nature, vol.433, pp.769-73, 2005.

A. Grimson, K. Farh, W. K. Johnston, P. Garrett-engele, L. P. Lim et al., MicroRNA Targeting Specificity in Mammals: Determinants beyond Seed Pairing, Mol Cell, vol.27, pp.91-105, 2007.

B. P. Lewis, I. H. Shih, M. W. Jones-rhoades, D. P. Bartel, and C. B. Burge, Prediction of mammalian microRNA targets, Cell, vol.115, pp.787-98, 2003.

R. C. Friedman, K. K. Farh, C. B. Burge, and D. P. Bartel, Most mammalian mRNAs are conserved targets of microRNAs, Genome Res, vol.19, pp.92-105, 2009.

M. Selbach, B. Schwanhausser, N. Thierfelder, Z. Fang, R. Khanin et al., Widespread changes in protein synthesis induced by microRNAs, Nature, vol.455, pp.58-63, 2008.

Á. L. Riffo-campos, I. Riquelme, and P. Brebi-mieville, Tools for Sequence-Based miRNA Target Prediction: What to Choose?, Int J Mol Sci, vol.17, 1987.

A. J. Enright, B. John, U. Gaul, T. Tuschl, C. Sander et al., MicroRNA targets in Drosophila, Genome Biol, vol.5, p.1, 2003.

B. John, A. J. Enright, A. Aravin, T. Tuschl, C. Sander et al., Human MicroRNA targets, PLoS Biol, vol.2, p.363, 2004.

M. Kiriakidou, P. T. Nelson, A. Kouranov, P. Fitziev, C. Bouyioukos et al., A combined computational-experimental approach predicts human microRNA targets, Genes Dev, vol.18, pp.1165-78, 2004.

E. Huntzinger and E. Izaurralde, Gene silencing by microRNAs: contributions of translational repression and mRNA decay, Nat Rev Genet, vol.12, pp.99-110, 2011.

S. Jonas and E. Izaurralde, Towards a molecular understanding of microRNA-mediated gene silencing, Nat Rev Genet, vol.16, pp.421-454, 2015.

J. Liu, F. V. Rivas, J. Wohlschlegel, J. R. Yates, R. Parker et al., A role for the P-body component GW182 in microRNA function, Nat Cell Biol, vol.7, pp.1261-1267, 2005.

E. Wahle and G. S. Winkler, RNA decay machines: deadenylation by the Ccr4-not and Pan2-Pan3 complexes, Biochim Biophys Acta, vol.1829, pp.561-70, 2013.

J. Lim, M. Ha, H. Chang, S. C. Kwon, D. K. Simanshu et al., Uridylation by TUT4 and TUT7 marks mRNA for degradation, Cell, vol.159, pp.1365-76, 2014.

S. H. Ling, R. Qamra, and H. Song, Structural and functional insights into eukaryotic mRNA decapping, Wiley Interdiscip Rev RNA, vol.2, pp.193-208, 2011.

H. O. Iwakawa and Y. Tomari, The Functions of MicroRNAs: mRNA Decay and Translational Repression, Trends Cell Biol, vol.25, pp.651-65, 2015.

L. Zekri, D. Kuzuoglu-ozturk, and E. Izaurralde, GW182 proteins cause PABP dissociation from silenced miRNA targets in the absence of deadenylation, EMBO J, vol.32, pp.1052-65, 2013.

A. Cooke, A. Prigge, and M. Wickens, Translational repression by deadenylases, J Biol Chem, vol.285, pp.28506-28519, 2010.

S. Niinuma, T. Fukaya, and Y. Tomari, CCR4 and CAF1 deadenylases have an intrinsic activity to remove the post-poly(A) sequence, RNA, vol.22, pp.1550-1559, 2016.

D. T. Humphreys, B. J. Westman, D. I. Martin, and T. Preiss, MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function, Proc Natl Acad Sci U S A, vol.102, pp.16961-16967, 2005.

C. P. Petersen, M. E. Bordeleau, J. Pelletier, and P. A. Sharp, Short RNAs repress translation after initiation in mammalian cells, Mol Cell, vol.21, pp.533-575, 2006.

S. Nottrott, M. J. Simard, and J. D. Richter, Human let-7a miRNA blocks protein production on actively translating polyribosomes, Nat Struct Mol Biol, vol.13, pp.1108-1122, 2006.

P. A. Maroney, Y. Yu, J. Fisher, and T. W. Nilsen, Evidence that microRNAs are associated with translating messenger RNAs in human cells, Nat Struct Mol Biol, vol.13, pp.1102-1109, 2006.

H. O. Iwakawa and Y. Tomari, Molecular insights into microRNA-mediated translational repression in plants, Mol Cell, vol.52, pp.591-601, 2013.

T. Fukaya, H. O. Iwakawa, and Y. Tomari, MicroRNAs block assembly of eIF4F translation initiation complex in Drosophila, Mol Cell, vol.56, pp.67-78, 2014.

T. Fukaya and Y. Tomari, MicroRNAs mediate gene silencing via multiple different pathways in drosophila, Mol Cell, vol.48, pp.825-861, 2012.

A. Stark, J. Brennecke, N. Bushati, R. B. Russell, and S. M. Cohen, Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution, Cell, vol.123, pp.1133-1179, 2005.

J. A. Vidigal and A. Ventura, The biological functions of miRNAs: lessons from in vivo studies, Trends Cell Biol, vol.25, pp.137-184, 2015.

E. A. Miska, E. Alvarez-saavedra, A. L. Abbott, N. C. Lau, A. B. Hellman et al., Most Caenorhabditis elegans microRNAs are individually not essential for development or viability, PLoS Genet, vol.3, p.215, 2007.

J. M. Schmiedel, S. L. Klemm, Y. Zheng, A. Sahay, N. Bluthgen et al., MicroRNA control of protein expression noise, Science, vol.348, pp.128-160, 2015.

M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain, Stochastic gene expression in a single cell, Science, vol.297, pp.1183-1189, 2002.

E. M. Ozbudak, M. Thattai, I. Kurtser, A. D. Grossman, and A. Van-oudenaarden, Regulation of noise in the expression of a single gene, Nat Genet, vol.31, pp.69-73, 2002.

H. Guo, N. T. Ingolia, J. S. Weissman, and D. P. Bartel, Mammalian microRNAs predominantly act to decrease target mRNA levels, Nature, vol.466, pp.835-875, 2010.

U. Alon, Network motifs: theory and experimental approaches, Nat Rev Genet, vol.8, pp.450-61, 2007.

M. P. Gantier, C. E. Mccoy, I. Rusinova, D. Saulep, D. Wang et al., Analysis of microRNA turnover in mammalian cells following Dicer1 ablation, Nucleic Acids Res, vol.39, pp.5692-703, 2011.

H. W. Hwang, E. A. Wentzel, and J. T. Mendell, A hexanucleotide element directs microRNA nuclear import, Science, vol.315, pp.97-100, 2007.

J. Krol, V. Busskamp, I. Markiewicz, M. B. Stadler, S. Ribi et al., Characterizing lightregulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs, Cell, vol.141, pp.618-649, 2010.

P. Rajasethupathy, F. Fiumara, R. Sheridan, D. Betel, S. V. Puthanveettil et al., Characterization of small RNAs in Aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB, Neuron, vol.63, pp.803-820, 2009.

Z. S. Kai and A. E. Pasquinelli, MicroRNA assassins: factors that regulate the disappearance of miRNAs, Nat Struct Mol Biol, vol.17, pp.5-10, 2010.

V. Ramachandran and X. Chen, Degradation of microRNAs by a family of exoribonucleases in Arabidopsis, Science, vol.321, pp.1490-1492, 2008.

S. Chatterjee and H. Grosshans, Active turnover modulates mature microRNA activity in Caenorhabditis elegans, Nature, vol.461, pp.546-555, 2009.

, International Programme on Chemical Safety Biomarkers in Risk Assessment: Validity and Validation, 2001.

A. Gallo, M. Tandon, I. Alevizos, and G. G. Illei, The Majority of MicroRNAs Detectable in Serum and Saliva Is Concentrated in Exosomes, PLoS ONE, vol.7, p.30679, 2012.

G. Raposo and W. Stoorvogel, Extracellular vesicles: exosomes, microvesicles, and friends, J Cell Biol, vol.200, pp.373-83, 2013.

X. Chen, Y. Ba, L. Ma, X. Cai, Y. Yin et al., Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases, Cell Res, vol.18, pp.997-1006, 2008.

C. Thery, M. Ostrowski, and E. Segura, Membrane vesicles as conveyors of immune responses, Nat Rev Immunol, vol.9, pp.581-93, 2009.

N. Kosaka, H. Iguchi, and T. Ochiya, Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis, Cancer Sci, vol.101, pp.2087-92, 2010.

A. Picascia, V. Grimaldi, O. Pignalosa, D. Pascale, M. R. Schiano et al., Epigenetic control of autoimmune diseases: from bench to bedside, Clin Immunol, vol.157, pp.1-15, 2015.

S. U. Munshi, H. Panda, P. Holla, B. B. Rewari, and S. Jameel, MicroRNA-150 Is a Potential Biomarker of HIV/AIDS Disease Progression and Therapy, PLoS ONE, vol.9, p.95920, 2014.

T. Punga, L. Panse, R. Andersson, M. Truffault, F. Berrih-aknin et al., Circulating miRNAs in myasthenia gravis: miR-150-5p as a new potential biomarker, Ann Clin Transl Neurol, vol.1, pp.49-58, 2014.

M. S. Ebert, J. R. Neilson, and P. A. Sharp, MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells, Nat Methods, vol.4, pp.721-727, 2007.

M. S. Ebert and P. A. Sharp, Emerging roles for natural microRNA sponges, Curr Biol, vol.20, pp.858-61, 2010.

T. B. Hansen, T. I. Jensen, B. H. Clausen, J. B. Bramsen, B. Finsen et al., Natural RNA circles function as efficient microRNA sponges, Nature, vol.495, pp.384-392, 2013.

Y. Tay, L. Kats, L. Salmena, D. Weiss, S. M. Tan et al., Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs, Cell, vol.147, pp.344-57, 2011.

M. Cesana, D. Cacchiarelli, I. Legnini, T. Santini, O. Sthandier et al., A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA, Cell, vol.147, pp.358-69, 2011.

G. Hutvagner, M. J. Simard, C. C. Mello, and P. D. Zamore, Sequence-specific inhibition of small RNA function, PLoS Biol, vol.2, p.98, 2004.

G. Meister, M. Landthaler, Y. Dorsett, and T. Tuschl, Sequence-specific inhibition of microRNA-and siRNA-induced RNA silencing, RNA, vol.10, pp.544-50, 2004.

R. Rupaimoole and F. J. Slack, MicroRNA therapeutics: towards a new era for the management of cancer and other diseases, Nat Rev Drug Discov, vol.16, pp.203-225, 2017.

K. A. Lennox and M. A. Behlke, A direct comparison of anti-microRNA oligonucleotide potency, Pharm Res, vol.27, pp.1788-99, 2010.

J. Kurreck, E. Wyszko, C. Gillen, and V. A. Erdmann, Design of antisense oligonucleotides stabilized by locked nucleic acids, Nucleic Acids Res, vol.30, pp.1911-1919, 2002.

H. L. Janssen, H. W. Reesink, E. J. Lawitz, S. Zeuzem, M. Rodriguez-torres et al., Treatment of HCV infection by targeting microRNA, N Engl J Med, vol.368, pp.1685-94, 2013.

K. Gumireddy, D. D. Young, X. Xiong, J. B. Hogenesch, Q. Huang et al., Small-molecule inhibitors of microrna miR-21 function, Angew Chem Int Ed Engl, vol.47, pp.7482-7486, 2008.

S. P. Velagapudi, S. M. Gallo, and M. D. Disney, Sequence-based design of bioactive small molecules that target precursor microRNAs, Nat Chem Biol, vol.10, pp.291-298, 2014.

S. Melo, A. Villanueva, C. Moutinho, V. Davalos, R. Spizzo et al., Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing, Proc Natl Acad Sci U S A, vol.108, pp.4394-4403, 2011.

H. Y. Jin, A. Gonzalez-martin, A. V. Miletic, M. Lai, S. Knight et al., Transfection of microRNA Mimics Should Be Used with Caution, Front Genet, vol.6, p.340, 2015.

V. Baumann and J. Winkler, miRNA-based therapies: strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents, Future Med Chem, vol.6, pp.1967-84, 2014.

Y. Akao, A. Iio, T. Itoh, S. Noguchi, Y. Itoh et al., Microvesicle-mediated RNA molecule delivery system using monocytes/macrophages, Mol Ther, vol.19, pp.395-404, 2011.

L. Alvarez-erviti, Y. Seow, H. Yin, C. Betts, S. Lakhal et al., Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes, Nat Biotechnol, vol.29, pp.341-346, 2011.

F. Boisgerault, D. A. Gross, M. Ferrand, J. Poupiot, S. Darocha et al., Prolonged gene expression in muscle is achieved without active immune tolerance using microrRNA 142.3p-regulated rAAV gene transfer, Hum Gene Ther, vol.24, pp.393-405, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02338036

R. Hulsbrink and H. S. Lambert, Eaton myasthenic syndrome -diagnosis, pathogenesis and therapy, Clin Neurophysiol, vol.125, pp.2328-2364, 2014.

H. Marsteller, The first american case of myasthenia gravis, Arch Neurol, vol.45, pp.185-192, 1988.

T. Willis, De anima brutorum quae hominis vitalis ac sentitiva est : exercitationes duae. Londini : Prostant apud Gulielm. Wells, & Rob. Scot, p.1672

A. Vincent, Unravelling the pathogenesis of myasthenia gravis, Nat Rev Immunol, vol.2, p.797, 2002.

S. Goldflam, Ueber einen scheinbar heilbaren bulbärparalytischen Symptomencomplex mit Betheiligung der Extremitäten, Deutsche Zeitschrift fuer Nervenheilkunde, vol.4, pp.312-52, 1893.

W. Erb, Zur kasuistik der bulbären lähmungen, Arch Psychiatr Nervenkr, vol.9, pp.336-50, 1879.

S. Wilks, On cerebritis, hysteria, and bulbar paralysis, as illustrative of arrest function of the cerebrospinal centers. Guy's Hosp Rep, vol.1877, pp.7-55

F. Jolly, Ueber myasthenia gravis pseudoparalytica, Berl Klin Wschr, vol.32, pp.1-7, 1895.

M. B. Walker, Treatment of myasthenia gravis with physostigmine, The Lancet, vol.223, pp.1200-1201, 1934.

C. C. Chang and C. Y. Lee, Isolation of neurotoxins from the venom of Bungarus multicinctus and their modes of neuromuscular blocking action, Arch Int Pharmacodyn Ther, vol.144, pp.241-57, 1963.

D. M. Fambrough, D. B. Drachman, and S. Satyamurti, Neuromuscular Junction in Myasthenia Gravis: Decreased Acetylcholine Receptors, Science, vol.182, p.293, 1973.

J. Patrick and J. Lindstrom, Autoimmune response to acetylcholine receptor, Science, vol.180, pp.871-873, 1973.

A. Aharonov, O. Abramsky, R. Tarrab-hazdai, and S. Fuchs, Humoral antibodies to acetylcholine receptor in patients with myasthenia gravis, Lancet, vol.2, pp.340-342, 1975.

K. V. Toyka, D. B. Brachman, A. Pestronk, and I. Kao, Myasthenia gravis: passive transfer from man to mouse, Science, vol.190, pp.397-406, 1975.

A. J. Pinching and D. K. Peters, Remission of myasthenia gravis following plasma-exchange, Lancet, vol.2, pp.1373-1379, 1976.

K. Sahashi, A. G. Engel, E. H. Lambert, F. M. Howard, and J. , Ultrastructural localization of the terminal and lytic ninth complement component (C9) at the motor end-plate in myasthenia gravis, J Neuropathol Exp Neurol, vol.39, pp.160-72, 1980.

W. Hoch, J. Mcconville, S. Helms, J. Newsom-davis, A. Melms et al., Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies, Nat Med, vol.7, pp.365-373, 2001.

O. Higuchi, J. Hamuro, M. Motomura, and Y. Yamanashi, Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis, Ann Neurol, vol.69, pp.418-440, 2011.

M. Gautel, A. Lakey, D. P. Barlow, Z. Holmes, S. Scales et al., Titin antibodies in myasthenia gravis, Neurology, vol.43, p.1581, 1993.

M. Takamori, M. Motomura, N. Kawaguchi, Y. Nemoto, T. Hattori et al., Antiryanodine receptor antibodies and FK506 in myasthenia gravis, Neurology, vol.62, pp.1894-1900, 2004.

B. Zhang, C. Shen, B. Bealmear, S. Ragheb, W. Xiong et al., Autoantibodies to Agrin in Myasthenia Gravis Patients, PLoS ONE, vol.9, p.91816, 2014.

C. Gasperi, A. Melms, B. Schoser, Y. Zhang, J. Meltoranta et al., Anti-agrin autoantibodies in myasthenia gravis, Neurology, vol.82, pp.1976-83, 2014.

E. Gallardo, E. Martinez-hernandez, M. J. Titulaer, M. G. Huijbers, M. A. Martinez et al., Cortactin autoantibodies in myasthenia gravis, Autoimmun Rev, vol.13, pp.1003-1010, 2014.

A. S. Carr, C. R. Cardwell, P. O. Mccarron, and J. Mcconville, A systematic review of population based epidemiological studies in Myasthenia Gravis, BMC Neurol, vol.10, p.46, 2010.

P. Zisimopoulou, P. Evangelakou, J. Tzartos, K. Lazaridis, V. Zouvelou et al., A comprehensive analysis of the epidemiology and clinical characteristics of anti-LRP4 in myasthenia gravis, J Autoimmun, vol.52, pp.139-184, 2014.

L. H. Phillips, The epidemiology of myasthenia gravis, Ann N Y Acad Sci, vol.998, pp.407-419, 2003.

S. Berrih-aknin, M. Frenkian-cuvelier, and B. Eymard, Diagnostic and clinical classification of autoimmune myasthenia gravis, J Autoimmun, pp.143-151, 2014.

N. E. Gilhus and J. J. Verschuuren, Myasthenia gravis: subgroup classification and therapeutic strategies, Lancet Neurol, vol.14, pp.1023-1059, 2015.

M. I. Leite, S. Jacob, S. Viegas, J. Cossins, L. Clover et al., IgG1 antibodies to acetylcholine receptors in 'seronegative' myasthenia gravis, Brain, vol.131, pp.1940-52, 2008.

A. T. Heldal, G. E. Eide, F. Romi, J. F. Owe, and N. E. Gilhus, Repeated acetylcholine receptor antibody-concentrations and association to clinical myasthenia gravis development, PLoS ONE, vol.9, p.114060, 2014.

L. M. Chiang, B. T. Darras, and P. B. Kang, Juvenile myasthenia gravis, Muscle Nerve, vol.39, pp.423-454, 2009.

N. E. Gilhus, G. O. Skeie, F. Romi, K. Lazaridis, P. Zisimopoulou et al., Myasthenia gravis -autoantibody characteristics and their implications for therapy, Nat Rev Neurol, vol.12, pp.259-68, 2016.

L. Panse, R. Berrih-aknin, and S. , Autoimmune myasthenia gravis: autoantibody mechanisms and new developments on immune regulation, Curr Opin Neurol, vol.26, pp.569-76, 2013.

J. T. Guptill, D. B. Sanders, and A. Evoli, Anti-MuSK antibody myasthenia gravis: clinical findings and response to treatment in two large cohorts, Muscle Nerve, vol.44, pp.36-40, 2011.

M. G. Huijbers, W. Zhang, R. Klooster, E. H. Niks, M. B. Friese et al., MuSK IgG4 autoantibodies cause myasthenia gravis by inhibiting binding between MuSK and Lrp4, Proc Natl Acad Sci U S A, vol.110, pp.20783-20791, 2013.

S. Suzuki, K. Utsugisawa, Y. Nagane, and N. Suzuki, Three types of striational antibodies in myasthenia gravis, Autoimmune Dis, p.740583, 2011.

P. Cufi, P. Soussan, F. Truffault, R. Fetouchi, M. Robinet et al., Thymoma-associated myasthenia gravis: On the search for a pathogen signature, J Autoimmun, vol.52, pp.29-35, 2014.

S. Berrih-aknin, L. Panse, and R. , Myasthenia gravis: A comprehensive review of immune dysregulation and etiological mechanisms, J Autoimmun, vol.52, pp.90-100, 2014.

D. P. Richman and M. A. Agius, Treatment of autoimmune myasthenia gravis, Neurology, vol.61, pp.1652-61, 2003.

R. Iorio, V. Damato, P. E. Alboini, and A. Evoli, Efficacy and safety of rituximab for myasthenia gravis: a systematic review and meta-analysis, J Neurol, vol.262, pp.1115-1124, 2015.

J. Diaz-manera, E. Martinez-hernandez, L. Querol, R. Klooster, R. Rojas-garcia et al., Long-lasting treatment effect of rituximab in MuSK myasthenia, Neurology, vol.78, pp.189-93, 2012.

O. Landon-cardinal, D. Friedman, M. Guiguet, P. Laforet, N. Heming et al., Efficacy of Rituximab in Refractory Generalized anti-AChR Myasthenia Gravis, J Neuromuscul Dis, vol.5, pp.241-250, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02377514

G. I. Wolfe, H. J. Kaminski, I. B. Aban, G. Minisman, H. C. Kuo et al., Randomized Trial of Thymectomy in Myasthenia Gravis, N Engl J Med, vol.375, pp.511-533, 2016.

A. Samuelsson, T. L. Towers, and J. V. Ravetch, Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor, Science, vol.291, pp.484-490, 2001.

L. Li, W. C. Xiong, and L. Mei, Neuromuscular Junction Formation, Aging, and Disorders, Annu Rev Physiol, vol.80, pp.159-88, 2018.

L. A. Tintignac, H. R. Brenner, and M. A. Ruegg, Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting, Physiol Rev, vol.95, pp.809-52, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01837619

J. F. Howard, Myasthenia gravis: the role of complement at the neuromuscular junction, Ann N Y Acad Sci, 2017.

S. J. Wood and C. R. Slater, Safety factor at the neuromuscular junction, Prog Neurobiol, vol.64, pp.393-429, 2001.

S. J. Tzartos, T. Barkas, M. T. Cung, A. Mamalaki, M. Marraud et al., Anatomy of the antigenic structure of a large membrane autoantigen, the muscle-type nicotinic acetylcholine receptor, Immunol Rev, vol.163, pp.89-120, 1998.

J. P. Changeux, A. Devillers-thiery, and P. Chemouilli, Acetylcholine receptor: an allosteric protein, Science, vol.225, pp.1335-1380, 1984.

C. K. Jones, N. Byun, and M. Bubser, Muscarinic and nicotinic acetylcholine receptor agonists and allosteric modulators for the treatment of schizophrenia, Neuropsychopharmacology, vol.37, pp.16-42, 2012.

B. M. Conti-fine, M. Milani, and H. J. Kaminski, Myasthenia gravis: past, present, and future, J Clin Invest, vol.116, pp.2843-54, 2006.

P. F. Zipfel and C. Skerka, Complement regulators and inhibitory proteins, Nat Rev Immunol, vol.9, pp.729-769, 2009.

J. Luo and J. Lindstrom, Antigenic structure of the human muscle nicotinic acetylcholine receptor main immunogenic region, J Mol Neurosci, vol.40, pp.217-237, 2010.

A. Engel, Myology: basic and clinical. McGraw-Hill Companies, 1994.

N. Yumoto, N. Kim, and S. J. Burden, Lrp4 is a retrograde signal for presynaptic differentiation at neuromuscular synapses, Nature, vol.489, pp.438-480, 2012.

T. Guyon, A. Wakkach, S. Poea, V. Mouly, I. Klingel-schmitt et al., Regulation of acetylcholine receptor gene expression in human myasthenia gravis muscles. Evidences for a compensatory mechanism triggered by receptor loss, J Clin Invest, vol.102, pp.249-63, 1998.

T. Guyon, P. Levasseur, F. Truffault, C. Cottin, C. Gaud et al., Regulation of acetylcholine receptor alpha subunit variants in human myasthenia gravis. Quantification of steady-state levels of messenger RNA in muscle biopsy using the polymerase chain reaction, J Clin Invest, vol.94, pp.16-24, 1994.

M. Maurer, S. Bougoin, T. Feferman, M. Frenkian, J. Bismuth et al., IL-6 and Akt are involved in muscular pathogenesis in myasthenia gravis, Acta Neuropathol Commun, vol.3, p.1, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01116534

M. Attia, M. Maurer, R. M. Grand, F. L. Fadel, E. Panse et al., Muscle satellite cells are functionally impaired in myasthenia gravis: consequences on muscle regeneration, Acta Neuropathol, vol.2017, pp.1-20
URL : https://hal.archives-ouvertes.fr/hal-02376547

M. D. Kendall, H. R. Johnson, and J. Singh, The weight of the human thymus gland at necropsy, J Anat, vol.131, pp.483-97, 1980.

J. Gordon and N. R. Manley, Mechanisms of thymus organogenesis and morphogenesis, Development, vol.138, pp.3865-78, 2011.

S. W. Rossi, W. E. Jenkinson, G. Anderson, and E. J. Jenkinson, Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium, Nature, vol.441, pp.988-91, 2006.

H. R. Rodewald, S. Paul, C. Haller, H. Bluethmann, and C. Blum, Thymus medulla consisting of epithelial islets each derived from a single progenitor, Nature, vol.414, pp.763-771, 2001.

C. C. Bleul, T. Corbeaux, A. Reuter, P. Fisch, J. S. Monting et al., Formation of a functional thymus initiated by a postnatal epithelial progenitor cell, Nature, vol.441, pp.992-998, 2006.

M. A. Cron, S. Maillard, J. Villegas, F. Truffault, M. Sudres et al., Thymus involvement in early-onset myasthenia gravis, Ann N Y Acad Sci, vol.1412, pp.137-182, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01789833

N. Watanabe, Y. H. Wang, H. K. Lee, T. Ito, Y. H. Wang et al., Hassall's corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus, Nature, vol.436, pp.1181-1186, 2005.

L. Mesnard-rouiller, J. Bismuth, A. Wakkach, S. Poea-guyon, and S. Berrih-aknin, Thymic myoid cells express high levels of muscle genes, J Neuroimmunol, vol.148, pp.97-105, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02522239

L. Panse, R. Berrih-aknin, and S. , Thymic myoid cells protect thymocytes from apoptosis and modulate their differentiation: implication of the ERK and Akt signaling pathways, Cell Death Differ, vol.12, pp.463-72, 2005.

M. Swiecki and M. Colonna, The multifaceted biology of plasmacytoid dendritic cells, Nat Rev Immunol, vol.15, pp.471-85, 2015.

L. Wu and K. Shortman, Heterogeneity of thymic dendritic cells, Semin Immunol, vol.17, pp.304-316, 2005.

E. Esashi, T. Sekiguchi, H. Ito, S. Koyasu, and A. Miyajima, Cutting Edge: A possible role for CD4+ thymic macrophages as professional scavengers of apoptotic thymocytes, J Immunol, vol.171, pp.2773-2780, 2003.

J. Abramson and G. Anderson, Thymic Epithelial Cells, Annu Rev Immunol, vol.35, pp.85-118, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01399345

Y. Takahama, Journey through the thymus: stromal guides for T-cell development and selection, Nat Rev Immunol, vol.6, pp.127-162, 2006.

G. Anderson and Y. Takahama, Thymic epithelial cells: working class heroes for T cell development and repertoire selection, Trends Immunol, vol.33, pp.256-63, 2012.

E. F. Lind, S. E. Prockop, H. E. Porritt, and H. T. Petrie, Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development, J Exp Med, vol.194, pp.127-161, 2001.

H. Takaba and H. Takayanagi, The Mechanisms of T Cell Selection in the Thymus, Trends Immunol, vol.38, pp.805-821, 2017.

A. Abbas, A. Lichtman, and S. Pillai, Cellular and molecular immunology, 2012.

T. Ueno, F. Saito, D. H. Gray, S. Kuse, K. Hieshima et al., CCR7 signals are essential for cortex-medulla migration of developing thymocytes, J Exp Med, vol.200, pp.493-505, 2004.

N. A. Roberts, B. D. Adams, N. I. Mccarthy, R. M. Tooze, S. M. Parnell et al., Prdm1 Regulates Thymic Epithelial Function To Prevent Autoimmunity, J Immunol, vol.199, pp.1250-60, 2017.

L. Klein, B. Kyewski, P. M. Allen, and K. A. Hogquist, Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see), Nat Rev Immunol, vol.14, pp.377-91, 2014.

C. C. Blackburn and N. R. Manley, Developing a new paradigm for thymus organogenesis, Nat Rev Immunol, vol.4, pp.278-89, 2004.

D. Lavrnic, M. Losen, A. Vujic, D. Baets, M. Hajdukovic et al., The features of myasthenia gravis with autoantibodies to MuSK, J Neurol Neurosurg Psychiatry, vol.76, pp.1099-102, 2005.

C. R. Thomas, C. D. Wright, and P. J. Loehrer, Thymoma: state of the art, J Clin Oncol, vol.17, pp.2280-2289, 1999.

C. Vandiedonck, C. Raffoux, B. Eymard, C. Tranchant, E. Dulmet et al., Association of HLA-A in autoimmune myasthenia gravis with thymoma, J Neuroimmunol, vol.210, pp.120-123, 2009.

A. Marx, S. Porubsky, D. Belharazem, G. Saruhan-direskeneli, B. Schalke et al., Thymoma related myasthenia gravis in humans and potential animal models, Exp Neurol, vol.270, pp.55-65, 2015.

S. Berrih-aknin, N. Ruhlmann, J. Bismuth, G. Cizeron-clairac, E. Zelman et al., CCL21 overexpressed on lymphatic vessels drives thymic hyperplasia in myasthenia, Ann Neurol, vol.66, pp.521-552, 2009.

J. M. Weiss, P. Cufi, J. Bismuth, B. Eymard, E. Fadel et al., SDF-1/CXCL12 recruits B cells and antigen-presenting cells to the thymus of autoimmune myasthenia gravis patients, Immunobiology, vol.218, pp.373-81, 2013.

A. Meraouna, G. Cizeron-clairac, R. L. Panse, J. Bismuth, F. Truffault et al., The chemokine CXCL13 is a key molecule in autoimmune myasthenia gravis, Blood, vol.108, pp.432-472, 2006.

J. M. Weiss, M. Robinet, R. Aricha, P. Cufi, B. Villeret et al., Novel CXCL13 transgenic mouse: inflammation drives pathogenic effect of CXCL13 in experimental myasthenia gravis, Oncotarget, vol.7, pp.7550-62, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01293674

J. Spencer, M. Choy, T. Hussell, L. Papadaki, J. P. Kington et al., Properties of human thymic B cells, Immunology, vol.75, pp.596-600, 1992.

T. Yamano, J. Nedjic, M. Hinterberger, M. Steinert, S. Koser et al., Thymic B Cells Are Licensed to Present Self Antigens for Central T Cell Tolerance Induction, Immunity, vol.42, pp.1048-61, 2015.

D. Silva, N. S. Klein, and U. , Dynamics of B cells in germinal centres, Nat Rev Immunol, vol.15, pp.137-185, 2015.

C. Pitzalis, G. W. Jones, M. Bombardieri, and S. A. Jones, Ectopic lymphoid-like structures in infection, cancer and autoimmunity, Nat Rev Immunol, vol.14, pp.447-62, 2014.

F. Truffault, V. De-montpreville, B. Eymard, T. Sharshar, L. Panse et al., Thymic Germinal Centers and Corticosteroids in Myasthenia Gravis: an Immunopathological Study in 1035 Cases and a Critical Review, Clin Rev Allergy Immunol, vol.52, pp.108-132, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01338400

Y. Fujii, Y. Monden, J. Hashimoto, K. Nakahara, and Y. Kawashima, Acetylcholine receptor antibody-producing cells in thymus and lymph nodes in myasthenia gravis, Clin Immunol Immunopathol, vol.34, pp.141-147, 1985.

D. L. Drayton, S. Liao, R. H. Mounzer, and N. H. Ruddle, Lymphoid organ development: from ontogeny to neogenesis, Nat Immunol, vol.7, pp.344-53, 2006.

A. Balandina, S. Lecart, P. Dartevelle, and A. Saoudi, Berrih-Aknin S. Functional defect of regulatory CD4(+)CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis, Blood, vol.105, pp.735-776, 2005.

M. Thiruppathi, J. Rowin, B. Ganesh, J. R. Sheng, B. S. Prabhakar et al., Impaired regulatory function in circulating CD4(+)CD25(high)CD127(low/-) T cells in patients with myasthenia gravis, Clin Immunol, vol.145, pp.209-232, 2012.

J. C. Roche, J. L. Capablo, L. Larrad, J. Gervas-arruga, J. R. Ara et al., Increased serum interleukin-17 levels in patients with myasthenia gravis, Muscle Nerve, vol.44, pp.278-80, 2011.

A. Gradolatto, D. Nazzal, F. Truffault, J. Bismuth, E. Fadel et al., Both Treg cells and Tconv cells are defective in the Myasthenia gravis thymus: Roles of IL-17 and TNF-?, J Autoimmun, 2014.

G. Candore, D. Lio, C. Romano, G. Caruso, and C. , Pathogenesis of autoimmune diseases associated with 8.1 ancestral haplotype: effect of multiple gene interactions, Autoimmun Rev, vol.1, pp.29-35, 2002.

N. Avidan, L. Panse, R. Berrih-aknin, S. Miller, and A. , Genetic basis of myasthenia gravis -A comprehensive review, J Autoimmun, 2014.

D. R. Huang, R. Pirskanen, G. Matell, and A. K. Lefvert, Tumour necrosis factor-alpha polymorphism and secretion in myasthenia gravis, J Neuroimmunol, vol.94, pp.165-71, 1999.

P. K. Gregersen, R. Kosoy, A. T. Lee, J. Lamb, J. Sussman et al., Risk for myasthenia gravis maps to a (151) Pro-->Ala change in TNIP1 and to human leukocyte antigen-B*08, Ann Neurol, vol.72, pp.927-962, 2012.

A. E. Renton, H. A. Pliner, C. Provenzano, A. Evoli, R. Ricciardi et al., A genome-wide association study of myasthenia gravis, JAMA Neurol, vol.72, pp.396-404, 2015.

H. W. Yang, Y. Xie, Y. Zhao, L. Sun, X. Zhu et al., TNFAIP3 gene rs7749323 polymorphism is associated with late onset myasthenia gravis, Medicine, vol.96, p.6798, 2017.

N. Avidan, L. Panse, R. Harbo, H. F. Bernasconi, P. Poulas et al., VAV1 and BAFF, via NFkappaB pathway, are genetic risk factors for myasthenia gravis, Ann Clin Transl Neurol, vol.1, pp.329-368, 2014.

M. Giraud, R. Taubert, C. Vandiedonck, X. Ke, M. Levi-strauss et al., An IRF8-binding promoter variant and AIRE control CHRNA1 promiscuous expression in thymus, Nature, vol.448, pp.934-941, 2007.

S. Mamrut, N. Avidan, F. Truffault, E. Staun-ram, T. Sharshar et al., Methylome and transcriptome profiling in Myasthenia Gravis monozygotic twins, J Autoimmun, vol.82, pp.62-73, 2017.

E. A. Mazzio and K. F. Soliman, Basic concepts of epigenetics: impact of environmental signals on gene expression, Epigenetics, vol.7, pp.119-149, 2012.

A. Lopomo, R. Ricciardi, M. Maestri, D. Rosa, A. Melfi et al., Gene-Specific Methylation Analysis in Thymomas of Patients with Myasthenia Gravis, Int J Mol Sci, p.17, 2016.

C. C. Whitacre, Sex differences in autoimmune disease, Nat Immunol, vol.2, pp.777-80, 2001.

A. Liston, S. Lesage, J. Wilson, L. Peltonen, and C. C. Goodnow, Aire regulates negative selection of organ-specific T cells, Nat Immunol, vol.4, pp.350-354, 2003.

N. Dragin, J. Bismuth, G. Cizeron-clairac, M. G. Biferi, C. Berthault et al., Estrogenmediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases, J Clin Invest, vol.126, pp.1525-1562, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01310502

M. L. Zhu, P. Bakhru, B. Conley, J. S. Nelson, M. Free et al., Sex bias in CNS autoimmune disease mediated by androgen control of autoimmune regulator, Nat Commun, vol.7, p.11350, 2016.

A. V. Rubtsov, K. Rubtsova, J. W. Kappler, and P. Marrack, Genetic and hormonal factors in female-biased autoimmunity, Autoimmun Rev, vol.9, pp.494-502, 2010.

S. Kivity, N. Agmon-levin, M. Blank, and Y. Shoenfeld, Infections and autoimmunity--friends or foes?, Trends Immunol, vol.30, pp.409-423, 2009.

F. J. Authier, D. Grissac, N. Degos, J. D. Gherardi, and R. K. , Transient myasthenia gravis during HIV infection, Muscle Nerve, vol.18, pp.914-920, 1995.

A. A. Leis, G. Szatmary, M. A. Ross, and D. S. Stokic, West nile virus infection and myasthenia gravis, Muscle Nerve, vol.49, pp.26-35, 2014.

A. Saib, M. Canivet, M. L. Giron, F. Bolgert, J. Valla et al., Human foamy virus infection in myasthenia gravis, Lancet, vol.343, p.666, 1994.

P. Halfon, M. Levy, S. Marco, M. Gerolami, V. Khiri et al., Myasthenia gravis and hepatitis C virus infection, J Viral Hepat, vol.3, pp.329-361, 1996.

P. Cavalcante, M. Barberis, M. Cannone, F. Baggi, C. Antozzi et al., Detection of poliovirus-infected macrophages in thymus of patients with myasthenia gravis, Neurology, vol.74, pp.1118-1144, 2010.

P. H. Lalive, G. Allali, and A. Truffert, Myasthenia gravis associated with HTLV-I infection and atypical brain lesions, Muscle Nerve, vol.35, pp.525-533, 2007.

M. Mori, S. Kuwabara, Y. Nemoto, N. Tamura, and T. Hattori, Concomitant chronic inflammatory demyelinating polyneuropathy and myasthenia gravis following cytomegalovirus infection, J Neurol Sci, vol.240, pp.103-109, 2006.

P. Cavalcante, B. Serafini, B. Rosicarelli, L. Maggi, M. Barberis et al., Epstein-Barr virus persistence and reactivation in myasthenia gravis thymus, Ann Neurol, vol.67, pp.726-764, 2010.

K. Kakalacheva, M. A. Maurer, B. Tackenberg, C. Munz, N. Willcox et al., Intrathymic Epstein-Barr virus infection is not a prominent feature of myasthenia gravis, Ann Neurol, vol.70, pp.508-522, 2011.

M. Meyer, A. K. Hols, B. Liersch, R. Leistner, K. Gellert et al., Lack of evidence for Epstein-Barr virus infection in myasthenia gravis thymus, Ann Neurol, vol.70, pp.515-523, 2011.

B. Serafini, P. Cavalcante, P. Bernasconi, F. Aloisi, and R. Mantegazza, Epstein-Barr virus in myasthenia gravis thymus: a matter of debate, Ann Neurol, vol.70, p.519, 2011.

D. Csuka, M. Banati, C. Rozsa, G. Fust, and Z. Illes, High anti-EBNA-1 IgG levels are associated with early-onset myasthenia gravis, Eur J Neurol, vol.19, pp.842-848, 2012.

L. M. Hutt-fletcher, The Long and Complicated Relationship between Epstein-Barr Virus and Epithelial Cells, J Virol, p.91, 2017.

L. Panse, R. Cizeron-clairac, G. Bismuth, J. Berrih-aknin, and S. , Microarrays Reveal Distinct Gene Signatures in the Thymus of Seropositive and Seronegative Myasthenia Gravis Patients and the Role of CC Chemokine Ligand 21 in Thymic Hyperplasia, J Immunol, vol.177, pp.7868-79, 2006.

P. Cufi, N. Dragin, J. M. Weiss, P. Martinez-martinez, D. Baets et al., Implication of double-stranded RNA signaling in the etiology of autoimmune myasthenia gravis, Ann Neurol, vol.73, pp.281-93, 2013.

P. Cufi, N. Dragin, N. Ruhlmann, J. M. Weiss, E. Fadel et al., Central role of interferon-beta in thymic events leading to myasthenia gravis, J Autoimmun, vol.52, pp.44-52, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01514459

M. Robinet, B. Villeret, S. Maillard, M. A. Cron, S. Berrih-aknin et al., Use of Toll-Like Receptor Agonists to Induce Ectopic Lymphoid Structures in Myasthenia Gravis Mouse Models, Frontiers in Immunology, vol.8, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01585119

K. Poulas, E. Koutsouraki, G. Kordas, A. Kokla, and S. J. Tzartos, Anti-MuSK-and anti-AChRpositive myasthenia gravis induced by d-penicillamine, J Neuroimmunol, vol.250, pp.94-102, 2012.

A. Vincent, J. Newsom-davis, and V. Martin, Anti-acetylcholine receptor antibodies in Dpenicillamine-associated myasthenia gravis, Lancet, vol.1, p.1254, 1978.

A. P. Batocchi, A. Evoli, S. Servidei, M. T. Palmisani, F. Apollo et al., Myasthenia gravis during interferon alfa therapy, Neurology, vol.45, pp.382-385, 1995.

E. Uyama, N. Fujiki, and M. Uchino, Exacerbation of myasthenia gravis during interferonalpha treatment, J Neurol Sci, vol.144, pp.221-223, 1996.

H. Harada, A. Tamaoka, Y. Kohno, A. Mochizuki, and S. Shoji, Exacerbation of myasthenia gravis in a patient after interferon-beta treatment for chronic active hepatitis C, J Neurol Sci, vol.165, pp.182-185, 1999.

J. Dionisiotis, Y. Zoukos, and T. Thomaides, Development of myasthenia gravis in two patients with multiple sclerosis following interferon beta treatment, J Neurol Neurosurg Psychiatry, vol.75, p.1079, 2004.

M. Shenoy, S. Baron, B. Wu, E. Goluszko, and P. Christadoss, IFN-alpha treatment suppresses the development of experimental autoimmune myasthenia gravis, J Immunol, vol.154, pp.6203-6211, 1995.

H. Askmark, L. Haggard, I. Nygren, and A. R. Punga, Vitamin D deficiency in patients with myasthenia gravis and improvement of fatigue after supplementation of vitamin D3: a pilot study, Eur J Neurol, vol.19, pp.1554-60, 2012.

F. A. Cadegiani, Remission of Severe Myasthenia Gravis After Massive-Dose Vitamin D Treatment, Am J Case Rep, vol.17, pp.51-55, 2016.

T. Feferman, P. K. Maiti, S. Berrih-aknin, J. Bismuth, J. Bidault et al., Overexpression of IFN-induced protein 10 and its receptor CXCR3 in myasthenia gravis, J Immunol, vol.174, pp.5324-5355, 2005.

M. Losen, P. Martinez-martinez, P. C. Molenaar, K. Lazaridis, S. Tzartos et al., Standardization of the experimental autoimmune myasthenia gravis (EAMG) model by immunization of rats with Torpedo californica acetylcholine receptors -Recommendations for methods and experimental designs, Exp Neurol, vol.270, pp.18-28, 2015.

K. Shigemoto, S. Kubo, N. Maruyama, N. Hato, H. Yamada et al., Induction of myasthenia by immunization against muscle-specific kinase, J Clin Invest, vol.116, pp.1016-1040, 2006.

S. Jha, K. Xu, T. Maruta, M. Oshima, D. R. Mosier et al., Myasthenia gravis induced in mice by immunization with the recombinant extracellular domain of rat musclespecific kinase (MuSK), J Neuroimmunol, vol.175, pp.107-124, 2006.

C. Shen, Y. Lu, B. Zhang, D. Figueiredo, J. Bean et al., Antibodies against low-density lipoprotein receptor-related protein 4 induce myasthenia gravis, J Clin Invest, vol.123, pp.5190-202, 2013.

S. Mori, N. Motohashi, R. Takashima, M. Kishi, H. Nishimune et al., Immunization of mice with LRP4 induces myasthenia similar to MuSK-associated myasthenia gravis, Exp Neurol, vol.297, pp.158-67, 2017.

M. Sudres, M. Maurer, M. Robinet, J. Bismuth, F. Truffault et al., Preconditioned mesenchymal stem cells treat myasthenia gravis in a humanized preclinical model, JCI Insight, vol.2, p.89665, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01510169

A. Mehta and D. Baltimore, MicroRNAs as regulatory elements in immune system logic, Nat Rev Immunol, vol.16, pp.279-94, 2016.

R. M. O'connell, D. S. Rao, A. A. Chaudhuri, and D. Baltimore, Physiological and pathological roles for microRNAs in the immune system, Nat Rev Immunol, vol.10, pp.111-133, 2010.

L. J. Simpson and K. M. Ansel, MicroRNA regulation of lymphocyte tolerance and autoimmunity, J Clin Invest, vol.125, pp.2242-2251, 2015.

J. Chen, G. Papp, P. Szodoray, and M. Zeher, The role of microRNAs in the pathogenesis of autoimmune diseases, Autoimmun Rev, vol.15, pp.1171-80, 2016.

L. P. Garo and G. Murugaiyan, Contribution of MicroRNAs to autoimmune diseases, Cell Mol Life Sci, vol.73, pp.2041-51, 2016.

S. Zhu, W. Pan, and Y. Qian, MicroRNA in immunity and autoimmunity, J Mol Med, 2013.

G. Nogales-gadea, A. Ramos-fransi, X. Suárez-calvet, M. Navas, R. Rojas-garcía et al., Analysis of Serum miRNA Profiles of Myasthenia Gravis Patients, PLoS ONE, vol.9, p.91927, 2014.

T. Blondal, J. Nielsen, S. Baker, A. Andreasen, D. Mouritzen et al., Assessing sample and miRNA profile quality in serum and plasma or other biofluids, Methods, vol.59, pp.1-6, 2013.

A. R. Punga, M. Andersson, M. Alimohammadi, and T. Punga, Disease specific signature of circulating miR-150-5p and miR-21-5p in myasthenia gravis patients, J Neurol Sci, 2015.

C. J. Molin, L. Sabre, C. Weis, T. Punga, and A. R. Punga, Thymectomy lowers the myasthenia gravis biomarker miR-150-5p, Neurol Neuroimmunol Neuroinflamm, vol.5, 2018.

N. Chunjie, N. Huijuan, Y. Zhao, W. Jianzhao, and Z. Xiaojian, Disease-specific signature of serum miR-20b and its targets IL-8 and IL-25, in myasthenia gravis patients, Eur Cytokine Netw, vol.26, pp.61-67, 2015.

Y. Xin, H. Cai, T. Lu, Y. Zhang, Y. Yang et al., miR-20b Inhibits T Cell Proliferation and Activation via NFAT Signaling Pathway in Thymoma-Associated Myasthenia Gravis, Biomed Res Int, 2016.

L. Shi, T. Liu, M. Zhang, Y. Guo, C. Song et al., miR-15b is Downregulated in Myasthenia Gravis Patients and Directly Regulates the Expression of Interleukin-15 (IL-15) in Experimental Myasthenia Gravis Mice, Med Sci Monit, vol.21, pp.1774-80, 2015.

T. Punga, E. Bartoccioni, M. Lewandowska, V. Damato, A. Evoli et al., Disease specific enrichment of circulating let-7 family microRNA in MuSK+ myasthenia gravis, J Neuroimmunol, vol.292, pp.21-27, 2016.

L. Jiang, Z. Cheng, S. Qiu, Z. Que, W. Bao et al., Altered let-7 expression in Myasthenia gravis and let-7c mediated regulation of IL-10 by directly targeting IL-10 in Jurkat cells, Int Immunopharmacol, vol.14, pp.217-240, 2012.

Z. Cheng, S. Qiu, L. Jiang, A. Zhang, W. Bao et al., MiR-320a is Downregulated in Patients with Myasthenia Gravis and Modulates Inflammatory Cytokines Production by Targeting Mitogen-activated Protein Kinase 1, J Clin Immunol, vol.33, pp.567-76, 2013.

J. Lu, M. Yan, Y. Wang, J. Zhang, H. Yang et al., Altered expression of miR-146a in myasthenia gravis, Neurosci Lett, vol.555, pp.85-90, 2013.

J. Zhang, G. Jia, Q. Liu, J. Hu, M. Yan et al., Silencing miR-146a influences B cells and ameliorates experimental autoimmune myasthenia gravis, Immunology, vol.144, pp.56-67, 2015.

Y. Z. Wang, F. F. Tian, M. Yan, J. M. Zhang, Q. Liu et al., Delivery of an miR155 inhibitor by anti-CD20 single-chain antibody into B cells reduces the acetylcholine receptorspecific autoantibodies and ameliorates experimental autoimmune myasthenia gravis, Clin Exp Immunol, vol.176, pp.207-228, 2014.

C. Barzago, J. Lum, P. Cavalcante, K. G. Srinivasan, E. Faggiani et al., A novel infection-and inflammation-associated molecular signature in peripheral blood of myasthenia gravis patients, Immunobiol, vol.221, pp.1227-1263, 2016.

X. F. Liu, R. Q. Wang, B. Hu, M. C. Luo, Q. M. Zeng et al., MiR-15a contributes abnormal immune response in myasthenia gravis by targeting CXCL10, Clin Immunol, vol.164, pp.106-119, 2016.

J. Wang, S. Zheng, N. Xin, C. Dou, L. Fu et al., Identification of novel MicroRNA signatures linked to experimental autoimmune myasthenia gravis pathogenesis: down-regulated miR-145 promotes pathogenetic Th17 cell response, J Neuroimmune Pharmacol, vol.8, pp.1287-302, 2013.

Y. Zhang, M. Guo, N. Xin, Z. Shao, X. Zhang et al., Decreased microRNA miR-181c expression in peripheral blood mononuclear cells correlates with elevated serum levels of IL-7 and IL-17 in patients with myasthenia gravis, Clin Exp Med, vol.16, pp.413-434, 2016.

B. S. Cobb, T. B. Nesterova, E. Thompson, A. Hertweck, E. O'connor et al., T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer, J Exp Med, vol.201, pp.1367-73, 2005.

S. A. Muljo, K. M. Ansel, C. Kanellopoulou, D. M. Livingston, A. Rao et al., Aberrant T cell differentiation in the absence of Dicer, J Exp Med, vol.202, pp.261-270, 2005.

M. Fedeli, A. Napolitano, M. P. Wong, A. Marcais, C. De-lalla et al., Dicerdependent microRNA pathway controls invariant NKT cell development, J Immunol, vol.183, pp.2506-2518, 2009.

K. H. Seo, L. Zhou, D. Meng, J. Xu, Z. Dong et al., Loss of microRNAs in thymus perturbs invariant NKT cell development and function, Cell Mol Immunol, vol.7, pp.447-53, 2010.

A. Liston, L. F. Lu, O. Carroll, D. Tarakhovsky, A. Rudensky et al., Dicer-dependent microRNA pathway safeguards regulatory T cell function, J Exp Med, vol.205, pp.1993-2004, 2008.

X. Zhou, L. T. Jeker, B. T. Fife, S. Zhu, M. S. Anderson et al., Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity, J Exp Med, vol.205, pp.1983-91, 2008.

A. S. Papadopoulou, J. Dooley, M. A. Linterman, W. Pierson, O. Ucar et al., The thymic epithelial microRNA network elevates the threshold for infection-associated thymic involution via miR-29a mediated suppression of the IFN-[alpha] receptor, Nat Immunol, vol.13, pp.181-188, 2012.

S. Zuklys, C. E. Mayer, S. Zhanybekova, H. E. Stefanski, G. Nusspaumer et al., MicroRNAs control the maintenance of thymic epithelia and their competence for T lineage commitment and thymocyte selection, J Immunol, vol.189, pp.3894-904, 2012.

I. S. Khan, R. T. Taniguchi, K. J. Fasano, M. S. Anderson, and L. T. Jeker, Canonical microRNAs in thymic epithelial cells promote central tolerance, Eur J Immunol, vol.44, pp.1313-1322, 2014.

Z. Wang, Y. Chen, S. Xu, Y. Yang, D. Wei et al., Aberrant decrease of microRNA19b regulates TSLP expression and contributes to Th17 cells development in myasthenia gravis related thymomas, J Neuroimmunol, vol.288, pp.34-43, 2015.

J. Li, D. Qiu, Z. Chen, W. Du, J. Liu et al., Altered expression of miR-125a-5p in thymomaassociated myasthenia gravis and its down-regulation of foxp3 expression in Jurkat cells, Immunol Lett, vol.172, pp.47-55, 2016.

F. Ganci, C. Vico, E. Korita, A. Sacconi, E. Gallo et al., MicroRNA expression profiling of thymic epithelial tumors, Lung Cancer, vol.85, pp.197-204, 2014.

J. Li, D. Qiu, Z. Chen, W. Du, J. Liu et al., miR-548k regulates CXCL13 expression in myasthenia gravis patients with thymic hyperplasia and in Jurkat cells, J Neuroimmunol, 2018.

X. Zhao, Y. Tang, B. Qu, H. Cui, S. Wang et al., MicroRNA-125a contributes to elevated inflammatory chemokine RANTES levels via targeting KLF13 in systemic lupus erythematosus, Arthritis Rheum, vol.62, pp.3425-3460, 2010.

C. M. Sun, J. Wu, H. Zhang, G. Shi, and Z. T. Chen, Circulating miR-125a but not miR-125b is decreased in active disease status and negatively correlates with disease severity as well as inflammatory cytokines in patients with Crohn's disease, World J Gastroenterol, vol.23, pp.7888-98, 2017.

S. Kim, K. Ramasamy, H. Bouamar, A. Lin, D. Jiang et al., MicroRNAs miR-125a and miR-125b constitutively activate the NF-?B path a ta geti g the tu o necrosis factor alpha-induced protein 3 (TNFAIP3, A20), Proc Natl Acad Sci U S A, vol.109, pp.7865-70, 2012.

A. C. Hsu, K. Dua, M. R. Starkey, T. J. Haw, P. M. Nair et al., MicroRNA-125a and -b inhibit A20 and MAVS to promote inflammation and impair antiviral response in COPD, JCI Insight, vol.2, p.90443, 2017.

M. L. Kim, J. J. Chae, Y. H. Park, D. Nardo, D. Stirzaker et al., Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-1beta, J Exp Med, vol.212, pp.927-965, 2015.

L. Pfajfer, N. K. Mair, R. Jimenez-heredia, F. Genel, N. Gulez et al., Mutations affecting the actin regulator WD repeat-containing protein 1 lead to aberrant lymphoid immunity, J Allergy Clin Immunol, 2018.

S. Jander and G. Stoll, Increased serum levels of the interferon-gamma-inducing cytokine interleukin-18 in myasthenia gravis, Neurology, vol.59, pp.287-296, 2002.

M. C. Souroujon, P. K. Maiti, T. Feferman, S. H. Im, L. Raveh et al., Suppression of myasthenia gravis by antigen-specific mucosal tolerance and modulation of cytokines and costimulatory factors, Ann N Y Acad Sci, vol.998, pp.533-539, 2003.

E. Zhu, X. Wang, B. Zheng, Q. Wang, J. Hao et al., miR-20b suppresses Th17 differentiation and the pathogenesis of experimental autoimmune encephalomyelitis by targeting RORgammat and STAT3, J Immunol, vol.192, pp.5599-609, 2014.

J. Ingwersen, T. Menge, B. Wingerath, D. Kaya, J. Graf et al., Natalizumab restores aberrant miRNA expression profile in multiple sclerosis and reveals a critical role for miR-20b, Ann Clin Transl Neurol, vol.2, pp.43-55, 2015.

N. Gleicher, A. Weghofer, I. H. Lee, and D. H. Barad, FMR1 Genotype with Autoimmunity-Associated Polycystic Ovary-Like Phenotype and Decreased Pregnancy Chance, PLoS ONE, vol.5, p.15303, 2010.

S. Lanni, M. Goracci, L. Borrelli, G. Mancano, P. Chiurazzi et al., Role of CTCF protein in regulating FMR1 locus transcription, PLoS Genet, vol.9, p.1003601, 2013.

D. Feng and B. J. Barnes, Bioinformatics analysis of the factors controlling type I IFN gene expression in autoimmune disease and virus-induced immunity, Front Immunol, vol.4, p.291, 2013.

P. Raj, E. Rai, R. Song, S. Khan, B. E. Wakeland et al., Regulatory polymorphisms modulate the expression of HLA class II molecules and promote autoimmunity, Elife, vol.5, 2016.

T. K. Fang, C. J. Yan, and J. Du, CTLA-4 methylation regulates the pathogenesis of myasthenia gravis and the expression of related cytokines, Medicine (Baltimore), vol.97, p.620, 2018.

S. Berrih-aknin and . Myasthenia, Gravis: paradox versus paradigm in autoimmunity, J Autoimmun, vol.52, pp.1-28, 2014.

O. Brain, B. M. Owens, T. Pichulik, P. Allan, E. Khatamzas et al., The intracellular sensor NOD2 induces microRNA-29 expression in human dendritic cells to limit IL-23 release, Immunity, vol.39, pp.521-557, 2013.

J. A. Villegas, J. Van-wassenhove, L. Panse, R. Berrih-aknin, S. Dragin et al., An imbalance between regulatory T cells and T helper 17 cells in acetylcholine receptor-positive myasthenia gravis patients, Ann N Y Acad Sci, vol.1413, pp.154-62, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02357792

K. M. Smith, M. Guerau-de-arellano, S. Costinean, J. L. Williams, A. Bottoni et al., miR-29ab1 Deficiency Identifies a Negative Feedback Loop Controlling Th1 Bias That Is Dysregulated in Multiple Sclerosis, J Immunol, vol.189, pp.1567-76, 2012.

E. Meinl, W. Klinkert, and H. Wekerle, The Thymus in Myasthenia Gravis : Changes Typical for the Human Disease Are Absent in Experimental Autoimmune Myasthenia Gravis of the Lewis Rat, Am J Pathol, p.139, 1991.

A. Van-nieuwenhuijze, J. Dooley, S. Humblet-baron, J. Sreenivasan, M. Koenders et al., Defective germinal center B-cell response and reduced arthritic pathology in microRNA-29a-deficient mice, Cell Mol Life Sci, vol.74, pp.2095-106, 2017.

F. Mcnab, K. Mayer-barber, A. Sher, A. Wack, and A. O'garra, Type I interferons in infectious disease, Nat Rev Immunol, vol.15, pp.87-103, 2015.

N. Stern-ginossar, N. Elefant, A. Zimmermann, D. G. Wolf, N. Saleh et al., Host immune system gene targeting by a viral miRNA, Science, vol.317, pp.376-81, 2007.

X. Cai, A. Schafer, S. Lu, J. P. Bilello, R. C. Desrosiers et al., Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed, PLoS Pathog, vol.2, p.23, 2006.

M. Hooykaas, M. Van-gent, J. A. Soppe, E. Kruse, I. Boer et al., EBV MicroRNA BART16 Suppresses Type I IFN Signaling, J Immunol, 2017.

M. P. Pender, Infection of autoreactive B lymphocytes with EBV, causing chronic autoimmune diseases, Trends Immunol, vol.24, pp.584-592, 2003.

H. Amital, M. E. Gershwin, and Y. Shoenfeld, Reshaping the mosaic of autoimmunity, Semin Arthritis Rheum, vol.35, pp.341-344, 2006.

G. D. Victora and M. C. Nussenzweig, Germinal centers, Annu Rev Immunol, vol.30, pp.429-57, 2012.

T. A. Schwickert, R. L. Lindquist, G. Shakhar, G. Livshits, D. Skokos et al., In vivo imaging of germinal centres reveals a dynamic open structure, Nature, vol.446, pp.83-90, 2007.

J. Golay, A. Capucci, M. Arsura, M. Castellano, V. Rizzo et al., Expression of c-myb and B-myb, but not A-myb, correlates with proliferation in human hematopoietic cells, Blood, vol.77, pp.149-58, 1991.

G. Skogberg, V. Lundberg, M. Berglund, J. Gudmundsdottir, E. Telemo et al., Human thymic epithelial primary cells produce exosomes carrying tissue-restricted antigens, Immunol Cell Biol, vol.93, pp.727-761, 2015.

S. C. Saunderson, P. C. Schuberth, A. C. Dunn, L. Miller, B. D. Hock et al., Induction of exosome release in primary B cells stimulated via CD40 and the IL-4 receptor, J Immunol, vol.180, pp.8146-52, 2008.

N. Blanchard, D. Lankar, F. Faure, A. Regnault, C. Dumont et al., TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex, J Immunol, vol.168, pp.3235-3276, 2002.

X. Yu, S. L. Harris, and A. J. Levine, The regulation of exosome secretion: a novel function of the p53 protein, Cancer Res, vol.66, pp.4795-801, 2006.

L. A. Beninson and M. Fleshner, Exosomes: an emerging factor in stress-induced immunomodulation, Semin Immunol, vol.26, pp.394-401, 2014.

P. Bergman, E. Piket, M. Khademi, T. James, L. Brundin et al., Circulating miR-150 in CSF is a novel candidate biomarker for multiple sclerosis, Neurol Neuroimmunol Neuroinflamm, vol.3, p.219, 2016.

N. H. Fourie, R. M. Peace, S. K. Abey, L. B. Sherwin, B. Rahim-williams et al., Elevated circulating miR-150 and miR-342-3p in patients with irritable bowel syndrome, Exp Mol Pathol, vol.96, pp.422-427, 2014.

X. Wang, N. Angelis, and S. L. Thein, MYB -A regulatory factor in hematopoiesis, Gene, vol.665, pp.6-17, 2018.

M. Gustafsson, D. R. Gawel, L. Alfredsson, S. Baranzini, J. Bjorkander et al., A validated gene regulatory network and GWAS identifies early regulators of T cellassociated diseases, Sci Transl Med, vol.7, pp.313-178, 2015.

T. P. Bender, C. S. Kremer, M. Kraus, T. Buch, and K. Rajewsky, Critical functions for c-Myb at three checkpoints during thymocyte development, Nat Immunol, vol.5, pp.721-730, 2004.

B. Madhavan, S. Yue, U. Galli, R. S. Gross, W. Muller et al., Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity, References 1. Truffault, vol.136, pp.108-124, 2015.

U. , P. , P. ;-u, and J. T-z-a-r-t-o-s, A comprehensive analysis of the epidemiology and clinical characteristics of anti-LRP4 in myasthenia gravis, J. Autoimmun, vol.52, pp.139-145, 2013.

K. Kondo, K. Takada, and &. Takahama, Antigen processing and presentation in the thymus: implications for T cell repertoire selection, Curr. Opin. Immunol, vol.46, pp.53-57, 2017.

R. &. Le-panse and . Berrih-aknin, Thymic myoid cells protect thymocytes from apoptosis and modulate their differentiation: implication of the ERK and Akt signaling pathways, Cell Death Differ, vol.12, pp.463-472, 2005.

M. S. Anderson, E. S. Venanzi, and L. Klein, Projection of an immunological self shadow within the thymus by the aire protein, Science, vol.298, pp.1395-1401, 2002.

H. Takaba, Y. Morishita, and Y. Tomofuji, Fezf2 orchestrates a thymic program of self-antigen expression for immune tolerance, Cell, vol.163, pp.975-987, 2015.

, Ann. N.Y. Acad. Sci, vol.00, pp.1-9, 2017.

L. Mesnard-rouiller, J. Bismuth, and A. Wakkach, Thymic myoid cells express high levels of muscle genes, J. Neuroimmunol, vol.148, pp.97-105, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02522239

M. Giraud, R. Taubert, and C. Vandiedonck, An IRF8-binding promoter variant and AIRE control CHRNA1 promiscuous expression in thymus, Nature, vol.448, pp.934-937, 2007.

N. Dragin, J. Bismuth, and G. Cizeron-clairac, Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases, J. Clin. Invest, vol.126, pp.1525-1537, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01310502

A. Wakkach, S. Poea, and E. Chastre, Establishment of a human thymic myoid cell line. Phenotypic and functional characteristics, Am.J.Pathol, vol.155, pp.1229-1240, 1999.

J. E. Cowan, S. M. Parnell, and K. Nakamura, The thymic medulla is required for Foxp3 + regulatory but not conventional CD4 + thymocyte development, J. Exp. Med, vol.210, pp.675-681, 2013.

D. Nazzal, A. Gradolatto, and F. Truffault, Human thymus medullary epithelial cells promote regulatory Tcell generation by stimulating interleukin-2 production via ICOS ligand, Cell Death Dis, vol.5, p.1420, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01311608

N. Watanabe, Y. H. Wang, and H. K. Lee, Hassall's corpuscles instruct dendritic cells to induce CD4 + CD25 + regulatory T cells in human thymus, Nature, vol.436, pp.1181-1185, 2005.

S. Berrih-aknin, E. Morel, and F. Raimond, The role of the thymus in myasthenia gravis: immunohistological and immunological studies in 115 cases, Ann. N.Y. Acad. Sci, vol.505, pp.50-70, 1987.

A. Balandina, S. Lecart, and P. Dartevelle, Functional defect of regulatory CD4(+)CD25 + Tc e l l si nt h et h y m u s of patients with autoimmune myasthenia gravis, Blood, vol.105, pp.735-741, 2005.

M. Thiruppathi, J. Rowin, and B. Ganesh, Impaired regulatory function in circulating CD4(+) CD25(high)CD127(low/?) T cells in patients with myasthenia gravis, Clin. Immunol, vol.145, pp.209-223, 2012.

A. Gradolatto, D. Nazzal, and F. Truffault, Both Treg cells and Tconv cells are defective in the myasthenia gravis thymus: roles of IL-17 and TNF-?, J. Autoimmun, vol.52, pp.53-63, 2014.

P. G. Isaacson, A. J. Norton-&-b, and . Addis, The human thymus contains a novel population of B lymphocytes, Lancet, vol.2, pp.1488-1491, 1987.

T. Yamano, J. Nedjic, and M. Hinterberger, Thymic B cells are licensed to present self antigens for central T cell tolerance induction, Immunity, vol.42, pp.1048-1061, 2015.

S. N-u-n-e-z, C. M-o-o-r-e, and B. , The human thymus perivascular space is a functional niche for viral-specific plasma cells, Sci. Immunol, vol.1, 2016.

J. W. Bradfield, Clin. Exp. Immunol, vol.13, pp.243-252, 1973.

K. G. Flores, J. P. Li-&-l, and . Hale, B cells in epithelial and perivascular compartments of human adult thymus, Hum. Pathol, vol.32, pp.926-934, 2001.

A. Méraouna, G. Cizeron-clairac, and R. L. Panse, The chemokine CXCL13 is a key molecule in autoimmune myasthenia gravis, Blood, vol.108, pp.432-440, 2006.

X. Zhang, S. Liu, and T. Chang, Intrathymic Tfh/B cells interaction leads to ectopic GCs formation and anti-AChR antibody production: central role in triggering MG occurrence, Mol. Neurobiol, vol.53, pp.120-131, 2016.

D. Safar, S. Berrih-aknin, and &. E. Morel, In vitro antiacetylcholine receptor antibody synthesis by myasthenia gravis patient lymphocytes: correlations with thymic histology and thymic epithelial-cell interactions, J. Clin. Immunol, vol.7, pp.225-234, 1987.

C. Leprince, S. Cohen-kaminsky, and S. Berrih-aknin,

, Thymic B cells from myasthenia gravis patients are activated B cells. Phenotypic and functional analysis, J. Immunol, vol.145, pp.2115-2122

A. Melms, B. C. Schalke, and T. Kirchner, Thymus in myasthenia gravis. Isolation of T-lymphocyte lines specific for the nicotinic acetylcholine receptor from thymuses of myasthenic patients, J. Clin. Invest, vol.81, pp.902-908, 1988.

S. M. Mclachlan, L. V. Nicholson, and G. Venables, Acetylcholine receptor antibody synthesis in lymphocyte cultures, J. Clin. Lab. Immunol, vol.5, pp.137-142, 1981.

K. Vrolix, J. Fraussen, and M. Losen, Clonal heterogeneity of thymic B cells from early-onset myasthenia gravis patients with antibodies against the acetylcholine receptor, J. Autoimmun, vol.52, pp.101-112, 2014.

V. Guigou, D. Emilie, and S. Berrih-aknin, Individual germinal centres of myasthenia gravis human thymuses contain polyclonal activated B cells that express all the Vh and Vk families, Clin. Exp. Immunol, vol.83, pp.262-266, 1991.

R. Le-panse, G. Cizeron-clairac, and J. Bismuth, Microarrays reveal distinct gene signatures in the thymus of seropositive and seronegative myasthenia gravis patients and the role of CC chemokine ligand 21 in thymic hyperplasia, J. Immunol, vol.177, pp.7868-7879, 2006.

M. Sudres, M. Maurer, and M. Robinet, Preconditioned mesenchymal stem cells treat myasthenia gravis in a humanized preclinical model, JCI Insight, vol.2, p.89665, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01510169

G. I. Wolfe, H. J. Kaminski, and I. B. Aban, Randomized trial of thymectomy in myasthenia gravis, N. Engl. J. Med, vol.375, pp.511-522, 2016.

U. H. Von-andrian and . Mempel, Homing and cellular traffic in lymph nodes, Nat. Rev. Immunol, vol.3, pp.867-878, 2003.

J. M. W-eiss, P. Cufi, and J. Bismuth, SDF-1/CXCL12 recruits B cells and antigen-presenting cells to the thymus of autoimmune myasthenia gravis patients, Immunobiology, vol.218, pp.373-381, 2013.

S. Berrih-aknin, N. Ruhlmann, and J. Bismuth, CCL21 overexpressed on lymphatic vessels drives thymic hyperplasia in myasthenia, Ann. Neurol, vol.66, pp.521-531, 2009.

V. Angeli, F. Ginhoux, and J. Llodra, B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization, Immunity, vol.24, pp.203-215, 2006.

M. &. Miyasaka and . Tanaka, Lymphocyte trafficking across high endothelial venules: dogmas and enigmas, Nat. Rev. Immunol, vol.4, pp.360-370, 2004.

J. G. Cyster, Chemokines and cell migration in secondary lymphoid organs, Science, vol.286, pp.2098-2102, 1999.

T. Feferman, P. K. Maiti, and S. Berrih-aknin, Overexpression of IFN-induced protein 10 and its receptor CXCR3 in myasthenia gravis, J. Immunol, vol.174, pp.5324-5331, 2005.

M. Colombara, V. Antonini, and A. P. Riviera, New York Academy of Sciences. cells of myasthenic thymus leads to IL-6 and RANTES overexpression: effects on survival and migration of peripheral TandBcells, Ann. N.Y. Acad. Sci, vol.00, pp.7021-7028, 2005.

C. Cordiglieri, R. Marolda, and S. Franzi, Innate immunity in myasthenia gravis thymus: pathogenic effects of Toll-like receptor 4 signaling on autoimmunity, J. Autoimmun, vol.52, pp.74-89, 2014.

F. Annunziato, P. Romagnani, and L. Cosmi, Chemokines and lymphopoiesis in human thymus, Trends Immunol, vol.22, pp.277-281, 2001.

Y. Nagane, K. Utsugisawa, and D. Obara, Dendritic cellsinhyperplasticthymusesfrompatientswithmyasthenia gravis, Muscle Nerve, vol.27, pp.582-589, 2003.

D. F. Legler, M. Loetscher, and R. S. Roos, B cellattracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5, J. Exp. Med, vol.187, pp.655-660, 1998.

J. M. Weiss, M. Robinet, and R. Aricha, Novel CXCL13 transgenic mouse: inflammation drives pathogenic effect of CXCL13 in experimental myasthenia gravis, Oncotarget, vol.7, pp.7550-7562, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01293674

E. Meinl, W. E. Klinkert, and &. Wekerle, The thymus in myasthenia gravis. Changes typical for the human disease are absent in experimental autoimmune myasthenia gravis of the Lewis rat, Am. J. Pathol, vol.139, pp.995-1008, 1991.

S. D. Katzman and . Fowell, Pathogen-imposed skewing of mouse chemokine and cytokine expression at the infected tissue site, J. Clin. Invest, vol.118, pp.801-811, 2008.

D. L. Hodge, D. Reynolds, and F. M. Cerban, MCP-1/CCR2 interactions direct migration, Eur. J. Immunol, vol.42, pp.2644-2654, 2012.

G. R. Foster, S. H. Masri, and R. David, IFN-alpha subtypes differentially affect human T cell motility, J. Immunol, vol.173, pp.1663-1670, 2004.

P. Cavalcante, M. Barberis, and M. Cannone, Detection of poliovirus-infected macrophages in thymus of patients with myasthenia gravis, Neurology, vol.74, pp.1118-1126, 2010.

P. Cavalcante, B. Serafini, and B. Rosicarelli, Epstein-Barr virus persistence and reactivation in myasthenia gravis thymus, Ann. Neurol, vol.67, pp.726-738, 2010.

T. S. Kawai and . Akira, The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors, Nat. Immunol, vol.11, pp.373-384, 2010.

M. Robinet, S. Maillard, and M. A. Cron, Review on Toll-like receptor activation in myasthenia gravis: application to the development of new experimental models, Clin. Rev. Allergy Immunol, vol.52, pp.133-147, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01321397

P. Cufi, N. Dragin, and J. M. Weiss, Implication of double-stranded RNA signaling in the etiology of autoimmune myasthenia gravis, Ann. Neurol, vol.73, pp.281-293, 2013.

D. Iwakiri, L. Zhou, and M. Samanta, Epstein-Barr virus (EBV)-encoded small RNA is released from EBVinfected cells and activates signaling from Toll-like receptor, 2009.

, J. Exp. Med, vol.206, pp.2091-2099

L. H. Kasper and . Reder, Immunomodulatory activity of interferon-beta, Ann. Clin. Transl. Neurol, vol.1, pp.622-631, 2014.

L. Bennett, A. K. Palucka, and E. Arce, Interferon and granulopoiesis signatures in systemic lupus erythematosus blood, J. Exp. Med, vol.197, pp.711-723, 2003.

I. Rauch, M. &. Muller, and . Decker, The regulation of inflammation by interferons and their STATs, JAKSTAT, vol.2, p.23820, 2013.

J. P. Stubgen, Interferon alpha and neuromuscular disorders, J. Neuroimmunol, vol.207, pp.3-17, 2009.

A. Meager, M. Wadhwa, and P. Dilger, Anti-cytokine autoantibodies in autoimmunity: preponderance of neutralizing autoantibodies against interferon-alpha, interferonomega and interleukin-12 in patients with thymoma and/or myasthenia gravis, Clin. Exp. Immunol, vol.132, pp.128-136, 2003.

S. Poea-guyon, P. Christadoss, and R. L. Panse, Effects of cytokines on acetylcholine receptor expression: implications for myasthenia gravis, J. Immunol, vol.174, pp.5941-5949, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02522187

R. Le-panse, G. Cizeron-clairac, and M. Cuvelier, Regulatory and pathogenic mechanisms in human autoimmune myasthenia gravis, Ann. N.Y. Acad. Sci, vol.1132, pp.135-142, 2008.

P. Cufi, N. Dragin, and N. Ruhlmann, Central role of interferon-beta in thymic events leading to myasthenia gravis, J. Autoimmun, vol.52, pp.44-52, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01514459

P. Cufi, P. Soussan, and F. Truffault, Thymomaassociated myasthenia gravis: on the search for a pathogen signature, J. Autoimmun, vol.52, pp.29-35, 2014.

T. , R. Ep-a-n-s-e, and M. A-n-d-e-r-s-s-o-n, Circulating miRNAs in myasthenia gravis: miR-150-5p as a new potential biomarker, Ann. Clin. Transl. Neurol, vol.1, pp.49-58, 2014.

G. Nogales-gadea, A. Ramos-fransi, and X. Suarez-calvet, Analysis of serum miRNA profiles of myasthenia gravis patients, PLoS One, vol.9, p.91927, 2014.

N. Chunjie, N. Huijuan, and Y. Zhao, Disease-specific signature of serum miR-20b and its targets IL-8 and IL-25, in myasthenia gravis patients, Eur. Cytokine Netw, vol.26, pp.61-66, 2015.

Z. Cheng, S. Qiu, and L. Jiang, MiR-320a is downregulated in patients with myasthenia gravis and modulates inflammatory cytokines production by targeting mitogenactivated protein kinase 1, J. Clin. Immunol, vol.33, pp.567-576, 2013.

C. Barzago, J. Lum, and P. Cavalcante, A novel infection-and inflammation-associated molecular signature in peripheral blood of myasthenia gravis patients, Immunobiology, vol.221, pp.1227-1236, 2016.

G. Skogberg, J. Gudmundsdottir, and S. Van-der-post, Characterization of human thymic exosomes, PLoS One, vol.8, p.67554, 2013.

L. Linhares-lacerda, C. C. Palu, and M. Ribeiro-alves, Differential expression of microRNAs in thymic epithelial cells from trypanosoma cruzi acutely infected mice: putative role in thymic atrophy, Front. Immunol, vol.6, p.428, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01881328

A. S. Papadopoulou, J. Dooley, and M. A. Linterman, The thymic epithelial microRNA network elevates the threshold for infection-associated thymic involution via miR-29a mediated suppression of the IFN-[alpha] receptor, Nat. Immunol, vol.13, pp.181-187, 2012.

A. R. Hoover, I. Dozmorov, and J. Macleod, MicroRNA-205 maintains T cell development following stress by regulating Forkhead box N1 and selected chemokines, J. Biol. Chem, vol.291, pp.23237-23247, 2016.

, Frontiers in Immunology | www.frontiersin.org, vol.00, p.1029, 2017.

E. Corsiero, A. Nerviani, M. Bombardieri, and C. Pitzalis, Ectopic lymphoid structures: powerhouse of autoimmunity, Front Immunol, vol.7, p.430, 2016.

J. M. Weiss, P. Cui, J. Bismuth, B. Eymard, E. Fadel et al., SDF-1/ CXCL12 recruits B cells and antigen-presenting cells to the thymus of autoimmune myasthenia gravis patients, Immunobiology, vol.218, issue.3, pp.373-81, 2013.

M. Mitsdoerfer and A. Peters, Tertiary lymphoid organs in central nervous system autoimmunity, Front Immunol, vol.7, p.451, 2016.

F. Trufault, V. De-montpreville, B. Eymard, T. Sharshar, L. Panse et al., hymic germinal centers and corticosteroids in myasthenia gravis: an immunopathological study in 1035 cases and a critical review, Clin Rev Allergy Immunol, vol.52, issue.1, pp.108-132, 2017.

G. I. Wolfe, H. J. Kaminski, I. B. Aban, G. Minisman, H. C. Kuo et al., Randomized trial of thymectomy in myasthenia gravis, N Engl J Med, vol.375, issue.6, pp.511-533, 2016.

M. Sudres, M. Maurer, M. Robinet, J. Bismuth, F. Trufault et al., Preconditioned mesenchymal stem cells treat myasthenia gravis in a humanized preclinical model, JCI Insight, vol.2, issue.7, p.89665, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01510169

J. M. Weiss, P. Cui, L. Panse, R. Berrih-aknin, and S. , he thymus in autoimmune myasthenia gravis: paradigm for a tertiary lymphoid organ, Rev Neurol, issue.8-9, pp.640-649, 2013.

S. Berrih-aknin, N. Ruhlmann, J. Bismuth, G. Cizeron-clairac, E. Zelman et al., CCL21 overexpressed on lymphatic vessels drives thymic hyperplasia in myasthenia, Ann Neurol, vol.66, issue.4, pp.521-552, 2009.

N. H. Ruddle, High endothelial venules and lymphatic vessels in tertiary lymphoid organs: characteristics, functions, and regulation, Front Immunol, vol.7, p.491, 2016.

A. Méraouna, G. Cizeron-clairac, L. Panse, R. Bismuth, J. Trufault et al., he chemokine CXCL13 is a key molecule in autoimmune myasthenia gravis, Blood, vol.108, issue.2, pp.432-472, 2006.

L. Panse, R. Cizeron-clairac, G. Bismuth, J. Berrih-aknin, and S. , Microarrays reveal distinct gene signatures in the thymus of seropositive and seronegative myasthenia gravis patients and the role of CC chemokine ligand 21 in thymic hyperplasia, J Immunol, vol.177, issue.11, pp.7868-79, 2006.

A. Wakkach, T. Guyon, C. Bruand, S. Tzartos, S. Cohen-kaminsky et al., Expression of acetylcholine receptor genes in human thymic epithelial cells: implications for myasthenia gravis, J Immunol, vol.157, issue.8, pp.3752-60, 1996.

X. Zhang, S. Liu, T. Chang, J. Xu, C. Zhang et al., Intrathymic Th/B cells interaction leads to ectopic GCs formation and anti-AChR antibody production: central role in triggering MG occurrence, Mol Neurobiol, vol.53, issue.1, pp.120-151, 2016.

A. Melms, B. C. Schalke, T. Kirchner, H. K. Muller-hermelink, A. E. Wekerle et al., hymus in myasthenia gravis. Isolation of T-lymphocyte lines speciic for the nicotinic acetylcholine receptor from thymuses of myasthenic patients, J Clin Invest, vol.81, issue.3, pp.902-910, 1988.

C. Leprince, S. Cohen-kaminsky, S. Berrih-aknin, B. Vernet-der-garabedian, D. Treton et al., hymic B cells from myasthenia gravis patients are activated B cells phenotypic and functional analysis, J Immunol, vol.145, issue.7, pp.2115-2137, 1990.

K. Vrolix, J. Fraussen, M. Losen, J. Stevens, K. Lazaridis et al., Clonal heterogeneity of thymic B cells from early-onset myasthenia gravis patients with antibodies against the acetylcholine receptor, J Autoimmun, vol.52, pp.101-113, 2014.

G. Cizeron-clairac, L. Panse, R. Frenkian-cuvelier, M. Méraouna, A. Trufault et al., hymus and myasthenia gravis: what can we learn from DNA microarrays?, J Neuroimmunol, pp.57-63, 2008.

P. Cui, N. Dragin, J. M. Weiss, P. Martinez-martinez, D. Baets et al., Implication of double-stranded RNA signaling in the etiology of autoimmune myasthenia gravis, Ann Neurol, vol.73, issue.2, pp.281-93, 2013.

P. Cui, N. Dragin, N. Ruhlmann, J. M. Weiss, E. Fadel et al., Central role of interferon-beta in thymic events leading to myasthenia gravis, J Autoimmun, vol.52, pp.44-52, 2014.

N. Dragin, J. Bismuth, G. Cizeron-clairac, M. G. Biferi, C. Berthault et al., Estrogen-mediated downregulation of AIRE inluences sexual dimorphism in autoimmune diseases, J Clin Invest, vol.126, issue.4, pp.1525-1562, 2016.

P. Cavalcante, P. Cui, R. Mantegazza, S. Berrih-aknin, P. Bernasconi et al., Etiology of myasthenia gravis: innate immunity signature in pathological thymus, Autoimmun Rev, vol.12, issue.9, pp.863-74, 2013.

D. Lucchesi and M. Bombardieri, he role of viruses in autoreactive B cell activation within tertiary lymphoid structures in autoimmune diseases, J Leukoc Biol, vol.94, issue.6, pp.1191-1200, 2013.

P. Bernasconi, M. Barberis, F. Baggi, L. Passerini, M. Cannone et al., Increased toll-like receptor 4 expression in thymus of myasthenic patients with thymitis and thymic involution, Am J Pathol, vol.167, issue.1, pp.129-168, 2005.

C. Cordiglieri, R. Marolda, S. Franzi, C. Cappelletti, C. Giardina et al., Innate immunity in myasthenia gravis thymus: pathogenic efects of tolllike receptor 4 signaling on autoimmunity, J Autoimmun, vol.52, pp.74-89, 2014.

P. Cavalcante, B. Galbardi, S. Franzi, S. Marcuzzo, C. Barzago et al., Increased expression of toll-like receptors 7 and 9 in myasthenia gravis thymus characterized by active Epstein-Barr virus infection, Immunobiology, vol.221, issue.4, pp.516-543, 2016.

M. Robinet, S. Maillard, M. A. Cron, S. Berrih-aknin, L. Panse et al., Review on tolllike receptor activation in myasthenia gravis: application to the development of new experimental models, Clin Rev Allergy Immunol, vol.52, issue.1, pp.133-180, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01321397

E. Tuzun, S. Berrih-aknin, T. Brenner, L. L. Kusner, L. Panse et al., Guidelines for standard preclinical experiments in the mouse model of myasthenia gravis induced by acetylcholine receptor immunization, Exp Neurol, vol.270, pp.11-18, 2015.

E. Meinl, W. E. Klinkert, and H. Wekerle, he thymus in myasthenia gravis. Changes typical for the human disease are absent in experimental autoimmune myasthenia gravis of the Lewis rat, Am J Pathol, vol.139, issue.5, pp.995-1008, 1991.

J. M. Weiss, M. Robinet, R. Aricha, P. Cui, B. Villeret et al., Novel CXCL13 transgenic mouse: inlammation drives pathogenic efect of CXCL13 in experimental myasthenia gravis, Oncotarget, vol.7, issue.7, pp.7550-62, 2016.

Y. M. Graus, P. J. Van-breda-vriesman, and M. H. De-baets, Characterization of anti-acetylcholine receptor (AChR) antibodies from mice difering in susceptibility for experimental autoimmune myasthenia gravis (EAMG), Clin Exp Immunol, vol.92, issue.3, pp.506-519, 1993.

A. M. Krieg and J. Vollmer, Toll-like receptors 7, 8, and 9: linking innate immunity to autoimmunity, Immunol Rev, vol.220, pp.251-69, 2007.

Y. Liu, H. Yin, M. Zhao, and Q. Lu, TLR2 and TLR4 in autoimmune diseases: a comprehensive review, Clin Rev Allergy Immunol, vol.47, issue.2, pp.136-183, 2014.

P. Hospital, his work was supported by grants from the "Agence Nationale de la Recherche" (ANR-06-MRAR-001-01), from the European Community (FIGHT-MG/ HEALTH-2009-242-210), and from the

, Frontiers in Immunology | www.frontiersin.org, vol.8, p.1029, 2017.

J. Kleinnijenhuis, M. Oosting, L. A. Joosten, and M. G. Netea, Van Crevel R. Innate immune recognition of Mycobacterium tuberculosis, Clin Dev Immunol, 2011.

W. Allman, S. S. Saini, E. Tuzun, and P. Christadoss, Characterization of peripheral blood acetylcholine receptor-binding B cells in experimental myasthenia gravis, Cell Immunol, vol.271, issue.2, pp.292-300, 2011.

Y. Ma and A. C. Ross, Toll-like receptor 3 ligand and retinoic acid enhance germinal center formation and increase the tetanus toxoid vaccine response, Clin Vaccine Immunol, vol.16, issue.10, pp.1476-84, 2009.

L. Genestier, M. Taillardet, P. Mondiere, H. Gheit, C. Bella et al., TLR agonists selectively promote terminal plasma cell diferentiation of B cell subsets specialized in thymus-independent responses, J Immunol, vol.178, issue.12, pp.7779-86, 2007.

B. Hou, P. Saudan, G. Ott, M. L. Wheeler, J. M. Kuzmich et al., Selective utilization of toll-like receptor and MyD88 signaling in B cells for enhancement of the antiviral germinal center response, Immunity, vol.34, issue.3, pp.375-84, 2011.

H. M. Guay, T. A. Andreyeva, R. L. Garcea, R. M. Welsh, and E. Szomolanyi-tsuda, MyD88 is required for the formation of long-term humoral immunity to virus infection, J Immunol, vol.178, issue.8, pp.5124-5155, 2007.

E. R. Walsh, P. Pisitkun, E. Voynova, J. A. Deane, B. L. Scott et al., Dual signaling by innate and adaptive immune receptors is required for TLR7-induced B-cell-mediated autoimmunity, Proc Natl Acad Sci U S A, vol.109, issue.40, pp.16276-81, 2012.

C. Soni, E. B. Wong, P. P. Domeier, T. N. Khan, T. Satoh et al., B cell-intrinsic TLR7 signaling is essential for the development of spontaneous germinal centers, J Immunol, vol.193, issue.9, pp.4400-4414, 2014.

A. Boneparth, W. Huang, R. Bethunaickan, M. Woods, R. Sahu et al., TLR7 inluences germinal center selection in murine SLE, PLoS One, vol.10, issue.3, p.119925, 2015.

J. M. Clingan and M. B. Matloubian, Cell-intrinsic TLR7 signaling is required for optimal B cell responses during chronic viral infection, J Immunol, vol.191, issue.2, pp.810-818, 2013.

I. Moisini, W. Huang, R. Bethunaickan, R. Sahu, P. G. Ricketts et al., he Yaa locus and IFN-alpha ine-tune germinal center B cell selection in murine systemic lupus erythematosus, J Immunol, vol.189, issue.9, pp.4305-4317, 2012.

J. Bessa, M. Kopf, and M. F. Bachmann, Cutting edge: IL-21 and TLR signaling regulate germinal center responses in a B cell-intrinsic manner, J Immunol, vol.184, issue.9, pp.4615-4624, 2010.

A. Das, B. A. Heesters, A. Bialas, J. O'flynn, I. R. Rikin et al., Follicular dendritic cell activation by TLR ligands promotes autoreactive B cell responses, Immunity, vol.46, pp.106-125, 2017.

A. M. Krieg, A. K. Yi, S. Matson, T. J. Waldschmidt, G. A. Bishop et al., CpG motifs in bacterial DNA trigger direct B-cell activation, Nature, vol.374, issue.6522, pp.546-555, 1995.

J. Jung, A. K. Yi, X. Zhang, J. Choe, L. Li et al., Distinct response of human B cell subpopulations in recognition of an innate immune signal, CpG DNA, J Immunol, vol.169, issue.5, pp.2368-73, 2002.

D. C. Rookhuizen and A. L. Defranco, Toll-like receptor 9 signaling acts on multiple elements of the germinal center to enhance antibody responses, Proc Natl Acad Sci U S A, vol.111, issue.31, pp.3224-3257, 2014.

E. A. Leadbetter, I. R. Rikin, A. M. Hohlbaum, B. C. Beaudette, and M. J. Shlomchik, Marshak-Rothstein A. Chromatin-IgG complexes activate B cells by dual engagement of IgM and toll-like receptors, Nature, issue.6881, pp.603-610, 2002.

B. Desnues, A. B. Macedo, A. Roussel-queval, J. Bonnardel, S. Henri et al., TLR8 on dendritic cells and TLR9 on B cells restrain TLR7-mediated spontaneous autoimmunity in C57BL/6 mice, Proc Natl Acad Sci U S A, vol.111, issue.4, pp.1497-502, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02022450

M. Heikenwalder, M. Polymenidou, T. Junt, C. Sigurdson, H. Wagner et al., Lymphoid follicle destruction and immunosuppression ater repeated CpG oligodeoxynucleotide administration, Nat Med, vol.10, issue.2, pp.187-92, 2004.

P. Cavalcante, B. Seraini, B. Rosicarelli, L. Maggi, M. Barberis et al., Epstein-Barr virus persistence and reactivation in myasthenia gravis thymus, Ann Neurol, issue.6, pp.726-764, 2010.

M. J. Billard, A. L. Gruver, and G. D. Sempowski, Acute endotoxin-induced thymic atrophy is characterized by intrathymic inlammatory and wound healing responses, PLoS One, vol.6, issue.3, p.17940, 2011.

A. P. Martin, E. C. Coronel, G. Sano, S. C. Chen, G. Vassileva et al., A novel model for lymphocytic iniltration of the thyroid gland generated by transgenic expression of the CC chemokine CCL21, J Immunol, vol.173, issue.8, pp.4791-4799, 2004.

G. Janossy, J. Snajdr, and M. Simak-ellis, Patterns of B-lymphocyte gene expression elicited by lipopolysaccharide mitogen, Immunology, vol.30, issue.6, pp.799-810, 1976.

L. Barrio, J. Saez-de-guinoa, and Y. R. Carrasco, TLR4 signaling shapes B cell dynamics via MyD88-dependent pathways and Rac GTPases, J Immunol, issue.7, pp.3867-75, 2013.

I. Y. Hwang, C. Park, K. Harrison, and J. H. Kehrl, TLR4 signaling augments B lymphocyte migration and overcomes the restriction that limits access to germinal center dark zones, J Exp Med, issue.12, pp.2641-57, 2009.

A. Garin, M. Meyer-hermann, M. Contie, M. T. Figge, V. Buatois et al., Toll-like receptor 4 signaling by follicular dendritic cells is pivotal for germinal center onset and ainity maturation, Immunity, vol.33, issue.1, pp.84-95, 2010.

S. Berrih-aknin, E. Morel, F. Raimond, D. Safar, C. Gaud et al., he role of the thymus in myasthenia gravis: immunohistological and immunological studies in 115 cases, Ann N Y Acad Sci, vol.505, pp.50-70, 1987.

,

S. R. Nandula, Y. M. Scindia, P. Dey, H. Bagavant, and U. S. Deshmukh, Activation of innate immunity accelerates sialoadenitis in a mouse model for Sjogren's syndrome-like disease, Oral Dis, vol.17, issue.8, pp.801-808, 2011.

M. Asada, A. Nishio, T. Akamatsu, J. Tanaka, K. Saga et al., Analysis of humoral immune response in experimental autoimmune pancreatitis in mice, Pancreas, vol.39, issue.2, pp.224-255, 2010.

J. Y. Hwang, T. D. Randall, and A. Silva-sanchez, Inducible bronchus-associated lymphoid tissue: taming inlammation in the lung, Front Immunol, vol.7, p.258, 2016.

T. P. Lee, J. C. Huang, C. J. Liu, H. J. Chen, Y. H. Chen et al., Interactions of surface-expressed TLR-4 and endosomal TLR-9 accelerate lupus progression in anti-dsDNA antibody transgenic mice, Exp Biol Med, issue.6, pp.715-738, 2014.

, Conlict of Interest Statement: he authors declare that the research was con

S. Berrih-aknin, L. Panse, and R. , Myasthenia gravis: a comprehensive review of immune dysregulation and etiological mechanisms, J Autoimmun, vol.52, pp.90-100, 2014.

W. Hoch, J. Mcconville, S. Helms, J. Newsom-davis, and A. Melms, Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies, Nat Med, vol.7, pp.365-368, 2001.

O. Higuchi, J. Hamuro, M. Motomura, and Y. Yamanashi, Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis, Ann Neurol, vol.69, pp.418-422, 2011.

B. Zhang, C. Shen, B. Bealmear, S. Ragheb, and W. C. Xiong, Autoantibodies to agrin in myasthenia gravis patients, PLoS One, vol.9, p.91816, 2014.

M. W. Nicolle, Myasthenia gravis, Neurologist, vol.8, pp.2-21, 2002.

S. Berrih-aknin, E. Morel, F. Raimond, D. Safar, and C. Gaud, The role of the thymus in myasthenia gravis: immunohistological and immunological studies in 115 cases, 1987.

, Ann N Y Acad Sci, vol.505, pp.50-70

A. I. Levinson and L. M. Wheatley, The thymus and the pathogenesis of myasthenia gravis, Clin Immunol Immunopathol, vol.78, pp.1-5, 1996.

A. Evoli, P. A. Tonali, L. Padua, M. L. Monaco, and F. Scuderi, Clinical correlates with anti-MuSK antibodies in generalized seronegative myasthenia gravis, Brain, vol.126, pp.2304-2311, 2003.

J. M. Ponseti, N. Caritg, J. Gamez, M. Lopez-cano, and R. Vilallonga, A comparison of long-term post-thymectomy outcome of anti-AChR-positive, anti-AChR-negative and anti-MuSKpositive patients with non-thymomatous myasthenia gravis, Expert Opin Biol Ther, vol.9, pp.1-8, 2009.

G. Anderson and Y. Takahama, Thymic epithelial cells: working class heroes for T cell development and repertoire selection, Trends Immunol, vol.33, pp.256-263, 2012.

R. K. Suniara, E. J. Jenkinson, and J. J. Owen, An essential role for thymic mesenchyme in early T cell development, J Exp Med, vol.191, pp.1051-1056, 2000.

J. Derbinski, J. Gabler, B. Brors, S. Tierling, and S. Jonnakuty, Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels, J Exp Med, vol.202, pp.33-45, 2005.

S. Berrih-aknin, N. Ruhlmann, J. Bismuth, G. Cizeron-clairac, and E. Zelman, CCL21 overexpressed on lymphatic vessels drives thymic hyperplasia in myasthenia, Ann Neurol, vol.66, pp.521-531, 2009.

L. Panse, R. Bismuth, J. Cizeron-clairac, G. Weiss, J. M. Cufi et al., Thymic remodeling associated with hyperplasia in myasthenia gravis, Autoimmunity, vol.43, pp.1-12, 2010.

J. M. Weiss, P. Cufi, J. Bismuth, B. Eymard, and E. Fadel, , 2013.

, /CXCL12 recruits B cells and antigen-presenting cells to the thymus of autoimmune myasthenia gravis patients, Immunobiology, vol.218, pp.373-381

J. M. Weiss, P. Cufi, L. Panse, R. Berrih-aknin, and S. , The thymus in autoimmune myasthenia gravis: paradigm for a tertiary lymphoid organ, Rev Neurol, vol.169, pp.640-649, 2013.

N. H. Ruddle, Lymphatic vessels and tertiary lymphoid organs, J Clin Invest, vol.124, pp.953-959, 2014.

A. Wakkach, T. Guyon, C. Bruand, S. Tzartos, and S. Cohen-kaminsky, Expression of acetylcholine receptor genes in human thymic epithelial cells: implications for myasthenia gravis, J Immunol, vol.157, pp.3752-3760, 1996.

D. Safar, S. Berrih-aknin, and E. Morel, In vitro antiacetylcholine receptor antibody synthesis by myasthenia gravis patient lymphocytes: correlations with thymic histology and thymic epithelial-cell interactions, J Clin Immunol, vol.7, pp.225-234, 1987.

C. Leprince, S. Cohen-kaminsky, S. Berrih-aknin, B. Vernet-der-garabedian, and D. Treton, Thymic B cells from myasthenia gravis patients are activated B cells phenotypic and functional analysis, J Immunol, vol.145, pp.2115-2122, 1990.

A. Melms, B. C. Schalke, T. Kirchner, H. K. Muller-hermelink, and A. E. , Thymus in myasthenia gravis. Isolation of Tlymphocyte lines specific for the nicotinic acetylcholine receptor from thymuses of myasthenic patients, J Clin Invest, vol.81, pp.902-908, 1988.

J. B. Kuks, H. J. Oosterhuis, P. C. Limburg, and T. H. The, Antiacetylcholine receptor antibodies decrease after thymectomy in patients with myasthenia gravis clinical correlations, J Autoimmun, vol.4, pp.197-211, 1991.

A. E. Papatestas, L. I. Alpert, K. E. Osserman, R. S. Osserman, and A. E. Kark, Studies in myasthenia gravis: effects of thymectomy. Results on 185 patients with nonthymomatous and thymomatous myasthenia gravis, Am J Med, vol.50, pp.465-474, 1971.

T. Feferman, P. K. Maiti, S. Berrih-aknin, J. Bismuth, and J. Bidault, Overexpression of IFN-induced protein 10 and its receptor CXCR3 in myasthenia gravis, J Immunol, vol.174, pp.5324-5331, 2005.

C. Cordiglieri, R. Marolda, S. Franzi, C. Cappelletti, and C. Giardina, Innate immunity in myasthenia gravis thymus: pathogenic effects of Toll-like receptor 4 signaling on autoimmunity, J Autoimmun, vol.52, pp.74-89, 2014.

D. F. Legler, M. Loetscher, R. S. Roos, I. Clark-lewis, and M. Baggiolini, B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5, J Exp Med, vol.187, pp.655-660, 1998.

F. Barone, M. Bombardieri, A. Manzo, M. C. Blades, and P. R. Morgan, Association of CXCL13 and CCL21 expression with the progressive organization of lymphoid-like structures in Sjogren's syndrome, Arthritis Rheum, vol.52, pp.1773-1784, 2005.

A. Méraouna, G. Cizeron-clairac, L. Panse, R. Bismuth, J. Truffault et al., The chemokine CXCL13 is a key molecule in autoimmune myasthenia gravis, Blood, vol.108, pp.432-440, 2006.

L. Panse, R. Cizeron-clairac, G. Bismuth, J. Berrih-aknin, and S. , Microarrays reveal distinct gene signatures in the thymus of seropositive and seronegative myasthenia gravis patients and the role of CC chemokine ligand 21 in thymic hyperplasia, J Immunol, vol.177, pp.7868-7879, 2006.

Y. M. Shiao, C. C. Lee, Y. H. Hsu, S. F. Huang, and C. Y. Lin, Ectopic and high CXCL13 chemokine expression in myasthenia gravis with thymic lymphoid hyperplasia, J Neuroimmunol, vol.221, pp.101-106, 2010.

M. Zhang, J. Guo, H. Li, Y. Zhou, and F. Tian, Expression of immune molecules CD25 and CXCL13 correlated with clinical severity of myasthenia gravis, J Mol Neurosci, vol.50, pp.317-323, 2013.

J. P. Stubgen, Interferon alpha and neuromuscular disorders, J Neuroimmunol, vol.207, pp.3-17, 2009.

A. Meager, M. Wadhwa, P. Dilger, C. Bird, and R. Thorpe, Anti-cytokine autoantibodies in autoimmunity: preponderance of neutralizing autoantibodies against interferon-alpha, interferonomega and interleukin-12 in patients with thymoma and/or myasthenia gravis, Clin Exp Immunol, vol.132, pp.128-136, 2003.

A. Meloni, M. Furcas, F. Cetani, C. Marcocci, and A. Falorni, Autoantibodies against type I interferons as an additional diagnostic criterion for autoimmune polyendocrine syndrome type I, J Clin Endocrinol Metab, vol.93, pp.4389-4397, 2008.

S. Poea-guyon, P. Christadoss, L. Panse, R. Guyon, T. et al., Effects of cytokines on acetylcholine receptor expression: implications for myasthenia gravis, J Immunol, vol.174, pp.5941-5949, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02522187

L. Panse, R. Cizeron-clairac, G. Cuvelier, M. Truffault, F. Bismuth et al., Regulatory and pathogenic mechanisms in human autoimmune myasthenia gravis, Ann N YAcad Sci, vol.1132, pp.135-142, 2008.

A. Golding, A. Rosen, M. Petri, E. Akhter, and F. Andrade, Interferon-alpha regulates the dynamic balance between human activated regulatory and effector T cells: implications for antiviral and autoimmune responses, Immunology, vol.131, pp.107-117, 2010.

P. Cufi, N. Dragin, J. M. Weiss, P. Martinez-martinez, D. Baets et al., Implication of double-stranded RNA signaling in the etiology of autoimmune myasthenia gravis, Ann Neurol, vol.73, pp.281-293, 2013.

P. Cufi, N. Dragin, N. Ruhlmann, J. M. Weiss, and E. Fadel, Central role of interferon-beta in thymic events leading to myasthenia gravis, J Autoimmun, vol.52, pp.44-52, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01514459

J. M. Weiss, M. Robinet, R. Aricha, P. Cufi, and B. Villeret, Novel CXCL13 transgenic mouse: inflammation drives pathogenic effect of CXCL13 in experimental myasthenia gravis, Oncotarget, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01293674

P. Cufi, P. Soussan, F. Truffault, R. Fetouchi, and R. M. , Thymoma-associated myasthenia gravis: on the search for a pathogen signature, J Autoimmun, vol.52, pp.29-35, 2014.

H. Okada, C. Kuhn, H. Feillet, and J. F. Bach, The Bhygiene hypothesis^for autoimmune and allergic diseases: an update, Clin Exp Immunol, vol.160, pp.1-9, 2010.

C. Munz, J. D. Lunemann, M. T. Getts, and S. D. Miller, Antiviral immune responses: triggers of or triggered by autoimmunity?, Nat Rev Immunol, vol.9, pp.246-258, 2009.

W. Savino, The thymus is a common target organ in infectious diseases, PLoS Pathog, vol.2, p.62, 2006.

P. Cavalcante, M. Barberis, M. Cannone, F. Baggi, and C. Antozzi, Detection of poliovirus-infected macrophages in thymus of patients with myasthenia gravis, Neurology, vol.74, pp.1118-1126, 2010.

P. Cavalcante, B. Serafini, B. Rosicarelli, L. Maggi, and M. Barberis, Epstein-Barr virus persistence and reactivation in myasthenia gravis thymus, Ann Neurol, vol.67, pp.726-738, 2010.

H. H. Niller, H. Wolf, E. Ay, and J. Minarovits, Epigenetic dysregulation of Epstein-Barr virus latency and development of autoimmune disease, Adv Exp Med Biol, vol.711, pp.82-102, 2011.

S. Ning, Innate immune modulation in EBV infection, vol.2, p.1, 2011.

T. Kawai and S. Akira, The role of pattern-recognition receptors in innate immunity: update on toll-like receptors, Nat Immunol, vol.11, pp.373-384, 2010.

T. Kawasaki and T. Kawai, Toll-like receptor signaling pathways, Front Immunol, vol.5, p.461, 2014.

M. Hosseini, A. Majidi, J. Baradaran, B. Yousefi, and M. , Toll-like receptors in the pathogenesis of autoimmune diseases, Adv Pharm Bull, vol.5, pp.605-614, 2015.

J. Q. Chen, P. Szodoray, and M. Zeher, Toll-like receptor pathways in autoimmune diseases, Clin Rev Allergy Immunol, vol.50, pp.1-17, 2016.

Y. J. Choi, E. Im, H. K. Chung, C. Pothoulakis, and S. H. Rhee, TRIF mediates toll-like receptor 5-induced signaling in intestinal epithelial cells, J Biol Chem, vol.285, pp.37570-37578, 2010.

C. Volpi, F. Fallarino, M. T. Pallotta, R. Bianchi, and C. Vacca, High doses of CpG oligodeoxynucleotides stimulate a tolerogenic TLR9-TRIF pathway, Nat Commun, vol.4, p.1852, 2013.

N. J. Nilsen, G. I. Vladimer, J. Stenvik, M. P. Orning, and M. V. Zeid-kilani, A role for the adaptor proteins TRAM and TRIF in tolllike receptor 2 signaling, J Biol Chem, vol.290, pp.3209-3222, 2015.

D. J. Perkins and S. N. Vogel, Space and time: new considerations about the relationship between toll-like receptors (TLRs) and type I interferons (IFNs), Cytokine, vol.74, pp.171-174, 2015.

J. Pohar, N. Pirher, M. Bencina, M. Mancek-keber, and R. Jerala, The role of UNC93B1 protein in surface localization of TLR3 receptor and in cell priming to nucleic acid agonists, J Biol Chem, vol.288, pp.442-454, 2013.

A. Kanno, N. Tanimura, M. Ishizaki, K. Ohko, and Y. Motoi, Targeting cell surface TLR7 for therapeutic intervention in autoimmune diseases, Nat Commun, vol.6, p.6119, 2015.

H. Itoh, M. Tatematsu, A. Watanabe, K. Iwano, and K. Funami, UNC93B1 physically associates with human TLR8 and regulates TLR8-mediated signaling, PLoS One, vol.6, p.28500, 2011.

T. Guerrier, P. Pochard, A. Lahiri, P. Youinou, and J. O. Pers, TLR9 expressed on plasma membrane acts as a negative regulator of human B cell response, J Autoimmun, vol.51, pp.23-29, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01011784

J. Hurst and P. Von-landenberg, Toll-like receptors and autoimmunity, Autoimmun Rev, vol.7, pp.204-208, 2008.

M. S. Duthie, H. P. Windish, C. B. Fox, and S. G. Reed, Use of defined TLR ligands as adjuvants within human vaccines, Immunol Rev, vol.239, pp.178-196, 2011.

B. Jin, T. Sun, X. H. Yu, Y. X. Yang, and A. E. Yeo, The effects of TLR activation on T-cell development and differentiation, Clin Dev Immunol, vol.2012, p.836485, 2012.

S. P. Crampton, E. Voynova, and S. Bolland, Innate pathways to Bcell activation and tolerance, Ann N Y Acad Sci, vol.1183, pp.58-68, 2010.

N. M. Green, K. S. Moody, M. Debatis, and A. Marshak-rothstein, Activation of autoreactive B cells by endogenous TLR7 and TLR3 RNA ligands, J Biol Chem, 2012.

A. Meyer-bahlburg and D. J. Rawlings, B cell autonomous TLR signaling and autoimmunity, Autoimmun Rev, vol.7, pp.313-316, 2008.

N. M. Green and A. Marshak-rothstein, Toll-like receptor driven B cell activation in the induction of systemic autoimmunity, Semin Immunol, vol.23, pp.106-112, 2011.

Y. Z. Wang, M. Yan, F. F. Tian, J. M. Zhang, and Q. Liu, Possible involvement of toll-like receptors in the pathogenesis of myasthenia gravis, Inflammation, vol.36, pp.121-130, 2013.

J. Lu, M. Yan, Y. Wang, J. Zhang, and H. Yang, Altered expression of miR-146a in myasthenia gravis, Neurosci Lett, vol.555, pp.85-90, 2013.

K. A. Zarember and P. J. Godowski, Tissue expression of human toll-like receptors and differential regulation of toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines, J Immunol, vol.168, pp.554-561, 2002.

P. Bernasconi, M. Barberis, F. Baggi, L. Passerini, and M. Cannone, Increased toll-like receptor 4 expression in thymus of myasthenic patients with thymitis and thymic involution, Am J Pathol, vol.167, pp.129-139, 2005.

P. Cavalcante, B. Galbardi, S. Franzi, S. Marcuzzo, and C. Barzago, Increased expression of toll-like receptors 7 and 9 in myasthenia gravis thymus characterized by active Epstein-Barr virus infection, Immunobiology, vol.221, pp.516-527, 2016.

T. E. Quan, R. M. Roman, B. J. Rudenga, V. M. Holers, and J. E. Craft, Epstein-Barr virus promotes interferon-alpha production by plasmacytoid dendritic cells, Arthritis Rheum, vol.62, pp.1693-1701, 2010.

D. Iwakiri, L. Zhou, M. Samanta, M. Matsumoto, and T. Ebihara, Epstein-Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling from toll-like receptor 3, J Exp Med, vol.206, pp.2091-2099, 2009.

E. Gaudreault, S. Fiola, M. Olivier, and J. Gosselin, Epstein-Barr virus induces MCP-1 secretion by human monocytes via TLR2, J Virol, vol.81, pp.8016-8024, 2007.

R. M. Valente, E. Ehlers, D. Xu, H. Ahmad, and A. Steadman, Toll-like receptor 7 stimulates the expression of Epstein-Barr virus latent membrane protein 1, PLoS One, vol.7, p.43317, 2012.

S. Fuchs, R. Aricha, D. Reuveni, and M. C. Souroujon, Experimental autoimmune myasthenia gravis (EAMG): from immunochemical characterization to therapeutic approaches, J Autoimmun, vol.54, pp.51-59, 2014.

E. Tuzun, S. Berrih-aknin, T. Brenner, L. L. Kusner, L. Panse et al., Guidelines for standard preclinical experiments in the mouse model of myasthenia gravis induced by acetylcholine receptor immunization, Exp Neurol, 2015.

B. Wu, E. Goluszko, R. Huda, E. Tuzun, and P. Christadoss, Experimental autoimmune myasthenia gravis in the mouse, Curr Protoc Immunol Chapter, vol.15, p.18, 2013.

M. Losen, P. Martinez-martinez, P. C. Molenaar, K. Lazaridis, and S. Tzartos, Standardization of the experimental autoimmune myasthenia gravis (EAMG) model by immunization of rats with Torpedo californica acetylcholine receptors-recommendations for methods and experimental designs, Exp Neurol, vol.270, pp.18-28, 2015.

A. Billiau and P. Matthys, Modes of action of Freund's adjuvants in experimental models of autoimmune diseases, J Leukoc Biol, vol.70, pp.849-860, 2001.

M. Milani, N. Ostlie, H. Wu, W. Wang, and B. M. Conti-fine, CD4+ T and B cells cooperate in the immunoregulation of experimental autoimmune myasthenia gravis, J Neuroimmunol, vol.179, pp.152-162, 2006.

A. Shibaki and S. I. Katz, Induction of skewed Th1/Th2 T-cell differentiation via subcutaneous immunization with Freund'sadjuvant, Exp Dermatol, vol.11, pp.126-134, 2002.

B. Balasa, C. Deng, J. Lee, L. M. Bradley, and D. K. Dalton, Interferon gamma (IFN-gamma) is necessary for the genesis of acetylcholine receptor-induced clinical experimental autoimmune myasthenia gravis in mice, J Exp Med, vol.186, pp.385-391, 1997.

G. X. Zhang, B. G. Xiao, X. F. Bai, P. H. Van-der-meide, and A. Orn, Mice with IFN-gamma receptor deficiency are less susceptible to experimental autoimmune myasthenia gravis, J Immunol, vol.162, pp.3775-3781, 1999.

H. Schaffert, A. Pelz, A. Saxena, M. Losen, and A. Meisel, IL-17-producing CD4(+) T cells contribute to the loss of B-cell tolerance in experimental autoimmune myasthenia gravis, Eur J Immunol, vol.45, pp.1339-1347, 2015.

A. L. Gavin, K. Hoebe, B. Duong, T. Ota, and C. Martin, Adjuvant-enhanced antibody responses in the absence of tolllike receptor signaling, Science, vol.314, pp.1936-1938, 2006.

S. B. Su, P. B. Silver, R. S. Grajewski, R. K. Agarwal, and J. Tang, Essential role of the MyD88 pathway, but nonessential roles of TLRs 2, 4, and 9, in the adjuvant effect promoting Th1-mediated autoimmunity, J Immunol, vol.175, pp.6303-6310, 2005.

R. R. Marty, S. Dirnhofer, N. Mauermann, S. Schweikert, and S. Akira, MyD88 signaling controls autoimmune myocarditis induction, Circulation, vol.113, pp.258-265, 2006.

A. Sadanaga, H. Nakashima, M. Akahoshi, K. Masutani, and K. Miyake, Protection against autoimmune nephritis in MyD88-deficient MRL/lpr mice, Arthritis Rheum, vol.56, pp.1618-1628, 2007.

J. Fang, D. Fang, P. B. Silver, F. Wen, and B. Li, The role of TLR2, TRL3, TRL4, and TRL9 signaling in the pathogenesis of autoimmune disease in a retinal autoimmunity model, Invest Ophthalmol Vis Sci, vol.51, pp.3092-3099, 2010.

G. K. Scadding, L. Calder, A. Vincent, C. Prior, and D. Wray, Anti-acetylcholine receptor antibodies induced in mice by syngeneic receptor without adjuvants, Immunology, vol.58, pp.151-155, 1986.

A. Jermy, D. Beeson, and A. Vincent, Pathogenic autoimmunity to affinity-purified mouse acetylcholine receptor induced without adjuvant in BALB/c mice, Eur J Immunol, vol.23, pp.973-976, 1993.

M. Kool, T. Soullie, M. Van-nimwegen, M. A. Willart, and F. Muskens, Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells, J Exp Med, vol.205, pp.869-882, 2008.

M. Oshima, T. Maruta, M. Ohtani, P. R. Deitiker, and D. Mosier, Vaccination with a MHC class II peptide in alum and inactive pertussis strongly ameliorates clinical MG in C57BL/6 mice, J Neuroimmunol, vol.171, pp.8-16, 2006.

B. Bennett, I. J. Check, M. R. Olsen, and R. L. Hunter, A comparison of commercially available adjuvants for use in research, J Immunol Methods, vol.153, pp.31-40, 1992.

M. Shenoy and P. Christadoss, Induction of experimental autoimmune myasthenia gravis with acetylcholine receptors using a nonionic block copolymer as adjuvant, Immunol Investig, vol.22, pp.267-282, 1993.

Y. C. Lu, W. C. Yeh, and P. S. Ohashi, LPS/TLR4 signal transduction pathway, Cytokine, vol.42, pp.145-151, 2008.

D. Demon, L. Vande-walle, and M. Lamkanfi, Sensing the enemy within: how macrophages detect intracellular Gram-negative bacteria, Trends Biochem Sci, vol.39, pp.574-576, 2014.

Y. Liu, H. Yin, M. Zhao, and Q. Lu, TLR2 and TLR4 in autoimmune diseases: a comprehensive review, Clin Rev Allergy Immunol, vol.47, pp.136-147, 2014.

W. Allman, H. Qi, S. S. Saini, J. Li, and E. Tuzun, CD4 costimulation is not required in a novel LPS-enhanced model of myasthenia gravis, J Neuroimmunol, vol.249, pp.1-7, 2012.

N. R. Rose, The adjuvant effect in infection and autoimmunity, Clin Rev Allergy Immunol, vol.34, pp.279-282, 2008.

D. Damotte, C. Goulvestre, J. Charreire, and C. Carnaud, LPS and Freund's adjuvant initiate different inflammatory circuits in experimental autoimmune thyroiditis, Eur Cytokine Netw, vol.14, pp.52-59, 2003.

J. A. Deane and S. Bolland, Nucleic acid-sensing TLRs as modifiers of autoimmunity, J Immunol, vol.177, pp.6573-6578, 2006.

P. W. Berman and J. Patrick, Experimental myasthenia gravis. A murine system, J Exp Med, vol.151, pp.204-223, 1980.

Y. Fujii, Y. Monden, J. Hashimoto, K. Nakahara, and Y. Kawashima, Acetylcholine receptor antibody-producing cells in thymus and lymph nodes in myasthenia gravis, Clin Immunol Immunopathol, vol.34, pp.141-146, 1985.

F. Zare, M. Bokarewa, N. Nenonen, T. Bergstrom, and L. Alexopoulou, Arthritogenic properties of double-stranded (viral) RNA, J Immunol, vol.172, pp.5656-5663, 2004.

C. Okada, S. M. Akbar, N. Horiike, and M. Onji, Early development of primary biliary cirrhosis in female C57BL/6 mice because of poly I:C administration, Liver Int, vol.25, pp.595-603, 2005.

M. Asada, A. Nishio, T. Akamatsu, J. Tanaka, and K. Saga, Analysis of humoral immune response in experimental autoimmune pancreatitis in mice, Pancreas, vol.39, pp.224-231, 2010.

P. S. Patole, H. J. Grone, S. Segerer, R. Ciubar, and E. Belemezova, Viral double-stranded RNA aggravates lupus nephritis through toll-like receptor 3 on glomerular mesangial cells and antigen-presenting cells, J Am Soc Nephrol, vol.16, pp.1326-1338, 2005.

T. N. Jorgensen, J. Thurman, S. Izui, M. T. Falta, and T. E. Metzger, Genetic susceptibility to polyI:C-induced IFNalpha/betadependent accelerated disease in lupus-prone mice, Genes Immun, vol.7, pp.555-567, 2006.

S. R. Nandula, Y. M. Scindia, P. Dey, H. Bagavant, and U. S. Deshmukh, Activation of innate immunity accelerates sialoadenitis in a mouse model for Sjogren's syndrome-like disease, Oral Dis, vol.17, pp.801-807, 2011.

H. Moriyama, L. Wen, N. Abiru, E. Liu, and L. Yu, Induction and acceleration of insulitis/diabetes in mice with a viral mimic (polyinosinic-polycytidylic acid) and an insulin self-peptide, Proc Natl Acad Sci U S A, vol.99, pp.5539-5544, 2002.

X. Ren, H. Zhou, B. Li, and S. B. Su, Toll-like receptor 3 ligand polyinosinic:polycytidylic acid enhances autoimmune disease in a retinal autoimmunity model, Int Immunopharmacol, vol.11, pp.769-773, 2011.

Y. M. Ambrosini, G. X. Yang, W. Zhang, M. Tsuda, and S. Shu, The multi-hit hypothesis of primary biliary cirrhosis: polyinosinicpolycytidylic acid (poly I:C) and murine autoimmune cholangitis, Clin Exp Immunol, vol.166, pp.110-120, 2011.

T. Touil, D. Fitzgerald, G. X. Zhang, A. Rostami, and B. Gran, Cutting Edge: TLR3 stimulation suppresses experimental autoimmune encephalomyelitis by inducing endogenous IFN-beta, J Immunol, vol.177, pp.7505-7509, 2006.

R. Khorooshi, M. T. Morch, T. H. Holm, C. T. Berg, and R. T. Dieu, Induction of endogenous type I interferon within the central nervous system plays a protective role in experimental autoimmune encephalomyelitis, Acta Neuropathol, vol.130, pp.107-118, 2015.

S. M. Jankovic, Injectable interferon beta-1b for the treatment of relapsing forms of multiple sclerosis, J Inflamm Res, vol.3, pp.25-31, 2010.

V. A. Lennon, J. M. Lindstrom, and M. E. Seybold, Experimental autoimmune myasthenia: a model of myasthenia gravis in rats and guinea pigs, J Exp Med, vol.141, pp.1365-1375, 1975.

S. Fuchs, D. Nevo, R. Tarrab-hazdai, and I. Yaar, Strain differences in the autoimmune response of mice to acetylcholine receptors, Nature, vol.263, pp.329-330, 1976.

E. Meinl, W. E. Klinkert, and H. Wekerle, The thymus in myasthenia gravis. Changes typical for the human disease are absent in experimental autoimmune myasthenia gravis of the Lewis rat, Am J Pathol, vol.139, pp.995-1008, 1991.

V. A. Lennon, J. M. Lindstrom, and M. E. Seybold, Experimental autoimmune myasthenia gravis: cellular and humoral immune responses, Ann N Y Acad Sci, vol.274, pp.283-299, 1976.

F. Fallarino, C. Volpi, T. Zelante, C. Vacca, and M. Calvitti, IDO mediates TLR9-driven protection from experimental autoimmune diabetes, J Immunol, vol.183, pp.6303-6312, 2009.

A. Gilboa-geffen, Y. Wolf, G. Hanin, N. Melamed-book, and M. Pick, Activation of the alternative NFkappaB pathway improves disease symptoms in a model of Sjogren'ss y n d r o m e, PLoS One, vol.6, p.28727, 2011.

A. L. Longhini, M. P. Santos, F. Pradella, A. S. Moraes, and A. C. Dionete, In vivo administration of TLR9 agonist reduces the severity of experimental autoimmune encephalomyelitis. The role of plasmacytoid dendritic cells and B lymphocytes, CNS Neurosci Ther, vol.20, pp.787-790, 2014.

K. Farhat, S. Riekenberg, H. Heine, J. Debarry, and R. Lang, Heterodimerization of TLR2 with TLR1 or TLR6 expands the ligand spectrum but does not lead to differential signaling, J Leukoc Biol, vol.83, pp.692-701, 2008.

J. Van-bergenhenegouwen, T. S. Plantinga, L. A. Joosten, M. G. Netea, and G. Folkerts, TLR2 & Co: a critical analysis of the complex interactions between TLR2 and coreceptors, J Leukoc Biol, vol.94, pp.885-902, 2013.

T. Nishiya, E. Kajita, S. Miwa, and A. L. Defranco, TLR3 and TLR7 are targeted to the same intracellular compartments by distinct regulatory elements, J Biol Chem, vol.280, pp.37107-37117, 2005.

M. Tatematsu, T. Seya, and M. Matsumoto, Beyond dsRNA: tolllike receptor 3 signalling in RNA-induced immune responses, Biochem J, vol.458, pp.195-201, 2014.

A. Liaunardy-jopeace and N. J. Gay, Molecular and cellular regulation of toll-like receptor-4 activity induced by lipopolysaccharide ligands, Front Immunol, vol.5, p.473, 2014.

E. A. Miao, E. Andersen-nissen, S. E. Warren, and A. Aderem, TLR5 and Ipaf: dual sensors of bacterial flagellin in the innate immune system, Semin Immunopathol, vol.29, pp.275-288, 2007.

C. Guiducci, M. Gong, A. M. Cepika, Z. Xu, and C. Tripodo, RNA recognition by human TLR8 can lead to autoimmune inflammation, J Exp Med, vol.210, pp.2903-2919, 2013.

X. Huang and Y. Yang, Targeting the TLR9-MyD88 pathway in the regulation of adaptive immune responses, Expert Opin Ther Targets, vol.14, pp.787-796, 2010.

U. Hasan, C. Chaffois, C. Gaillard, V. Saulnier, and E. Merck, Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88, J Immunol, vol.174, pp.2942-2950, 2005.

S. M. Lee, K. H. Kok, M. Jaume, T. K. Cheung, and T. F. Yip, Tolllike receptor 10 is involved in induction of innate immune responses to influenza virus infection, Proc Natl Acad Sci U S A, vol.111, pp.3793-3798, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-00958470

H. Hatai, A. Lepelley, W. Zeng, M. S. Hayden, and S. Ghosh, Tolllike receptor 11 (TLR11) interacts with flagellin and profilin through disparate mechanisms, PLoS One, vol.11, p.148987, 2016.

Y. G. Cho, M. L. Cho, S. Y. Min, and H. Y. Kim, Type II collagen autoimmunity in a mouse model of human rheumatoid arthritis, Autoimmun Rev, vol.7, pp.65-70, 2007.

J. E. Libbey and R. S. Fujinami, Experimental autoimmune encephalomyelitis as a testing paradigm for adjuvants and vaccines, Vaccine, vol.29, pp.3356-3362, 2011.

Y. Allenbach, S. Solly, S. Gregoire, O. Dubourg, and B. Salomon, Role of regulatory T cells in a new mouse model of experimental autoimmune myositis, Am J Pathol, vol.174, pp.989-998, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00420196

A. W. Lohse, M. Manns, H. P. Dienes, K. Buschenfelde, and I. R. Cohen, Experimental autoimmune hepatitis: disease induction, time course and T-cell reactivity, Hepatology, vol.11, pp.24-30, 1990.

D. E. Jones, J. M. Palmer, J. A. Kirby, D. Cruz, D. J. Mccaughan et al., Experimental autoimmune cholangitis: a mouse model of immune-mediated cholangiopathy, Liver, vol.20, pp.351-356, 2000.

M. A. Little, L. Smyth, A. D. Salama, S. Mukherjee, and J. Smith, Experimental autoimmune vasculitis: an animal model of anti-neutrophil cytoplasmic autoantibody-associated systemic vasculitis, Am J Pathol, vol.174, pp.1212-1220, 2009.

A. Tincani, B. Gilburd, M. Abu-shakra, M. Blank, and F. Allegri, Immunization of naive BALB/c mice with human beta2-glycoprotein I breaks tolerance to the murine molecule, Arthritis Rheum, vol.46, pp.1399-1404, 2002.

, Clinic Rev Allerg Immunol