M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 1965.

A. Alonso, J. Sánchez, and M. Net, Transition to Temporal Chaos in an O(2)-Symmetric Convective System for Low Prandtl Numbers, Prog. Theor. Phys. Supp, vol.139, 2000.

G. M. , Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities. AFIPS Conference Proceedings, vol.30, pp.483-485, 1967.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel et al., , 1999.

U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, 1998.

U. M. Ascher, S. J. Ruuth, and B. T. Wetton, Implicit-explicit methods for timedependent partial differential equations, SIAM J. Numer. Anal, vol.32, pp.797-823, 1995.

U. M. Ascher, S. J. Ruuth, and R. J. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl. Numer. Math, vol.25, pp.151-167, 1997.

A. Bashforth, With an explanation of the method of integration employed in constructing the tables which give the theoretical form of such drops, p.1883

G. K. Batchelor, An Introduction to Fluid Dynamics, 2000.

C. Bendsten, On implicit Runge-Kutta methods with high stage order, BIT Numer. Math, vol.37, issue.1, pp.221-226, 1997.

S. Boscarino, Error analysis of IMEX Runge-Kutta methods derived from differentialalgebraic systems, SIAM J. Numer. Anal, vol.45, pp.1600-1621, 2007.

S. Boscarino and G. Russo, On the uniform accuracy of IMEX Runge-Kutta schemes and applications to hyperbolic systems with relaxation, Communications to SIMAI Congress, vol.2, 2007.

S. Boscarino and G. Russo, On a class of uniformly accurate IMEX Runge-Kutta schemes and applications to hyperbolic systems with relaxation, SIAM J. Sci. Comput, vol.31, 1926.

S. Boscarino, L. Pareschi, and G. Russo, Implicit-Explicit Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit, SIAM J. Sci. Comput, vol.35, pp.22-51, 2013.

S. Boscarino, L. Pareschi, and G. Russo, A unified IMEX Runge-Kutta approach for hyperbolic systems with multiscale relaxation, SIAM J. Numer. Anal, vol.55, pp.2085-2109, 2017.

J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2001.

E. C. Bullard and H. Gellman, Homogeneous dynamos and terrestrial magnetism, Phil. Trans. Royal Soc. A, vol.30, pp.237-257, 1954.

J. C. Butcher and Z. Jackiewicz, Diagonally implicit general linear methods for ordinary differential equations, BIT Numerical Mathematics, vol.33, pp.452-472, 1993.

J. C. Butcher, On runge-kutta processes of high order, J. Austral. Math. Soc, vol.4, pp.176-194, 1964.

M. P. Calvo, J. Frutos, and J. Novo, Linearly implicit Runge-Kutta methods for advection-reaction-diffusion equations, Appl. Numer. Math, vol.37, pp.535-549, 2001.

C. Canuto, Boundary conditions in Chebyshev and Legendre methods, SIAM J. Numer. Anal, vol.23, pp.815-831, 1986.

D. Cavaglieri and T. Bewley, Low-storage implicit/explicit Runge-Kutta schemes for the simulation of stiff high-dimensional ODE systems, J. Comput. Appl. Math, vol.286, pp.172-193, 2015.

S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, 1981.

F. Chillà and J. Schumacher, New perspectives in turbulent Rayleigh-bénard convection, vol.35, p.58, 2012.

U. R. Christensen, A numerical dynamo benchmark, Phys. Earth. Planet. Inter, vol.128, pp.25-34, 2001.
URL : https://hal.archives-ouvertes.fr/insu-00447063

U. R. Christensen and J. Wicht, Treatise on Geophysics 2nd Edition, vol.8, 2015.

A. T. Clarke, C. J. Davies, D. Ruprecht, and S. M. Tobias, Parallel-in-time integration of Kinematic Dynamos, 2019.

R. Courant, K. Friedrichs, and H. Lewy, Partial differential equations of mathematical physics. Mathematische Annalen, vol.100, pp.32-74, 1928.

C. F. Curtiss and J. O. Hirschfelder, Integration of stiff equations, Proc. Nat. Acad. Sci, vol.38, pp.235-243, 1952.

C. J. Davies, D. Gubbins, and P. K. Jimack, Scalability of pseudospectral methods for geodynamo simulations, Concurrency and Computation: Practice and Experience, vol.23, pp.38-56, 2011.

S. Duan, All-stages-implicit and strong-stability-preserving implicit-explicit Runge-Kutta time discretization schemes for hyperbolic systems with stiff relaxation terms, 2016.

W. M. Elsasser, Induction Effects in Terrestrial Magnetism Part II. The Secular Variation, Phys. Rev, vol.70, p.202, 1946.

L. Euler, Du mouvement de rotation des corps solides autour d'un axe variable. Hist. de l'Acad, Opera Omnia Ser, vol.8, pp.200-235, 1758.

N. Featherstone and B. W. Hindman, The spectral amplitude of stellar convection and its scaling in the high-Rayleigh-number regime, Astrophys. J, vol.818, p.32, 2016.

P. F. Fisher, F. Hecht, and Y. Maday, A parareal in time semi-implicit approximation of the Navier-Stokes equations, Proceedings of the 15th International Domain Decomposition Conference, vol.40, pp.433-440, 2003.

A. Fournier, H. Bunge, R. Hollerbach, and J. Vilotte, A fourier-spectral element algorithm for thermal convection in rotating axisymmetric containers, J. Comput. Phys, vol.204, pp.462-489, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00109462

M. Frigo, A Fast Fourier Transform Compiler, Proceedings of the 1999 ACM SIGPLAN Conference on Programming Language Design and Implementation, 1999.

F. Garcia, L. Bonaventura, M. Net, and J. Sánchez, Exponential versus IMEX high-order time integrators for thermal convection in rotating spherical shells, J. Comput. Phys, vol.264, pp.41-54, 2014.

D. J. Gardner, J. E. Guerra, F. P. Hamon, D. R. Reynolds, P. A. Ullrich et al., Implicit-Explicit (IMEX) Runge-Kutta methods for non-hydrostatic atmospheric models, Geosci. Model Dev, vol.11, pp.1497-1515, 2018.

T. Gastine, pizza: an open-source pseudo-spectral code for spherical quasi-geostrophic convection, Geophys. J. Int, vol.200, pp.1-20, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02125058

T. Gastine, J. Wicht, and J. Aurnou, Turbulent Rayleigh-Bénard convection in spherical shells, J. Fluid Mech, vol.778, pp.721-764, 2015.

C. W. Gear, The simultaneous numerical solution of differential-algebraic equations, IEEE Trans. Circuit Theory, CT, vol.18, pp.89-95, 1971.

J. W. Gibbs, Fourier's Series, Nature, vol.59, p.1899

G. A. Glatzmaier, Numerical Simulations of Stellar Convective Dynamos. I. The Model and Method, J. Comput. Phys, vol.55, pp.461-484, 1984.

G. A. Glatzmaier, Geodynamo Simulations-How Realistic Are They ?, Philos. Trans. Royal Soc. A, vol.247, pp.213-278, 2002.

G. A. Glatzmaier, Introduction to Modeling Convection in Planets and Stars, 2014.

G. A. Glatzmaier and P. A. Gilman, Solar Phenomena in Stars and Stellar Systems, Bonnet, 145. Dordrecht: Reidel, 1981.

G. A. Glatzmaier and P. H. Roberts, A three-dimensional self-consistent computer simulation of a geomagnetic field reversal, Nature, vol.377, pp.203-209, 1995.

G. A. Glatzmaier and P. H. Roberts, An anelastic evolutionary geodynamo simulation driven by compositional and thermal convection, Physica D, vol.97, pp.81-94, 1996.

I. Grooms and K. Julien, Linearly implicit methods for nonlinear PDEs with linear dispersion and dissipation, J. Comput. Phys, vol.230, pp.3630-3650, 2011.

I. Grooms and A. Majda, Efficient stochastic superparameterization for geophysical turbulence, Proc. Nat. Acad. Sci, vol.110, pp.4464-4469, 2013.

S. Grossmann and D. Lohse, Scaling in thermal convection: a unifying theory, J. Fluid Mech, vol.407, pp.27-56, 2000.

J. Guermond, R. Laguerre, J. Léorat, and C. Nore, An interior penalty Galerkin method for the MHD equations in hetergenous domains, J. Comput. Phys, vol.221, pp.349-369, 2007.

J. L. Gustafson, Reevaluating Amdahl's law, Commun. ACM, vol.31, pp.532-533, 1988.

E. Hairer and G. Wanner, Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems, 2010.

E. Hairer, S. P. Nø, and G. Wanner, Solving Ordinary Differential Equations I, Nonstiff Problems, 2008.

H. Harder and U. Hansen, A finite volume solution method thermal convection and dynamo problems in spherical shells, Geophys. J. Int, vol.162, pp.522-532, 2005.

T. Haut and B. Wingate, Asymptotic Parallel-in-Time Method for Highly Oscillatory PDEs, SIAM J. Sci. Comput, vol.36, issue.2, pp.693-713, 2014.

K. Heun, Neue methode zur approximativen integration der differentialgleichungen einer unabhöngigen verönderlichen, Zeitschr. für Math. u. Phys, vol.45, pp.23-38, 1900.

C. Hirsch, Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics, 2007.

R. Hollerbach, A spectral solution of the magneto-convection equations in spherical geometry, Int. J. Numer. Methods Fluids, vol.32, pp.773-797, 2000.

D. Hupp, P. Arbenz, and D. Obrist, A parallel Navier-Stokes solver using spectral discretization in time, Int. J. Comput. Fluid Dyn, vol.30, pp.489-494, 2016.

H. Johnston and C. Doering, Comparison of turbulent thermal convection between conditions of constant temperature and constant flux, Phys. Rev. Lett, vol.102, p.64501, 2009.

C. A. Jones, Treatise on Geophysics 2nd Edition, vol.8, 2015.

C. A. Kennedy and M. H. Carpenter, Additive Runge-Kutta schemes for convectiondiffusion-reaction equations, Appl. Numer. Math, vol.44, pp.139-181, 2003.

W. Kuang and J. Bloxham, Numerical modeling of magnetohydrodynamic convection in a rapidly rotating spherical shell: weak and strong field dynamo action, J. Comput. Phys, vol.153, pp.51-81, 1999.

W. Kutta, Beitrag zur näherungsweisen integration totaler differentialgleichungen, Zeitschr. für Math. u. Phys, vol.46, pp.435-453, 1901.

J. D. Lambert, Numerical Methods for Ordinary Differential Systems, 1991.

M. Landeau and J. Aubert, Equatorially asymmetric convection inducing a hemispherical magnetic field in rotating spheres and implications for the past martian dynamo, Phys. Earth. Plan. Int, vol.185, pp.61-73, 2011.

J. Lions, Y. Maday, and G. Turinici, A "parareal" in time discretization of PDE's, C. R. Acad. Sci. Paris Sér. I Math, vol.332, pp.661-668, 2001.

H. Liu and J. Zou, Some new additive Runge-Kutta methods and their applications, J. Comput. Appl. Math, vol.190, pp.74-98, 2006.

P. W. Livermore, An implementation of the exponential time differencing scheme to the magnetohydrodynamic equations in a spherical shell, J. Comput. Phys, vol.220, pp.824-838, 2007.

P. Marti, M. A. Calkins, and K. Julien, A computationally efficient spectral method for modeling core dynamics, Geochem. Geophys. Geosyst, vol.17, 2016.

H. Matsui and H. Okuda, Development of a simulation code for MHD dynamo processes using the GeoFEM platform, Int. J. Comput. Fluid Dyn, vol.18, pp.323-332, 2004.

H. Matsui, E. King, and B. A. Buffet, Multi-scale convection in a geodynamo simulation with uniform heat flux along the outer boundary, Geochem. Geophys. Geosyst, vol.15, pp.3212-3225, 2014.

H. Matsui, E. Heien, J. Aubert, J. M. Arnou, and M. Avery, Performance benchmarks for a next generation numerical dynamo model, Geochem. Geophys. Geosyst, vol.17, pp.1586-1607, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01857606

, Message Passing Interface Forum. MPI: A Message-Passing Interface standard, Int. J. High Perform. Comput. Appl, vol.8, 1994.

I. Newton, Methodus differentialis (Analysis per quantitatum, series, fluxiones, ac differentias: cum enumeratione linearum tertii ordinis), p.1711

S. A. Orzag, Spectral methods for problems in complex geometries, J. Comput. Phys, vol.37, pp.70-92, 1980.

S. Park and T. Lee, Higher-Order Time-Integration Schemes with Explicit Time-Splitting Methods. Mon, Wea. Rev, vol.137, pp.4047-4060, 2009.

K. Petschel, S. Stellmach, M. Wilczek, J. Lülff, and U. Hansen, Kinetic energy transport in Rayleigh-Bénard convection, J. Fluid Mech, vol.773, pp.395-417, 2015.

R. Peyret, Spectral Methods for Incompressible Viscous Flow, 2002.

E. Plaut and F. H. Busse, Low-Prandtl-number convection in a rotating cylindrical annulus, J. Fluid. Mech, vol.464, pp.345-363, 2002.

P. H. Roberts and E. King, On the genesis of the earth's magnetism, Rep. Prog. Phys, vol.76, 2013.

C. Runge, Ueber die numerische auflöung von differentialgleichungen, Math. Ann, vol.46, pp.167-178, 1895.

D. Samaddar, D. E. Newman, and R. Sánchez, Parallelization in time of numerical simulations of fully-developed plasma turbulence using the parareal algorithm, J. Comput. Phys, vol.229, pp.6558-6573, 2010.

H. Samuel, Time domain parallelization for computational geodynamics, Geochem. Geophys. Geosyst, vol.13, p.1003, 2011.

Y. Sasaki, S. Takehiro, Y. Hayashi, and S. Group, Project of MHD Dynamo in Rotating Spheres and Spherical Shells, 2012.

N. Schaeffer, Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations, Geochem. Geophys. Geosyst, vol.14, pp.751-758, 2013.
URL : https://hal.archives-ouvertes.fr/insu-00675145

N. Schaeffer, D. Jault, H. Nataf, and A. Fournier, Turbulent geodynamo simulations: a leap towards earth's core, Geophys. J. Int, vol.211, pp.1-29, 2017.

J. D. Scheel and J. Schumacher, Local boundary layer scales in turbulent Rayleigh-Bénard convection, J. Fluid Mech, vol.758, pp.344-373, 2014.

R. D. Simitev and F. Busse, Prandtl number dependence of convection driven dynamos in rotating spherical fluid shells, J. Fluid Mech, vol.532, pp.365-388, 2005.

P. R. Spalart, R. D. Moser, and M. M. Rogers, Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions, J. Comp. Phys, vol.96, pp.297-324, 1991.

M. N. Spijker, Stiffness in numerical initial-value problems, J. Comput. Appl. Math, vol.72, pp.393-406, 1996.

S. Stellmach and U. Hansen, An efficient spectral method for the simulation of dynamos in Cartesian geometry and its implementation on massively parallel computers, Geochem. Geophys. Geosys, vol.9, p.5003, 2008.

F. Takahashi, Implementation of a high-order combined compact difference scheme in problems of thermally driven convection and dynamo in rotating spherical shells, Geophys. Astrophys. Fluid Dyn, vol.106, pp.231-249, 2012.

D. J. Tritton, Physical Fluid Dynamics, 1988.

J. Verhoeven, T. Wiesehöfer, and S. Stellmach, Anelastic versus fully compressible turbulent rayleigh-bénard convection, Astrophys. J, vol.805, p.62, 2015.

D. Wang and S. Ruuth, Variable step-size implicit-explicit linear multistep methods for time-dependent partial differential equations, J. Comput. Math, vol.26, pp.838-855, 2008.

J. L. Wicker and W. C. Skamarock, Time-splitting Methods for Elastic Models Using Forward Time Schemes, Mon. Wea. Rev, vol.130, pp.2088-2097, 2002.

A. P. Willis, B. Sreenivasan, and D. Gubbins, Thermal core-mantle interaction: Exploring regimes for 'locked' dynamo action, Phys. Earth Planet. Inter, vol.165, pp.83-92, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00532125

H. Zhang, A. Sandu, and S. Blaise, Partitioned and implicit explicit general linear methods for ordinary differential equations, Journal of Scientific Computing, pp.1-26, 2014.

X. Zhu, V. Mathai, R. J. Stevens, R. Verzicco, and D. Lohse, Transition to the Ultimate Regime in Two-Dimensional Rayleigh-Bénard Convection, Phys. Rev. Lett, vol.120, p.144502, 2018.

D. Zwillinger, CRC Standard Mathematical Tables and Formulas, 2018.