R. Li, H. Han, F. Zhang, D. Wang, and C. Li, Highly efficient photocatalysts constructed by rational assembly of dual-cocatalysts separately on different facets of BiVO 4, Energy Environ. Sci, vol.7, pp.1369-1376, 2014.

A. Kudo and Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev, vol.38, pp.253-278, 2009.

C. Zachäus, F. F. Abdi, L. M. Peter, and R. Van-de-krol, Photocurrent of BiVO 4 is limited by surface recombination, not surface catalysis, Chem. Sci, vol.8, pp.3712-3719, 2017.

M. Barroso, A. J. Cowan, S. R. Pendlebury, M. Grätzel, D. R. Klug et al., The role of cobalt phosphate in enhancing the photocatalytic activity of ?-Fe 2 O 3 toward water oxidation, J. Am. Chem. Soc, vol.133, pp.14868-14871, 2011.

D. Wang, H. Jiang, X. Zong, Q. Xu, Y. Ma et al., Crystal Facet Dependence of Water Oxidation on BiVO 4 Sheets under Visible Light Irradiation. Chem. -A Eur, J, vol.17, pp.1275-1282, 2011.

R. Li, F. Zhang, D. Wang, J. Yang, M. Li et al., Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO 4, Nat. Commun, 1432.

H. Ibach and H. Lüth, Solid-State Physics

S. M. Sze and K. K. Ng, Physics of semiconductor devices, p.815, 2007.

A. S. Grove, Physics and technology of semiconductor devices, p.366, 1967.

A. Klein, Semiconductor Interfaces. Lecture notes, 2008.
URL : https://hal.archives-ouvertes.fr/jpa-00224137

H. Yoshida, K. Hirao, J. Nishimoto, K. Shimura, S. Kato et al., Hydrogen Production from Methane and Water on Platinum Loaded Titanium Oxide Photocatalysts

, J. Phys. Chem. C, vol.112, pp.5542-5551, 2008.

W. Mönch, Metal-semiconductor contacts: electronic properties, Surf. Sci, pp.928-944, 1994.

W. Mönch, Role of virtual gap states and defects in metal-semiconductor contacts, Phys. Rev. Lett, vol.58, pp.1260-1263, 1987.

C. G. Garrett and W. H. Brattain, Physical Theory of Semiconductor Surfaces, Phys. Rev, vol.99, pp.376-387, 1955.

M. D. Pashley, K. W. Haberern, R. M. Feenstra, and P. D. Kirchner, Different Fermi-level pinning behavior on n-and p-type GaAs(001), Phys. Rev. B, vol.48, pp.4612-4615, 1993.

C. A. Mead and W. G. Spitzer, Fermi Level Position at Metal-Semiconductor Interfaces, Phys. Rev, vol.134, pp.713-716, 1964.

W. Mönch, Chemical trends of barrier heights in metal-semiconductor contacts: on the theory of the slope parameter, Appl. Surf. Sci, vol.92, pp.367-371, 1996.

R. S. Selinsky, Q. Ding, M. S. Faber, J. C. Wright, and S. Jin, Quantum dot nanoscale heterostructures for solar energy conversion, Chem. Soc. Rev, vol.42, pp.2963-2985, 2013.

J. R. Waldrop, E. A. Kraut, S. P. Kowalczyk, and R. W. Grant, Valence-band discontinuities for abrupt (110), (100), and (111) oriented Ge-GaAs heterojunctions, Surf. Sci, vol.132, pp.513-518, 1983.

J. Morasch, S. Li, J. Brötz, W. Jaegermann, and A. Klein, Reactively magnetron sputtered Bi 2 O 3 thin films: Analysis of structure, optoelectronic, interface, and photovoltaic properties, Phys. Status Solidi Appl. Mater. Sci, vol.211, pp.93-100, 2014.

M. T. Uddin, Y. Nicolas, C. Olivier, L. Servant, T. Toupance et al., Improved photocatalytic activity in RuO 2 -ZnO nanoparticulate heterostructures due to inhomogeneous space charge effects, Phys. Chem. Chem. Phys, vol.17, pp.5090-5102, 2015.

S. Li, A. Wachau, R. Schafranek, A. Klein, Y. Zheng et al., Energy level alignment and electrical properties of (Ba,Sr)TiO 3 /Al 2 O 3 interfaces for tunable capacitors, J. Appl. Phys, p.14113, 2010.

A. Klein, Energy band alignment in chalcogenide thin film solar cells from photoelectron spectroscopy, J. Phys. Condens. Matter, p.134201, 2015.

J. Türck, S. Siol, T. Mayer, A. Klein, and W. Jaegermann, Cu 2 S as ohmic back contact for CdTe solar cells, Thin Solid Films, vol.582, pp.336-339, 2015.

T. Adler, M. Botros, W. Witte, D. Hariskos, R. Menner et al., Valence band offsets at Cu(In,Ga)Se 2 /Zn(O,S) interfaces. Phys. status solidi, vol.211, pp.1972-1980, 2014.

Y. Matsumoto, T. Yoshikawa, and E. Sato, Dependence of the Band Bending of the Oxide Semiconductors on pH, J. Electrochem. Soc, vol.136, p.1389, 1989.

S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Electronenergy-loss spectra and the structural stability of nickel oxide: An LSDA+U study, Phys. Rev. B, vol.57, pp.1505-1509, 1998.

A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators, Phys. Rev. B, vol.52, pp.5467-5470, 1995.

Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov et al., Combining theory and experiment in electrocatalysis: Insights into materials design, p.4998, 2017.

I. C. Man, H. Y. Su, F. Calle-vallejo, H. A. Hansen, J. I. Martínez et al., Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces, ChemCatChem, vol.3, pp.1159-1165, 2011.

Y. Jiao, Y. Zheng, M. Jaroniec, and S. Z. Qiao, Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions, Chem. Soc. Rev, vol.44, pp.2060-2086, 2015.

J. D. Benck, T. R. Hellstern, J. Kibsgaard, P. Chakthranont, and T. F. Jaramillo, Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials, ACS Catal, vol.4, pp.3957-3971, 2014.

J. K. Norskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen et al., Trends in the Exchange Current for Hydrogen Evolution, J. Electrochem. Soc, vol.152, p.23, 2005.

R. Parsons, The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen, Trans. Faraday Soc, vol.54, p.1053, 1958.

J. Greeley and M. Mavrikakis, Alloy catalysts designed from first principles, Nat. Mater, vol.3, pp.810-815, 2004.

J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff, and J. K. Nørskov, Computational highthroughput screening of electrocatalytic materials for hydrogen evolution, Nat. Mater, vol.5, pp.909-913, 2006.

E. Skúlason, V. Tripkovic, M. E. Björketun, S. Gudmundsdóttir, G. Karlberg et al., Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations

, J. Phys. Chem. C, vol.114, pp.18182-18197, 2010.

Y. Huang, R. J. Nielsen, W. A. Goddard, and M. P. Soriaga, The Reaction Mechanism with Free Energy Barriers for Electrochemical Dihydrogen Evolution on MoS 2, J. Am. Chem. Soc, vol.137, pp.6692-6698, 2015.

K. Chan and J. K. Nørskov, Potential Dependence of Electrochemical Barriers from ab Initio Calculations, J. Phys. Chem. Lett, vol.7, pp.1686-1690, 2016.

K. Chan and J. K. Nørskov, Electrochemical Barriers Made Simple, J. Phys. Chem. Lett, vol.6, pp.2663-2668, 2015.

Y. Fang and Z. Liu, Surface Phase Diagram and Oxygen Coupling Kinetics on Flat and Stepped Pt Surfaces under Electrochemical Potentials, J. Phys. Chem. C, vol.113, pp.9765-9772, 2009.

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch et al., Identification of active edge sites for electrochemical H 2 evolution from MoS 2 nanocatalysts, Science, vol.317, pp.100-102, 2007.

X. Shen, Y. A. Small, J. Wang, P. B. Allen, M. V. Fernandez-serra et al., Photocatalytic Water Oxidation at the GaN (1010)-Water Interface, J. Phys. Chem. C, vol.114, pp.13695-13704, 2010.

A. V. Akimov, J. T. Muckerman, and O. V. Prezhdo, Nonadiabatic Dynamics of Positive Charge during Photocatalytic Water Splitting on GaN(1010) Surface: Charge Localization Governs Splitting Efficiency, J. Am. Chem. Soc, vol.135, pp.8682-8691, 2013.

J. Rossmeisl, Z. Qu, H. Zhu, G. Kroes, and J. Nørskov, Electrolysis of water on oxide surfaces, J. Electroanal. Chem, vol.607, pp.83-89, 2007.

J. K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin et al., Jónsson, H. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode, J. Phys. Chem. B, vol.108, pp.17886-17892, 2004.

S. Siahrostami, A. Verdaguer-casadevall, M. Karamad, D. Deiana, P. Malacrida et al., Enabling direct H 2 O 2 production through rational electrocatalyst design, Nat. Mater, vol.12, pp.1137-1143, 2013.

J. Rossmeisl, A. Logadottir, and J. Nørskov, Electrolysis of water on (oxidized) metal surfaces, Chem. Phys, vol.319, pp.178-184, 2005.

C. C. Mccrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters et al., Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices, J. Am. Chem. Soc, vol.137, pp.4347-4357, 2015.

Y. J. Jang, Y. B. Park, H. E. Kim, Y. H. Choi, S. H. Choi et al., Oxygen-Intercalated CuFeO 2 Photocathode Fabricated by Hybrid Microwave Annealing for Efficient Solar Hydrogen Production, Chem. Mater, vol.28, pp.6054-6061, 2016.

X. Lv, X. Xiao, M. Cao, Y. Bu, C. Wang et al., Efficient carbon dots/NiFelayered double hydroxide/BiVO 4 photoanodes for photoelectrochemical water splitting

, Appl. Surf. Sci, vol.439, pp.1065-1071, 2018.

C. Li, P. Zhang, R. Lv, J. Lu, T. Wang et al., Selective Deposition of Ag 3 PO 4 on Monoclinic BiVO 4 (040) for Highly Efficient Photocatalysis, Small, vol.9, pp.3951-3956, 2013.

Y. Jin and G. Chumanov, Solution synthesis of pure 2H CuFeO 2 at low temperatures, RSC Adv, vol.6, pp.26392-26397, 2016.

C. Lohaus, The Fermi Level in Hematite, p.257, 2018.

A. Klein, Interface Properties of Dielectric Oxides, J. Am. Ceram. Soc, vol.99, pp.369-387, 2016.

H. Gong, N. Freudenberg, M. Nie, R. Van-de-krol, and K. Ellmer, BiVO 4 photoanodes for water splitting with high injection efficiency

, AIP Adv, vol.6, p.45108, 2016.

S. Murcia-lópez, C. Fàbrega, D. Monllor-satoca, M. D. Hernández-alonso, G. Penelas-pérez et al., Tailoring Multilayered BiVO 4 Photoanodes by Pulsed Laser Deposition for Water Splitting, ACS Appl. Mater. Interfaces, vol.8, pp.4076-4085, 2016.

P. Kubelka and F. Munk, Ein Beitrag zur Optik der Farbanstriche, Zeitschrift für Tech. Phys, vol.12, pp.593-601, 1931.

J. H. Nobbs, Kubelka-Munk Theory and the Prediction of Reflectance, Rev. Prog. Color. Relat. Top, vol.15, pp.66-75, 1985.

J. Tauc, Optical properties and electronic structure of amorphous Ge and Si, Mater. Res. Bull, vol.3, pp.37-46, 1968.

S. Bacon, Interactions between latent fingermarks, deposition surfaces and development agents, p.96, 2012.

D. B. Williams and C. B. Carter, Transmission Electron Microscopy, p.775, 2009.

D. A. Shirley, High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold, Phys. Rev. B, vol.5, pp.4709-4714, 1972.

S. Tougaard and C. Jansson, Background correction in XPS: Comparison of validity of different methods, Surf. Interface Anal, vol.19, pp.171-174, 1992.

R. Li, F. Zhang, D. Wang, J. Yang, M. Li et al., Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO 4, Nat. Commun, 1432.

R. Li, H. Han, F. Zhang, D. Wang, and C. Li, Highly efficient photocatalysts constructed by rational assembly of dual-cocatalysts separately on different facets of BiVO 4, Energy Environ. Sci, vol.7, pp.1369-1376, 2014.

C. C. Mccrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters et al., Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices, J. Am. Chem. Soc, vol.137, pp.4347-4357, 2015.

T. W. Kim and K. Choi, Nanoporous BiVO 4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting, Science, vol.343, pp.990-994, 2014.

X. Shi, I. Y. Choi, K. Zhang, J. Kwon, D. Y. Kim et al., Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures, Nat. Commun, vol.5, p.4775, 2014.

J. A. Seabold and K. Choi, Efficient and Stable Photo-Oxidation of Water by a Bismuth Vanadate Photoanode Coupled with an Iron Oxyhydroxide Oxygen Evolution Catalyst

, J. Am. Chem. Soc, vol.134, pp.2186-2192, 2012.

C. Li, P. Zhang, R. Lv, J. Lu, T. Wang et al., Selective Deposition of Ag 3 PO 4 on Monoclinic BiVO 4 (040) for Highly Efficient Photocatalysis, Small, vol.9, pp.3951-3956, 2013.

W. Wang, X. Huang, S. Wu, Y. Zhou, L. Wang et al., Preparation of p-n junction Cu 2 O/BiVO 4 heterogeneous nanostructures with enhanced visible-light photocatalytic activity, Appl. Catal. B Environ, pp.293-301, 2013.

T. Xu, R. Zhu, G. Zhu, J. Zhu, X. Liang et al., Mechanisms for the enhanced photo-Fenton activity of ferrihydrite modified with BiVO 4 at neutral pH, Appl. Catal. B Environ, vol.212, pp.50-58, 2017.

V. Jovic, J. Laverock, A. J. Rettie, J. Zhou, C. B. Mullins et al., Soft X-ray spectroscopic studies of the electronic structure of M:BiVO 4, vol.3, pp.23743-23753, 2015.

N. A. Al-areqi, A. Al-alas, A. S. Al-kamali, K. Ghaleb, and K. Al-mureish, Photodegradation of 4-SPPN dye catalyzed by Ni(II)-substituted Bi 2 VO 5.5 system under visible light irradiation: Influence of phase stability and perovskite vanadate-oxygen vacancies of photocatalyst, J. Mol. Catal. A Chem, vol.381, pp.1-8, 2014.

F. F. Abdi, T. J. Savenije, M. M. May, B. Dam, and R. Van-de-krol, The Origin of Slow Carrier Transport in BiVO 4 Thin Film Photoanodes: A Time-Resolved Microwave Conductivity Study, J. Phys. Chem. Lett, vol.4, pp.2752-2757, 2013.

L. Chen, E. Alarcón-lladó, M. Hettick, I. D. Sharp, Y. Lin et al., Reactive sputtering of bismuth vanadate photoanodes for solar Water splitting, J. Phys. Chem. C, vol.117, pp.21635-21642, 2013.

J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data, p.261, 1992.

M. Sundararajan, V. Sailaja, L. Kennedy, and J. Vijaya, Photocatalytic degradation of rhodamine B under visible light using nanostructured zinc doped cobalt ferrite: Kinetics and mechanism, Ceram. Int, vol.43, pp.540-548, 2017.

M. T. Uddin, O. Babot, L. Thomas, C. Olivier, M. Redaelli et al., New Insights into the Photocatalytic Properties of RuO 2 /TiO 2 Mesoporous Heterostructures for Hydrogen Production and Organic Pollutant Photodecomposition, J. Phys. Chem. C, vol.119, pp.7006-7015, 2015.

C. Pacholski, A. Kornowski, and H. Weller, Site-Specific Photodeposition of Silver on ZnO Nanorods. Angew. Chemie Int, vol.43, pp.4774-4777, 2004.

E. Debroye, J. Van-loon, H. Yuan, K. P. Janssen, Z. Lou et al., Facet-Dependent Photoreduction on Single ZnO Crystals, J. Phys. Chem. Lett, vol.8, pp.340-346, 2017.

J. Zhu, F. Fan, R. Chen, H. An, Z. Feng et al., Direct Imaging of Highly Anisotropic Photogenerated Charge Separations on Different Facets of a Single BiVO 4 Photocatalyst

. Angew, Chemie -Int, vol.54, pp.9111-9114, 2015.

H. Yoneyama, N. Nishimura, and H. Tamura, Photodeposition of palladium and platinum onto titanium dioxide single crystals, J. Phys. Chem, vol.85, pp.268-272, 1981.

J. Murcia, M. Hidalgo, J. Navío, J. Araña, and J. Doña-rodríguez, Study of the phenol photocatalytic degradation over TiO 2 modified by sulfation, fluorination, and platinum nanoparticles photodeposition, Appl. Catal. B Environ, vol.179, pp.305-312, 2015.

F. Zhang, J. Chen, X. Zhang, W. Gao, R. Jin et al., Synthesis of Titania-Supported Platinum Catalyst: The Effect of pH on Morphology Control and Valence State during Photodeposition, Langmuir, vol.20, pp.9329-9334, 2004.

Y. Zhao, Y. Xie, X. Zhu, S. Yan, and S. Wang, Surfactant-Free Synthesis of Hyperbranched Monoclinic Bismuth Vanadate and its Applications in Photocatalysis, Gas Sensing, and Lithium-Ion Batteries. Chem. -A Eur, J, vol.14, pp.1601-1606, 2008.

C. Xi and ;. Chen,

, Zhensheng Jin Effects of H + , Cl ? and CH 3 COOH on the photocatalytic conversion of PtCl 2? 6 in aqueous TiO 2 dispersion, J. Photochem. Photobiol. A Chem, vol.87, pp.249-255, 1995.

F. Lin and S. W. Boettcher, Adaptive semiconductor/electrocatalyst junctions in watersplitting photoanodes, Nat. Mater, vol.13, pp.81-86, 2014.

C. C. Mccrory, S. Jung, J. C. Peters, and T. F. Jaramillo, Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction, J. Am. Chem. Soc, vol.135, pp.16977-16987, 2013.

X. Liu, X. Wang, X. Yuan, W. Dong, and F. Huang, Rational composition and structural design of in situ grown nickel-based electrocatalysts for efficient water electrolysis, J. Mater. Chem. A, vol.4, pp.167-172, 2016.

J. L. Rodríguez, M. A. Valenzuela, H. Tiznado, T. Poznyak, and E. Flores, Synthesis of nickel oxide nanoparticles supported on SiO 2 by sensitized liquid phase photodeposition for applications in catalytic ozonation, J. Mol. Catal. A Chem, vol.392, pp.39-49, 2014.

X. Chen, W. Chen, P. Lin, Y. Yang, H. Gao et al., In situ photodeposition of nickel oxides on CdS for highly efficient hydrogen production via visible-lightdriven photocatalysis, Catal. Commun, vol.36, pp.104-108, 2013.

S. K. Choi, W. Choi, and H. Park, Solar water oxidation using nickel-borate coupled BiVO 4 photoelectrodes, Phys. Chem. Chem. Phys, p.6499, 2013.

K. Dang, X. Chang, T. Wang, and J. Gong, , vol.9, pp.16133-16137, 2017.

Y. Xu and M. A. Schoonen, The Absolute Energy Positions of Conduction and Valence Bands of Selected Semiconducting Minerals, Am. Mineral, vol.85, pp.543-556, 2000.

D. C. Harris, Quantitative Chemical Analysis

W. H. Freeman, , p.928, 2015.

K. Sivula and R. Van-de-krol, Semiconducting materials for photoelectrochemical energy conversion, Nat. Rev. Mater, 2016.

A. P. Grosvenor, M. C. Biesinger, R. S. Smart, and N. Mcintyre, New interpretations of XPS spectra of nickel metal and oxides, Surf. Sci, vol.600, pp.1771-1779, 2006.

N. Weidler, J. Schuch, F. Knaus, P. Stenner, S. Hoch et al., X-ray Photoelectron Spectroscopic Investigation of Plasma-Enhanced Chemical Vapor Deposited NiO x , NiO x (OH) y , and CoNiO x (OH) y : Influence of the Chemical Composition on the?, J. Phys. Chem. C, vol.121, pp.6455-6463, 2017.

M. C. Biesinger, L. W. Lau, A. R. Gerson, and R. S. Smart, The role of the Auger parameter in XPS studies of nickel metal, halides and oxides, Phys. Chem. Chem. Phys, p.2434, 2012.

Q. Wang, T. Hisatomi, Q. Jia, H. Tokudome, M. Zhong et al., Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%, Nat. Mater, vol.15, pp.611-615, 2016.

A. Mills, P. A. Duckmanton, and J. Reglinski, A simple, novel method for preparing an effective water oxidation catalyst, Chem. Commun, vol.46, p.2397, 2010.

T. L. Barr and S. Seal, Nature of the use of adventitious carbon as a binding energy standard, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film, vol.13, pp.1239-1246, 1995.

R. Abe, K. Sayama, K. Domen, and H. Arakawa, A new type of water splitting system composed of two different TiO 2 photocatalysts (anatase, rutile) and a IO ? 3 /I ? shuttle redox mediator, Chem. Phys. Lett, vol.344, pp.339-344, 2001.

R. Abe, M. Higashi, and K. Domen, Overall Water Splitting under Visible Light through a Two-Step Photoexcitation between TaON and WO 3 in the Presence of an Iodate-Iodide Shuttle Redox Mediator, ChemSusChem, vol.4, pp.228-237, 2011.

F. F. Abdi, N. Firet, and R. Vandekrol, Efficient BiVO 4 Thin Film Photoanodes Modified with Cobalt Phosphate Catalyst and W-doping, ChemCatChem, vol.5, pp.490-496, 2013.

R. Li, H. Han, F. Zhang, D. Wang, and C. Li, Highly efficient photocatalysts constructed by rational assembly of dual-cocatalysts separately on different facets of BiVO 4, Energy Environ. Sci, vol.7, pp.1369-1376, 2014.

T. W. Kim and K. Choi, Nanoporous BiVO 4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting, Science, vol.343, pp.990-994, 2014.

Z. He, Y. Shi, C. Gao, L. Wen, J. Chen et al., BiOCl/BiVO 4 p-n Heterojunction with Enhanced Photocatalytic Activity under Visible-Light Irradiation, J. Phys. Chem. C, vol.118, pp.389-398, 2014.

J. Wang and F. E. Osterloh, Limiting factors for photochemical charge separation in BiVO 4 /Co 3 O 4 , a highly active photocatalyst for water oxidation in sunlight, J. Mater. Chem. A, vol.2, pp.9405-9411, 2014.

Y. Pihosh, I. Turkevych, K. Mawatari, J. Uemura, Y. Kazoe et al., Photocatalytic generation of hydrogen by core-shell WO 3 /BiVO 4 nanorods with ultimate water splitting efficiency, Sci. Rep, vol.5, p.11141, 2015.

F. F. Abdi, L. Han, A. H. Smets, M. Zeman, B. Dam et al., Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode, Nat. Commun, vol.4, pp.17594-17598, 2013.

Y. Qiu, W. Liu, W. Chen, G. Zhou, P. C. Hsu et al., Efficient solar-driven water splitting by nanocone BiVO 4 -perovskite tandem cells, Sci. Adv, 2016.

D. Wang, R. Li, J. Zhu, J. Shi, J. Han et al., Photocatalytic water oxidation on BiVO 4 with the electrocatalyst as an oxidation cocatalyst: Essential relations between electrocatalyst and photocatalyst, J. Phys. Chem. C, vol.116, pp.5082-5089, 2012.

M. Zhong, T. Hisatomi, Y. Kuang, J. Zhao, M. Liu et al.,

, BiVO 4 photoanodes with ultrathin p-type NiO layers for improved solar water oxidation

, J. Am. Chem. Soc, vol.137, pp.5053-5060, 2015.

Q. Wang, T. Hisatomi, Q. Jia, H. Tokudome, M. Zhong et al., Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%, Nat. Mater, vol.15, pp.611-615, 2016.

M. W. Kanan and D. G. Nocera, In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co 2+, Science, vol.321, pp.1072-1075, 2008.

I. C. Man, H. Y. Su, F. Calle-vallejo, H. A. Hansen, J. I. Martínez et al., Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces, ChemCatChem, vol.3, pp.1159-1165, 2011.

D. K. Zhong, S. Choi, and D. R. Gamelin, Near-Complete Suppression of Surface Recombination in Solar Photoelectrolysis by "Co-Pi" Catalyst-Modified W:BiVO 4, J. Am. Chem. Soc, vol.133, pp.18370-18377, 2011.

C. Zachäus, F. F. Abdi, L. M. Peter, and R. Van-de-krol, Photocurrent of BiVO 4 is limited by surface recombination, not surface catalysis, Chem. Sci, vol.8, pp.3712-3719, 2017.

F. Lin and S. W. Boettcher, Adaptive semiconductor/electrocatalyst junctions in watersplitting photoanodes, Nat. Mater, vol.13, pp.81-86, 2014.

M. Barroso, A. J. Cowan, S. R. Pendlebury, M. Grätzel, D. R. Klug et al., The role of cobalt phosphate in enhancing the photocatalytic activity of ?-Fe 2 O 3 toward water oxidation, J. Am. Chem. Soc, vol.133, pp.14868-14871, 2011.

M. A. Melo, Z. Wu, B. A. Nail, A. T. De-denko, A. F. Nogueira et al., Surface Photovoltage Measurements on a Particle Tandem Photocatalyst for Overall Water Splitting, Nano Lett, vol.18, pp.805-810, 2018.

M. R. Nellist, F. A. Laskowski, F. Lin, T. J. Mills, and S. W. Boettcher, Semiconductor-Electrocatalyst Interfaces: Theory, Experiment, and Applications in Photoelectrochemical Water Splitting, Acc. Chem. Res, vol.49, pp.733-740, 2016.

J. Resasco, H. Zhang, N. Kornienko, N. Becknell, H. Lee et al., TiO 2 /BiVO 4 Nanowire Heterostructure Photoanodes Based on Type II Band Alignment

, ACS Cent. Sci, vol.2, pp.80-88, 2016.

Q. Yuan, L. Chen, M. Xiong, J. He, S. L. Luo et al., Cu 2 O/BiVO 4 heterostructures: Synthesis and application in simultaneous photocatalytic oxidation of organic dyes and reduction of Cr(VI) under visible light, Chem. Eng. J, vol.255, pp.394-402, 2014.

M. A. Mahadik, H. Chung, S. Lee, M. Cho, and J. S. Jang, In-Situ Noble Fabrication of Bi 2 S 3 /BiVO 4 Hybrid Nanostructure through a Photoelectrochemical Transformation Process for Solar Hydrogen Production, ACS Sustain. Chem. Eng, vol.6, pp.12489-12501, 2018.

R. Qiao, M. Mao, E. Hu, Y. Zhong, J. Ning et al., Facile Formation of Mesoporous BiVO 4 /Ag/AgCl Heterostructured Microspheres with Enhanced Visible-Light Photoactivity, Inorg. Chem, vol.54, pp.9033-9039, 2015.

M. Gleria and R. Memming, Charge transfer processes at large band gap semiconductor electrodes: reactions at SiC-electrodes, J. Electroanal. Chem, vol.65, pp.163-175, 1975.

K. Gelderman, L. Lee, and S. W. Donne, Flat-Band Potential of a Semiconductor: Using the Mott-Schottky Equation, J. Chem. Educ, vol.84, p.685, 2007.

H. Gerischer, Electrolytic decomposition and photodecomposition of compound semiconductors in contact with electrolytes, J. Vac. Sci. Technol, vol.15, pp.1422-1428, 1978.

N. Serpone and E. Pelizzetti, Photocatalysis : fundamentals and applications, p.650, 1989.

T. Sakata and T. Kawai, In Energy Resour. Through Photochem. Catal, pp.331-358, 1983.

F. Cardon and W. P. Gomes, On the determination of the flat-band potential of a semiconductor in contact with a metal or an electrolyte from the Mott-Schottky plot, J. Phys. D. Appl. Phys, vol.11, pp.63-67, 1978.

M. A. Butler, Prediction of Flatband Potentials at Semiconductor-Electrolyte Interfaces from Atomic Electronegativities, J. Electrochem. Soc, vol.125, p.228, 1978.

Y. Xu and M. A. Schoonen, The Absolute Energy Positions of Conduction and Valence Bands of Selected Semiconducting Minerals, Am. Mineral, vol.85, pp.543-556, 2000.

W. Jaegermann, In Photoelectrochem. Photovoltaics Layer. Semicond, pp.195-295, 1992.

J. R. Waldrop, E. A. Kraut, S. P. Kowalczyk, and R. W. Grant, Valence-band discontinuities for abrupt (110), (100), and (111) oriented Ge-GaAs heterojunctions, Surf. Sci, vol.132, pp.513-518, 1983.

M. T. Greiner, L. Chai, M. G. Helander, W. M. Tang, and Z. H. Lu, Transition metal oxide work functions: The influence of cation oxidation state and oxygen vacancies, Adv. Funct. Mater, vol.22, pp.4557-4568, 2012.

J. Morasch, S. Li, J. Brötz, W. Jaegermann, and A. Klein, Reactively magnetron sputtered Bi 2 O 3 thin films: Analysis of structure, optoelectronic, interface, and photovoltaic properties, Phys. Status Solidi Appl. Mater. Sci, vol.211, pp.93-100, 2014.

Y. Gassenbauer, R. Schafranek, A. Klein, S. Zafeiratos, M. Hävecker et al., Surface states, surface potentials, and segregation at surfaces of tin-doped In 2 O 3, Phys. Rev. B -Condens. Matter Mater. Phys, p.245312, 2006.

C. C. Mccrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters et al., Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices, J. Am. Chem. Soc, vol.137, pp.4347-4357, 2015.

M. Zhou, J. Bao, W. Bi, Y. Zeng, R. Zhu et al., Efficient Water Splitting via a Heteroepitaxial BiVO 4 Photoelectrode Decorated with Co-Pi Catalysts, ChemSusChem, vol.5, pp.1420-1425, 2012.

L. Chen, E. Alarcón-lladó, M. Hettick, I. D. Sharp, Y. Lin et al., Reactive sputtering of bismuth vanadate photoanodes for solar Water splitting, J. Phys. Chem. C, vol.117, pp.21635-21642, 2013.

Y. Liang, T. Tsubota, L. P. Mooij, and R. Van-de-krol, Highly improved quantum efficiencies for thin film BiVO 4 photoanodes, J. Phys. Chem. C, vol.115, pp.17594-17598, 2011.

J. Yu and A. Kudo, Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO 4, Adv. Funct. Mater, vol.16, pp.2163-2169, 2006.

J. Su, X. Zou, G. Li, X. Wei, C. Yan et al.,

, Macroporous V 2 O 5 -BiVO 4 Composites: Effect of Heterojunction on the Behavior of Photogenerated Charges, J. Phys. Chem. C, vol.115, pp.8064-8071, 2011.

J. K. Cooper, S. Gul, F. M. Toma, L. Chen, P. A. Glans et al., Electronic structure of monoclinic BiVO 4, Chem. Mater, vol.26, pp.5365-5373, 2014.

J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data, p.261, 1992.

J. Fritsche, T. Schulmeyer, A. Thißen, A. Klein, and W. Jaegermann, Interface modification of CdTe thin film solar cells by CdCl 2 -activation, Thin Solid Films, pp.267-271, 2003.

S. Murcia-lópez, C. Fàbrega, D. Monllor-satoca, M. D. Hernández-alonso, G. Penelas-pérez et al., Tailoring Multilayered BiVO 4 Photoanodes by Pulsed Laser Deposition for Water Splitting, ACS Appl. Mater. Interfaces, vol.8, pp.4076-4085, 2016.

G. Wang, Y. Ling, X. Lu, F. Qian, Y. Tong et al., Computational and Photoelectrochemical Study of Hydrogenated Bismuth Vanadate, J. Phys. Chem. C, vol.117, pp.10957-10964, 2013.

W. Yin, S. Wei, M. M. Al-jassim, J. Turner, and Y. Yan, Doping properties of monoclinic BiVO 4 studied by first-principles density-functional theory, Phys. Rev. B, p.155102, 2011.

J. C. Fan and J. B. Goodenough, X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films, J. Appl. Phys, vol.48, pp.3524-3531, 1977.

S. Jeong, Y. Ha, J. Moon, A. Facchetti, and T. J. Marks, Role of Gallium Doping in Dramatically Lowering Amorphous-Oxide Processing Temperatures for Solution-Derived Indium Zinc Oxide Thin-Film Transistors, Adv. Mater, vol.22, pp.1346-1350, 2010.

J. Dupin, D. Gonbeau, P. Vinatier, and A. Levasseur, Systematic XPS studies of metal oxides, hydroxides and peroxides, Phys. Chem. Chem. Phys, vol.2, pp.1319-1324, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01636425

V. Pfeifer, P. Erhart, S. Li, K. Rachut, J. Morasch et al., Energy band alignment between anatase and rutile TiO 2, J. Phys. Chem. Lett, vol.4, pp.4182-4187, 2013.

A. Kachouane, M. Addou, A. Bougrine, B. El-idrissi, R. Messoussi et al., Preparation and characterisation of tin-doped indium oxide films, Mater. Chem. Phys, vol.70, pp.285-289, 2001.

Y. Gassenbauer, A. Wachau, and A. Klein, Chemical and electronic properties of the ITO/Al 2 O 3 interface, Phys. Chem. Chem. Phys, p.3049, 2009.

A. Walsh, J. L. Da-silva, S. H. Wei, C. Körber, A. Klein et al., Nature of the band gap of In 2 O 3 revealed by first-principles calculations and X-ray spectroscopy, Phys. Rev. Lett, p.167402, 2008.

A. P. Grosvenor, M. C. Biesinger, R. S. Smart, and N. Mcintyre, New interpretations of XPS spectra of nickel metal and oxides, Surf. Sci, vol.600, pp.1771-1779, 2006.

N. Weidler, S. Paulus, J. Schuch, J. Klett, S. Hoch et al., CoO x thin film deposited by CVD as efficient water oxidation catalyst: change of oxidation state in XPS and its correlation to electrochemical activity, Phys. Chem. Chem. Phys, vol.18, pp.10708-10718, 2016.

L. Qiao, H. Y. Xiao, H. M. Meyer, J. N. Sun, C. M. Rouleau et al., Nature of the band gap and origin of the electro-/photo-activity of Co 3 O 4, J. Mater. Chem. C, p.4628, 2013.

M. T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, M. M. Müller et al., Preparation of RuO 2 /TiO 2 Mesoporous Heterostructures and Rationalization of Their Enhanced Photocatalytic Properties by Band Alignment Investigations, J. Phys. Chem. C, vol.117, pp.22098-22110, 2013.

R. Schafranek, J. Schaffner, and A. Klein, Sr)TiO 3 /RuO 2 contact formation, situ photoelectron study of the, vol.30, pp.187-192, 2010.

S. Tengeler, M. Fingerle, W. Calvet, C. Steinert, B. Kaiser et al., The Impact of Different Si Surface Terminations in the (001) n-Si/NiO x Heterojunction on the Oxygen Evolution Reaction (OER) by XPS and Electrochemical Methods, J. Electrochem

. Soc, , vol.165, pp.3122-3130, 2018.

C. Lohaus, J. Morasch, J. Brötz, A. Klein, and W. Jaegermann, Investigations on RFmagnetron sputtered Co 3 O 4 thin films regarding the solar energy conversion properties

, J. Phys. D. Appl. Phys, p.155306, 2016.

M. T. Greiner, M. G. Helander, Z. B. Wang, W. M. Tang, and Z. H. Lu, Effects of processing conditions on the work function and energy-level alignment of NiO thin films, J. Phys. Chem. C, vol.114, pp.19777-19781, 2010.

A. Klein, C. Körber, A. Wachau, F. Säuberlich, Y. Gassenbauer et al., Transparent conducting oxides for photovoltaics: Manipulation of fermi level,work function and energy band alignment, Materials (Basel), vol.3, pp.4892-4914, 2010.

S. Tokunaga, H. Kato, and A. Kudo, Selective preparation of monoclinic and tetragonal BiVO 4 with scheelite structure and their photocatalytic properties, Chem. Mater, vol.13, pp.4624-4628, 2001.

M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. Chang, and T. J. Marks, p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells, Proc. Natl. Acad. Sci, vol.105, pp.2783-2787, 2008.

D. Barreca, C. Massignan, S. Daolio, M. Fabrizio, C. Piccirillo et al., Composition and Microstructure of Cobalt Oxide Thin Films Obtained from a Novel Cobalt(II) Precursor by Chemical Vapor Deposition, Chem. Mater, vol.13, pp.588-593, 2001.

J. M. Xu and J. P. Cheng, The advances of Co 3 O 4 as gas sensing materials: A review, J. Alloys Compd, vol.686, pp.753-768, 2016.

A. Klein, Interface Properties of Dielectric Oxides, J. Am. Ceram. Soc, vol.99, pp.369-387, 2016.

K. H. Lee, H. W. Jang, K. Kim, Y. Tak, and J. Lee, Mechanism for the increase of indium-tin-oxide work function by O 2 inductively coupled plasma treatment, J. Appl. Phys, vol.95, pp.586-590, 2004.

D. R. Hagleitner, M. Menhart, P. Jacobson, S. Blomberg, K. Schulte et al., Bulk and surface characterization of In 2 O 3 (001) single crystals, Phys. Rev. B, p.115441, 2012.

K. E. Kweon, G. S. Hwang, J. Kim, S. Kim, and S. Kim, Electron small polarons and their transport in bismuth vanadate: A first principles study, Phys. Chem. Chem. Phys, vol.17, pp.256-260, 2015.

J. Wiktor, F. Ambrosio, and A. Pasquarello, Role of Polarons in Water Splitting: The Case of BiVO 4, ACS Energy Lett, vol.3, pp.1693-1697, 2018.

V. Jovic, J. Laverock, A. J. Rettie, J. Zhou, C. B. Mullins et al., Soft X-ray spectroscopic studies of the electronic structure of M:BiVO 4, vol.3, pp.23743-23753, 2015.

A. Winiarski, G. Wübbeler, C. Scharfschwerdt, E. Clausing, and M. Neumann, Photoemission studies of BaPb 1-x Bi x O 3 and Ba 1-y K y BiO 3 crystals, Fresenius. J. Anal. Chem, vol.341, pp.296-300, 1991.

M. Nagoshi, T. Suzuki, Y. Fukuda, K. Ueki, A. Tokiwa et al., Electronic states of BaBiO 3-delta and K-doping effects studied by photoelectron spectroscopy, J. Phys. Condens. Matter, vol.4, pp.5769-5781, 1992.

A. S. Chouhan, E. Athresh, R. Ranjan, S. Raghavan, and S. Avasthi, BaBiO 3 : A potential absorber for all-oxide photovoltaics, Mater. Lett, vol.210, pp.218-222, 2018.

S. J. Hong, S. Lee, J. S. Jang, and J. S. Lee, Heterojunction BiVO 4 /WO 3 electrodes for enhanced photoactivity of water oxidation, Energy Environ. Sci, 1781.

Q. Shi, S. Murcia-lópez, P. Tang, C. Flox, J. R. Morante et al., Role of Tungsten Doping on the Surface States in BiVO 4 Photoanodes for Water Oxidation: Tuning the Electron Trapping Process, ACS Catal, vol.8, pp.3331-3342, 2018.

B. Pattengale and J. Huang, Implicating the contributions of surface and bulk states on carrier trapping and photocurrent performance of BiVO 4 photoanodes, Phys. Chem. Chem. Phys, vol.19, pp.6831-6837, 2017.

B. Lamm, B. J. Trze?niewski, H. Döscher, W. A. Smith, and M. Stefik, Emerging Postsynthetic Improvements of BiVO 4 Photoanodes for Solar Water Splitting, ACS Energy Lett, vol.3, pp.112-124, 2018.

G. Milazzo, S. Caroli, and V. K. Sharma, International Union of Pure and Applied Chemistry. Electrochemistry Commission., Tables of standard electrode potentials, p.421, 1978.

A. J. Bard, R. Parsons, and J. Jordan, International Union of Pure and Applied Chemistry., Standard potentials in aqueous solution, p.834, 1985.

J. Zhang, F. Ren, M. Deng, and Y. Wang, Enhanced visible-light photocatalytic activity of a g-C 3 N 4 /BiVO 4 nanocomposite: a first-principles study, Phys. Chem. Chem. Phys, vol.17, pp.10218-10226, 2015.

W. Qiu, Y. Huang, S. Tang, H. Ji, and Y. Tong, Thin-Layer Indium Oxide and Cobalt Oxyhydroxide Cobalt-Modified BiVO 4 Photoanode for Solar-Assisted Water Electrolysis, J. Phys. Chem. C, vol.121, pp.17150-17159, 2017.

J. Cao, C. Zhou, H. Lin, B. Xu, and S. Chen, Surface modification of m-BiVO 4 with wide band-gap semiconductor BiOCl to largely improve the visible light induced photocatalytic activity, Appl. Surf. Sci, vol.284, pp.263-269, 2013.

A. Kudo and Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev, vol.38, pp.253-278, 2009.

E. Pelizzetti and M. Visca, In Energy Resour. Through Photochem. Catal, pp.261-296, 1983.

W. Mönch, Electronic properties of semiconductor interfaces, 2004.

R. Schafranek, S. Li, F. Chen, W. Wu, and A. Klein, PbTiO 3 /SrTiO 3 interface: Energy band alignment and its relation, Phys. Rev. B, p.45317, 2011.

A. Klein, C. Lohaus, P. Reiser, L. Dimesso, X. Wang et al., Energy band alignment of antiferroelectric (Pb,La)(Zr,Sn,Ti)O 3, Appl. Surf. Sci, vol.407, pp.99-104, 2017.

A. Klein, Energy band alignment in chalcogenide thin film solar cells from photoelectron spectroscopy, J. Phys. Condens. Matter, p.134201, 2015.

A. Klein, Transparent conducting oxides: Electronic structure-property relationship from photoelectron spectroscopy with in situ sample preparation, J. Am. Ceram. Soc, vol.96, pp.331-345, 2013.

S. Siol, J. C. Hellmann, S. D. Tilley, M. Graetzel, J. Morasch et al., Band Alignment Engineering at Cu 2 O/ZnO Heterointerfaces, ACS Appl

, Mater. Interfaces, vol.8, pp.21824-21831, 2016.

J. Tersoff, Schottky barrier heights and the continuum of gap states, Phys. Rev. Lett, vol.52, pp.465-468, 1984.

W. E. Spicer, T. Kendelewicz, N. Newman, R. Cao, C. Mccants et al., The advanced unified defect model and its applications

, Appl. Surf. Sci, pp.1009-1029, 1988.

F. Chen, R. Schafranek, W. Wu, and A. Klein, Reduction-induced Fermi level pinning at the interfaces between Pb(Zr,Ti)O 3 and Pt, Cu and Ag metal electrodes, J. Phys. D. Appl. Phys, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00627539

C. Körber, S. P. Harvey, T. O. Mason, and A. Klein, Barrier heights at the SnO 2 /Pt interface: In situ photoemission and electrical properties, Surf. Sci, vol.602, pp.3246-3252, 2008.

R. Giesecke, R. Hertwig, T. J. Bayer, C. A. Randall, and A. Klein, Modification of the Schottky barrier height at the RuO 2 cathode during resistance degradation of Fe-doped SrTiO 3, J. Am. Ceram. Soc, vol.100, pp.4590-4601, 2017.

S. Li, C. Ghinea, T. J. Bayer, M. Motzko, R. Schafranek et al., Electrical properties of (Ba, Sr)TiO 3 thin films with Pt and ITO electrodes: Dielectric and rectifying behaviour

, J. Phys. Condens. Matter, vol.23, p.334202, 2011.

P. Deák, B. Aradi, and T. Frauenheim, Band lineup and charge carrier separation in mixed rutile-anatase systems, J. Phys. Chem. C, vol.115, pp.3443-3446, 2011.

D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail et al., Band alignment of rutile and anatase TiO 2, Nat. Mater, vol.12, pp.798-801, 2013.

A. J. Nozik, Photoelectrochemistry: Applications to Solar Energy Conversion, Annu. Rev. Phys. Chem, vol.29, pp.189-222, 1978.

L. J. Hoyos, D. F. Rivera, A. F. Gualdrón-reyes, R. Ospina, J. Rodríguez-pereira et al., Influence of immersion cycles during n-?-Bi 2 O 3 sensitization on the photoelectrochemical behaviour of N-F-codoped TiO 2 nanotubes, Appl. Surf. Sci, vol.423, pp.917-926, 2017.

S. Li, Intrinsic energy band alignment of functional oxides, Phys. Status Solidi -Rapid Res. Lett, vol.8, pp.571-576, 2014.

S. Li, J. Morasch, A. Klein, C. Chirila, L. Pintilie et al., Influence of orbital contributions to the valence band alignment of Bi 2 O 3 , Fe 2 O 3 , BiFeO 3 , and Bi 0.5 Na 0.5 TiO 3, Phys. Rev. B -Condens. Matter Mater. Phys, p.45428, 2013.

A. Walsh, D. J. Payne, R. G. Egdell, and G. W. Watson, Stereochemistry of post-transition metal oxides: Revision of the classical lone pair model, Chem. Soc. Rev, vol.40, pp.4455-4463, 2011.

L. J. Brillson, Phys. Rev. Lett, vol.4, pp.260-263, 1978.

L. J. Brillson, Y. Dong, F. Tuomisto, B. G. Svensson, A. Y. Kuznetsov et al., Interplay of native point defects with ZnO Schottky barriers and doping, J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom, vol.30, p.50801, 2012.

L. J. Brillson and Y. Lu, ZnO Schottky barriers and Ohmic contacts, J. Appl. Phys, 2011.

M. W. Allen and S. M. Durbin, Influence of oxygen vacancies on Schottky contacts to ZnO, Appl. Phys. Lett, p.122110, 2008.

M. Favaro, F. F. Abdi, M. Lamers, E. J. Crumlin, Z. Liu et al., Light-Induced Surface Reactions at the Bismuth Vanadate/Potassium Phosphate Interface, J. Phys. Chem. B, vol.122, pp.801-809, 2018.

V. S. Dharmadhikari, S. Sainkar, S. Badrinarayan, and A. Goswami, Characterisation of thin films of bismuth oxide by X-ray photoelectron spectroscopy, J. Electron Spectros. Relat. Phenomena, vol.25, pp.181-189, 1982.

M. Fingerle, S. Tengeler, W. Calvet, T. Mayer, and W. Jaegermann, Water Interaction with Sputter-Deposited Nickel Oxide on n-Si Photoanode: Cryo Photoelectron Spectroscopy on Adsorbed Water in the Frozen Electrolyte Approach, J. Electrochem. Soc, vol.165, pp.3148-3153, 2018.

G. Silversmit, D. Depla, H. Poelman, G. B. Marin, and R. De-gryse, Determination of the V2p XPS binding energies for different vanadium oxidation states (V 5+ to V 0+ ), J. Electron Spectros. Relat. Phenomena, vol.135, pp.167-175, 2004.

I. M. Brookes, C. A. Muryn, and G. Thornton, Imaging Water Dissociation on TiO, vol.2, issue.110

, Phys. Rev. Lett, vol.87, p.266103, 2001.

Y. Baer and H. Myers, An XPS study of the valence bands in solid and liquid bismuth, Solid State Commun, vol.21, pp.833-835, 1977.

P. A. Thiel and T. E. Madey, The interaction of water with solid surfaces: Fundamental aspects, Surf. Sci. Rep, vol.7, pp.211-385, 1987.

M. Motzko, M. A. Carrillo-solano, W. Jaegermann, and R. Hausbrand, Photoemission Study on the Interaction Between LiCoO 2 Thin Films and Adsorbed Water, J. Phys. Chem. C, vol.119, pp.23407-23412, 2015.

M. A. Henderson, The interaction of water with solid surfaces: fundamental aspects revisited, Surf. Sci. Rep, vol.46, pp.1-308, 2002.

U. Berner, K. Schierbaum, G. Jones, P. Wincott, S. Haq et al., Ultrathin ordered CeO 2 overlayers on Pt(111): interaction with NO 2 , NO, H 2 O and CO, Surf. Sci, vol.467, pp.201-213, 2000.

K. Sivula and R. Van-de-krol, Semiconducting materials for photoelectrochemical energy conversion, Nat. Rev. Mater, 2016.

A. Kudo and Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev, vol.38, pp.253-278, 2009.

K. Iwashina and A. Kudo, Rh-Doped SrTiO 3 Photocatalyst Electrode Showing Cathodic Photocurrent for Water Splitting under Visible-Light Irradiation, J. Am. Chem. Soc, vol.133, pp.13272-13275, 2011.

R. Abe, Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation, J. Photochem. Photobiol. C Photochem. Rev, vol.11, pp.179-209, 2010.

A. Kormányos, A. Thomas, M. N. Huda, P. Sarker, J. P. Liu et al., Rajeshwar, K. Solution Combustion Synthesis, Characterization, and Photoelectrochemistry of CuNb 2 O 6 and ZnNb 2 O 6 Nanoparticles, J. Phys. Chem. C, vol.120, pp.16024-16034, 2016.

A. Önsten, M. Månsson, T. Claesson, T. Muro, T. Matsushita et al., Probing the valence band structure of Cu 2 O using highenergy angle-resolved photoelectron spectroscopy, Phys. Rev. B, p.115127, 2007.

J. E. Yourey and B. M. Bartlett, Electrochemical deposition and photoelectrochemistry of CuWO 4 , a promising photoanode for water oxidation, J. Mater. Chem, 2011.

A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, and E. Thimsen, Highly active oxide photocathode for photoelectrochemical water reduction, Nat. Mater, vol.10, pp.456-461, 2011.

L. Huang, F. Peng, H. Yu, and H. Wang, Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion, Solid State Sci, vol.11, pp.129-138, 2009.

C. G. Read, Y. Park, and K. Choi, Electrochemical Synthesis of p-Type CuFeO 2 Electrodes for Use in a Photoelectrochemical Cell, J. Phys. Chem. Lett, vol.3, pp.1872-1876, 2012.

Y. Jin and G. Chumanov, Solution synthesis of pure 2H CuFeO 2 at low temperatures, RSC Adv, vol.6, pp.26392-26397, 2016.

M. S. Prévot, X. A. Jeanbourquin, W. S. Bourée, F. Abdi, D. Friedrich et al., Evaluating Charge Carrier Transport and Surface States in CuFeO 2 Photocathodes, Chem. Mater, vol.29, pp.4952-4962, 2017.

S. Omeiri, B. Bellal, A. Bouguelia, Y. Bessekhouad, and M. Trari, Electrochemical and photoelectrochemical characterization of CuFeO 2 single crystal, J. Solid State Electrochem, vol.13, pp.1395-1401, 2009.

M. S. Prévot, Y. Li, N. Guijarro, and K. Sivula, Improving charge collection with delafossite photocathodes: a host-guest CuAlO 2 /CuFeO 2 approach, J. Mater. Chem. A, vol.4, pp.3018-3026, 2016.

Y. J. Jang, Y. B. Park, H. E. Kim, Y. H. Choi, S. H. Choi et al., Oxygen-Intercalated CuFeO 2 Photocathode Fabricated by Hybrid Microwave Annealing for Efficient Solar Hydrogen Production, Chem. Mater, vol.28, pp.6054-6061, 2016.

M. S. Prévot, N. Guijarro, and K. Sivula, Enhancing the Performance of a Robust Sol-Gel-Processed p-Type Delafossite CuFeO 2 Photocathode for Solar Water Reduction, Chem-SusChem, vol.8, pp.1359-1367, 2015.

B. Panigrahy, M. Aslam, D. S. Misra, and D. Bahadur, Polymer-mediated shape-selective synthesis of ZnO nanostructures using a single-step aqueous approach, CrystEngComm, vol.11, 1920.

H. Wang, C. Wang, X. Cui, L. Qin, R. Ding et al., Design and facile one-step synthesis of FeWO 4 /Fe 2 O 3 di-modified WO 3 with super high photocatalytic activity toward degradation of quasi-phenothiazine dyes, Appl. Catal. B Environ, vol.221, pp.169-178, 2018.

M. Lin, L. Tng, T. Lim, M. Choo, J. Zhang et al., Hydrothermal Synthesis of Octadecahedral Hematite (?-Fe 2 O 3 ) Nanoparticles: An Epitaxial Growth from Goethite (?-FeOOH), J. Phys. Chem. C, vol.118, pp.10903-10910, 2014.

M. Mishra, I. Mukherjee, A. K. Mall, A. Mitra, S. Dash et al., Truncated hexagonal bi-pyramidal gallium ferrite nanocrystals: integration of structural details with visible-light photo-activity and self-cleaning properties, J. Mater. Chem. A, vol.6, pp.13031-13040, 2018.

D. Peng, S. Beysen, Q. Li, Y. Sun, and L. Yang, Hydrothermal synthesis of monodisperse ?-Fe 2 O 3 hexagonal platelets, vol.8, pp.386-389, 2010.

M. C. Biesinger, L. W. Lau, A. R. Gerson, and R. S. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides

, Appl. Surf. Sci, vol.257, pp.887-898, 2010.

T. Yamashita and P. Hayes, Analysis of XPS spectra of Fe 2+ and Fe 3+ ions in oxide materials, Appl. Surf. Sci, vol.254, pp.2441-2449, 2008.

J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data, p.261, 1992.

F. Benko and F. Koffyberg, Opto-electronic properties of p-and n-type delafossite, CuFeO 2, J. Phys. Chem. Solids, vol.48, pp.431-434, 1987.

J. Zhu, F. Fan, R. Chen, H. An, Z. Feng et al., Direct Imaging of Highly Anisotropic Photogenerated Charge Separations on Different Facets of a Single BiVO 4 Photocatalyst

. Angew, Chemie -Int, vol.54, pp.9111-9114, 2015.

R. Li, F. Zhang, D. Wang, J. Yang, M. Li et al., Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO 4, Nat. Commun, 1432.

R. Li, H. Han, F. Zhang, D. Wang, and C. Li, Highly efficient photocatalysts constructed by rational assembly of dual-cocatalysts separately on different facets of BiVO 4, Energy Environ. Sci, vol.7, pp.1369-1376, 2014.

L. Mu, Y. Zhao, A. Li, S. Wang, Z. Wang et al., Enhancing charge separation on high symmetry SrTiO 3 exposed with anisotropic facets for photocatalytic water splitting, Energy Environ. Sci, vol.9, pp.2463-2469, 2016.

X. Liu, G. Dong, S. Li, G. Lu, and Y. Bi, Direct Observation of Charge Separation on Anatase TiO 2 Crystals with Selectively Etched {001} Facets, J. Am. Chem. Soc, vol.138, pp.2917-2920, 2016.

A. J. Rettie, W. D. Chemelewski, D. Emin, and C. B. Mullins, Unravelling Small-Polaron Transport in Metal Oxide Photoelectrodes, J. Phys. Chem. Lett, vol.7, pp.471-479, 2016.

R. D. Shannon, C. T. Prewitt, and D. B. Rogers, Chemistry of noble metal oxides. II. Crystal structures of platinum cobalt dioxide, palladium cobalt dioxide, coppper iron dioxide, and silver iron dioxide, Inorg. Chem, vol.10, pp.719-723, 1971.

K. Wenderich, A. Klaassen, I. Siretanu, F. Mugele, and G. Mul, Sorption-determined deposition of platinum on well-defined platelike platelike WO 3 . Angew. Chemie -Int, vol.53, pp.12476-12479, 2014.

C. C. Mccrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters et al., Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices, J. Am. Chem. Soc, vol.137, pp.4347-4357, 2015.

C. C. Mccrory, S. Jung, J. C. Peters, and T. F. Jaramillo, Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction, J. Am. Chem. Soc, vol.135, pp.16977-16987, 2013.

T. Joshi, T. R. Senty, R. Trappen, J. Zhou, S. Chen et al., Structural and magnetic properties of epitaxial delafossite CuFeO 2 thin films grown by pulsed laser deposition, J. Appl. Phys, p.13908, 2015.

A. Barnabé, E. Mugnier, L. Presmanes, and P. Tailhades, Preparation of delafossite CuFeO 2 thin films by rf-sputtering on conventional glass substrate, Mater. Lett, vol.60, pp.3468-3470, 2006.

H. Abdelwahab, A. Ratep, A. Abo-elsoud, M. Boshta, and M. Osman, Influences of annealing temperature on sprayed CuFeO 2 thin films, Results Phys, vol.9, pp.1112-1115, 2018.

T. Stöcker, J. Exner, M. Schubert, M. Streibl, R. Moos et al., Influence of Oxygen Partial Pressure during Processing on the Thermoelectric Properties of Aerosol-Deposited CuFeO 2 . Materials (Basel), p.227, 2016.

S. Bassaid, M. Chaib, S. Omeiri, A. Bouguelia, and M. Trari, Photocatalytic reduction of cadmium over CuFeO 2 synthesized by sol-gel, J. Photochem. Photobiol. A Chem, vol.201, pp.62-68, 2009.

M. A. Butler, Prediction of Flatband Potentials at Semiconductor-Electrolyte Interfaces from Atomic Electronegativities, J. Electrochem. Soc, vol.125, p.228, 1978.

R. G. Pearson, Absolute electronegativity and hardness: application to inorganic chemistry, Inorg. Chem, vol.27, pp.734-740, 1988.

F. P. Koffyberg and F. A. Benko, A photoelectrochemical determination of the position of the conduction and valence band edges of p-type CuO, J. Appl. Phys, vol.53, pp.1173-1177, 1982.

S. Poulston, P. M. Parlett, P. Stone, and M. Bowker, Surface Oxidation and Reduction of CuO and Cu 2 O Studied Using XPS and XAES, Surf. Interface Anal, vol.24, pp.811-820, 1996.

M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. Lau, A. R. Gerson et al., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni, Appl. Surf. Sci, vol.257, pp.2717-2730, 2011.

C. Lohaus, A. Klein, and W. Jaegermann, Limitation of Fermi level shifts by polaron defect states in hematite photoelectrodes, Nat. Commun, vol.9, p.4309, 2018.

D. C. Harris, Quantitative Chemical Analysis

W. H. Freeman, , p.928, 2015.

A. Walsh, J. L. Da-silva, S. H. Wei, C. Körber, A. Klein et al., Nature of the band gap of In 2 O 3 revealed by first-principles calculations and X-ray spectroscopy, Phys. Rev. Lett, p.167402, 2008.

S. Trasatti, The absolute electrode potential: an explanatory note (Recommendations 1986), Pure Appl. Chem, vol.58, pp.955-966, 1986.

P. A. Thiel and T. E. Madey, The interaction of water with solid surfaces: Fundamental aspects, Surf. Sci. Rep, vol.7, pp.211-385, 1987.

M. Fingerle, S. Tengeler, W. Calvet, T. Mayer, and W. Jaegermann, Water Interaction with Sputter-Deposited Nickel Oxide on n-Si Photoanode: Cryo Photoelectron Spectroscopy on Adsorbed Water in the Frozen Electrolyte Approach, J. Electrochem. Soc, vol.165, pp.3148-3153, 2018.

A. P. Grosvenor, B. A. Kobe, M. C. Biesinger, and N. S. Mcintyre, Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds, Surf. Interface Anal, vol.36, pp.1564-1574, 2004.

, que des hétérostructures anisotropes pouvaient être fabriquées à partir de poudres constituées de particules de BiVO 4 et de CuFeO 2 exposant des faces cristallines bien définies par une méthode de photodéposition utilisant un simulateur solaire comme source de lumière. Tout d'abord, les poudres monocliniques de BiVO 4 et hexagonales de 2H-CuFeO 2 , de morphologie bipyramidale tronquée et nanoplaquette hexagonale, respectivement, ont été préparées par optimisation de voies hydrothermales précédemment décrites (Figure B.1). Ainsi, pour obtenir la morphologie et la dispersité souhaitées de la poudre de BiVO 4 , plusieurs paramètres de réaction ont dû être optimisés, tels que le pH, la quantité de tensioactif, le temps de réaction en autoclave et la vitesse d'agitation en autoclave, Dans le contexte du développement de matériaux efficaces pour la production renouvelable de combustibles solaires, ce travail concerne la synthèse et l'analyse des propriétés aux interfaces de photoabsorbeurs à base d'hétérostructures d'oxydes métalliques pour des applications en craquage photochimique de l'eau

, Nous avons montré que l'argent métallique (Ag) et l'(oxy)(hydr)oxyde de cobalt (CoO x OH y ) pouvaient être déposés sélectivement sur les facettes {010} et {110} de la poudre de BiVO 4 bipyramidale tronquée, respectivement. Le platine métallique (Pt) a également pu être déposé sélectivement sur les facettes {010}, à condition que le pH correct, 2,5 -3,0, soit utilisé pendant la procédure de photodéposition. De plus, la régiosélectivité de la photodéposition de l'(oxy)(hydr)oxyde de nickel, Ensuite, des hétérostructures à base de BiVO 4 ont été préparées par photodéposition, la régiosélectivité du dépôt a été déterminée par microscopie électronique et les espèces déposées ont été analysées par XPS (Figure B.2)

, Pour la photodéposition de ± 10% en poids et de 1% en poids de NiO x OH