E. Akoury, M. Pickhardt, M. Gajda, J. Biernat, E. Mandelkow et al., Mechanistic basis of phenothiazine-driven inhibition of Tau aggregation, Angew Chem Int Ed Engl, vol.18, issue.12, pp.3511-3515, 2013.

T. C. Baddeley, J. Mccaffrey, J. M. Storey, J. K. Cheung, V. Melis et al., Complex Disposition of Methylthioninium Redox Forms Determines Efficacy in Tau Aggregation Inhibitor Therapy for Alzheimer's Disease, J Pharmacol Exp Ther, 2014.

L. J. Blair, B. A. Nordhues, S. E. Hill, K. M. Scaglione, S. N. Fontaine et al., Accelerated neurodegeneration through chaperone-mediated oligomerization of tau, J Clin Inves, vol.123, pp.4158-4169, 2013.

N. Z. Borgesius, M. C. De-waard, I. Van-der-pluijm, A. Omrani, G. C. Zondag et al., Accelerated age-related cognitive decline and neurodegeneration, caused by deficient DNA repair, J Neurosci, vol.31, pp.12543-12553, 2011.

M. A. Bradey-whitman, M. D. Timmons, T. L. Beckett, M. P. Murphy, B. C. Lynn et al., Nucleic Acid Oxidation: An early feature of Alzheimer's disease, J Neurochem, vol.128, pp.294-304, 2014.

S. Camero, M. J. Benítez, A. Barrantes, J. M. Ayuso, R. Cuadros et al., Tau Protein Provides DNA with Thermodynamic and Structural Features which are Similar to those Found in Histone-DNA Complex, J Alzheimers Dis, vol.39, issue.3, pp.649-660, 2013.

D. L. Castillo-carranza, U. Sengupta, M. J. Guerrero-muñoz, C. A. Lasagna-reeves, J. E. Gerson et al., Passive immunization with Tau oligomer monoclonal antibody reverses tauopathy phenotypes without affecting hyperphosphorylated neurofibrillary tangles, J Neurosci, vol.34, issue.12, pp.4260-4272, 2014.

E. E. Congdon, J. W. Wu, N. Myeku, Y. H. Figueroa, M. Herman et al., Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo, Autophagy, vol.8, pp.609-622, 2012.

J. Cooper-knock, J. Kirby, L. Ferraiuolo, P. R. Heath, M. Rattray et al., Gene expression profiling in human neurodegenerative disease, Nat Rev Neurol, vol.8, pp.518-530, 2012.

A. Crowe, M. J. James, V. M. Lee, . Smith, J. Q. Trojanowski et al., Aminothienopyridazines and methylene blue affect Tau fibrillization via cysteine oxidation, J Biol Chem, vol.288, issue.16, pp.11024-11037, 2013.

S. Deiana, C. R. Harrington, C. M. Wischik, and G. Riedel, Methylthioninium chloride reverses cognitive deficits induced by scopolamine: comparison with rivastigmine, Psychopharmacology, vol.202, pp.53-65, 2009.

K. J. Fabiszewski, B. Volicer, and L. Volicer, Effect of antibiotic treatment on outcome of fevers in institutionalized Alzheimer patients, JAMA, vol.263, pp.3168-3172, 1990.

K. Flach, I. Hilbrich, A. Schiffmann, U. Gartner, M. Kruger et al., Tau oligomers impair artificial membrane integrity and cellular viability, J Biol Chem, vol.287, pp.43223-43233, 2012.

M. C. Galas, P. Dourlen, S. Bégard, K. Ando, D. Blum et al., The peptidylprolyl cis/trans-isomerase Pin1 modulates stress-induced dephosphorylation of Tau in neurons. Implication in a pathological mechanism related to Alzheimer disease, J Biol Chem, vol.28, pp.19296-19304, 2006.

J. E. Gerson, D. L. Castillo-carranza, and R. Kayed, Advances in therapeutics for neurodegenerative tauopathies: moving toward the specific targeting of the most toxic tau species, ACS Chem Neurosci, vol.5, issue.9, pp.752-69, 2014.

M. J. Guerrero-muñoz, D. L. Castillo-carranza, and R. Kayed, Therapeutic approaches against common structural features of toxic oligomers shared by multiple amyloidogenic proteins, Biochem Pharmacol, vol.88, pp.468-748, 2014.

B. E. Hawkins, S. Krishnamurthy, D. L. Castillo-carranza, U. Sengupta, D. S. Prough et al., Rapid Accumulation of Endogenous Tau Oligomers in a Rat Model of Traumatic Brain Injury: Possible Link Between TBI and Sporadic Tauopathies, J Biol Chem, vol.288, issue.23, pp.17042-17050, 2013.

R. Hikosou, Y. Kurabayashi, M. Doumoto, K. Hoshitoku, F. Mizushima et al., Effect of DNA on filament formation of tau microtubule-binding domain: structural dependence of DNA, Chem Pharm Bull, vol.55, pp.1030-1033, 2007.

M. Hosokawa, T. Arai, M. Masuda-suzukake, T. Nonaka, M. Yamashita et al., Methylene blue reduced abnormal tau accumulation in P301L tau transgenic mice, PLoS One, vol.7, p.52389, 2012.

Q. Hua and R. Q. He, Effect of phosphorylation and aggregation on tau binding to DNA, Protein Pept Lett, vol.9, pp.349-357, 2002.

Q. Jiang, X. Yang, B. Liu, M. Li, S. Qian et al., Hyperthermia impaired human visual short-term Memory : an fMRI study, Int J Hyperthermia, vol.29, pp.219-224, 2013.

T. Kampers, P. Friedhoff, J. Biernat, E. M. Mandelkow, and E. Mandelkow, RNA stimulates aggregation of microtubule-associated protein tau into Alzheimer-like paired helical filaments, FEBS Lett, vol.399, pp.344-349, 1996.

C. A. Lasagna-reeves, D. L. Castillo-carranza, U. Sengupta, A. L. Clos, G. R. Jackson et al., Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice, Mol Neurodegener, vol.6, p.39, 2011.

C. A. Lasagna-reeves, D. L. Castillo-carranza, U. Sengupta, J. Sarmiento, J. Troncoso et al., Identification of oligomers at early stages of tau aggregation in Alzheimer's disease, FASEB J, vol.26, pp.1946-1959, 2012.

Y. Lu, H. J. He, J. Zhou, J. Y. Miao, J. Lu et al., Hyperphosphorylation results in tau dysfunction in DNA folding and protection, J Alzheimers Dis, vol.37, issue.3, pp.551-63, 2013.

P. I. Moreira, A. Nunomura, M. Nakamura, A. Takeda, J. C. Shenk et al., Nucleic acid oxidation in Alzheimer disease, Free Radic Biol Med, vol.44, issue.8, pp.1493-505, 2008.

E. J. Mufson, S. Ward, and L. Binder, Prefibrillar Tau Oligomers in Mild Cognitive Impairment and Alzheimer's Disease, Neurodegener Dis, vol.13, issue.2-3, pp.151-153, 2013.

K. Murakami, N. Murata, Y. Noda, S. Tahara, T. Kaneko et al.,

K. Irie, T. Shirasawa, and T. Shimizu, , 2011.

, J Biol Chem, vol.286, pp.44557-44568

M. Necula, L. Breydo, S. Milton, R. Kayed, W. E. Van-der-veer et al., Methylene blue inhibits amyloid Abeta oligomerization by promoting fibrillization, Biochemistry, vol.46, issue.30, pp.8850-60, 2007.

A. Nunomura, T. Tamaoki, N. Motohashi, M. Nakamura, D. W. Mckeel et al., The earliest stage of cognitive impairment in transition from normal aging to Alzheimer disease is marked by prominent RNA oxidation in vulnerable neurons, J Neuropathol Exp Neurol, vol.71, issue.3, pp.233-241, 2012.

A. Nunomura, G. Perry, G. Aliev, K. Hirai, A. Takeda et al., Oxidative damage is the earliest event in Alzheimer disease, J Neuropathol Exp Neurol, vol.60, issue.8, pp.759-67, 2001.

. O'leary, Q. Li, P. Marinec, L. J. Blair, E. E. Congdon et al., Phenothiazine-mediated rescue of cognition in tau transgenic mice requires neuroprotection and reduced soluble tau burden, Mol Neurodegener, vol.5, p.45, 2010.

K. R. Paterson, C. Remmers, Y. Fu, S. Brooker, N. M. Kanaan et al., Characterization of prefibrillar Tau oligomers in vitro and in Alzheimer disease, J Biol Chem, vol.286, pp.23063-23076, 2011.

S. Racinais, N. Gaoua, and J. Grantham, Hyperthermia impairs short-term memory and peripheral motor drive transmission, J Physiol, vol.586, pp.4751-4762, 2008.

M. R. Reynolds, R. W. Berry, and L. I. Binder, Site-specific nitration and oxidative dityrosine bridging of the tau protein by peroxynitrite: implications for Alzheimer's disease, Biochemistry, vol.44, pp.1690-1700, 2005.

J. C. Rojas, A. K. Bruchey, and F. Gonzalez-lima, Neurometabolic mechanisms for memory enhancement and neuroprotection of methylene blue, Prog Neurobiol, vol.96, pp.32-45, 2012.

K. Schindowski, A. Bretteville, K. Leroy, S. Bégard, J. P. Brion et al., , 2006.

, Alzheimer's disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits

, Am J Pathol, vol.169, pp.599-616

M. Sjoberg, E. Shestakova, Z. Mansuroglu, R. B. Maccioni, and E. Bonnefoy, Tau protein binds to pericentromeric DNA: a putative role for nuclear tau in nucleolar organization, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00104925

, J. Cell Sci, vol.119, pp.2025-2034

T. L. Spires-jones, T. Friedman, R. Pitstick, M. Polydoro, A. Roe et al., , 2014.

, Methylene blue does not reverse existing neurofibrillary tangle pathology in the rTg4510 mouse model of tauopathy, Neurosci Lett, vol.562, pp.63-68

C. Stack, S. Jainuddin, C. Elipenahli, M. Gerges, N. Starkova et al., Methylene blue upregulates Nrf2/ARE genes and prevents tau-related neurotoxicity, Hum Mol Genet, vol.23, issue.14, pp.3716-3732, 2014.

A. Sultan, F. Nesslany, M. Violet, S. Begard, A. Loyens et al., Nuclear Tau, a Key Player in Neuronal DNA Protection, J Biol Chem, vol.286, pp.4566-4575, 2011.

G. T. Sutherland, B. Chami, P. Youssef, and P. K. Witting, Oxidative stress in Alzheimer's disease: Primary villain or physiological by-product?, Redox Rep, vol.18, pp.134-141, 2013.

H. C. Tai, A. Serrano-pozo, T. Hashimoto, M. P. Frosch, T. L. Spires-jones et al., The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system, Am J Pathol, vol.181, pp.1426-1435, 2012.

A. Takeda, Y. Itoyama, T. Kimpara, X. Zhu, J. Avila et al., Heme catabolism and heme oxygenase in neurodegenerative disease, Antioxid Redox Signal, vol.6, issue.5, pp.888-94, 2004.

K. Tepper, J. Biernat, S. Kumar, S. Wegmann, T. Timm et al., Oligomer Formation of Tau Hyperphosphorylated in Cells, J Biol Chem, vol.289, issue.49, pp.34389-407, 2014.

A. Van-der-jeugd, B. Vermaercke, M. Derisbourg, A. C. Lo, M. Hamdane et al., Progressive age-related cognitive decline in tau mice, J Alzheimers Dis, vol.37, issue.4, pp.777-788, 2013.

T. Vanhelmont, T. Vandebroek, D. Vos, A. Terwel, D. Lemaire et al., Serine-409 phosphorylation and oxidative damage define aggregation of human protein tau in yeast, FEMS Yeast Res, vol.10, pp.992-1005, 2010.

. Bibliographie,

M. Abdel-monem, H. Dürwald, and H. Hoffmann-berling, Enzymic unwinding of DNA. 2. Chain separation by an ATP-dependent DNA unwinding enzyme, Eur. J. Biochem, vol.65, pp.441-449, 1976.

T. Ahmed, A. Van-der-jeugd, D. Blum, M. Galas, R. D'hooge et al., Cognition and hippocampal synaptic plasticity in mice with a homozygous tau deletion, Neurobiol. Aging, vol.35, pp.2474-2478, 2014.

Y. Akao and Y. Nakagawa, Expression of the DEAD-box/RNA helicase rck/p54 in mouse tissues: implications for heterogeneous protein expression, J. Histochem. Cytochem, vol.54, pp.955-960, 2006.

Y. Akao, M. Seto, T. Takahashi, M. Saito, K. R. Utsumi et al., Rearrangements on chromosome 11q23 in hematopoietic tumor-associated t(11;14) and t(11;19) translocations, Cancer Res, vol.51, pp.6708-6711, 1991.

Y. Akao, M. Seto, K. Yamamoto, S. Iida, S. Nakazawa et al., The RCK gene associated with t(11;14) translocation is distinct from the MLL/ALL-1 gene with t(4;11) and t(11;19) translocations, Cancer Res, vol.52, pp.6083-6087, 1992.

Y. Akao, O. Marukawa, H. Morikawa, K. Nakao, M. Kamei et al., The rck/p54 candidate proto-oncogene product is a 54-kilodalton D-E-A-D box protein differentially expressed in human and mouse tissues, Cancer Res, vol.55, pp.3444-3449, 1995.

J. M. Alarcon, R. Hodgman, M. Theis, Y. Huang, E. R. Kandel et al., Selective modulation of some forms of schaffer collateral-CA1 synaptic plasticity in mice with a disruption of the CPEB-1 gene, Learn. Mem, vol.11, pp.318-327

S. M. Alavi-naini, N. Soussi-yanicostas, S. M. Alavi-naini, and N. Soussi-yanicostas, , 2015.

, Tau Hyperphosphorylation and Oxidative Stress, a Critical Vicious Circle in Neurodegenerative Tauopathies?, Oxid. Med. Cell. Longev, pp.1-17, 2015.

A. D. Alonso, T. Zaidi, M. Novak, I. Grundke-iqbal, and K. Iqbal, Hyperphosphorylation induces self-assembly of into tangles of paired helical filaments/straight filaments, Proc. Natl. Acad. Sci, vol.98, pp.6923-6928, 2001.

A. D. Alonso, B. Li, I. Grundke-iqbal, and K. Iqbal, Polymerization of hyperphosphorylated tau into filaments eliminates its inhibitory activity, Proc. Natl. Acad. Sci, vol.103, pp.8864-8869, 2006.

A. Alonso, C. Mederlyova, A. Novak, M. Grundke-iqbal, I. Iqbal et al., Promotion of hyperphosphorylation by frontotemporal dementia tau mutations, J. Biol. Chem, vol.279, pp.34873-34881, 2004.

A. C. Alonso, T. Zaidi, I. Grundke-iqbal, and K. Iqbal, Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease, Proc. Natl. Acad. Sci. U. S. A, vol.91, pp.5562-5566, 1994.

A. C. Alonso, I. Grundke-iqbal, and K. Iqbal, Alzheimer's disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules, Nat. Med, vol.2, pp.783-787, 1996.

A. D. Alonso, J. Di-clerico, B. Li, C. P. Corbo, M. E. Alaniz et al., Phosphorylation of tau at Thr212, Thr231, and Ser262 combined causes neurodegeneration, J. Biol. Chem, vol.285, pp.30851-30860, 2010.

L. A. Amos, N. Hirokawa, R. D. Vale, D. Chrétien, R. H. Wade et al., Microtubule structure and its stabilisation, vol.2, p.2153, 2004.

P. Anderson, N. Kedersha, and P. Ivanov, Stress granules, P-bodies and cancer, Biochim. Biophys. Acta -Gene Regul. Mech, vol.1849, pp.861-870, 2015.

A. Andreadis, W. M. Brown, and K. S. Kosik, Structure and novel exons of the human tau gene, Biochemistry, vol.31, pp.10626-10633, 1992.

A. Andreadis, J. A. Broderick, and K. S. Kosik, Relative exon affinities and suboptimal splice site signals lead to non-equivalence of two cassette exons, Nucleic Acids Res, vol.23, pp.3585-3593, 1995.

A. Z. Andreou and D. Klostermeier, The DEAD-box helicase eIF4A: paradigm or the odd one out?, RNA Biol, vol.10, pp.19-32, 2013.

M. M. Aranha, D. M. Santos, J. M. Xavier, W. C. Low, C. J. Steer et al., Apoptosis-associated microRNAs are modulated in mouse, rat and human neural differentiation, BMC Genomics, vol.11, p.514, 2010.

T. Arendt, J. Stieler, A. M. Strijkstra, R. A. Hut, J. Rüdiger et al., Reversible paired helical filament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals, J. Neurosci, vol.23, pp.6972-6981, 2003.

M. Arrasate, M. Pérez, and J. Avila, Tau dephosphorylation at tau-1 site correlates with its association to cell membrane, Neurochem. Res, vol.25, pp.43-50, 2000.

J. B. Ashman, E. S. Hall, J. Eveleth, and K. Boekelheide, Tau, the neuronal heat-stable microtubule-associated protein, is also present in the cross-linked microtubule network of the testicular spermatid manchette, Biol. Reprod, vol.46, pp.120-129, 1992.

C. M. Atkins, N. Nozaki, Y. Shigeri, and T. R. Soderling, Cytoplasmic polyadenylation element binding protein-dependent protein synthesis is regulated by calcium/calmodulindependent protein kinase II, J. Neurosci, vol.24, pp.5193-5201, 2004.

J. Avila, J. J. Lucas, M. Perez, and F. Hernandez, Role of tau protein in both physiological and pathological conditions, Physiol. Rev, vol.84, pp.361-384, 2004.

J. Ayache, M. Bénard, M. Ernoult-lange, N. Minshall, N. Standart et al.,

, P-body assembly requires DDX6 repression complexes rather than decay or Ataxin2/2L complexes, Mol. Biol. Cell, vol.26, pp.2579-2595

Y. Baba, Y. Tsuboi, M. C. Baker, R. J. Uitti, M. L. Hutton et al., The effect of tau genotype on clinical features in FTDP-17, Parkinsonism Relat. Disord, vol.11, pp.205-208, 2005.

C. Bancher, I. Grundke-iqbal, K. Iqbal, V. A. Fried, H. T. Smith et al., Abnormal phosphorylation of tau precedes ubiquitination in neurofibrillary pathology of Alzheimer disease, Brain Res, vol.539, pp.11-18, 1991.

J. Banroques, M. Doère, M. Dreyfus, P. Linder, and N. K. Tanner, Motif III in superfamily 2 "helicases" helps convert the binding energy of ATP into a highaffinity RNA binding site in the yeast DEAD-box protein Ded1, J. Mol. Biol, vol.396, pp.949-966, 2010.

S. A. Barbee, P. S. Estes, A. Cziko, J. Hillebrand, R. A. Luedeman et al., Staufen-and FMRP-Containing Neuronal RNPs Are Structurally and Functionally Related to Somatic P Bodies, Neuron, vol.52, pp.997-1009, 2006.

S. Barghorn, Q. Zheng-fischhöfer, M. Ackmann, J. Biernat, M. Von-bergen et al., Structure, microtubule interactions, and paired helical filament aggregation by tau mutants of frontotemporal dementias, Biochemistry, vol.39, pp.11714-11721, 2000.

E. G. De-barreda, H. N. Dawson, M. P. Vitek, and J. Avila, Tau deficiency leads to the upregulation of BAF-57, a protein involved in neuron-specific gene repression, FEBS Lett, vol.584, pp.2265-2270, 2010.

V. I. Bashkirov, H. Scherthan, J. A. Solinger, J. M. Buerstedde, and W. D. Heyer, A mouse cytoplasmic exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates, J. Cell Biol, vol.136, pp.761-773, 1997.

T. H. Beilharz, D. T. Humphreys, J. L. Clancy, R. Thermann, D. I. Martin et al., microRNA-mediated messenger RNA deadenylation contributes to translational repression in mammalian cells, PLoS One, vol.4, p.6783, 2009.

L. M. Bekris, C. Yu, T. D. Bird, and D. W. Tsuang, Genetics of Alzheimer disease, J. Geriatr. Psychiatry Neurol, vol.23, pp.213-227, 2010.

Z. Berger, H. Roder, A. Hanna, A. Carlson, V. Rangachari et al., Accumulation of pathological tau species and memory loss in a conditional model of tauopathy, J. Neurosci, vol.27, pp.3650-3662, 2007.

J. Berger-sweeney, N. R. Zearfoss, and J. D. Richter, Reduced extinction of hippocampaldependent memories in CPEB knockout mice, Learn. Mem, vol.13, pp.4-7

L. Bernstam and J. Nriagu, Molecular aspects of arsenic stress, J. Toxicol. Environ. Health. B. Crit. Rev, vol.3, pp.293-322

C. R. Bertoncini and R. Meneghini, DNA strand breaks produced by oxidative stress in mammalian cells exhibit 3'-phosphoglycolate termini, Nucleic Acids Res, vol.23, pp.2995-3002, 1995.

S. N. Bhattacharyya, R. Habermacher, U. Martine, E. I. Closs, and W. Filipowicz, , 2006.

, Stress-induced reversal of microRNA repression and mRNA P-body localization in human cells, Cold Spring Harb. Symp. Quant. Biol, vol.71, pp.513-521

J. Biernat, N. Gustke, G. Drewes, E. M. Mandelkow, and E. Mandelkow, , 1993.

, Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding, Neuron, vol.11, pp.153-163

M. M. Black, T. Slaughter, S. Moshiach, M. Obrocka, and I. Fischer, Tau is enriched on dynamic microtubules in the distal region of growing axons, J. Neurosci, vol.16, pp.3601-3619, 1996.

G. S. Bloom, Amyloid-? and tau: the trigger and bullet in Alzheimer disease pathogenesis, JAMA Neurol, vol.71, pp.505-508, 2014.

L. J. Boyne, A. Tessler, M. Murray, and I. Fischer, Distribution of Big tau in the central nervous system of the adult and developing rat, J. Comp. Neurol, vol.358, pp.279-293, 1995.

H. Braak and E. Braak, Frequency of stages of Alzheimer-related lesions in different age categories, Neurobiol. Aging, vol.18, pp.351-357, 1997.

H. Braak, D. Tredici, and K. , Evolutional Aspects of Alzheimer's Disease Pathogenesis, J. Alzheimer's Dis, vol.33, pp.155-161, 2013.

E. Braak, H. Braak, and E. M. Mandelkow, A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads, Acta Neuropathol, vol.87, pp.554-567, 1994.

H. Braak, D. R. Thal, E. Ghebremedhin, D. Tredici, and K. , Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years, J. Neuropathol. Exp. Neurol, vol.70, pp.960-969, 2011.

M. A. Bradley-whitman, M. D. Timmons, T. L. Beckett, M. P. Murphy, B. C. Lynn et al., Nucleic acid oxidation: an early feature of Alzheimer's disease, J. Neurochem, vol.128, pp.294-304, 2014.

R. M. Brady, R. P. Zinkowski, and L. I. Binder, Presence of tau in isolated nuclei from human brain, Neurobiol. Aging, vol.16, pp.479-486

R. Brandt, J. Léger, and G. Lee, Interaction of tau with the neural plasma membrane mediated by tau's amino-terminal projection domain, J. Cell Biol, vol.131, pp.1327-1340, 1995.

J. E. Braun, E. Huntzinger, M. Fauser, and E. Izaurralde, GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets, Mol. Cell, vol.44, pp.120-133, 2011.

M. Brengues, D. Teixeira, and R. Parker, Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies, Science, vol.310, pp.486-489, 2005.

. Brion, Mise en évidence immunologique de la protéine tau au niveau des lésions de dégénérescence neurofibrillaire de la maladie d' Alzheimer, Arch Biol, pp.95-229, 1985.

J. P. Brion, C. Smith, A. M. Couck, J. M. Gallo, and B. H. Anderton, Developmental changes in tau phosphorylation: fetal tau is transiently phosphorylated in a manner similar to paired helical filament-tau characteristic of Alzheimer's disease, J. Neurochem, vol.61, pp.2071-2080, 1993.

R. F. De-bruijn, M. J. Bos, M. L. Portegies, A. Hofman, O. H. Franco et al., The potential for prevention of dementia across two decades: the prospective, population-based Rotterdam Study, BMC Med, vol.13, p.132, 2015.

C. A. Brunello, X. Yan, H. J. Huttunen, S. Gerstberger, M. Hafner et al., Internalized Tau sensitizes cells to stress by promoting formation and stability of stress granules, Sci. Rep, vol.6, p.30498, 2016.

I. Bruno and M. F. Wilkinson, P-Bodies React to Stress and Nonsense, Cell, vol.125, pp.1036-1038, 2006.

V. I. Bruskov, L. V. Malakhova, Z. K. Masalimov, and A. Chernikov, Heat-induced formation of reactive oxygen species and 8-oxoguanine, a biomarker of damage to DNA, Nucleic Acids Res, vol.30, pp.1354-1363, 2002.

J. B. Bryan, B. W. Nagle, and K. H. Doenges, Inhibition of tubulin assembly by RNA and other polyanions: evidence for a required protein, Proc. Natl. Acad. Sci. U. S. A, vol.72, pp.3570-3574, 1975.

O. Bugiani, J. R. Murrell, G. Giaccone, M. Hasegawa, G. Ghigo et al., Frontotemporal dementia and corticobasal degeneration in a family with a P301S mutation in tau, J. Neuropathol. Exp. Neurol, vol.58, pp.667-677, 1999.

R. Bish, N. Cuevas-polo, Z. Cheng, D. Hambardzumyan, M. Munschauer et al., Comprehensive protein interactome analysis of a key RNA helicase: detection of novel stress granule proteins, Biomolecules, vol.5, pp.1441-1466, 2015.

T. Bullmann, R. De-silva, M. Holzer, H. Mori, A. et al., Expression of embryonic tau protein isoforms persist during adult neurogenesis in the hippocampus, Hippocampus, vol.17, pp.98-102, 2007.

T. Bullmann, M. Holzer, H. Mori, A. , and T. , Pattern of tau isoforms expression during development in vivo, Int. J. Dev. Neurosci, vol.27, pp.591-597, 2009.

T. Bullmann, W. Härtig, M. Holzer, A. , and T. , Expression of the embryonal isoform (0N/3R) of the microtubule-associated protein tau in the adult rat central nervous system, J. Comp. Neurol, vol.518, pp.2538-2553, 2010.

A. Caceres and K. S. Kosik, Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons, Nature, vol.343, pp.461-463, 1990.

M. Caillet-boudin, L. Buée, N. Sergeant, and B. Lefebvre, Regulation of human MAPT gene expression, Mol. Neurodegener, vol.10, p.28, 2015.

A. De-calignon, M. Polydoro, M. Suárez-calvet, C. William, D. H. Adamowicz et al., Propagation of tau pathology in a model of early Alzheimer's disease, Neuron, vol.73, pp.685-697, 2012.

S. Camero, M. J. Benítez, R. Cuadros, F. Hernández, J. Avila et al., , 2014.

, Thermodynamics of the interaction between Alzheimer's disease related tau protein and DNA, PLoS One, vol.9, 104690.

S. Camero, M. J. Benítez, A. Barrantes, J. M. Ayuso, R. Cuadros et al., Tau protein provides DNA with thermodynamic and structural features which are similar to those found in histone-DNA complex, J. Alzheimers. Dis, vol.39, pp.649-660, 2014.

A. Camins, E. Verdaguer, J. Folch, A. M. Canudas, and M. Pallàs, The role of CDK5/P25 formation/inhibition in neurodegeneration, Drug News Perspect, vol.19, pp.453-460, 2006.

C. J. Carter, Alzheimer's disease plaques and tangles: cemeteries of a pyrrhic victory of the immune defence network against herpes simplex infection at the expense of complement and inflammation-mediated neuronal destruction, Neurochem. Int, vol.58, pp.301-320, 2011.

J. M. Caruthers and D. B. Mckay, Helicase structure and mechanism, Curr. Opin. Struct. Biol, vol.12, pp.123-133, 2002.

J. M. Caruthers, E. R. Johnson, and D. B. Mckay, Crystal structure of yeast initiation factor 4A, a DEAD-box RNA helicase, Proc. Natl. Acad. Sci. U. S. A, vol.97, pp.13080-13085, 2000.

J. M. Castellano, J. Kim, F. R. Stewart, H. Jiang, R. B. Demattos et al., Human apoE isoforms differentially regulate brain amyloid-? peptide clearance, Sci. Transl. Med, vol.3, pp.89-57, 2011.

C. Van-cauwenberghe, C. Van-broeckhoven, and K. Sleegers, The genetic landscape of Alzheimer disease: clinical implications and perspectives, Genet. Med, vol.18, pp.421-430, 2016.

X. Chai, J. L. Dage, C. , and M. , Constitutive secretion of tau protein by an unconventional mechanism, Neurobiol. Dis, vol.48, pp.356-366, 2012.

E. Chang, S. Kim, H. Yin, H. N. Nagaraja, and J. Kuret, Pathogenic missense MAPT mutations differentially modulate tau aggregation propensity at nucleation and extension steps, J. Neurochem, vol.107, pp.1113-1123, 2008.

M. Chekulaeva, M. W. Hentze, and A. Ephrussi, Bruno Acts as a Dual Repressor of oskar Translation, Promoting mRNA Oligomerization and Formation of Silencing Particles, Cell, vol.124, pp.521-533, 2006.

M. Chekulaeva, H. Mathys, J. T. Zipprich, J. Attig, M. Colic et al., miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs, Nat. Struct. Mol. Biol, vol.18, pp.1218-1226, 2011.

C. A. Chen and A. Shyu, Mechanisms of deadenylation-dependent decay, Wiley Interdiscip. Rev. RNA, vol.2, pp.167-183, 2011.

J. Chen, Y. Kanai, N. J. Cowan, and N. Hirokawa, Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons, Nature, vol.360, pp.674-677, 1992.

Y. Chen, A. Boland, D. Kuzuo?lu-Öztürk, P. Bawankar, B. Loh et al., A DDX6-CNOT1 complex and W-binding pockets in CNOT9 reveal direct links between miRNA target recognition and silencing, Mol. Cell, vol.54, pp.737-750, 2014.

S. S. Chin and J. E. Goldman, Glial inclusions in CNS degenerative diseases, J. Neuropathol. Exp. Neurol, vol.55, pp.499-508, 1996.

J. Cho, J. , and G. V. , Glycogen synthase kinase 3beta phosphorylates tau at both primed and unprimed sites. Differential impact on microtubule binding, J. Biol. Chem, vol.278, pp.187-193, 2003.

C. Chu, R. , and T. M. , Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54, PLoS Biol, vol.4, p.210, 2006.

F. Clavaguera, T. Bolmont, R. A. Crowther, D. Abramowski, S. Frank et al., Transmission and spreading of tauopathy in transgenic mouse brain, Nat. Cell Biol, vol.11, pp.909-913, 2009.

F. Clavaguera, H. Akatsu, G. Fraser, R. A. Crowther, S. Frank et al., Brain homogenates from human tauopathies induce tau inclusions in mouse brain, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.9535-9540, 2013.

D. W. Cleveland, S. Hwo, and M. W. Kirschner, Purification of tau, a microtubuleassociated protein that induces assembly of microtubules from purified tubulin, J. Mol. Biol, vol.116, pp.207-225, 1977.

D. W. Cleveland, S. Y. Hwo, and M. W. Kirschner, Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly, J. Mol. Biol, vol.116, pp.227-247, 1977.

T. J. Cohen, J. L. Guo, D. E. Hurtado, L. K. Kwong, I. P. Mills et al., The acetylation of tau inhibits its function and promotes pathological tau aggregation, Nat. Commun, vol.2, p.252, 2011.

T. J. Cohen, D. Friedmann, A. W. Hwang, R. Marmorstein, and V. M. Lee, The microtubule-associated tau protein has intrinsic acetyltransferase activity, Nat. Struct. Mol. Biol, vol.20, pp.756-762, 2013.

J. Coller and R. Parker, General translational repression by activators of mRNA decapping, Cell, vol.122, pp.875-886, 2005.

J. M. Coller, M. Tucker, U. Sheth, M. A. Valencia-sanchez, and R. Parker, The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes, RNA, vol.7, pp.1717-1727, 2001.

V. G. Corces, R. Manso, J. De-la-torre, J. Avila, A. Nasr et al., Effects of DNA on microtubule assembly, Eur. J. Biochem, vol.105, pp.7-16, 1980.

E. H. Corder, A. M. Saunders, W. J. Strittmatter, D. E. Schmechel, P. C. Gaskell et al., Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families, Science, vol.261, pp.921-923, 1993.

O. Cordin, J. Banroques, N. K. Tanner, and P. Linder, The DEAD-box protein family of RNA helicases, Gene, vol.367, pp.17-37, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00132162

D. Couchie and J. Nunez, Immunological characterization of microtubule-associated proteins specific for the immature brain, FEBS Lett, vol.188, pp.331-335, 1985.

N. Cougot, S. Babajko, and B. Séraphin, Cytoplasmic foci are sites of mRNA decay in human cells, J. Cell Biol, vol.165, pp.31-40, 2004.

C. M. Cowan and A. Mudher, Are Tau Aggregates Toxic or Protective in Tauopathies? Front, 2013.

D. C. Cross, J. P. Muñoz, P. Hernández, and R. B. Maccioni, Nuclear and cytoplasmic tau proteins from human nonneuronal cells share common structural and functional features with brain tau, J. Cell. Biochem, vol.78, pp.305-317, 2000.

T. Crowther, M. Goedert, and C. M. Wischik, The repeat region of microtubuleassociated protein tau forms part of the core of the paired helical filament of Alzheimer's disease, Ann. Med, vol.21, pp.127-132, 1989.

J. C. Cruz, H. Tseng, J. A. Goldman, H. Shih, and L. Tsai, Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles, Neuron, vol.40, pp.471-483, 2003.

I. Cuchillo-ibanez, A. Seereeram, H. L. Byers, K. Leung, M. A. Ward et al., Phosphorylation of tau regulates its axonal transport by controlling its binding to kinesin, FASEB J, vol.22, pp.3186-3195, 2008.

J. C. Darnell and J. D. Richter, Cytoplasmic RNA-binding proteins and the control of complex brain function, Cold Spring Harb. Perspect. Biol, vol.4, 2012.

D. R. Davis, B. H. Anderton, J. P. Brion, C. H. Reynolds, and D. P. Hanger, Oxidative stress induces dephosphorylation of tau in rat brain primary neuronal cultures, J. Neurochem, vol.68, pp.1590-1597, 1997.

H. N. Dawson, A. Ferreira, M. V. Eyster, N. Ghoshal, L. I. Binder et al., Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice, J. Cell Sci, vol.114, pp.1179-1187, 2001.

E. Dehlin, M. Wormington, C. G. Körner, and E. Wahle, Cap-dependent deadenylation of mRNA, EMBO J, vol.19, pp.1079-1086, 2000.

A. Delacourte and A. Defossez, Alzheimer's disease: Tau proteins, the promoting factors of microtubule assembly, are major components of paired helical filaments, J. Neurol. Sci, vol.76, pp.173-186, 1986.

A. Delacourte, J. P. David, N. Sergeant, L. Buée, A. Wattez et al., The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer's disease, Neurology, vol.52, pp.1158-1165, 1999.

M. Derisbourg, C. Leghay, G. Chiappetta, F. Fernandez-gomez, C. Laurent et al., Role of the Tau N-terminal region in microtubule stabilization revealed by new endogenous truncated forms, Sci. Rep, vol.5, p.9659, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01659458

S. De-vries, . Naarmann-de, I. S. Vries, H. Urlaub, H. Lue et al., Identification of DEAD-box RNA helicase 6 (DDX6) as a cellular modulator of vascular endothelial growth factor expression under hypoxia, J. Biol. Chem, vol.288, pp.5815-5827, 2013.

D. W. Dickson, H. A. Crystal, C. Bevona, W. Honer, I. Vincent et al., , 1995.

, Correlations of synaptic and pathological markers with cognition of the elderly, Neurobiol. Aging, vol.16, pp.285-98

H. Ding, P. J. Dolan, J. , and G. V. , Histone deacetylase 6 interacts with the microtubule-associated protein tau, J. Neurochem, vol.106, pp.2119-2130, 2008.

Q. Ding, W. R. Markesbery, Q. Chen, F. Li, and J. N. Keller, Ribosome dysfunction is an early event in Alzheimer's disease, J. Neurosci, vol.25, pp.9171-9175, 2005.

R. Dixit, J. L. Ross, Y. E. Goldman, and E. L. Holzbaur, Differential regulation of dynein and kinesin motor proteins by tau, Science, vol.319, pp.1086-1089, 2008.

D. N. Drechsel, A. A. Hyman, M. H. Cobb, and M. W. Kirschner, Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau, Mol. Biol. Cell, vol.3, pp.1141-1154, 1992.

S. Dujardin, S. Bégard, R. Caillierez, C. Lachaud, L. Delattre et al., Ectosomes: A New Mechanism for Non-Exosomal Secretion of Tau Protein, PLoS One, vol.9, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01181185

S. Dujardin, K. Lécolle, R. Caillierez, S. Bégard, N. Zommer et al., Neuron-to-neuron wild-type Tau protein transfer through a trans-synaptic mechanism: relevance to sporadic tauopathies, Acta Neuropathol. Commun, vol.2, p.14, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-00945726

S. Duvarci, K. Nader, and J. E. Ledoux, De novo mRNA synthesis is required for both consolidation and reconsolidation of fear memories in the amygdala, Learn. Mem, vol.15, pp.747-755, 2008.

C. Duyckaerts and J. J. Hauw, Diagnosis and staging of Alzheimer disease, Neurobiol. Aging, vol.18, pp.33-42

A. Ebneth, R. Godemann, K. Stamer, S. Illenberger, B. Trinczek et al., , 1998.

, Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer's disease, J. Cell Biol, vol.143, pp.777-794

J. T. Egaña, C. Zambrano, M. T. Nuñez, C. Gonzalez-billault, and R. B. Maccioni, , 2003.

, Iron-induced oxidative stress modify tau phosphorylation patterns in hippocampal cell cultures, Biometals, vol.16, pp.215-223

S. W. Eichhorn, H. Guo, S. E. Mcgeary, R. A. Rodriguez-mias, C. Shin et al., mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues, Mol. Cell, vol.56, pp.104-115, 2014.

S. Elbaum-garfinkle and E. Rhoades, Identification of an aggregation-prone structure of tau, J. Am. Chem. Soc, vol.134, pp.16607-16613, 2012.

T. Engel, J. J. Lucas, P. Gómez-ramos, M. A. Moran, J. Avila et al., , 2006.

, Cooexpression of FTDP-17 tau and GSK-3beta in transgenic mice induce tau polymerization and neurodegeneration, Neurobiol. Aging, vol.27, pp.1258-1268

T. Engel, P. Goñi-oliver, J. J. Lucas, J. Avila, and F. Hernández, Chronic lithium administration to FTDP-17 tau and GSK-3beta overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert, J. Neurochem, vol.99, pp.1445-1455, 2006.

M. Ernoult-lange, S. Baconnais, M. Harper, N. Minshall, S. Souquere et al., Multiple binding of repressed mRNAs by the P-body protein Rck/p54, RNA, vol.18, pp.1702-1715, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004128

A. Eulalio, I. Behm-ansmant, and E. Izaurralde, P bodies: at the crossroads of posttranscriptional pathways, Nat. Rev. Mol. Cell Biol, vol.8, pp.9-22, 2007.

A. Eulalio, I. Behm-ansmant, D. Schweizer, and E. Izaurralde, P-body formation is a consequence, not the cause, of RNA-mediated gene silencing, Mol. Cell. Biol, vol.27, pp.3970-3981, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01738446

A. Eulalio, J. Rehwinkel, M. Stricker, E. Huntzinger, S. Yang et al., Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing, Genes Dev, vol.21, pp.2558-2570, 2007.

A. Eulalio, E. Huntzinger, T. Nishihara, J. Rehwinkel, M. Fauser et al., Deadenylation is a widespread effect of miRNA regulation, RNA, vol.15, pp.21-32, 2009.

M. R. Fabian, M. K. Cieplak, F. Frank, M. Morita, J. Green et al., miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4-NOT, Nat. Struct. Mol. Biol, vol.18, pp.1211-1217, 2011.

T. Fekete, E. Rásó, I. Pete, B. Tegze, I. Liko et al., Meta-analysis of gene expression profiles associated with histological classification and survival in 829 ovarian cancer samples, Int. J. Cancer, vol.131, pp.95-105, 2012.

Y. Feng, Y. Xia, G. Yu, X. Shu, H. Ge et al., Cleavage of GSK-3? by calpain counteracts the inhibitory effect of Ser9 phosphorylation on GSK-3? activity induced by H 2 O 2, J. Neurochem, vol.126, pp.234-242, 2013.

M. Fenger-grøn, C. Fillman, B. Norrild, and J. Lykke-andersen, Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping, Mol. Cell, vol.20, pp.905-915, 2005.

N. Fischer and K. Weis, The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1, EMBO J, vol.21, pp.2788-2797, 2002.

K. Flach, I. Hilbrich, A. Schiffmann, U. Gärtner, M. Krüger et al., Tau oligomers impair artificial membrane integrity and cellular viability, J. Biol. Chem, vol.287, pp.43223-43233, 2012.

S. W. Flanagan, P. L. Moseley, and G. R. Buettner, Increased flux of free radicals in cells subjected to hyperthermia: detection by electron paramagnetic resonance spin trapping, FEBS Lett, vol.431, pp.285-286, 1998.

N. L. Foster, K. Wilhelmsen, A. A. Sima, M. Z. Jones, C. J. Amato et al., , 1997.

, Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Conference Participants, vol.41, pp.706-715

M. L. Frandemiche, S. De-seranno, T. Rush, E. Borel, A. Elie et al., Activity-dependent tau protein translocation to excitatory synapse is disrupted by exposure to amyloid-beta oligomers, J. Neurosci, vol.34, pp.6084-6097, 2014.

L. Fratiglioni, D. De-ronchi, and H. Agüero-torres, Worldwide prevalence and incidence of dementia, Drugs Aging, vol.15, pp.365-375, 1999.

L. Fratiglioni, E. Strauss, and B. Winblad, , 2001.

, Lakartidningen, vol.98, pp.552-558

R. C. Friedman, K. K. Farh, .. Burge, C. B. Bartel, and D. P. , Most mammalian mRNAs are conserved targets of microRNAs, Genome Res, vol.19, pp.92-105, 2009.

B. Frost, R. L. Jacks, and M. I. Diamond, Propagation of tau misfolding from the outside to the inside of a cell, J. Biol. Chem, vol.284, pp.12845-12852, 2009.

A. Fukao, Y. Mishima, N. Takizawa, S. Oka, H. Imataka et al., MicroRNAs trigger dissociation of eIF4AI and eIF4AII from target mRNAs in humans, Mol. Cell, vol.56, pp.79-89, 2014.

T. Fukaya, H. Iwakawa, and Y. Tomari, MicroRNAs Block Assembly of eIF4F Translation Initiation Complex in Drosophila, Mol. Cell, vol.56, pp.67-78, 2014.

A. Fuster-matanzo, E. G. De-barreda, H. N. Dawson, M. P. Vitek, J. Avila et al., Function of tau protein in adult newborn neurons, FEBS Lett, vol.583, pp.3063-3068, 2009.

A. Fuster-matanzo, M. Llorens-martín, J. Jurado-arjona, J. Avila, and F. Hernández, Tau protein and adult hippocampal neurogenesis, Front. Neurosci, vol.6, p.104, 2012.

M. Galas, P. Dourlen, S. Bégard, K. Ando, D. Blum et al., The peptidylprolyl cis/trans-isomerase Pin1 modulates stress-induced dephosphorylation of Tau in neurons. Implication in a pathological mechanism related to Alzheimer disease, J. Biol. Chem, vol.281, pp.19296-19304, 2006.

T. C. Gamblin, Potential structure/function relationships of predicted secondary structural elements of tau, Biochim. Biophys. Acta, vol.1739, pp.140-149, 2005.

T. C. Gamblin, M. E. King, J. Kuret, R. W. Berry, and L. I. Binder, Oxidative regulation of fatty acid-induced tau polymerization, Biochemistry, vol.39, pp.14203-14210, 2000.

J. E. Gerson, U. Sengupta, C. A. Lasagna-reeves, M. J. Guerrero-muñoz, J. Troncoso et al., Characterization of tau oligomeric seeds in progressive supranuclear palsy, Acta Neuropathol. Commun, vol.2, p.73, 2014.

P. Giannakopoulos, F. R. Herrmann, T. Bussière, C. Bouras, E. Kövari et al., Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer's disease, Neurology, vol.60, pp.1495-1500, 2003.

N. Gilks, N. Kedersha, M. Ayodele, L. Shen, G. Stoecklin et al., Stress granule assembly is mediated by prion-like aggregation of TIA-1, Mol. Biol. Cell, vol.15, pp.5383-5398, 2004.

M. Goedert, The ordered assembly of tau is the gain-of-toxic function that causes human tauopathies, vol.12, pp.1040-1050, 2016.

M. Goedert, J. , and R. , Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization, EMBO J, vol.9, pp.4225-4230, 1990.

M. Goedert, M. G. Spillantini, M. C. Potier, J. Ulrich, and R. A. Crowther, Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain, EMBO J, vol.8, pp.393-399, 1989.

M. Goedert, M. Hasegawa, R. Jakes, S. Lawler, A. Cuenda et al., , 1997.

, Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases, FEBS Lett, vol.409, pp.57-62

O. Goldbaum and C. Richter-landsberg, Activation of PP2A-like phosphatase and modulation of tau phosphorylation accompany stress-induced apoptosis in cultured oligodendrocytes, Glia, vol.40, pp.271-282, 2002.

T. Gómez-isla, R. Hollister, H. West, S. Mui, J. H. Growdon et al., Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer's disease, Ann. Neurol, vol.41, pp.17-24, 1997.

A. Gómez-ramos, J. Díaz-nido, M. A. Smith, G. Perry, and J. Avila, Effect of the lipid peroxidation product acrolein on tau phosphorylation in neural cells, J. Neurosci. Res, vol.71, pp.863-870, 2003.

A. Gómez-ramos, M. Díaz-hernández, A. Rubio, M. T. Miras-portugal, and J. Avila, , 2008.

, Extracellular tau promotes intracellular calcium increase through M1 and M3 muscarinic receptors in neuronal cells, Mol. Cell. Neurosci, vol.37, pp.673-681

A. Gómez-ramos, M. Díaz-hernández, A. Rubio, J. I. Díaz-hernández, M. T. Miras-portugal et al., Characteristics and consequences of muscarinic receptor activation by tau protein, Eur. Neuropsychopharmacol, vol.19, pp.708-717, 2009.

C. X. Gong, T. J. Singh, I. Grundke-iqbal, and K. Iqbal, Phosphoprotein phosphatase activities in Alzheimer disease brain, J. Neurochem, vol.61, pp.921-927, 1993.

C. X. Gong, S. Shaikh, J. Z. Wang, T. Zaidi, I. Grundke-iqbal et al., , 1995.

, Phosphatase activity toward abnormally phosphorylated tau: decrease in Alzheimer disease brain, J. Neurochem, vol.65, pp.732-738

B. L. Goode and S. C. Feinstein, Identification of a novel microtubule binding and assembly domain in the developmentally regulated inter-repeat region of tau, J. Cell Biol, vol.124, pp.769-782, 1994.

M. Gorath, T. Stahnke, T. Mronga, O. Goldbaum, and C. Richter-landsberg, , 2001.

, Developmental changes of tau protein and mRNA in cultured rat brain oligodendrocytes, Glia, vol.36, pp.89-101

A. E. Gorbalenya, E. V. Koonin, A. P. Donchenko, and V. M. Blinov, A novel superfamily of nucleoside triphosphate-binding motif containing proteins which are probably involved in duplex unwinding in DNA and RNA replication and recombination, FEBS Lett, vol.235, pp.16-24, 1988.

M. M. Grant, Identification of SUMOylated proteins in neuroblastoma cells after treatment with hydrogen peroxide or ascorbate, BMB Rep, vol.43, pp.720-725, 2010.

J. A. Greenwood, J. , and G. , Localization and in situ phosphorylation state of nuclear tau, Exp. Cell Res, vol.220, pp.332-337, 1995.

M. A. Gregory and S. R. Hann, c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt's lymphoma cells, Mol. Cell. Biol, vol.20, pp.2423-2435, 2000.

I. Grundke-iqbal, A. B. Johnson, H. M. Wisniewski, R. D. Terry, and K. Iqbal, , 1979.

, Evidence that Alzheimer neurofibrillary tangles originate from neurotubules, Lancet, vol.1, pp.578-580

I. Grundke-iqbal, K. Iqbal, M. Quinlan, Y. C. Tung, M. S. Zaidi et al., Microtubule-associated protein tau. A component of Alzheimer paired helical filaments, J. Biol. Chem, vol.261, pp.6084-6089, 1986.

I. Grundke-iqbal, K. Iqbal, Y. C. Tung, M. Quinlan, H. M. Wisniewski et al., Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology, Proc. Natl. Acad. Sci. U. S. A, vol.83, pp.4913-4917, 1986.

Y. Gu, F. Oyama, and Y. Ihara, Tau is widely expressed in rat tissues, J. Neurochem, vol.67, pp.1235-1244, 1996.

C. G. Gunawardana, M. Mehrabian, X. Wang, I. Mueller, I. B. Lubambo et al., The Human Tau Interactome: Binding to the Ribonucleoproteome, and Impaired Binding of the Proline-to-Leucine Mutant at Position 301 (P301L) to Chaperones and the Proteasome, Mol. Cell. Proteomics, vol.14, pp.3000-3014, 2015.

H. Guo, N. T. Ingolia, J. S. Weissman, and D. P. Bartel, Mammalian microRNAs predominantly act to decrease target mRNA levels, Nature, vol.466, pp.835-840, 2010.

M. Ha and V. N. Kim, Regulation of microRNA biogenesis, Nat. Rev. Mol. Cell Biol, vol.15, pp.509-524, 2014.

C. Haase, J. T. Stieler, T. Arendt, and M. Holzer, Pseudophosphorylation of tau protein alters its ability for self-aggregation, J. Neurochem, vol.88, pp.1509-1520, 2004.

D. P. Hanger, J. C. Betts, T. L. Loviny, W. P. Blackstock, and B. H. Anderton, New phosphorylation sites identified in hyperphosphorylated tau, 1998.

, Alzheimer's disease brain using nanoelectrospray mass spectrometry, J. Neurochem, vol.71, pp.2465-2476

D. P. Hanger, H. L. Byers, S. Wray, K. Leung, M. J. Saxton et al., Novel phosphorylation sites in tau from Alzheimer brain support a role for casein kinase 1 in disease pathogenesis, J. Biol. Chem, vol.282, pp.23645-23654, 2007.

A. Harada, K. Oguchi, S. Okabe, J. Kuno, S. Terada et al., Altered microtubule organization in smallcalibre axons of mice lacking tau protein, Nature, vol.369, pp.488-491, 1994.

J. A. Hardy and G. A. Higgins, Alzheimer's disease: the amyloid cascade hypothesis, Science, vol.256, pp.184-185, 1992.

D. Harman, Aging: a theory based on free radical and radiation chemistry, J. Gerontol, vol.11, pp.298-300, 1956.

M. Hasegawa, Biochemistry and molecular biology of tauopathies, Neuropathology, vol.26, pp.484-490, 2006.

M. Hasegawa, M. Morishima-kawashima, K. Takio, M. Suzuki, K. Titani et al., Protein sequence and mass spectrometric analyses of tau in the Alzheimer's disease brain, J. Biol. Chem, vol.267, pp.17047-17054, 1992.

M. Hasegawa, M. J. Smith, and M. Goedert, Tau proteins with FTDP-17 mutations have a reduced ability to promote microtubule assembly, FEBS Lett, vol.437, pp.207-210, 1998.

M. Hasegawa, M. J. Smith, M. Iijima, T. Tabira, and M. Goedert, FTDP-17 mutations N279K and S305N in tau produce increased splicing of exon 10, FEBS Lett, vol.443, pp.93-96, 1999.

K. Hashimoto, Y. Nakagawa, H. Morikawa, M. Niki, Y. Egashira et al., Co-overexpression of DEAD box protein rck/p54 and c-myc protein in human colorectal adenomas and the relevance of their expression in cultured cell lines, Carcinogenesis, vol.22, pp.1965-1970, 2001.

H. Hata, H. Mitsui, H. Liu, Y. Bai, C. L. Denis et al., Dhh1p, a putative RNA helicase, associates with the general transcription factors Pop2p and Ccr4p from Saccharomyces cerevisiae, Genetics, vol.148, pp.571-579, 1998.

H. J. He, X. S. Wang, R. Pan, D. L. Wang, M. N. Liu et al., The proline-rich domain of tau plays a role in interactions with actin, BMC Cell Biol, vol.10, p.81, 2009.

F. Hernández, J. Borrell, C. Guaza, J. Avila, and J. J. Lucas, Spatial learning deficit in transgenic mice that conditionally over-express GSK-3beta in the brain but do not form tau filaments, J. Neurochem, vol.83, pp.1529-1533, 2002.

R. Hikosou, Y. Kurabayashi, M. Doumoto, K. Hoshitoku, F. Mizushima et al., Effect of DNA on filament formation of tau microtubulebinding domain: structural dependence of DNA, Chem. Pharm. Bull. (Tokyo), vol.55, pp.1030-1033, 2007.

J. Hillebrand, K. Pan, A. Kokaram, S. Barbee, R. Parker et al., The Me31B DEAD-Box Helicase Localizes to Postsynaptic Foci and Regulates Expression of a CaMKII Reporter mRNA in Dendrites of Drosophila Olfactory Projection Neurons, Front. Neural Circuits, vol.4, p.121, 2010.

H. Hirling, M. Scheffner, T. Restle, and H. Stahl, RNA helicase activity associated with the human p68 protein, Nature, vol.339, pp.562-564, 1989.

T. C. Hodgman, A new superfamily of replicative proteins, Nature, vol.333, pp.22-23, 1988.

M. Holzer, M. Craxton, R. Jakes, T. Arendt, and M. Goedert, Tau gene (MAPT) sequence variation among primates, Gene, vol.341, pp.313-322, 2004.

M. Hong, V. Zhukareva, V. Vogelsberg-ragaglia, Z. Wszolek, L. Reed et al., Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17, Science, vol.282, pp.1914-1917, 1998.

X. Hong, C. Peng, W. Wei, Q. Tian, Y. Liu et al., Essential role of tau phosphorylation in adult hippocampal neurogenesis, Hippocampus, vol.20, pp.1339-1349, 2010.

M. Hosokawa, T. Arai, M. Masuda-suzukake, T. Nonaka, M. Yamashita et al., Methylene Blue Reduced Abnormal Tau Accumulation in P301L Tau Transgenic Mice, PLoS One, vol.7, p.52389, 2012.

Q. Hua and R. He, Tau could protect DNA double helix structure, Biochim. Biophys. Acta, vol.1645, pp.205-211, 2003.

Q. Hua and R. He, Effect of phosphorylation and aggregation on tau binding to DNA, Protein Pept. Lett, vol.9, pp.349-357, 2002.

Q. Hua, R. Q. He, N. Haque, M. H. Qu, A. Del-carmen-alonso et al., Microtubule associated protein tau binds to double-stranded but not single-stranded DNA, Cell. Mol. Life Sci, vol.60, pp.413-421, 2003.

D. T. Humphreys, B. J. Westman, D. I. Martin, and T. Preiss, MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.16961-16966, 2005.

D. L. Hunt and P. E. Castillo, Synaptic plasticity of NMDA receptors: mechanisms and functional implications, Curr. Opin. Neurobiol, vol.22, pp.496-508, 2012.

E. Huntzinger and E. Izaurralde, Gene silencing by microRNAs: contributions of translational repression and mRNA decay, Nat. Rev. Genet, vol.12, pp.99-110, 2011.

M. Hutton, C. L. Lendon, P. Rizzu, M. Baker, S. Froelich et al., Association of missense and 5'-splicesite mutations in tau with the inherited dementia FTDP-17, Nature, vol.393, pp.702-705, 1998.

M. Iba, J. L. Guo, J. D. Mcbride, B. Zhang, J. Q. Trojanowski et al., , 2013.

, Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer's-like tauopathy, J. Neurosci, vol.33, pp.1024-1037

Y. Ihara, N. Nukina, R. Miura, and M. Ogawara, Phosphorylated tau protein is integrated into paired helical filaments in Alzheimer's disease, J. Biochem, vol.99, pp.1807-1810, 1986.

K. Ikeda, H. Akiyama, H. Kondo, T. Arai, N. Arai et al., Numerous glial fibrillary tangles in oligodendroglia in cases of subacute sclerosing panencephalitis with neurofibrillary tangles, Neurosci. Lett, vol.194, pp.133-135, 1995.

D. Ingelfinger, D. J. Arndt-jovin, R. Lührmann, A. , and T. , The human LSm1-7 proteins colocalize with the mRNA-degrading enzymes Dcp1/2 and Xrnl in distinct cytoplasmic foci, RNA, vol.8, pp.1489-1501, 2002.

I. Iost, M. Dreyfus, and P. Linder, Ded1p, a DEAD-box protein required for translation initiation in Saccharomyces cerevisiae, is an RNA helicase, J. Biol. Chem, vol.274, pp.17677-17683, 1999.

K. Iqbal, H. M. Wi?niewski, M. L. Shelanski, S. Brostoff, B. H. Liwnicz et al., Protein changes in senile dementia, 1974.

K. Iqbal, T. Zaidi, C. Bancher, and I. Grundke-iqbal, Alzheimer paired helical filaments. Restoration of the biological activity by dephosphorylation, FEBS Lett, vol.349, pp.104-108, 1994.

T. Ishihara, M. Hong, B. Zhang, Y. Nakagawa, M. K. Lee et al., Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform, Neuron, vol.24, pp.751-762, 1999.

L. M. Ittner, T. Fath, Y. D. Ke, M. Bi, J. Van-eersel et al., Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementia, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.15997-16002, 2008.

L. M. Ittner, Y. D. Ke, F. Delerue, M. Bi, A. Gladbach et al., Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models, Cell, vol.142, pp.387-397, 2010.

R. J. Jackson, C. U. Hellen, and T. Pestova, The mechanism of eukaryotic translation initiation and principles of its regulation, Nat. Rev. Mol. Cell Biol, vol.11, pp.113-127, 2010.

S. Jeganathan, M. Von-bergen, H. Brutlach, H. Steinhoff, and E. Mandelkow, Global hairpin folding of tau in solution, Biochemistry, vol.45, pp.2283-2293, 2006.

G. A. Jicha, R. Bowser, I. G. Kazam, and P. Davies, Alz-50 and MC-1, a new monoclonal antibody raised to paired helical filaments, recognize conformational epitopes on recombinant tau, J. Neurosci. Res, vol.48, pp.128-132, 1997.

N. Jin, X. Yin, D. Yu, M. Cao, C. Gong et al., , 2015.

, Truncation and activation of GSK-3? by calpain I: a molecular mechanism links to tau hyperphosphorylation in Alzheimer's disease, Sci. Rep, vol.5, p.8187

S. Jonas and E. Izaurralde, The role of disordered protein regions in the assembly of decapping complexes and RNP granules, Genes Dev, vol.27, pp.2628-2641, 2013.

S. Jonas and E. Izaurralde, Towards a molecular understanding of microRNAmediated gene silencing, Nat. Rev. Genet, vol.16, pp.421-433, 2015.

H. Kadavath, M. Jaremko, ?. Jaremko, J. Biernat, E. Mandelkow et al., Folding of the Tau Protein on Microtubules, Angew. Chem. Int. Ed. Engl, vol.54, pp.10347-10351, 2015.

M. A. Kahlson and K. J. Colodner, Glial Tau Pathology in Tauopathies: Functional Consequences, J. Exp. Neurosci, vol.9, pp.43-50, 2015.

M. Källberg, H. Wang, S. Wang, J. Peng, Z. Wang et al., Templatebased protein structure modeling using the RaptorX web server, Nat. Protoc, vol.7, pp.1511-1522, 2012.

A. Kamenska, W. Lu, D. Kubacka, H. Broomhead, N. Minshall et al., Human 4E-T represses translation of bound mRNAs and enhances microRNA-mediated silencing, Nucleic Acids Res, vol.42, pp.3298-3313, 2014.

A. Kamenska, C. Simpson, C. Vindry, H. Broomhead, M. Bénard et al., The DDX6-4E-T interaction mediates translational repression and P-body assembly, Nucleic Acids Res, vol.44, pp.6318-6334, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01378456

T. Kampers, P. Friedhoff, J. Biernat, E. M. Mandelkow, and E. Mandelkow, RNA stimulates aggregation of microtubule-associated protein tau into Alzheimer-like paired helical filaments, FEBS Lett, vol.399, pp.344-349, 1996.

N. M. Kanaan, G. A. Morfini, N. E. Lapointe, G. F. Pigino, K. R. Patterson et al., Pathogenic forms of tau inhibit kinesin-dependent axonal transport through a mechanism involving activation of axonal phosphotransferases, J. Neurosci, vol.31, pp.9858-9868, 2011.

C. M. Karch, A. T. Jeng, and A. M. Goate, Extracellular Tau Levels Are Influenced by Variability in Tau That Is Associated with Tauopathies, J. Biol. Chem, vol.287, pp.42751-42762, 2012.

E. Karran, M. Mercken, B. Strooper, and . De, The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics, Nat. Rev. Drug Discov, vol.10, pp.698-712, 2011.

C. Kawahara, S. Yokota, and H. Fujita, DDX6 localizes to nuage structures and the annulus of mammalian spermatogenic cells, Histochem. Cell Biol, vol.141, pp.111-121, 2014.

N. Kedersha, G. Stoecklin, M. Ayodele, P. Yacono, J. Lykke-andersen et al., Stress granules and processing bodies are dynamically linked sites of mRNP remodeling, J. Cell Biol, vol.169, pp.871-884, 2005.

M. Kempf, A. Clement, A. Faissner, G. Lee, and R. Brandt, Tau binds to the distal axon early in development of polarity in a microtubule-and microfilament-dependent manner, J. Neurosci, vol.16, pp.5583-5592, 1996.

A. Kenessey, Y. , and S. H. , The extent of phosphorylation of fetal tau is comparable to that of PHF-tau from Alzheimer paired helical filaments, Brain Res, vol.629, pp.40-46, 1993.

M. Kidd, Paired helical filaments in electron microscopy of Alzheimer's disease, Nature, vol.197, pp.192-193, 1963.

T. Kimura, D. J. Whitcomb, J. Jo, P. Regan, T. Piers et al., Microtubule-associated protein tau is essential for longterm depression in the hippocampus, Philos. Trans. R. Soc. London B Biol. Sci, vol.369, 2013.

J. E. Klaunig, L. M. Kamendulis, and B. A. Hocevar, Oxidative stress and oxidative damage in carcinogenesis, Toxicol. Pathol, vol.38, pp.96-109, 2010.

C. Klein, E. Kramer, A. Cardine, B. Schraven, R. Brandt et al., Process outgrowth of oligodendrocytes is promoted by interaction of fyn kinase with the cytoskeletal protein tau, J. Neurosci, vol.22, pp.698-707, 2002.

J. Knops, K. S. Kosik, G. Lee, J. D. Pardee, L. Cohen-gould et al., , 1991.

, Overexpression of tau in a nonneuronal cell induces long cellular processes, J. Cell Biol, vol.114, pp.725-733

M. Kolarova, F. García-sierra, A. Bartos, J. Ricny, D. Ripova et al., Structure and Pathology of Tau Protein in Alzheimer Disease, Int. J. Alzheimers. Dis, vol.2012, pp.1-13, 2012.

Q. Kong and C. G. Lin, Oxidative damage to RNA: mechanisms, consequences, and diseases, Cell. Mol. Life Sci, vol.67, pp.1817-1829, 2010.

K. J. Kopeikina, G. A. Carlson, R. Pitstick, A. E. Ludvigson, A. Peters et al., Tau accumulation causes mitochondrial distribution deficits in neurons in a mouse model of tauopathy and in human Alzheimer's disease brain, Am. J. Pathol, vol.179, pp.2071-2082, 2011.

E. Köpke, Y. C. Tung, S. Shaikh, A. C. Alonso, K. Iqbal et al., , 1993.

, Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease, J. Biol. Chem, vol.268, pp.24374-24384

K. S. Kosik, C. L. Joachim, and D. J. Selkoe, Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease, Proc. Natl. Acad. Sci. U. S. A, vol.83, pp.4044-4048, 1986.

K. S. Kosik, L. D. Orecchio, S. Bakalis, and R. L. Neve, Developmentally regulated expression of specific tau sequences, Neuron, vol.2, pp.1389-1397, 1989.

S. Kramer and M. Carrington, An AU-rich instability element in the 3'UTR mediates an increase in mRNA stability in response to expression of a dhh1 ATPase mutant, Transl, issue.2, p.28587, 2014.

S. M. Krylova, M. Musheev, R. Nutiu, Y. Li, G. Lee et al., Tau protein binds single-stranded DNA sequence specifically--the proof obtained in vitro with nonequilibrium capillary electrophoresis of equilibrium mixtures, FEBS Lett, vol.579, pp.1371-1375, 2005.

H. Ksiezak-reding, W. K. Liu, Y. , and S. H. , Phosphate analysis and dephosphorylation of modified tau associated with paired helical filaments, Brain Res, vol.597, pp.209-219, 1992.

D. Kuzuo?lu-Öztürk, D. Bhandari, E. Huntzinger, M. Fauser, S. Helms et al., miRISC and the CCR4-NOT complex silence mRNA targets independently of 43S ribosomal scanning, EMBO J, vol.35, pp.1186-1203, 2016.

C. De-la, J. Kressler, D. Linder, and P. , Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families, Trends Biochem. Sci, vol.24, pp.192-198, 1999.

C. A. Lasagna-reeves, D. L. Castillo-carranza, M. J. Guerrero-muoz, G. R. Jackson, and R. Kayed, Preparation and characterization of neurotoxic tau oligomers, Biochemistry, vol.49, pp.10039-10041, 2010.

C. A. Lasagna-reeves, D. L. Castillo-carranza, U. Sengupta, A. L. Clos, G. R. Jackson et al., Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice, Mol. Neurodegener, vol.6, p.39, 2011.

C. A. Lasagna-reeves, D. L. Castillo-carranza, U. Sengupta, J. Sarmiento, J. Troncoso et al., Identification of oligomers at early stages of tau aggregation in Alzheimer's disease, FASEB J, vol.26, pp.1946-1959, 2012.

C. A. Lasagna-reeves, D. L. Castillo-carranza, U. Sengupta, M. J. Guerrero-munoz, T. Kiritoshi et al., Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau, Sci. Rep, vol.2, p.700, 2012.

P. Lau, K. Bossers, R. Janky, E. Salta, C. S. Frigerio et al., Alteration of the microRNA network during the progression of Alzheimer's disease, EMBO Mol. Med, vol.5, pp.1613-1634, 2013.

S. Lee and T. B. Shea, Caspase-mediated truncation of tau potentiates aggregation, Int. J. Alzheimers. Dis, p.731063, 2012.

G. Lee, S. T. Newman, D. L. Gard, H. Band, and G. Panchamoorthy, Tau interacts with src-family non-receptor tyrosine kinases, J. Cell Sci, pp.3167-3177, 1998.

R. C. Lee, R. L. Feinbaum, A. , and V. , The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, vol.75, pp.843-854, 1993.
URL : https://hal.archives-ouvertes.fr/in2p3-00597159

T. Lefebvre, S. Ferreira, L. Dupont-wallois, T. Bussière, M. Dupire et al., Evidence of a balance between phosphorylation and O-GlcNAc glycosylation of Tau proteins--a role in nuclear localization, Biochim. Biophys. Acta, vol.1619, pp.167-176, 2003.

K. Leroy, Z. Yilmaz, and J. Brion, Increased level of active GSK-3beta in, 2007.

, Alzheimer's disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration, Neuropathol. Appl. Neurobiol, vol.33, pp.43-55

B. P. Lewis, C. B. Burge, and D. P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets, Cell, vol.120, pp.15-20, 2005.

B. Li, M. O. Chohan, I. Grundke-iqbal, and K. Iqbal, Disruption of microtubule network by Alzheimer abnormally hyperphosphorylated tau, Acta Neuropathol, vol.113, pp.501-511, 2007.

G. Li, H. Yin, and J. Kuret, Casein Kinase 1 Delta Phosphorylates Tau and Disrupts Its Binding to Microtubules, J. Biol. Chem, vol.279, pp.15938-15945, 2004.

Z. Li, J. Wu, and C. J. Deleo, RNA damage and surveillance under oxidative stress, IUBMB Life, vol.58, pp.581-588, 2006.

P. Linder, J. , and E. , From unwinding to clamping -the DEAD box RNA helicase family, Nat. Rev. Mol. Cell Biol, vol.12, pp.505-516, 2011.

P. Linder, P. F. Lasko, M. Ashburner, P. Leroy, P. J. Nielsen et al., Birth of the D-E-A-D box, Nature, vol.337, pp.121-122, 1989.

G. Lindwall, C. , and R. D. , Phosphorylation affects the ability of tau protein to promote microtubule assembly, J. Biol. Chem, vol.259, pp.5301-5305, 1984.

C. Liu and J. Götz, Profiling murine tau with 0N, 1N and 2N isoform-specific antibodies in brain and peripheral organs reveals distinct subcellular localization, with the 1N isoform being enriched in the nucleus, PLoS One, vol.8, p.84849, 2013.

C. W. Liu, G. Lee, J. , and D. G. , Tau is required for neurite outgrowth and growth cone motility of chick sensory neurons, Cell Motil. Cytoskeleton, vol.43, pp.232-242, 1999.

F. Liu, K. Iqbal, I. Grundke-iqbal, G. W. Hart, and C. Gong, O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer's disease, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.10804-10809, 2004.

F. Liu, I. Grundke-iqbal, K. Iqbal, and C. Gong, Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation, Eur. J. Neurosci, vol.22, pp.1942-1950, 2005.

F. Liu, A. Putnam, J. , and E. , ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.20209-20214, 2008.

F. Liu, J. Shi, H. Tanimukai, J. Gu, J. Gu et al.,

, Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer's disease, Brain, vol.132, pp.1820-1832

Q. Liu, M. A. Smith, J. Avilá, J. Debernardis, M. Kansal et al., Alzheimer-specific epitopes of tau represent lipid peroxidation-induced conformations. Free Radic, Biol. Med, vol.38, pp.746-754, 2005.

M. Llorens-martin, C. M. Teixeira, A. Fuster-matanzo, J. Jurado-arjona, V. Borrell et al., Tau isoform with three microtubule binding domains is a marker of new axons generated from the subgranular zone in the hippocampal dentate gyrus: implications for Alzheimer's disease, J. Alzheimers. Dis, vol.29, pp.921-930, 2012.

P. A. Loomis, T. H. Howard, R. P. Castleberry, and L. I. Binder, Identification of nuclear tau isoforms in human neuroblastoma cells, Proc. Natl. Acad. Sci. U. S. A, vol.87, pp.8422-8426, 1990.

P. Lopresti, S. Szuchet, S. C. Papasozomenos, R. P. Zinkowski, and L. I. Binder, Functional implications for the microtubule-associated protein tau: localization in oligodendrocytes, Proc. Natl. Acad. Sci. U. S. A, vol.92, pp.10369-10373, 1995.

M. A. Lovell and W. R. Markesbery, Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer's disease, Nucleic Acids Res, vol.35, pp.7497-7504, 2007.

M. A. Lovell, S. Xiong, C. Xie, P. Davies, and W. R. Markesbery, Induction of hyperphosphorylated tau in primary rat cortical neuron cultures mediated by oxidative stress and glycogen synthase kinase-3, J. Alzheimers. Dis, vol.6, pp.659-71, 2004.

J. Lu, J. Miao, T. Su, Y. Liu, and R. He, Formaldehyde induces hyperphosphorylation and polymerization of Tau protein both in vitro and in vivo, Biochim. Biophys. Acta, vol.1830, pp.4102-4116, 2013.

J. Lu, T. Li, R. He, P. F. Bartlett, and J. Götz, Visualizing the microtubule-associated protein tau in the nucleus, Sci. China Life Sci, vol.57, pp.422-431, 2014.

T. Lu, Y. Pan, S. Kao, C. Li, I. Kohane et al., Gene regulation and DNA damage in the ageing human brain, Nature, vol.429, pp.883-891, 2004.

Y. Lu, H. He, J. Zhou, J. Miao, J. Lu et al., Hyperphosphorylation results in tau dysfunction in DNA folding and protection, J. Alzheimers. Dis, vol.37, pp.551-563, 2013.

J. J. Lucas, Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice, EMBO J, vol.20, pp.27-39, 2001.

M. Luo, S. Tse, J. Memmott, A. , and A. , Novel isoforms of tau that lack the microtubule-binding domain, J. Neurochem, vol.90, pp.340-351, 2004.

H. Lüth, V. Ogunlade, B. Kuhla, R. Kientsch-engel, P. Stahl et al., Age-and stage-dependent accumulation of advanced glycation end products in intracellular deposits in normal and Alzheimer's disease brains, Cereb. Cortex, vol.15, pp.211-220, 2005.

Q. Ma, X. Zuo, F. Yang, O. J. Ubeda, D. J. Gant et al., Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging, J. Neurosci, vol.34, pp.7124-7136, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01542860

R. Madabhushi, F. Gao, A. R. Pfenning, L. Pan, S. Yamakawa et al., Activity-Induced DNA Breaks Govern the Expression of Neuronal Early-Response Genes, Cell, vol.161, pp.1592-1605, 2015.

S. Maeda, N. Sahara, Y. Saito, M. Murayama, Y. Yoshiike et al., Granular tau oligomers as intermediates of tau filaments, vol.46, pp.3856-3861, 2007.

E. Magnani, J. Fan, L. Gasparini, M. Golding, M. Williams et al., Interaction of tau protein with the dynactin complex, EMBO J, vol.26, pp.4546-4554, 2007.

L. Magrassi, K. Leto, and F. Rossi, Lifespan of neurons is uncoupled from organismal lifespan, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.4374-4379, 2013.

W. Mair, J. Muntel, K. Tepper, S. Tang, J. Biernat et al., FLEXITau: Quantifying Post-translational Modifications of Tau Protein in Vitro and in Human Disease, Anal. Chem, vol.88, pp.3704-3714, 2016.

Z. Mansuroglu, H. Benhelli-mokrani, V. Marcato, A. Sultan, M. Violet et al., Loss of Tau protein affects the structure, transcription and repair of neuronal pericentromeric heterochromatin, Sci. Rep, vol.6, p.33047, 2016.

G. Mathonnet, M. R. Fabian, Y. V. Svitkin, A. Parsyan, L. Huck et al., MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F, Science, vol.317, pp.1764-1767, 2007.

H. Mathys, J. Basquin, S. Ozgur, M. Czarnocki-cieciura, F. Bonneau et al., Structural and Biochemical Insights to the Role of the CCR4-NOT Complex and DDX6 ATPase in MicroRNA Repression, Mol. Cell, vol.54, pp.751-765, 2014.

M. A. Matrone, R. A. Whipple, K. Thompson, E. H. Cho, M. I. Vitolo et al., Metastatic breast tumors express increased tau, which promotes microtentacle formation and the reattachment of detached breast tumor cells, Oncogene, vol.29, pp.3217-3227, 2010.

T. Matsui, K. Hogetsu, Y. Akao, M. Tanaka, T. Sato et al., , 2004.

, Crystallization and X-ray analysis of the N-terminal core domain of a tumour-associated human DEAD-box RNA helicase, rck/p54, Acta Crystallogr. D. Biol. Crystallogr, vol.60, pp.156-159

T. Matsui, K. Hogetsu, J. Usukura, T. Sato, T. Kumasaka et al., Structural insight of human DEAD-box protein rck/p54 into its substrate recognition with conformational changes, Genes Cells, vol.11, pp.439-452, 2006.

E. S. Matsuo, R. W. Shin, M. L. Billingsley, A. Van-devoorde, M. O'connor et al., Biopsy-derived adult human brain tau is phosphorylated at many of the same sites as Alzheimer's disease paired helical filament tau, Neuron, vol.13, pp.989-1002, 1994.

P. Mcmillan, E. Korvatska, P. Poorkaj, Z. Evstafjeva, L. Robinson et al., Tau isoform regulation is region-and cellspecific in mouse brain, J. Comp. Neurol, vol.511, pp.788-803, 2008.

S. Meier, M. Bell, D. N. Lyons, A. Ingram, J. Chen et al., Identification of Novel Tau Interactions with Endoplasmic Reticulum Proteins in Alzheimer's Disease Brain, J. Alzheimers. Dis, vol.48, pp.687-702, 2015.

S. Meier, M. Bell, D. N. Lyons, J. Rodriguez-rivera, A. Ingram et al., Pathological Tau Promotes Neuronal Damage by Impairing Ribosomal Function and Decreasing Protein Synthesis, J. Neurosci, vol.36, pp.1001-1007, 2016.

H. A. Meijer, Y. W. Kong, W. T. Lu, A. Wilczynska, R. V. Spriggs et al., Translational Repression and eIF4A2 Activity Are Critical for MicroRNA-Mediated Gene Regulation, p.340, 2013.

S. Melov, P. A. Adlard, K. Morten, F. Johnson, T. R. Golden et al., Mitochondrial oxidative stress causes hyperphosphorylation of tau, PLoS One, vol.2, p.536, 2007.

R. Mendez and J. D. Richter, Translational control by CPEB: a means to the end, Nat. Rev. Mol. Cell Biol, vol.2, pp.521-529, 2001.

P. Mergenthaler, U. Lindauer, G. A. Dienel, and A. Meisel, Sugar for the brain: the role of glucose in physiological and pathological brain function, Trends Neurosci, vol.36, pp.587-597, 2013.

R. Migliaccio, F. Agosta, K. L. Possin, E. Canu, M. Filippi et al., Mapping the Progression of Atrophy in Earlyand Late-Onset Alzheimer's Disease, J. Alzheimers. Dis, vol.46, pp.351-364, 2015.

N. Minshall, G. Thom, and N. Standart, A conserved role of a DEAD box helicase in mRNA masking, RNA, vol.7, pp.1728-1742, 2001.

N. Minshall, M. H. Reiter, D. Weil, and N. Standart, CPEB interacts with an ovary-specific eIF4E and 4E-T in early Xenopus oocytes, J Biol Chem, vol.282, pp.37389-37401, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02252446

N. Minshall, M. Kress, D. Weil, and N. Standart, Role of p54 RNA helicase activity and its C-terminal domain in translational repression, P-body localization and assembly, Mol. Biol. Cell, vol.20, pp.2464-2472, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02252342

T. Mitchison and M. Kirschner, Dynamic instability of microtubule growth, Nature, vol.312, pp.237-242

S. Mondragón-rodríguez, E. Trillaud-doppia, A. Dudilot, C. Bourgeois, M. Lauzon et al., Interaction of endogenous tau protein with synaptic proteins is regulated by N-methyl-D-aspartate receptor-dependent tau phosphorylation, J. Biol. Chem, vol.287, pp.32040-32053, 2012.

M. Morishima-kawashima, M. Hasegawa, K. Takio, M. Suzuki, H. Yoshida et al., Hyperphosphorylation of tau in PHF, Neurobiol. Aging, vol.16, pp.365-71, 1995.

R. Morsch, W. Simon, C. , and P. D. , Neurons may live for decades with neurofibrillary tangles, J. Neuropathol. Exp. Neurol, vol.58, pp.188-197, 1999.

R. S. Muddashetty, V. C. Nalavadi, C. Gross, X. Yao, L. Xing et al., Reversible inhibition of PSD-95 mRNA translation by miR-125a, FMRP phosphorylation, and mGluR signaling, Mol. Cell, vol.42, pp.673-688, 2011.

A. Mudher, D. Shepherd, T. A. Newman, P. Mildren, J. P. Jukes et al., GSK-3beta inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila, Mol. Psychiatry, vol.9, pp.522-530, 2004.

D. Muhlrad, C. J. Decker, and R. Parker, Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5'-->3' digestion of the transcript, Genes Dev, vol.8, pp.855-866, 1994.

M. D. Mukrasch, S. Bibow, J. Korukottu, S. Jeganathan, J. Biernat et al., Structural polymorphism of 441-residue tau at single residue resolution, PLoS Biol, vol.7, p.34, 2009.

R. Müller, M. Heinrich, S. Heck, D. Blohm, and C. Richter-landsberg, Expression of microtubule-associated proteins MAP2 and tau in cultured rat brain oligodendrocytes, Cell Tissue Res, vol.288, pp.239-249, 1997.

M. E. Murray, N. Kouri, W. Lin, C. R. Jack, D. W. Dickson et al., , 2014.

, Clinicopathologic assessment and imaging of tauopathies in neurodegenerative dementias, Alzheimers. Res. Ther, vol.6, p.1

J. R. Murrell, D. Koller, T. Foroud, M. Goedert, M. G. Spillantini et al., Familial multiple-system tauopathy with presenile dementia is localized to chromosome 17, Am. J. Hum. Genet, vol.61, pp.1131-1138, 1997.

I. S. Naarmann, C. Harnisch, G. Müller-newen, H. Urlaub, A. Ostareck-lederer et al., DDX6 recruits translational silenced human reticulocyte 15-lipoxygenase mRNA to RNP granules, RNA, vol.16, pp.2189-2204, 2010.

S. I. Nagao, T. Kumamoto, T. Masuda, H. Ueyama, I. Toyoshima et al., Tau expression in denervated rat muscles, Muscle Nerve, vol.22, pp.61-70, 1999.

A. Nakamura, R. Amikura, K. Hanyu, and S. Kobayashi, Me31B silences translation of oocyte-localizing RNAs through the formation of cytoplasmic RNP complex during Drosophila oogenesis, Development, vol.128, pp.3233-3242, 2001.

A. Nakamura, K. Sato, and K. Hanyu-nakamura, Drosophila Cup Is an eIF4E Binding Protein that Associates with Bruno and Regulates oskar mRNA Translation in Oogenesis, Dev. Cell, vol.6, pp.69-78, 2004.

R. L. Neve, P. Harris, K. S. Kosik, D. M. Kurnit, and T. A. Donlon, Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2, Brain Res, vol.387, pp.271-280, 1986.

S. Nicklas, S. Okawa, A. Hillje, L. González-cano, A. Del-sol et al.,

, The RNA helicase DDX6 regulates cell-fate specification in neural stem cells via miRNAs, Nucleic Acids Res, vol.43, pp.2638-2654

T. Nishimura, Z. Padamsi, H. Fakim, S. Milette, W. H. Dunham et al., The eIF4E-Binding Protein 4E-T Is a Component of the mRNA Decay Machinery that Bridges the 5? and 3? Termini of Target mRNAs, Cell Rep, vol.11, pp.1425-1436, 2015.

W. Noble, V. Olm, K. Takata, E. Casey, O. Mary et al., Cdk5 is a key factor in tau aggregation and tangle formation in vivo, Neuron, vol.38, pp.555-565, 2003.

W. Noble, D. P. Hanger, C. C. Miller, and S. Lovestone, The importance of tau phosphorylation for neurodegenerative diseases, 2013.

U. Nonhoff, M. Ralser, F. Welzel, I. Piccini, D. Balzereit et al., Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules, Mol. Biol. Cell, vol.18, pp.1385-1396, 2007.

S. Norton, F. E. Matthews, D. E. Barnes, K. Yaffe, and C. Brayne, Potential for primary prevention of Alzheimer's disease: an analysis of population-based data, Lancet. Neurol, vol.13, pp.788-794, 2014.

A. Nunomura, G. Perry, G. Aliev, K. Hirai, A. Takeda et al., Oxidative damage is the earliest event in Alzheimer disease, J. Neuropathol. Exp. Neurol, vol.60, pp.759-767, 2001.

A. Nunomura, T. Tamaoki, N. Motohashi, M. Nakamura, D. W. Mckeel et al., The earliest stage of cognitive impairment in transition from normal aging to Alzheimer disease is marked by prominent RNA oxidation in vulnerable neurons, J. Neuropathol. Exp. Neurol, vol.71, pp.233-241, 2012.

J. C. O'leary, Q. Li, P. Marinec, L. J. Blair, E. E. Congdon et al., Phenothiazine-mediated rescue of cognition in tau transgenic mice requires neuroprotection and reduced soluble tau burden, Mol. Neurodegener, vol.5, p.45, 2010.

J. L. O'leary, J. Petty, A. B. Harris, and J. Inukai, Supravital Staining of Mammalian Brain with Intraarterial Methylene Blue Followed by Pressurized Oxygen, Stain Technol, vol.43, pp.197-201, 1968.

G. Olivieri, C. Brack, F. Müller-spahn, H. B. Stähelin, M. Herrmann et al., Mercury induces cell cytotoxicity and oxidative stress and increases beta-amyloid secretion and tau phosphorylation in SHSY5Y neuroblastoma cells, J. Neurochem, vol.74, pp.231-236, 2000.

G. Olivieri, G. Baysang, F. Meier, F. Müller-spahn, H. B. Stähelin et al., N-acetyl-L-cysteine protects SHSY5Y neuroblastoma cells from oxidative stress and cell cytotoxicity: effects on beta-amyloid secretion and tau phosphorylation, J. Neurochem, vol.76, pp.224-233, 2001.

C. Orelle, O. Dalmas, P. Gros, A. Di-pietro, and J. Jault, The conserved glutamate residue adjacent to the Walker-B motif is the catalytic base for ATP hydrolysis in the ATPbinding cassette transporter BmrA, J. Biol. Chem, vol.278, pp.47002-47008, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00313606

D. H. Ostareck, A. Ostareck-lederer, I. N. Shatsky, M. W. Hentze, E. Allen et al., Lipoxygenase mRNA silencing in erythroid differentiation: The 3'UTR regulatory complex controls 60S ribosomal subunit joining, Cell, vol.104, pp.281-290, 2001.

D. H. Ostareck, . Naarmann-de, I. S. Vries, and A. Ostareck-lederer, DDX6 and its orthologs as modulators of cellular and viral RNA expression, Wiley Interdiscip. Rev. RNA, vol.5, 2014.

F. Oyama, S. Kotliarova, A. Harada, M. Ito, H. Miyazaki et al., Gem GTPase and tau: morphological changes induced by gem GTPase in cho cells are antagonized by tau, J. Biol. Chem, vol.279, pp.27272-27277, 2004.

S. Ozgur, J. Basquin, A. Kamenska, W. Filipowicz, N. Standart et al., Structure of a Human 4E-T/DDX6/CNOT1 Complex Reveals the Different Interplay of DDX6-Binding Proteins with the CCR4-NOT Complex, vol.13, pp.703-711, 2015.

V. Padmaraju, S. S. Indi, and K. S. Rao, New evidences on Tau-DNA interactions and relevance to neurodegeneration, Neurochem. Int, vol.57, pp.51-57, 2010.

N. Pallas-bazarra, J. Jurado-arjona, M. Navarrete, J. A. Esteban, F. Hernández et al., Novel function of Tau in regulating the effects of external stimuli on adult hippocampal neurogenesis, EMBO J, vol.35, pp.1417-1436, 2016.

S. C. Papasozomenos, Tau protein immunoreactivity in dementia of the Alzheimer type: II. Electron microscopy and pathogenetic implications. Effects of fixation on the morphology of the Alzheimer's abnormal filaments, Lab. Invest, vol.60, pp.375-389, 1989.

S. C. Papasozomenos, Heat shock induces rapid dephosphorylation of tau in both female and male rats followed by hyperphosphorylation only in female rats: implications for Alzheimer's disease, J. Neurochem, vol.66, pp.1140-1149, 1996.

S. C. Papasozomenos and L. I. Binder, Phosphorylation determines two distinct species of Tau in the central nervous system, Cell Motil. Cytoskeleton, vol.8, pp.210-226, 1987.

K. R. Patterson, C. Remmers, Y. Fu, S. Brooker, N. M. Kanaan et al., Characterization of prefibrillar Tau oligomers in vitro and in Alzheimer disease, J. Biol. Chem, vol.286, pp.23063-23076, 2011.

A. Pause and N. Sonenberg, Mutational analysis of a DEAD box RNA helicase: the mammalian translation initiation factor eIF-4A, EMBO J, vol.11, pp.2643-2654, 1992.

A. Pause, N. Méthot, and N. Sonenberg, The HRIGRXXR region of the DEAD box RNA helicase eukaryotic translation initiation factor 4A is required for RNA binding and ATP hydrolysis, Mol. Cell. Biol, vol.13, pp.6789-6798, 1993.

E. Pedro-segura, S. V. Vergara, S. Rodríguez-navarro, R. Parker, D. J. Thiele et al.,

, The Cth2 ARE-binding protein recruits the Dhh1 helicase to promote the decay of succinate dehydrogenase SDH4 mRNA in response to iron deficiency, J. Biol. Chem, vol.283, pp.28527-28535

J. J. Pei, I. Grundke-iqbal, K. Iqbal, N. Bogdanovic, B. Winblad et al., , 1998.

, Accumulation of cyclin-dependent kinase 5 (cdk5) in neurons with early stages of Alzheimer's disease neurofibrillary degeneration, Brain Res, vol.797, pp.267-277

M. Perez, I. Santa-maria, E. Gomez-de-barreda, X. Zhu, R. Cuadros et al., Tau--an inhibitor of deacetylase HDAC6 function, J. Neurochem, vol.109, pp.1756-1766, 2009.

M. Pérez, R. Cuadros, M. A. Smith, G. Perry, and J. Avila, Phosphorylated, but not native, tau protein assembles following reaction with the lipid peroxidation product, 4-hydroxy-2-nonenal, FEBS Lett, vol.486, pp.270-274, 2000.

R. S. Pillai, S. N. Bhattacharyya, C. G. Artus, T. Zoller, N. Cougot et al., Inhibition of translational initiation by Let-7 MicroRNA in human cells, Science, vol.309, pp.1573-1576, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02262259

E. Planel, T. Miyasaka, T. Launey, D. Chui, K. Tanemura et al., Alterations in glucose metabolism induce hypothermia leading to tau hyperphosphorylation through differential inhibition of kinase and phosphatase activities: implications for Alzheimer's disease, J. Neurosci, vol.24, pp.2401-2411, 2004.

E. Planel, K. E. Richter, C. E. Nolan, J. E. Finley, L. Liu et al., Anesthesia leads to tau hyperphosphorylation through inhibition of phosphatase activity by hypothermia, J. Neurosci, vol.27, pp.3090-3097, 2007.

A. M. Pooler, A. Usardi, C. J. Evans, K. L. Philpott, W. Noble et al., Dynamic association of tau with neuronal membranes is regulated by phosphorylation, Neurobiol. Aging, vol.33, pp.27-431, 2012.

A. M. Pooler, E. C. Phillips, D. H. Lau, W. Noble, and D. P. Hanger, Physiological release of endogenous tau is stimulated by neuronal activity, EMBO Rep, vol.14, pp.389-394, 2013.

P. Poorkaj, T. D. Bird, E. Wijsman, E. Nemens, R. M. Garruto et al., Tau is a candidate gene for chromosome 17 frontotemporal dementia, Ann. Neurol, vol.43, pp.815-825, 1998.

P. Poorkaj, A. Kas, I. Souza, Y. Zhou, Q. Pham et al., A genomic sequence analysis of the mouse and human microtubuleassociated protein tau, Mamm. Genome, vol.12, pp.700-712, 2001.

S. B. Prusiner, Novel proteinaceous infectious particles cause scrapie, Science, vol.216, pp.136-144, 1982.

H. Qi, F. Cantrelle, H. Benhelli-mokrani, C. Smet-nocca, L. Buée et al., Nuclear magnetic resonance spectroscopy characterization of interaction of Tau with DNA and its regulation by phosphorylation, Biochemistry, vol.54, pp.1525-1533, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01145987

M. Qi, Z. Wang, Z. Zhang, Q. Shao, A. Zeng et al., AU-rich-element-dependent translation repression requires the cooperation of tristetraprolin and RCK/P54, Mol. Cell. Biol, vol.32, pp.913-928, 2012.

Z. Qi, D. Tang, I. Matsuura, K. Y. Lee, X. Zhu et al., Regulatory properties of neuronal cdc2-like kinase, Mol. Cell. Biochem. 149, vol.150, pp.35-39

M. Qu, H. Li, R. Tian, C. Nie, Y. Liu et al., Neuronal tau induces DNA conformational changes observed by atomic force microscopy, Neuroreport, vol.15, pp.2723-2727, 2004.

L. A. Reed, Z. K. Wszolek, and M. Hutton, Phenotypic correlations in FTDP-17, Neurobiol. Aging, vol.22, pp.89-107

P. Regan, T. Piers, J. Yi, D. Kim, S. Huh et al., Tau phosphorylation at serine 396 residue is required for hippocampal LTD, J. Neurosci, vol.35, pp.4804-4812, 2015.

J. Rehwinkel, I. Behm-ansmant, D. Gatfield, and E. Izaurralde, A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing, RNA, vol.11, pp.1640-1647, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01738499

M. A. Reijns, R. D. Alexander, M. P. Spiller, and J. D. Beggs, A role for Q/N-rich aggregation-prone regions in P-body localization, J. Cell Sci, vol.121, pp.2463-2472, 2008.

C. H. Reynolds, C. J. Garwood, S. Wray, C. Price, S. Kellie et al., Phosphorylation regulates tau interactions with Src homology 3 domains of phosphatidylinositol 3-kinase, phospholipase Cgamma1, Grb2, and Src family kinases, J. Biol. Chem, vol.283, pp.18177-18186, 2008.

M. R. Reynolds, R. W. Berry, and L. I. Binder, Site-specific nitration and oxidative dityrosine bridging of the tau protein by peroxynitrite: implications for Alzheimer's disease, Biochemistry, vol.44, pp.1690-1700, 2005.

E. P. Ricci, T. Limousin, R. Soto-rifo, P. S. Rubilar, D. Decimo et al., miRNA repression of translation in vitro takes place during 43S ribosomal scanning, Nucleic Acids Res, vol.41, pp.586-598, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00965621

G. W. Rogers, A. A. Komar, and W. C. Merrick, eIF4A: the godfather of the DEAD box helicases, Prog. Nucleic Acid Res. Mol. Biol, vol.72, pp.307-331, 2002.

G. Rossi, L. Dalprà, F. Crosti, S. Lissoni, F. L. Sciacca et al., A new function of microtubule-associated protein tau: Involvement in chromosome stability, Cell Cycle, vol.7, pp.1788-1794, 2008.

G. Rossi, D. Conconi, E. Panzeri, S. Redaelli, E. Piccoli et al., Mutations in MAPT gene cause chromosome instability and introduce copy number variations widely in the genome, J. Alzheimers. Dis, vol.33, pp.969-982, 2013.

C. Rouya, N. Siddiqui, M. Morita, T. F. Duchaine, M. R. Fabian et al., , 2014.

, Human DDX6 effects miRNA-mediated gene silencing via direct binding to CNOT1, RNA, vol.20, pp.1398-1409

F. Rozen, I. Edery, K. Meerovitch, T. E. Dever, W. C. Merrick et al., , 1990.

, Bidirectional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F, Mol. Cell. Biol, vol.10, pp.1134-1144

G. C. Ruben, M. Novak, P. C. Edwards, and K. Iqbal, Alzheimer paired helical filaments, untreated and pronase digested, studied by vertical platinum-carbon replication and high resolution transmission electron microscopy, Brain Res, vol.675, pp.1-12, 1995.

R. Ruiz-ramos, L. Lopez-carrillo, A. D. Rios-perez, A. De-vizcaya-ruíz, and M. E. Cebrian, Sodium arsenite induces ROS generation, DNA oxidative damage, HO-1 and c-Myc proteins, NF-kappaB activation and cell proliferation in human breast cancer MCF-7 cells, Mutat. Res, vol.674, pp.109-115, 2009.

K. Santacruz, J. Lewis, T. Spires, J. Paulson, L. Kotilinek et al., Tau suppression in a neurodegenerative mouse model improves memory function, Science, vol.309, pp.476-481, 2005.

T. Sapir, M. Frotscher, T. Levy, E. Mandelkow, and O. Reiner, Tau's role in the developing brain: implications for intellectual disability, Hum. Mol. Genet, vol.21, pp.1681-1692, 2012.

C. L. Satizabal, A. S. Beiser, V. Chouraki, G. Chêne, C. Dufouil et al., Incidence of Dementia over Three Decades in the Framingham Heart Study, N. Engl. J. Med, vol.374, pp.523-532, 2016.

M. R. Sawaya, S. Sambashivan, R. Nelson, M. I. Ivanova, S. A. Sievers et al., Atomic structures of amyloid cross-beta spines reveal varied steric zippers, Nature, vol.447, pp.453-457, 2007.

K. Schindowski, A. Bretteville, K. Leroy, S. Bégard, J. Brion et al., Alzheimer's disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits, Am. J. Pathol, vol.169, pp.599-616, 2006.

R. H. Schirmer, H. Adler, M. Pickhardt, and E. Mandelkow, Neurobiol. Aging, vol.32, pp.2325-2332, 2011.

A. Schneider, J. Biernat, M. Von-bergen, E. Mandelkow, and E. M. Mandelkow, , 1999.

, Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments, Biochemistry, vol.38, pp.3549-3558

B. Schwanhäusser, D. Busse, N. Li, G. Dittmar, J. Schuchhardt et al., Global quantification of mammalian gene expression control, Nature, vol.473, pp.337-342, 2011.

O. Schweers, E. Schönbrunn-hanebeck, A. Marx, and E. Mandelkow, Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for betastructure, J. Biol. Chem, vol.269, pp.24290-24297, 1994.

T. Sengoku, O. Nureki, A. Nakamura, S. Kobayashi, Y. et al., Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa, Cell, vol.125, pp.287-300, 2006.

K. Sennvik, K. Boekhoorn, R. Lasrado, D. Terwel, S. Verhaeghe et al., Tau-4R suppresses proliferation and promotes neuronal differentiation in the hippocampus of tau knockin/knockout mice, FASEB J, vol.21, pp.2149-2161, 2007.

N. Sergeant, A. Bretteville, M. Hamdane, M. Caillet-boudin, P. Grognet et al., Biochemistry of Tau in Alzheimer's disease and related neurological disorders, Expert Rev. Proteomics, vol.5, pp.207-224, 2008.

X. Shan and C. G. Lin, Quantification of oxidized RNAs in Alzheimer's disease, Neurobiol. Aging, vol.27, pp.657-662, 2006.

X. Shan, H. Tashiro, and C. G. Lin, The identification and characterization of oxidized RNAs in Alzheimer's disease, J. Neurosci, vol.23, pp.4913-4921, 2003.

H. Sharif, S. Ozgur, K. Sharma, C. Basquin, H. Urlaub et al., Structural analysis of the yeast Dhh1-Pat1 complex reveals how Dhh1 engages Pat1, Edc3 and RNA in mutually exclusive interactions, Nucleic Acids Res, vol.41, pp.8377-8390, 2013.

T. B. Shea and C. M. Cressman, A 26-30 kDa developmentally-regulated tau isoform localized within nuclei of mitotic human neuroblastoma cells, Int. J. Dev. Neurosci, vol.16, pp.41-48, 1998.

U. Sheth and R. Parker, Decapping and decay of messenger RNA occur in cytoplasmic processing bodies, Science, vol.300, pp.805-808, 2003.

H. Shi, O. Cordin, C. M. Minder, P. Linder, and R. Xu, Crystal structure of the human ATP-dependent splicing and export factor UAP56, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.17628-17633, 2004.

J. Sigala, F. Jumeau, M. Caillet-boudin, N. Sergeant, C. Ballot et al., Immunodetection of Tau microtubule-associated protein in human sperm and testis, Asian J. Androl, vol.16, pp.927-928

C. L. Simms and H. S. Zaher, Quality control of chemically damaged RNA, Cell. Mol. Life Sci, vol.73, pp.3639-3653, 2016.

D. Simón, E. García-garcía, A. Gómez-ramos, J. M. Falcón-pérez, M. Díaz-hernández et al., Tau Overexpression Results in Its Secretion via Membrane Vesicles, Neurodegener. Dis, vol.10, pp.73-75, 2012.

M. K. Sjöberg, E. Shestakova, Z. Mansuroglu, R. B. Maccioni, and E. Bonnefoy, Tau protein binds to pericentromeric DNA: a putative role for nuclear tau in nucleolar organization, J. Cell Sci, vol.119, pp.2025-2034, 2006.

D. A. Smillie and J. Sommerville, RNA helicase p54 (DDX6) is a shuttling protein involved in nuclear assembly of stored mRNP particles, J. Cell Sci, vol.115, pp.395-407, 2002.

C. J. Smith, B. H. Anderton, D. R. Davis, and J. Gallo, Tau isoform expression and phosphorylation state during differentiation of cultured neuronal cells, FEBS Lett, vol.375, pp.243-248, 1995.

P. Y. Smith, J. Hernandez-rapp, F. Jolivette, C. Lecours, K. Bisht et al., deficiency impairs tau metabolism and promotes pathological aggregation in vivo, Hum. Mol. Genet, vol.24, pp.6721-6735, 2015.

J. Song, K. J. Cho, Y. Oh, and J. E. Lee, Let7a involves in neural stem cell differentiation relating with TLX level, 2015.

L. O. Soto-rojas, F. Cruz-lópez, M. A. Ontiveros-torres, A. Viramontes-pintos, M. Cárdenas-aguayo et al., Neuroinflammation and Alteration of the Blood-Brain Barrier in Alzheimer´s Disease, 2015.

S. Souquere, S. Mollet, M. Kress, F. Dautry, G. Pierron et al., Unravelling the ultrastructure of stress granules and associated P-bodies in human cells, J. Cell Sci, vol.122, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02252274

S. Souter and G. Lee, Microtubule-associated protein tau in human prostate cancer cells: isoforms, phosphorylation, and interactions, J. Cell. Biochem, vol.108, pp.555-564, 2009.

M. G. Spillantini, J. R. Murrell, M. Goedert, M. R. Farlow, A. Klug et al., , 1998.

, Mutation in the tau gene in familial multiple system tauopathy with presenile dementia, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.7737-7741

C. Stack, S. Jainuddin, C. Elipenahli, M. Gerges, N. Starkova et al., Methylene blue upregulates Nrf2/ARE genes and prevents tau-related neurotoxicity, Hum. Mol. Genet, vol.23, pp.3716-3732, 2014.

K. Stamer, R. Vogel, E. Thies, E. Mandelkow, and E. Mandelkow, Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress, J. Cell Biol, vol.156, pp.1051-1063, 2002.

P. M. Stanford, C. E. Shepherd, G. M. Halliday, W. S. Brooks, P. W. Schofield et al., Mutations in the tau gene that cause an increase in three repeat tau and frontotemporal dementia, Brain, vol.126, pp.814-826, 2003.

B. Su, X. Wang, H. Lee, M. Tabaton, G. Perry et al., Chronic oxidative stress causes increased tau phosphorylation in M17 neuroblastoma cells, 2010.

H. S. Subramanya, L. E. Bird, J. A. Brannigan, and D. B. Wigley, Crystal structure of a DExx box DNA helicase, Nature, vol.384, pp.379-383, 1996.

I. P. Sudhakaran, J. Hillebrand, A. Dervan, S. Das, E. E. Holohan et al., FMRP and Ataxin-2 function together in long-term olfactory habituation and neuronal translational control, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.99-108, 2014.

A. Sultan, F. Nesslany, M. Violet, S. Bégard, A. Loyens et al., Nuclear tau, a key player in neuronal DNA protection, J. Biol. Chem, vol.286, pp.4566-4575, 2011.

J. R. Sundaram, C. P. Poore, N. H. Sulaimee, . Bin, T. Pareek et al., Specific inhibition of p25/Cdk5 activity by the Cdk5 inhibitory peptide reduces neurodegeneration in vivo, J. Neurosci, vol.33, pp.334-343, 2013.

U. Swain, S. Rao, and K. , Study of DNA damage via the comet assay and base excision repair activities in rat brain neurons and astrocytes during aging, Mech. Ageing Dev, vol.132, pp.374-381, 2011.

G. I. Szendrei, V. M. Lee, and L. Otvos, Recognition of the minimal epitope of monoclonal antibody Tau-1 depends upon the presence of a phosphate group but not its location, J. Neurosci. Res, vol.34, pp.243-249, 1993.

T. , C. Gamblin, *. , ?. , M. E. King et al., Oxidative Regulation of Fatty Acid-Induced Tau Polymerization ?, 2000.

Y. Takei, J. Teng, A. Harada, and N. Hirokawa, Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes, J. Cell Biol, vol.150, pp.989-1000, 2000.

H. Takeuchi, M. Iba, H. Inoue, M. Higuchi, K. Takao et al., P301S mutant human tau transgenic mice manifest early symptoms of human tauopathies with dementia and altered sensorimotor gating, PLoS One, vol.6, 2011.

A. Tandon, H. Yu, L. Wang, E. Rogaeva, C. Sato et al., Brain levels of CDK5 activator p25 are not increased in Alzheimer's or other neurodegenerative diseases with neurofibrillary tangles, J. Neurochem, vol.86, pp.572-581, 2003.

Z. Tang, E. Ioja, E. Bereczki, K. Hultenby, C. Li et al., mTor mediates tau localization and secretion: Implication for Alzheimer's disease, Biochim. Biophys. Acta -Mol. Cell Res, vol.1853, pp.1646-1657, 2015.

S. Taniguchi, N. Suzuki, M. Masuda, S. Hisanaga, T. Iwatsubo et al., Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins, J. Biol. Chem, vol.280, pp.7614-7623, 2005.

N. K. Tanner, O. Cordin, J. Banroques, M. Doère, and P. Linder, The Q motif: a newly identified motif in DEAD box helicases may regulate ATP binding and hydrolysis, Mol. Cell, vol.11, pp.127-138, 2003.

D. Teixeira, U. Sheth, M. A. Valencia-sanchez, M. Brengues, and R. Parker, Processing bodies require RNA for assembly and contain nontranslating mRNAs, RNA, vol.11, pp.371-382, 2005.

S. Tenreiro, K. Eckermann, and T. F. Outeiro, Protein phosphorylation in neurodegeneration: friend or foe?, Front. Mol. Neurosci, vol.7, 2014.

K. Tepper, J. Biernat, S. Kumar, S. Wegmann, T. Timm et al., Oligomer formation of tau protein hyperphosphorylated in cells, J. Biol. Chem, vol.289, pp.34389-34407, 2014.

D. R. Thal, U. Rüb, M. Orantes, and H. Braak, Phases of A beta-deposition in the human brain and its relevance for the development of AD, Neurology, vol.58, pp.1791-1800, 2002.

S. Tharun, Lsm1-7-Pat1 complex: a link between 3' and 5'-ends in mRNA decay?, RNA Biol, vol.6, pp.228-232

V. C. Thurston, R. P. Zinkowski, and L. I. Binder, Tau as a nucleolar protein in human nonneural cells in vitro and in vivo, Chromosoma, vol.105, pp.20-30, 1996.

V. C. Thurston, P. Pena, R. Pestell, and L. I. Binder, Nucleolar localization of the microtubule-associated protein tau in neuroblastomas using sense and anti-sense transfection strategies, Cell Motil. Cytoskeleton, vol.38, pp.100-110, 1997.

V. C. Thurston, P. Pena, R. Pestell, and L. I. Binder, Nucleolar localization of the microtubule-associated protein tau in neuroblastomas using sense and anti-sense transfection strategies, Cell Motil. Cytoskeleton, vol.38, pp.100-110, 1997.

H. Tian, E. Davidowitz, P. Lopez, S. Emadi, J. Moe et al., Trimeric tau is toxic to human neuronal cells at low nanomolar concentrations, Int. J. Cell Biol, 2013.

M. Tolnay and A. Probst, The neuropathological spectrum of neurodegenerative tauopathies, IUBMB Life, vol.55, pp.299-305, 2003.

T. E. Tracy, P. D. Sohn, S. S. Minami, C. Wang, S. Min et al., Acetylated Tau Obstructs KIBRA-Mediated Signaling in Synaptic Plasticity and Promotes Tauopathy-Related Memory Loss, Neuron, vol.90, pp.245-260, 2016.

B. Trinczek, J. Biernat, K. Baumann, E. M. Mandelkow, and E. Mandelkow, Domains of tau protein, differential phosphorylation, and dynamic instability of microtubules, Mol. Biol. Cell, vol.6, pp.1887-1902, 1995.

F. Tritschler, J. E. Braun, A. Eulalio, V. Truffault, E. Izaurralde et al., Structural basis for the mutually exclusive anchoring of P body components EDC3 and Tral to the DEAD box protein DDX6/Me31B, Mol. Cell, vol.33, pp.661-668, 2009.

M. Tucker, R. R. Staples, M. A. Valencia-sanchez, D. Muhlrad, and R. Parker, Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae, EMBO J, vol.21, pp.1427-1436, 2002.

A. Usardi, A. M. Pooler, A. Seereeram, C. H. Reynolds, P. Derkinderen et al., Tyrosine phosphorylation of tau regulates its interactions with Fyn SH2 domains, but not SH3 domains, altering the cellular localization of tau, FEBS J, vol.278, pp.2927-2937, 2011.

M. A. Utton, W. J. Noble, J. E. Hill, B. H. Anderton, and D. P. Hanger, Molecular motors implicated in the axonal transport of tau and alpha-synuclein, J. Cell Sci, vol.118, pp.4645-4654, 2005.

A. Van-der-jeugd, K. Hochgräfe, T. Ahmed, J. M. Decker, A. Sydow et al., Cognitive defects are reversible in inducible mice expressing pro-aggregant full-length human Tau, Acta Neuropathol, vol.123, pp.787-805, 2012.

T. Vanderweyde, H. Yu, M. Varnum, L. Liu-yesucevitz, A. Citro et al., Contrasting pathology of the stress granule proteins TIA-1 and G3BP in tauopathies, J. Neurosci, vol.32, pp.8270-8283, 2012.

T. Vanderweyde, K. Youmans, L. Liu-yesucevitz, and B. Wolozin, Role of stress granules and RNA-binding proteins in neurodegeneration: a mini-review, Gerontology, vol.59, pp.524-533, 2013.

T. Vanderweyde, D. J. Apicco, K. Youmans-kidder, P. E. Ash, C. Cook et al., Interaction of tau with the RNA-Binding Protein TIA1 Regulates tau Pathophysiology and Toxicity, Cell Rep, vol.15, pp.1455-1466, 2016.

E. Van-dijk, N. Cougot, S. Meyer, S. Babajko, E. Wahle et al., Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures, EMBO J, vol.21, pp.6915-6924, 2002.

T. Vanhelmont, T. Vandebroek, A. De-vos, D. Terwel, K. Lemaire et al., Serine-409 phosphorylation and oxidative damage define aggregation of human protein tau in yeast, FEMS Yeast Res, vol.10, pp.992-1005, 2010.

M. T. Vanier, P. Neuville, L. Michalik, and J. F. Launay, Expression of specific tau exons in normal and tumoral pancreatic acinar cells, J. Cell Sci, pp.1419-1432, 1998.

P. Vasudevaraju, E. Guerrero, M. L. Hegde, T. B. Collen, G. B. Britton et al., New evidence on ?-synuclein and Tau binding to conformation and sequence specific GC* rich DNA: Relevance to neurological disorders, J. Pharm. Bioallied Sci, vol.4, pp.112-117, 2012.

M. Vershinin, B. C. Carter, D. S. Razafsky, S. J. King, and S. P. Gross, Multiple-motor based transport and its regulation by Tau, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.87-92, 2007.

M. Violet, L. Delattre, M. Tardivel, A. Sultan, A. Chauderlier et al., A major role for Tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions, Front. Cell. Neurosci, vol.8, p.84, 2014.

V. Bergen, M. Friedhoff, P. Biernat, J. Heberle, J. Mandelkow et al., Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif ((306)VQIVYK(311)) forming beta structure, Proc. Natl. Acad. Sci. U. S. A, vol.97, pp.5129-5134, 2000.

V. Bergen, M. Barghorn, S. Li, L. Marx, A. Biernat et al., Mutations of tau protein in frontotemporal dementia promote aggregation of paired helical filaments by enhancing local beta-structure, J. Biol. Chem, vol.276, pp.48165-48174, 2001.

V. Bergen, M. Barghorn, S. Biernat, J. Mandelkow, E. Mandelkow et al., Tau aggregation is driven by a transition from random coil to beta sheet structure, Biochim. Biophys. Acta, vol.1739, pp.158-166, 2005.

E. Wahle and G. S. Winkler, RNA decay machines: deadenylation by the Ccr4-not and Pan2-Pan3 complexes, Biochim. Biophys. Acta, vol.1829, pp.561-570

Z. Wang and M. Kiledjian, Functional link between the mammalian exosome and mRNA decapping, Cell, vol.107, pp.751-762, 2001.

J. Wang, W. R. Markesbery, and M. A. Lovell, Increased oxidative damage in nuclear and mitochondrial DNA in mild cognitive impairment, J. Neurochem, vol.96, pp.825-832, 2006.

J. Z. Wang, C. X. Gong, T. Zaidi, I. Grundke-iqbal, and K. Iqbal, Dephosphorylation of Alzheimer paired helical filaments by protein phosphatase-2A and -2B, J. Biol. Chem, vol.270, pp.4854-4860, 1995.

X. Wang, D. Wang, J. Zhao, M. Qu, X. Zhou et al., The proline-rich domain and the microtubule binding domain of protein tau acting as RNA binding domains, Protein Pept. Lett, vol.13, pp.679-685, 2006.

Y. Wang, P. A. Loomis, R. P. Zinkowski, and L. I. Binder, A novel tau transcript in cultured human neuroblastoma cells expressing nuclear tau, J. Cell Biol, vol.121, pp.257-267, 1993.

Y. Wang, Y. Zhang, W. Hu, S. Xie, C. Gong et al., Rapid alteration of protein phosphorylation during postmortem: implication in the study of protein phosphorylation, Sci. Rep, vol.5, p.15709, 2015.

Z. Wang, X. Jiao, A. Carr-schmid, and M. Kiledjian, The hDcp2 protein is a mammalian mRNA decapping enzyme, Proc. Natl. Acad. Sci. U. S. A, vol.99, pp.12663-12668, 2002.

S. M. Ward, D. S. Himmelstein, J. K. Lancia, Y. Fu, K. R. Patterson et al., , 2013.

, TOC1: characterization of a selective oligomeric tau antibody, J. Alzheimers. Dis, vol.37, pp.593-602

S. Wegmann, E. A. Maury, M. J. Kirk, L. Saqran, A. Roe et al., Removing endogenous tau does not prevent tau propagation yet reduces its neurotoxicity, EMBO J, vol.34, pp.3028-3041, 2015.

M. L. Wei, A. , and A. , Splicing of a regulated exon reveals additional complexity in the axonal microtubule-associated protein tau, J. Neurochem, vol.70, pp.1346-1356, 1998.

Y. Wei, M. Qu, X. Wang, L. Chen, D. Wang et al., Binding to the minor groove of the double-strand, tau protein prevents DNA from damage by peroxidation, PLoS One, vol.3, 2008.

M. Weingarten, ff A Protein Factor Essential for Microtubule Assembly

A. Wilczynska, C. Aigueperse, M. Kress, F. Dautry, and D. Weil, The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules, J. Cell Sci, vol.118, pp.981-992, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02263136

K. C. Wilhelmsen, T. Lynch, E. Pavlou, M. Higgins, and T. G. Nygaard, Localization of disinhibition-dementia-parkinsonism-amyotrophy complex to 17q21-22, Am. J. Hum. Genet, vol.55, pp.1159-1165, 1994.

C. M. Wischik, M. Novak, P. C. Edwards, A. Klug, W. Tichelaar et al., , 1988.

, Structural characterization of the core of the paired helical filament of Alzheimer disease, Proc. Natl. Acad. Sci. U. S. A, vol.85, pp.4884-4888

C. M. Wischik, P. C. Edwards, R. Y. Lai, M. Roth, and C. R. Harrington, Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines, Proc. Natl. Acad. Sci. U. S. A, vol.93, pp.11213-11218, 1996.

H. Wiseman and B. Halliwell, Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer, Biochem. J, pp.17-29, 1996.

C. W. Wittmann, M. F. Wszolek, J. M. Shulman, P. M. Salvaterra, J. Lewis et al., Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles, vol.293, pp.711-714, 2001.

L. C. Wong, A. Costa, I. Mcleod, A. Sarkeshik, J. Yates et al., The functioning of the Drosophila CPEB protein Orb is regulated by phosphorylation and requires casein kinase 2 activity, PLoS One, vol.6, 2011.

X. Wu and G. Brewer, The regulation of mRNA stability in mammalian cells: 2.0, Gene, vol.500, pp.10-21, 2012.

J. W. Wu, S. A. Hussaini, I. M. Bastille, G. A. Rodriguez, A. Mrejeru et al., Neuronal activity enhances tau propagation and tau pathology in vivo, Nat. Neurosci, vol.19, pp.1085-1092, 2016.

L. Wu, D. Wells, J. Tay, D. Mendis, M. A. Abbott et al., CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of alpha-CaMKII mRNA at synapses, Neuron, vol.21, pp.1129-1139, 1998.

K. Yamada, J. R. Cirrito, F. R. Stewart, H. Jiang, M. B. Finn et al., In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice, J. Neurosci, vol.31, pp.13110-13117, 2011.

K. Yamada, J. K. Holth, F. Liao, F. R. Stewart, T. E. Mahan et al., Neuronal activity regulates extracellular tau in vivo, J. Exp. Med, vol.211, pp.387-393, 2014.

H. Yamaguchi, K. Ishiguro, T. Uchida, A. Takashima, C. A. Lemere et al., Preferential labeling of Alzheimer neurofibrillary tangles with antisera for tau protein kinase, 1996.

, I/glycogen synthase kinase-3 beta and cyclin-dependent kinase 5, a component of TPK II, Acta Neuropathol, vol.92, pp.232-241

H. Yamamoto, M. Hasegawa, T. Ono, K. Tashima, Y. Ihara et al., , 1995.

, Dephosphorylation of fetal-tau and paired helical filaments-tau by protein phosphatases 1 and 2A and calcineurin, J. Biochem, vol.118, pp.1224-1231

A. Yamashita, T. Chang, Y. Yamashita, W. Zhu, Z. Zhong et al., Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover, Nat. Struct. Mol. Biol, vol.12, pp.1054-1063, 2005.

Z. Yang, GW182 is critical for the stability of GW bodies expressed during the cell cycle and cell proliferation, J. Cell Sci, vol.117, pp.5567-5578, 2004.

W. Yang, J. H. Yu, T. Gulick, K. D. Bloch, and D. B. Bloch, RNA-associated protein 55 (RAP55) localizes to mRNA processing bodies and stress granules, RNA, vol.12, pp.547-554, 2006.

Y. Yoshiyama, M. Higuchi, B. Zhang, S. Huang, N. Iwata et al., Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model, Neuron, vol.53, pp.337-351, 2007.

C. Yoshizaki, M. Tsukane, Y. , and T. , Overexpression of tau leads to the stimulation of neurite outgrowth, the activation of caspase 3 activity, and accumulation and phosphorylation of tau in neuroblastoma cells on cAMP treatment, Neurosci. Res, vol.49, pp.363-371, 2004.

J. Yu and M. M. Rasenick, Tau associates with actin in differentiating PC12 cells, FASEB J, vol.20, pp.1452-1461, 2006.

B. Zhang, A. Maiti, S. Shively, F. Lakhani, G. Mcdonald-jones et al., Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.227-231, 2005.

Y. Zhang, V. H. Man, C. Roland, and C. Sagui, Amyloid properties of asparagine and glutamine in prion-like proteins, ACS Chem Neurosci, vol.7, pp.576-87, 2016.

D. Zheng, N. Ezzeddine, C. A. Chen, W. Zhu, X. He et al., , 2008.

A. Chauderlier, L. Delattre, L. Buée, and M. C. Galas, Annexes Contributions scientifiques : In Vivo Hyperthermic Stress Model: An Easy Tool to Study the Effects of Oxidative Stress on Neuronal Tau Functionality in Mouse Brain, Methods Mol Biol, vol.182, pp.89-101, 2017.

Z. Mansuroglu, H. Benhelli-mokrani, V. Marcato, A. Sultan, M. Violet et al., Loss of Tau protein affects the structure, transcription and repair of neuronal pericentromeric heterochromatin, 2016.

A. Chauderlier, M. Violet, L. Delattre, M. Tardivel, S. Chouala et al., Prefibrillar Tau oligomers alter the nucleic acid protective function of Tau in hippocampal neurons in vivo, Neurobiol. Dis, 2015.

M. Violet, L. Delattre, M. Tardivel, A. Sultan, A. Chauderlier et al., A major role for Tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions, Front Cell Neurosci, 2014.