R. Feynman and . There, s Plenty of Room at the Bottom », Engineering and Science, vol.23, issue.5, pp.22-36, 1960.

L. Gervais, N. Rooij, and E. De;-delamarche, Microfl Uidic Chips for Point-of-Care Immunodiagnostics, 2011.

B. Y. Martin, A. D. Synge, and . I5i, A NEW FORM OF CHROMATOGRAM EMPLOYING TWO LIQUID PHASES 2 . APPLICATION TO THE MICRO-DETERMINATION OF THE HIGHER MONOAMINO-ACIDS IN PROTEINS, 1941.

B. Y. Kunkel and A. Tiselius, The Journal of General Physiology, issue.2, pp.89-118, 1951.

G. M. Whitesides, The Origins and the Future of Microfluidics, p.442, 2006.

,

H. Jerman, A Gas Chromatograph Air Analyzer Fabricated on a Silicon Wafer, 1980.

C. Mariet, C. Dalmazzone, M. Marsiglia, L. Vio, and A. Vansteene, Laboratoires Sur Puce Dédiés à La Chimie -Principes et Caractéristiques Laboratoires Sur Puce Dédiés à La Chimie Principes et Caractéristiques, p.33, 2019.

A. Manz, N. Graber, and H. M. Widmer, Miniaturized Total Chemical Analysis Systems: A Novel Concept for Chemical Sensing, Sensors Actuators B Chem, pp.244-248, 1990.

,

D. Huckle, Point-of-Care Diagnostics : An Advancing Sector with Nontechnical Issues, pp.679-688, 2008.

F. Sciences and B. Hadjira, Cours Méthodes d ' Analyses Chromatographiques

F. Reuss, Sur un nouvel effet de l'électricité galvanique, Mémoires de la Societé Imperiale de Naturalistes de Moscou, vol.2, pp.327-336, 1809.

J. W. Jorgenson and K. D. Lukacs, Free-Zone Electrophoresis in GlassCapillaries, vol.27, pp.1551-1553, 1981.

J. W. Jorgenson and K. D. Lukács, Zone Electrophoresis in Open-Tubular Glass Capillaries, pp.1298-1302, 1990.

N. and E. D. , Charges à l ' Interface Liquide / Solide : Caractérisation Par Courants d ' Écoulement et Application à La Préconcentration de Molécules Biologiques Dans

, Nanofluidique Xichen Yuan To Cite This Version : HAL Id : Tel-01422096 Charges à L, 2016.

J. N. Israelachvili, Intermolecular and Surface Forces

B. J. Kirby and E. F. Jr, Review Zeta Potential of Microfluidic Substrates : 1 . Theory , Experimental Techniques , and Effects, pp.187-202, 2004.

,

S. H. Behrens and D. G. Grier, The Charge of Glass and Silica Surfaces, p.60637, 2018.

R. B. Schoch, J. Han, and P. Renaud, Transport Phenomena in Nanofluidics, Rev. Mod. Phys, vol.80, issue.3, pp.839-883, 2008.

. Livre, , 1981.

T. A. Zangle, A. Mani, and J. G. Santiago, Theory and Experiments of Concentration Polarization and Ion Focusing at Microchannel and Nanochannel Interfaces, Chem. Soc. Rev, vol.39, issue.3, pp.1014-1035, 2010.

H. S. Virk, S. A. Kaur, and G. S. Randhawa, Role of Ion Track Filters in Environmental Surveillance, vol.27, pp.359-362, 2001.

J. A. Quinn, J. L. Anderson, W. S. Ho, and W. J. Petzny, THE PREPARATION AND CHARACTERIZATION, Biophys. J, vol.12, issue.8, pp.86139-86142

Y. Wang, M. H. Choi, and J. Han, Two-Dimensional Protein Separation with Advanced Sample and Buffer Isolation Using Microfluidic Valves, vol.76, pp.4426-4431, 2004.

,

A. Riaz and D. S. Chung, (27) . ._Propagating Concentration Polarization and Ionic Current Rectification in a Nanochannel Nanofunnel Device, pp.668-673, 2005.

Q. Pu, J. Yun, H. Temkin, and S. Liu, Of Nanochannel Structures. Nano Lett, issue.6, pp.1099-1103, 2004.

A. Plecis, C. Nanteuil, A. M. Haghiri-gosnet, and Y. Chen, Electropreconcentration with Charge-Selective Nanochannels, Anal. Chem, vol.80, issue.24, pp.9542-9550, 2008.

,

I. H. Shin, K. J. Kim, J. Kim, H. C. Kim, and H. Chun, Cation-Selective Electropreconcentration, Lab Chip, vol.14, issue.11, pp.1811-1815, 2014.

R. Kwak, S. J. Kim, and J. Han, Continuous-Flow Biomolecule and Cell Concentrator by Ion Concentration Polarization, Anal. Chem, vol.83, issue.19, pp.7348-7355, 2011.

,

S. J. Kim, Y. A. Song, and J. Han, Nanofluidic Concentration Devices for Biomolecules Utilizing Ion Concentration Polarization: Theory, Fabrication, and Applications, Chem. Soc. Rev, vol.39, issue.3, pp.912-922, 2010.

B. Jung, R. Bharadwaj, and J. G. Santiago, Thousandfold Signal Increase Using Field-Amplified Sample Stacking for on-Chip Electrophoresis, pp.3476-3483, 2003.

,

R. Bharadwaj and S. Jg, Dynamics of Field-Amplified Sample Stacking, vol.543, pp.57-92, 2005.

A. You and M. A. Be, In, I. Field-Amplified Sample Stacking and Focusing in Nanofluidic Channels, p.112003, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02132541

E. M. Goldys and D. W. Inglis, , pp.3539-3549, 2014.

A. E. Herr, J. I. Molho, K. A. Drouvalakis, J. C. Mikkelsen, P. J. Utz et al., On-Chip Coupling of Isoelectric Focusing and Free Solution Electrophoresis for Multidimensional Separations the Total IEF Channel Length Was Completed in Less Than, vol.75, pp.1180-1187, 2003.

M. A. Startsev, D. W. Inglis, M. S. Baker, and E. M. Goldys, Nanochannel PH Gradient Electrofocusing of Proteins, Anal. Chem, issue.15, pp.7133-7138, 2013.

,

W. Hsu, D. W. Inglis, M. A. Startsev, E. M. Goldys, M. R. Davidson et al., Isoelectric Focusing in a Silica Nanofluidic Channel: Effects of Electromigration and Electroosmosis

. Chem, , vol.86, pp.8711-8718, 2014.

D. Ross and L. E. Locascio, Microfluidic Temperature Gradient Focusing, vol.74, pp.2556-2564, 2002.

S. M. Kim, G. J. Sommer, M. A. Burns, and E. F. Hasselbrink, Low-Power Concentration and Separation Using Temperature Gradient Focusing via Joule Heating, vol.78, pp.8028-8035, 2006.

J. H. Lee, Y. Song, and J. Han, Multiplexed Proteomic Sample Preconcentration Device Using Surface-Patterned Ion-Selective Membrane ? ?, pp.596-601, 2008.

,

S. J. Kim and J. Han, Self-Sealed Vertical Polymeric Nanoporous-Junctions for High-Throughput Nanofluidic Applications, vol.80, pp.3507-3511, 2008.

H. Chun, T. D. Chung, and J. M. Ramsey, High Yield Sample Preconcentration Using a Highly Ion-Conductive Charge-Selective Polymer, pp.6287-6292, 2010.

A. Hatch,

A. E. Herr, D. J. Throckmorton, J. S. Brennan, and A. K. Singh, Integrated Preconcentration SDS -PAGE of Proteins in Microchips Using Photopatterned Cross-Linked Polyacrylamide Gels, pp.4976-4984, 2006.

S. Pennathur, F. Baldessari, J. G. Santiago, M. G. Kattah, J. B. Steinman et al., Free-Solution Oligonucleotide Separation in Nanoscale Channels, Anal. Chem, issue.21, pp.8316-8322, 2007.

S. J. Kim, Y. C. Wang, J. H. Lee, H. Jang, and J. Han, Concentration Polarization and Nonlinear Electrokinetic Flow near a Nanofluidic Channel, Phys. Rev. Lett, issue.4, pp.1-4, 2007.

,

C. C. Chang, C. P. Yeh, and R. J. Yang, Ion Concentration Polarization near Microchannel-Nanochannel Interfaces: Effect of PH Value, Electrophoresis, vol.2012, issue.5, pp.758-764

,

H. Sandermann, C. Langebartels, W. Heller, and . Ozonstre, Bei Pflanzen -Fr??He Und "Memory"-Effekte von Ozon Bei Nadelb??Umen. Umweltwissenschaften und Schadstoffforsch, vol.2, pp.14-15, 1990.

A. C. Louër, A. Plecis, A. Pallandre, J. C. Galas, A. Estevez-torres et al., Pressure-Assisted Selective Preconcentration in a Straight Nanochannel, Anal. Chem, issue.16, pp.7948-7956, 2013.

A. Plecis, R. B. Schoch, and P. Renaud, Ion Transport in Nanochannels: Experimental and Theoretical Study of the Exclusion-Enrichment Effect on a Chip, Nano Lett, vol.5, pp.1147-1155, 2005.

A. Mani, T. A. Zangle, and J. G. Santiago, On the Propagation of Concentration Polarization from Microchannel -Nanochannel Interfaces Part I: Analytical Model and Characteristic Analysis, Langmuir, vol.25, issue.6, pp.3898-3908, 2009.

Y. C. Wang, A. L. Stevens, and J. Han, Million-Fold Preconcentration of Proteins and Peptides by Nanofluidic Filter, Anal. Chem, issue.14, pp.4293-4299, 2005.

J. Gamby, F. D. Delapierre, A. Pallandre, B. Tribollet, C. Deslouis et al., Dielectric Properties of a Single Nanochannel Investigated by High-Frequency Impedance Spectroscopy, Electrochem. commun, vol.66, pp.5-9, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01297990

,

T. A. Zangle, A. Mani, and J. G. Santiago, On the Propagation of Concentration Polarization from Microchannel -Nanochannel Interfaces Part II: Numerical and Experimental Study, Langmuir, vol.25, issue.6, pp.3909-3916, 2009.

D. Hlushkou, R. Dhopeshwarkar, M. Crooks, and U. Tallarek, The Influence of Membrane Ion-Permselectivity on Electrokinetic Concentration Enrichment in Membrane-Based Preconcentration Units ?, pp.1153-1162, 2008.

T. D. Doctorat, Préconcentration Sélective Immunologique En Nanofluidique : Vers l ' Identification Rapide d ' Agents Du Risque Biologique, 2013.

R. B. Schoch and J. Han, Transport Phenomena in Nanofluidics, p.80, 2008.

,

R. B. Schoch, P. Renaud, R. B. Schoch, and P. Renaud, Ion Transport through Nanoslits Dominated by the Effective Surface Charge Ion Transport through Nanoslits Dominated by the Effective Surface Charge, pp.10-13, 2005.

J. Gamby, F. D. Delapierre, A. Pallandre, B. Tribollet, C. Deslouis et al., Dielectric Properties of a Single Nanochannel Investigated by High-Frequency Impedance Spectroscopy, Electrochem. commun, vol.66, pp.5-9, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01297990

,

P. Abgrall and N. T. Nguyen, Nanofluidic Devices and Their Applications, vol.80, pp.2326-2341, 2008.

L. Mei, L. Yeh, and S. Qian, Electrochemistry Communications Buffer Effect on the Ionic Conductance in a PH-Regulated Nanochannel, vol.51, pp.129-132, 2015.

,

H. Gao, H. Zhang, C. Li, and X. Xia, Electrochimica Acta Confinement Effect of Protonation / Deprotonation of Carboxylic Group Modified in Nanochannel, Electrochim. Acta, vol.110, pp.159-163, 2013.

Z. Yuan, A. L. Garcia, G. P. Lopez, and D. N. Petsev, Electrokinetic Transport and Separations in Fluidic Nanochannels, Electrophoresis, vol.28, issue.4, pp.595-610, 2007.

,

D. Stein, M. Kruithof, and C. Dekker, Surface-Charge-Governed Ion Transport in Nanofluidic Channels, No. JULY, pp.1-4, 2004.

R. B. Schoch, H. Lintel, and . Van,

P. Renaud, Effect of the Surface Charge on Ion Transport through Nanoslits, p.100604, 2005.

V. A. Online, S. Xue, S. Hsu, L. Yeh, S. Qian et al., Programmable Ionic Conductance in a PH-Regulated Gated Nanochannel ?, pp.20138-20146, 2014.

,

S. X. Li, W. Guan, B. Weiner, and M. A. Reed, Direct Observation of Charge Inversion in Divalent Nano Fl Uidic Devices, 2015.

Y. Green, R. Eshel, S. Park, and G. Yossifon, Interplay between Nanochannel and Microchannel Resistances, 2016.

S. X. Li, W. Guan, B. Weiner, and M. A. Reed, Direct Observation of Charge Inversion in Divalent Nanofluidic Devices, Nano Lett, issue.8, pp.5046-5051, 2015.

,

D. Milanova, R. D. Chambers, S. S. Bahga, and J. G. Santiago, Electrophoretic Mobility Measurements of Fluorescent Dyes Using On-Chip Capillary Electrophoresis, Electrophoresis, vol.32, issue.22, p.694, 1995.

M. Cro, Cir Cu La Tion, vol.5, p.275, 1998.

R. Salut, . Resolution, . La, . De-resonateurs, . Ondes et al., APPLICATION AUX SOURCES To Cite This Version, 2012.

T. Report, , 2003.

B. Raton, L. New, F. N. Group, and . Title,

J. Rax, Cours et Applications PHYSIQUE

R. Blanc, Gravure Des Espaceurs Si3N4 Pour Les Technologies To Cite This Version : HAL Id : Tel-01292748 Développement et Caractérisation de Procédés de Gravure Des Espaceurs Si 3 N 4, 2016.

X. Mellhaoui and X. Mellhaoui, Mécanismes Physico-Chimiques Dans Le Procédé de Gravure Plasma Du Silicium To Cite This Version : HAL Id : Tel-00080722 Discipline : Physique Des Plasmas Mécanismes Physico-Chimiques Dans Le Procédé de Gravure Plasma Du Silicium, 2006.

R. Legtenberg, H. Jansen, M. Boer, and M. De;-elwenspoek, Anisotrapic Reactive Ion Etching of Silicon Using SF6 / O2 / CHF3 Gas Mixtures, vol.2020, p.142

M. Schaepkens, T. E. Standaert, N. R. Rueger, P. G. Sebel, G. S. Oehrlein et al., Study of the SiO 2 -to-Si 3 N 4 Etch Selectivity Mechanism in Inductively Coupled Fluorocarbon Plasmas and a Comparison with the SiO 2 -to-Si Mechanism Study of the SiO 2 -to-Si 3 N 4 Etch Selectivity Mechanism in Inductively Coupled Fluorocarbon Plasmas and a Comparison with the SiO 2 -to-Si Mechanism, p.26, 1999.

A. Gouil and . Le, Étude et Développement de Procédés de Gravure Plasma Pour l ' Élaboration Des Grilles Métalliques Pour Les Filières Technologiques CMOS : Cas de l ' Empilement Si / TiN / HfO2 To Cite This Version : HAL Id : Tel-00146376 Étude et Développement de Procédés de

, Gravure Plasma Pour l ' Élaboration Des Grilles Métalliques Pour Les Filières Technologiques CMOS : Cas de l ' Empilement Si / TiN / HfO 2, 2007.

A. You and M. A. Be, In, I. Bonding of Silicon Wafers for Silicon-on-Insulator, p.4943, 1988.
URL : https://hal.archives-ouvertes.fr/hal-02132541

C. D. Tudryn, R. Hopkins, L. Hobbs, D. Parks, . Submitied et al., THE DEPARTMENTS OF MECHANICAL ENGINEERING AND Certified by Certified By, 2004.

G. Si and . Al, Fractal Pattern Formation in Anodic Bonding of Pyrex, vol.9, pp.315-322, 2008.

H. Takagi, R. Maeda, T. Ryong, and T. Suga, Low-Temperature Direct Bonding of Silicon and Silicon Dioxide by the Surface Activation Method, vol.70, pp.164-170, 1998.

. Lowxtemp, . Xwaferxdirectxbonding-tong, and . Pdf,

T. A. Surfaces, P. Kopperschmidt, F. M. Care, R. Scholz, and B. Lee, Fundamental Issues in Wafer Bonding, 1999.

W. Kern, This Week ' s Citation Classic, 1983.

C. Rauer and . Collage-de-silicium-et-d-'-oxyde-de-silicium, Mécanismes Mis En Jeu To Cite This Version : HAL Id : Tel-01304195 Collage de Silicium et d ' Oxyde de Silicium : Mécanismes Mis En Jeu, 2016.

H. A. Id, Etude Des Collages Directs Hydrophiles Mettant En Jeu Des Couches Diélectriques Elodie Bêche To Cite This Version : HAL Id : Tel-01755507 Etude Des Collages Directs Hydrophiles Mettant En Jeu Des Couches Diélectriques, 2018.

U. Gosele, Wafer Bonding for Microsystems Technologies, pp.161-168, 1999.

M. Argoud, Mécanismes de Collage et de Transfert de Films Monocristallins Dans Des Structures à Couches de Polymères To Cite This Version : HAL Id : Tel-00848111 Mécanismes de Collage et de Transfert de Films Monocristallins Dans Des Structures à Couches de Polymères, 2013.

R. Feilleux, Mécanismes de Collage Direct de Films de Silicium Polycristallin Mécanismes de Collage Direct de Films de Silicium Polycristallin, 2011.

W. Ouyang, Z. Li, and J. Han, Pressure-Modulated Selective Electrokinetic Trapping for Direct Enrichment, Purification, and Detection of Nucleic Acids in Human Serum, Anal. Chem, vol.90, pp.11366-11375, 2018.

A. Cattoni, P. Ghenuche, D. Decanini, J. Chen, J. N. Pelouard et al., , pp.3557-3563, 2011.

O. Access, We Are IntechOpen , the World ' s Leading Publisher of Open Access Books Built by Scientists

M. Darnon, L. Vallier, E. Pargon, G. Cunge, M. Fouchier et al., Etching Mechanisms of Thin SiO2 Exposed to Cl2 Plasma Etching Mechanisms of Thin SiO 2 Exposed to Cl 2 Plasma, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00629230

C. Hsu, J. Hoang, V. Le, J. P. Chang, C. Hsu et al., Feature Profile Evolution during Shallow Trench Isolation Etch in Chlorine-Based Plasmas . II . Coupling Reactor and Feature Scale Models Feature Profile Evolution during Shallow Trench Isolation Etch in Chlorine-Based Plasmas . II . Coupling Reactor and Feature Scale Models, p.1919, 2008.