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Abstract

Surface analysis is a challenging research topic, which has gathered a lot of interest
over the last few decades. When surface data is given as a set of points, which
are the typical output of 3D laser scanners, the lack of structure makes it even
more challenging. In this thesis, we tackle surface analysis by introducing a new
function basis: the Wavejets. This basis allows to decompose locally the surface
into a radial polynomial component and an angular frequency component. Stability
properties with regards to a bad normal direction are demonstrated. By linking
Wavejets coefficients to a high order differential tensor, we also define high order
principal directions on the surface. Furthermore, locally splitting surfaces with respect
to frequencies leads us to define new integral invariants, permitting to locally describe
the surface. Such descriptors are quite robust since they result from an integration
process. Finally, we develop an application of these new integral invariants for
geometric detail amplification, either based on point position or on normal direction
modification, creating in this case the illusion of a surface change.

Résumé

L’analyse de surface est un domaine de recherche difficile, qui a été un sujet de
recherche trés actif ces dernieres décennies. Quand une surface est représentée par un
ensemble de points, typiquement issus de scanners laser 3D, le manque de structure
entre ces points rend leur traitement compliqué. Dans cette these, on propose une
méthode d’analyse de surface en introduisant une nouvelle base de fonctions: les
Wavejets. Cette base permet de décomposer localement une surface radialement en
polynoémes et angulairement en fréquences. Des propriétés de stabilité en fonction
d’une mauvaise direction de normal sont démontrées. En liant les coefficients des
Wavejets a des tenseurs différentiels a hauts ordres, on définit aussi des directions
principales a haut ordre sur la surface. De plus, séparer localement les surfaces
fréquentiellement nous amene a la définition de nouveaux invariants intégraux,
permettant de décrire localement la surface. De tels descripteurs sont assez robutes
car ils sont calculés par intégration. Enfin, Nous proposons une application a ces
invariants intégraux pour 'amplification de détails géométriques, soit en changeant
la position des points de la surface, soit en changeant la direction des normales, créant
dans ce dernier cas l'illusion d"un changement de géometrie sur la surface.
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Introduction

En Francais

La présente these se propose d’étudier une nouvelle approche pour la description
locale de surfaces 3D. Plus précisément, nous nous intéressons a caractériser les
dynamiques locales autour de chaque point d"une surface. Cette caractérisation est en
général faite a travers un vecteur de coefficients associé a chaque point, appelé descrip-
teur, permettant de transformer une géométrie locale d"une surface en des quantités
descriptives. Une des difficultés de cette description vient de 1’échantillonnage. En
effet, il n’existe pas de théorie de I"échantillonnage efficace sur les surfaces. Ainsi,
la méme surface peut étre échantillonnée de maniéres treés différentes, sans que
I'on puisse forcément déterminer quel échantillonnage est le meilleur. Il est alors
difficile, voir impossible, de comparer points par points des voisinages locaux en
ne prenant en compte que les positions. Au contraire, un descripteur permet de
condenser un voisinage de points en un nombre fini, constant, de scalaires. Dés
lors, une fois le descripteur calculé en chaque point, il est possible de considérer les
points indépendamment de leur voisinage, puisque ce voisinage est encodé dans le
descripteur. Un descripteur peut caractériser des propriétés tres diverses. Il peut
servir a recaler des surfaces entre elles en comparant directement les descripteurs
entre eux. Mais si la description consiste en des coefficients d'une décomposition sur
une base de fonctions, alors elle permet de calculer des quantités.

Nous introduisons une base locale de polynémes complexes, que nous nommons
les Wavejets, pouvant servir a décomposer localement des surfaces vues sous forme de
champs de hauteurs par rapport a un plan de paramétrisation. Cette base de fonctions
décompose les surfaces localement en séparant 1’évolution radiale de 1’évolution
angulaire. La partie radiale contient des quantités relatives a des dérivées a ordres
élevés, alors que la partie angulaire offre une interprétation fréquentielle de la surface.
Apres I'étude de certaines propriétés de cette base, elle est utilisée pour calculer des
quantités différentielles angulairement orthogonales. Ces quantités peuvent servir
pour 'amplification ou la modification de détails sur la position géométrique ou les
normales des points.

Ce qui suit résume le contenu de chaque chapitre:

Chapitre 1

Ce chapitre développe un état de I’art sur I’analyse locale de surface se divisant
en deux grandes familles: I’analyse différentielle et I’analyse spectrale. Certaines
comparaisons sont faites avec le domaine du traitement d’images, de sorte a montrer
la transposabilité relative de ces méthodes.

Chapitre 2

Ce chapitre introduit la base des Wavejets. Cette base de fonctions est trés proche
de celle des Jets introduits par Cazals et al. [CP05], ainsi que de celle des polyndmes
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de Zernike [Zer34]. Les similitudes ainsi que les différences sont explicitées. Les
propriétés de cette base sont explorées. Nous établissons que des sous-ensembles de
cette base génerent des espaces vectoriels de fonctions notamment /-harmoniques.
De méme, nous explicitons la relation tres nette entre les Wavejets et les dérivées
de Wirtinger [Wir27]. Enfin, la généralisation des vecteurs et valeurs propres aux
supermatrices symétriques proposée par Qi et al. [Qi05; Qi06; Qi07] est mise en
relation avec I'écriture angulaire des Wavejets pour les supermatrices de dimension 2.
Ce chapitre détaille les contributions suivantes:

¢ Une nouvelle base de fonctions pour 1’analyse locale de surfaces: les Wavejets
e Equivalence entre les Wavejets et les Jets ou les polynomes de Zernike

e Interprétation des dérivées d’ordre k sous forme de combinaisons linéaires de
coefficients Wavejets

e Démonstration d"un lien de proportionalité entre les coefficients Wavejets et les
dérivées de Wirtinger

e Etude des supermatrices symétriques de dimension 2 et relation des directions
principales avec le contenu fréquentiel des Wavejets

Chapitre 3

Dans ce chapitre, nous introduisons de nouveaux invariants intégraux. Les in-
variants intégraux sont des quantités intégrales servant a la caractérisation locale de
fonctions ou de surfaces. Les invariants intégraux que nous introduisons généralisent
le Volume descriptor introduit dans [Pot+09], permettant ainsi de quantifier les pro-
priétés différentielles de plus hauts ordres. Chaque invariant intégral est lié a un
ordre n. Par exemple, le Volume descriptor est le cas particulier pour n = 0. Le cas
n = £2 permet d’extraire 1’orientation des directions principales. Une généralisation
de la notion de courbure moyenne et de courbure Gaussienne est aussi développée
dans ce chapitre. Cette généralisation se base sur une écriture des Premiere et Seconde
Formes Fondamentales utilisant les dérivées de Wirtinger.

Ce chapitre introduit les contributions suivantes:

e Définitions de nouveaux invariants intégraux angulairement orthogonaux
o Généralisation du Volume descriptor de [Pot+09]

e Lien entre ces invariants intégraux et les dérivées de Wirtinger

Chapitre 4

Dans ce chapitre nous proposons une application directe des invariants intégraux
introduits dans le chapitre 3: I'amplification de détails géométriques. Deux méthodes
sont proposées. La premiere amplifie les détails en bougeant chaque point dans la
direction normale d"un déplacement lié au Volume descriptor d’ordre 0. Cet invariant
intégral étant lié a la courbure moyenne, on peut ainsi modifier la dynamique locale
de la position des points. La seconde amplifie les détails sans toucher aux positions,
mais en amplifiant la dynamique de 1’orientation des normales le long de la surface.
Pour ce faire, on se base sur les Volume descriptor d’ordres £1. Comme on le verra, la
dynamique locale des normales y est encodée.

Ce chapitre introduit les contributions suivantes:
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e Méthode d’amplification de détails géométriques a partir des invariants intégraux
introduits

e Amplification de la dynamique des positions ainsi que de la dynamique des
normales

e Possibilité de tordre les détails géométriques de fagon cohérente en amplifiant
les normales.






Chapter 1

An overview on local surface
analysis

In this thesis, we adopt a signal processing point of view on surface analysis. This
chapter introduces surface processing tools and recalls some basics of signal process-
ing and how both are related. Signal processing is most used on one dimensional
temporal signals. These signals can be continuous or discrete and regularly sampled.
Signal processing tools can be generalized to spatial signals. Image processing is a
well-studied example of regularly sampled spatial data on which signal processing
routines can almost directly be applied. Surface analysis, on the other hand, because
of the lack of structure in the input data, does not directly inherit all of the nice proper-
ties that are used in image processing. Thus, new tools need to be created to perform
similar filters. In this chapter, we discuss how we define a surface, and review the
most common signal processing tools already existing. Existing implementations of
these tools are discussed in image processing and geometry processing.

1.1 Surface definition

We consider surfaces defined as 2-manifolds embedded in IR®. In the general case,
an N-manifold is a topological space such that there exists a neighborhood around
each point of the N-manifold which is homeomorphic to RY. In our case of study,
surfaces are 2-manifolds such that there exists a neighborhood around each point
homeomorphic to IR?. For each point P of the surface, the Euclidean space attached to
P is called the tangent plane, and the unit vector orthogonal to this plane is called a
vector normal to the surface at P. By convention, we assume that normals are oriented
in a coherent manner over the surface, i.e. the field of normals on the surface is
continuous. Hence, each point P of the surface can feature a local coordinate systems
(x,y,n), where n is the normal at P and (x, y) is an arbitrary direct orthonormal basis
spanning the tangent plane such that (x, y, n) is direct. This local coordinate system
is said to locally parameterize the surface, i.e. one can assign for any (x,y) € R? in
the tangent plane, a unique point Q on the surface around P. If the neighborhood is
small enough and if the map is the orthogonal projection of the neighborhood on the
tangent plane, the normal displacement of such a map from the tangent plane to the
surface is a function f(x,y) = h, which we call a heightfield.
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FIGURE 1.1: Example of a local parameterization of a surface S at
point P

1.2 Differential analysis

1.2.1 Definition

Differential quantities give much information about the dynamics of a geometric
signal. Contour extraction or mean curvature flow are a few quantities which can be
informative.

Derivatives need a coordinate system to be expressed. In this section, we consider
a function f : I C R?* — R parameterizing ) C S, Q2 € C®. Let P € S be the point of
coordinates (0,0) in I. A visual example is shown in Figure 1.1.

Let u be x or y. The derivative operator % applied to f near 0 is defined as follows:

of _ o f(hu) — £(0,0)
5, (0,0) = lim . (1.1)

One can obtain k™ order derivatives by recursively differentiating f in wanted
directions in any order.

ok ok o/ ol ok-i
R (1.2)
x* Iy ox*~1 ay/ oy’ ox~~J
. . . ok
For the sake of simplicity, let us note f.j,; = F]fayj.

Let us assume the local coordinate system is orthonormal. The values of the
derivatives of a surface heavily rely on the choice of the orientation of the coordinate
system (x,y). Such values are not coordinate system invariant quantities on S. Luck-
ily, some non-linear combinations of coefficients of the derivatives of a function can
induce coordinate system invariant quantities. For example, the Gaussian curvature
KC or the mean curvature H are invariant quantities that can be inferred from first and
second order derivatives of f:

_f£2
Kr= M (1.3)

(1+p+p)
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(1 +fy2> fax+ (14 f2) fyy — 2fafyfry
3/2
2(1+ £+ £3)

Furthermore, all the derivatives of f appear explicitly in its decomposition as a
polynomial series called Taylor series:

He= (1.4)

Z Z | |ka /yl(o 0) = ]y] (15)
k=0j= 0

This means that expressing f as a sum of mononomials can be a way to estimate
high order derivatives of f. Taking advantage of this fact, [CP05] used truncated
Taylor expansion (see section 2.1.1), which are named osculating Jets, to do differential
analysis on surfaces.

Let (x,y) be the coordinate system in the plane locally parameterizing S at a
certain point P € S. We call a parameterizing plane at P a plane spanned by (x, y)
passing by P endowed with a coordinate systeme such that P has coordinates (0, 0).
Let z = x A y where A is the vector product. The tangent plane 7 (P) at point P is
spanned by the two unit vectors (x7,y+) expressed as follows in basis (x, y, z):

271+ £2(0,0)2 = (1,0, — £(0,0))
yr\/1+ fy(0,0)? ,—fy(0,0))

The vector n = x7 A y is the normal of S at point P. Note that if the parameteri-
zation plane is the tangent plane at point P, n = (0,0,1) in local coordinates. As a
consequence, the first derivatives of f are equal to zero.

(1.6)

1.2.2 Convolution-based differentiation

In the definition of differentiation given in last section, there is no notion of scaling.
One might want to introduce scaling in the variation computation. Convolution
appears as a flexible tool to address scale issues. Blurring $ will annihilate small,
fast varying details, and give the possibility to characterize the surface at scale s.
In the case of a discrete noisy surface or function, blurring helps to get more stable
quantities. Let us first recall the convolution product * given a kernel K and a function
f, both Lebesgue-integrable:

(N = [ [ K=y —o)fu,0)dudo (17)

Kernel K can have many properties depending on what kind of filtering one wants
to do. Let us restrict for now to isotropic 2D Gaussian kernel G of standard deviation
o

- 1 x2_|_ 2
G’ (x,y) = 752 P <— 2(72y ) (1.8)

Since G is a distribution, lim,_,0 G” = ¢, the Dirac distribution. The property
(K f) gy = Kyjyi * f = Ko fue i, yields:

far iyl — hm ka iy * f (1.9)
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A direct consequence is that convolving a function f with the derivatives of a
Gaussian function gives a way to approximate the derivatives of f at a scale ¢. This
allows to control at which scale the local dynamics of f are quantified. More evolved
kernels K can be imagined. For example, an anisotropic Gaussian function can be
used to have a finer approximation of the variations in a chosen direction.

Convolution is a straightforward operation in the case of a grid sampled function.
This is the case of 2D images. Given a square regular grid sampling pattern III, the
discretization f|ir of f can be convolved with a sampled kernel K1 through matrix
convolution. If I1I is finite, boundary conditions need to be added to compute the
discrete convolution:

V(x,y) € I, (K * flm) (x,y) = ( ; K(x —u,y —o)f(u,0) (1.10)
u,v)elll

Irregular sampling patterns = are much harder to deal with. A common way to
deal with it is to use an interpolator function Z to estimate a continuous function
function f = Z(f|z). Then, f is resampled on a regular pattern I1I. The choice of 7
is important and errors are mainly induced from it. Another solution to deal with
irregular samplings is to weight each term of the sum in equation (1.10) by the area of
the Voronoi cell in the sampling space of the corresponding point in sampling pattern
E. Let Az(x,y) be the Voronoi cell area of point (x,y) € E. Given proper boundary
conditions avoiding infinite Voronoi cells, an estimate of the convolution product is
given by:

V(x,y) €& (Klz* f

=) (vy) = ), As(uo)K(x—uy—o)f(uo)  (111)

(u,0)ed

1.2.3 Integral invariants

Performing a convolution on a surface is not straightforward because of the data
structure. It is not possible to take a point set or a mesh as is and perform a convolu-
tion with a matrix. Furthermore resampling regularly the function to take derivatives
is error-prone. [Man+04] introduced integral invariants. An integral invariant is an
integral quantity computed locally around a point on a surface. They produce more
stable results because of the integration process, which is also present in convolution-
based differentiation. Integrating a signal corrupted by a centered noise gives a
noise-free quantity.

The main difference between integral invariants proposed in the literature and
convolution is the use of a binary mask in the case of integral invariants. Indeed, an
integral invariant can be seen as the convolution of the signal with a window function
of amplitude 1. One of the integral invariants proposed by [Pot+09] is obtained by
computing at each point of the surface the volume of the intersection with a ball and
the interior of the surface (see figure 1.2). Links to mean curvature is shown in this
particular case. For example, the integral invariant V(P) illustrated in figure 1.2 has
the following form given a ball of radius r:

27 mH
_ 3 T

V(P) 3 1

+0(r) (1.12)
Where H is the mean curvature.

Using a ball here permits to be robust. Using the volume between the surface
and a parameterization plane induces a bias due to the multiplicity of possible
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FIGURE 1.2: Illustration of an integral invariant being the volume V
of the intersection of a ball with the interior of a surface S centered at
point P € S.

parameterization planes at a point. Such integral invariants would require stability
properties w.r.t. the parameterization plane orientation.

1.3 Spectral analysis

Spectral analysis is a powerful tool of signal processing. The idea is to project the
temporal or spatial function into a frequency space. The most widely used spectral
analysis tool is the Fourier Transform, which splits any signal in a sum of cosines
of different frequencies. Fourier space has an interesting property: multiplication is
equivalent to convolution in the origin space.

1.3.1 Continuous periodic signals

Continuous spectral processing has applications in many fields, such as hologram
creation, MR, electronics, radio waves, etc. Given a continuous (X, Y)-periodic
function f defined on R?, its Fourier series is:

flx,y) = Z Z Fume® (+T) (1.13)

N=—00 M=—0o0

Each coefficient ﬁz,m has the following expression:

Y X
z L[z [z —2mi(E )
Jom = 35 / / flx,y)e T dxdy (1.14)
XY JoyJ-x

This enables to filter f by operating on the coefficients of £, i.e. on the frequency
components of f. Reducing low frequencies tends to blur the signal, while amplifying
high frequencies tends to amplify fast varying components of the signal. Fourier
series function basis is orthogonal and thus allows one to independently compute
any Fourier coefficient by projection with the following inner product on function
space .Z%(C,C):

(f.8) / / Fx,v)g" (x, y)dxdy (1.15)
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As shown in equation (1.15), the spectral decomposition of the signal is performed
on the whole function f for each frequency. This makes it a global procedure on
the signal which fails at extracting spatially localized properties in the signal. An
exception to that restriction is phase congruency, which evaluates how much all the
frequency components of the signal are in phase at each position. Near edges in
the signal, a lot of components are in phase, which makes phase congruency PC(t)
a very robust quantity for extracting edges in a signal. The counter part is that its
computation is tedious:

PC(X, y) = sup Z:zozfoo 2210:700 fn,meZm(nT-i-my)

oS} 0 F (116)
(%) Zn:foo Em:foo fn,m

1.3.2 Discrete uniformly sampled signals

The Fourier series coefficients can be computed on uniformly sampled signals by
directly projecting the signal on each Fourier basis element with the discrete inner
product defined on .#%(C, C):

(f,8)m =Y figi (1.17)

(elll

Given III = {(x,y) € N?|x < X,y < Y}, the Discrete Fourier Transform of
f‘LH = {fx,y‘(x,y) S U_I} is:

fam= 0 fuge T (L.18)
(xy) €Ll
This transform is invertible:
1 P omi(nE4 )
fx,y = Z fn,me XY (1.19)
card (IIT) (eI
Basis (ezm'(%+%y)>( Jel is orthogonal w.r.t (.,.)ir. The complexity for com-
n,m)e

puting all coefficients of the Fourier series of a signal fii1 of N samples in a naive
way is O(N?). The Fast Fourier Transform (FFT) algorithm reduces the complexity to
O(Nlog N). The FFT is widely used in image processing.

1.3.3 Discrete non-uniformly sampled signals

When f is non-uniformly sampled with a sampler 5, spectral analysis on fz is not
so straightforward. Direct projection on the Fourier series basis element is not guar-
anteed to work anymore. It is difficult to have small error bounds on the estimation
of the coefficients. A commonly used tool to determine whether Discrete Fourier
Transform can be applied or not on a set of samples is the Fourier Frame which:

2mi(5+Y)

Ix Ly

Let (e/)ren = s.t. (7, 7) € Z? be a sequence of complex

teN
functions. Given H a Hilbert space, such a sequence is called a Fourier Frame if and

only if:
3(A,B) >0, Vf € H, Allf|> < ) (fe) <BIfI? (1.20)

leIN
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In the case of uniformly sampled signal, A = B = 1 and the Fourier Frame is
called a tight frame and equation (1.20) becomes the Parseval equality. A and B can be
bounded if each ¢, is weighted by the squared root of the area of its corresponding
cell in the Voronoi diagram of the set (e;)/cny seen as points of R?, and if the local
sequence density near each ¢y is larger than 1;7712 Sadly, even if A and B are bounded,
the induced error can be too big to be negligible. For further development, the reader
can refer to the work of [Mil15].

Non-Uniform Fast Fourier Transform (NUFFT) is another existing method to
estimate the spectrum of non uniformly sampled signals. They rely on a fast inter-
polation method of sampled points to regular grid. [DR95] propose to interpolate
points using Gaussian weights. [Bey95] use a multi-resolution analysis. The results
with best bounds are obtained by [Liu1998] with Regular Fourier Matrices, a class
of matrices they introduced. The accuracy of such methods highly depends on the
interpolator resampling the signal.

1.3.4 Spectral analysis on manifolds

Spectral analysis can also be done on functions defined on a manifold. The key to
defining an extension of Fourier series basis to manifolds was studied by [Tau95]
who noticed that Fourier basis are the eigenfunctions of the Laplacian operator A.
Given the one dimensional T-periodic Fourier basis function (ezninTt Jnez, the proof is
straightforward:

2mitt N2 oin
s (2nT) o2 (1.21)

Fourier basis functions being the eigenfunctions of the Laplacian operator A
means that if one has a definition of this operator on a manifold S, extracting its
eigenvectors gives a Fourier-like basis on S. Those eigenfunctions are called manifold
harmonics. The signal defined on the manifold can be any scalar or vector valued
signal but using 3D coordinate will permit to filter the shape itself.

The Laplacian operator on a Manifold S is called the Laplace-Beltrami operator As.
In order to define it, the differential operator V on manifold is needed. Given V the
gradient operator and div the divergence operator, the definition of A is as follows:

Asf = div(Vf) (1.22)

Given (Hy)qen the set of eigenvectors of Ag, computing the Manifold Harmonic
transform f of a function f : S — C is done by projecting f on each basis element H,:

fu = (f, Hy) (1.23)

Discretization of the Laplacian operator for manifolds surface meshes of n points is
not an easy task. [War+07] showed that it is impossible to construct a discrete Laplace-
Beltrami A = (w;)(;jy<n Operator satisfying simultaneously the four properties
concerning the weights w; ; in the matrix representing the discretized operator:

Symmetry: Wi = Wi,

Locality: w;; = 0 if i and j do not share an edge on a mesh

Linear precision: }; w; j(x;) = 0

Positive weights: w;; > 0
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This implies that there is a variety of different definition of the discrete Laplace-
Beltrami operator. Let us give some examples. A combinatorial Laplacian on a mesh
is an adjacency matrix. [Zha04] studied some of them, but it has been shown by
[Mey+02] that this definition is only correct on uniform sampling. Various weighting
schemes were proposed to estimate a Laplace-Beltrami, leading to weights making
spectral processing be mesh-independent [VL08]. Actually, this whole trend is related
to spectral analysis of general graph [Big74], but the way the Laplacian is discretized
takes into account the geometry. If the surface is given by point sets, a way to define
the Laplace-Beltrami operator on point sets is to create an adjacency matrix, each
edge being weighted by a Gaussian kernel of the distance between the points and the
area of triangles computed out of a local Delaunay Triangulation.

1.4 Local spectral analysis

Spectral analysis, as it is defined with Fourier series, defines quantities depending on
the whole function f. The projection of f on the space of Fourier series expresses f
depending only on frequencies (¢, v). Having a space where both spatial and spectral
quantities can exist together was a missing piece in signal processing. Solutions for
treating both temporal and spectral quantities exist in nature. Indeed, when someone
listens to music, both temporal (the rythm) and spectral (the notes) aspects are
processed at the same time by our ears. There has been many attempts linking them,
leading to ill-formed solutions, until the revolution of the Wavelet basis [GGM84]. A
review on spectral processing using Wavelets can be found in [Mal99]
A temporal signal ¢, is a called Wavelet, if and only if:

/_Z¢(t)dt —0

(1.24)
/_oo [ (t)|*dt < oo :

Bases of Wavelets are built from a mother Wavelet ¥. Given ¥, a wavelet family
5,7 is defined as follows:

orl) = ¥ <t - T) (1.25)

s is called the scale of the wavelet and 7 is its position. This writing offers a
multiresolution expression of a signal. Such wavelets family are orthogonal. Thus,
given a wavelet basis 5 ¢, a function f can be projected in the space generated by this
wavelet basis:

for = {frs0) (1.26)

Wavelets can be easily computed on a regularly sampled discrete signal and are
much used in image processing to extract textures or to do compression. There is not
much successful implementation on manifolds, with the exception of lifted Wavelets
[SS95] and the bandelets generalization [PMO05].
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Chapter 2

The Wavejets basis: definition and
propetrties

2.1 Overview

This chapter introduces a complex polynomial basis for local surface analysis which
we call Wavejets [BDC18]. The surface is locally expressed as a heightfield over
its tangent plane, which is decomposed on our function Basis. The Wavejets basis
gives an angular frequency interpretation to high order derivatives of a surface. In
particular, we show that a subset of this basis spans a vectorial space of /-harmonic
functions with the Wirtinger derivatives [Wir27]. We also link the Wavejets coefficients
to the eigen decomposition of symmetric supermatrices, which was studied by [Qi05;
Qi06; Qi07]. This basis will then be used in chapter 3, splitting it by frequency in
order to construct new integral invariants [Man+04; Pot+09]. Let us first introduce a
few notations and hypothesis concerning the type of surfaces studied in this work.

Let K = R or K = C. Let S be a surface and P be a plane passing by some point
P € S such that the angle difference between P and the tangent plane at P is small
enough. Let (x,y) be an arbitrary direct orthonormal basis spanning P, such that
the coordinates of P in this plane are (0,0). Given a radius R € R**, let Dg C R?
be a disk of radius R centered at (0,0). Let .#(Dg,K) be the set of continuous
functions f : Dr — K. Given ¥ (Dg, K) the vector space of K times continuously
differentiable functions f € .% (Dg, K), let B be a set of linearly independent elements
in .7 (Dg,K) and .Z73(Dg,K) C .#(Dg,K) be a vector space spanned given a basis
B. If B is a family of K times derivable functions, then Z5(Dg,K) C X (Dg, K).

Let S € . be a surface as defined in chapter 1. Let (O C S be a compact subset of
S such that for a radius R, there exists a function f € . (Dg, R), mapping Dr to Q
such that VQ € (), the coordinates of Q can be locally written as (x,y, f(x,y)). Let
P € Q such that P is mapped to the center of Dg. Let .#X be the set of surfaces S such
that all functions f € .# (Dr — R) representing the heightfield between the tangent
plane at each point P € S and the surface S are K times differentiable, i.e. f € €. IF,
in addition, f € .Z3(Dg,R), the decomposition of f € .Z3(Dg,R) in basis B yields
a set of coefficients. Each coefficient of such a decomposition holds information on
f, and consequently on S at point P. f is a parameterization of () with respect to
Dr. Since f is bounded on a compact, f is in the space of square-integrable function
£?(Dg,C) from Dr C R? — C. In this chapter, we will also use the standard inner
product on .Z(Dg, Q).

(8= [ g (o w)dyds @1
(xy)€DR

If B is orthonormal, the decomposition on B can be used to define a distance
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between functions of .73 (Dg, R) by considering the Euclidian distance between the
coefficients of the decomposition. For example, [Max+11] used Zernike polynomial
basis, an orthogonal polar polynomial basis, to do local shape matching by computing
distances between the local decompositions of surfaces at distinct points. In some
other cases, non-orthogonal basis can be used if its elements express properties.
Cazals et al. [CP05] used a basis giving direct access to high order derivatives of f at
(0,0). Given an positive integer K, this basis is the bivariate canonical polynomial
basis of order lower than K, which they called osculating Jets. A method is proposed
to estimate the Jets decomposition of a surface S on a point P € S. One can show
that Jets coefficients are proportional to derivatives of f at (0,0). They can be used to
approximate with a high precision the normal and curvatures of S at P.

2.1.1 Jets fitting

[CPO5] introduced the Jets, which are truncated bivariate Taylor expansion. They
can be used for normal as well as curvature estimation. The Jets basis of order K is
the family formed out of the bivariate monomials of total order lower than K. Given
R eR™™and (j,k) € N2,0 < j < k <K, we note:

D — R
J . R o
€ (xy) — xk_]y] (2.2)
The function basis of the Jets of order K € IN is the following:
B§:{ ,ij,j\(j,k)eNZandogjgkgK} (2.3)

B§ spans the function space:
FX(Dy,R) = { fe %“(DR,]R)‘ Wk €]K, o[, V) € [0,K], fys 1y = o} (2.4)

A function f € #X(Dg, R) approximating a local heighfield around a point P in
a surface S can be decomposed in the Jets basis as:

Kk o
fay) =YY Jij Ty (2.5)
k=0 j=0
With Ji_;,; the coefficient corresponding to e,‘i I The cardinal of B§ is W

Let ] be the vector of coefficients J;_;; sorted in the same manner as function basis
e{ . Let us give the following definition for J given f € .#?(Dg,R) :

2
(2.6)

J = argmin
J

K k
f-) Z]k*]'r]'elg—j,j
k=0 j=0

Where ||f||> = (f, f) is the squared norm of f following the canonical inner
product of #?(Dg,R). If f € FK(Dg,R), each coefficient Jj—;j is proportional to
the corresponding derivative f.«,;(0,0). If f is K times continously differentiable,
which we write f € ¢K (DR, R), [CP05] showed that each coefficient retrieved with
equation (2.6) is such that:

1
Je-jj = mfxmyf(&o) +o (RK‘k) 2.7)
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Equation (2.7) highlights a major interest of computing Jets out of a neighborhood
on a surface: it permits to compute highly accurate differential quantities given a
high order K. Given a surface S € .#X, given a parameterization plane P passing by
P € S, [CP05] proposed a method to retrieve an accurate tangent plane 7 at a point
P out of estimated Jets. The tangent plane can be estimated from Jets computed w.r.t.
P with a precision depending on the order K of the Jets.

This description is however limited to the continuous domain. In practice, when
given a point set surface, if N points P, sample () C S, noting (x4, ;) the coordinates
of Py in a local orthogonal basis of P, and h, the heightfield orthogonal to P between
P and the surface S, Jets can be computed by linear regression. Given the vector
of heights H = (hy) ey, let Mf be the matrix whose coefficients are the values of
each function basis at position (xg, yy). J is computed by solving:

J = argmin |aafy — 28)

Jets are particularly useful to compute high accurate differential quantities. On
the contrary, they are not well suited to build local surface descriptors because Bf
is not orthogonal. The choise of the basis vectors (x,y) in P is also an issue since |
varies a lot depending on the parameterization orientation.

Remark 1. Given a neighborhood of cardinal N, if the chosen Jet order K is such that
(KLZ(KH) > N, then the system is underconstrained. Thus, the precision of differential
quantities of order k that can be computed using osculating jets is bounded by the local point

density.

2.1.2 Zernike polynomials

Zernike polynomials are complex polar polynomials defined on the unit disk D
introduced by [Zer34]. The family of Zernike polynomials of order lower than K is
orthogonal w.r.t. the inner product (f,g) = Ozn fol f(r,0)g*(r,0)rdrdf. They were
introduced to model efficiently lense optical aberrations. Each function in this basis
has a specific name related to a class of optical aberration. They were later used to
characterize 2D shapes in image processing [KH90; Lia93] as well as for 3D shapes
[NKO3; Max+11].
Let us define for (n,m) € Z x N a radial polynomial R, ,, defined on [0, 1]:

L (CDim )y
R (=Y - ‘ . j 2.9
0= B = = -

With R,,, = 0if n and m do not share the same parity. Given the function:

z [0,1]x[0,2nr] — C

en,m . (}’, 9) — Rn,m (r)eine (210)

We note BX the basis of Zernike polynomials of order lower than K:

n,m

Béz{ez ‘(n,m)EZx]Nand]n\SmgKand\m—n\EO (modZ)} (2.11)

There exists a linear map between BX and B§ restricted to functions defined on
the unit disk, as we will show in section 2.2.2. Given f a function in the vector space
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spanned by the Zernike polynomials of order lower than K, f can be expressed in
polar coordinates as follows:

K

f(?’,@) = Z i Zn,mRn,m(r)eins (2.12)

m=0n=—m

Given a parameterization plane P parameterized by an arbitrary direct orthogonal
basis (x,y), the magnitude of coefficients Z, ,, € C is invariant w.r.t. the choice of
the basis. This is a nice property which allows to build a local descriptor being
invariant to the choice of local parameterizations. However, such a basis does not
give a straightforward access to any differential quantities. This can be problematic
because even if the magnitude of the coefficients are rotation invariant w.r.t. the
choice of basis (x,y) within P, they are not invariant w.r.t. the orientation of P in the
ambient space IR?, i.e. the choise of the normal to P.

Zernike polynomials can be computed by regression in the same way Jets are, or
by interpolating sampled points P € S on a regular grid and then directly projecting
on B§ with a Discrete Fourier Transform-like algorithm [Max+11]. The interpolation
step could be alleviated by extending the work of [Mil15], who developped a method
for applying Fast Fourier Transform algorithm to irregularly sampled data with a
bounded error. To do so, a Voronoi diagram is computed on the samples positions,
and each sample is weighted with the squared root of the area of the corresponding
voronoi cell when computing the Discrete Fourier Transform. Even if this work does
not directly apply to Zernike polynomials, a similar approach might give similar
bounds on the estimation.

2.1.3 Angular Fourier series and differential analysis

While Jets are arranged by derivative order k and cross-order j, Zernike polynomials
are arranged by an angular frequency n and orthogonal radial polynomials. This
gives the intuition that derivatives of order k can be mapped to certain angular
frequencies of order n. Decomposing local functions using Fourier series seems
natural since the angular signal is periodic by construction.

Some approaches have tried to link differential quantities with local angular
frequencies. [MT98] first introduced a frequency interpretation of the local variations
on a surface. Given known principal curvatures, they construct a local descriptor
which is named second order smoothness operator. 1t is defined as the integral over a
circle of the square of Euler’s curvature formula. In order to derive a closed form
for the second order smoothness operator, the second order polynomial is written in
polar coordinates and linearized to angular cosines using Euler’s formula. A similar
process is proposed to define a third order smoothness operator. Following this work,
[JS10] proposed to interpret third order derivatives of a surface as Fourier series
coefficients. Given a surface locally of order 3 estimated along a circle in the tangent
plane, the Fourier coefficients of frequency 1 and 3 of this signal can be directly
mapped to third order cross-derivatives of the surface. Hence, a one dimensional
signal around a point is sufficient to extract high order derivatives. Unfortunately,
if the surface has locally a non negligible 5% order, this property does not hold.
As we will show in chapter 3, the errors in the estimation of 3™ order derivatives
out of the Fourier decomposition of the surface along a circle in the tangent plane
is in O(R?), where R is the radius of the circle, as shown in our work in [BD16].
Another limitation of this method is that one needs to be able to estimate the surface
accurately along a circle in the tangent plane, in order to compute a Fourier Transform.
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Interpreting high order derivatives as Fourier coefficients is interesting since it makes
the orientation of the local tangential parameterization irrelevant. Indeed, a rotation
in the parameterization plane around its normal is equivalent to a shift in the phase
of Fourier series coefficients. [BD16] extend the work of [JS10] by directly expressing
all derivatives of smooth surfaces S € .# as Fourier series coefficients coupled with a
Vandermonde matrix inversion. The surface is locally sampled on concentric circles.
Fourier series coefficients are computed on each circle.

In the next section, we introduce the Wavejets: a local function basis giving a
frequency interpretation of high order derivatives,interpreting surface derivatives as
angular frequencies. Even if the Wavejets denomitation was first used in [BDC18], we
tirst discovered them in [BD16]. Links with the Jets [CP05] and Zernike polynomials
[Zer34] were discovered afterwards. The strong relationship between Wavejets and
Jets should make the reason for their naming obvious. The last part of next section
focuses on importants links between the Wavejets and differentiation operators called
the Wirtinger derivatives [Wir27], which will be found quite useful when writing
equations involving the Wavejets.

2.2 The Wavejets basis

The idea behind the introduction of the basis is to mix properties of both Jets and
Zernike polynomial basis. Wavejets are polar polynomials whose radial parts contain
differential information while being angularly orthogonal. Wavejets thus inherit from
accuracy properties of differential quantities from osculating Jets. We will show that
Wavejets are useful in surface analysis. Moreover, we show how a local Wavejet
decomposition on a surface can be used to compute high order principal directions,
using the framework of [Qi05; Qi06; Qi07] on tensors and supermatrices.

2.2.1 Definition

Given the following functions for R € R™*:

o  [0,R]x[0,27] —

ek,n . (1,, 9) — rkeine (2'13)

We define the Wavejets family as follow:

K __ D
B@ - {ek,n

(k,n) e NxZand [n| <k<Kand |k—n| =0 (mod 2)} (2.14)

Figure 2.1 illustrates the first elements of the Wavejets basis. Since it would be
difficult to visualize a surface decomposed in complex parts, positive and negative
frequencies are bound together. The phase of the coefficient for those function basis
for frequency n yields which angular direction the surface outlined by positive
and negative frequencies of same order points to, while the module tells about the
magnitude of the wave.

Property 1. The Wavejets family forms a basis of the space of functions f : [0, R] x [0,27t[—
R.

Proof. Given a polar coordinate system (7, 0) in the plane, the family of radial mono-
mials ()cepo kg for 7 € [0, R] is a basis of radial polynomials for any K € [0, co]. The
family of exponential monomials, also known as the Fourier series basis (¢"?) In|<K
for 6 € [0,27[ is also a basis of complex functions for K € [0, o]. One can span a
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Bi1+ By, B33+ B3 3

FIGURE 2.1: First elements of the Wavejets basis. Positive and negative
frequencies of elements of same order are bound in order to be able to
be visualized.

subspace of the real functions vector space .Z ([0,27[,R) with this basis if all the
coefficients bound with n equal the conjugate of the coefficients of —n for |n| < K.
Noticing that the Wavejets family is a subset of the cartesian product of those two
first basis, the Wavejets family is a basis of real polar functions on a disc of radius R
centered at the origin of the polar coordinate system. O

Decomposing a function f in BY on this basis yields:

Z Z Op "™ (2.15)

=0n=—k

Each coefficient ¢y ,, is said to be of polynomial order k and of angular frequency 7.
Wavejets inherit differential stability properties from Jets and angular orthogonality
from Zernike Polynomials as we will see in the next section.

The cardinal of BY is W This can be deduced from the formula of the
sum of an arithmetic sequence given in equation (2.15).

Similarly to the definition given Jets in section 2.1.1, given a function f € FX and
a disk U of radius R, the vector of coefficients ¢ has the following definition:

2

¢ = argmln (2.16)

f Z Z ¢knekn

=0n=—k

Where ¢ is a vector of coefficients ¢k, sorted in the same manner as the corre-
sponding basis functions ek I f ¢ 7K, then the decomposition yields an approxi-
mation of f on BX.

2.2.2 Links with Jets and Zernike polynomials

Property 2. There exists a linear mapping from Wavejets coefficients to Jets coefficients
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Proof. Let us begin from the Jets decomposition of a function f € .#X(Dg,R) and
then write it in polar coordinate s.t. (¥ cos,rsinf) = (x,y):

K k
y) =) Z]kfj,jxk_]y]
k=0=0
Kk ka j / 0 0)
_ Z Z Jak-iyi\Yr V)

== (k=)
kka,yJOO)

—iz

k=0j=0

ki]‘yj

XY ki cosk T 9r sind 0

Kk -
=) rk ) ka,y,(();(')) cos* 7 9sin/ 0
= = k=Y
ko fokO*/'yf (0/ 0)

_ 2 2k02

ko—=0
2ko+1 -
1 p2kotl Oz: MCOS%H ]951n]0>
0 —

cosZ0=7 0 sin/ 9

j=0
1 5] 2ko+k 0,0
— Z Z 2ko+ky Zp fx;k0+kpk]y]( . ').' cos?otkr=7 g sin/
kp=0ko=0 j=0 (2ko + kp — j)!!
K
_ t 5] ok, Zkgkp fxzk0+kp—/‘yj(0,0)
Ky =0 k=0 =0 (2ko + kp — j)!j!

0
x ) <aj,2k0+kp,2no+kp cos(2ng + k)0

Tl():O
+ bj,2k0+kp,2no+k,, sin(2ng + kp)9>

f k—j /(O/ O) k .
: 7)&{ i i Zo (ajfn cOs N6 + by, sinnb)
=0 = (1K) %2=0

K k . 0,0
=Yy Y Z{; W (ajn cosnb + by, sinnb)
]:

K k
=Y Y *(Rel¢x,) cosnb + Im(¢y,,) sinnb)

k=0 n=-—
(n+k)%2=0
K k
— 2 E ¢k rkelnﬂ
k=0 n=-—

(n-+k)%2=0

Where ¢y, € Cs.t. ¢, = ¢f . n and k share the same parity everywhere since
if k is odd (resp. even), the decomposition of cos*~/ @ sin/ § will only make odd (resp.
even) frequencies appear, as we will show in the following. To simplify the final
expression of last equation, recall that ¢ , = 0 if k and n do not share parity, which
allows us to remove the constraint (1n + k)%2 = 0, which is unnecessary.
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ajkn and b, are the coefficients of the linearization of power of cosines using
Euler’s formula and Newton’s binomial, which we derive in the following part of the
proof. Let us give an explicit expression for a and b by linearizing power of cosines:

ko
2ko+ky—i 0 eini i
CcOos o+kp J@sin/ 6 = Z <aj12ko+kp,2no+kp COS(21’10 +kp)9 +bj/2k0+kl"2”0+kp Sln(zno +kp)9>
1’10:0
i0 —io N 2kotkp—j —igNJ
IV e +e
cos?0 k=7 g sin/ g = <2> < >
2ko+kp—j
_ 1 Z 2k0+k -7 p—i(2ko+kp—j—11)8 ,—il10
52ko+kp—j =
-

1 b (] i(i-k)o,—iL6
" <(2i)jzzzo(_1) <lz>e ]

kotky— .
_ 1 Oi T2k + ky —j p—i(2ko+ky—j—211)6
22ko+kpfj | i

1=0 1

« ((211')]' li =0 (1]2) ei(j212)9>
=0

2kot+ky—j i ) )
= # UZP ! i (_1)12 2ko +kp -] ] o2iko+ky—li—1)0
22k0+kpi] A ll lz

L=0 L=
2o+ N
_ 2klk ] OZP< Y (1 <2ko+kp—]) (])) pi(2Ko-+y ~21)6
220l 55\ e h 2

2k, k
1 ot

- - i(2ko+ky,—21)0
22ko+kp 4 ZZO C1,2ko+kp,j€

1 2ko+kp

_ i(2kg-+h,—21)0
22ko+kp j2jo+]p Z;J L2ko+kp,j
1 2k0+kp
_ i(2ko-+k,—21)0
= — E Cl 2kn+k, i€ P
220tk (—1)jo e Aotke]
1

1=0
2ko+kp

_1)joifp l;:) Cl2ko+kp,j ( COS(2k0 + kp — 21)9

- 22k0+kp

+isin(2kg 4k, — 21)9)

. . . . k_ / .
Where] = 2]0 +]p and C(l/ k,]) - Z114-12:1(_1)12 < I ]> <l]2> ’

Last equation states that if j is odd, since cos"/@sin/ § € R, this expression is
necessarily a sum of sines. If j is even, then it is a sum of cosines. a(j, k, n) and b(j, k, n)
are the coefficients in front of every coefficient of frequency 1, so they depend on
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c(1,k, j) and values of a and b can be deduced depending on the parity of j:

1

A2jo 2ko+kp2n0+ky, = ARk Ao Cl,2ko+k,,2j
Jo R oy 22k0+kp(_1)]0 2k0+kp_2122710+kp e

1
= 22k0+kp (_1>]0 (Cko—no,Zko-l-kp,ng + Ckg+no+kp,2kg+kp,2jo)

A2jy+1,2ko+k, 2n9+k, = 0
1 2.17)
ﬂZj(),Zko,O — 22k0 (_1)]0 Ck0,2k0,2j0

bajy 2k +ky 2m9+k, = 0

1
b2j0+1,2k0+kp,2ﬂo+kp = 22k0+kp(71)j0 < ko—no,2ko+kp,2jo+1 — Ck0+no+kp,2ko+kp,2jo+l>

bjy+1,2k,,0 = 0

We showed the closed form expression for 4;,; and b;; and that:

£ fiy(0,0)

4)k,n = Z

= =y ik + ibjkn)

. (2.18)
=Y Jiejj(ajpn +ibjjn)
=0

We thus expressed the linear application mapping Jets coefficients to Wavejets
coefficients. O

A direct consequence of Property 2 is that B spans .ZX(Dg, R). Let us now link
Zernike polynomials and Wavejets.

Corollary 1. Zernike polynomials and Wavejets on the unit disk are linearly mapped.

Proof. Each element from the Zernike polynomial basis is a linear combination of
monomials of order m times complex exponentials of frequency n with n and m
always sharing parity. In other words, Zernike polynomials are directly written as
linear combinations of Wavejets. O

An important osculating Jet property can now directly be applied to Wavejets
coefficients: Given a Wavejet decomposition of a local heightfield estimated for an
order K, the error of coefficient ¢y ,, is in o(RX=F).

Corollary 2. Given f € €% in a neighborhood of radius R centered at (0,0), given ¢
the Wavejet decomposition of infinite order and ¢ the projection of f on FX(Dg,R) in the
Wavejet basis:

o fc 9K(DR,]R) <~ Z}If:o Elr(z:—k ‘Pk,nef,n =f
o f€GK(DR,R) = i = 9, +0(REH)

Proof. e Since B(I; spans .ZX(Dg,R), if f € FX(Dg, R), the Wavejets decomposi-
tion ¢ , of f is exact.

e Since coefficients ¢y, of a Wavejet of order K are linear combinations of co-
efficients J;_;; of a K-jet, equation (2.7) is applied to Wavejets. Note that the
derivative f,«j,k(0,0) can be exactly derived from coefficient Ji_;; of an co-Jet.

O
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ka
oxk=iogyl

directly deduced from the proof of Property 2.

The distribution of cross-derivatives

in Wavejets coefficients ¢ , can be

Corollary 3. If k and n share same parity:

fx"*f
Re(¢xn) = Z (k_]')y|]| jkm
e o (2.19)
I 4) = Lb ;
() = X = i

Moreover, Re(@x,) (resp. Im(@y)) is a linear combination of f.,; restricted to j even,

(resp. odd).

Proof. If j is odd (resp. even), a(j, k,n) = 0 (resp. b(j, k,n) = 0) (refer to equation
(2.17) from proof of Property 2). O

2.2.3 Wavejets for surfaces

Given a surface S € .7K, the Wavejets decomposition ¢ of functions f € #X(Dg, R)
encoding the local heightfield between a parameterizing plane P passingby P € S
have a few interesting properties. For example, ¢po = f(0,0) = 0 by construction.
Coefficients ¢; 11 yield a direct link between the tangent plane 7 (P) and P. More
precisely, if P = T (P), then ¢; +1 = 0.

Property 3. Let S € 7K. Let f € FK(Dg,R) be the local height field between S and a
plane P passing by a point P € S in an arbitrary direct orthonormal basis, expressed in polar
coordinates in the tangent plane. Let T (P) be the tangent plane at P. Let ¢ be the Wavejets
decomposition of f of order K defined by equation (2.16). If P(P) = T (P), then:

$141=0 (RK_1> (2.20)

Proof. Using equation (2.19), it is straightforward to show that ¢ 1 + ¢1,_1 = J10 and
that ¢1,1 — ¢1,-1 = iJo,1 Where Ji_; ; are Jets coefficients. Since P(P) = T (P) = Ji0 =
Joq = o (RX™1) (see [CP05]), the property is true. O

A parameterization plane correction procedure similar to the one using osculating
Jets can thus be applied to Wavejets to infer the tangent plane, which leads to the
following corollary:

Corollary 4. Let S € /K. Let f € FX(Dg, R) be the local height field between S and a
plane P passing by a point P € S in an arbitrary direct orthonormal basis, expressed in polar
coordinates in the tangent plane T (P) at P. Let ¢ be the Wavejets decomposition of f defined
by equation (2.16). If P(P) # T (P), given R, the rotation matrix of axis u and angle -y
defined as follows:

u = xsin (arg(¢11)) — y cos (arg(¢i1 1))

v = tan! (;\/ 491,1471,1>

Ry, corrects P(P) to T (P) with an error in o(RK71).

(2.21)
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FIGURE 2.2: Example of coefficients ¢ , computed over a surface S in
the tangent plane. Note that ¢y o € R whileif n # 0, ¢, € C. ¢ and
|¢1,41| are not show because they are equal to zero by construction.
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Proof. The axis u of rotation transforming the vector x A y to the normal of the tangent
plane n has the same direction as:

0 —fx fy
u=(0) Al ~fy | = | ~f| = fix—fuy (2.22)
1 1 0

Identifying P with the complex plane, u is the direction of —i¢;,, i.e. itis
xsin (arg(¢1,1)) — y cos (arg(Pr,1))-

Let us now discuss angle 7, the angle between the current normal and the true
normal:

1

NEL (2.23)

2 2
siny = ey Al =[S
xSy

Thus, tany = ,/f2 + f2 = 3\/¢1,141,-1, which concludes the proof.

cosy = (xA\y,n) =

O]

A visualization of Wavejets coefficients as scalar fields over a surface is shown in
Figure 2.2. While derivatives are usually sorted by their order, Wavejets coefficients
¢rn of different order k but of same frequency n exhibit a similar aspect over the
surface. It is thus interesting to sort them by frequency and to rearrange the orders in
a good manner. This will be done in chapter 3 in which we introduce new integral
invariants.

Let (x,y) be an orthonormal basis of in a plane P(P) passing by P € S. Let us
express the local heightfield f € .7 Z(DR, R) in this parameterization. Concerning
second order coefficients, ¢ , can be expressed out of the second derivatives of f:

1 1
$20 = E(fxx + fyy) s P20 = 4’2—2 = Z(fxx - fyy + ifxy) (2.24)

The mean curvature H(P) and Gaussian curvature /C(P) can be computed using
Wavejets coefficients at point P given any parameterization plane P(P). Since the
Gaussian curvature IC(P) can be expressed w.r.t. partial derivatives of f at P as

_ 2
K(P) = %, we get:

A3 — 1642, 222

(P
") (1+4¢1,-1¢11)

(2.25)

U+ ) frt D oy =2 fufry
21+f3+3) '
2000 (1+4¢1,1¢11) + 42,297 | +420¢7
(1+4¢1,141,1)?
If P(P) = T (P), the tangent plane to S at P, then ¢; 1 = ¢; 1 = 0, and :

Similarly, the mean curvature can be expressed as #(P) =

1(P)

(2.26)

K(P) =4 (¢35 — 42, 2¢22) , H(P) = 2¢n0 (2.27)
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The principal directions can be found using Wavejets by considering the signal
Y2 5 ¢2ne™. This signal contains a constant component ¢ o and a component that
oscillates angularly twice and whose maximum is aligned with the first principal
curvature direction (corresponding to the phase of ¢, _>). As a consequence, the
principal curvatures «; and x, can also be recovered using Wavejets if P(P) = T (P):

K1 =2 (20 + P22+ ¢o,—2) and k2 = 2 (P20 — P22 — P2,—2) (2.28)

Let us now focus on invariant properties of Wavejets coefficients. Similarly to
Zernike polynomials, Wavejets coefficients magnitude are invariant w.r.t. a rotation
with axis x A y. Given a tangential parameterization (x, y), Wavejets coefficients ¢y ,,
can be expressed in any other parameterization (x’, y') by a phase shift using the delay
formula of the Fourier Transform. Wavejets coefficients ¢y ,, of the decomposition of a
function f expressed in (x, y) can be used to get the new coefficients ¢} in another
parameterization (u#, u") in plane P(P), where u | u' and u = xcos p + ysin pi. ¢ff
is expressed as follows:

V(k,n) € N X Z,pf, = e (2.29)

2.2.4 [-harmonic functions

We show in this section that a subset of Wavejets basis vectors BCI; spans the space of
I[-harmonic functions with derivatives of order greater than K equal to zero. We call
HX(Dr,R) C FX(Dg, R) the set of such functions. Let us first give the definition of
an [-harmonic function and then link them to the Wavejets basis.

HK(Dr,R) = { f e FK(Dg, R)|VEf = Alf = o} (2.30)

Theorem 1. Given ¢y, the decomposition of a function f € FK or Bg, the following

equivalence holds: f € X if and only if for all (k,n) € N X Z such that k — |n| > 2,
then ¢y, = 0

Proof. Let us write the Laplacian operator in polar coordinates:

? 10 1 02

Given K > 2,

¢k,n (k . 1)krk726in9

SN
Il

agks

el

k=2 n=—k
%% = % <<P1,1€i9 + 4>1,71€7i9) + énik T (2.32)
:2329{ _ _% <¢L1eie +4)1/71€49> _ kinik r n2rk 26
This leads to:
Af = f f (K> — n?) @y, ur* 2™ (2.33)
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Let us now consider function A! f whose Wavejets coefficients of order (K — 21) are
([),El;)i. Noticing that A1 f = A(A'f), equation (2.33) leads to the following relationship
forl > 0:

1+1 I
oo = ((k+22—n?) g, (2.34)

N

With gb,((?n) = ¢ - Equation (2.34) can be rewritten as follows for [ > 0:

k

4)151—)21,71 =¢en ] (m*—n?) (2.35)

m=k—2142
(m—k)%2=0

Recalling that f is [-harmonic if and only if A’f = 0, equation (2.35) states that
f € K if and only if all coefficients ¢ , such that n is between k — 2] + 2 and k are
equal to zero, which concludes the proof. O

Corollary 5. The following function basis

Bgﬁ _ {rkeine

(k,n) € N x Z and k < Kand |n| < kand k — |n| <2z} (2.36)

Spans X (Dg, R)

Proof. This is a direct consequence of Theorem 1. O

2.2.,5 Stability

As shown by [CP05], the tangent plane 7 (P) at point P € S can be retrieved with a
high accuracy from the Jets coefficients. This property is interesting, but there is no
results on how coefficients J;_;; vary when the parameterization plane is corrected.
Given a corrected parameterization plane to the tangent plane, Jets can be recomputed,
which is computationally expensive. In this section, we show a stability theorem
for Wavejets, allowing to retrieve all coefficients ¢y ,, given a small parameterization
plane orientation angle change 7 in R3.

Theorem 2. The coefficients @y, w.r.t. P(P) can be expressed w.r.t the coefficients ¢ ,, in
the tangent plane T (P), where P(P) and T (P) intersect along a vector u and where ¢y ,,
and ®y ,, are both beforehand rephased w.r.t. u thanks to equation 2.29, as follows:

(I)O,O =0
Dy =D = %e*"% +o(y) (2.37)
Dy = Prn + YFn(¢) +0(7)

Where Fy ,,(¢) is a linear combination of Wavejets coefficients with lower order that k and
lower frequency magnitude than |n|, and where -y is the angle error between P (P) and T (P).

Proof. Let us first recall the setting of this theorem. Let us call 7 (P) the true tangent
plane and P(P) the chosen parameterization plane, also passing through P. One
can find an axis (P, #) and angle v such that the rotation of axis (P, u) and angle vy
transforms P (P) into 7 (P). Since P belongs to both planes, (P, u) is aligned with line
T (P)NP(P). Let us parameterize 7 (P) and P(P) so that a point of the surface has
coordinates (x = rcosf,y = rsinf, h) over T (P) and (x = Rcos®,y = Rsin®, H)
over P(P). Let us first assume that 6 (resp. ®) corresponds to the angular coordinate
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of point Q with respect an origin vector aligned with u in 7 (P) (resp. with u in
P(P)). We will state our main theorem in this setting and the generalization will
follow naturally. In this setting the surface Wavejets decomposition at point Q writes
YK YK o Prarke™ over the tangent plane 7 (P) and as Yx_, Yf_, @ ,r%e™® over
P(P). We can express the @y, coefficients with respect to ¢ , and the rotation angle
7. To generalize the theorem to arbitrary origin vectors for the angular coordinate in
T (P) and P(P) for 6 and O, recall that a change of reference vector in 7 (P) amongs
to a phase shift y, one can always change the origin vector, compute the wavejets
coefficients ¢y ,, and recover the real wavejets coefficients as ¢y ,e* (similar formulas
hold for @y ,,).

The rotation matrix R of axis # = (1,0,0)p and angle 7 transforms the coordinates
(X,Y, H) of a surface point p in the parameterization of P(P) into coordinates (x, y, 1)
in the parameterization of P(P). Let us assume that 72 is small enough. Then the
rotation has the following expression:

1 0 O
R=[(0 1 —v|+o(y) (2.38)
0+ 1

Thus, relation between (x,y, f(x,y) = h) and (X, Y, F(X,Y) = H) is the following;:

x = X+o(y)
y = Y—vyH+o(y) (2.39)
h = 9Y+H+o(y)

Let us switch to polar coordinates (r,6) (resp. (R, ®)) such that x = rcosf and
y = rsinf (resp. X = Rcos® and Y = Rsin®). Letz = x+iyand Z = X +iY.
Equation (2.39) yields:

h=H+yRT(®) +o(7) (2.40)
With T(@) = 1 (ei(@’—%) n e—i(®—%))'
The following equation for r follows from z = x + iy and Equation 2.39:

kR-1H

k ; - . -
K =\/|zz*] =R+ 0% (e’(®+7) + e_l(®+7)) +o(7) (2.41)

Similarly, we have for all n € IN:
2" = R"e"© R el (m1041=3) 4 o) (2.42)
which yields, since ¢ = (z/|z|)" = (z/r)™

gt — pin® | % Y (ei((H)@f%) — ei(<n+1)®+%)> +o(7) (2.43)

Combining Equations 2.41 and 2.43, and setting Ay, = (kzn) e~i7 yields:

rReind — Rkin® 4 Rk=14in0, py (Ak,nfi@ n Azﬁnez@) +o(y) (2.44)
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Plugging Equation 2.44 in Equation 2.40, one has:

(ZIIS:O Z;I;:—k (Pk,n Rkein®) - ’YRT(@)

H= : . +o(7)
1— ')’ZI{(:O Zl;isz ‘Pkan_l (Ak,nel(nfl)Q + Azrnel(l’l+1)®) (2.45)
(Z Y. PraR" ’”@) 7(RT(®) + F(©) + G(©)) +o(7)
0n=—k
With:
k . K ] ) .
F(@) — (Z Z ¢/ane1n®> <Z E qu’mAj,mR]—lel(m—l)@)
k=0 n=—k j=1m=—j
P K (2.46)
G(@) — (Z Z (Pk,anein®> <Z Z ¢j,mA7,_ij_1ei(m+1)®>
k=0n=—k ]:1 mzf]'
Kk , K jtl
F(@®) = <Z Z ¢ Rkezn®> (Z Z st m ]+1mR]€ i(m— l)@)
k=0n=—k j=0m=—j—-1
(2.47)

K Kk K J
ki .
= Z Z xR e"® Z Z ¢j+1,m+1Aj+1,m+1R]€1m®
k=0 n——k j=0m=—j—2

Recall that if k and n do not share the same parity, ¢, = 0, thenif m = —j —1,
®j+1,m+1 = 0. Furthermore by definition of A, if m = —j — 2 then Aj,1,,,1 = 0. Thus
we can write:

K &k j
- (Z Z (Pk,anem®> <E Z 47]4-1 m—i—lA]-i-l m+1R]€ m®)
k=0n=—k j=0m=—j
2K / l—s . S .
- Z Z Ré Z 4)575,1161”@ Z ¢s+1,m+1As+1,m+1elm® (248)

/=0s=0 n=—/{+s m=-—s

2K ¢ ’ l—s 6 s 6
= Z Z R Z Pr—sne” Z Pst1,mi1As41,mr18™

/=0s=0 n=—A{+s m=-—s

Finally:

Z Z Z Z Pr— ]p¢]+1m+lA]+1m+1 Rk n® (2.49)
=0n=—k | j=0p+m=n
pl<k—j
Im|<j
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A similar computation yields:

Z Z Z Z Pr— ]p‘P]—Hm 1A]+1 —m+1 Rk in® (2.50)

=0n=—k | j=0p+m=n
pl<k—j
Im|<j
Since H = YK Zn_fk @y ,Rke"™® + 0(7), by coefficient identification one has
D0 = oo +o(y) and P11 = $11 + %e_i% + 0(7). However since ¢o0 = ¢1,1 = 0,
since 7 (P), is the tangent plane, we have: @y = o(y) and @17 = Ze 72 + o().
For k > 1, one has the following relationship:

k
Diw =Prn+7Y, Y, Prjp (¢j+1,m+1Aj+1,m+1 + <Pj+1,m—1A7+1,_m+1) +o(7)
j=0 p+m=n

lpI<k—j
Im|<j

= Pn + Y (@) +0(7)
(2.51)

2.3 Wirtinger derivatives

2.3.1 Definition and properties

In this section, we will show that the Wavejets coefficients are proportional to the
Wirtinger derivatives up to order K for a function f € .#X. The Wirtinger derivative
[Wir27] is an operator on complex functions that behaves similarly to the ordinary
derivative operator for real functions:

Definition 1. First order Wirtinger derivatives have the following form:
9 _1 (a ~ ia)
0z ox  dy
2.52
J 1 d e . J (252)
oz 2 \ax oy

They were first implicitly used by Poincaré in 1899 [P0i99]. Pompeiu, in 1913
[Pom13], also introduced a complex derivative operator:

d 1
aZf (ZO) - }5% 27Tir? fép(z ) f(Z)dZ (253)

Where 0D (zy, r) is the boundary of a disk of radius r centered at z(. This operator,
when applied to differentiable functions w.r.t. their real and imaginary parts, com-
putes the same quantity as the conjugate version of the Wirtinger derivative. Even if
this operator was introduced earlier than the Wirtinger derivative, it is more general
because one can apply it to any integrable functions [Hen86]. This kind of derivative
is called a weak derivative.
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In order to link Wirtinger derivatives with Wavejets, a polar coordinate form is

needed:
0 100 10
oz 2 \or lr89 ¢

2.54
J 1 £+18 4i6 (2:54)
oz 2 \ar rof
Proof. Let us write the Jacobian:
d d d
=— =c0sf0— — —sinf—
‘ 4 %0 (2.55)
5 = sm9§ + —Cos(?%
This yields:
d ; d o .10\ _j
The second part of the proof is obtained by conjugation of the Wirtinger derivative.
O

Let us now recall a few essential well known properties of the Wirtinger deriva-
tives:

Jdz"*  dz

oz  oz*

o (2.57)
oz  dz*

The product rule also applies to Wirtinger derivatives:

d d

E{Zg N f faz (2.58)
ofg _ af '
PR f az*

Remark 2. The Wirtinger derivatives % and ag* shall not be confused with the regqular
complex derivative %. All functions for which Wirtinger derivatives exist are not necessarily
differentiable w.r.t. the complex derivative.

Let us study the relation between those operators. Given a compact U C C, for a function
f U — C to be differentiable at zo € U w.r.t. ;, it is necessary and sufficient that its
real and imaginary parts are differentiable w.r.t. ax and 2 y operators, and that f verifies the
following Cauchy-Riemann equations, which are equzvalent

a .0
o L(z0) = —1%(%)
° BRaeif) (ZO) — al‘rgy(f) (Z )ﬂ]’ld aRey(f) (Zo) _ —aligjgf) (ZO)
o L(z) =0
In that case, %(20) = a]; (z0) = —ig—f;(zo) a£ (zo), and f is holomorphic.

A consequence of Cauchy-Riemann equations is that Re(f) and Im(f) of such a function
f are harmonic functions, i.e. their Laplacian equals zero, or ARe(f) = Alm(f) = 0.
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The Wirtinger derivative % is thus a weak complex derivative compared to dilz. It can
differentiate non differentiable functions on the complex plane.
2.3.2 Link between Wirtinger derivatives and Wavejets coefficients

In order to link Wirtinger derivatives with Wavejets decompositions, we need the
expression of the Wirtinger derivatives of f. For f € .ZX, given ¢y , the coefficients
of the Wavejets decomposition of f; let us first differentiate p times w.r.t. %:

Lemma 1.

_ ktn )

or Kzp &k (p+ 7

IO S o R D R @5
k=0 n=—k 2

Proof. To prove this property, let us apply the Wirtinger derivative operator written
in polar coordinates to f € FX

k
% 7, ;(Z Z (k+1 Prr1n rkein® — 2 NPri1, rke’”9>>e i

0 n=—k

Z (k+ 141+ 1)@ 1upare (2.60)

k
k+n :
= Z > + 1) 4’k+1,n+17’k€me

We can deduce for p € IN:

or Kop & P (k+n o
a;; (1’ 9) Z (H ( 2 + m> ¢k+p,n+prke f
0 n=—k \im=1

k=

P < N L ! (2.61)
= Z Z g Prep, n+prke "
k=0 n=—k
O
There is a similar result regarding the conjugate of Wirtinger derivative:
Lemma 2. ( >
k—n
91 K—q & g+ 5 ! )
8251 (r,0) = Z Z k_inlcpkﬂ,n,que’”e (2.62)
k=0 n=— 2
Proof. Let us apply the conjugate of Wirtinger derivative to f € K
) 1 K-1 &k . )
ai (r,0) =5 (Z o (Kt D e™ + g ke | o
z k=0 n——k
1 K-1 &k .
=5 Yo N (k+1—n+1) P 1™ (2.63)
k=0 n=—k
K
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This leads for g4 € IN to:

k=0 n=— m=1 (2 64)
K-q & (q+k’T”! o '
in
k=0 n=—k 2
]

The main result concerning Wavejets and Wirtinger derivatives is that Wavejets
coefficients of a function f are proportional to its Wirtinger derivatives:

Theorem 3. Let f € FK. Let ¢y, be the coefficients of the Wavejet decomposition of order
Kof f. Then:

1 ok f
_oj = — ——(0,0 2.65
Proof. Let us use Lemmas 1 and 2:
A CC I G o (e "
0zPdz*1 (r,0) = 2 Z ktnyk—n, Pt ptgntp—ql €
oo 2 (2.66)
oy S b (i) (o )! o
0zPdz*1 S k;) _Z nykony Prtpranep—q? > 2 7
=0 n=—k 272
Now estimating this function at r = 0 and 6 = 0:
P""if
5279500 (0:0) = Plal¢pqp—g (2.67)
By settingk = p+gand j = g:
o s
azk—]’}(;z*j (0,0) = (k = )Yj!¢rr—2j (2.68)
Which concludes the proof. O

Now that Wirtinger derivatives are linked to Wavejets coefficients, we can prove
that the Taylor expansion can be extended to Wirtinger derivatives:

vfe FK f ZZ ! il (0)zF 7z (2.69)
=0 /=0 (k—j)Yjt 9zF-Jaz*l '

Proof. Proposition 2 states that if f can be expressed as a bivariate Taylor expansion,
then f has a Wavejet decomposition where each coefficient ¢y ,, is a linear combination
of derivatives of order k, with k and |n| sharing same parity. Notice that if (x,y) =
(rcos®,rsinf) and z = x + iy, then for (k,j) € N and j < k, ZK77z" = rei(k=2),
Moreover:

! k ,inf __ i(k—2j)6 £ 1 akf (0) k—j%j 270)
n;k¢k’ " Z(Pkk e ]Z(:) k=)o ez OF E @
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Since, rei"® = zK=Jz*/, we can conclude that any real function f € .#K can be

written as in equation (2.69). O

A direct consequence of equation (2.69) is that Wavejets are linked to Wirtinger
k
the j™ cross-derivative of order k by analogy with ordinary cross-derivatives found in
bivariate Taylor expansions. Wirtinger cross-derivatives for different j are angularly
orthogonal. Using this important property, we will show in chapter 3 that for a given
j, certain linear combinations of j" Wirtinger cross-derivatives of different orders k
result in defining new integral invariants, giving access to stable information related

to differential quantities of high order about surface S at point P.

derivatives in the same way Jets are linked to ordinary derivatives. Let us call

2.4 High order principal directions

In this section, we generalize the principal directions on surfaces to higher orders
principal directions, extending the work of [Qi05; Qi06; Qi07] on symmetric superma-
trices. A supermatrix is a representation of a tensor in a given coordinate system. Let
us illustrate the difference between a tensor and its representation as a supermatrix: a
rotation matrix R of axis # and of angle <y is the matrix representation of the rotation
tensor R with same parameters. Depending of the coordinate system, vector u has
different expressions, yielding a different expression for R. The rotation tensor R, on
the other hand, depends on u# and <y, but not on the choice of a certain basis.

Definition 2. An m-dimensional symmetric supermatrix T of order k is a k-dimensional
array such that given index I = (i) (o), for any permutation p on I, Tr = T,y

For now on, we will always consider m = 2. By convention, we define any
vector to be a symmetric supermatrix of order 1. Given a vector v = (x,y), we
note v/ the symmetric supermatrix of order j generated by multiplying v j times
using the cartesian product. In particular, we set v° = 1 by convention. On the
other hand, given a symmetric supermatrix T = (T, T;) of order k, where Ty and
T, are symmetric supermatrices of order k — 1, we note Tv the following symmetric
supermatrix of order k — 1:

To =xTy +yTy (2.71)

Tv reduces the order of T by contracting on an arbitrary index. Since T is sym-
metric, for any index used for the contraction yields the same list of numbers in T.
Thus, by convention, we set this arbitrary index to be the first of T. Let us define
another convention: Tv/ = T; is the symmetric supermatrix of order k — j obtained
through the sequence T(n+1) = T(n)v and T(0) = T.

In the case of Wavejets analysis, m = 2 because a surface is a 2-dimensional space,
and we set the order k < K. In this case, a symmetric supermatrix of order k can be
seen as a k-dimensional array of vectors of length 2. Multiplying a supermatrix with a
vector v given our convention produces a supermatrix of order lowered by 1. Figure
2.3 shows an example of such an operation on a supermatrix of order 3.

Eigenvalues and eigenvectors can be generalized for supermatrices [Qi05]. Let us
recall this generalization:

Definition 3. [Qi05] Given T a symmetric supermatrix of order k, if there exists A € C and
a vector v € R? such that:
{ Tok1 = Mo

T, 1 (2.72)
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X —

FIGURE 2.3: Visual example of the outcome of a supermatrix of order
3 multiplied by a vector.

Then A is called an E-eigenvalue of T and v is called an E-eigenvector of T. The set of A
satisfying (2.72) are the roots of a polynomial called the E-characteristic polynomial.

Supermatrices can be used to write Taylor expansions. To give an intuition, let
us write the two first terms of a bivariate Taylor expansion. Given v = (x,y)T an
arbitrary vector, n the normal at (0,0) and H the Hessian of a function f € .72(Dg, R)
at (0,0):

f(v) = £(0,0) + n'v + o Ho (2.73)

Note that H is symmetric, and so is n since its order is 1. This can be generalized
for higher orders using supermatrices.

Property 4. Given v = (x,y)T, a function f € FX(Dg,R) can be written as follows:

K
flo) =Y Tw* (2.74)
k=0

Where Ty is a symmetric supermatrix of order k, where coefficients are as follows: let xy =
X, X1 =Y,

ok f
(Tk) (ig,...i,) = W(O'O) (2.75)

For the following of this section, we need to define the differentiation w.r.t. a
vector.

Definition 4. Let v = (x,y)T € R% Let T(v) be a symmetric supermatrix of order k such
that each element of T (v) is differentiable w.r.t. x and y. Let Ty be the set of indexes for a
supermatrix of order k. Let us note iy the index of the first element of v and i, the index
of the second element of v. Setting i an index on vector v, given I € 1y, let us consider
the concatenation of both indexes (I1,i) € Zy.1. T(v) is then differentiable w.r.t. v, and its
derivative g—g (v) is the supermatrix of order k + 1 whose elements are indexed as follows:

()., = (0,
(3@, = (),

We need one more Lemma prior to linking Wavejets and symmetric supermatrices
and the framework of [Qi05; Qi06; Qi07].

(2.76)

Lemma 3. Let T be a symmetric supermatrix. Let v = (x,y)T € R? be a vector.

oT ok
Jv

= kTo*! (2.77)
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Proof. Let us prove that by recurrence. It is direct for k = 0. v* = v, and one directly

has:
oTo!

Jv

Let us prove that if for a certain k, aggk = kTo*1, it is also true for k + 1.

=T=1Tv" (2.78)

Tk 1 B oTvkv
dv  dv

9T vk
_ k
=To" + 5 7 (2.79)

= To* + kTo" 1o
= (k+1)To*

O]

Theorem 4. Given v = (x,y), Ty a real symmetric supermatrix of order k > 1 representing
the derivatives of order k of a smooth function f € FX, the set of vector v = (x,y) such that
a%Tkvk = 0and ||v|| = 1 are E-eigenvectors of Ty:

To* 1 = o T ok

(2.80)
{ lof =1

Proof. Let us note T the supermatrix of order k from the Taylor expansion of f € FX
w.r.t. ordinary derivatives. Let us note v = (rcos 6, rsin6). Let us first differentiate
T, v* w.r.t. radius r:

ﬂTvk:i i ¢ /K pind
or k ar = fen
k
—k Z 4),nrk_1e’”9
n=— (2.81)
k £ k inf
=7 E Prnr'e
n——
k k
= -T
T kv

Now, using equation (2.54), we can write:

)

d k _ 10 -
Tt =0« { %Tkv ko %%Tkvke'e
_ i
89 ﬁTkU = 33 Tkv e
J T k _ k k ,—1i6
=Tiv = =To%e
AR ¥ kit
ﬁTk'Z) = ZT]('U e
B ko k X (2.82)
<:>{ angU = le(Tkv
kK k
Jz* Tio" = 2z* Tiv
d k _ kz* k
% Tk'v TLZ'Z Tk'v
T Tk 2 Tk
az" 1k — 2k
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¢3,43=0.5, ¢34+1 =0 ¢$3,43 =05, ¢3+1 =1 ¢$343 =05, ¢341 =15

FIGURE 2.4: First row: 3D view of third order surfaces with differ-
ent third order principal directions arrangement. Second row: Top
view of the corresponding principal directions. Arrows show the di-
rection of th direction of the motion of the eigenvectors as the ratio
¢3,+1/ ¢3,+3 increases. Third row: Angular view of the corresponding
signal T30% = 13 23:_3 <pk,ne"”9 for r = 1. As ¢34 increases from
left to one, E-eigenvectors move until a positive and a negative E-
eigenvalue collide and become degenerate vectors. E-eigenvalues
correspond to local angular maxima. In the left column, the superma-
trix has 2 E-eigenvalues, in the middle column, it has 4 E-eigenvalues,
while in the last column, it has 2 E-eigenvalues.
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Pa+4 =02, ¢Ps40=0 Pa+4 =02, P40 =04  Py14 =02, ¢Psip =038

FIGURE 2.5: First row: 3D view of fourth order surfaces with dif-
ferent fourth order principal directions arrangement. Second row:
Top view of the corresponding principal directions. Arrows show the
direction of the motion of the eigenvectors as the ratio ¢4/ ¢4 +4
increases.Third row: Angular view of the corresponding signal Tyv* =
r Zi:% (,bk,nei"e for r = 1. As ¢4 1 increases from left to one, E-
eigenvectors move until 2 negative E-eigenvectors collide with a posi-
tive E-eigenvector. E-eigenvalues correspond to local angular maxima.
In the left column, the supermatrix has 3 E-eigenvalues, in the midlle
column, it has 4 E-eigenvalues, while in the last column, it has 2
E-eigenvalues.
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Noting that:
J 9 . 0
ox 0z  0z*
) (2.83)
dy dz* 0z
We can deduce that:
9 ko _
Tkv - O = { aakavk a szz Tkvk
96 ko = Elke (2.84)
8 oF —
T
@5 = R
Using Lemma 3, this leads to:
0 0 k
— T =0e —Twf = kT ! = (2.85)
99 v ol
Thus: .
Tk = 0k (2.86)

k
Since % = A € R, Tiv""! = Av. Thus, if |9]|? = 1 and §Tiof = 0, v is an

E-eigenvector of T, with E-eigenvalue Tyv*.
O

Remark 3. Many types of eigenvalues and eigenvectors are developped in [Qi05; Qi06;
Qi07]. In particular, if an E-eigenvector v is real and if its corresponding E-eigenvalue A
is also real, then v is a Z-eigenvector and A is a Z-eigenvalue. In other words, E refers to
complex eigenvectors and eigenvalues, while Z refers to real eigenvectors and real eigenvalues.
While those 2 families of eigenvectors and eigenvalues are similar, other families have been
defined with much greater differences. An interested reader should refer to [Qi05; Qi06; Qi07]
for better insight.

Corollary 6. Given v = (x,y), the directions of the E-eigenvectors of a supermatrix Ty of
order k can be retrieved out of the Wavejet decomposition of Tyv* by looking at the zeros of:

k

J . [ . in
30 Z ¢k/ne’”9 = Z ingy e 0 (2.87)
n=—k

n=—k

Proof. As shown in Theorem 4, the E-eigenvectors direction correspond to the zeros
of the angular derivative of T o*. Thus, a direct angular differentiation yields the
result. =

Corollary 6 shows that one can find the high order principal directions on a
surface by localizing the roots of the angular derivative of the heightfield between
the surface and the tangent plane. Following the work of Qi et al., they correspond
the E-eigenvectors of symmetric supermatrices of dimension 2.

The behavior of the principal directions at order 3 and 4 are illustrated in Figures
2.4 and 2.5. Note that in those Figures, we take ¢ , € R. In the general case, ¢, € C,
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FIGURE 2.6: Second (left) and third (right) order principal directions

illustrated at 2 points on a surface. The red vectors are E-eigenvectors

associated with a positive E-eigenvalue, while blue vectors are E-
eigenvectors associated with a negative E-eigenvalue.

leading to a much wider variety of possible configurations for E-eigenvectors. E-
eigenvectors behavior mostly depends on whether the order is odd or even. Cases
for k > 4 would evolve in a very similar way as shown in Figures 2.4 and 2.5 with an
increased degree of freedom. In particular, one can find zero E-eigenvalues bound
with E-eigenvectors. [Qi06] defines such vectors as degenerate vectors of degree 1.

Figure 2.6 shows two examples of order 2 and 3 principal directions on a surface.
Our experimentations show that order 3 principal directions switch from 6 almost
evenly spaced principal directions to 2 principal directions very quickly, making the
second column case in Figure 2.4 rarely happening on real dataset.

2.5 Wavejets Fitting for Point Sets

Given a surface S that is only known through a set of measured points possibly
spoiled by noise, we want to compute the Wavejets representation of the underlying
surface up to a chosen order K, at an input point P. Let us assume that the surface
is locally sufficiently smooth, i.e. CX in a neighborhood of radius R around P. Our
goal is to compute the ¢ , coefficients that best decompose the underlying surface

on the basis functions ef,n(r, 0) = r*¢'" in the neighborhood N (p) of radius R of P.
Let L denote the number of samples in this neighborhood, and let P; be one of these
samples, with cylindrical coordinates (ry, 6y, hy) w.r.t. an axis that corresponds to a
coarse approximation of the normal direction at point P. Then, the decomposition

problem is formulated as finding ¢y ,, minimizing;:

L

E(p)=Y

(=1

K

-1 k
h[ _ Z Z r(kein9[¢k/n
k

=0 n=—k

2
(2.88)
2

For clarity, we state the problem using the /2 norm even if it is unreliable if there are
outliers. When dealing with noisy point sets or outliers we solve this minimization
using an iteratively reweighted least squares procedure. This weighting scheme
involves the use of a diagonal matrix of weights W that are used to leverage the
importance of outliers.

To reformulate this energy minimization, let us reorder the B basis functions ef "

into a vector V;, and the B unknown ¢, into a vector ¢, such that the b component
of ¢ corresponds to the coefficient of the b basis function in the decomposition. Let
k, and n;, respectively denote the order of derivation, and the oscillation frequency
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of the b*" basis function (0 < b < B — 1). Using these notations, the energy to be
minimized is the following:

L B ' 2
E(¢) =) (Zz -y rz"bemb"’qbb) (2.89)
b=1

This amounts to the minimization of |M¢ — Z||3, where Z is a vector of size L
containing the heights h, of neighbors P, and M is a matrix of size L x B such that:

M = et (2.90)

Minimizing || M® — Z||3, is done by a QR decomposition of M. Thus computing the
Wavejets decomposition around a point p amounts to building matrices M and Z and
performing the QR decomposition of M. Using a Cholesky decomposition instead of
OR fails because MM* is often ill-conditioned.

In order to compute Wavejets in the tangent plane, one can compute a first esti-
mate of Wavejets in a parameterization plane close enough to the tangent plane. The
initial parameterization plane is obtained through a Principal Component Analysis.
Importantly enough the orientation is not necessary to compute the Wavejets de-
composition, we only need a local parameterization with respect to an approximate
tangent plane. Then the parameterization plane is corrected into the tangent plane
using equation 2.21 and the Wavejets coefficients themselves are corrected using
Theorem 2.

Given a point set of N points and K the Wavejets order, the complexity of the
computation, using Equation 2.90 for all points is O(NK®). As a consequence, when
Kis large (i.e. 13 for example), the computation cost increases a lot.
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Chapter 3

New integral invariants

Integral invariants are an important concept in geometry processing because they
allow to robustly compute differential quantities on shapes and to compare shapes
[Man+04; Pot+07; Pot+09]. In the literature, integral invariants are volumes or areas
computed over the neighborhood of a point P on a surface S. For example, [Pot+09]
proposed an integral invariant defined as the volume between the intersection of
a ball of radius s and the interior of a surface at point P € S. These quantities are
independent from any coordinate system, and as such, are candidates for shape
matching descriptors.

We propose in this chapter the definition of new integral invariants which we
deduce from the Wavejets decomposition. Those integral invariants rely on a local
parameterization plane. In the general case, this would be a bad idea because of the
instability of the decomposition of a surface, which depends on the orientation of
the parameterization plane in the ambient space. But we will see that the integral
invariant of order 1 we introduce permits to recover the tangent plane in a similar
way we can do it with Wavejets or Jets, as explained in chapter 2.

3.1 Definition

In this section, we derive integral invariants from the Wavejets coefficients. As ex-
plained in chapter 2, a change in the parameterization orientation in the tangent plane
will angularly shift the local Wavejets decomposition of a surface. Thus, considering
the magnitude of the Wavejets coefficients makes the local description orientation
independent. However, this is not enough to build a robust local description. Indeed,
because of the non-orthogonality of the radial part of the Wavejets decomposition,
coefficient |¢y ,| might vary a lot between two similar functions f. On the contrary,
integral invariants do not suffer from such an instability. The stability comes from
the integration process. Indeed, given a discrete signal spoiled by an additive noise
whose distribution is centered at 0, the integration process gives access to quantities
with error that can have much lower standard deviation than the initial one.
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20 Br0 ¢k, 1B 11 i ik, 42By 12 ¢y, +3Bk 13
ag 2|aq| 2|ay| 2|as|

FIGURE 3.1: First row: a local heightfield decomposed by frequencies.

Second row: each frequency of the decomposition sliced at its highest

magnitude. a,(s) is the radial cumulated magnitude of the coefficient

of frequency n of the Fourier transform of the surface restricted to a
circle centered at the origin.

Let us now consider the following angular function given Wavejet coefficients
¢r n of a function f defined on [0, s] x [0,27]:

S
) k

As(g) — Z Z (Pk T’k inf rdr

(3.1)

|
\[\18

( i k4’k,n Sk+2> pinf
o\ K 12

Where a,(s) = Y7, ,‘f i”zsk“. A;(0) is an infinitesimal volume in a given angle
direction 6. Each a,(s) € C is a quantity calculated on f € ¢ restricted to frequency
n at radius s. Figure 3.1 illustrates such a decomposition.

Definition 5. Let Vs be an operator computing the complex volume of a function f on the
domain of the disk D of radius s such that f € £?(Ds,C):

27
Vf e Z£%(Ds,C), Vs(f / / f(r,0)rdrdd (3.2)

Given f € €*(Ds,R), Vs(f) is the signed volume of f, and we can show that
ap(s) is proportional to V;(f):

Vfe €™, Vs(f) =2may(s) (3.3)
Proof.
- 21
Vi(f) = 02 As(0)do = Z a,(s)edd = 2mag(s) (3.4)
0 n=—oo
0

Property 5. Let ¢y ,, be the coefficients of the Wavejets decomposition of a function f repre-
senting a surface S at point P over the tangent plane. Let As(0) be the function defined in
equation (3.1). Let |n| < K, Foralln € Z*, |ay(s)| and ayg(s) are integral invariants of S at
point P.
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In the next sections, we show that those new integral invariants are a general case
of the Volume descriptor defined by [Pot+09] and discuss their properties.

3.2 Generalization of the Volume descriptor

Pottmann et al. defined many integral invariants [Pot+09], linking them with the
mean curvature. In order to express one of them, from now on, surfaces are assumed
to define a separation splitting the ambient space in two, i.e. there is no way to
continuously go from one side of the surface to the other without crossing the surface.
The normals over the surface define an exterior as well as an interior of the surface.
Given a point P on the surface S, given ¢ > 0 small enough and n the normal at
P, the point Q = P + en is said to be in the exterior of S. Any point continuously
reachable from Q without crossing the surface is also in the exterior of S. All other
points excluding points on S are said to be in the interior of S. [HT03] expressed
the volume of the intersection of a ball centered at a point P and the interior of a
hypersurface. Using the special case of this expression for surfaces embedded in 3D,
it leads to the volume descriptor definition in [Pot+09], which is an integral invariant.
Given a unit ball B following an /2> norm and 15 the indicator function s.t. for a point
Q, 1s(Q) = 1if and only if Q is in the interior of S, the Volume descriptor is:

) = [ 1s(Q)Q 65)
QeP+sB
Hulin [HTO3] showed that such a volume has the following Taylor expansion:
Vp(s) = %”f + 7”{4(13)54 +0(s%) (3.6)

Where #(P) is the mean curvature of S at point P. This equation differs a little
from the one in [HT03]: we use a different normal orientation convention, yielding a
different sign for the mean curvature.

In the remainder of this chapter, let us assume that tangent plane 7 (P) is spanned
by an arbitrary local orthonormal basis (x,y). Let us map the complex plane with
T (P), mapping each point Q = (x,y) € T (P) to a complex number z = x + iy.

Definition 6. For any vector v € R3, let us note 6, the argument of the complex number
(v,x) +i(v,y).
The Volume descriptor of order n of point P € S is:

Vi(s) = / 15(Q)e - rdQ (3.7)
QeP+sB

The volume of a half ball appears as the first non-zero term in the Taylor expan-
sion of the volume descriptor in equation (3.6). This term vanishes in the volume
descriptor expansion of order n # 0. Indeed, the volume of order n # 0 of a ball sB
or of a half-ball sB™ composed of points above the local complex plane is:

fQ€P+sB e MerdQ =0

b 3.8
erP+sB+ e rdQ =0 (38)

VP e R3,Vs € 1R+,{

Coefficients a,(s) are defined as integrals on a disk. In particular, 27tay(s) is the
volume between the tangent plane and the surface. One may think that linking a(s)



44 Chapter 3. New integral invariants

with the volume descriptor Vp(s) defined in [Pot+09] is not straightforward. In order
to do so, one needs to go back to the demonstration expressing the volume of the
intersection between a ball of radius s and the interior of a surface, which was done
by Hulin [HT03]. The demonstration is done as follows. Instead of using a ball of
radius s centered at a point P on the surface S, a cylinder is considered. The cylinder
has a base disk of radius s, it is centered at P and its principal axis is colinear with the
normal at P. Hulin showed that the difference between computing the volume of the
intersection of the interior of a surface with a cylinder or a ball is a quantity in O(s”).
This yields, for s small enough:

Vp(s) = %”sf‘ + 27tag(s) + O(s7) (3.9)

In practice, if there exists (x,y) € Ds such that |f(x,y)| > s, a large bias can
occur. Indeed, the volume of the intersection of a ball with the interior of the surface
is bounded by the volume of the ball, whereas the volume of the intersection with
the cylinder can be infinite. This happens when there exists a subset of the local
integration disc such that the surface has no orthogonal projection on this subset.
This situation occurs when s is too large w.r.t. the local feature size. For convenience
and to avoid infinite volume scenarii, we assume that s is small enough so that the
intersection the local heightfield |f| < s. Thus, we assume that f is inside a cylinder
of height 2s and of radius s. If not, s is too large to describe the local geometry. Such
areas can be seen as outliers at a given scale. However, a good side effect of this
limitation is that such quantities are asymptotically bounded by the volume of a ball
of radius s, which allows us to still be able to compare those volumes to each others
and to sort them.

In order to link a,(s) and V}(s), the same precautions regarding the volume of
a cylinder and of a ball must be taken. Unfortunately, the error bound between
a volume computed using a cylinder or a ball cannot be bounded using the work
in [HTO03]. However, a more general result comes from the work in [DM14]. It is
shown that computing the volume between a ball of radius s and a local heightfield
f between the tangent plane and the surface at some point P, such that f = O(s'),
where I € IN, induces an error in O(s'4).

Recalling that a, (s) is the radial integration of concentric Fourier transforms, and
the result of equation (3.8), the following stands:

Vi (s) = 2ma,(s) + O(sI"*9) (3.10)

A computation shows that the Taylor expansion of a,(s) is:

- 4’kn k+2
:Z P (3.11)

Hence, the Volume descriptor of order n can be written as a Taylor expansion out of
the expression of functions a,(s):

Vi(s) = 2m ‘4’|+2 n+2 4 o ‘|PI|I+2n |n|+4+o< \n|+6> (3.12)

The same remark can be done for n # 0 regarding the values of s for which
this equation is still applicable. Let us go back to the case n = 0. Using the Taylor
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expansion of ay(s) in (3.9), one has:

Vp(s) = 2563 4+ 27an(s) + O(57)

3
(3.13)
= 2?7-[53 + n?—i(P) st 0(s°)

Remark 4. The bound O(s®) in equation (3.6) is improved to O(s®). As a consequence, the
Taylor expansion of the volume descriptor introduced in [Pot+09] has a better bound than it
appeared.

3.3 Differential properties

In this section, we discuss the generalization of the concept of mean curvature
for 2D smooth surfaces embedded in 4D, using an expression involving Wirtinger
derivatives. We finally show how to recover the tangent plane out of the volume
descriptor of order £1 as well as the curvatures out of the volume descriptor of order
+2.

3.3.1 Links with Wirtinger derivatives

The integral invariants introduced in Definition 6 have links with Wirtinger deriva-
tives; First, we need to define the following operator F

F(F)(s,60) = /0 " F(r,0)dr (3.14)

Property 6. Given f € ZX, and a,(s) € C the series coefficients from equation (3.1). For
n>0:

1 9"
an(s) = —Vsofno B
2m oz" (3.15)
1 9" '
ﬂ_n(S) = EVS oF"o az*nf
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=
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FIGURE 3.2: First row: magnitude of the lowest non-zero order wavejet

coefficient field over a shape for each frequency. Second row: integral

invariants defined in equation (3.1) of Wavejets of order 7 computed

over a surface. Third row: magnitude of the complex volume of n"
order Wirtinger derivative.

Proof. From lemma 1, noticing that r = |z|, the following derivation can be written
form € N

k+n
1 LI 9" _ 1 & & <m+ > k ,in0 m
2 <Vs oF a mf) - EVS / .o o kzo n; k+n| ¢k+m,n+mp e (dp)
k! <m+k+n>

1 K—m
|k+n| (Pker,nerr
5 -

:EVS Z Zk:

k+mein9
(m+k)

S Kem ( T k—gn)
B / / o gy P e rdrd9
k 0 n—fk

| 1
Ko ( 2)' Prrmm  _krmi2
= (m+k)kt k+m+2

= a,(s) + O(s"™)

(3.16)

The proof of the second part of equation (3.15) is straightforward since a, = a* ,
9\ _ 2
and (&) = 5 [

The Wirtinger derivative reduces both frequencies and orders when applied to
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a function. However, recursive differentiation with Wirtinger derivatives is quite
unstable for the same reasons that it is unstable with ordinary derivatives. Figure 3.2
shows scalar fields over a surface of the magnitude of the Volume descriptor at order
n, as well as the magnitude of the volume of the Wirtinger derivative of order n. The
Volume descriptor at order n is smoother. Let us discuss the stability of such quantities.

Property 7. Let (K,n) € IN?, sB be a ball of radius s following an (> norm, and f €
€%+ (sB,R). Let ¢, be the coefficients of the Wavejet decomposition of f at order K and
frequency m. For n > 0:

2)2(s) 2) ! o[
(”+ ) Sn+2 = ¢un+ (n+ Z k+2¢k+nn5 + K

k=n+2
" 3.17)
Vs ?)f : n+m sy/n)% (
) <Z>_¢nn+22 ( )¢k+n,nsk+o<(\§<>) )
e =2 ( + 2)!
Proof. The first part of the property is directly retrieved from equation (3.1).
The second part can be shown using Lemma 1:
k+n
VS Bz{: 1 2 : (p + ) k ,ind
=2— "rdrde
7-[52 7752 0 n_Z_:OokZ(:) k—|—n| nS e rar
k
2 i (z +r)! P
] k+p.p
pt =k (k
=5t (5+2) (3.18)
=dppt2) "5 ) Prp,pS
k=2 2
K ( K
p+m) (sv/7)
= ¢pp+2 ! s+ 0
Pp.p k;z £ Prrpp < K
O

Thus, |a,(s)| is more stable than ’V o g’;{ (s). Indeed, coefficients of high order

involved in Vs ( o ) are amplified by a polynomial in n. Let s be the largest radius

for which a,,(s) yields a close enough approximation of ¢, ,. Then, = N is the largest

32{ (s) gives a similar approximation of ¢, ,. Thus, for large

n, a,(s) becomes a much better approximation of ¢/, ,. Operator F applied 1 times

stabilizes the n'" Wirtinger derivative before the volume computation. This recursive
radial integration recovers the lost orders in the derivation process, but does nothing
about the lost frequencies, which allows the volume operator Vs to catch stable
quantities related to the Wirtinger derivative of order n. The same remark can be
made for the conjugate of the Wirtinger derivative when 7 is negative.

3.3.2 Real 2-manifolds of codimension 2

Study framework

In this section, we review a few local geometric properties of smooth real 2-manifolds
of codimension 2. A real 2-manifold of codimension 2 is a real 2-manifold embedded
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in R*. Let us note the set of such objects .#. When one applies the Wirtinger deriva-
tive operator to a local heightfield, the surface S € . outlined by this heightfield is
transformed into a manifold M € .#. We aim to give a few tools to give hints on dif-
ferential properties of such objects, and especially will focus on their curvature. This
will be found especially useful for interpreting a1 (s), which unravels a differential
property of surfaces that is poorly used in geometry processing. An example of its
use is shown in chapter 4.

Let us consider an element M € .#. The tangent space at each point of M is a
two dimensional space, which we refer as a tangent plane 7. However, in contrast
with elements of .7, the space orthogonal to the tangent plane at each point P € M,
is two-dimensional as well. We note the plane orthogonal to the tangent plane 7.

In the general case, we note P any plane passing by P € M such that the angle
between P and 7 is in O(s) at given radius s. Let (x, y) be an orthonormal basis of
P, where (x,y) € R* x R*. We note P+ the plane orthogonal to P passing by P, and
note (P, ny,n,) an orthogonal basis of such a plane, where the coordinates of P are
(0,0) in both basis.

It is often convenient for 2-dimensional spaces to use the complex plane instead of
IR%. Hence, we canonically map a complex plane to P (resp. P1), where the complex
number z = x + iy (resp. h = hy + ihy) maps to (x,y) (resp. (h1,h2)) in P (resp. PL).
From now on, P (resp. P) refers to itself or its complex plane.

Let D¢ be a disc of radius s in the complex plane. Let Q C M € .# such
that P € Q) and that, given any point Q = (x,y, 11, h2) € Q expressed in the basis
(x,y,1n1,n2) formed by the concatenation of the basis of P and P+, there exists a
function ¢ : D¢ — C, uniquely mapping each complex z = x + iy to the complex
g(z) = hy +ihy.

M being a manifold, around P € M, there exists a small neighborhood (2 C M
that can be parameterized over D¢ a disc of radius s in P. Let us define g, (z) for

n >0 (resp. n < 0)as gu(z) = 3;1{ (resp. gu(z) = 3‘;—1{).

Complex functions g,(s) have properties that are difficult to apprehend. For
example, only positive frequency coefficients from the Wavejets decomposition of a
real function f are required to infer the entire function because the negative frequency
coefficients are the conjugates of the positive ones. This is not the case anymore for g,.
Noting ¢y, the Wavejet decomposition of g,, one would need an other approach for
describing the horse saddle equivalent to those functions, held by coefficients 5 ,,.
The same remark can be done for the tangent plane held by coefficients ¢ , ;. Luckily,
for k > |n|, coefficients ¢ ,, of f, which are the coefficients appearing in the Taylor
expansion of a, and the quantities we as interested in, are proportional to coefficients
lpZ_| 110 of g,, alleviating the necessity of discussing the case of frequencies m # 0 for

complex functions.

Fundamental forms

Two main operators are usually used for locally analyzing a surface: the First Fun-
damental form, noted I, and the Second Fundamental form, noted II. The First
Fundamental form is an operator transforming two vectors of the tangent plane to a
scalar. It generalizes the inner product to manifold and can be expressed as a matrix
w.r.t. the local parameterization basis in the tangent plane. The Second Fundamental
form is an operator taking as inputs two vectors of the tangent plane (u, v) which can
be used, for example, to compute the inner product between the gradient in direction
u of the normals, with v. Those forms exist for any N-manifold of codimension
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1. They can also be generalized to any N-manifold of codimension strictly greater
than 1. The Second Fundamental form is usually expressed as a the Hessian of the
local heightfield w.r.t. tangent plane. It expresses the best quadric locally fitting the
manifold at P.

The First and the Second Fundamental forms can be used to define instrinsic, as
well as extrinsic properties of a manifold, including the mean curvature #, which
can be computed for any point P on a smooth manifold. In the case of N-manifolds
of codimension 1, H = %tr(II x I71) is a real number. In the case of manifolds of
codimension strictly greater than 1, a mean curvature can be computed for each
direction in 7+ at P, and one can write the mean curvature at P as a vector in 7 +.

When the codimension is equal to 2, one can linearly map each plane 7 to the
complex plane, and express this mean curvature vector as a complex number. The
real part of this complex number is the mean curvature in the direction n;, and the
imaginary part is the mean curvature in direction n,. We call such a mean curvature
a complex mean curvature. In the case of a real function f(z), the mean curvature
expresses wether the surface locally evolves in the normal direction (positive mean
curvature) or in the opposite direction (negative mean curvature). In the case of our
function g, (z), the mean curvature does not have anymore a binary orientation, but
a continuous one. The argument of the complex mean curvature at z = 0 expresses
in which direction in 7+ the surface locally tends to. Since g,(z) is a Wirtinger
derivative of order |n| of f, the argument of its complex mean curvature at z = 0
yields the mean orientation of such a derivative.

Before expressing the Taylor expansions of functions a,(s) using the complex
mean curvature, we show, in the following paragraph, how fundamental forms can
be written differently using the Wirtinger derivatives instead of the conventional ones.
A side consequence of this is that a complex Gaussian curvature can be expressed out
of this new expression of the fundamental forms.

Fundamental forms using Wirtinger derivatives and the complex plane

In this paragraph, we show that Fundamental forms can be expressed for complex
functions f : C — C. Let us first recall how to express the First Fundamental form in
the case of real surfaces. Let (x,y) be a basis on the tangent plane of S € . at point
P. Let u and v be two tangent vectors of S at point P. The inner product between
u = (uy,uy)" and v = (vy,vy)" can be expressed in basis (x,y):

(u,v) = uyvy(x, x) + uy vy (x,y) + uyox(y, x) + 1,0, (y, y)
= u,0E + uxva + uyvxF + uyvyG

_ T (E 1:) y (3.19)
N F G

My

=v

I is the First Fundamental form. Let us express it using a different base on
the tangent plane. Let us linearly map the tangent plane to the complex plane
and consider the following tangent vectors % (x+1iy,x —iy) = (z,2"). Letuy =

% (e +duy, Uy — iuy)T and vy = %(vx + 10y, Uy — ivy)T be two tangent vectors. Let



50 Chapter 3. New integral invariants

(.,.) be the canonical hermitian inner product. We note Iy the following metric:

(z,z) (z,z¥) ) o

<uW/vW>W = ”?;V <<z*,z> <z*’z*>

.« (Ew Fy (3.20)
= Uy (FW EW) ow

= uplwow
We call Iy the First Wirtinger Fundamental form.
Property 8. Given:
e (uy,uy,vx,0y) € R*
o u= (uy,uy)" and v = (vy,0,)"

_ 1 : . NT 1 . :\T.
o uy = ﬁ(ux—i—luy,ux—my) and vy = ﬁ(vx—f—wy,vx—wy) .

v Tu = vjyIwuy (3.21)
Proof. Let us expand uy Iyow:
. _ 1 (x+iyx+iy) (x+iy,x—iy)

twlwow = 5t <(x —iy,x+iy) (x—iy,x—iy))°
- L ( {x,2) +(y,y) (x,x) = (y,y) +2i<x,y>> (vx + ’:Uy>
2v2 " (% %) — (y,y) — 2i{x,y) (x,x) + (y,y) Ux — vy

1 . . vx (%, x) + i, (y, y) +i(x,y)(vx — ivy)>
= - (Uy —1U Uy + 1 . . .

2 ( v y) (vx(x, x) —ivy (y,y) —i(x,y)(vx +ivy)

= U0 (X, x) + 1y 0y (Y, y) + (120 + uyv) (X, y)
T
I

=ulv
(3.22)
Which concludes the proof. O
Property 9. Iy and I are similar matrices:
Iy = C*IC (3.23)
Where C = L L is a unitary matrix
BRCAVEE 4 '
Proof. It is straightforward to see that:
1 E+G E—-G—2iF
IW_4<E—G+21‘F E+G ) (3.24)

We now need to expand C*IC:
C*IC—E 1 1 E+G E—-G-2iF\ (1 —i
4 \i —i) \E—G+2iF E+G 1 i
o 1/1 1 E—iF —iG+F
2 <i —i) <E+iF iG+F > (325

~(7 o)
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O]

Similarly, we define the Second Wirtinger Fundamental form, using the Wirtinger
derivatives instead of the conventional ones. Given a heightfield f between the
tangent plane and a smooth surface S at some point P € §?, the Second Fundamental
form has the following expression:

& o L M
ax2 0
II= ﬁ ﬁ = (M N) (3.26)
dxy  9y?
We now define a Second Wirtinger Fundamental form:
2 f 2 f M L
_ 0z9zF 9722 | — w w
dz*2  0dzdz*
Property 10. Il and 11 are similar matrices:
Iy = C*IIC (3.28)
1 —i
.
Where C = 7 <1 ; >
Proof. Let us express Iy w.r.t. ordinary derivatives:
1 L+N L—N+2iM
HW_Z(L—N—ZiM L+N ) (3.29)
We now need to expand C*IIyC:
CHII C—l 1 1 L+ N L—-N+2iM\ (1 —i
W74 \i -i)\L-N-2iM  L+N 1 i
L Y (BHiM (e N M) (3.30)
2\i —i)\L—iM i(N+iM)
(L M
M N
O

Those forms were purposely named using the terminology First and Second
Wirtinger Fundamental forms because one can compute the complex mean curvature
as well as a complex version of the Gaussian curvature using those forms in the
exact same way they are defined with the regular Fundamental forms. Of course, a
complex function having complex ordinary derivatives, one could directly derive a
complex version out of the Fundamental forms out of those by splitting this function
into its real and imaginary parts. However, Wirtinger derivatives having been built
to simplify the differential analysis of complex functions, they are more handy to
work with for studying complex function between the tangent plane and a manifolds
M € .« at some point P € M. This way, we constructed a differential framework
which is directly usable with Wirtinger derivatives. We show that this other way of
writing the Fundamental forms ends up with a similar expression of the mean and
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Gaussian curvatures.

H = a(MxI1l) = (1 <13t

ifa(l ) ir( W) (3.31)
K = et(II) _ et(Ily)

det(T) det(I)

Proof. Since C*C is obviously invertible, C*C(C*C)~! = Id, where Id is the identity
matrix. Since square matrices of the same dimension are commutative inside the

trace, tr(C*IIC(C*IC) 1) = tr(Il x I"!). Similarly, ‘é‘jt((glllg)) = iitt((lll)). O

Remark 5. Since a function § : C — C is differentiable in the complex plane if and only

if 887% = 0, if f is differentiable in the complex plane, then it has zero mean and Gaussian
curvature.

Mean curvature of high order Wirtinger derivatives

As shown in Lemma 1, if f € “K, given a natural p <K,

k+n
aF k p+ k—n  ktn
azfp- Z Z ( k+n| ) o Pkipnipz 222 +0 ‘Z’K Py (3.32)
=0 n=—k

A Taylor expansion of order 2 for p < K — 2 yields:
ol
L

527 (2) =PPpp + (P + D)lPpatpr1z + plepsrpz”

(p+2)'

+ (Pp+2p+zz +(p+1) (Pp+2pzz +p¢p+2p ZZ +O(|Z| )

(3.33)

Note that linear components in this Taylor expansion are not necessarily equal
to zero. However, using the stability Theorem in section 2.2.5 (Theorem 2), one can
show that the complex mean curvature of such functions can be estimated using only
the coefficient bound to zz*, inducing an error of its estimate negligible w.r.t. the
linear coefficients. Indeed, the complex mean curvature of a complex function is the
concatenation of the mean curvatures of its real and its imaginary parts. If there is
no linear component, i.e. the parameterization plane is the tangent plane, the mean
curvature is proportional to the coefficient of the monomial 7> = zz*. If not, Theorem
2 states that this coefficient is stable with an error in o(r) (with o(r) = o(z) = o(z")),
i.e. it is negligible w.r.t. the linear part of its Taylor expansion. By concatenating
the real and imaginary parts, the mean curvature of a complex function at z = 0 is
proportional to the quadratic coefficient bound to zz* with an error negligible w.r.t.
the linear coefficients. Thus, one can write the following Taylor expansion for the
mean curvature of the pt order Wirtinger derivative of f:

" <gZ> ; (II <gp£> <I (gg))l> = 2pt Dipiap +o(@prapar)
(3.34)
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Combining equations (2.68) and (3.1), coefficients a,(s) have the following Taylor
expansion for n > 0:

_ 1 anf n 1 anf n n
an(s) = n!(n+2) oz" (0)s"* + 2(n+1)!(n +4)H (Zﬂz”) " o)
Ly o (3.35)

(O)Sn+2+ 5 ::;) Sn+4+0(sn+4)

1
") = 2y o wroe” (o

3.3.3 Approximation of the tangent plane

Let us go back to real surfaces S € .. The volume descriptors of order £1 can be
used to estimate the tangent plane in a way similar to the one of Jets and Wavejets.

Property 11. Let S € .71 be a surface. Let (x,vy) be an orthonormal basis in a plane P
close to the tangent plane at point P, where P passes by P, and let ¢y ,, be the Wavejets
decomposition of S of the heightfield between P and S in basis (x,y):

_ 3 i Ve (s)
1,41 = —Eg% 3 (3.36)
Where V] (s) is as defined in Definition 6 in section 3.2.
Proof.
VL) — Pre1 3, P31 s 5
5(s) = —2m s s +0(s”) (3.37)
This yields for s # 0:
Vil(s) _ rar | $ss10, o2
T = 5 tog® +o(s%) (3.38)
Equation 3.36 follows.
U

A direct consequence of Property 11 is that if we can estimate the limit of the
volume descriptor of orders +1 divided by s? at zero, we can correct under the small
error hypothesis, the tangent plane estimation. From now on, we will assume that
the tangent plane is correct, i.e. ¢1+1 = 0.

3.3.4 Curvatures

Given a surface S € .72, the volume descriptors of order 4+-2 computed at point P € S
w.r.t. the tangent plane give a direct estimate of the principal directions. Combining
it with the volume descriptor of order 0 gives access to the Gaussian curvature K(P)
as well as principal curvatures x; (P) and x»(P), where P € S.

Property 12. Let S € 7% and let P € S. Given local parameterization in the tangent
plane of S at point P parameterized by (x,y). The phase of V5(s) = —27mas(s) gives
an estimation in O(s?) of the principal directions of order 2 of S at point P. In particular,
the principal direction corresponding to the highest principal curvature is aligned with

Re(ay(s))x — Im(ax(s))y.
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Proof. Assuming that the local computation of 2., is done using the tangent plane,
the phase of ¢, +> holds information about principal directions, as discussed in section

2.2.3. Noticing that a2(s) % + O(s?) concludes the proof. O

S

Property 13. Let S € 7% and let P € S. Given the local parameterization (x,y) in the
tangent plane at point P, the principal curvatures k1 and xy and the Gaussian curvature
IC(P) are a linear combination of the Volumes descriptors of order 0, -2 and 2:

K1 = ;iz (ao(s) + az(s) +a_o(s)) + O(s?)

o — ;iz (a0(s) — as(s) — a_a(s)) + O(s?) (339)
K(P) = ? (a5 — 4a_ra2) + O(s?)

Proof. To prove the two first equations, we use equation (2.28) and associate coeffi-
cients ¢y , with the coefficients of the Taylor expansion of a,(s) from equation (3.35).
The Gaussian curvature result follows by multiplication. O

3.4 Computation of the Volume descriptor

3.4.1 From Wavejets

One can directly estimate functions a,(s) using the local Wavejets decomposition of
a surface in the tangent plane. Wavejets coefficients appear in its Taylor expansion
(see equation (3.1)). However, one should be aware that there can be instability
when computing the Wavejets decomposition in some cases. If the orthonormal
projection of the surface in the tangent plane is surjective, then one cannot express a
heightfield, and the Wavejet decomposition cannot be safely computed. Moreover,
if there lacks points near the boundaries of the neighborhood used to estimate the
Wavejet decomposition, Wavejets coefficients computed by solving equation (2.89)
can have high magnitudes. Indeed, in this case, the system has no constraints. This
can locally induce high variations on the estimated surface so it matches better the
point positions in the rest of the neighborhood, which translates into high magnitude
coefficients.

To conclude, one can retrieve a,(s) from the local Wavejet decomposition of the
surface almost everywhere, but a few outliers can appear in some well-defined cases.

3.4.2 Using Monte Carlo method

One can compute functions a,(s) by randomly sampling a sphere of radius s around
each point of the surface. Given oriented normals, one can determine wether a point
close enough to the surface is inside or outside w.r.t. the normal orientation (see
[Hop+92]). Let § € . be a surface and let X, be a point randomly sampled in a
ball of radius s centered a point P € S, following a uniform probability distribution
over the ball. Let Q; be the closest point on S from X,. Noting n, the normal at Q,,
if (Q; — Xy, ny) > 0, then X, is said to be in the interior of S. Otherwise, it is said
to be in the exterior of S. In the case of a point set surface &, one can use a kd-tree
structure to store the set of sampled points, and define Q, to be the closest point to
Xy in this kd-tree. Let N be the number of random samples taken in the ball and let
1s(X/) be the indicator function returning 1 if X, is in the interior of S, 0 otherwise.
Given a direct orthonormal basis (x,y) spanning the tangent plane at P, noting v,
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ao(s) |a41(s)] |at2(s)] |a43(s)]

FIGURE 3.3: a,(s) estimated using a Monte Carlo method. First row:
10k samples per point. Second row: 100k samples per points. As ||
increases, one needs more samples for convergence.

the orthogonal projection of Q; — X, in the tangent plane and 6,, the oriented angle
between x and v,:

47
Vi(s) = s lim N Zﬂs Xy)e (3.40)

A major benefit of this method is that the volume descriptor of order n can be
computed even if s is too large so the orthogonal map between the tangent plane and
the surface is not a heightfield. Of course, the Taylor expansion of V}(s) for too large
values of s does not apply. Thus, differential quantities computed in such regions
are necessarily false using this method. However, those cases are rare, and when it
happens, one is still able to attach one value to each local geometric structure.

However, this method converges very slowly, and one needs a large amount of
samples per ball in order to correctly estimate the volume descriptors. Figure 3.3
shows estimates of our integral invariants computed using Monte Carlo. The case
ap(s) converges quite fast. However, as |n| increases, the computation of |a,(s)| is
noisier and needs more samples. This drawback makes this method not usable in the
general case. However, if someone wants to compute ground truth volume descriptors,
this method is the one to use given N large enough.

3.4.3 Radial integration of Fourier transforms

One can also estimate the volume descriptors by integrating the heightfield between
the tangent plane and the surface, weighted by complex exponentials. Indeed, for
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n # 0, one can write:

27T s .
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One can compute the volume descriptors using a well-chosen grid that we intro-
duce in this section.

Given a parameterization plane, we consider a circular grid of elements of equal
areas. Such a grid can be computed by splitting the disc Dr of radius R into L rings,
each ring being split into M evenly spaced cells. Such rings R, are the following:

R¢ = Ds,\Ds,_, (3.42)

Where sy = sopvV/1+ £ for ¢ > —1 and sy = \% By convention, R_; is a ring of

zero radius.

Proof. We want that for sy, R has constant area for all / € Z such that ¢/ > —1.
Setting s 1 = 0, first ring R is the disc Ds,. Thus, we want the area of each ring R,
to be 753 for all natural /. Then, the constant area property can be written as follows:

Si41 = \/57 + 5 (3.43)

Now, Let us show by recurrence that:

Sy = S0V (41 (344)

Obviously, s_1 = sp/—1+1 = 0. Let us assume that for a certain integer ¢, we
have sy = sp/ ¢ + 1, then:

St = /5453 = (L4 D)+ 53 = 50v/0 42 (345)

Noticing that s; 1 = R, we have s;_1 = soVL = R, leading to sy = %, which
concludes the proof. O

Such a grid results in the sampling pattern of Figure 3.5 where each sample is on
a vertex of the grid. Such a sampling pattern is a collection of regularly discretized
circles that we index in the same manner we indexed disks D,. Note that as s; in-
creases, the radial distance between two circles decreases, leading to an accumulation
of samples near the edge of the disk of radius R. In the meanwhile, the center of
the disk seems poorly sampled. This might be an unexpected behavior since this
procedure is supposed to compute differential quantities which need by construction
to have access to very local quantities. However, if the sampling pattern was radially
regular, one would not compute the volume of the intersection between a ball and
the interior of a surface. Indeed, since we add up samples, all circles have the same
weight in the integration process, regardless of their radius. A regular grid made of
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|22(s)
FIGURE 3.4: From top to bottom: integral invariants computed with

s = 2.5%,5 = 3.5%,s = 4.5% of the diagonal of the shape by integrat-
ing on the grid presented in section 3.4.3. The grid size is 21 x 21.

ao(s) a1 (s) [a3(s)]
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equally spaced circles would then oversample the region near the center, inducing a
bias. It would be equivalent with polarly integrating while ignoring the weighting
function originating from the following Jacobian:

dxdy = rdrd0 (3.46)

Let us now talk about how dense should be the grid. Let us assume that the
function f we want to integrate on the disk Dr has vanishing derivatives of order
greater than a natural K. If each circle has at least 2K + 1 points, then a Discrete
Fourier Transform can be performed respecting Shannon criteria, leading to an exact
estimate of f along the circle. Volumes 27ta,(s;) for each ¢ can then be computed by
integrating the Fourier coefficient estimated on each circle, with the trapeze method
for example. For 0 < m < Mand 0 < ¢ < L, let f,, ; be the sample of a function f
at position (m, £) in our sampling pattern. Let us call d,(s;) the estimate of a,(s/) at
radius s; using our integration process. We have:

2
n(5¢41) = Anlse) + L (fue + fus-) (347)

2 A A
Where d,(sg) = 2 fu,0 and £, , is the Fourier coefficient of frequency n at circle ¢:

? 1 A= inmA®
fur = U Y fuee (3.48)
m=0

Where AO = 2" is the angular step of the sampling pattern.
Using the trapeze integral formula, the general expression of 4, (s,) is:

m—O

a (S ) S% 1 MZ_:l( fmmAG - 71nmA9 3.49
n\S¢ M ﬁn0+fm€ ;1 Z:: ( )

Integral invariants computed using various radii s are displayed in Figure 3.4. As
one can see, when the radius gets large, larger scale geometry variations are taken
into account, as smaller scale geometry get blurred.

3.44 Comparison of the methods

A numerical comparison of the methods is presented on Figures 3.3 and 3.4. Monte
Carlo method is in theory the one getting the best results since it converges to the
correct value. However, the amount of time to compute an acceptable estimate is
huge when |n| > 1 (see Figure 3.3). The results using the Wavejet decomposition
of the surface and the integration on a grid give very similar results. Differences
usually appear on cases where there lacks points (outliers appear when inverting
the linear system), or where the neighborhood cannot be properly expressed as
a function f(r,6), which happens when s is too large. The grid method has two
main advantages. First, even on ill-defined cases (the local heightfield cannot be
expressed as a function or the sampling rate is insufficient), this method produces
bounded values. Thus, even if those cases are not supposed to be handled by the
Wavejets framework, one can have an estimate of the integral invariants and use
them. However, the reader should keep in mind that in such cases, those estimates
have poor geometrical meanings. Finally, estimating the volume descriptors for any
order is much faster when using a grid. Thus, it is adviced to use the integration
on a grid to compute the integral invariants. Concerning processing times, using a
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S0

S1
52
S3
S4
S5

FIGURE 3.5: The circles of radius s; from equation 3.44 for a given s.

Each colored ring has constant area 7ts3. Purple points are an example

of a sampling pattern we can generate out of the circles of radius

s¢. In this example, there are 22 samples per circle, which mean that

Shannon criterion is respected if and only if the Wavejet decomposition

of the heightfield between a parameterization plane and the surface
has vanishing coefficients ¢ ,, for |n| > 10.
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multi-threaded algorithm on 16 threads on an intel Xeon, Monte Carlo takes around 2
hours to compute four integral invariants, using 10,000 samples per points on a point
set of 600,000 points. The same point set requires 9 minutes if one does a Wavejet
decomposition of order 8 over the shape, and 15 seconds if integrating on grid of 21
circles and 21 samples per circle as described in Figure 3.5.

3.5 Retrieving Wavejet coefficients from the Volume descrip-
tor

The grid constructed in section 3.4.3 is composed of L concentric circles. It allows to
compute values i, (s¢) for 0 < ¢ < L, which is an approximation of samples of a,(s).
Since for a given integer K < £,

K
an(se) = Y, msk+2+o(s§+4) (3.50)

k=|n|

Let S is a matrix filled at index ( L%J , €> with slthr2 for k > |n| and k of same parity

as |n|, and let ¢, is the vector of V@T‘”'J elements ¢y, for k < K and k of same parity

of |n|. Let A, be a vector of dimension L filled with 4, (s;) for 0 < ¢ < L. Vector ¢,, of
coefficients ¢ ,, can be retrieved by solving the following minimization:

¢n = argmin ||S¢,, — An||2 (3.51)

o

3.6 Stability of the Volume descriptor of order n

The stability of the volume descriptor of order 0 was already studied in [Pot+09]. Let
S be a surface such that each point of S is perturbed by a centered Gaussian noise of
standard deviation ¢ in a random orientation in IR® following a uniform distribution.
The Taylor expansion of ag(s) at each point of S features a normal offset in its first
term. By construction, for ¢ = 0, the point on which ay(s) is computed is on the
surface. Thus, this offset equals zero. If o # 0, this assumption does not hold any
more. It was shown in [Pot+09] that the volume descriptor is resilient to noise if and
only if the input maximum deviation is negligible w.r.t. radius s and if and only if the
inverse of the mean curvature, % (P)~?, is in O(s). This is mostly due to the fact that
points perturbed by noise are not necessarily on the surface.

When n # 0, the offset from the point to the surface is not critical any more.
Indeed, this offset is entirely stored in the coefficient ¢ of the local Wavejet de-
composition, which does not influence a,(s) for n # 0. However, a noisy point set
does not necessarily have the same normals as a finely detailed noise free version.
Non noisy normals computed on noisy data have to be smoother and coarser than
the theoretical ones. As a consequence, a bias is induced in both the point position
and the tangents along the local heightfields, yielding a wrong estimate of ¢7 11. As
shown in Theorem 2, one can retrieve each Wavejet coefficients computed using the
tangent plane out of an estimate using an arbitrary parameterization plane with an
error in o(7y), where 7 is the angle error between the tangent plane and the param-
eterization plane. Thus, the error induced by coarse normals induces a small bias
in the estimated Wavejets coefficients. Coefficients a,(s) being radial polynomials
whose coefficients are proportional to the Wavejets coefficients of frequency n, the
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estimate of a,(s) on a noisy point set has a small bias compared to the theoretical
one. Obviously, a11(s) are the most impacted functions since they directly feature the
tangential error in their Taylor expansions. a1,(s), on the contrary, has been found to
be not that much impacted from this bias in our experiments.

In this section, we show how the standard deviation of an input noise in position
on a sampled surface influences the values of a,(s) for n # 0. Since it is impossible to
have a sharp estimate of normals on a sampled surface corrupted by a position noise,
we replace the theoretical normals by smoother ones such that their computation
by Principal Component Analysis is stable (i.e. the normal field is smooth over the
surface) w.r.t. the input noise given an arbitrary radius of interest. As a consequence,
because of its strong link with the tangential information, the scalar field |a41(s)]
over the surface is strongly biased compared to its theoretical one given correct input
normals. Scalar fields a, (s) for frequencies |n| # 1 are also biased, but much less. The
reader can refer to Theorem 2 in section 2.2.5 to appreciate the amount of bias for each
frequency n. The point of this section is not to study the accuracy of the computation
of the volume descriptors of order n on noisy data, but rather to study its smoothness.
Thus, for simplicity, we assume this bias to be equal to zero and do not discriminate
the case |n| = 1. However, we do not consider the case n = 0 since it already was
addressed in [Pot+09], and because the standard deviation of a¢(s) has a non-zero
asymptotic limit for any number of samples on the integration grid. Indeed, the point
of coordinate (0, 0) in the local coordinate system is perturbed by a centered Gaussian
noise NV (0, c) of standard deviation ¢, which means that ¢ ~ N (0,0) as well. Thus,
the standard deviation of the estimate of ag(s) is at least §s*. Wavejets coefficients of
frequency n # 0 do not suffer from this issue. Hence, we study how noisy the field
of functions a,(s) is over a noisy sampled surface given an input centered Gaussian
noise for n # 0.

Given estimated tangent planes over S, we note ¢ ~ N (0, o) the centered Gaus-
sian noise of standard deviation ¢ perturbing the local heightfield in the normal
direction. Let f,, ; be a sample of a function f following the sample pattern of section
3.4.3 with L circles and M samples per circle, such that m € [0, M[and ¢ € [0, L[. Let
us call €,, ; one realization of e. Each function a,(s) has the following form:

SZ 1M—1 AG —2 M- Ad
(SL 1) ZASIL Z(me 1+€mL 1 7mm Z Z fm/"’em, 7mm

m=0

1 1. X L-2 . R
= Z (2(fn,L1 + en,Lfl) + Z(f”'g + 6”’”)

/=0
(3.52)

€y, is the Fourier coefficient of frequency n of a realization of the noise along
circle ¢, and f;,, a the Fourier coefficient of frequency 1 of f along circle £. Thus,
€y, is a realization of a random variable that we note &,. Let us determine what
is the distribution of &,. Let us note the complex random variable Z, = Mse By

construction, we have:
M—-1

= Z Zymne (3.53)

Given a real random variable X, there exists a bijection transforming X into
what is called the characteristic function ¢x(t). Characteristic functions have useful
properties for characterizing the sum of random variables. [And+95] generalized
them for complex variables. The characteristic function of Z, that we note ¢z, (t) has



62 Chapter 3. New integral invariants

the following definition:
¢z, (t) =E (eiRe(f*Zﬂ) (3.54)

Where E(X) is the expected value of random variable X. A property of the
characteristic function is:

M-1
e, (1) = 4)2%_—01 anM(t) = H Pumae(t) (3.55)
B m=0
Given X and Y two random variables, px = ¢y if and only if fx = fy, where fx
is the probability density function of X. Therefore, if we can estimate the product
of all characteristic functions of Z,;,,o9, we can deduce the distribution of &,. Let
wy(t) = Re(t*e™™). Since Z, is a complex variable:

9z (1) = E (e™e2)

—E (amm) 656)

Because §; ~ N(0, %) and w,(t) € R. Let us now express the characteristic
function of &,:

g, ()= I oz

a=nmAb
me[0,M—1]
2
4 2
=exp|— ) Fmwa(t)
a=nmAb 2M2 :
me[0,M—1]
2 ) . N\2
= exp —U—Z Z (t*e”" + te”“) (3.57)
8M a=nmA6
me[0,M—1]
— ex o o4 2 2in | 42 2ix
= exp YVl E t't+t%e + e
8M a=nmA6
me[0,M—1]
oo (2
— P\ am
+2in

Note that terms in e*“** vanish because « regularly angularly samples over a circle,
and the sum of such exponentials equals zero. We now have to determine which
probability density function ¢, has characteristic function ¢@;,. Given (u,v,c) € C3,

and X = (CZ ,;*> , the random variable Z following the complex normal distribution
CN (p,X) of mean p and covariance matrix X has the following probability density
function:

fz(z) = 2n\1/f| exp (—; (ZZ*>*Z‘1 (;)) (3.58)
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Input ao(s) |a:1(s)] |a2(s)]

FIGURE 3.6: a,(s) computed over shapes with different additive noise.

First row: noise free - Second row: ¢ = 0.45% of the diagonal - Third

row: ¢ = 1.25% of the diagonal. In all examples, s = 4.5% of the

diagonal. When noise is added, considered normals are smooth over

the shape, i.e. are computed using large neighborhood sizes. First row
features fine normal estimates.

And the corresponding characteristic function is (see [And+95]):
. X 1
g2(t) = exp ~iRelt') = 3 (71t + Relcle?) (359

Thus, using equation (3.57), &, ~ CN (0, ‘7—212> where I is the identity matrix of
size 2 x 2. This probability density function is isotropic in the complex plane. This is
something we would expect since the input noise is the same along each circle.

Let us now discuss the influence of integrating on multiple circles. Summing L
Gaussian random variables results in increasing the variance by a factor L. Since we
divide the sum by L in the integration process, the resulting variance is multiplied by

24
a factor L~1. Thus, summing L — 2 times the complex random variable “J* and twice
24
the random variable 2" results in that the Volume descriptor of order n computed
on a surface with input additive Gaussian noise N (0, o) is perturbed by an additive

2007 o\ 2
complex Gaussian noise of distribution CA (0, %b) .

However, even if we reduce the noise by integrating the signal, the average
magnitude of functions a,(s) decreases as |n| gets larger. For example, Figure 3.6
shows the first estimated a,(s) given a noise of 1.25% of the largest diagonal of a
shape. |a12(s)| is quite unstable, while |a.3(s)| is not usable. Moreover, one can
see that a4, (s) is the most resilient quantity. 241 (s), on the other hand, vanishes as
normals get blurred.
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Chapter 4

Shape detail amplification

In this chapter, we present a method for amplifying or modifying geometric details
on surfaces represented by point clouds.

4,1 Related work

While the literature for detail exaggeration in image or video processing is large
(e.g. [Liu+05; Dek+15]) it has been far less studied for surfaces. In image processing,
there are two main methods performing detail amplification: high-boost filtering and
Unsharp masking [PRMO00; Mit+91; Ram+96]. High-boost filtering stems from signal
processing. It can be performed by amplifying the high frequency coefficients of a
spectral decomposition of this signal. Let f be a signal and let § be a high-pass filter.
§(f) cuts low frequencies of f while preserving high frequencies. Considering that
the details of a signal are the fast varying part of f, i.e. high frequency components
of the spectral decomposition of f, §(f) holds the details of f. Thus, given « € R,
f+ (0 —1)F(f) exaggerates the details of f with a gain & while preserving the general
aspect of f. This filter is called the High-boost filter.

Unsharp masking performs similarly, but instead of using the whole function f
through its Fourier Transform, it locally changes the value f(x) so it locally amplifies
the dynamics of f. This idea dates back to Gabor [Gab65; LEB94]. The principle is
the following. Let K be a blurring operator (a convolution with a Gaussian kernel
for example). Applying K to a function f results in a smoother function K(f). Let us
note § = f — K(f). 0 are the details of f. Thus, givena € R, f + (1 —a)(f — K(f))
represents f with exaggerated details with a gain a. This local filter is called unsharp
masking. The main drawback of unsharp masking is that it produces overshoots near
sharp features.

Even if high-boost filtering and unsharp masking both perform detail amplifi-
cation, their construction is different, and the results might differ a lot. Unsharp
masking generally has two parameters: a neighborhood size or a kernel width, and a
gain. Usually, the size parameter should be of the order of the size of the details to
enhance, and the gain parameter tells how much of those details should be amplified.
On the other hand, since high-boost filtering enhances the high frequency compo-
nents of the signal, there are usually more parameters: one gain per frequency. As a
consequence, high-boost filtering a signal can amplify its details in various manners.
The drawback is that the design of the high-boost filter is more tedious, because
one has to set one gain per frequency as well as determining a limit between low
frequencies and high frequencies. The outcome of the filter is harder to determine a
priori.

Detail amplification is usually thought as enhancing the local dynamics of a
function. In the case of surfaces, there are two main types of functions over the



66 Chapter 4. Shape detail amplification

FIGURE 4.1: Both pictures show a rendering of the same shape. The

only difference are the normals considered over the shapes. On the

left: normals estimated with great precision - On the right: poorly
estimated normals

surface on which one can amplify details. The most obvious one is the position
of each point over the shape: one can locally move each point to amplify the local
geometry. We call this position amplification. The second function on which one can
amplify details is the normal mapped to each point on the surface. Indeed, our
visual system is very sensitive to normal variations. Given the same geometry, poorly
estimated normals result in a blurred shape (see Figure 4.1). Hence, one can also
alter the normal definition over the shape, and amplifying the local dynamics of
the normals can give the illusion that geometric features are sharper. We call this
normal amplification. This method makes the viewer see non-existing geometry, which
can cause weird optical illusions. For instance, highly amplified normals dynamics
on almost flat shapes can look incoherent given certain angles of view. The false
normals directions with regards to the geometry can induce highly carved areas that
are supposed to be almost flat. This can induce some points of the surface to be
visible while they should be occluded if that surface was coherent with the normals.
surface being almost coplanar with the light rays coming from the camera. Note that
in the case of position amplification, normals must be updated in order to visualize
the detail amplification.

Position dynamic amplification can be trivially performed within the high-boost
filtering framework by relying on the manifold harmonic decomposition of the surface
[VLO8]. It is also possible to adapt unsharp masking. Given an operator K blurring
a surface S, let K(P) be the blurred position of a point P € S, position unsharp
masking can be performed by moving each point P as follows:

P+ P+ (1—a)(P—K(P)) (4.1)

Where « is the gain of the filter. The key element is the definition of the blurring
operator K, which will be discussed in next Section. Indeed, if K has a wide support,
it deteriorates slow varying geometry, i.e. geometry that is of greater scale than the
considered geometric details, geometric details amplification becomes less sharp.

A method for normal dynamic amplification was proposed in [CST05]. Normals
are iteratively updated in a direction opposite to the arithmetic mean of the normals
computed in a neighborhood. This process can be seen as an unsharp masking applied
to the normals. [RBD06] proposed a rendering method that produces enhanced details
that also do not modify the vertex position. However, this method does not enhance
the normal dynamics, but rather proposes a rendering method inferring sharper
geometric details. The principle is to apply a multi-scale toon shading. All the scales
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Original Positions enhanced Normals enhanced

FIGURE 4.2: On the left: input shape. On the top right: our position

and normal enhancement method. On the bottom right: the result of

a high-boost filter applied to manifold harmonics [VL08] of the dino

(no normal enhancement is defined using this method). Our position

enhancement method highlights more local details as the Manifold-

Harmonics based high-boost filter. The rendering of the second row is
a capture of the MHB demo provided by the authors.

are then taken into account to determine the color output. This method is thus view
dependent, which is not the case for our method or the one of [CST05]. We will
compare our method to [Rug+06] for the sake of completeness, but the reader should
keep in mind that the process is not comparable.

4.2 Surface fairing

421 Goals

In order to define a method to do unsharp masking, we need a good surface fairing
definition. The only parameter for smoothing should be a radius related to the size of
the neighborhood one wants to smooth out. This way, the user only needs to know
the scale of details to be enhanced. As a consequence, one only needs to specify which
procedures it wants to perform.

4.2.2 Mean curvature motion

Surface fairing with mean curvature motion has been widely studied. In order to
compute mean curvature motion, one needs a definition of the mean curvature as
well as the normal at each point. Indeed, given a point P on a surface S and n the
normal at P, one can write the mean curvature motion equation as follows:

‘ili; — BAPn (4.2)
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Where B is the velocity of the flow. Instead of taking into account the Laplacian
A, one may refer to the mean curvature = $A. For convenience f is usually set to

two, so one has:
dP

dt

Taubin [Tau95] proposed a slightly different approach for surface fairing avoid-
ing normal computation. The method relies on the eigenfunctions of a discretized
Laplacian operator for meshes, which can be seen as an extension of the Fourier basis
to manifolds. The mesh is iteratively updated by applying a linear operator to the po-
sitions such that low frequencies tend to be invariant, whereas high frequencies tend
to zero. The flow for each point follows the mean curvature motion, which has the
drawback of shrinking the volume. To avoid that shrinking effect, and unshrinking
step which inflates the surface by an appropriate amount is added.

Meyer et al. [Mey+03] developed a wide set of tools for surface analysis, includ-
ing the computation of the mean curvature on a mesh using the cotangent formula.
They naturally proposed to use those to perform a mean curvature motion on sur-
faces. Sorkine et al. [Sor+04] proposed to encode geometric details using Laplacian
coordinates for meshes. In their method, the detail at each point P of the mesh is
defined as the difference between the point and the distance-weighted average of
their 1-ring neighborhood. This operation results in computing the Laplacian coating
of the surface, separating the geometric details from the surface. Doing so, they can
perform geometric detail transfers between meshes and can handle various kinds
of details, including details that cannot be described as a heightfield over a tangent
plane. Belkin et al. [BSW09] proposed a method to compute the Laplacian operator
on point sets, which could then be used to apply a mean curvature motion. One can
perform mean curvature motion as soon as one can compute the mean curvature
over a surface. In this sense, Algebraic Point Set Surfaces (APSS) [GG07], which were
introduced to have a stable projection or interpolation method on a surface, can be
used for mean curvature estimation. Indeed, a side consequence of APSS is that one
can compute the mean curvature by taking the inverse of the radius of the algebraic
spheres. Similarly, all integral invariants introduced by [Pot+09] feature an estimate
of the mean curvature. Thus, those methods can be used to perform mean curvature
motion over the shape. In the method we propose, unsharp masking on positions
is performed, given a heuristic on the step amplitude, using the mean curvature
computed from the volume descriptor in [Pot+09] discussed in chapter 3. Using the
generalization of the volume descriptor at order n = £1, we will show that normals
can be amplified as well.

Mean curvature motion is usually done by an iterative algorithm. Time is dis-
cretized, and one can express the t iteration of the mean curvature motion as follows:

= H(P)n (4.3)

Pryq = P+ BH(P)ny (4.4)

Where B is the velocity of the flow. Note that § has a different definition than in
equation (4.2). Mean curvature motion can also be achieved by using the heat kernel,
since equation (4.2) is the heat equation. Given an initial heat distribution over the
surface, the heat equation expresses how the heat diffuses over the shape after a time
t. Computing the heat diffusion can be done by convolving the initial surface by the
heat kernel. For the case of mean curvature motion on a surface, the initial state is the
set of positions P € §. Convolving each position coordinate by coordinate, by the
heat kernel of variance 4t, is equivalent with performing a mean curvature motion.
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Given Q € S, the heat kernel is defined as follows:

1 _dr?
K(P, Q) - rme 4 (45)

Where d(P, Q) is the geodesic distance between P and Q on S, i.e. the length of
the shortest path between P and Q on S.

One can estimate such kernels using the spectral decomposition of a surface
[VL08]. The heat kernel was used in [SOG09] to define a local descriptor on shapes:
the Heat Kernel Signature, but one could use this formulation to convolve the surface
by the heat kernel to smoothen the surface. One flaw of this method is that it requires
to compute the manifold harmonics, which can be time consuming. Moreover, it
is memory consuming, since one has to store around 100 eigenvectors of the size
of the number of input points. A few shapes featuring very sharp parts, like the
legs of an animal or the fingers of a hand for example, can require the computation
of many more eigenfunctions in order to correctly describe the shape. A solution
localizing the eigenfunctions of the Laplacian was proposed in [Mel+17] to correct
this drawback.Using enough eigenfunctions, this smoothing solution would work
for point positions, but, unfortunately, not necessarily for normals smoothing. One
could argue that one could consider the signal we want to smooth to be the normal
coordinates instead of the point positions. However, there is no guarantee that the
norm of the smoothed normals do not vanish, or that the normals could not flip near
highly curved neighborhoods. This could lead to outliers and instabilities.

Digne et al. [Dig+11] showed that mean curvature motion can be done by recur-
sively projecting the points on the local best fitting plane. The normal of the best
titting plane is shown to be stable enough to consider it as a reliable normal estimate.
It is bounded by O(s). This method was used to better estimate the orientation of
raw point sets and to mesh while preserving fine details. Indeed, the mean curvature
motion on a point set simplifies its geometry. Thus, it is safer and easier to apply state
of the arts algorithms on this simplified data, and the results can be then propagated
back to the original surface.

Our method relies on a similar procedure as described in [Dig+11]: points are
projected on the local best fitting plane. However, we rely on the volume descriptor
to induce this projection, and only one iteration is performed. This is because we
do not want to amplify parts of the shape which are not details at a certain scale.
Geometric details of a certain scale can be mostly erased given a certain neighborhood
size. We will show that this procedure can be done on point positions and on normals
as well, yielding a unified framework for both amplification methods with similar
parameters.

4.3 Position amplification

4.3.1 Method

Recall that we look for a filter K such that K(S) corresponds to S without any geo-
metric details. We define geometric details to be the residue between local regression
plane given a neighborhood of radius s, and the surface. In other words, parts that
do not lie on a plane estimated at radius s are considered to be details of the surface.
As a consequence, non-planar parts of low mean curvature are thus considered as
details, but their amplitude is so low that it is negligible compared to actual details.
This definition of details is quite relative because details at radius s might not be
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FIGURE 4.3: Applying order 9 (normal exaggeration) and order 8
filters (position filter) to the Anubis datasets with ag = a1 = 2.

considered as details for radius s’ << s. Noting 6 = S — K(S) the details, amplifying
positions can be done by computing S + (ap — 1)d, where a is called the gain of the
amplification. Let us now show how this can be performed from the computation of
function ag(s).

Given a Wavejet decomposition over the tangent plane at point P € S (hence
$1,+1 = 0 = and ¢gp = 0), let us write coefficient ay(s) from equation (3.1):

a0(s) = 2052 4 2051 4 0(s*)

1 (4.6)
_ P + ~Hst +0(s%)

2 8
Where H is the mean curvature at P. Note that ¢ 9 = 0 since the parameterization
plane passes by P. A non zero ¢9 o would mean that the parameterization plane does
not necessarily contain P, and that the signed distance between the surface and the

plane at (0,0) is ¢ . Also, recall that 27tay(s) quantifies the signed volume between
2mag(s) __ 2ap(s)

the surface and the tangent plane. Thus, =5~ = = quantifies the average height
of the surface in the neighborhood of P in a disc of radius s. Using the result of
2ay(s)

Theorem 1 in [Dig+11], moving P to the position P — 2N, where n is the normal
at P, is equivalent with moving P to the centroid of the local neighborhood up to a
bound in o(s?). Theorem 2 in [Dig+11] also shows that one can equivalently use a
coarser normal, computed by a principal component analysis (PCA) on the covariance
of the neighborhood positions, instead of the true normal when moving P: the error
induced is in o(s?). Note that doing so is equivalent to orthogonally projecting P on
the local best fitting plane. In our case, it is better to use a coarse normal instead of
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FIGURE 4.4: Applying order 7 (normal filter) and order 6 filters (posi-
tion filter) to the Pyramid datasets with ag = a1 = 2.

the true normal of the surface. Indeed, given a chosen radius s, details of magnitude
negligible w.r.t. s, i.e. details we do not want to amplify, induce fast varying normals.
If we use those fast varying normals, moving points in these directions might tear the
surface. This does not happen if one uses normals computed using a PCA

at radius s, which better describes the surface at this given scale. This problem
does not appear as much when performing a mean curvature motion for multiple
operations with a small enough radius, because the normals become smoother as
the positions are smoothened. We propose in the next section an other method to
compute a smooth normal using the volume descriptor of order +1.

We can now describe the procedure. Given an estimate of coefficient ay(s) and 7 a
smooth estimated normal at P, we move each point P as:

2
PP+ %()

(1— wo)7 4.7)

Coefficient ag is called the gain of amplification. In order to enhance geometric
details, one needs to set ag > 1. If g = 0, the surface becomes blurred and details
are removed from the surface. As we will see in section 4.5, setting &g < 0 results in
geometric details inversion.

One should be aware that we do not take any collision aspects into account,
meaning that applying our method to some surfaces might make parts of the surface
self-intersect. For example, eye cavities in the dino shape in Figure 4.2 can go through
each other if the amplification gain is too large.

Recall that a¢(s) can be computed in various manners. If ao(s) is computed
using local Wavejet decompositions, coefficients ¢ , can sometimes have quite high
magnitudes. This can happen if a part of the neighborhood of interest is sample
free, or if the shape is not locally a heightfield because the radius is too large. This
would make some points move far away when applying unsharp masking. In order
to avoid those artifacts, we set a maximum threshold on the points motion. In our
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' lR,45% Ry = 4.5%
Input K=2
Prec1se Coarse ao(s)
mean curvature mean curvature

FIGURE 4.5: Unsharp masking relying on mean curvature estimates

using local Wavejet decompositions with same gain ¢y = 6 and dif-

ferent radii s. Left row: mean curvature estimated out of Wavejet

decompositions of order 8. Middle row: mean curvature estimated

out of Wavejet decompositions of order 2 (note that this is equivalent

to using a(s) estimated with the same decomposition). Right row:
unsharp masking using a(s).

experiments, we set it to be the radius of the neighborhood. This threshold is used in
Figure 4.5. This limitation does not hold if a(s) is computed using Monte Carlo or
the regular grid described in chapter 3 since [ag(s)| is bounded by %s3

4.3.2 Experiments

Let us now compare the results between using a¢(s) and other approximations of
the mean curvature for our algorithm. Estimating ao(s) out of the local Wavejets
decomposition permits to control the precision with regards to the Wavejets order K.
A low order K gives a coarse estimation, while a higher order gives a finer estimation.
In particular, setting K = 2 is equivalent with locally approximating the shape with
a paraboloid, yielding a coarse mean curvature estimation. Similarly, a high order
Wavejet (for example K = 8) gives access to an estimate of the mean curvature in
O(r®), which is quite high. Figure 4.5 shows what happens when our pipeline is used
with an estimate of the mean curvature computed out of Wavejets decompositions for
different order given different neighborhood radii, and compares it to an estimation
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FIGURE 4.6: Unsharp masking using the mean curvature estimation of

APSS [GGGO8] for different scale parameters. Each point is moved by

3 times the estimated mean curvature. Scale 20 gives the best results
for this example.

of ap(s) computed out of Wavejets of order 8. It turns out that ag(s) is less sensitive
to the radius choice than a coarse estimate of the mean curvature, which is due to
the influence of higher order terms that are inside the Taylor expansion of a¢(s). In
particular, one can see that a one-shot smoothing of the shape given a fine estimate
of the mean curvature does not work, and that a simple second order estimation
tends to blur out the shape too much. In this last scenario, the shape is more blurred
because the detail layer used for unsharp masking catches larger scales variations as
well. Figure 4.6 shows examples of unsharp masking on positions using the mean
curvature estimation given by APSS [GGGO8] for different parameters. Similar results
can be retrieved as with our method. However, the choice of the parameter is more
sensitive than ours, and the scale parameter of APSS might be harder to predetermine
contrary to a gain and a neighborhood radius.

To conclude, unsharp masking on shapes can be performed with a one-shot
smoothing procedure relying on some estimation of the mean curvature. However,
the parameter choice is made easier with the integral invariant a(s).

4.4 Normal amplification

The normal amplification procedure is very similar to the position amplification
procedure. Let us recall the expression of coefficient 241 (s) from equation (3.1) given
Wavejets coefficients:

a:1(s) = (Pléil s34+ (PB';] s° 4+ 0(s7) (4.8)

Another way to write that is to use the generalization of the mean curvature to
complex functions thanks to the Wirtinger derivatives discussed in section 3.3.2. Let
us express equation (3.35);

190 1 )
a(s) = ——f(O)s3 +—=H of (0)s” +0(s7)
30z 10 0z (4.9)

2 1(s) = %aa; ()5 + 1M (aaj ) (0)s° + O(s")

Where H (%) (0) is the complex mean curvature of the first Wirtinger derivative

of f at (0,0) in the local parameterization. Note that if the parameterization plane
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is the tangent plane, ¢ 11 = 0. Thus, a41(s) can be used to estimate the complex
mean curvature of the first derivative of Wirtinger. Remember that coefficients ¢ 11,
which are proportional to the first Wirtinger derivatives, can be mapped by a bijection
with a rotation of the parameterization plane. When their estimates on a surface are
non zero, one can use them to retrieve a better estimate of the tangent plane at this
location. Thus, a way to interpret the mean curvature of the first Wirtinger derivatives
is the following: it gives information about the orientation in which the mean tangent
plane of the neighborhood tends to go w.r.t. local parameterization plane orientation
(thanks to its phase), and about how much it deviates (thanks to its magnitude). In
other words, the mean curvature of the first Wirtinger derivatives can be bijectively
mapped to the mean normal in a small neighborhood.

Let us now discuss how the position amplification procedure can be generalized

to a normal amplification procedure. Given a surface S and function ay(s) at point

P € S, let us note ¢pp = —2”"—2(5). This value is the average height of the neighbors

S ~
around P, and moving P in the normal direction by ¢ is equivalent to projecting P

on the local best regression plane.

Functions a41(s) have a similar aspect as a¢(s) in their Taylor expansion. As
$0,0 expresses an offset of the positions, ¢; +1 can be thought as an angular offset of
the tangential components. Adding an angular offset ¢; . results in rotating the
tangent plane at P. a11(s) is proportional to the mean curvature of the first Wirtinger
derivative at P and holds the tangential information. Thus, a11(s) can be used to
rotate the local parameterization plane in a mean curvature motion like procedure
near P. We defined the blurring position procedure to be the procedure moving each
point P to the centroid of each neighborhoods. Doing so is equivalent with moving
the parameterization plane to a position such that computing the volume between
a ball and the interior of the surface equals zero. By analogy, we define a blurred
tangent plane to be the parameterization plane for which the volume descriptor of
order +1 computed using this plane equals zero. This way, the blurred tangent plane
is equal to an average of the neighborhood tangent planes. Thus, we need to add a
tangential offset ¢; .1 such that:

74)1;153 +as1(s) =0 (4.10)
This yields:
~ 341
471,:‘:1 = —ST(S) (4.11)

Since (fﬁ]/il is homogeneous to a tangential orientation, one can retrieve the corre-
sponding smooth normal using equation (2.21). The procedure can be described as
follows: Given estimated coefficients a1 (s) in the tangent plane in a neighborhood
of radius s, apply the normal correction procedure by replacing ¢ +1 by:

P1,41 < ?’at,é(s)(l — 1) (4.12)

Note that there are two coefficients a1. In the general case where someone wants
to enhance geometric details, x;y = a_; > 1. The case a4+; = 0 blurs the normals.
Thus, this can be used to have a consistent way to define blurred normals used for
amplifying positions instead of computing coarse normals using principal component
analysis. a1 and «_ can be different coefficients in case one wants to skew geometric
details coherently as explained in next section
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FIGURE 4.7: Influence of position amplification gain ag. ao(s) is com-

puted using the regular grid integration in chapter 3. When ay < 0,

the shape tends to be carved in the orientation opposite to the details
(visually similar to normal filtering with a; < 0, Fig. 4.8).

4.5 Inverting and skewing geometric details

In sections 4.3 and 4.4 we described a method for amplifying geometric details by
either moving points or changing the normals direction. Both methods are very
similar and depend on a radius parameter s and a gain (« for amplifying positions,
and a4 for amplifying normals). In order to enhance details, gains should be positive
and strictly larger than 1. However, one can design a larger variety of filters on the
geometric details of a surface, such as inverting them by setting negative gains
and w1, or even producing skewed-like geometric details in a coherent manner over
the surface by setting a1 € C.

Inverting geometric details seems straightforward regarding the way this pro-
cedure enhances them. Let us focus on the position amplification method. Given a
surface S and the smoothing procedure discussed in section 4.3 which transforms
S to K(S), one can note § = § — K(S) the geometric details of S. Thus, subtracting
J to S erases geometric details, and adding «od to K(S) amplifies them if ag > 1,
or restores them if xp = 1. It comes naturally that setting #p < 1 would carve the
geometric details in the surface in the wrong direction, yielding a detail inversion.
Setting xp = —1 leads to what could be named anti-details, and setting agp < —1 would
enhance them. Figure 4.7 shows an example of detail inversion.

The same rationale can be applied for normal amplifications. As discussed in
Section 4.4, a displacement of the tangential component in the local Wavejet decom-
position of a surface can be expressed as a complex number. Let K; (S) be the surface
S with smoothened normals using our method. Let there be an arbitrary local coordi-
nate system in tangent plane to S. Noting R(P) the rotation matrix rotating normal
nat P € S to the smooth normal of K;(S), let the local basis spanning each smooth
tangent plane over Kj (s) be the corresponding basis at P in S rotated by R(P). Let
% (resp. gg) be the set of first order Wirtinger derivative (resp. its conjugate) of the
local heightfield at each point in surface S w.r.t. local system coordinates. In other
words, it associates a set of complex numbers associated to a point P of the surace.
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ax1 =0 s =4

FIGURE 4.8: Normal amplification. a11(s) is computed using local

Wavejet decompositions for Wavejets of different orders K. Influence

of normal amplification gain w11 and of order K. The phase of a1 sets

the orientation followed by normal amplification. When ay; = 0, the
normals are blurred.
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The normal displacement can be written as two complex scalar fields é1; over the
surface that can be written as follows:

5 S _9Ki(S)

| = —
0z dz

4.13

LS aK(S) (4.13)
-1 9z 0z*

041 is the expression of the displacement of the normals between their correct
position to a blurred version. Thus, moving in the opposite direction from the blurred
version would invert the visual aspect of geometric details as well. Doing so would
make the normals evolve in the opposite direction to the geometry. However, since
our visual system is more sensitive to the normal orientations than the geometry,
unless the geometry varies so much that our visual system could catch the position
variations as well as the normal information and debunk the incoherence, one would
see inverted geometric details without being much confused. When our visual system
sees inverted details, it actually infers a geometry which does not match the real
geometry.

More can be done with normal amplification. Since amplifying normals is equiva-
lent with displacing the tangent planes using complex numbers, one could imagine,
instead of setting a real gain a1, to set it as a complex number. Linearly interpolating
in the real number axis a1; = 1 to a+; = —1 would smoothly go from the input
surface with regular normals, to a surface with blurred normals, to a surface with
inverted geometric details inferred by the normals orientation. Instead of linear
interpolation, if one performs an interpolation in the unit circle of the complex plane,
what would happen? First, one should note that, necessarily, ¢11 = ¢7 _; in order to
have a real tangent plane and a real normal. Thus

3 *
3”;3(5) (1-a)= ”—Sé(S) (1—a*,) (4.14)

Which yields &y = a* ;. Thus, if a1 evolves along the half unit circle of positive
imaginary part, a1 should evolve in the half unit circle of negative imaginary part,
being symmetric to a1 w.r.t. real numbers axis. Doing so, the absolute value of the
tangent plane displacement with the blurred tangent plane is constant, while the
orientation varies. One can see a change of magnitude of &4 as a change in the angle
of rotation transforming a normal to the other. Similarly, a change of phase changes
the axis of rotation. The normal ends up rotating around the blurred normal until
it reaches the position of the normal inducing inverted geometric details. Setting
ay1 € € makes all normals move in a coherent manner as far as all tangential param-
eterizations are direct frames. The reason for that is that the displacement of tangent
planes does not depend on the coordinate system of the local parameterization plane.
The value of 6.+1 may differ, but the geometric transformation applied to the normal
is invariant when transforming these scalar fields into rotation matrices. Multiplying
441 at point P by a gain a1 angularly shifts 611 by the phase of a1, resulting into
rotating this normals around the blurred normal. This results in infering geometric
details which can look odd or unnatural while still being coherent.

It is interesting to see that inverting details using either the position or normal
amplification framework results in quite similar results (compare results with a
negative gain in Figures 4.7 and 4.8). One might expect this, but both procedures
rely on local quantities expressing parts of the heightfield being orthogonal with each
other (frequency 0 is orthogonal with frequencies +1). Figures 4.8 and 4.9 shows
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Original Ours (a1 = 27) [CST05] [RBDO06]

FIGURE 4.9: Normal enhancement on a golf ball. First and Second row

: normal amplification for different a1. Note that a_; = &] on every

examples. Last row: comparison with [CST05] normal enhancement
algorithm and with [RBD06] detail exaggerating shading.

examples of skewed normals using our method. We also compare to [CST05] and
[RBDO6]. Even if [CSTO5] enhances normals by doing a mean curvature motion like
algorithm on normals, we could not amplify them on the golf ball as much as we do
with our method. This is due to the fact that their procedure is iterative, and that
each step involves a normalization that can tend to produce a division by zero after a
certain amount of iterations. This results in an upper limit for amplifying normals.
On the other hand [RBD06] seems to perform better, but recall that they rely on a
shader and not on changing normal directions. Thus, their algorithm is different from
unsharp masking. They also take a mesh as input while we use point sets.

It might be a good idea to investigate higher orders detail changes and to see how
this impacts the shape. That is far from trivial since the order 2 volume descriptor
deals with curvature and principal directions, and amplifying principal directions is
far less intuitive than order 0 or order 1 detail amplification.
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Summary

The main contribution of this thesis is the introduction of a new polar function basis
for local shape analysis: the Wavejets. Given a plane close enough to a tangent plane
at some point P, given an arbitrary orthonormal basis in this plane, the shape is
locally analyzed using the Wavejets by decomposing the local heightfield between the
parameterization plane and the surface near P. Computating the Wavejets coefficients
to locally describe a surface can be done by solving a linear system of equations.
There is a linear map between the coefficients of the Taylor expansion of a heightfield
and its Wavejets decomposition.

Wavejets offers a new way to locally comprehend a surface. On one hand, radial
parts of same order k hold the differential properties of the surface in the sense of the
canonical derivatives. On the other hand, a frequency property # is introduced by this
basis, featuring linear combinations of coefficients of different orders k. An important
step in the understanding of quantities expressed by the Wavejets comes by linking
them to the Wirtinger derivatives [Wir27]. These complex derivative operators are not
widely known. To the best of our knowledge, there has not been any work regarding
properties of the Wirtinger derivatives of high order, i.e. recursively applying the
Wirtinger derivatives to a function. It turns out that the Wavejets coefficients are
proportional to the Wirtinger derivatives of the heightfield, deriving a frequency
interpretation of such derivatives when considered at high orders. Last but not least,
the Wavejets decomposition can be used to retrieve high order principal directions
in that framework of symmetric supermatrices in [Qi05; Qi06; Qi07]. Symmetric
supermatrices are higher dimensional arrays than matrices who appear naturally in
the local surface Taylor expansion.

Another major contribution of our work comes with the generalization of the
Volume descriptor, introduced in [Pot+09], to higher orders. Integral invariants are
integral quantities that can be used as a local description of a function or a surface.
The volume descriptor is defined as the volume of the intersection of a ball centered
at a point on the surface, with the interior of this surface. The volume descriptor
can be linked to the Wavejets by looking at the volume between the tangent plane
at a point, and the surface. As a consequence, the Wavejets provide a new way
to compute the volume descriptor. A side consequence of this is that the Taylor
expansion bound can be improved from O(s°) to O(s®), where s is the radius of
the ball, because of the expression of the Taylor expansion of the volume using the
Wavejets decomposition. The Wavejets decomposition also resulted in the definition
of a Fourier series (a,(s))ncz. Naturally, 27tag(s) is the integral of the heightfield,
making ay(s) is an integral invariant. Similarly, for any integer n, |a,(s)| are integral
invariants. This allows the definition of a generalization of the volume descriptor.
We call volume descriptor of order n # 0 at radius s the quantity 27t|a,(s)|. It can be
shown that the Taylor expansion of such quantities involves the Wirtinger derivatives
at high order % and -Z;. A nice property of these high order derivatives is that they

az*n .
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are angularly orthogonal with regards to each other. Hence, coefficients a,(s) locally
decomposes the surface in differential quantities being orthogonal with each other.

We finally showed an application of coefficients ao(s) and a1 (s) can be used for
an application: geometric details amplification. Geometric details amplification can
be done in two major ways: one can use the spectral decomposition and apply a
high-boost filter to the spectrum, or one can look at the local dynamics of the details
to be amplified, and locally modify the function to amplify those dynamics. This last
method, on which we rely on, is called unsharp masking. There are two ways someone
can amplify geometric details on a shape: moving each position, or turnings the
normals so they give the illusion of sharper details. ay(s) is used to amplify positions,
and a-1(s) is used to amplify the normals.

4.6 Perspectives

The introduction of the Wavejets basis as well as the integral invariants coming from
this basis opened a few directions that would need further investigation.

e There might be a great potential with contructing a local shape descriptor using
coefficients a,(s). These coefficients are orthogonal and quantify the differential
properties of the surface. Comparison with the Heat Kernel Signature [SOG09]
as well as the Wave Kernel Signature [ASC11] would need to be done, since
they perform quite well and are widely used in the current litterature as the
default descriptor.

e Quantities a,(s) are built out of an integration process. However, one could
think of a weighted integration scheme to create an ideal local shape descriptor.
The ideal weight function could be learned using a neural network on the best
way to combine the Wavejets coefficients at a given frequency 7, and infer the
weight function so it matches the learned linear combination. One could then
use this weight function when computing the newly defined integral invariants.
Note that changing the weight function is equivalent with modifying the radius
series sy in section 3.4.3.

e The phases in coefficients a,(s) give a smooth estimate of the principal direc-
tions relative to the differential quantities being stored in the n'" Wirtinger
derivative of the local heightfield. In particular, second order principal direc-
tions and third principal directions can be retrieved out of a41(s),a+2(s) and
a43(s). Third order principal directions should give the speed of the second
order derivative. Thus, there might be a way to ameliorate principal direction
tracking by using the speed information given by the third order derivatives.



81

Bibliography

(1]

[5]

[10]

[11]

H. H. Andersen et al. “The Multivariate Complex Normal Distribution”. In:
Linear and Graphical Models: for the Multivariate Complex Normal Distribution.
New York, NY: Springer New York, 1995, pp. 15-37. ISBN: 978-1-4612-4240-6.
DOI: 10.1007/978-1-4612-4240-6_2. URL: https://doi.org/10.1007/978-
1-4612-4240-6_2.

M. Aubry, U. Schlickewei, and D. Cremers. “The wave kernel signature: A
quantum mechanical approach to shape analysis”. In: 2011 IEEE International
Conference on Computer Vision Workshops (ICCV Workshops). Nov. 2011, pp. 1626~
1633. DOI: 10.1109/ICCVW.2011.6130444.

Yohann Béarzi and Julie Digne. “Surface derivatives computation using Fourier
Transform”. In: JFIG 2016. Actes des journées JFIG 2016. Grenoble, France, Nov.
2016. URL: https://hal.archives-ouvertes.fr/hal-01735374.

Yohann Béarzi, Julie Digne, and Raphaélle Chaine. “Wavejets: A Local Fre-
quency Framework for Shape Details Amplification”. In: Computer Graphics
Forum 37 (Feb. 2018). DOI: 10.1111/cgf . 13338.

Mikhail Belkin, Jian Sun, and Yusu Wang. “Constructing Laplace Operator
from Point Clouds in Rd”. In: Proceedings of the Twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms. SODA "09. New York, New York: Society for
Industrial and Applied Mathematics, 2009, pp. 1031-1040. URL: http://dl.
acm.org/citation.cfm?id=1496770.1496882.

G. Beylkin. “On the Fast Fourier Transform of Functions with Singularities”.
In: Applied and Computational Harmonic Analysis 2.4 (1995), pp. 363-381. ISSN:
1063-5203. DOIL: https://doi.org/10.1006/acha.1995.1026. URL: http:
//www.sciencedirect.com/science/article/pii/S1063520385710263.

Norman Biggs. Algebraic Graph Theory. 2nd ed. Cambridge Mathematical Li-
brary. Cambridge University Press, 1974. DOI: 10.1017/CB09780511608704.

F. Cazals and M. Pouget. “Estimating differential quantities using polyno-
mial fitting of osculating jets”. In: Computer Aided Geometric Design 22.2 (2005),
pp. 121-146. 1SSN: 0167-8396. DOI: http://dx.doi.org/10.1016/j.cagd.
2004.09.004. URL: http://www.sciencedirect.com/science/article/pii/
S016783960400113X.

Paolo Cignoni, Roberto Scopigno, and Marco Tarini. “A simple normal enhance-
ment technique for interactive non-photorealistic renderings”. In: Computers &
Graphics 29.1 (2005), pp. 125-133. 1SSN: 0097-8493.

Tali Dekel et al. “Revealing and Modifying Non-local Variations in a Single
Image”. In: ACM Trans. Graph. 34.6 (Oct. 2015), 227:1-227:11. 1SSN: 0730-0301.

Julie Digne and Jean-Michel Morel. “Numerical analysis of differential opera-
tors on raw point clouds”. In: Numerische Mathematik 127.2 (2014), pp. 255-289.
ISSN: 0945-3245.



Bibliography

Julie Digne et al. “Scale Space Meshing of Raw Data Point Sets”. In: Comput.
Graph. Forum 30 (2011), pp. 1630-1642.

A. Dutt and V. Rokhlin. “Fast Fourier Transforms for Nonequispaced Data, I1”.
In: Applied and Computational Harmonic Analysis 2.1 (1995), pp. 85-100. ISSN:
1063-5203. DOI: https://doi.org/10.1006/acha.1995. 1007. URL: http:
//www.sciencedirect.com/science/article/pii/S106352038571007X.

Dennis Gabor. “Information theory in electron microscopy”. In: Laboratory
Investigation 14 (6 1965), pp. 801-807.

M. Lindenbaum, M. Fischer, and A.M. Bruckstein. “On Gabor’s Contribution
to Image Enhancement”. In: Pattern Recognition 27 (1994), pp. 1-8.

P. Goupillaud, A. Grossmann, and J. Morlet. “Cycle-octave and related trans-
forms in seismic signal analysis”. In: Geoexploration 23.1 (1984). Seismic Signal
Analysis and Discrimination III, pp. 85-102. ISSN: 0016-7142. DOI: https://doi.
org/10.1016/0016-7142(84) 90025-5. URL: http://www.sciencedirect.
com/science/article/pii/0016714284900255.

Gaél Guennebaud, Marcel Germann, and Markus Gross. “Dynamic Sampling
and Rendering of Algebraic Point Set Surfaces”. In: Computer Graphics Forum
27.2 (2008), pp. 653—662. ISSN: 1467-8659. DOI: 10.1111/j.1467-8659.2008.
01163.x. URL: http://dx.doi.org/10.1111/3j.1467-8659.2008.01163.x.

Gaél Guennebaud and Markus Gross. “Algebraic point set surfaces”. In: ACM
Trans. Graph. 26 (3 2007). Proc. SIGGRAPH 2007. 1SSN: 0730-0301.

Peter Henrici, ed. Applied and Computational Complex Analysis. Vol. 3: Dis-
crete Fourier Analysis&Mdash;Cauchy Integralsé&Mdash;Construction of Conformal
Maps—univalent Functions. New York, NY, USA: John Wiley & Sons, Inc., 1986.
ISBN: 0-471-08703-3.

Hugues Hoppe et al. “Surface Reconstruction from Unorganized Points”. In:
SIGGRAPH Comput. Graph. 26.2 (July 1992), pp. 71-78. 1SSN: 0097-8930. DOI: 10.
1145/142920.134011. URL: http://doi.acm.org/10.1145/142920.134011.

Dominique Hulin and Marc Troyanov. “Mean Curvature and Asymptotic
Volume of Small Balls”. In: The American Mathematical Monthly 110.10 (2003),
pp- 947-950. DOI: 10.1080/00029890.2003.11920037. eprint: https://doi.
org/10.1080/00029890.2003.11920037. URL: https://doi.org/10.1080/
00029890.2003.11920037.

Pushkar Joshi and Carlo Séquin. “An Intuitive Explanation of Third-order
Surface Behavior”. In: Comput. Aided Geom. Des. 27.2 (Feb. 2010).

A. Khotanzad and Y. H. Hong. “Invariant image recognition by Zernike mo-
ments”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 12.5
(May 1990), pp. 489—497. 1sSN: 0162-8828. DOI: 10.1109/34.55109.

Simon Xinmeng Liao. “Image Analysis by Moments”. PhD thesis. University
of Winnipeg, 1993.

Ce Liu et al. “Motion Magnification”. In: ACM Trans. Graph. 24.3 (July 2005),
pp- 519-526. 1SSN: 0730-0301.

Stéphane Mallat. A Wavelet Tour of Signal Processing. Jan. 1999. ISBN: 0-12-466606-
X.

Siddharth Manay et al. “Integral Invariant Signatures”. In: ECCV. 2004.



Bibliography 83

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

A. Maximo et al. “A Robust and Rotationally Invariant Local Surface Descriptor
with Applications to Non-local Mesh Processing”. In: Graph. Models 73.5 (Sept.
2011), pp. 231-242. 1SSN: 1524-0703. DOI: 10.1016/j.gmod.2011.05.002. URL:
http://dx.doi.org/10.1016/j.gmod.2011.05.002.

Even Mehlum and Christian Tarrou. “Invariant smoothness measures for sur-
faces”. In: Advances in Computational Mathematics 8.1 (1998), pp. 49-63. ISSN:
1572-9044. DOI: 10.1023/A:1018931910836. URL: http://dx.doi.org/10.
1023/A:1018931910836

Simone Melzi et al. “Localized Manifold Harmonics for Spectral Shape Analy-
sis”. In: CoRR abs/1707.02596 (2017). arXiv: 1707 .02596. URL: http://arxiv.
org/abs/1707.02596.

Mark Meyer et al. “Discrete Differential-Geometry Operators for Triangulated
2-Manifolds”. In: Springer-Verlag, 2002, pp. 35-57.

Mark Meyer et al. “Discrete Differential-Geometry Operators for Triangulated
2-Manifolds”. In: Visualization and Mathematics I1I. Ed. by Hans-Christian Hege
and Konrad Polthier. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003,
pp- 35-57. 1SBN: 978-3-662-05105-4.

Gatari¢ Milana. “Nonuniform generalized sampling”. PhD thesis. University
of Cambridge, 2015.

S. K. Mitra et al. “A new class of nonlinear filters for image enhancement”. In:
Proc. ICASSP. 1991, 2525-2528 vol.4.

Marcin Novotni and Reinhard Klein. “3D Zernike Descriptors for Content

Based Shape Retrieval”. In: Proceedings of the Eighth ACM Symposium on Solid

Modeling and Applications. SM '03. Seattle, Washington, USA: ACM, 2003, pp. 216-
225. 1SBN: 1-58113-706-0. DOI: 10.1145/781606.781639. URL: http://doi.acm.
org/10.1145/781606.781639.

Gabriel Peyré and Stéphane Mallat. “Surface Compression With Geometric
Bandelets”. In: ACM Transactions on Graphics 24 (July 2005). DOI: 10 . 1145/
1073204 .1073236.

H. Poincaré. “Sur les propriétés du potentiel et sur les fonctions Abéliennes”.
In: Acta Math. 22 (1899), pp. 89-178. DOI: 10.1007/BF02417872. URL: https:
//doi.org/10.1007/BF02417872.

A. Polesel, G. Ramponi, and V. J. Mathews. “Image enhancement via adaptive
unsharp masking”. In: IEEE Transactions on Image Processing 9.3 (Mar. 2000),
pp- 505-510. ISSN: 1057-7149. DOT: 10.1109/83.826787.

M. D. Pompeiu. “Sur une classe de fonctions dune variable complexe et sur
certaines équations intégrales”. In: Rendiconti del Circolo Matematico di Palermo
(1884-1940) 35.1 (Dec. 1913), pp. 277-281. 1SSN: 0009-725X. DOI: 10 . 1007 /
BF03015607. URL: https://doi.org/10.1007/BF03015607.

Helmut Pottmann et al. “Integral Invariants for Robust Geometry Processing”.
In: Comput. Aided Geom. Des. 26.1 (Jan. 2009), pp. 37-60. ISSN: 0167-8396. DOI:
10.1016/j.cagd.2008.01.002. URL: http://dx.doi.org/10.1016/j.cagd.
2008.01.002.

Helmut Pottmann et al. “Principal curvatures from the integral invariant view-
point”. In: CAGD 24.8-9 (2007), pp. 428—442.



84

Bibliography

[42]

Liqun Qi. “Eigenvalues and invariants of tensors”. In: Journal of Mathematical
Analysis and Applications 325.2 (2007), pp. 1363-1377. 1SSN: 0022-247X. DOTI:
https://doi.org/10.1016/j . jmaa.2006.02.071. URL: http: //www .
sciencedirect.com/science/article/pii/S0022247X06001764.

Liqun Qi. “Eigenvalues of a real supersymmetric tensor”. In: Journal of Symbolic
Computation 40.6 (2005), pp. 1302-1324. 1SSN: 0747-7171. DOL: https://doi.
org/10.1016/j.jsc.2005.05.007. URL: http://www.sciencedirect.com/
science/article/pii/S0747717105000817.

Liqun Qi. “Rank and eigenvalues of a supersymmetric tensor, the multivariate
homogeneous polynomial and the algebraic hypersurface it defines”. In: Journal
of Symbolic Computation 41.12 (2006), pp. 1309-1327. 1SSN: 0747-7171. DOI: https:
//doi.org/10.1016/j.jsc.2006.02.011. URL: http://www.sciencedirect.
com/science/article/pii/S0747717106000861.

Gianni Ramponi Giovanni et al. “Nonlinear unsharp masking methods for
image contrast enhancement”. In: J. Electronic Imaging 5 (July 1996), pp. 353—
366.

M. R. Ruggeri et al. “Approximating Geodesics on Point Set Surfaces”. In:
Proceedings of the 3rd Eurographics /IEEE VGTC Conference on Point-Based Graphics.
SPBG’06. Boston, Massachusetts: Eurographics Association, 2006, pp. 85-94.
ISBN: 3-905673-32-0. DOI: 10.2312/SPBG/SPBG06/085-093. URL: http://dx.
doi.org/10.2312/SPBG/SPBG06/085-093.

Szymon Rusinkiewicz, Michael Burns, and Doug DeCarlo. “Exaggerated Shad-
ing for Depicting Shape and Detail”. In: ACM Trans. Graph. 25.3 (July 2006),
pp- 1199-1205. 1sSN: 0730-0301.

Peter Schroder and Wim Sweldens. “Spherical Wavelets: Efficiently Represent-
ing Functions on the Sphere”. In: Proceedings of the 22Nd Annual Conference on
Computer Graphics and Interactive Techniques. SSIGGRAPH "95. New York, NY,
USA: ACM, 1995, pp. 161-172. 1SBN: 0-89791-701-4. DOI: 10 . 1145/218380 .
218439. URL: http://doi.acm.org/10.1145/218380.218439.

O. Sorkine et al. “Laplacian Surface Editing”. In: Proceedings of the 2004 Euro-
graphics/ACM SIGGRAPH Symposium on Geometry Processing. SGP "04. Nice,
France: ACM, 2004, pp. 175-184. 1SBN: 3-905673-13-4. DOI: 10.1145/1057432.
1057456. URL: http://doi.acm.org/10.1145/1067432.1057456.

Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. “A Concise and Provably
Informative Multi-scale Signature Based on Heat Diffusion”. In: Proceedings of
the Symposium on Geometry Processing. SGP '09. Berlin, Germany: Eurographics
Association, 2009, pp. 1383-1392. URL: http://dl.acm.org/citation.cfm?
1d=1735603.1735621.

Gabriel Taubin. “A Signal Processing Approach to Fair Surface Design”. In:
Proceedings of the 22Nd Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH "95. New York, NY, USA: ACM, 1995, pp. 351-358. ISBN:
0-89791-701-4. DOI: 10.1145/218380.218473. URL: http://doi.acm.org/10.
1145/218380.218473.

Bruno Vallet and Bruno Lévy. “Spectral geometry processing with manifold
harmonics”. In: Computer Graphics Forum (2008), pp. 251-260.

Max Wardetzky et al. “Discrete Laplace operators: No free lunch”. In: 07 (Jan.
2007), pp. 33-37.



Bibliography 85

[54] W. Wirtinger. “Zur formalen Theorie der Funktionen von mehr komplexen
Verdnderlichen”. In: Mathematische Annalen 97 (1927), pp. 357-376. URL: http:
//eudml.org/doc/182642.

[55] vonE Zernike. “Beugungstheorie des schneidenverfahrens und seiner verbesserten
form, der phasenkontrastmethode”. In: Physica 1 (May 1934), pp. 689-704.

[56] Hao Zhang. “Discrete combinatorial Laplacian operators for digital geometry
processing”. In: 2004 (Jan. 2004).




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


