L. D. Carlos and &. Palacio, Thermometry at the Nanoscale: Techniques and Selected Applications, 2015.

A. Majumdar, J. P. Carrejo, and &. Lai, Thermal imaging using the atomic force microscope, Applied Physics Letters, vol.62, pp.2501-2503, 1993.

G. and L. Palec, Microscopie thermique à balayage, 1996.

G. Mills, H. Zhou, A. Midha, L. &. Donaldson, and . Weaver, Scanning thermal microscopy using batch fabricated thermocouple probes, Applied Physics Letters, vol.72, pp.2900-2902, 1998.

G. Tessier, M. Polignano, S. Pavageau, C. Filloy, D. Fournier et al., Thermoreflectance temperature imaging of integrated circuits: calibration technique and quantitative comparison with integrated sensors and simulations, Journal of Physics D: Applied Physics, vol.39, pp.4159-4166, 2006.

D. Jaque, &. F. Vetrone, and L. Nanothermometry, Nanoscale, vol.4, p.4301, 2012.

X. Wang, O. S. Wolfbeis, and &. R. Meier, Luminescent probes and sensors for temperature, Chemical Society Reviews, vol.42, p.7834, 2013.

M. D. Drami?anin, Sensing temperature via downshifting emissions of lanthanide-doped metal oxides and salts. A review, Methods and Applications in Fluorescence, vol.4, p.42001, 2016.

C. D. Brites, P. L. Lima, N. J. Silva, A. Millan, V. S. Amaral et al., Thermometry at the nanoscale, vol.4, p.4799, 2012.

J. V. Frangioni, In vivo near-infrared fluorescence imaging, Current Opinion in Chemical Biology, vol.7, pp.626-634, 2003.

K. F. Chou-&-a and . Dennis, Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors, Sensors, vol.15, pp.13288-13325, 2015.

J. A. Gaj and &. Kossut, Introduction to the Physics of Diluted Magnetic Semiconductors, 2011.

R. Liang, R. Tian, W. Shi, Z. Liu, D. Yan et al., A temperature sensor based on CdTe quantum dots-layered double hydroxide ultrathin films via layerby-layer assembly, Chem. Commun, vol.49, pp.969-971, 2013.

V. A. Vlaskin, N. Janssen, J. Van-rijssel, R. &. Beaulac, and . Gamelin, Tunable Dual Emission in Doped Semiconductor Nanocrystals, Nano Letters, vol.10, pp.3670-3674, 2010.

P. Haro-gonzález, L. Martínez-maestro, I. R. Martín, J. García-solé, and &. D. Jaque, High-Sensitivity Fluorescence Lifetime Thermal Sensing Based on CdTe Quantum Dots, Small, vol.8, pp.2652-2658, 2012.

A. M. Derfus, W. C. Chan-&-s, and . Bhatia, Probing the Cytotoxicity of Semiconductor Quantum Dots, Nano Letters, vol.4, pp.11-18, 2004.

J. Lovri?, H. S. Bazzi, Y. Cuie, G. R. Fortin, F. M. Winnik et al., Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots, Journal of Molecular Medicine, vol.83, pp.377-385, 2005.

N. Chen, Y. He, Y. Su, X. Li, Q. Huang et al., The cytotoxicity of cadmium-based quantum dots, Biomaterials, vol.33, pp.1238-1244, 2012.

Y. Zhao, C. Riemersma, F. Pietra, R. Koole, C. De-mello-dogena et al., High-Temperature Luminescence Quenching of Colloidal Quantum Dots, ACS Nano, vol.6, pp.9058-9067, 2012.

G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi-&-d et al., Quantum-dot optical temperature probes, Applied Physics Letters, vol.83, pp.3555-3557, 2003.

L. M. Maestro, E. M. Rodriguez, F. S. Rodriguez, M. C. Iglesias-de-la-cruz, A. Juarranz et al., CdSe Quantum Dots for Two-Photon Fluorescence Thermal Imaging, Nano Letters, vol.10, pp.5109-5115, 2010.

L. M. Maestro, C. Jacinto, U. R. Silva, F. Vetrone, J. A. Capiobianco et al., CdTe Quantum Dots as Nanothermometers: Towards Highly Sensitive Thermal Imaging, vol.7, pp.1774-1778, 2011.

D. M. Ross, &. L. Gaitan, and . Locascio, Temperature Measurement in Microfluidic Systems Using a Temperature-Dependent Fluorescent Dye, Analytical Chemistry, vol.73, pp.4117-4123, 2001.

R. K. Benninger, Y. Koç, O. Hofmann, J. Requejo-isidro, M. A. Neil et al., Quantitative 3D Mapping of Fluidic Temperatures within Microchannel Networks Using Fluorescence Lifetime Imaging, Analytical Chemistry, vol.78, pp.2272-2278, 2006.

X. Guan, X. Liu, Z. Su, and &. Liu, The preparation and photophysical behaviors of temperature/pH-sensitive polymer materials bearing fluorescein, Reactive and Functional Polymers, vol.66, pp.1227-1239, 2006.

F. H. Wong and &. Fradin, Simultaneous pH and Temperature Measurements Using Pyranine as a Molecular Probe, Journal of Fluorescence, vol.21, pp.299-312, 2011.

S. Uchiyama, N. Kawai, A. P. Silva, and &. K. Iwai, Fluorescent Polymeric AND Logic Gate with Temperature and pH as Inputs, Journal of the American Chemical Society, vol.126, pp.3032-3033, 2004.

C. Gota, K. Okabe, T. Funatsu, Y. Harada, and &. S. Uchiyama, Hydrophilic Fluorescent Nanogel Thermometer for Intracellular Thermometry, Journal of the American Chemical Society, vol.131, pp.2766-2767, 2009.

F. Ye, C. Wu, Y. Jin, Y. Chan, X. T. Zhang-&-d et al., Ratiometric Temperature Sensing with Semiconducting Polymer Dots, Journal of the American Chemical Society, vol.133, pp.8146-8149, 2011.

D. Gong, T. Cao, S. Han, X. Zhu, A. Iqbal et al., Fluorescence enhancement thermoresponsive polymer luminescent sensors based on BODIPY for intracellular temperature, Sensors and Actuators B: Chemical, vol.252, pp.577-583, 2017.

G. Liebsch, I. &. Klimant, and . Wolfbeis, Luminescence Lifetime Temperature Sensing Based on Sol-Gels and Poly(acrylonitrile)s Dyed with Ruthenium Metal-Ligand Complexes, Advanced Materials, vol.11, pp.1296-1299, 1999.

K. Maruszewski, D. Andrzejewski, and &. Strek, Thermal sensor based on luminescence of Ru(bpy) 32+ entrapped in sol-gel glasses, Journal of Luminescence, pp.226-228, 1997.

L. H. Fischer, S. M. Borisov, M. Schaeferling, I. Klimant, and &. O. Wolfbeis, Dual sensing of p O2 and temperature using a water -based and sprayable fluorescent paint, Analyst, vol.135, pp.1224-1229, 2010.

J. S. Donner, S. Thompson, M. P. Kreuzer, G. Baffou, and &. R. Quidant, Mapping Intracellular Temperature Using Green Fluorescent Protein, Nano Lett, vol.12, pp.2107-2111, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00728941

K. Miyata, Y. Konno, T. Nakanishi, A. Kobayashi, M. Kato et al., Chameleon Luminophore for Sensing Temperatures: Control of Metal-to-Metal and Energy Back Transfer in Lanthanide Coordination Polymers, Angew. Chem. Int. Ed, vol.52, pp.6413-6416, 2013.

R. G. Geitenbeek, P. T. Prins, W. Albrecht, A. Blaaderen, B. M. Weckhuysen et al., NaYF4 :Er 3+ ,Yb 3+ /SiO2 Core/Shell Upconverting Nanocrystals for Luminescence Thermometry up to 900 K, The Journal of Physical Chemistry C, vol.121, pp.3503-3510, 2017.

S. M. Borisov, K. Gatterer, B. Bitschnau, and &. Klimant, Preparation and Characterization of Chromium(III)-Activated Yttrium Aluminum Borate: A New Thermographic Phosphor for Optical Sensing and Imaging at Ambient Temperatures, The Journal of Physical Chemistry C, vol.114, pp.9118-9124, 2010.

X. Li, G. Jiang, S. Zhou, X. Wei, Y. K. Chen-&-c et al., Luminescent properties of chromium(III)-doped lithium aluminate for temperature sensing, Sensors and Actuators B: Chemical, vol.202, pp.1065-1069, 2014.

D. Chen, Z. Wan, Y. Zhou, and &. Z. Ji, Cr 3+ -doped gallium-based transparent bulk glass ceramics for optical temperature sensing, Journal of the European Ceramic Society, vol.35, pp.4211-4216, 2015.

D. Chen, Z. Wan, and &. Zhou, Optical spectroscopy of Cr 3+ -doped transparent nano-glass ceramics for lifetime-based temperature sensing, Optics Letters, vol.40, p.3607, 2015.

F. Venturini, R. Bürgi, S. M. Borisov, and &. Klimant, Optical temperature sensing using a new thermographic phosphor, Sensors and Actuators A: Physical, vol.233, pp.324-329, 2015.

M. Back, E. Trave, J. Ueda, and &. S. Tanabe, Ratiometric Optical Thermometer Based on Dual Near-Infrared Emission in Cr 3+ -Doped Bismuth-Based Gallate Host, Chemistry of Materials, vol.28, pp.8347-8356, 2016.

D. E. Mccumber-&-m and . Sturge, Linewidth and Temperature Shift of the R Lines in Ruby, Journal of Applied Physics, vol.34, pp.1682-1684, 1963.

W. H. Fonger-&-c and . Struck, Temperature dependences of Cr 3+ radiative and nonradiative transitions in ruby and emerald, Physical Review B, vol.11, p.3251, 1975.

Z. Zhang, Temperature dependences of fluorescence lifetimes in Cr 3+ -doped insulating crystals, Phys. Rev. B, vol.48, p.7772, 1993.

D. Chen, Z. Wan, and &. S. Liu, Highly Sensitive Dual-Phase Nanoglass-Ceramics Self-Calibrated Optical Thermometer, Analytical Chemistry, vol.88, pp.4099-4106, 2016.

L. Marciniak, A. Bednarkiewicz, and &. Strek, The impact of nanocrystals size on luminescent properties and thermometry capabilities of Cr, Nd doped nanophosphors, Sensors and Actuators B: Chemical, vol.238, pp.381-386, 2017.

L. Marciniak and &. Bednarkiewicz, Nanocrystalline NIR-to-NIR luminescent thermometer based on Cr 3+ ,Yb 3+ emission, Sensors and Actuators B: Chemical, vol.243, pp.388-393, 2017.

M. Pellerin, Manuscrit de Thèse -Élaboration de nanoparticules à luminescence persistante pour l'imagerie optique dans le domaine du rouge profond et du proche infrarouge, 2017.

E. Rodríguez, G. Lopez-pana, E. Montes, G. Lifante, J. G. Solé et al., Persistent luminescence nanothermometers. Applied Physics Letters, vol.111, p.81901, 2017.

A. M. Smith, M. C. Mancini, and &. S. Nie, Bioimaging: Second window for in vivo imaging, Nature Nanotechnology, vol.4, pp.710-711, 2009.

R. Weissleder, A clearer vision for in vivo imaging, 2001.

A. Lecointre, A. Bessière, B. Viana, and &. Gourier, Red persistent luminescent silicate nanoparticles, Radiation Measurements, vol.45, pp.497-499, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02423243

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana et al., ZnGa2O4:Cr 3+ : a new red long-lasting phosphor with high brightness, Optics express, vol.19, pp.10131-10137, 2011.

Y. Zhuang, J. Ueda, and &. S. Tanabe, Tunable trap depth in Zn(Ga1?xAlx)2O4:Cr,Bi red persistent phosphors: considerations of high-temperature persistent luminescence and photostimulated persistent luminescence, Journal of Materials Chemistry C, vol.1, pp.7849-7855, 2013.

M. Allix, S. Chenu, E. Véron, T. Poumeyrol, E. A. Kouadri-boudjelthia et al., Considerable Improvement of Long-Persistent Luminescence in Germanium and Tin Substituted ZnGa2O4, Chem. Mater, vol.25, pp.1600-1606, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00904153

J. Su, S. Ye, X. Yi, F. Q. Lu, X. B. Yang-&-q et al., Influence of oxygen vacancy on persistent luminescence in ZnGa2O4:Cr 3+ and identification of electron carriers, Optical Materials Express, vol.7, p.734, 2017.

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes et al., Controlling Electron Trap Depth To Enhance Optical Properties of Persistent Luminescence Nanoparticles for In Vivo Imaging, Journal of the American Chemical Society, vol.133, pp.11810-11815, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02422449

S. Chenu, E. Véron, C. Genevois, A. Garcia, G. Matzen et al., Long-lasting luminescent ZnGa2O4:Cr 3+ transparent glass-ceramics, J. Mater. Chem. C, vol.2, pp.10002-10010, 2014.

E. Teston, S. Richard, T. Maldiney, N. Lièvre, G. Y. Wang et al., Non-Aqueous Sol-Gel Synthesis of Ultra Small Persistent Luminescence Nanoparticles for Near-Infrared In Vivo Imaging, Chemistry -A European Journal, vol.21, pp.7350-7354, 2015.

B. Viana, S. K. Sharma, D. Gourier, T. Maldiney, E. Teston et al., Long term in vivo imaging with Cr 3+ doped spinel nanoparticles exhibiting persistent luminescence, Journal of Luminescence, vol.170, pp.879-887, 2016.

R. Zou, J. Huang, J. Shi, L. Huang, X. Zhang et al., Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence, Nano Research, 2017.

W. Mikenda and &. Preisinger, N-lines in the luminescence spectra of Cr 3+ -doped spinels (I) identification of N-lines, Journal of Luminescence, vol.26, pp.53-66, 1981.

M. G. Brik, N. M. Avram-&-c, and . Avram, Comparative crystal field calculations of the Cr 3+ energy level schemes in ZnAl2S4 and ZnGa2O4, Journal of Materials Science: Materials in Electronics, vol.20, pp.30-32, 2009.

M. G. Brik, First-principles calculations of electronic, optical and elastic properties of ZnAl2S4 and ZnGa2O4, Journal of Physics and Chemistry of Solids, vol.71, pp.1435-1442, 2010.

W. Mikenda, N-lines in the luminescence spectra of Cr 3+ -doped spinels (III) partial spectra, Journal of Luminescence, vol.26, pp.85-98, 1981.

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet et al., Storage of Visible Light for Long-Lasting Phosphorescence in Chromium-Doped Zinc Gallate, Chemistry of Materials, vol.26, pp.1365-1373, 2014.

A. De-vos, K. Lejaeghere, D. E. Vanpoucke, J. J. Joos, P. F. Smet et al., First-Principles Study of Antisite Defect Configurations in ZnGa2O4:Cr Persistent Phosphors, Inorganic Chemistry, vol.55, pp.2402-2412, 2016.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma et al., The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells, Nature Materials, vol.13, pp.418-426, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02422985

D. Gourier, A. Bessière, S. K. Sharma, L. Binet, B. Viana et al., Origin of the visible light induced persistent luminescence of Cr 3+ -doped zinc gallate, Journal of Physics and Chemistry of Solids, vol.75, pp.826-837, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02422998

W. Mikenda and &. Preisinger, N-lines in the luminescence spectra of Cr 3+ -doped spinels (II) origins of N-lines, Journal of Luminescence, vol.26, pp.67-83, 1981.

M. Pellerin, Manuscrit de Thèse -Élaboration de nanoparticules à luminescence persistante pour l'imagerie optique dans le domaine du rouge profond et du proche infra-rouge, 2017.

J. S. Schanche, Microwave synthesis solutions from Personal Chemistry, Molecular Diversity, vol.7, pp.293-300, 2003.

W. Stöber, A. Fink, and &. E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, Journal of Colloid and Interface Science, vol.26, pp.62-69, 1968.

C. G. Suryanarayana-&-m, X. Norton, and . Diffraction, , 1998.

V. Castaing, A. D. Sontakke, A. J. Fernandez-carrion, N. Touati, L. Binet et al., Persistent Luminescence of ZnGa2O4:Cr 3+ Transparent Glass Ceramics: Effects of Excitation Wavelength and Excitation Power, European Journal of Inorganic Chemistry, pp.5114-5120, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01898782

S. K. Sharma, A. Bessière, N. Basavaraju, K. R. Priolkar, L. Binet et al., Interplay between chromium content and lattice disorder on persistent luminescence of ZnGa2O4:Cr 3+ for in vivo imaging, Journal of Luminescence, vol.155, pp.251-256, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02422993

M. O. Henry, J. P. Larkin-&-g, and . Imbusch, Nature of the broadband luminescence center in MgO:Cr 3+ . Physical Review B, vol.13, p.1893, 1976.

J. Pareja, C. Litterscheid, A. Molina, B. Albert, B. Kaiser et al., Effects of doping concentration and co-doping with cerium on the luminescence properties of Gd3Ga5O12:Cr 3+ for thermometry applications, Optical Materials, vol.47, pp.338-344, 2015.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and &. Murayama, A New Long Phosphorescent Phosphor with High Brightness, SrAl2O4:Eu 2+ ,Dy 3+, J. Electrochem. Soc, vol.143, pp.2670-2673, 1996.

H. Yamamoto and &. Matsuzawa, Mechanism of long phosphorescence of SrAl2O4:Eu 2+ ,Dy 3+ and CaAl2O4:Eu 2+ ,Nd 3+, Journal of Luminescence, pp.287-289, 1997.

Y. Zhuang, J. Ueda, and &. S. Tanabe, Enhancement of Red Persistent Luminescence in Cr 3+ -Doped ZnGa2O4 Phosphors by Bi2O3 Codoping, Applied Physics Express, vol.6, p.52602, 2013.

R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta crystallographica section A: crystal physics, diffraction, theoretical and general crystallography, vol.32, pp.751-767, 1976.

M. Pellerin, C. Coelho-diogo, C. Bonhomme, N. Touati, L. Binet et al., Optical properties and mechanisms in Cr 3+ ,Bi 3+ -codoped oxide-based spinel nanoparticles, Proc. of SPIE, p.101000, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02175634

Y. Zhuang, J. Ueda, and &. S. Tanabe, Photochromism and white long-lasting persistent luminescence in Bi 3+ -doped ZnGa2O4 ceramics, Opt. Mater. Express, OME, vol.2, pp.1378-1383, 2012.

. .. Sommaire-sommaire,

. .. Effets-de-taille,

, II.2.1) Nanoparticules de composition ZnAl2O4

, 2) Nanoparticules de composition Zn1,1Ga1,8Ge0,1O4:Cr 3+

, Nanoparticules de composition MgTiO3

. Iii and . Co-dopage-À-l, Ytterbium : variation de la longueur d'onde d'excitation dans la fenêtre de transparence des tissus biologiques

, ) Couplage entre les ions Yb 3+ et Er 3+

, Couplage entre les ions Cr 3+ et Yb 3+

, III.2) Nanoparticules de composition ZGO:Cr 3+

E. 3. Yb, III.3) Nanoparticules de composition ZGO:Cr 3+

, 2) Variation des propriétés en fonction de la température

, III.4) Vers une meilleure compréhension du mécanisme

. .. Conclusion,

. .. Bibliographie,

. Bibliographie,

Z. Zhang, K. T. Grattan-&-a, and . Palmer, Temperature dependences of fluorescence lifetimes in Cr 3+ -doped insulating crystals, Phys. Rev. B, vol.48, p.7772, 1993.

D. Chen, Z. Wan, Y. Zhou, and &. Z. Ji, Cr 3+ -doped gallium-based transparent bulk glass ceramics for optical temperature sensing, Journal of the European Ceramic Society, vol.35, pp.4211-4216, 2015.

F. , Upconversion processes in coupled ion systems, Journal of Luminescence, vol.45, pp.341-345, 1990.

D. R. Gamelin-&-h and . Gudel, Upconversion Processes in Transition Metal and Rare Earth Metal Systems, pp.1-56, 2001.

D. Hreniak, W. Strek, J. Amami, Y. Guyot, G. Boulon et al., The size-effect on luminescence properties of BaTiO3:Eu 3+ nanocrystallites prepared by the sol-gel method, Journal of Alloys and Compounds, vol.380, pp.348-351, 2004.

L. Singh, R. S. Ningthoujam, V. Sudarsan, I. Srivastava, S. Singh et al., Luminescence study on Eu 3+ doped Y2O3 nanoparticles: particle size, concentration and core-shell formation effects, Nanotechnology, vol.19, p.55201, 2008.

F. Wang, J. Wang, and &. Liu, Direct Evidence of a Surface Quenching Effect on Size-Dependent Luminescence of Upconversion Nanoparticles, Angewandte Chemie, vol.122, pp.7618-7622, 2010.

D. Gourier, A. Bessière, S. K. Sharma, L. Binet, B. Viana et al., Origin of the visible light induced persistent luminescence of Cr 3+ -doped zinc gallate, Journal of Physics and Chemistry of Solids, vol.75, pp.826-837, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02422998

G. Mialon, S. Türkcan, A. Alexandrou, T. Gacoin, and &. Boilot, New Insights into Size Effects in Luminescent Oxide Nanocrystals, The Journal of Physical Chemistry C, vol.113, pp.18699-18706, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00818489

M. Allix, S. Chenu, E. Véron, T. Poumeyrol, E. A. Kouadri-boudjelthia et al., Considerable Improvement of Long-Persistent Luminescence in Germanium and Tin Substituted ZnGa2O4, Chem. Mater, vol.25, pp.1600-1606, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00904153

E. Glais, V. ?or?evi?, J. Papan, B. Viana, and &. M. Drami?anin, MgTiO3:Mn 4+ a multi-reading temperature nanoprobe, RSC Adv, vol.8, pp.18341-18346, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01829935

V. ?or?evi?, M. G. Brik, A. M. Strivastava, M. Medic, P. Vulic et al., Luminescence of Mn 4+ ions in CaTiO3 and MgTiO3 perovskites: Relationship of experimental spectroscopic data and crystal field calculations, Optical Materials, vol.74, pp.46-51, 2017.

R. Naccache, A. Zamarron, A. De-la-fuente, F. Sanz-rogriguez, L. M. Maestro et al., Temperature Sensing Using Fluorescent Nanothermometers, ACS Nano, vol.4, pp.3254-3258, 2010.

R. G. Geitenbeek, P. T. Prins, W. Albrecht, A. Blaaderen, B. M. Weckhuysen et al., NaYF4:Er 3+ ,Yb 3+ /SiO2 Core/Shell Upconverting Nanocrystals for Luminescence Thermometry up to 900 K, The Journal of Physical Chemistry C, vol.121, pp.3503-3510, 2017.

A. Dubey, A. K. Soni, A. Kumari, R. &. Dey, and . Rai, Enhanced green upconversion emission in NaYF4:Er 3+ /Yb 3+ /Li + phosphors for optical thermometry, Journal of Alloys and Compounds, vol.693, pp.194-200, 2017.

L. Mukhopadhyay, V. K. Rai, R. Bokolia, and &. Sreenivas, 980 nm excited Er 3+ /Yb 3+ /Li + /Ba 2+ :NaZnPO4 upconverting phosphors in optical thermometry, Journal of Luminescence, vol.187, pp.368-377, 2017.

D. Chen, W. Xu, S. Yuan, X. Li, and &. Zhong, Ln 3+ -Sensitized Mn 4+ near-infrared upconverting luminescence and dual-modal temperature sensing, J. Mater. Chem. C, vol.5, pp.9619-9628, 2017.

S. Heer, M. Wermuth, K. Krämer, D. &. Ehrentraut, and . Güdel, Up-conversion excitation of sharp Cr 3+ 2 E emission in YGG and YAG codoped with Cr 3+ and Yb 3+, Journal of Luminescence, pp.337-341, 2001.

S. Heer, M. Wermuth, K. &. Krämer, and . Güdel, Sharp 2 E upconversion luminescence of Cr 3+ in Y3Ga5O12 codoped with Cr 3+ and Yb 3+, Physical Review B, vol.65, 2002.

R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta crystallographica section A: crystal physics, diffraction, theoretical and general crystallography, vol.32, pp.751-767, 1976.

F. Vetrone, J. Boyer, J. A. Capobianco, A. Speghini, and &. Bettinelli, Significance of Yb 3+ concentration on the upconversion mechanisms in codoped Y2O3:Er 3+ ,Yb 3+ nanocrystals, Journal of Applied Physics, vol.96, pp.661-667, 2004.

P. Dorenbos, The Eu 3+ charge transfer energy and the relation with the band gap of compounds, Journal of Luminescence, vol.111, pp.89-104, 2005.

A. Lecointre, A. Bessière, A. J. Bos, P. Dorenbos, B. Viana et al., Designing a Red Persistent Luminescence Phosphor: The Example of YPO4:Pr 3+ ,Ln 3+ (Ln = Nd, Er, Ho, Dy), J. Phys. Chem. C, vol.115, pp.4217-4227, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02418382

S. M. Novais, A. Dobrowolska, A. J. Bos, P. &. Dorenbos, and . Macedo, Optical characterization and the energy level scheme for NaYP2O7:Ln 3+ (Ln=Ce, Journal of Luminescence, vol.148, pp.353-358, 2014.

Z. Xue, X. Li, Y. Li, M. Jiang, G. Ren et al., A 980 nm laseractivated upconverted persistent probe for NIR-to-NIR rechargeable in vivo bioimaging, Nanoscale, vol.9, pp.7276-7283, 2017.

. .. Sommaire-sommaire,

, II.1) Nanosources de chaleur plasmoniques dans la littérature

, ) Phénomène de résonance plasmon

, 2) Modélisations de l'élévation de température

, ) Détermination expérimentale de l'élévation de température induite par un phénomène plasmonique dans la littérature

, II.2) Cahier des charges et synthèse des nanosources de chaleur

, II.3) Couplage entre nanosources de chaleur et nanothermomètres

, 2) Détermination optique de la température

. .. Zgo@sio2, 4.1) Enrobage d'une couche de silice de différentes épaisseurs

, 2) Influence sur la réponse optique

, III.2) Mise en place d'un système portatif

. .. Conclusion,

. .. Bibliographie,

. Bibliographie,

E. Cottancin, G. Celep, J. Lermé, M. Pellarin, J. R. Huntzinger et al., Optical Properties of Noble Metal Clusters as a Function of the Size: Comparison between Experiments and a Semi-Quantal Theory, Theoretical Chemistry Accounts, vol.116, pp.514-523, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00141264

L. M. Liz-marzán, Tailoring Surface Plasmons through the Morphology and Assembly of Metal Nanoparticles, vol.22, pp.32-41, 2006.

H. Chen, X. Kou, Z. Yang, W. Ni, and &. J. Wang, Shape-and Size-Dependent Refractive Index Sensitivity of Gold Nanoparticles, Langmuir, vol.24, pp.5233-5237, 2008.

H. Chang and &. C. Murphy, Mini Gold Nanorods with Tunable Plasmonic Peaks beyond 1000 nm, Chemistry of Materials, 2018.

J. R. Navarro, D. Manchon, F. Lerouge, N. P. Blanchard, S. Marotte et al., Synthesis of PEGylated gold nanostars and bipyramids for intracellular uptake, Nanotechnology, vol.23, p.465602, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01290855

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. A. Lee-&-n et al., Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances, Nanoscale Research Letters, vol.1, pp.84-90, 2006.

G. Baffou, R. Quidant, and &. Girard, Heat generation in plasmonic nanostructures: Influence of morphology, Applied Physics Letters, vol.94, p.153109, 2009.

G. Baffou-&-r and . Quidant, Thermo-plasmonics: using metallic nanostructures as nanosources of heat, Thermoplasmonics. Laser & Photonics Reviews, vol.7, pp.171-187, 2013.

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee et al., Thermal analysis of gold nanorods heated with femtosecond laser pulses, Journal of Physics D: Applied Physics, vol.41, p.185501, 2008.

A. O. Govorov-&-h and . Richardson, Generating heat with metal nanoparticles, Nano today, vol.2, pp.30-38, 2007.

U. Rocha, C. J. Da-silva, W. Silva, I. Guedes, A. Benayas et al., Subtissue Thermal Sensing Based on Neodymium-Doped LaF3 Nanoparticles, vol.7, pp.1188-1199, 2013.

L. M. Maestro, P. Haro-gonzales, M. C. Iglesias-de-la-cruz, F. Sanz-rodriguez, A. Juarranz et al., Fluorescent nanothermometers provide controlled plasmonic-mediated intracellular hyperthermia, Nanomedicine, vol.8, pp.379-388, 2013.

L. M. Maestro, Q. Zhang, X. Li, D. Jaque, and &. Gu, Quantum-dot based nanothermometry in optical plasmonic recording media, Applied Physics Letters, vol.105, p.181110, 2014.

L. M. Maestro, P. Haro-gonzales, A. Sanchez-iglesias, L. M. Liz-marzan, J. Garcia-solé et al., Quantum Dot Thermometry Evaluation of Geometry Dependent Heating Efficiency in Gold Nanoparticles, Langmuir, vol.30, pp.1650-1658, 2014.

K. Nigoghossian, S. Ouellet, J. Plain, Y. Messaddeq, D. J. Boudreau-&-s et al., Upconversion nanoparticle-decorated gold nanoshells for near-infrared induced heating and thermometry, Journal of Materials Chemistry B, vol.5, pp.7109-7117, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02472964

Y. Huang, A. Skripka, L. Labrador-paez, F. Sanz-rodriguez, P. Haro-gonzalez et al., Upconverting nanocomposites with combined photothermal and photodynamic effects, Nanoscale, vol.10, pp.791-799, 2018.

M. L. Debasu, D. Ananias, I. Pastoriza-santos, L. M. Liz-marzan, L. D. Rocha et al., All-In-One Optical Heater-Thermometer Nanoplatform Operative From 300 to 2000 K Based on Er 3+ Emission and Blackbody Radiation, Advanced Materials, vol.25, pp.4868-4874, 2013.

X. Ye, C. Zheng, J. Chen, Y. &. Gao, and . Murray, Using Binary Surfactant Mixtures To Simultaneously Improve the Dimensional Tunability and Monodispersity in the Seeded Growth of Gold Nanorods, Nano Letters, vol.13, pp.765-771, 2013.

B. Nikoobakht and &. M. El-sayed, Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method, Chemistry of Materials, vol.15, pp.1957-1962, 2003.

T. K. Sau-&-c and . Murphy, Seeded High Yield Synthesis of Short Au Nanorods in Aqueous Solution, Langmuir, vol.20, pp.6414-6420, 2004.

T. Mortier, A. Persoons, and &. Verbiest, Two-step synthesis of high aspect ratio gold nanorods, Open Chemistry, vol.4, 2006.

I. Pastoriza-santos, J. Pérez-juste, and &. L. Liz-marzán, Silica-Coating and Hydrophobation of CTAB-Stabilized Gold Nanorods, Chemistry of Materials, vol.18, pp.2465-2467, 2006.

H. Chen, L. Shao, Q. Li, and &. J. Wang, Gold nanorods and their plasmonic properties, Chem. Soc. Rev, vol.42, pp.2679-2724, 2013.

J. Turkevich, P. C. Stevenson, and J. Hillier, The formation of colloidal gold, The Journal of Physical Chemistry, vol.57, pp.670-673, 1953.

T. L. Bergman, F. P. Incropera, A. S. Lavine-&-d, and . Dewitt, Introduction to Heat Transfer, 2011.

B. and L. Neindre, Conductivité thermique des liquides et des gaz, 1998.

C. D. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen et al., Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry, Nature Nanotechnology, vol.11, pp.851-856, 2016.

R. S. Meltzer, S. P. Feofilov, B. &. Tissue, and . Yuan, Dependence of fluorescence lifetimes of Y2O3:Eu 3+ nanoparticles on the surrounding medium, Physical Review B, vol.60, p.14012, 1999.

V. Lebihan, A. Pillonet, D. Amans, G. Ledoux, O. Marty et al., Critical dimension where the macroscopic definition of refractive index can be applied at a nanometric scale, Physical Review B, vol.78, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02116848

S. Laurent, S. Dutz, U. O. Häfeli, and &. Mahmoudi, Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles, Advances in Colloid and Interface Science, vol.166, pp.8-23, 2011.

J. Beik, Z. Abed, F. S. Ghoreishi, S. Hosseini-nami, S. Mehrzadi et al., Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications, Journal of Controlled Release, vol.235, pp.205-221, 2016.

C. S. Kumar and &. F. Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery, Advanced Drug Delivery Reviews, vol.63, pp.789-808, 2011.

J. Dong and &. J. Zink, Taking the Temperature of the Interiors of Magnetically Heated Nanoparticles, ACS Nano, vol.8, pp.5199-5207, 2014.

A. E. Deatsch-&-b and . Evans, Heating efficiency in magnetic nanoparticle hyperthermia, Journal of Magnetism and Magnetic Materials, vol.354, pp.163-172, 2014.

M. Jeun, Y. J. Kim, K. H. Park, S. H. Paek, and &. S. Bae, Physical contribution of Néel and Brown relaxation to interpreting intracellular hyperthermia characteristics using superparamagnetic nanofluids, J Nanosci Nanotechnol, vol.13, pp.5719-5725, 2013.

J. Jolivet, É. Tronc, and &. C. Chanéac, Synthesis of iron oxide-based magnetic nanomaterials and composites, Comptes Rendus Chimie, vol.5, pp.659-664, 2002.

J. Fortin, C. Wihelm, J. Servais, C. Ménager, J. Bacri et al., Size-Sorted Anionic Iron Oxide Nanomagnets as Colloidal Mediators for Magnetic Hyperthermia, Journal of the American Chemical Society, vol.129, pp.2628-2635, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00162284

D. Van-der-heggen, J. Joos, D. Burbano, J. Capobianco, &. Smet et al., Counting the Photons: Determining the Absolute Storage Capacity of Persistent Phosphors, properties of ZnGa2O4:Cr 3+ , Bi 3+ nanophosphors for thermometry applications, vol.10, p.867, 2017.

I. Vuj?i?, E. Glais, K. Vukovi?, M. Sekuli?, S. Ma?i? et al., ? Radiation effects, photoluminescence and radioluminescence of Eu-doped (Y0.7Gd0.3)2O3 nanoparticles with various sizes, 2018.

;. M. ?-laalo3, E. Pellerin, T. Glais, J. Lecuyer, J. Xu et al., Cr 3+ , Sm 3+ : nano-perovskite with persistent luminescence for in vivo optical imaging, vol.202, pp.83-88, 2018.

;. E. ?-mgtio3, V. Glais, J. ?or?evi?, B. Papan, M. Viana et al., Mn 4+ a Multi-reading Temperature Nanoprobe, vol.8, pp.18341-18346, 2018.

S. Luki?-petrovi?, V. Ðordevic, K. Vukovi?, and E. , ? Luminescence temperature sensing in visible and NIR spectral range using Dy 3+ and Nd 3+ doped YNbO4

B. Glais, M. Viana, and . Dramicanin, Sensors and actuators A, vol.270, pp.89-96, 2017.

;. V. ?-luminescence-of, M. G. ?or?evi?, A. M. Brik, M. Srivastava, P. Medi? et al., Mn 4+ ions in CaTiO3 and MgTiO3 perovskites: Relationship of experimental spectroscopic data and crystal field calculations, Optical Materials, vol.74, pp.46-51, 2017.

S. K. Sharma and E. , ? Temperature sensing using a Cr:ZnGa2O4 new phosphor

M. Glais, C. Pellerin, B. Chanéac, . Viana-;-proceedings, S. Spie et al., , vol.9749

.. .. Iii-i.-;-micro-onde,

V. Iii, Caractérisations optiques

V. Iii.1)-luminescence-persistante and .. .. ,

, 3) Excitation des nanoparticules d'or

V. .. Dispositif-portatif, . .. Dorenbos, and . .. 5%, 7 : Mélange nanosources de chaleur et nanothermomètres -influence de la concentration, Autre domaine spectral -nanoparticules de composition Zn2GeO4:Mn0, vol.3