Z. Li, G. Jeanmairet, T. Mendez-morales, B. Rotenberg, and M. Salanne, Capacitive performance of water-in-salt electrolyte in supercapacitors: a simulation study, J. Phys. Chem. C, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02347041

Z. Li, T. Mendez-morales, and M. Salanne, Computer simulation studies of nanoporous carbon-based electrochemical capacitors, Current Opinion in Electrochemistry, vol.9, pp.81-86, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01826392

Z. Li, G. Jeanmairet, T. Mendez-morales, M. Burbano, M. Haefele et al., Confinement effects on an electron transfer reaction in nanoporous carbon electrodes, J. Phys. Chem. Lett, vol.8, pp.1925-1931, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01510363

, Note: This work was done during the first year of my Ph.D., and it was not included in the thesis but as a appendix because the topic is quite different

X. Jiang, J. Huang, B. G. Sumpter, and R. Qiao, Electro-Induced Dewetting and Concomitant Ionic Current Avalanche in Nanopores, J. Phys. Chem. Lett, vol.4, pp.3120-3126, 2013.

C. Pean, B. Daffos, B. Rotenberg, P. Levitz, M. Haefele et al., Confinement, Desolvation, and Electrosorption Effects on the Diffusion of Ions in Nanoporous Carbon Electrodes, J. Am. Chem. Soc, vol.137, pp.12627-12632, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01221450

K. V. Agrawal, S. Shimizu, L. W. Drahushuk, D. Kilcoyne, and M. S. Strano, Observation of Extreme Phase Transition Temperatures of Water Confined Inside Isolated Carbon Nanotubes, Nat. Nanotechnol, vol.12, pp.267-273, 2016.

M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P. Taberna et al., ) Kornyshev, A. A. Double-layer in Ionic Liquids: Paradigm Change?, J. Phys. Chem. B, issue.6, pp.5545-5557, 2007.

J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon et al., Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer, Science, vol.313, pp.1760-1763, 2006.

E. Raymundo-pin?ro, K. Kierzek, J. Machnikowski, and F. Be?uin, Relationship Between the Nanoporous Texture of Activated Carbons and Their Capacitance Properties in Different Electrolytes, Carbon, vol.44, pp.2498-2507, 2006.

S. Kondrat, C. R. Perez, V. Presser, Y. Gogotsi, and A. A. Kornyshev, Effect of Pore Size and Its Dispersity on the Energy Storage in Nanoporous Supercapacitors, Energy Environ. Sci, vol.5, pp.6474-6479, 2012.

C. Merlet, B. Rotenberg, P. A. Madden, P. Taberna, P. Simon et al., On the Molecular Origin of Supercapacitance in Nanoporous Carbon Electrodes, Nat. Mater, vol.11, pp.306-310, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01153072

Y. He, J. Huang, B. G. Sumpter, A. A. Kornyshev, and R. Qiao, Dynamic Charge Storage in Ionic Liquids-filled Nanopores: Insight from a Computational Cyclic Voltammetry Study, J. Phys. Chem. Lett, vol.6, pp.22-30, 2015.

J. Vatamanu and D. Bedrov, Capacitive Energy Storage: Current and Future Challenges, J. Phys. Chem. Lett, vol.6, pp.3594-3609, 2015.

D. S. Silvester and R. G. Compton, Electrochemistry in Room Temperature Ionic Liquids: A Review and Some Possible Applications, Z. Phys. Chem, vol.220, pp.1247-1274, 2006.

M. Armand, F. Endres, D. R. Macfarlane, H. Ohno, and B. Scrosati, Ionic-liquid Materials for the Electrochemical Challenges of the Future, Nat. Mater, vol.8, pp.621-630, 2009.

R. Burt, K. Breitsprecher, B. Daffos, P. Taberna, P. Simon et al., Capacitance of Nanoporous Carbon-Based Supercapacitors Is a Trade-Off between the Concentration and the Separability of the Ions, J. Phys. Chem. Lett, vol.7, pp.4015-4021, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01494252

E. Mourad, L. Coustan, P. Lannelongue, D. Zigah, A. Mehdi et al., Biredox Ionic Liquids with Solid-like Redox Density in the Liquid State for High-Energy Supercapacitors, Nat. Mater, vol.16, pp.446-453, 2017.

R. A. Marcus, On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer. I, J. Chem. Phys, vol.24, pp.966-978, 1956.

D. W. Small, D. V. Matyushov, and G. A. Voth, The Theory of Electron Transfer Reactions: What May Be Missing?, J. Am. Chem. Soc, vol.125, pp.7470-7478, 2003.

J. Blumberger, Cu aq + /Cu aq 2+ Redox Reaction Exhibits Strong Nonlinear Solvent Response Due to Change in Coordination Number

, J. Am. Chem. Soc, vol.130, pp.16065-16068, 2008.

D. V. Matyushov and G. A. Voth, Modeling the Free Energy Surfaces of Electron Transfer in Condensed Phases, J. Chem. Phys, vol.113, pp.5413-5424, 2000.

R. Vuilleumier, K. A. Tay, G. Jeanmairet, D. Borgis, and A. Boutin, Extension of Marcus Picture for Electron Transfer Reactions with Large Solvation Changes, J. Am. Chem. Soc, vol.134, 2012.

E. Laborda, M. C. Henstridge, C. Batchelor-mcauley, and R. G. Compton, Asymmetric Marcus-Hush Theory for Voltammetry, Chem. Soc. Rev, vol.42, pp.4894-4905, 2013.

E. E. Tanner, E. O. Barnes, C. B. Tickell, P. Goodrich, C. Hardacre et al., Application of Asymmetric Marcus-Hush Theory to Voltammetry in Room-Temperature Ionic Liquids, J. Phys. Chem. C, vol.119, pp.7360-7370, 2015.

P. G. Dzhavakhidze, A. A. Kornyshev, and L. I. Krishtalik, Activation Energy of Electrode Reactions: the Non-Local Effects, J. Electroanal. Chem. Interfacial Electrochem, vol.228, pp.329-346, 1987.

D. K. Phelps, A. A. Kornyshev, and M. J. Weaver, Nonlocal Electrostatic Effects on Electron-Transfer Activation Energies: Some Consequences for and Comparisons with Electrochemical and Homogeneous-Phase Kinetics, J. Phys. Chem, vol.94, pp.1454-1463, 1990.

C. Merlet, C. Peán, B. Rotenberg, P. A. Madden, B. Daffos et al., Quantification of Ion Confinement and Desolvation in Nanoporous Carbon Supercapacitors with Modelling and in Situ X-ray Scattering, Nat. Commun, vol.2, p.16215, 2013.

P. Bai, M. Z. Bazant, B. Akinwolemiwa, C. Peng, and G. Z. Chen, Charge Transfer Kinetics at the Solid-Solid Interface in Porous Electrodes, J. Electrochem. Soc, vol.5, issue.29, pp.5054-5059, 2014.

L. Su, X. Zhang, C. Mi, B. Gao, and Y. Liu, Improvement of the Capacitive Performances for Co-Al Layered Double Hydroxide by Adding Hexacyanoferrate into the Electrolyte, Phys. Chem. Chem. Phys, vol.11, pp.2195-2202, 2009.

A. B. Pereiro, J. M. Araujo, F. S. Oliveira, J. M. Esperanca, J. N. Lopes et al., Solubility of Inorganic Salts in Pure Ionic Liquids, J. Chem. Thermodyn, vol.55, pp.29-36, 2012.

C. Merlet, M. Salanne, and B. Rotenberg, New Coarse-grained Models of Imidazolium Ionic Liquids for Bulk and Interfacial Molecular Simulations, J. Phys. Chem. C, vol.116, pp.7687-7693, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00854033

D. Roy and M. Maroncelli, An Improved Four-Site Ionic Liquid Model, J. Phys. Chem. B, vol.114, pp.12629-12631, 2010.

J. I. Siepmann and M. Sprik, Influence of Surface Topology and Electrostatic Potential on Water/Electrode Systems, J. Chem. Phys, vol.102, pp.511-524, 1995.

J. C. Palmer, A. Llobet, S. H. Yeon, J. E. Fischer, Y. Shi et al., Modeling the Structural Evolution of Carbide-derived Carbons Using Quenched Molecular Dynamics, Carbon, vol.48, pp.1116-1123, 2010.

A. Warshel, Dynamics of Reactions in Polar Solvents. Semiclassical Trajectory Studies of Electron-transfer and Proton-transfer Reactions, J. Phys. Chem, vol.86, 1982.

J. K. Hwang and A. Warshel, Microscopic Examination of Freeenergy Relationships for Electron Transfer in Polar Solvents, J. Am. Chem. Soc, vol.109, pp.715-720, 1987.

R. A. Marcus, On the Theory of Electron-Transfer Reactions. VI. Unified Treatment for Homogeneous and Electrode Reactions, J. Chem. Phys, vol.43, pp.679-701, 1965.

Y. Georgievskii, C. Hsu, and R. A. Marcus, Linear Response in Theory of Electron Transfer Reactions as an Alternative to the Molecular Harmonic Oscillator Model, J. Chem. Phys, vol.110, pp.5307-5317, 1999.

G. King and A. Warshel, Investigation of the Free Energy Functions for Electron Transfer Reactions, J. Chem. Phys, vol.93, pp.8682-8692, 1990.

J. Blumberger, Recent Advances in the Theory and Molecular Simulation of Biological Electron Transfer Reactions, Chem. Rev, vol.115, pp.11191-11238, 2015.

M. A. Pounds, M. Salanne, and P. A. Madden, Molecular Aspects of the Eu 3+ /Eu 2+ Redox Reaction at the Interface Between a Molten Salt and a Metallic Electrode, Mol. Phys, vol.113, pp.2451-2462, 2015.

R. A. Marcus, Reorganization Free Energy for Electron Transfers at Liquid-liquid and Dielectric Semiconductor-liquid Interfaces, J. Phys. Chem, vol.94, pp.1050-1055, 1990.

R. C. Remsing, I. G. Mckendry, D. R. Strongin, M. L. Klein, and M. J. Zdilla, Frustrated Solvation Structures Can Enhance Electron Transfer Rates, J. Phys. Chem. Lett, vol.6, pp.4804-4808, 2015.

T. J. Abraham, D. R. Macfarlane, and J. M. Pringle, Seebeck Coefficients in Ionic Liquids -prospects for Thermo-electrochemical Cells, Chem. Commun, vol.47, pp.6260-6262, 2011.

C. Merlet, C. Peán, B. Rotenberg, P. A. Madden, P. Simon et al., Simulating Supercapacitors: Can We Model Electrodes As Constant Charge Surfaces?, J. Phys. Chem. Lett, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00854038

L. X. Dang, Mechanism and Thermodynamics of Ion Selectivity in Aqueous Solutions of 18-Crown-6 Ether: A Molecular Dynamics Study, J. Am. Chem. Soc, vol.117, pp.6954-6960, 1995.

K. Ando, Solvent Nuclear Quantum Effects in Electron Transfer Reactions. III. Metal Ions in Water. Solute Size and Ligand Effects, J. Chem. Phys, vol.114, pp.9470-9477, 2001.

S. K. Reed, O. J. Lanning, P. A. Madden, Y. Yamato, Y. Katayama et al., Effects of the Interaction Between Ionic Liquids and Redox Couples on Their Reaction Entropies, J. Electrochem. Soc, vol.126, pp.309-314, 2007.

, The Journal of Physical Chemistry Letters Letter

, J. Phys. Chem. Lett, vol.8, 1925.

. Bibliography,

M. Douglas-r-macfarlane, . Forsyth, C. Patrick, M. Howlett, S. Kar et al., Ionic liquids and their solid-state analogues as materials for energy generation and storage, Nat. Rev. Mater, vol.1, p.15005, 2016.

L. Suo, Y. Hu, H. Li, M. Armand, and L. Chen, A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries, Nat. Commun, vol.4, p.1481, 2013.

Y. Yamada, M. Yaegashi, T. Abe, A. Yamada, G. L. Henriksen et al., A superconcentrated ether electrolyte for fast-charging Li-ion batteries, Chem. Commun, vol.49, issue.95, p.11194, 2013.

D. W. Mcowen, D. M. Seo, O. Borodin, J. Vatamanu, P. D. Boyle et al., Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms, Energy Environ. Sci, vol.7, issue.1, pp.416-426, 2014.

Y. Yamada, K. Usui, C. H. Chiang, K. Kikuchi, K. Furukawa et al., General Observation of Lithium Intercalation into Graphite in Ethylene-Carbonate-Free Superconcentrated Electrolytes, ACS Appl. Mater. Interfaces, vol.6, issue.14, pp.10892-10899, 2014.

K. Sodeyama, Y. Yamada, K. Aikawa, A. Yamada, and Y. Tateyama, Sacrificial Anion Reduction Mechanism for Electrochemical Stability Improvement in Highly Concentrated Li-Salt Electrolyte, J. Phys. Chem. C, vol.118, p.14091, 2014.

Y. Yamada, C. H. Chiang, K. Sodeyama, J. Wang, Y. Tateyama et al., Corrosion Prevention Mechanism of Aluminum Metal in Superconcentrated Electrolytes. ChemElectroChem, vol.2, issue.11, pp.1687-1694, 2015.

R. Petibon, C. P. Aiken, L. Ma, D. Xiong, and J. R. Dahn, The use of ethyl acetate as a sole solvent in highly concentrated electrolyte for Li-ion batteries, Electrochim. Acta, vol.154, pp.287-293, 2015.

Y. Yamada and A. Yamada, ReviewSuperconcentrated Electrolytes for Lithium Batteries, J. Electrochem. Soc, vol.162, issue.14, pp.2406-2423, 2015.

M. He, C. Kah, X. Lau, N. Ren, W. D. Xiao et al., Concentrated Electrolyte for the SodiumOxygen Battery: Solvation Structure and Improved Cycle Life, Angew. Chemie -Int. Ed, vol.55, issue.49, pp.15310-15314, 2016.

J. Wang, Y. Yamada, K. Sodeyama, C. H. Chiang, Y. Tateyama et al., Superconcentrated electrolytes for a highvoltage lithium-ion battery, Nat. Commun, vol.7, p.12032, 2016.

J. Lee, Y. Lee, J. Lee, S. M. Lee, J. H. Choi et al., Ultraconcentrated sodium bis(fluorosulfonyl)imide-based electrolytes for highperformance sodium metal batteries, ACS Appl. Mater. Interfaces, vol.9, issue.4, pp.3723-3732, 2017.

J. Wang, Y. Yamada, K. Sodeyama, E. Watanabe, K. Takada et al., Fire-extinguishing organic electrolytes for safe batteries, Nat. Energy, vol.3, pp.22-29, 2017.

Y. Yamada and A. Yamada, Superconcentrated electrolytes to create new interfacial chemistry in non-aqueous and aqueous rechargeable batteries, Chem. Lett, vol.46, p.170284, 2017.

K. Takada, Y. Yamada, E. Watanabe, J. Wang, K. Sodeyama et al., Unusual Passivation Ability of Superconcentrated Electrolytes toward Hard Carbon Negative Electrodes in Sodium-Ion Batteries, ACS Appl. Mater. Interfaces, vol.9, issue.39, pp.33802-33809, 2017.

D. Lu, J. Tao, P. Yan, W. A. Henderson, Q. Li et al., Formation of Reversible Solid Electrolyte Interface on Graphite Surface from Concentrated Electrolytes, Nano Lett, vol.17, issue.3, pp.1602-1609, 2017.

T. Zhang, M. Marinescu, S. Walus, P. Kovacik, and G. J. Offer, What Limits the Rate Capability of Li-S Batteries during Discharge: Charge Transfer or Mass Transfer?, J. Electrochem. Soc, vol.165, issue.1, pp.6001-6004, 2018.

J. Zheng, S. Chen, W. Zhao, J. Song, H. Mark et al., Extremely Stable Sodium Metal Batteries Enabled by Localized High-Concentration Electrolytes, ACS Energy Lett, vol.3, issue.2, pp.315-321, 2018.

T. Hosaka, K. Kubota, H. Kojima, and S. Komaba, Highly concentrated electrolyte solutions for 4 V class potassium-ion batteries, Chem. Commun, vol.54, pp.8387-8390, 2018.

Z. Zeng, V. Murugesan, K. S. Han, X. Jiang, Y. Cao et al., Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries, Nat. Energy, vol.3, p.674681, 2018.

S. Chen, J. Zheng, L. Yu, X. Ren, M. H. Engelhard et al., Liu, and Ji Guang Zhang. High-Efficiency Lithium Metal Batteries with Fire-Retardant Electrolytes. Joule, vol.2, pp.1548-1558, 2018.

V. Nilsson, R. Younesi, D. Brandell, K. Edström, and P. Johansson, Critical evaluation of the stability of highly concentrated LiTFSI -Acetonitrile electrolytes vs. graphite, lithium metal and LiFePO4electrodes, J. Power Sources, vol.384, pp.334-341, 2018.

P. Shi, H. Zheng, X. Liang, Y. Sun, S. Cheng et al., A highly concentrated phosphate-based electrolyte for highsafety rechargeable lithium batteries, Chem. Commun, 2018.

N. Takenaka, T. Fujie, A. Bouibes, Y. Yamada, A. Yamada et al., Microscopic Formation Mechanism of Solid Electrolyte Interphase Film in Lithium-Ion Batteries with Highly Concentrated Electrolyte, J. Phys. Chem. C, vol.122, issue.5, pp.2564-2571, 2018.

J. Ming, Z. Cao, W. Wahyudi, M. Li, P. Kumar et al., New Insights of Graphite Anode Stability in Rechargeable Batteries: Li-Ion Coordination Structures Prevail over Solid Electrolyte Interphases, ACS Energy Lett, 2018.

S. Xiaodi-ren, H. Chen, D. Lee, . Mei, H. Mark et al., Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries, Chem, vol.4, pp.1877-1892, 2018.

L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho et al., Water-in-salt" electrolyte enables highvoltage aqueous lithium-ion chemistries, Science, vol.350, issue.6263, pp.938-943, 2015.

C. Yang, J. Chen, T. Qing, X. Fan, W. Sun et al., Aqueous Li-Ion Batteries. Joule, vol.1, issue.1, pp.122-132, 2017.

R. Kühnel, D. Reber, A. Remhof, R. Figi, D. Bleiner et al., Water-in-salt electrolytes enable the use of cost-effective aluminum current collectors for aqueous high-voltage batteries, Chem. Commun, vol.52, issue.68, pp.10435-10438, 2016.

L. Suo, O. Borodin, W. Sun, X. Fan, C. Yang et al., Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by Water-in-Bisalt Electrolyte, Angew. Chemie Int. Ed, vol.55, issue.25, pp.7136-7141, 2016.

Y. Yamada, K. Usui, K. Sodeyama, S. Ko, Y. Tateyama et al., Hydrate-melt electrolytes for high-energydensity aqueous batteries, Nat. Energy, vol.1, issue.10, p.16129, 2016.

M. Yoshizawa, W. Xu, and C. Angell, Ionic liquids by proton transfer: Vapor pressure, conductivity, and the relevance of ?p k a from aqueous solutions, Journal of the American Chemical Society, vol.125, issue.50, pp.15411-15419, 2003.

J. , P. Belieres, and C. Angell, Protic ionic liquids: preparation, characterization, and proton free energy level representation, The Journal of Physical Chemistry B, vol.111, issue.18, pp.4926-4937, 2007.

O. Borodin, L. Suo, M. Gobet, X. Ren, F. Wang et al., Liquid Structure with Nano-Heterogeneity Promotes Cationic Transport in Concentrated Electrolytes, ACS Nano, vol.11, issue.10, pp.10462-10471, 2017.

W. Li, D. Jeff-r-dahn, and . Wainwright, Rechargeable lithium batteries with aqueous electrolytes, Science, vol.264, issue.5162, pp.1115-1118, 1994.

Y. Wang, J. Yi, and Y. Xia, Recent progress in aqueous lithiumion batteries, Advanced Energy Materials, vol.2, issue.7, pp.830-840, 2012.

K. Xu, Electrolytes and interphases in Li-ion batteries and beyond, Chem. Rev, vol.114, issue.23, pp.11503-11618, 2014.

S. Liu, . Gl-pan, X. P. Yan, and . Gao, Aqueous tio 2/ni (oh) 2 rechargeable battery with a high voltage based on proton and lithium insertion/extraction reactions, Energy & Environmental Science, vol.3, issue.11, pp.1732-1735, 2010.

A. Eftekhari, High-Energy Aqueous Lithium Batteries, Adv. Energy Mater, vol.8, p.1801156, 2018.

D. Bin, Y. Wen, Y. Wang, and Y. Xia, The development in aqueous lithium-ion batteries, J. Energy Chem, 2018.

R. Malik, Aqueous Li-Ion Batteries: Now in Striking Distance, Joule, vol.1, issue.1, pp.17-19, 2017.

L. Suo, F. Han, X. Fan, H. Liu, K. Xu et al., Water-in-Salt electrolytes enable green and safe Li-ion batteries for large scale electric energy storage applications, J. Mater. Chem. A, vol.4, issue.17, pp.6639-6644, 2016.

C. Yang, L. Suo, O. Borodin, F. Wang, W. Sun et al., Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility, Proc. Natl. Acad. Sci, vol.114, issue.24, pp.6197-6202, 2017.

C. Yang, X. Ji, X. Fan, T. Gao, L. Suo et al., Flexible Aqueous Li-Ion Battery with High Energy and Power Densities, Adv. Mater, vol.29, p.1701972, 2017.

Q. Dong, X. Yao, Y. Zhao, M. Qi, X. Zhang et al., Cathodically Stable Li-O2Battery Operations Using Water-in-Salt Electrolyte. Chem, vol.4, pp.1345-1358, 2018.

R. Yang, Y. Zhang, K. Takechi, and E. J. Maginn, Investigation of the relationship between solvation structure and battery performance in highly-concentrated aqueous nitroxy radical catholyte, J. Phys. Chem. C, vol.122, pp.13815-13826, 2018.

M. R. Lukatskaya, J. Feldblyum, D. G. Mackanic, F. Lissel, L. Dominik et al., Concentrated Mixed Cation Acetate Water-in-Salt Solutions as Green and Low Cost High Voltage Electrolytes for Aqueous Batteries, Energy Environ. Sci, 2018.

R. Kühnel, D. Reber, and C. Battaglia, A High-Voltage Aqueous Electrolyte for Sodium-Ion Batteries, ACS Energy Lett, 2005.

W. Li, F. Zhang, X. Xiang, and X. Zhang, High-Efficiency Na-Storage Performance of a Nickel-Based Ferricyanide Cathode in High-Concentration Electrolytes for Aqueous Sodium-Ion Batteries, ChemElec-troChem, vol.4, issue.11, pp.2870-2876, 2017.

L. Suo, O. Borodin, Y. Wang, X. Rong, W. Sun et al., Water-in-Salt Electrolyte Makes Aqueous Sodium-Ion Battery Safe, Green, and Long-Lasting

, Adv. Energy Mater, vol.7, p.1701189, 2017.

D. Ruiz-martínez, A. Kovacs, R. Gómez, S. M. Lee, J. H. Choi et al., Development of novel inorganic electrolytes for room temperature rechargeable sodium metal batteries, Energy Environ. Sci, vol.10, issue.9, pp.1936-1941, 2017.

A. Basile, F. Shammi-akter-ferdousi, R. Makhlooghiazad, M. Yunis, M. Hilder et al., Beneficial effect of added water on sodium metal cycling in super concentrated ionic liquid sodium electrolytes, J. Power Sources, vol.379, pp.344-349, 2018.

H. Zhang, S. Jeong, B. Qin, D. Carvalho, D. Buchholz et al., Towards High-Performance Aqueous Na-ion Batteries: Stabilizing the Solid/Liquid Interface for NASICON-Type Na2VTi(PO4)3 via the Use of Concentrated Electrolytes, ChemSusChem, vol.11, issue.8, pp.1382-1389, 2018.

D. P. Leonard, Z. Wei, G. Chen, F. Du, and X. Ji, Water-in-Salt Electrolyte for Potassium-Ion Batteries, ACS Energy Lett, vol.3, issue.2, pp.373-374, 2018.

F. Wang, X. Fan, T. Gao, W. Sun, Z. Ma et al., High-Voltage Aqueous Magnesium Ion Batteries, ACS Cent. Sci, vol.3, issue.10, pp.1121-1128, 2017.

C. Lee and S. Jeong, Modulating the hydration number of calcium ions by varying the electrolyte concentration: Electrochemical performance in a Prussian blue electrode/aqueous electrolyte system for calcium-ion batteries, Electrochim. Acta, vol.265, pp.430-436, 2018.

N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei et al., Cation-Deficient Spinel ZnMn 2 O 4 Cathode in Zn(CF 3 SO 3 ) 2 Electrolyte for Rechargeable Aqueous Zn-Ion Battery, J. Am. Chem. Soc, vol.138, issue.39, pp.12894-12901, 2016.

P. Hu, M. Yan, T. Zhu, X. Wang, X. Wei et al., Zn/V2O5 Aqueous Hybrid-Ion Battery with High Voltage Platform and Long Cycle Life, ACS Appl. Mater. Interfaces, vol.9, issue.49, pp.42717-42722, 2017.

N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long et al., Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities, Nat. Commun, vol.8, issue.1, p.405, 2017.

W. Li, K. Wang, M. Zhou, H. Zhan, S. Cheng et al., Advanced Low-Cost, High-Voltage, Long-Life Aqueous Hybrid Sodium/Zinc Batteries Enabled by a Dendrite-Free Zinc Anode and Concentrated Electrolyte, ACS Appl. Mater. Interfaces, vol.10, pp.22059-22066, 2018.

J. Zhi, K. Bertens, A. Yazdi, and P. Chen, Acrylonitrile copolymer/graphene skinned cathode for long cycle life rechargeable hybrid aqueous batteries at high-temperature, Electrochim. Acta, vol.268, pp.248-255, 2018.

F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu et al., Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers, Nat. Commun, vol.9, issue.1, p.1656, 2018.

F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries, Nat. Mater, vol.17, issue.6, p.543, 2018.

J. J. Holoubek, H. Jiang, D. Leonard, Y. Qi, C. Galo et al., Amorphous titanic acid electrode: its electrochemical storage of ammonium in a new water-in-salt electrolyte, Chem. Commun, vol.54, issue.70, pp.9805-9808, 2018.

R. John, P. Miller, and . Simon, Electrochemical capacitors for energy management, Science Magazine, vol.321, issue.5889, pp.651-652, 2008.

P. Simon, Y. Gogotsi, and B. Dunn, Where Do Batteries End and Supercapacitors Begin?, Science, vol.343, issue.6176, pp.1210-1211, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00979971

M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P. Taberna et al., Efficient storage mechanisms for building better supercapacitors, Nat. Energy, vol.1, issue.6, p.16070, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01480941

L. Coustan, G. Shul, and D. Bélanger, Electrochemical behavior of platinum, gold and glassy carbon electrodes in water-in-salt electrolyte, Electrochem. commun, vol.77, pp.89-92, 2017.

A. Gambou, -. Bosca, and D. Bélanger, Electrochemical characterization of MnO2-based composite in the presence of salt-in-water and water-in-salt electrolytes as electrode for electrochemical capacitors, J. Power Sources, vol.326, pp.595-603, 2016.

G. Hasegawa, K. Kanamori, T. Kiyomura, H. Kurata, T. Abe et al., Hierarchically Porous Carbon Monoliths Comprising Ordered Mesoporous Nanorod Assemblies for High-Voltage Aqueous Supercapacitors, Chem. Mater, vol.28, issue.11, pp.3944-3950, 2016.

Z. Tian, W. Deng, X. Wang, C. Liu, C. Li et al., Superconcentrated aqueous electrolyte to enhance energy density for advanced supercapacitors, Funct. Mater. Lett, vol.10, issue.6, p.1750081, 2017.

D. Reber, R. Kühnel, and C. Battaglia, High-voltage aqueous supercapacitors based on, NaTFSI. Sustain. Energy Fuels, vol.1, issue.10, pp.2155-2161, 2017.

C. An, W. Li, M. Wang, Q. Deng, and Y. Wang, High energy density aqueous asymmetric supercapacitors based on MnO2@C branch dendrite nanoarchitectures, Electrochim. Acta, vol.283, pp.603-610, 2018.

Q. Dou, S. Lei, D. Wang, Q. Zhang, D. Xiao et al., Safe and high-rate supercapacitors based on acetonitrile/water in salt hybrid electrolyte, Energy Environ. Sci, 2018.

Y. Zhang, P. Nie, C. Xu, G. Xu, B. Ding et al., High energy aqueous sodium-ion capacitor enabled by polyimide electrode and high-concentrated electrolyte, Electrochim. Acta, vol.268, pp.512-519, 2018.

L. Coustan, K. Zaghib, and D. Bélanger, New insight in the electrochemical behaviour of stainless steel electrode in water-in-salt electrolyte, J. Power Sources, vol.399, pp.299-303, 2018.

Y. Zhang, Y. An, J. Jiang, S. Dong, L. Wu et al., High performance aqueous sodiumion capacitors enabled by pseudocapacitance of layered mno2, Energy Technology, vol.6, pp.1-9, 2018.

P. Lannelongue, R. Bouchal, E. Mourad, C. Bodin, M. Olarte et al., Water-in-Salt for Supercapacitors: A Compromise between Voltage, Power Density, Energy Density and Stability, J. Electrochem. Soc, vol.165, issue.3, pp.657-663, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01807678

M. Zhang, S. Makino, D. Mochizuki, and W. Sugimoto, Highperformance hybrid supercapacitors enabled by protected lithium negative electrode and water-in-salt electrolyte, J. Power Sources, vol.396, pp.498-505, 2018.

S. Han, Dynamic features of water molecules in superconcentrated aqueous electrolytes, Sci. Rep, vol.8, issue.1, p.9347, 2018.

J. Vatamanu and O. Borodin, Ramifications of Water-in-Salt Interfacial Structure at Charged Electrodes for Electrolyte Electrochemical Stability, J. Phys. Chem. Lett, vol.8, pp.4362-4367, 2017.

L. Verlet, Computer" experiments" on classical fluids. i. thermodynamical properties of lennard-jones molecules, Physical review, vol.159, issue.1, p.98, 1967.

P. Michael, D. J. Allen, and . Tildesley, Computer simulation of liquids, 2017.

G. William and . Hoover, Canonical dynamics: equilibrium phase-space distributions, Physical review A, vol.31, issue.3, p.1695, 1985.

S. Melchionna, G. Ciccotti, and B. L. Holian, Hoover npt dynamics for systems varying in shape and size, Molecular Physics, vol.78, issue.3, pp.533-544, 1993.

J. Glenn, . Martyna, L. Michael, M. Klein, and . Tuckerman, Nosé-hoover chains: The canonical ensemble via continuous dynamics, The Journal of chemical physics, vol.97, issue.4, pp.2635-2643, 1992.

D. Frenkel and B. Smit, Understanding molecular simulation: from algorithms to applications, vol.1, 2001.

D. S. William-l-jorgensen, J. Maxwell, and . Tirado-rives, Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids, Journal of the American Chemical Society, vol.118, issue.45, pp.11225-11236, 1996.

J. Scott, . Weiner, A. Peter, D. A. Kollman, C. Case et al., A new force field for molecular mechanical simulation of nucleic acids and proteins, Journal of the American Chemical Society, vol.106, issue.3, pp.765-784, 1984.

D. Wendy, P. Cornell, . Cieplak, I. Christopher, I. R. Bayly et al., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules, Journal of the American Chemical Society, vol.117, issue.19, pp.5179-5197, 1995.

C. Pinilla, J. Del-pópolo, R. M. Kohanoff, and . Lynden-bell, Polarization relaxation in an ionic liquid confined between electrified walls, The Journal of Physical Chemistry B, vol.111, issue.18, pp.4877-4884, 2007.

J. Oliver, P. Lanning, and . Madden, Screening at a charged surface by a molten salt, The Journal of Physical Chemistry B, vol.108, issue.30, pp.11069-11072, 2004.

G. Feng, R. Zhang, and . Qiao, Microstructure and capacitance of the electrical double layers at the interface of ionic liquids and planar electrodes, The Journal of Physical Chemistry C, vol.113, issue.11, pp.4549-4559, 2009.

L. Yang, H. Brian, A. Fishbine, L. Migliori, and . Pratt, Molecular simulation of electric double-layer capacitors based on carbon nanotube forests, Journal of the American Chemical Society, vol.131, issue.34, pp.12373-12376, 2009.

. Mathieu-salanne, J. A. Leonardo, A. P. Siqueira, . Seitsonen, A. Paul et al., From molten salts to room temperature ionic liquids: Simulation studies on chloroaluminate systems, Faraday discussions, vol.154, pp.171-188, 2012.

F. Iori and S. Corni, Including image charge effects in the molecular dynamics simulations of molecules on metal surfaces, Journal of computational chemistry, vol.29, issue.10, pp.1656-1666, 2008.

G. Lamoureux and B. Roux, Modeling induced polarization with classical drude oscillators: Theory and molecular dynamics simulation algorithm, The Journal of chemical physics, vol.119, issue.6, pp.3025-3039, 2003.

S. Alfonso, . Pensado, A. H. Agílio, and . Pádua, Solvation and stabilization of metallic nanoparticles in ionic liquids, Angewandte Chemie International Edition, vol.50, issue.37, pp.8683-8687, 2011.

A. Podgorsek, S. Alfonso, C. C. Pensado, M. Santini, . Gomes et al., Interaction energies of ionic liquids with metallic nanoparticles: Solvation and stabilization effects, The Journal of Physical Chemistry C, vol.117, issue.7, pp.3537-3547, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00803259

C. F. Ana, . Mendonca, A. H. Agilio, P. Padua, and . Malfreyt, Nonequilibrium molecular simulations of new ionic lubricants at metallic surfaces: prediction of the friction, Journal of chemical theory and computation, vol.9, issue.3, pp.1600-1610, 2013.

C. F. Ana, P. Mendonca, . Malfreyt, A. H. Agilio, and . Padua, Interactions and ordering of ionic liquids at a metal surface, Journal of chemical theory and computation, vol.8, issue.9, pp.3348-3355, 2012.

M. J-ilja-siepmann and . Sprik, Influence of surface topology and electrostatic potential on water/electrode systems, The Journal of chemical physics, vol.102, issue.1, pp.511-524, 1995.

S. K. Reed, O. J. Lanning, and P. A. Madden, Electrochemical interface between an ionic liquid and a model metallic electrode, J. Chem. Phys, vol.126, issue.8, p.84704, 2007.

S. K. Reed, P. A. Madden, and A. Papadopoulos, Electrochemical charge transfer at a metallic electrode: A simulation study, J. Chem. Phys, vol.128, issue.12, pp.1-10, 2008.

A. Michael, M. Pounds, P. Salanne, and . Madden, Molecular aspects of the Eu3+/Eu2+ redox reaction at the interface between a molten salt and a metallic electrode, Mol. Phys, vol.113, pp.2451-2462, 2015.

J. Vatamanu, O. Borodin, and G. D. Smith, Molecular insights into the potential and temperature dependences of the differential capacitance of a room-temperature ionic liquid at graphite electrodes, J. Am. Chem. Soc, vol.132, issue.42, pp.14825-14833, 2010.

J. Vatamanu, O. Borodin, D. Bedrov, and G. D. Smith, Molecular Dynamics Simulation Study of the Interfacial Structure and Differential Capacitance of Alkylimidazolium Bis(trifluoromethanesulfonyl)imide

, Ionic Liquids at Graphite Electrodes, J. Phys. Chem. C, vol.116, issue.14, pp.7940-7951, 2012.

J. Vatamanu, O. Borodin, and G. D. Smith, Molecular Simulations of the Electric Double Layer Structure, Differential Capacitance, and Charging Kinetics for N -Methyl-N -propylpyrrolidinium Bis(fluorosulfonyl)imide at Graphite Electrodes, J. Phys. Chem. B, vol.115, issue.12, pp.3073-3084, 2011.

R. Burt, K. Breitsprecher, B. Daffos, P. Taberna, P. Simon et al., Capacitance of Nanoporous Carbon-Based Supercapacitors Is a Trade-Off between the Concentration and the Separability of the Ions, J. Phys. Chem. Lett, vol.7, issue.19, pp.4015-4021, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01494252

C. Pean, B. Daffos, B. Rotenberg, P. Levitz, M. Haefele et al., Confinement, Desolvation, And Electrosorption Effects on the Diffusion of Ions in Nanoporous Carbon Electrodes, J. Am. Chem. Soc, vol.137, issue.39, pp.12627-12632, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01221450

C. Pean, B. Rotenberg, P. Simon, and M. Salanne, Multi-scale modelling of supercapacitors: From molecular simulations to a transmission line model, J. Power Sources, vol.326, pp.680-685, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01304251

C. Merlet, B. Rotenberg, A. Paul, P. Madden, P. Taberna et al., On the molecular origin of supercapacitance in nanoporous carbon electrodes, Nat. Mater, vol.11, issue.4, pp.306-310, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01153072

C. Merlet, B. Rotenberg, A. Paul, M. Madden, and . Salanne, Computer simulations of ionic liquids at electrochemical interfaces, Phys. Chem. Chem. Phys, vol.15, issue.38, p.15781, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00862346

C. Merlet, M. Salanne, B. Rotenberg, and P. A. Madden, Influence of solvation on the structural and capacitive properties of electrical double layer capacitors, Electrochim. Acta, vol.101, pp.262-271, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00853396

C. Merlet, C. Péan, B. Rotenberg, P. A. Madden, P. Simon et al., Simulating supercapacitors: Can we model electrodes as constant charge surfaces?, J. Phys. Chem. Lett, vol.4, issue.2, pp.264-268, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00854038

C. Merlet, D. T. Limmer, M. Salanne, P. A. René-van-roij, D. Madden et al., The Electric Double Layer Has a Life of Its Own, J. Phys. Chem. C, vol.118, issue.32, pp.18291-18298, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00968897

R. Matt-k-petersen, . Kumar, S. Henry, G. A. White, and . Voth, A computationally efficient treatment of polarizable electrochemical cells held at a constant potential, The Journal of Physical Chemistry C, vol.116, issue.7, pp.4903-4912, 2012.

D. T. Limmer, C. Merlet, M. Salanne, D. Chandler, P. A. Madden et al., Charge Fluctuations in Nanoscale Capacitors, Phys. Rev. Lett, vol.111, issue.10, p.106102, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00839655

S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys, vol.117, issue.1, pp.1-19, 1995.

H. J. Berendsen, J. R. Grigera, and T. P. Straatsma, The Missing Term in Effective Pair Potentials, J. Phys. Chem, vol.91, issue.24, pp.6269-6271, 1987.

J. Marcelo, F. F. Monteiro, L. J. Bazito, . Siqueira, C. Mauro et al., Transport Coefficients, Raman Spectroscopy, and Computer Simulation of Lithium Salt Solutions in an Ionic Liquid, J. Phys. Chem. B, vol.112, issue.7, pp.2102-2109, 2008.

M. Salanne, C. Simon, P. Turq, and P. A. Madden, Conductivity-viscosity-structure: Unpicking the relationship in an ionic liquid, J. Phys. Chem. B, vol.111, issue.18, pp.4678-4684, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00169168

B. Dünweg and K. Kremer, Molecular dynamics simulation of a polymer chain in solution, The Journal of chemical physics, vol.99, issue.9, pp.6983-6997, 1993.

I. Yeh and G. Hummer, System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions, The Journal of Physical Chemistry B, vol.108, issue.40, pp.15873-15879, 2004.

N. C. José, . Lopes, A. Agílio, A. A. Pádua, and *. Pádua, Molecular force field for ionic liquids composed of triflate or bistriflylimide anions, J. Phys. Chem. B, vol.108, issue.43, pp.16893-16898, 2004.

E. Rabani, D. Gezelter, and B. J. Berne, Calculating the hopping rate for self-diffusion on rough potential energy surfaces: Cage correlations, J. Chem. Phys, vol.107, issue.17, pp.6867-6876, 1997.

D. Spångberg, R. Rey, T. James, K. Hynes, and . Hermansson, Rate and Mechanisms for Water Exchange around Li + (aq) from MD Simulations, J. Phys. Chem. B, vol.107, issue.18, pp.4470-4477, 2003.

M. Salanne, Ionic Liquids for Supercapacitor Applications, Top. Curr. Chem, vol.375, issue.3, p.63, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01826438

J. Vatamanu and D. Bedrov, Capacitive Energy Storage: Current and Future Challenges, J. Phys. Chem. Lett, vol.6, issue.18, pp.3594-3609, 2015.

J. Vatamanu, O. Borodin, M. Olguin, G. Yushin, and D. Bedrov, Charge storage at the nanoscale: understanding the trends from the molecular scale perspective, J. Mater. Chem. A, vol.5, issue.40, pp.21049-21076, 2017.

J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon et al., Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer, Science, vol.313, issue.5794, pp.1760-1763, 2006.

J. B. Haskins, J. J. Wu, and J. W. Lawson, Computational and Experimental Study of Li-Doped Ionic Liquids at Electrified Interfaces, J. Phys. Chem. C, vol.120, issue.22, pp.11993-12011, 2016.

C. Merlet, . Péan, . Rotenberg, . Madden, P. L. Daffos et al., Highly confined ions store charge more efficiently in supercapacitors, Nat. Commun, vol.4, p.2701, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01157828

J. Friedl, I. E. Iulius, M. Markovits, G. Herpich, A. A. Feng et al., Interface between an Au(111) Surface and an Ionic Liquid: The Influence of Water on the Double-Layer Capacitance, Chem-ElectroChem, vol.4, issue.1, pp.216-220, 2017.

Y. Su, Y. Fu, J. Yan, Z. Chen, and B. Mao, Double Layer of Au(100)/Ionic Liquid Interface and Its Stability in Imidazolium-Based Ionic Liquids, Angew. Chemie, vol.121, issue.28, pp.5250-5253, 2009.

R. Wen, B. Rahn, and O. M. Magnussen, Potential-dependent adlayer structure and dynamics at the ionic liquid/Au(111) interface: A molecular-scale in situ video-STM study, Angew. Chemie -Int. Ed, vol.54, issue.20, pp.6062-6066, 2015.

D. T. Limmer, Interfacial Ordering and Accompanying Divergent Capacitance at Ionic Liquid-Metal Interfaces, Phys. Rev. Lett, vol.115, issue.25, pp.1-5, 2015.

Q. Jia-le-ma, J. Meng, and . Fan, Charge driven lateral structural evolution of ions in electric double layer capacitors strongly correlates with differential capacitance, Phys. Chem. Chem. Phys, vol.20, issue.12, pp.8054-8063, 2018.

O. Borodin, X. Ren, J. Vatamanu, A. Von, W. Cresce et al., Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure, Acc. Chem. Res, vol.50, issue.12, pp.2886-2894, 2017.

F. Wang, O. Borodin, M. S. Ding, M. Gobet, J. Vatamanu et al., Hybrid Aqueous/Non-aqueous Electrolyte for Safe and High-Energy Li-Ion Batteries. Joule, vol.2, pp.927-937, 2018.

Z. Wang, Y. Yang, D. L. Olmsted, M. Asta, and B. B. Laird, Evaluation of the constant potential method in simulating electric double-layer capacitors, J. Chem. Phys, vol.141, issue.18, p.184102, 2014.

C. Merlet, M. Salanne, B. Rotenberg, and P. Madden, Imidazolium Ionic Liquid Interfaces with Vapor and Graphite: Interfacial Tension and Capacitance from Coarse-Grained Molecular Simulations, J. Phys. Chem. C, vol.115, issue.33, pp.16613-16618, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00854030

L. Xing, J. Vatamanu, O. Borodin, G. D. Smith, and D. Bedrov, Electrode/Electrolyte Interface in Sulfolane-Based Electrolytes for Li Ion Batteries: A Molecular Dynamics Simulation Study, J. Phys. Chem. C, vol.116, issue.45, pp.23871-23881, 2012.

A. Uysal, H. Zhou, G. Feng, S. S. Lee, S. Li et al., Structural origins of potential dependent hysteresis at the electrified graphene/ionic liquid interface, The Journal of Physical Chemistry C, vol.118, issue.1, pp.569-574, 2013.

. Betul-uralcan, A. Ilhan, P. G. Aksay, D. T. Debenedetti, and . Limmer, Concentration Fluctuations and Capacitive Response in Dense Ionic Solutions, J. Phys. Chem. Lett, vol.7, issue.13, pp.2333-2338, 2016.

U. Ray, G. Kin-lic-chan, and D. T. Limmer, Importance sampling large deviations in nonequilibrium steady states. I, J. Chem. Phys, vol.148, issue.12, p.124120, 2018.

A. M. Ferrenberg and R. H. Swendsen, Optimized Monte Carlo data analysis, Phys. Rev. Lett, vol.63, issue.12, pp.1195-1198, 1989.

Z. Tan, E. Gallicchio, M. Lapelosa, and R. Levy, Theory of binless multi-state free energy estimation with applications to protein-ligand binding, The Journal of chemical physics, vol.136, issue.14, p.144102, 2012.

B. Rotenberg and M. Salanne, Structural Transitions at Ionic Liquid Interfaces, J. Phys. Chem. Lett, vol.6, issue.24, pp.4978-4985, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01287384

Z. De-en-jiang, D. Jin, J. Henderson, and . Wu, Solvent effect on the pore-size dependence of an organic electrolyte supercapacitor. The journal of physical chemistry letters, vol.3, pp.1727-1731, 2012.

J. De-en-jiang and . Wu, Unusual effects of solvent polarity on capacitance for organic electrolytes in a nanoporous electrode, Nanoscale, vol.6, issue.10, pp.5545-5550, 2014.

G. Jiang, C. Cheng, D. Li, and J. Liu, Molecular dynamics simulations of the electric double layer capacitance of graphene electrodes in mono-valent aqueous electrolytes, Nano Research, vol.9, issue.1, pp.174-186, 2016.

H. Yang, X. Zhang, J. Yang, Z. Bo, M. Hu et al., Molecular Origin of Electric Double-Layer Capacitance at Multilayer Graphene Edges, J. Phys. Chem. Lett, vol.8, issue.1, pp.153-160, 2017.

Z. Bo, C. Li, H. Yang, K. Ostrikov, J. Yan et al., Design of Supercapacitor Electrodes Using Molecular Dynamics Simulations, Nano-Micro Lett, vol.10, issue.2, p.33, 2018.

J. G. Mcdaniel and C. Y. Son, Ion Correlation and Collective Dynamics in BMIM/BF 4 Based Organic Electrolytes: From Dilute Solutions to the Ionic Liquid Limit, J. Phys. Chem. B, vol.122, pp.7154-7169, 2018.