E. J. Benjamin, M. J. Blaha, S. E. Chiuve, M. Cushman, S. R. Das et al., Circulation, vol.135, pp.146-603, 2017.

P. Libby, Inflammation in atherosclerosis, Nature, vol.420, pp.868-874, 2002.

C. Cochain and A. Zernecke, Macrophages in vascular inflammation and atherosclerosis, Pflugers Arch, vol.469, pp.485-499, 2017.

F. Ginhoux, J. L. Schultze, P. J. Murray, J. Ochando, and S. K. Biswas, New insights into the multidimensional concept of macrophage ontogeny, activation and function, Nat Immunol, vol.17, pp.34-40, 2016.

C. D. Mills, K. Kincaid, J. M. Alt, M. J. Heilman, and A. M. Hill, M-1/M-2 macrophages and the Th1/Th2 paradigm, J Immunol, vol.164, pp.6166-6173, 2000.

S. Gordon, Alternative activation of macrophages, Nat Rev Immunol, vol.3, pp.23-35, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00474829

A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi et al., The chemokine system in diverse forms of macrophage activation and polarization, Trends Immunol, vol.25, pp.677-686, 2004.

F. Montecucco, L. Liberale, A. Bonaventura, A. Vecchie, F. Dallegri et al., The role of inflammation in cardiovascular outcome, Curr Atheroscler Rep, vol.19, p.11, 2017.

M. A. Bouhlel, B. Derudas, E. Rigamonti, R. Dievart, J. Brozek et al., PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties, Cell Metab, vol.6, pp.137-143, 2007.

K. Ohashi, J. L. Parker, N. Ouchi, A. Higuchi, J. A. Vita et al., Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype, J Biol Chem, vol.285, pp.6153-6160, 2010.

N. R. Madamanchi, A. Vendrov, and M. S. Runge, Oxidative stress and vascular disease, Arterioscler Thromb Vasc Biol, vol.25, pp.29-38, 2005.

D. F. Mahmood, A. Abderrazak, K. El-hadri, T. Simmet, and M. Rouis, The thioredoxin system as a therapeutic target in human health and disease, Antioxid Redox Signal, vol.19, pp.1266-1303, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01544068

A. Mitsui, J. Hamuro, H. Nakamura, N. Kondo, Y. Hirabayashi et al., Overexpression of human thioredoxin in transgenic mice controls oxidative stress and life span, Antioxid Redox Signal, vol.4, pp.693-696, 2002.

I. Hattori, Y. Takagi, H. Nakamura, K. Nozaki, J. Bai et al., Intravenous administration of thioredoxin decreases brain damage following transient focal cerebral ischemia in mice, Antioxid Redox Signal, vol.6, pp.81-87, 2004.

K. E. Hadri, D. Mahmood, D. Couchie, I. Jguirim-souissi, F. Genze et al., Thioredoxin-1 promotes antiinflammatory macrophages of the M2 phenotype and antagonizes atherosclerosis, Arterioscler Thromb Vasc Biol, vol.32, pp.1445-1452, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01544074

K. Pekkari and A. Holmgren, Truncated thioredoxin: physiological functions and mechanism, Antioxid Redox Signal, vol.6, pp.53-61, 2004.

F. Gil-bea, S. Akterin, T. Persson, L. Mateos, A. Sandebring et al., Thioredoxin-80 is a product of alpha-secretase cleavage that inhibits amyloid-beta aggregation and is decreased in Alzheimer's disease brain, EMBO Mol Med, vol.4, pp.1097-1111, 2012.

D. F. Mahmood, A. Abderrazak, D. Couchie, O. Lunov, V. Diderot et al., Truncated thioredoxin (Trx-80) promotes pro-inflammatory macrophages of the M1 phenotype and enhances atherosclerosis, J Cell Physiol, vol.228, pp.1577-1583, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01544063

D. Couchie, B. Vaisman, A. Abderrazak, D. Mahmood, M. M. Hamza et al., Human plasma thioredoxin-80 increases with age and in ApoE-/-mice induces inflammation, angiogenesis, and atherosclerosis, Circulation, vol.136, pp.464-475, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02349881

N. Bachnoff, M. Trus, and D. Atlas, Alleviation of oxidative stress by potent and selective thioredoxin-mimetic peptides, Free Radic Biol Med, vol.50, pp.1355-1367, 2011.

M. Cohen-kutner, L. Khomsky, M. Trus, Y. Aisner, M. Y. Niv et al., Thioredoxin-mimetic peptides (TXM) reverse auranofin induced apoptosis and restore insulin secretion in insulinoma cells, Biochem Pharmacol, vol.85, pp.977-990, 2013.

N. Santanam and S. Parthasarathy, Paradoxical actions of antioxidants in the oxidation of low density lipoprotein by peroxidases, J Clin Invest, vol.95, pp.2594-2600, 1995.

P. M. Sullivan, H. Mezdour, S. H. Quarfordt, and N. Maeda, Type III hyperlipoproteinemia and spontaneous atherosclerosis in mice resulting from gene replacement of mouse Apoe with human Apoe*2, J Clin Invest, vol.102, pp.130-135, 1998.

C. Recio, F. Maione, A. J. Iqbal, N. Mascolo, D. Feo et al., The potential therapeutic application of peptides and peptidomimetics in cardiovascular disease, Front Pharmacol, vol.7, p.526, 2017.

C. Costopoulos, M. Niespialowska-steuden, N. Kukreja, and D. A. Gorog, Novel oral anticoagulants in acute coronary syndrome, Int J Cardiol, vol.167, pp.2449-2455, 2013.

J. Cheng, W. Zhang, X. Zhang, F. Han, X. Li et al., Effect of angiotensinconverting enzyme inhibitors and angiotensin II receptor blockers on all-cause mortality, cardiovascular deaths, and cardiovascular events in patients with diabetes mellitus: a meta-analysis, JAMA Intern Med, vol.174, pp.773-785, 2014.

E. A. Stein and F. J. Raal, Lipid-lowering drug therapy for CVD prevention: looking into the future, Curr Cardiol Rep, vol.17, p.104, 2015.

D. Goodwin, P. Simerska, and I. Toth, Peptides as therapeutics with enhanced bioactivity, Curr Med Chem, vol.19, pp.4451-4461, 2012.

K. Fosgerau and T. Hoffmann, Peptide therapeutics: current status and future directions, Drug Discov Today, vol.20, pp.122-128, 2015.

M. Navab, G. M. Anantharamaiah, S. T. Reddy, S. Hama, G. Hough et al., Apolipoprotein A-I mimetic peptides, Arterioscler Thromb Vasc Biol, vol.25, pp.1325-1331, 2005.

M. Navab, G. M. Anantharamaiah, S. Hama, D. W. Garber, M. Chaddha et al., Oral administration of an Apo A-I mimetic Peptide synthesized from D-amino acids dramatically reduces atherosclerosis in mice independent of plasma cholesterol, Circulation, vol.105, pp.290-292, 2002.

M. Navab, G. Hough, G. M. Buga, F. Su, A. C. Wagner et al., Transgenic 6F tomatoes act on the small intestine to prevent systemic inflammation and dyslipidemia caused by Western diet and intestinally derived lysophosphatidic acid, J Lipid Res, vol.54, pp.3403-3418, 2013.

Y. Uehara, S. Ando, E. Yahiro, K. Oniki, M. Ayaori et al., FAMP, a novel apoA-I mimetic peptide, suppresses aortic plaque formation through promotion of biological HDL function in ApoE-deficient mice, J Am Heart Assoc, vol.2, p.48, 2013.

A. T. Remaley, F. Thomas, J. A. Stonik, S. J. Demosky, S. E. Bark et al., Synthetic amphipathic helical peptides promote lipid efflux from cells by an ABCA1-dependent and an ABCA1-independent pathway, J Lipid Res, vol.44, pp.828-836, 2003.

M. J. Amar, D. Souza, W. Turner, S. Demosky, S. Sviridov et al., 5A apolipoprotein mimetic peptide promotes cholesterol efflux and reduces atherosclerosis in mice, J Pharmacol Exp Ther, vol.334, pp.634-641, 2010.

O. F. Sharifov, G. Nayyar, D. W. Garber, S. P. Handattu, V. K. Mishra et al., Apolipoprotein E mimetics and cholesterol-lowering properties, Am J Cardiovasc Drugs, vol.11, pp.371-381, 2011.

H. Gupta, C. R. White, S. Handattu, D. W. Garber, G. Datta et al., Apolipoprotein E mimetic peptide dramatically lowers plasma cholesterol and restores endothelial function in watanabe heritable hyperlipidemic rabbits, Circulation, vol.111, pp.3112-3118, 2005.

G. Datta, C. R. White, N. Dashti, M. Chaddha, M. N. Palgunachari et al., Anti-inflammatory and recycling properties of an apolipoprotein mimetic peptide, Ac-hE18A-NH(2), Atherosclerosis, vol.208, pp.134-141, 2010.

E. J. Chung, Targeting and therapeutic peptides in nanomedicine for atherosclerosis, Exp Biol Med (Maywood), vol.241, pp.891-898, 2016.

M. Navab, G. M. Anantharamaiah, S. T. Reddy, S. Hama, G. Hough et al., Oral D-4F causes formation of prebeta high-density lipoprotein and improves high-density lipoprotein-mediated cholesterol efflux and reverse cholesterol transport from macrophages in apolipoprotein E-null mice, Circulation, vol.109, pp.3215-3220, 2004.

P. Libby, P. M. Ridker, and G. K. Hansson, Progress and challenges in translating the biology of atherosclerosis, Nature, vol.473, pp.317-325, 2011.

M. G. Mujtaba, L. O. Flowers, C. B. Patel, R. A. Patel, M. I. Haider et al., Treatment of mice with the suppressor of cytokine signaling-1 mimetic peptide, tyrosine kinase inhibitor peptide, prevents development of the acute form of experimental allergic encephalomyelitis and induces stable remission in the chronic relapsing/remitting form, J Immunol, vol.175, pp.5077-5086, 2005.

C. Ahmed, J. Larkin, and H. M. Johnson, SOCS1 mimetics and antagonists: a complementary approach to positive and negative regulation of immune function, Front Immunol, vol.6, p.183, 2015.

S. R. Kim, K. S. Lee, S. J. Park, K. H. Min, M. H. Lee et al., A novel dithiol amide CB3 attenuates allergic airway disease through negative regulation of p38 mitogen-activated protein kinase, Am J Respir Crit Care Med, vol.183, pp.1015-1024, 2011.

T. Munzel, G. G. Camici, C. Maack, N. R. Bonetti, V. Fuster et al., Impact of oxidative stress on the heart and vasculature: Part 2 of a 3-part series, J Am Coll Cardiol, vol.70, pp.212-229, 2017.

P. A. Barry-lane, C. Patterson, M. Van-der-merwe, Z. Hu, S. M. Holland et al., p47phox is required for atherosclerotic lesion progression in ApoE(-/-) mice, J Clin Invest, vol.108, pp.1513-1522, 2001.

R. Stocker and J. F. Keaney, Role of oxidative modifications in atherosclerosis, Physiol Rev, vol.84, pp.1381-1478, 2004.

G. R. Drummond and C. G. Sobey, Endothelial NADPH oxidases: which NOX to target in vascular disease?, Trends Endocrinol Metab, vol.25, pp.452-463, 2014.

P. M. Sullivan, H. Mezdour, S. H. Quarfordt, and N. Maeda, Type III hyperlipoproteinemia and spontaneous atherosclerosis in mice resulting from gene replacement of mouse Apoe with human Apoe*2, J Clin Invest, vol.102, pp.130-135, 1998.

M. Cohen-kutner, L. Khomsky, M. Trus, Y. Aisner, M. Y. Niv et al., Thioredoxinmimetic peptides (TXM) reverse auranofin induced apoptosis and restore insulin secretion in insulinoma cells, Biochem Pharmacol, vol.85, pp.977-990, 2013.

C. ¨-abate, L. Patel, F. J. Rauscher, and T. Curran, Redox regulation of fos and jun DNA-binding activity in vitro, Science, vol.249, pp.1157-1161, 1990.

A. Abderrazak, T. Syrovets, D. Couchie, K. El-hadri, B. Friguet et al., NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases, Redox Biol, vol.4, pp.296-307, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01112142

S. Adamson and N. Leitinger, Phenotypic modulation of macrophages in response to plaque lipids, Curr. Opin. Lipidol, vol.22, pp.335-342, 2011.

¨. Aguado-llera, D. Martínez-gómez, A. I. Prieto, J. Marenchino, M. Traverso et al., The Conformational Stability and Biophysical Properties of the Eukaryotic Thioredoxins of Pisum Sativum Are Not Family-Conserved, PLOS ONE, vol.6, 2011.

S. ¨-allahverdian, C. Chaabane, K. Boukais, G. A. Francis, and M. Bochaton-piallat, Smooth muscle cell fate and plasticity in atherosclerosis, Cardiovasc. Res, vol.114, pp.540-550, 2018.

M. J. Amar, W. Souza, S. Turner, S. Demosky, D. Sviridov et al., 5A apolipoprotein mimetic peptide promotes cholesterol efflux and reduces atherosclerosis in mice, J. Pharmacol. Exp. Ther, vol.334, pp.634-641, 2010.

N. Anitschkow and S. Chalatow, Classics in arteriosclerosis research: On experimental cholesterin steatosis and its significance in the origin of some pathological processes by N. Anitschkow and S. Chalatow, translated by Mary Z. Pelias, 1913. Arterioscler, Dallas Tex, vol.3, pp.178-182, 1983.

T. Arai, K. Hiromatsu, H. Nishimura, Y. Kimura, N. Kobayashi et al., Endogenous interleukin 10 prevents apoptosis in macrophages during Salmonella infection, Biochem. Biophys. Res. Commun, vol.213, pp.600-607, 1995.

A. L. Arigony, I. M. De-oliveira, M. Machado, D. L. Bordin, L. Bergter et al., The Influence of Micronutrients in Cell Culture: A Reflection on Viability and Genomic Stability, BioMed Res. Int, 2013.

C. Berndt, C. H. Lillig, and A. Holmgren, Thioredoxins and glutaredoxins as facilitators of protein folding, Biochim. Biophys. Acta BBA -Mol. Cell Res, vol.1783, pp.641-650, 2008.

L. Billiet, C. Furman, G. Larigauderie, C. Copin, K. Brand et al., Extracellular Human Thioredoxin-1 Inhibits Lipopolysaccharide-induced Interleukin-1? Expression in Human Monocyte-derived Macrophages, J. Biol. Chem, vol.280, pp.40310-40318, 2005.

S. K. Biswas and A. Mantovani, Orchestration of Metabolism by Macrophages, Cell Metab, vol.15, pp.432-437, 2012.

S. Blankenberg, H. J. Rupprecht, C. Bickel, M. Torzewski, G. Hafner et al., Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease, N. Engl. J. Med, vol.349, pp.1605-1613, 2003.

L. T. Bloedon, R. Dunbar, D. Duffy, P. Pinell-salles, R. Norris et al., Safety, pharmacokinetics, and pharmacodynamics of oral apoA-I mimetic peptide D-4F in high-risk cardiovascular patients, J. Lipid Res, vol.49, pp.1344-1352, 2008.

K. L. Bloomfield, S. A. Osborne, D. D. Kennedy, F. M. Clarke, and K. F. Tonissen, , 2003.

, Thioredoxin-mediated redox control of the transcription factor Sp1 and regulation of the thioredoxin gene promoter, Gene, vol.319, pp.107-116

N. V. Blough and O. C. Zafiriou, Reaction of superoxide with nitric oxide to form peroxonitrite in alkaline aqueous solution, Inorg. Chem, vol.24, pp.3502-3504, 1985.

M. A. Bouhlel, B. Derudas, E. Rigamonti, R. Dièvart, J. Brozek et al., PPAR? Activation Primes Human Monocytes into Alternative M2 Macrophages with Anti-inflammatory Properties, Cell Metab, vol.6, pp.137-143, 2007.

R. P. Brandes and J. Kreuzer, Vascular NADPH oxidases: molecular mechanisms of activation, Cardiovasc. Res, vol.65, pp.16-27, 2005.

¨. Bretón-romero, R. González-de-orduña, C. Romero, N. Sánchez-gómez, F. J. De-Álvaro et al., Critical role of hydrogen peroxide signaling in the sequential activation of p38 MAPK and eNOS in laminar shear stress. Free Radic, Biol. Med, vol.52, pp.1093-1100, 2012.

W. B. Cannon, Physiological regulation of normal states: some tentative postulates concerning biological homeostatics. Auguste Pettit Ed Paris Éditions Médicales Charles Richet Ses Amis Ses Collègues Ses Élèves Jubilee Volume for Charles Richet, pp.91-93, 1926.

W. B. Cannon, Organization for physiological homeostasis, Physiol. Rev, vol.9, pp.399-431, 1929.

P. K. Chakraborti, M. J. Garabedian, K. R. Yamamoto, and S. S. Simons, Role of cysteines 640, 656, and 661 in steroid binding to rat glucocorticoid receptors, J. Biol. Chem, vol.267, pp.11366-11373, 1992.

Y. S. Chatzizisis, A. U. Coskun, M. Jonas, E. R. Edelman, C. L. Feldman et al., Role of Endothelial Shear Stress in the Natural History of Coronary Atherosclerosis and Vascular Remodeling: Molecular, Cellular, and Vascular Behavior, J. Am. Coll. Cardiol, vol.49, pp.2379-2393, 2007.

Q. Chen, Q. Wang, J. Zhu, Q. Xiao, and L. Zhang, Reactive oxygen species: key regulators in vascular health and diseases, Br. J. Pharmacol, vol.175, pp.1279-1292, 2018.

X. Chen, W. Tang, S. Liu, L. Yu, C. et al., Thioredoxin-1 phosphorylated at T100 is needed for its anti-apoptotic activity in HepG2 cancer cells, Life Sci, vol.87, pp.254-260, 2010.

J. Cheng, W. Zhang, X. Zhang, F. Han, X. Li et al., Effect of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on all-cause mortality, cardiovascular deaths, and cardiovascular events in patients with diabetes mellitus: a meta-analysis, JAMA Intern. Med, vol.174, pp.773-785, 2014.

E. Clementi, G. C. Brown, M. Feelisch, and S. Moncada, Persistent inhibition of cell respiration by nitric oxide: Crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.7631-7636, 1998.

S. K. Clinton, R. Underwood, L. Hayes, M. L. Sherman, D. W. Kufe et al., , 1992.

, Macrophage colony-stimulating factor gene expression in vascular cells and in experimental and human atherosclerosis, Am. J. Pathol, vol.140, pp.301-316

¨. Cohen-kutner, M. Khomsky, L. Trus, M. Aisner, Y. Niv et al., Thioredoxin-mimetic peptides (TXM) reverse auranofin induced apoptosis and restore insulin secretion in insulinoma cells, Biochem. Pharmacol, vol.85, pp.977-990, 2013.

R. Colavitti, G. Pani, B. Bedogni, R. Anzevino, S. Borrello et al., Endothelial regulation of vasomotion in apoEdeficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin, Circulation, vol.103, pp.1282-1288, 2001.

T. Lawrence, D. A. Willoughby, and D. W. Gilroy, Anti-inflammatory lipid mediators and insights into the resolution of inflammation, Nat. Rev. Immunol, vol.2, pp.787-795, 2002.

H. Lee and Y. Wei, Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging, Exp. Biol. Med. Maywood NJ, vol.232, pp.592-606, 2007.

C. G. Lee, R. J. Homer, Z. Zhu, S. Lanone, X. Wang et al., Interleukin-13 Induces Tissue Fibrosis by Selectively Stimulating and Activating Transforming Growth Factor ?1, J. Exp. Med, vol.194, pp.809-822, 2001.

S. Lee, S. M. Kim, and R. T. Lee, Thioredoxin and Thioredoxin Target Proteins: From Molecular Mechanisms to Functional Significance, Antioxid. Redox Signal, vol.18, pp.1165-1207, 2013.

,. ¨-lee, K. Yang, J. Kwon, C. Lee, W. Jeong et al., Reversible Inactivation of the Tumor Suppressor PTEN by H2O2, J. Biol. Chem, vol.277, pp.20336-20342, 2002.

A. B. Lentsch, T. P. Shanley, V. Sarma, and P. A. Ward, In vivo suppression of NF-kappa B and preservation of I kappa B alpha by interleukin-10 and interleukin-13, 1997.

, J. Clin. Invest, vol.100, pp.2443-2448

S. ¨-lenzen, J. Drinkgern, and M. Tiedge, Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic, Biol. Med, vol.20, pp.463-466, 1996.

P. Lewis, N. Stefanovic, J. Pete, A. C. Calkin, S. Giunti et al., Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice, Circulation, vol.115, pp.2178-2187, 2007.

H. Li and B. Sun, Toll-like receptor 4 in atherosclerosis, J. Cell. Mol. Med, vol.11, pp.88-95, 2007.

T. Li and Z. H. Zeng, Adiponectin as a potential therapeutic target for the treatment of restenosis, Biomed. Pharmacother. Biomedecine Pharmacother, vol.101, pp.798-804, 2018.

H. Li, Y. Wang, D. Feng, Y. Liu, M. Xu et al., Alterations in the time course of expression of the Nox family in the brain in a rat experimental cerebral ischemia and reperfusion model: effects of melatonin, J. Pineal Res, vol.57, pp.110-119, 2014.

X. Li, K. Chyu, J. R. Neto, J. Yano, N. Nathwani et al., Differential effects of apolipoprotein A-Imimetic peptide on evolving and established atherosclerosis in apolipoprotein E-null mice, Circulation, vol.110, pp.1701-1705, 2004.

P. Libby, Inflammation in atherosclerosis, Nature, vol.420, pp.868-874, 2002.

P. Libby, P. M. Ridker, and A. Maseri, Inflammation and atherosclerosis, Circulation, vol.105, pp.1135-1143, 2002.

P. Libby, P. M. Ridker, and G. K. Hansson, Progress and challenges in translating the biology of atherosclerosis, Nature, vol.473, pp.317-325, 2011.

C. H. Lillig and A. Holmgren, Thioredoxin and Related Molecules-From Biology to Health and Disease, Antioxid. Redox Signal, vol.9, pp.25-47, 2006.

Y. Liu, M. , and W. , Thioredoxin promotes ASK1 ubiquitination and degradation to inhibit ASK1-mediated apoptosis in a redox activity-independent manner, Circ. Res, vol.90, pp.1259-1266, 2002.

J. Q. Liu, I. N. Zelko, and R. J. Folz, Reoxygenation-induced constriction in murine coronary arteries: the role of endothelial NADPH oxidase (gp91phox) and intracellular superoxide, J. Biol. Chem, vol.279, pp.24493-24497, 2004.

L. Loffredo, F. Martino, R. Carnevale, P. Pignatelli, E. Catasca et al., Obesity and Hypercholesterolemia are Associated with NOX2 Generated Oxidative Stress and Arterial Dysfunction, J. Pediatr, vol.161, pp.1004-1009, 2012.

F. ¨-lovren, Y. Pan, A. Quan, P. E. Szmitko, K. K. Singh et al., Adiponectin primes human monocytes into alternative anti-inflammatory M2 macrophages, Am. J. Physiol. -Heart Circ. Physiol, vol.299, pp.656-663, 2010.

D. A. Lowes and H. F. Galley, Mitochondrial protection by the thioredoxin-2 and glutathione systems in an in vitro endothelial model of sepsis, Biochem. J, vol.436, pp.123-132, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00591705

J. Lu and A. Holmgren, Thioredoxin System in Cell Death Progression, Antioxid. Redox Signal, vol.17, pp.1738-1747, 2012.

A. J. Lusis, Atherosclerosis. Nature, vol.407, pp.233-241, 2000.

G. B. Mackaness, Cellular resistance to infection, J. Exp. Med, vol.116, pp.381-406, 1962.

N. R. Madamanchi and M. S. Runge, Mitochondrial dysfunction in atherosclerosis, Circ. Res, vol.100, pp.460-473, 2007.

N. R. Madamanchi, Z. S. Hakim, and M. S. Runge, Oxidative stress in atherogenesis and arterial thrombosis: the disconnect between cellular studies and clinical outcomes, J. Thromb. Haemost, vol.3, pp.254-267, 2005.

N. R. Madamanchi, S. Moon, Z. S. Hakim, S. Clark, A. Mehrizi et al., Differential activation of mitogenic signaling pathways in aortic smooth muscle cells deficient in superoxide dismutase isoforms, Arterioscler. Thromb. Vasc. Biol, vol.25, pp.950-956, 2005.

D. F. Mahmood, Thioredoxin-1 (Trx1) : a new target in the treatment of cardiovascular diseases. phdthesis, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01069096

D. F. Mahmood, A. Abderrazak, D. Couchie, O. Lunov, V. Diderot et al., Truncated thioredoxin (Trx-80) promotes pro-inflammatory macrophages of the M1 phenotype and enhances atherosclerosis, J. Cell. Physiol, vol.228, pp.1577-1583, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01544063

Y. Makino, N. Yoshikawa, K. Okamoto, K. Hirota, J. Yodoi et al., Direct Association with Thioredoxin Allows Redox Regulation of Glucocorticoid Receptor Function, J. Biol. Chem, vol.274, pp.3182-3188, 1999.

M. I. Malandrino, R. Fucho, M. Weber, M. Calderon-dominguez, J. F. Mir et al., Enhanced fatty acid oxidation in adipocytes and macrophages reduces lipid-induced triglyceride accumulation and inflammation, Am. J. Physiol. Endocrinol. Metab, vol.308, pp.756-769, 2015.

Z. Mallat, S. Besnard, M. Duriez, V. Deleuze, F. Emmanuel et al., Protective role of interleukin-10 in atherosclerosis, Circ. Res, vol.85, pp.17-24, 1999.

M. Mangaraj, R. Nanda, and S. Panda, Apolipoprotein A-I: A Molecule of Diverse Function, Indian J. Clin. Biochem. IJCB, vol.31, pp.253-259, 2016.

J. M. Mann and M. J. Davies, Vulnerable plaque. Relation of characteristics to degree of stenosis in human coronary arteries, Circulation, vol.94, pp.928-931, 1996.

A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi et al., The chemokine system in diverse forms of macrophage activation and polarization, Trends Immunol, vol.25, pp.677-686, 2004.

A. Mantovani, C. Garlanda, and M. Locati, Macrophage diversity and polarization in atherosclerosis: a question of balance, Arterioscler. Thromb. Vasc. Biol, vol.29, pp.1419-1423, 2009.

T. Maraldi, C. Prata, C. Caliceti, F. Vieceli-dalla-sega, L. Zambonin et al., VEGF-induced ROS generation from NAD(P)H oxidases protects human leukemic cells from apoptosis, Int. J. Oncol, vol.36, pp.1581-1589, 2010.

F. O. Martinez, A. Sica, A. Mantovani, and M. Locati, Macrophage activation and polarization, Front. Biosci. J. Virtual Libr, vol.13, pp.453-461, 2008.

M. Matsui, M. Oshima, H. Oshima, K. Takaku, T. Maruyama et al., Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene, Dev. Biol, vol.178, pp.179-185, 1996.

J. S. Mcnally, M. E. Davis, D. P. Giddens, A. Saha, J. Hwang et al., Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress, Am. J. Physiol.-Heart Circ. Physiol, vol.285, pp.2290-2297, 2003.

E. J. Meuillet, D. Mahadevan, M. Berggren, A. Coon, and G. Powis, , 2004.

, Thioredoxin-1 binds to the C2 domain of PTEN inhibiting PTEN's lipid phosphatase activity and membrane binding: a mechanism for the functional loss of PTEN's tumor suppressor activity, Arch. Biochem. Biophys, vol.429, pp.123-133

C. Migdal and M. Serres, Espèces réactives de l'oxygène et stress oxydant. médecine/sciences, vol.27, pp.405-412, 2011.

¨. Miller and U. Hoenig, Mechanisms of Impaired Endothelial Function Associated With Insulin Resistance, J. Cardiovasc. Pharmacol. Ther, vol.3, pp.125-134, 1998.

E. L. Mills, B. Kelly, A. Logan, A. S. Costa, M. Varma et al., Repurposing mitochondria from ATP production to ROS generation drives a pro-inflammatory phenotype in macrophages that depends on succinate oxidation by complex II, Cell, vol.167, pp.457-470, 2016.

¨. Miranda-vizuete, A. Ljung, J. Damdimopoulos, A. E. Gustafsson, J. A. Oko et al., Characterization of Sptrx, a novel member of the thioredoxin family specifically expressed in human spermatozoa, J. Biol. Chem, vol.276, pp.31567-31574, 2001.

¨. Miranda-vizuete, A. Sadek, C. M. Jiménez, A. Krause, W. J. Sutovsky et al., The mammalian testis-specific thioredoxin system, Antioxid. Redox Signal, vol.6, pp.25-40, 2004.

R. E. Moore, M. Kawashiri, K. Kitajima, A. Secreto, J. S. Millar et al., Apolipoprotein A-I deficiency results in markedly increased atherosclerosis in mice lacking the LDL receptor, Arterioscler. Thromb. Vasc. Biol, vol.23, pp.1914-1920, 2003.

D. M. Mosser, On arterial lesions found in Egyptian mummies, J. Leukoc. Biol, vol.73, p.525, 1580.

A. D. , J. Pathol. Bacteriol, vol.15, pp.453-462

E. ¨-rybnikova, A. E. Damdimopoulos, J. Gustafsson, G. Spyrou, and M. Pelto-huikko, Expression of novel antioxidant thioredoxin-2 in the rat brain, Eur. J. Neurosci, vol.12, pp.1669-1678, 2000.

B. Sahaf, A. Söderberg, G. Spyrou, A. M. Barral, K. Pekkari et al., Thioredoxin Expression and Localization in Human Cell Lines: Detection of Full-Length and Truncated Species, Exp. Cell Res, vol.236, pp.181-192, 1997.

M. Saitoh, H. Nishitoh, M. Fujii, K. Takeda, K. Tobiume et al., Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1, EMBO J, vol.17, pp.2596-2606, 1998.

F. Santilli, D. D'ardes, and G. Davì, Oxidative stress in chronic vascular disease: From prediction to prevention, Vascul. Pharmacol, vol.74, pp.23-37, 2015.

H. Schenk, M. Klein, W. Erdbrügger, W. Dröge, and K. Schulze-osthoff, , 1994.

, Distinct effects of thioredoxin and antioxidants on the activation of transcription factors NF-kappa B and AP-1, Proc. Natl. Acad. Sci. U. S. A, vol.91, pp.1672-1676

T. S. Schmidt, A. , and N. J. , Mechanisms for the role of tetrahydrobiopterin in endothelial function and vascular disease, Clin. Sci, vol.113, pp.47-63, 2007.

A. J. Schottelius, M. W. Mayo, R. B. Sartor, and A. S. Baldwin, Interleukin-10 signaling blocks inhibitor of kappaB kinase activity and nuclear factor kappaB DNA binding, J. Biol. Chem, vol.274, pp.31868-31874, 1999.

C. M. Sena, A. M. Pereira, and R. Seiça, Endothelial dysfunction -A major mediator of diabetic vascular disease, Biochim. Biophys. Acta BBA -Mol. Basis Dis, vol.1832, pp.2216-2231, 2013.

K. Shioji, H. Nakamura, H. Masutani, Y. , and J. , Redox regulation by thioredoxin in cardiovascular diseases, Antioxid. Redox Signal, vol.5, pp.795-802, 2003.

H. Sies and E. Cadenas, Oxidative stress: damage to intact cells and organs, Phil Trans R Soc Lond B, vol.311, pp.617-631, 1985.

H. Sies, C. Berndt, and D. P. Jones, Oxidative Stress, Annu. Rev. Biochem, vol.86, pp.715-748, 2017.

J. P. Silva and O. P. Coutinho, Free radicals in the regulation of damage and cell death -basic mechanisms and prevention, Drug Discov. Ther, vol.4, pp.144-167, 2010.

S. S. Simons and W. B. Pratt, Glucocorticoid receptor thiols and steroid-binding activity, Methods Enzymol, vol.251, pp.406-422, 1995.

J. D. Smith, Apolipoprotein A-I and its mimetics for the treatment of atherosclerosis, Curr. Opin. Investig. Drugs Lond. Engl, vol.11, pp.989-996, 2000.

J. D. Smith, E. Trogan, M. Ginsberg, C. Grigaux, J. Tian et al., , 1995.

, Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E, Proc. Natl. Acad. Sci. U. S. A, vol.92, pp.8264-8268

G. Spyrou, E. Enmark, A. Miranda-vizuete, and J. Gustafsson, Cloning and Expression of a Novel Mammalian Thioredoxin, J. Biol. Chem, vol.272, pp.2936-2941, 1997.

H. C. Stary, A. B. Chandler, S. Glagov, J. R. Guyton, W. Insull et al., A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, Circulation, vol.89, pp.2462-2478, 1994.

, Vasc. Biol, vol.30, pp.246-252

Y. Takagi, Y. Gon, T. Todaka, K. Nozaki, A. Nishiyama et al., Expression of thioredoxin is enhanced in atherosclerotic plaques and during neointima formation in rat arteries, Lab. Investig. J. Tech. Methods Pathol, vol.78, pp.957-966, 1998.

G. Tannahill, A. Curtis, J. Adamik, E. Palsson-mcdermott, A. Mcgettrick et al., Succinate is a danger signal that induces IL-1? via HIF-1?, Nature, vol.496, pp.238-242, 2013.

L. Tao, E. Gao, N. S. Bryan, Y. Qu, H. Liu et al., Cardioprotective effects of thioredoxin in myocardial ischemia and reperfusion: role of S-nitrosation, 2004.

, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.11471-11476

L. O. Tjernberg, J. Näslund, F. Lindqvist, J. Johansson, A. R. Karlström et al., Arrest of -Amyloid Fibril Formation by a Pentapeptide Ligand, J. Biol. Chem, vol.271, pp.8545-8548, 1996.

K. F. ¨-tonissen and J. R. Wells, Isolation and characterization of human thioredoxin-encoding genes, Gene, vol.102, pp.221-228, 1991.

M. Torzewski, V. Ochsenhirt, A. L. Kleschyov, M. Oelze, A. Daiber et al., Deficiency of glutathione peroxidase-1 accelerates the progression of atherosclerosis in apolipoprotein Edeficient mice, Arterioscler. Thromb. Vasc. Biol, vol.27, pp.850-857, 2007.

R. M. Touyz and A. M. Briones, Reactive oxygen species and vascular biology: implications in human hypertension, Hypertens. Res, vol.34, pp.5-14, 2011.

D. L. Tribble, AHA Science Advisory. Antioxidant consumption and risk of coronary heart disease: emphasison vitamin C, vitamin E, and beta-carotene: A statement for healthcare professionals from the, American Heart Association. Circulation, vol.99, pp.591-595, 1999.

S. Tsimikas and Y. I. Miller, Oxidative modification of lipoproteins: mechanisms, role in inflammation and potential clinical applications in cardiovascular disease, Curr. Pharm. Des, vol.17, pp.27-37, 2011.

T. Turoczi, V. W. Chang, .. Engelman, R. M. Maulik, N. Ho et al., , 2003.

, Thioredoxin redox signaling in the ischemic heart: an insight with transgenic mice overexpressing Trx1, J. Mol. Cell. Cardiol, vol.35, pp.695-704

Y. Uehara, G. Chiesa, and K. Saku, High-Density Lipoprotein-Targeted Therapy and Apolipoprotein A-I Mimetic Peptides, Circ. J. Off. J. Jpn. Circ. Soc, vol.79, pp.2523-2528, 2015.

M. Valko, D. Leibfritz, J. Moncol, M. T. Cronin, M. Mazur et al., Free radicals and antioxidants in normal physiological functions and human disease, Int. J. Biochem. Cell Biol, vol.39, pp.44-84, 2007.

P. Vallance, C. , and N. , Endothelial function and nitric oxide: clinical relevance, Heart, vol.85, pp.342-350, 2001.

A. F. Valledor, F. E. Borràs, M. Cullell-young, and A. Celada, Transcription factors that regulate monocyte/macrophage differentiation, J. Leukoc. Biol, vol.63, pp.405-417, 1998.

¨. Van-den-bossche, J. Baardman, J. Otto, N. A. Van-der-velden, S. Neele et al., , 2016.

, Mitochondrial Dysfunction Prevents Repolarization of Inflammatory Macrophages, Cell Rep, vol.17, pp.684-696

H. Zhang, Y. Luo, W. Zhang, Y. He, S. Dai et al., Endothelial-specific expression of mitochondrial thioredoxin improves endothelial cell function and reduces atherosclerotic lesions, Am. J. Pathol, vol.170, pp.1108-1120, 2007.

G. Zizzo and P. L. Cohen, IL-17 Stimulates Differentiation of Human Anti-Inflammatory Macrophages and Phagocytosis of Apoptotic Neutrophils in Response to IL-10 and Glucocorticoids, J. Immunol, vol.190, pp.5237-5246, 2013.

G. Zizzo, B. A. Hilliard, M. Monestier, and P. L. Cohen, Efficient clearance of early apoptotic cells by human macrophages requires "M2c" polarization and MerTK induction, J. Immunol. Baltim. Md, vol.189, pp.3508-3520, 1950.

,. ¨-zschauer, S. Matsushima, J. Altschmied, D. Shao, J. Sadoshima et al., Interacting with thioredoxin-1--disease or no disease?, Antioxid. Redox Signal, vol.18, pp.1053-1062, 2013.

(. A. -s.);-and-centre-de-recherche-sur-le-vieillissement, ;. A. Service-gériatrique, and T. F. ,

G. K. Hansson and P. Libby, The immune response in atherosclerosis: a doubleedged sword, Nat Rev Immunol, vol.6, pp.508-519, 2006.

C. Weber, A. Zernecke, and P. Libby, The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models, Nat Rev Immunol, vol.8, pp.802-815, 2008.

K. J. Moore and I. Tabas, Macrophages in the pathogenesis of atherosclerosis, Cell, vol.145, pp.341-355, 2011.

N. Shibata and C. K. Glass, Regulation of macrophage function in inflammation and atherosclerosis, J Lipid Res, vol.50, pp.277-281, 2009.

F. O. Martinez, L. Helming, and S. Gordon, Alternative activation of macrophages: an immunologic functional perspective, Annu Rev Immunol, vol.27, pp.451-483, 2009.

C. N. Lumeng, J. L. Bodzin, and A. R. Saltiel, Obesity induces a phenotypic switch in adipose tissue macrophage polarization, J Clin Invest, vol.117, pp.175-184, 2007.

S. Gordon, Alternative activation of macrophages, Nat Rev Immunol, vol.3, pp.23-35, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00474829

M. A. Bouhlel, B. Derudas, E. Rigamonti, R. Dièvart, J. Brozek et al., PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties, Cell Metab, vol.6, pp.137-143, 2007.

F. Lovren, Y. Pan, A. Quan, P. E. Szmitko, K. K. Singh et al., Adiponectin primes human monocytes into alternative anti-inflammatory M2 macrophages, Am J Physiol Heart Circ Physiol, vol.299, pp.656-663, 2010.

K. Ohashi, J. L. Parker, N. Ouchi, A. Higuchi, J. A. Vita et al., Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype, J Biol Chem, vol.285, pp.6153-6160, 2010.

N. R. Madamanchi, A. Vendrov, and M. S. Runge, Oxidative stress and vascular disease, Arterioscler Thromb Vasc Biol, vol.25, pp.29-38, 2005.

M. Valko, D. Leibfritz, J. Moncol, M. T. Cronin, M. Mazur et al., Free radicals and antioxidants in normal physiological functions and human disease, Int J Biochem Cell Biol, vol.39, pp.44-84, 2007.

S. V. Avery, Molecular targets of oxidative stress, Biochem J, vol.434, pp.201-210, 2011.

U. Förstermann, Nitric oxide and oxidative stress in vascular disease, Pflugers Arch, vol.459, pp.923-939, 2010.

K. El-hadri, D. F. Mahmood, D. Couchie, I. Jguirim-souissi, F. Genze et al., Thioredoxin-1 promotes anti-inflammatory macrophages of the M2 phenotype and antagonizes atherosclerosis, Arterioscler Thromb Vasc Biol, vol.32, pp.1445-1452, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01544074

H. Yamawaki, J. Haendeler, and B. C. Berk, Thioredoxin: a key regulator of cardiovascular homeostasis, Circ Res, vol.93, pp.1029-1033, 2003.

J. Lu and A. Holmgren, Thioredoxin system in cell death progression, Antioxid Redox Signal, vol.17, pp.1738-1747, 2012.

T. Ebrahimian and R. M. Touyz, Thioredoxin in vascular biology: role in hypertension, Antioxid Redox Signal, vol.10, pp.1127-1136, 1985.

C. J. World, H. Yamawaki, and B. C. Berk, Thioredoxin in the cardiovascular system, J Mol Med (Berl), vol.84, pp.997-1003, 2006.

F. Gil-bea, S. Akterin, T. Persson, L. Mateos, A. Sandebring et al., Thioredoxin-80 is a product of alpha-secretase cleavage that inhibits amyloid-beta aggregation and is decreased in Alzheimer's disease brain, EMBO Mol Med, vol.4, pp.1097-1111, 2012.

K. Pekkari and A. Holmgren, Truncated thioredoxin: physiological functions and mechanism, Antioxid Redox Signal, vol.6, pp.53-61, 2004.

C. Bizzarri, A. Holmgren, K. Pekkari, G. Chang, F. Colotta et al., Requirements for the different cysteines in the chemotactic and desensitizing activity of human thioredoxin, Antioxid Redox Signal, vol.7, pp.1189-1194, 2005.

X. Cortes-bratti, E. Bassères, F. Herrera-rodriguez, S. Botero-kleiven, G. Coppotelli et al., Thioredoxin 80-activated-monocytes (TAMs) inhibit the replication of intracellular pathogens, PLoS One, vol.6, p.16960, 2011.

K. Pekkari, R. Gurunath, E. S. Arner, and A. Holmgren, Truncated thioredoxin is a mitogenic cytokine for resting human peripheral blood mononuclear cells and is present in human plasma, J Biol Chem, vol.275, pp.37474-37480, 2000.

H. Lemarechal, P. Anract, J. L. Beaudeux, D. Bonnefont-rousselot, O. G. Ekindjian et al., Impairment of thioredoxin reductase activity by oxidative stress in human rheumatoid synoviocytes, Free Radic Res, vol.41, pp.688-698, 2007.

R. Bertini, O. M. Howard, H. F. Dong, J. J. Oppenheim, C. Bizzarri et al., Ghezzi P. Thioredoxin, a redox enzyme released in infection and inflammation, is a unique chemoattractant for neutrophils, monocytes, and T cells, J Exp Med, vol.189, pp.1783-1789, 1999.

L. Billiet, C. Furman, G. Larigauderie, C. Copin, K. Brand et al., Extracellular human thioredoxin-1 inhibits lipopolysaccharide-induced interleukin-1beta expression in human monocyte-derived macrophages, J Biol Chem, vol.280, pp.40310-40318, 2005.

D. F. Mahmood, A. Abderrazak, D. Couchie, O. Lunov, V. Diderot et al., Truncated thioredoxin (Trx-80) promotes pro-inflammatory macrophages of the M1 phenotype and enhances atherosclerosis, J Cell Physiol, vol.228, pp.1577-1583, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01544063

C. Fernández-hernando, E. Ackah, J. Yu, Y. Suárez, T. Murata et al., Loss of Akt1 leads to severe atherosclerosis and occlusive coronary artery disease, Cell Metab, vol.6, pp.446-457, 2007.

E. Ackah, J. Yu, S. Zoellner, Y. Iwakiri, C. Skurk et al., Akt1/protein kinase Balpha is critical for ischemic and VEGF-mediated angiogenesis, J Clin Invest, vol.115, pp.2119-2127, 2005.

J. Chen, P. R. Somanath, O. Razorenova, W. S. Chen, N. Hay et al., Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo, Nat Med, vol.11, pp.1188-1196, 2005.

T. L. Phung, K. Ziv, D. Dabydeen, G. Eyiah-mensah, M. Riveros et al., Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin, Cancer Cell, vol.10, pp.159-170, 2006.

W. S. Chen, P. Z. Xu, K. Gottlob, M. L. Chen, K. Sokol et al., Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene, Genes Dev, vol.15, pp.2203-2208, 2001.

H. Cho, J. Mu, J. K. Kim, J. L. Thorvaldsen, Q. Chu et al., Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta), Science, vol.292, pp.1728-1731, 2001.

O. Tschopp, Z. Z. Yang, D. Brodbeck, B. A. Dummler, M. Hemmings-mieszczak et al., Essential role of protein kinase B gamma (PKB gamma/Akt3) in postnatal brain development but not in glucose homeostasis, Development, vol.132, pp.2943-2954, 2005.

A. Arranz, C. Doxaki, E. Vergadi, Y. Martinez-de-la-torre, K. Vaporidi et al.,

E. N. Stathopoulos, P. N. Tsichlis, and C. Tsatsanis, Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization, Proc Natl Acad Sci, vol.109, pp.9517-9522, 2012.

P. Duewell, H. Kono, K. J. Rayner, C. M. Sirois, G. Vladimer et al., NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals, Nature, vol.464, pp.1357-1361, 2010.

M. Kaimul-ahsan, H. Nakamura, M. Tanito, K. Yamada, H. Utsumi et al., Thioredoxin-1 suppresses lung injury and apoptosis induced by diesel exhaust particles (DEP) by scavenging reactive oxygen species and by inhibiting DEP-induced downregulation of Akt, Free Radic Biol Med, vol.39, pp.1549-1559, 2005.

H. Sartelet, A. L. Rougemont, M. Fabre, M. Castaing, M. Duval et al., Activation of the phosphatidylinositol 3'-kinase/AKT pathway in neuroblastoma and its regulation by thioredoxin 1, Hum Pathol, vol.42, pp.1727-1739, 2011.

V. Byles, A. J. Covarrubias, I. Ben-sahra, D. W. Lamming, D. M. Sabatini et al., The TSC-mTOR pathway regulates macrophage polarization, Nat Commun, vol.4, p.2834, 2013.

H. Pan, L. H. Xu, D. Y. Ouyang, Y. Wang, Q. B. Zha et al., The secondgeneration mTOR kinase inhibitor INK128 exhibits anti-inflammatory activity in lipopolysaccharide-activated RAW 264.7 cells, Inflammation, vol.37, pp.756-765, 2014.

D. K. Sandsmark, C. Pelletier, J. D. Weber, and D. H. Gutmann, Mammalian target of rapamycin: master regulator of cell growth in the nervous system, Histol Histopathol, vol.22, pp.895-903, 2007.

P. Carmeliet and R. K. Jain, Molecular mechanisms and clinical applications of angiogenesis, Nature, vol.473, pp.298-307, 2011.

F. D. Kolodgie, H. K. Gold, A. P. Burke, D. R. Fowler, H. S. Kruth et al., Intraplaque hemorrhage and progression of coronary atheroma, N Engl J Med, vol.349, pp.2316-2325, 2003.

P. R. Moreno, K. R. Purushothaman, M. Sirol, A. P. Levy, and V. Fuster, Neovascularization in human atherosclerosis, Circulation, vol.113, pp.2245-2252, 2006.

R. Khurana, M. Simons, J. F. Martin, and Z. Ic, Role of angiogenesis in cardiovascular disease: a critical appraisal, Circulation, vol.112, pp.1813-1824, 2005.

J. B. Michel, R. Virmani, E. Arbustini, and G. Pasterkamp, Intraplaque haemorrhages as the trigger of plaque vulnerability, Eur Heart J, vol.32, 1977.

A. J. Dessein, H. L. Lenzi, J. C. Bina, E. M. Carvalho, W. Y. Weiser et al., Modulation of eosinophil cytotoxicity by blood mononuclear cells from healthy subjects and patients with chronic schistosomiasis mansoni, Cell Immunol, vol.85, pp.100-113, 1984.

H. L. Lenzi, A. D. Mednis, and A. J. Dessein, Activation of human eosinophils by monokines and lymphokines: source and biochemical characteristics of the eosinophil cytotoxicity-enhancing activity produced by blood mononuclear cells, Cell Immunol, vol.94, pp.333-346, 1985.

D. S. Silberstein, M. H. Ali, S. L. Baker, and J. R. David, Human eosinophil cytotoxicity-enhancing factor. Purification, physical characteristics, and partial amino acid sequence of an active polypeptide, J Immunol, vol.143, pp.979-983, 1989.

. +4-°c-overnight, The plates were washed four times with washing buffer

. Subsequently, 200 ?l/well of blocking solution (1% BSA in PBS-Tween20) was added and plates were incubated for 2h at room temperature. After washing four times, 100 ?l/well of standard dilution of TRX80 (diluted in blocking solution) or samples were added in duplicates and incubated for 2h at room temperature. Thereafter, p.100

, ?l/well of rabbit polyclonal anti-TRX (N-term) (ABIN356853, antibodies-online GmbH) were added at

, ?g/ml and incubated for 2 h at room temperature. Following washing four times, 100 ?l/well of antirabbit IgG-peroxidase (A 6154, Sigma) were added and incubated for 1 h at room temperature

, Subsequently, plates were washed six times and 150 ?l/well of the substrate were added (1-Step? ABTS, 37615-ThermoScientific). After 30 min of incubation, 100 µl of stop solution (1% SDS in PBS) were added to each well and the absorbance was measured at 405 nm by a microplate reader, Colocalization of TRX80 and TNF-on M1 macrophages in human atherosclerotic lesions

, Human atherosclerotic vessel specimens from 3 patients undergoing vascular surgery for atherosclerotic complications were formalin-fixed, paraffin-embedded, and 5 µm sections were prepared for immunohistochemical analysis. M2 macrophages were visualized with anti-CD206 (Sigma, 1/500), TRX80 was stained with an antibody that recognizes only the truncated form of thioredoxin (IMCO Corp, Sweden, 1/500). M1 macrophages were stained with anti-TNF-antibody (Abcam, 1/250). In control samples, one of the first antibodies or both first antibodies were substituted with control IgG. For fluorescent immunostaining, Cy3-and Cy5-coupled secondary F(ab') 2 (Dianova) were used and visualized with Axioskop 2 plus fluorescence microscope

, Measurement of ADAM-10 and ADAM-17 activities

, glutamine (1%) (Invitrogen, France) and pooled human sera (10%) (Promo-Cell, Germany) at a density of 2×10 6 cells/well in 6-well Primaria-plastic culture dishes, Peripheral Blood Mononuclear Cells (PBMC) were isolated from buffy-coats of healthy young and aged donors

M. Cellytic? and . Reagent, The cell suspension was incubated on ice for at least 20 min and centrifuged for 10 min at 10,000 X g at 4°C. The supernatant was collected and used to assay ADAM-10 and ADAM-17 activities using respectively, Sigma) supplemented with a Protease Inhibitor Cocktail

, SensoLyte ® 520 ADAM10 Activity Assay Kit *Fluorimetric* (Anaspec, France) and InnoZyme? TACE Activity Kit

, After electroblotting onto PVDF Immobilon ® -P Transfer Membrane (Millipore, France), the blot was blocked with 5% non-fat dry milk in Tris Buffered Saline (TBS) for 1 h and incubated overnight at 4°C with specific antibodies, Western blotting PBMC were cultured, lysed and centrifuged as previously described. Proteins (20 ?g/lane), evaluated using Pierce? BCA Protein Assay Kit from Thermo Scientific, were separated on Criterion? TGX? Precast Gels 4-15%, p.5000

, For capillary tube formation, cells were seeded (30,000 cells/well) on 24-multiwell plates coated with Matrigel (BD Biosciences) and incubated in containing 10% (v/v) fetal bovine serum (FBS), 2 mmol L-glutamine, 100 U/ml penicillin, and 100 g/ml streptomycin, IL-4 (10 ng/ml) or recombinant human TRX1 (rhTRX1, 1 µg/mL) or rhTRX80 (1 µg/mL) (all from R&D Systems) or a combination thereof

, Blood was collected into EDTA tubes from the retro-orbital sinus apoE.KO or apoE.KO/TRX0 transgenic mice. Plasma samples were separated by centrifugation at 630xg for 20 min at 4°C and frozen in 0.5 ml aliquots at -80°C until tested. For quantification of IL-6, IL-33 and MCP-1, we used the Millipore kit (reference

, Determination of anti-oxLDL antibodies -Lipoprotein isolation, Luminex 200 Millipore apparatus and xPONENT 3.1 software (Millipore

, 053 g/ml) were isolated from freshly drawn blood from healthy normolipidemic volunteers as previously described, dialyzed against PBS supplemented with 0.01% EDTA to prevent oxidation, sterilized by filtration and stored at 4°C under nitrogen. The relative electrophoretic mobility of LDL was evaluated on Hydragel

, Oxidation was initiated by incubation at 37°C with 5 µM CuSO 4 for 24 h. Oxidation was stopped by adding 20 µM EDTA. Native and oxLDL were screened for lipopolysaccharide (LPS) contamination by using a limulus amoebocyte lysate assay (Sigma), EDTA was removed by extensive dialysis of the LDL solution against EDTA free PBS, vol.163

, Before each assay, 96-well microtitration plates were freshly coated with 100 ?l of oxLDL (5 ?g/ml) in PBS overnight at 4°C. The wells were blocked with 1% bovine serum albumin for 2 h at room temperature. A 100 ?l aliquot of diluted sera (1:40) from each group of mice was added in quadruplicate wells and incubated for 2 h at room temperature. After three washes with PBS containing 0, vol.1

. Coulter, ) was added to each well, and the incubation continued for 2 h at room temperature. Plates were washed again, and the alkaline peroxidase activity was determined using orthophenylenediamine dichloride (OPD, Sigma) as a substrate and detected at 492 nm. TRX1 and TRX80 signal pathways

, Murine peritoneal macrophages were isolated from C57Bl/6, cultured at 0.5 x 10 6 cells/ml and untreated or treated with TRX1 (1 to 5 g/ml) or TRX80 (1 to 5 g/ml), PI3K inhibitor, Akt inhibitor, mTOR inhibitor, or a combination thereof. Expressions of macrophage M1 markers, MCP-1, TNF-, IL-6 and IL-1 and macrophage M2 markers, IL-10 and CD204 were investigated at the transcription levels using real-time polymerase chain reaction, Phosphorylation of Akt, pp.70-76

C. Camare, M. Trayssac, B. Garmy-susini, E. Mucher, R. Sabbadini et al., Oxidized LDL-induced angiogenesis involves sphingosine 1-phosphate: prevention by anti-S1P antibody, Br J Pharmacol, vol.172, pp.106-118, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02352428

A. Passaniti, R. M. Taylor, R. Pili, Y. Guo, P. V. Long et al., A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor, Lab Invest, vol.67, pp.519-528, 1992.