S. Babapoor-farrokhran, K. Jee, B. Puchner, S. J. Hassan, X. Xin et al., Angiopoietin-like 4 is a potent angiogenic factor and a novel therapeutic target for patients with proliferative diabetic retinopathy, P Natl Acad Sci, vol.112, pp.3030-3039, 2015.

J. L. Bromberg-white, L. Glazer, R. Downer, K. Furge, E. Boguslawski et al., Identification of VEGF-independent cytokines in proliferative diabetic retinopathy vitreous, Invest Ophthalmol Vis Sci, vol.54, pp.6472-6480, 2013.

M. E. Capozzi, M. J. Giblin, and J. S. Penn, Palmitic Acid Induces Muller Cell Inflammation that is Potentiated by Co-treatment with, Glucose. Sci Rep, vol.8, p.5459, 2018.

M. E. Capozzi, S. S. Hammer, G. W. Mccollum, and J. S. Penn, Epoxygenated Fatty Acids Inhibit Retinal Vascular Inflammation. Sci Rep, vol.6, p.39211, 2016.

W. Chen, D. B. Jump, M. B. Grant, W. J. Esselman, and J. V. Busik, Dyslipidemia, but not hyperglycemia, induces inflammatory adhesion molecules in human retinal vascular endothelial cells, Invest Ophthalmol Vis Sci, vol.44, pp.5016-5022, 2003.

B. A. Coughlin, D. J. Feenstra, and S. Mohr, Muller cells and diabetic retinopathy, Vision Res, vol.139, pp.93-100, 2017.

D. Dalkara, O. Goureau, K. Marazova, and J. A. Sahel, Let There Be Light: Gene and Cell Therapy for Blindness, Hum Gene Ther, vol.27, pp.134-147, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01258538

H. Funatsu, H. Noma, T. Mimura, S. Eguchi, and S. Hori, Association of Vitreous Inflammatory Factors with Diabetic Macular Edema OPHTHA, American Academy of Ophthalmology, pp.73-79, 2009.

C. Gerhardinger, M. B. Costa, M. C. Coulombe, I. Toth, T. Hoehn et al., Expression of acute-phase response proteins in retinal Muller cells in diabetes, Invest Ophthalmol Vis Sci, vol.46, pp.349-357, 2005.

H. Ghasemi, T. Ghazanfari, R. Yaraee, S. Faghihzadeh, and Z. M. Hassan, Roles of IL-8 in ocular inflammations: a review, Ocul Immunol Inflamm, vol.19, pp.401-412, 2011.

K. Jee, M. Rodrigues, F. Kashiwabuchi, B. P. Applewhite, I. Han et al., Expression of the angiogenic mediator, angiopoietin-like 4, in the eyes of patients with proliferative sickle retinopathy, PloS one, vol.12, p.183320, 2017.

;. Jeon, . To, and . Bevacizumab-retina, , pp.1-6, 2014.

A. M. Joussen, V. Poulaki, M. L. Le, K. Koizumi, C. Esser et al., A central role for inflammation in the pathogenesis of diabetic retinopathy, FASEB J, vol.18, pp.1450-1452, 2004.

A. C. Keech, P. Mitchell, P. A. Summanen, J. O'day, T. M. Davis et al., Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial, Lancet, vol.370, pp.1687-1697, 2007.

M. Korani, M. Firoozrai, J. Maleki, F. Ghahramanpour, I. Heidari et al., Fatty acid composition of serum lipids in patients with type 2 diabetes, Clin Lab, vol.58, pp.1283-1291, 2012.

L. L. Kusner, V. P. Sarthy, and S. Mohr, Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase: a role in high glucose-induced apoptosis in retinal Muller cells, Invest Ophthalmol Vis Sci, vol.45, pp.1553-1561, 2004.

T. H. Lee, H. Avraham, S. H. Lee, and S. Avraham, Vascular endothelial growth factor modulates neutrophil transendothelial migration via up-regulation of interleukin-8 in human brain microvascular endothelial cells, J Biol Chem, vol.277, pp.10445-10451, 2002.

A. K. Mcauley, P. G. Sanfilippo, A. W. Hewitt, H. Liang, E. Lamoureux et al., Vitreous biomarkers in diabetic retinopathy: a systematic review and meta-analysis, Journal of diabetes and its complications, vol.28, pp.419-425, 2014.

M. Mizutani, C. Gerhardinger, and M. Lorenzi, Muller cell changes in human diabetic retinopathy, Diabetes, vol.47, pp.445-449, 1998.

I. N. Mohamed, S. S. Hafez, A. Fairaq, A. Ergul, J. D. Imig et al., Thioredoxin-interacting protein is required for endothelial NLRP3 inflammasome activation and cell death in a rat model of high-fat diet, Diabetologia, vol.57, pp.413-423, 2014.

J. I. Patel, J. Tombran-tink, P. G. Hykin, Z. J. Gregor, and I. A. Cree, Vitreous and aqueous concentrations of proangiogenic, antiangiogenic factors and other cytokines in diabetic retinopathy patients with macular edema: Implications for structural differences in macular profiles Experimental eye research, pp.798-806, 2006.

M. G. Petrovic, P. Korosec, M. Kosnik, and M. Hawlina, Vitreous levels of interleukin-8 in patients with proliferative diabetic retinopathy, Am J Ophthalmol, vol.143, pp.175-176, 2007.

S. Reichman, A. Slembrouck, G. Gagliardi, A. Chaffiol, A. Terray et al., Generation of Storable Retinal Organoids and Retinal Pigmented Epithelium from Adherent Human iPS Cells in Xeno-Free and Feeder-Free Conditions, Stem Cells, vol.35, pp.1176-1188, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01480587

A. Rubsam, S. Parikh, and P. E. Fort, Role of Inflammation in Diabetic Retinopathy, Int J Mol Sci, vol.19, 2018.

E. Rungger-brandle, A. A. Dosso, and P. M. Leuenberger, Glial reactivity, an early feature of diabetic retinopathy. Invest Ophth Vis Sci, vol.41, pp.1971-1980, 2000.

K. Schroder and J. Tschopp, The inflammasomes, Cell, vol.140, pp.821-832, 2010.

B. Schweighofer, J. Testori, C. Sturtzel, S. Sattler, H. Mayer et al., The VEGF-induced transcriptional response comprises gene clusters at the crossroad of angiogenesis and inflammation, Thromb Haemost, vol.102, pp.544-554, 2009.

B. D. Semple, T. Kossmann, and M. C. Morganti-kossmann, Role of chemokines in CNS health and pathology: a focus on the CCL2/CCR2 and CXCL8/CXCR2 networks, J Cereb Blood Flow Metab, vol.30, pp.459-473, 2010.

A. Sodhi and S. Montaner, Angiopoietin-like 4 as an Emerging Therapeutic Target for Diabetic Eye Disease, JAMA ophthalmology, vol.133, pp.1375-1376, 2015.

A. D. Wright and P. M. Dodson, Medical management of diabetic retinopathy: fenofibrate and ACCORD Eye studies, Eye (Lond), vol.25, pp.843-849, 2011.

X. Yang, Y. Cheng, and G. Su, A review of the multifunctionality of angiopoietin-like 4 in eye disease, Biosci Rep, p.38, 2018.

E. C. Yego, J. A. Vincent, V. Sarthy, J. V. Busik, and S. Mohr, Differential regulation of high glucose-induced glyceraldehyde-3-phosphate dehydrogenase nuclear accumulation in Muller cells by IL-1beta and IL-6, Invest Ophthalmol Vis Sci, vol.50, pp.1920-1928, 2009.

A. Yoshida, S. Yoshida, A. K. Khalil, T. Ishibashi, and H. Inomata, Role of NF-kappaBmediated interleukin-8 expression in intraocular neovascularization, Invest Ophthalmol Vis Sci, vol.39, pp.1097-1106, 1998.

T. Yoshimura, K. Sonoda, M. Sugahara, Y. Mochizuki, H. Enaida et al., Comprehensive Analysis of Inflammatory Immune Mediators in Vitreoretinal Diseases PLoS ONE, pp.8158-8159, 2009.

H. Y. Zeng, W. R. Green, and M. O. Tso, Microglial activation in human diabetic retinopathy, Arch Ophthalmol, vol.126, pp.227-232, 2008.

C. Zhao, Q. Wang, and S. Temple, Stem cell therapies for retinal diseases: recapitulating development to replace degenerated cells, Development, vol.144, pp.1368-1381, 2017.

T. Zhou, D. Che, Y. Lan, Z. Fang, J. Xie et al., Mesenchymal marker expression is elevated in Muller cells exposed to high glucose and in animal models of diabetic retinopathy, Oncotarget, vol.8, pp.4582-4594, 2017.

R. Barthelmes, D. Sutter, F. K. Gillies, and M. C. , Differential optical densities of intraretinal spaces, Invest Ophthalmol Vis Sci, vol.49, issue.8, pp.3529-3563, 2008.

M. Bolz, U. Schmidt-erfurth, G. Deak, G. Mylonas, K. Kriechbaum et al., Diabetic RetinopathyResearch Group Vienna. Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema, Ophthalmology, vol.116, pp.914-920, 2009.

S. Bonnin, B. Dupas, C. Lavia, A. Erginay, . Dhundass et al., Anti-VEGF therapy can improve diabetic retinopathy score without change in retinal perfusion, Accepted Retina, 2018.

T. Horii, T. Murakami, K. Nishijima, T. Akagi, A. Uji et al., Relationship between fluorescein pooling and optical coherence tomographic reflectivity of cystoid spaces in diabetic macular edema, Ophthalmology, vol.119, issue.5, pp.1047-55, 2012.

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang et al., Split-spectrum amplitude-decorrelation angiography with optical coherence tomography, Opt. Express, vol.2012, issue.4, pp.4710-4725

A. Kashani, C. Chen, and J. Gahm, Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications, Prog Retin Eye Res, vol.60, pp.66-100, 2017.

A. H. Kashani, K. M. Green, J. Kwon, Z. Chu, Q. Zhang et al., Suspended Scattering Particles in Motion: A Novel Feature of OCT Angiography in Exudative Maculopathies, Ophthalmol Retina, 2018.

, , vol.2, pp.694-702, 2017.

C. Lavia, S. Bonnin, M. Maule, A. Erginay, R. Tadayoni et al., Vessel density of superficial, intermediate and deep capillary plexuses in healthy eyes using, Optical Coherence Tomography Angiography. Accepted Retina, 2018.

M. C. Liang, R. A. Vora, J. S. Duker, and E. Reichel, Solid-appearing retinal cysts in diabetic macular edema: a novel optical coherence tomography finding. Retin Cases Brief Rep, vol.7, pp.255-263, 2013.

T. Murakami, K. Suzuma, Y. Dodo, T. Yoshitake, S. Yasukura et al., Decorrelation Signal of Diabetic Hyperreflective Foci on Optical Coherence Tomography Angiography, Sci Rep, vol.8, issue.1, p.8798, 2018.

A. Uji, T. Murakami, K. Nishijima, T. Akagi, T. Horii et al., Association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema, Am J Ophthalmol, vol.153, issue.4, pp.710-717, 2011.

J. Wang, Reflectance-based projection-resolved optical coherence tomography angiography

, Biomed. Opt. Express, vol.8, pp.1536-1548, 2017.

M. Zhang, Projection-resolved optical coherence tomographic angiography, Number of eyes/patients, vol.7, pp.816-828, 2016.

, Mean ± SD (range), years 53.5 ± 11, Age, issue.6, pp.36-71

, Duration of diabetes, Mean ± SD (range), pp.19-33

, Duration of DME, Mean ± SD (range), months, vol.18, pp.3-75

, Lens status : phakic, n (%)

D. R. Non-proliferative, , p.24

, Proliferative DR Inactivated by PRP

, Treatment-naïve DME, n (%)

, Treated DME eyes, issue.70, p.23

, Follow-up time, Mean ± SD (range), months 14.2 ± 9, vol.2, pp.3-31

B. Baseline, ±. Mean, and . Sd, , pp.0-1

B. Final, ±. Mean, and . Sd, CMT, Mean ± SD (range), vol.7

C. Baseline, ±. Mean, and . Sd, , pp.229-748

C. Final, ±. Mean, and . Sd, , vol.327, pp.212-535

, BCVA: Best Visual Corrected Acuity; SD: Standard deviation; DME : diabetic macular edema ; DR: Diabetic Retinopathy; CFT: Central Macular Thickness References Abcouwer SF. Direct effects of PPAR? agonists on retinal inflammation and angiogenesis may explain how fenofibrate lowers risk of severe proliferative diabetic retinopathy, Diabetes, vol.62, issue.1, pp.36-44, 2013.

S. F. Abcouwer and D. A. Antonetti, A role for systemic inflammation in diabetic retinopathy, Invest Ophthalmol Vis Sci, vol.54, issue.3, p.2384, 2013.

S. F. Abcouwer, Angiogenic Factors and Cytokines in Diabetic Retinopathy

, J Clin Cell Immunol, issue.11, 2013.

A. M. Abu-el-asrar, L. Dralands, L. Missotten, I. A. Al-jadaan, and K. Geboes, Expression of apoptosis markers in the retinas of human subjects with diabetes, Invest Ophthalmol Vis Sci, vol.45, issue.8, pp.2760-2766, 2004.

E. Y. Chew, W. T. Ambrosius, M. D. Davis, R. P. Danis, S. Gangaputra et al., Effects of medical therapies on retinopathy progression in type 2 diabetes, N Engl J Med, vol.363, issue.3, p.2458, 2010.

S. Agte, S. Junek, S. Matthias, E. Ulbricht, I. Erdmann et al., Muller glial cell-provided cellular light guidance through the vital guinea-pig retina, Biophysical journal, vol.101, pp.2611-2619, 2011.

L. P. Aiello, The potential role of PKC beta in diabetic retinopathy and macular edema, Surv Ophthalmol, vol.47, issue.2, pp.263-272, 2002.

T. K. Ali, M. M. Al-gayyar, S. Matragoon, B. A. Pillai, M. A. Abdelsaid et al., Diabetes-induced peroxynitrite impairs the balance of pro-nerve growth factor and nerve growth factor, and causes neurovascular injury, Diabetologia, vol.54, issue.3, pp.657-68, 2010.

D. A. Antonetti, A. J. Barber, L. A. Hollinger, E. B. Wolpert, and T. W. Gardner, Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors, J Biol Chem, vol.274, issue.33, pp.23463-23470, 1999.

D. A. Antonetti, A. J. Barber, S. K. Bronson, W. M. Freeman, T. W. Gardner et al.,

, Diabetic retinopathy: seeing beyond glucoseinduced microvascular disease, Diabetes, vol.55, issue.9, pp.2401-2412, 2006.

D. A. Antonetti, R. Klein, T. W. Gardner, J. Diabetic-retinoapthy-n-engl, and . Med, , vol.366, pp.1227-1266, 2012.

R. S. Araújo, D. F. Santos, and G. A. Silva, The role of the retinal pigment epithelium and Müller cells secretome in neovascular retinal pathologies, Biochimie, 2018.

V. Asnaghi, C. Gerhardinger, T. Hoehn, A. Adeboje, and M. Lorenzi, A role for the polyol pathway in the early neuroretinal apoptosis and glial changes induced by diabetes in the rat, Diabetes, vol.52, issue.2, pp.506-517, 2003.

S. Babapoor-farrokhran, K. Jee, B. Puchner, S. J. Hassan, X. Xin et al., Angiopoietin-like 4 is a potent angiogenic factor and a novel therapeutic target for patients with proliferative diabetic retinopathy, Proc Natl Acad Sci, vol.112, issue.23, pp.3030-3039, 2015.

Y. Bai, J. X. Ma, J. Guo, J. Wang, M. Zhu et al., Muller cell-derived VEGF is a significant contributor to retinal neovascularization, The Journal of pathology, vol.219, pp.446-454, 2009.

A. J. Barber, E. Lieth, S. A. Khin, D. A. Antonetti, A. G. Buchanan et al., Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin, J Clin Invest, vol.102, issue.4, pp.783-91, 1998.

P. F. Barcelona, S. G. Ortiz, G. A. Chiabrando, and M. Sanchez, alpha2-Macroglobulin induces glial fibrillary acidic protein expression mediated by low-density lipoprotein receptor-related protein 1 in Muller cells, Investigative ophthalmology & visual science, vol.52, pp.778-786, 2011.

P. F. Barcelona, N. Sitaras, A. Galan, G. Esquiva, S. Jmaeff et al., U. p75NTR and Its Ligand ProNGF Activate Paracrine Mechanisms Etiological to the Vascular, Inflammatory, and Neurodegenerative Pathologies of Diabetic Retinopathy, The Journal of neuroscience, vol.36, pp.8826-8841, 2016.

A. J. Barnes, E. M. Kohner, D. G. Johnston, and K. G. Alberti, Severe retinopathy and mild carbohydrate intolerance: possible role of insulin deficiency and elevated circulating growth hormone, Lancet, vol.1, issue.8444, pp.1465-1473, 1985.

T. C. Barnes, M. E. Anderson, and R. J. Moots, The many faces of interleukin-6: the role of IL-6 in inflammation, vasculopathy, and fibrosis in systemic sclerosis, Int J Rheumatol, 2011.

K. M. Beach, J. Wang, and D. C. Otteson, Regulation of Stem Cell Properties of Muller Glia by JAK/STAT and MAPK Signaling in the Mammalian Retina, Stem cells international, p.1610691, 2017.

M. A. Bearse, Y. Han, M. E. Schneck, S. Barez, C. Jacobsen et al., Local multifocal oscillatory potential abnormalities in diabetes and early diabetic retinopathy, Invest Ophthalmol Vis Sci, vol.45, issue.9, pp.3259-65, 2004.

B. Bengtsson, A. Heijl, and E. Agardh, Visual fields correlate better than visual acuity to severity of diabetic retinopathy, Diabetologia, vol.48, issue.12, pp.2494-500, 2005.

K. R. Biesecker, A. I. Srienc, A. M. Shimoda, A. Agarwal, D. E. Bergles et al., Glial Cell Calcium Signaling Mediates Capillary Regulation of Blood Flow in the Retina, The Journal of neuroscience, vol.36, pp.9435-9445, 2016.

J. M. Bloodworth, Diabetic retinopathy. Diabetes, vol.11, pp.1-22, 1962.

G. Boden, Fatty acid-induced inflammation and insulin resistance inskeletal muscle and liver, Current Diabetes Reports, vol.6, pp.177-181, 2006.

M. Bolz, U. Schmidt-erfurth, G. Deak, G. Mylonas, K. Kriechbaum et al., Diabetic RetinopathyResearch Group Vienna. Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema, Ophthalmology, vol.116, pp.914-920, 2009.

G. H. Bresnick and M. Palta, Oscillatory potential amplitudes. Relation to severity of diabetic retinopathy, Arch Ophthalmol, vol.105, issue.7, pp.929-962, 1987.

A. Bringmann, T. Pannicke, S. Uhlmann, L. Kohen, P. Wiedemann et al., Membrane conductance of Muller glial cells in proliferative diabetic retinopathy, Canadian journal of ophthalmology, vol.37, pp.221-227, 2002.

M. Brownlee and I. B. Hirsch, Glycemic variability: a hemoglobin A1c-independent risk factor for diabetic complications, JAMA, vol.295, issue.14, pp.1707-1715, 2006.

M. Buraczynska, I. Baranowicz-gaszczyk, J. Tarach, and A. Ksiazek, Toll-like receptor 4 gene polymorphism and early onset of diabetic retinopathy in patients with type 2 diabetes, Hum Immunol, vol.70, pp.121-124, 2009.

J. V. Busik, S. Mohr, and M. B. Grant, Hyperglycemia-induced reactive oxygen species toxicity to endothelial cells is dependent on paracrine mediators, Diabetes, vol.57, issue.7, pp.1952-65, 2008.

J. M. Cacicedo, S. Benjachareowong, E. Chou, N. B. Ruderman, and Y. Ido, Palmitate-induced apoptosis in cultured bovine retinal pericytes: roles of NAD(P)H oxidase, oxidant stress, and ceramide, Diabetes, vol.54, issue.6, pp.1838-1883, 2005.

J. M. Cacicedo, S. Benjachareonwong, E. Chou, N. Yagihashi, N. B. Ruderman et al., Activation of AMP-activated protein kinase prevents lipotoxicity in retinal pericytes, Invest Ophthalmol Vis Sci, vol.52, issue.6, pp.3630-3639, 2011.

R. B. Caldwell, M. Bartoli, M. A. Behzadian, A. E. El-remessy, A. et al., Vascular endothelial growth factor and diabetic retinopathy: role of oxidative stress, Curr Drug Targets, vol.6, issue.4, pp.511-535, 2005.

M. E. Capozzi, S. S. Hammer, G. W. Mccollum, and J. S. Penn, Epoxygenated Fatty Acids Inhibit Retinal Vascular Inflammation. Sci Rep, vol.6, p.39211, 2016.

M. E. Capozzi, G. W. Mccollum, D. B. Cousins, and J. S. Penn, Linoleic Acid is a Diabetes-relevant Stimulator of Retinal Inflammation in Human Retinal Muller Cells and Microvascular Endothelial Cells, J Diabetes Metab, vol.7, issue.12, 2016.

M. E. Capozzi, M. J. Giblin, and J. S. Penn, Palmitic Acid Induces Müller Cell Inflammation that is Potentiated by Co-treatment with Glucose, Sci Rep, vol.8, issue.1, p.5459, 2018.

C. Cepko, Intrinsically different retinal progenitor cells produce specific types of progeny, Nat Rev Neurosci, vol.15, issue.9, pp.615-642, 2014.

J. Y. Chan, E. Cole, and A. K. Hanna, Diabetic nephropathy and proliferative retinopathy with normal glucose tolerance. Diabetes Care, vol.8, pp.385-90, 1985.

J. M. Chehade, M. Gladysz, and A. D. Mooradian, Dyslipidemia in type 2 diabetes: prevalence, pathophysiology, and management, Drugs, vol.73, issue.4, pp.327-366, 2013.

C. Chen, H. Chen, C. Xu, Y. Zhong, and X. Shen, Role of interleukin-1beta in hypoxia-induced depression of glutamate uptake in retinal Muller cells. Graefe's archive for clinical and experimental ophthalmology, vol.252, pp.51-58, 2014.

X. Chen, H. Zhou, Y. Gong, S. Wei, and M. Zhang, Early spatiotemporal characterization of microglial activation in the retinas of rats with streptozotocin-induced diabetes, Graefes Arch Clin Exp Ophthalmol, vol.253, issue.4, pp.519-544, 2014.

W. Chen, D. B. Jump, M. B. Grant, W. J. Esselman, and J. V. Busik, Dyslipidemia, but not hyperglycemia, induces inflammatory adhesion molecules in human retinal vascular endothelial cells, Invest Ophthalmol Vis Sci, vol.44, issue.11, pp.5016-5038, 2003.

Q. Chen, L. Tang, G. Xin, S. Li, L. Ma et al., Oxidative stress mediated by lipid metabolism contributes to high glucose-induced senescence in retinal pigment epithelium, Free Radic Biol Med, vol.130, pp.48-58, 2018.

V. Chorváthová and R. Ondreicka, The fatty acid composition of the tissues of streptozotocindiabetic rats, Physiol Bohemoslov, vol.32, issue.5, pp.466-75, 1983.

N. J. Coorey, W. Shen, S. H. Chung, L. Zhu, and M. C. Gillies, The role of glia in retinal vascular disease, Clinical & experimental optometry, vol.95, pp.266-281, 2012.

A. Couturier, E. Bousquet, M. Zhao, M. C. Naud, C. Klein et al., Anti-vascular endothelial growth factor acts on retinal microglia/macrophage activation in a rat model of ocular inflammation, vol.20, pp.908-928, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01332123

A. Couturier, V. Mané, S. Bonnin, A. Erginay, P. Massin et al., DIABETIC RETINOPATHY ON OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY. Retina, vol.35, issue.11, pp.2384-91, 2015.

M. Cusick, E. Y. Chew, C. C. Chan, H. S. Kruth, R. P. Murphy et al., Histopathology and regression of retinal hard exudates in diabetic retinopathy after reduction of elevated serum lipid levels, Ophthalmology, vol.110, issue.11, pp.2126-2159, 2003.

T. Decsi, E. Szabó, I. Burus, T. Marosvölgyi, A. Kozári et al., Low contribution of n-3 polyunsaturated fatty acids to plasma and erythrocyte membrane lipids in diabetic young adults, Prostaglandins Leukot Essent Fatty Acids, vol.76, issue.3, pp.159-64, 2007.

M. C. Deeds, J. M. Anderson, A. S. Armstrong, D. A. Gastineau, H. J. Hiddinga et al., Single dose streptozotocin-induced diabetes: considerations for study design in islet transplantation models, Lab Anim, vol.45, issue.3, pp.131-171, 2011.

X. Ding, M. Zhang, R. Gu, G. Xu, and H. Wu, Activated microglia induce the production of reactive oxygen species and promote apoptosis of co-cultured retinal microvascular pericytes, Graefes Arch Clin Exp Ophthalmol, vol.255, pp.777-788, 2017.

L. Donato, P. Bramanti, C. Scimone, C. Rinaldi, D. Angelo et al., miRNA expression profile of retinal pigment epithelial cells under oxidative stress conditions, FEBS open bio, issue.8, pp.219-233, 2018.

B. Dupas, W. Minvielle, S. Bonnin, A. Couturier, A. Erginay et al., Relationship between vessel density and visual impairment in type 1 diabetes patients with poor glycemic control, JAMA, 2018.

J. R. Falck, L. M. Reddy, Y. K. Reddy, M. Bondlela, U. M. Krishna et al., 12-EET): structural determinants for inhibition of TNF-alphainduced VCAM-1 expression, Bioorg Med Chem Lett, vol.11, issue.11, pp.4011-4015, 2003.

H. R. Freitas, G. Ferraz, G. C. Ferreira, V. T. Ribeiro-resende, L. B. Chiarini et al., Herculano AM & Reis RA Glutathione-Induced Calcium Shifts in Chick Retinal Glial Cells, PloS one, vol.11, p.153677, 2016.

D. Fu, J. Y. Yu, A. R. Connell, S. Yang, M. B. Hookham et al., Beneficial Effects of Berberine on Oxidized LDL-Induced Cytotoxicity to Human Retinal Muller Cells, Investigative ophthalmology & visual science, vol.57, pp.3369-3379, 2016.

M. Fukuda, Y. Nakanishi, M. Fuse, N. Yokoi, Y. Hamada et al., Altered expression of aquaporins 1 and 4 coincides with neurodegenerative events in retinas of spontaneously diabetic Torii rats, Exp Eye Res, vol.90, issue.1, pp.17-25, 2009.

D. Gaucher, J. Chiappore, M. Pâques, M. Simonutti, C. Boitard et al., Microglial changes occur without neural cell death in diabetic retinopathy, Vision Res, vol.47, issue.5, pp.612-635, 2007.

S. K. Gelman, K. B. Freund, V. P. Shah, and D. Sarraf, The pearl necklace sign: a novel spectral domain optical coherence tomography finding in exudative macular disease, Retina, vol.34, pp.2088-2095, 2014.

C. Gerhardinger, M. B. Costa, M. C. Coulombe, I. Toth, T. Hoehn et al., Expression of acutephase response proteins in retinal Müller cells in diabetes, Invest Ophthalmol Vis Sci, vol.46, issue.1, pp.349-57, 2005.

V. C. Greenstein, A. Shapiro, Q. Zaidi, and D. C. Hood, Psychophysical evidence for post-receptoral sensitivity loss in diabetics, Invest Ophthalmol Vis Sci, vol.33, issue.10, pp.2781-90, 1992.

A. Grosche, A. Hauser, M. F. Lepper, R. Mayo, C. Von-toerne et al., The Proteome of Native Adult Müller Glial Cells From Murine Retina, Mol Cell Proteomics, vol.15, issue.2, pp.462-80, 2015.

J. G. Gross, A. R. Glassman, D. Liu, J. K. Sun, A. N. Antoszyk et al., Diabetic Retinopathy Clinical Research Network. Five-Year Outcomes of Panretinal Photocoagulation vs Intravitreous Ranibizumab for Proliferative Diabetic Retinopathy: A Randomized Clinical Trial, JAMA Ophthalmol, vol.136, issue.10, pp.1138-1148, 2018.

A. Hamon, J. E. Roger, X. J. Yang, and M. Perron, Müller glial cell dependent regeneration of the neural retina: an overview across vertebrate model systems, Dev Dyn, vol.245, pp.727-738, 2016.

Y. Han, M. E. Schneck, M. A. Bearse, S. Barez, C. H. Jacobsen et al., Formulation and evaluation of a predictive model to identify the sites of future diabetic retinopathy, Invest Ophthalmol Vis Sci, vol.45, issue.11, pp.4106-4118, 2004.

H. Hang, S. Yuan, Q. Yang, D. Yuan, and Q. Liu, Multiplex bead array assay of plasma cytokines in type 2 diabetes mellitus with diabetic retinopathy, Molecular vision, vol.20, pp.1137-1145, 2014.

T. Harada, C. Harada, S. Kohsaka, E. Wada, K. Yoshida et al., Microglia-Muller glia cell interactions control neurotrophic factor production during lightinduced retinal degeneration, The Journal of neuroscience, vol.22, pp.9228-9236, 2002.

A. D. Harrower and B. F. Clarke, Diabetic retinopathy with normal glucose tolerance, Br J Ophthalmol, vol.60, issue.6, pp.459-63, 1976.

I. B. Hirsch and M. Brownlee, Beyond hemoglobin A1c--need for additional markers of risk for diabetic microvascular complications, JAMA, vol.303, issue.22, pp.2291-2293, 2009.

J. B. Hurley, K. Lindsay, J. Du, and . Glucose, lactate, and shuttling of metabolites in vertebrate retinas, Journal of neuroscience research, vol.93, pp.1079-1092, 2015.

A. S. Ibrahim, A. M. Tawfik, K. A. Hussein, S. Elshafey, S. Markand et al., Pigment epithelium-derived factor inhibits retinal microvascular dysfunction induced by 12/15-lipoxygenase-derived eicosanoids, Biochim Biophys Acta, issue.3, pp.290-298, 1851.

S. M. Jacobo and A. Kazlauskas, Insulin-like growth factor 1 (IGF-1) stabilizes nascent blood vessels, The Journal of biological chemistry, vol.290, pp.6349-6360, 2015.

A. M. Joussen, V. Poulaki, M. L. Le, K. Koizumi, C. Esser et al., A central role for inflammation in the pathogenesis of diabetic retinopathy, FASEB J Off Publ Fed Am Soc Exp Biol, vol.18, issue.12, pp.1450-1452, 2004.

R. P. Kandpal, H. K. Rajasimha, M. J. Brooks, J. Nellissery, J. Wan et al., Transcriptome analysis using next generation sequencing reveals molecular signatures of diabeticretinopathy and efficacy of candidate drugs, Mol Vis, vol.18, pp.1123-1169, 2012.

M. Karakurum, R. Shreeniwas, J. Chen, D. Pinsky, S. D. Yan et al., Hypoxic induction of interleukin-8 gene expression in endothelial cells, J Clin Invest, vol.93, pp.1564-1570, 1994.

A. C. Keech, P. Mitchell, P. A. Summanen, J. O'day, T. M. Davis et al., FIELD study investigators. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial, Lancet, vol.370, issue.9600, pp.1687-97, 2007.

E. Kermorvant-duchemin, A. C. Pinel, S. Lavalette, D. Lenne, R. W. Calippe et al., Neonatal hyperglycemia inhibits angiogenesis and induces inflammation and neuronal degeneration in the retina, PLoS One, vol.8, issue.11, p.79545, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02301188

R. Klein, M. D. Knudtson, K. E. Lee, R. Gangnon, and B. E. Klein, The Wisconsin Epidemiologic Study of Diabetic Retinopathy: XXII the twenty-five-year progression of retinopathy in persons with type 1 diabetes, Ophthalmology, vol.115, issue.11, pp.1859-68, 2008.

E. S. Kilpatrick, Arguments for and against the role of glucose variability in the development of diabetes complications, J Diabetes Sci Technol, vol.3, issue.4, pp.649-55, 2009.

M. Korani, M. Firoozrai, J. Maleki, F. Ghahramanpour, I. Heidari et al., Fatty acid composition of serum lipids in patients with type 2 diabetes, Clin Lab, vol.58, pp.1283-91, 2012.

J. Kur and E. A. Newman, Purinergic control of vascular tone in the retina, The Journal of physiology, vol.592, pp.491-504, 2014.

A. Othman, S. Ahmad, S. Megyerdi, R. Mussell, K. Choksi et al., 12/15-Lipoxygenase-derived lipid metabolites induce retinal endothelial cell barrier dysfunction: contribution of NADPH oxidase, PLoS One, vol.8, issue.2, p.57254, 2013.

L. A. Owen and M. E. Hartnett, Soluble mediators of diabetic macular edema: the diagnostic role of aqueous VEGF and cytokine levels in diabetic macular edema, Curr Diab Rep, vol.13, issue.4, pp.476-80, 2013.

J. M. Lachin, I. Bebu, R. M. Bergenstal, R. Pop-busui, F. J. Service et al.,

. Dcct/edic-research and . Group, Association of Glycemic Variability in Type 1 Diabetes With Progression of Microvascular Outcomes in the Diabetes Control and Complications Trial. Diabetes Care, vol.40, pp.777-783, 2017.

C. J. Layton, S. Becker, and N. N. Osborne, The effect of insulin and glucose levels on retinal glial cell activation and pigment epithelium-derived fibroblast growth factor-2. Molecular vision, vol.12, pp.43-54, 2006.

C. W. Lardenoye, K. Probst, P. J. Delint, and A. Rothova, Photoreceptor function in eyes with macular edema, Invest Ophthalmol Vis Sci, vol.41, issue.12, pp.4048-53, 2000.

F. Lebrun-julien, M. J. Bertrand, O. De-backer, D. Stellwagen, C. R. Morales et al., ProNGF induces TNFalpha-dependent death of retinal ganglion cells through a p75NTR non-cell-autonomous signaling pathway, Proceedings of the National Academy of Sciences of the United States of America, vol.107, pp.3817-3822, 2010.

A. Lecleire-collet, L. H. Tessier, P. Massin, V. Forster, G. Brasseur et al., Advanced glycation end products can induce glial reaction and neuronal degeneration in retinal explants, The British journal of ophthalmology, vol.89, pp.1631-1633, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00143121

M. Lecomte, C. Paget, D. Ruggiero, N. Wiernsperger, and M. Lagarde, Docosahexaenoic acid is a major n-3 polyinsaturated fatty acid in bovine retinal microvessels, J Neurochem, vol.66, pp.2160-2167, 1996.

Q. Li and D. G. Puro, Diabetes-induced dysfunction of the glutamate transporter in retinal Müller cells, Invest Ophthalmol Vis Sci, vol.43, issue.9, pp.3109-3125, 2002.

E. Lieth, A. J. Barber, B. Xu, C. Dice, M. J. Ratz et al., Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group, Diabetes, vol.47, issue.5, pp.815-835, 1998.

E. Lieth, T. W. Gardner, A. J. Barber, D. A. Antonetti, . .;-penn-state-retina et al., Retinal neurodegeneration: Early pathology in diabetes, Clin. Exp. Ophthalmol, vol.28, pp.3-8, 2000.

K. J. Lindsay, J. Du, S. R. Sloat, L. Contreras, J. D. Linton et al., Pyruvate kinase and aspartate-glutamate carrier distributions reveal key metabolic links between neurons and glia in retina, Proceedings of the National Academy of Sciences of the United States of America, vol.111, pp.15579-15584, 2014.

X. Liu, F. Ye, H. Xiong, D. Hu, G. A. Limb et al., IL-1beta Upregulates IL-8 Production in Human Muller Cells Through Activation of the p38 MAPK and ERK1/2 Signaling Pathways, Inflammation, vol.37, pp.1486-1495, 2014.

Y. Liu, M. Biarnes-costa, and C. Gerhardinger, IL-1beta is upregulated in the diabetic retina and retinal vessels: cell-specific effect of high glucose and IL-1beta autostimulation, PloS one, vol.7, p.36949, 2012.

V. E. Lorenc, J. R. Jaldin-fincati, J. D. Luna, G. A. Chiabrando, and M. C. Sanchez, IGF-1 Regulates the Extracellular Level of Active MMP-2 and Promotes Muller Glial Cell Motility, Investigative ophthalmology & visual science, vol.56, pp.6948-6960, 2015.

M. Lu, M. Kuroki, S. Amano, M. Tolentino, K. Keough et al., Advanced glycation end products increase retinal vascular endothelial growth factor expression, J Clin Invest, vol.101, issue.6, pp.1219-1243, 1998.

Z. Lu, Y. Li, J. H. Ru, M. F. Lopes-virella, T. J. Lyons et al., Interaction of palmitate and LPS regulates cytokine expression and apoptosis through sphingolipids in human retinal microvascular endothelial cells, Exp Eye Res, vol.178, pp.61-71, 2018.

R. B. Macdonald, M. Charlton-perkins, and W. A. Harris, Mechanisms of Müller glial cell morphogenesis, Curr Opin Neurobiol, vol.47, pp.31-37, 2017.

V. Mané, B. Dupas, A. Gaudric, S. Bonnin, A. Pedinielli et al., Correlation between Cystoid Spaces in Chronic Diabetic Macular Edema and Capillary Non-perfusion Detected by Optical Coherence Tomography Angiography, Retina, vol.36, issue.1, pp.102-110, 2016.

P. M. Martin, P. Roon, T. K. Van-ells, V. Ganapathy, and S. B. Smith, Death of retinal neurons in streptozotocin-induced diabetic mice, Invest Ophthalmol Vis Sci, vol.45, issue.9, pp.3330-3336, 2004.

A. K. Mcauley, P. G. Sanfilippo, A. W. Hewitt, H. Liang, E. Lamoureux et al., Vitreous biomarkers in diabetic retinopathy: a systematic review and meta-analysis, J Diabetes Complications, vol.28, issue.3, pp.419-444, 2014.

K. Miyamoto, S. Khosrof, S. E. Bursell, R. Rohan, T. Murata et al., Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition, Proc Natl Acad Sci, vol.96, pp.10836-10877, 1999.

L. Monnier and C. Colette, Glycemic variability: should we and can we prevent it? Diabetes Care, vol.31, 2008.

M. Morohoshi, K. Fujisawa, I. Uchimura, and F. Numano, Glucose-dependent interleukin 6 and tumor necrosis factor production by human peripheral blood monocytes in vitro, Diabetes, vol.45, pp.954-959, 1996.

T. Murakami, K. Suzuma, Y. Dodo, T. Yoshitake, S. Yasukura et al., Decorrelation Signal of Diabetic Hyperreflective Foci on Optical Coherence Tomography Angiography, Sci Rep, vol.8, issue.1, p.8798, 2018.

P. Murugeswari, D. Shukla, A. Rajendran, R. Kim, P. Namperumalsamy et al., Proinflammatory cytokines and angiogenic and anti-angiogenic factors in vitreous of patients with proliferative diabetic retinopathy and eales' disease, Retina, vol.28, pp.817-824, 2008.

S. Miyahara, J. Kiryu, K. Yamashiro, K. Miyamoto, F. Hirose et al., Simvastatin inhibits leukocyte accumulation and vascular permeability in the retinas of rats with streptozotocin-induced diabetes, Am J Pathol, vol.164, issue.5, pp.1697-706, 2004.

N. Naveh-floman, C. Weissman, and M. Belkin, Arachidonic acid metabolism by retinas of rats with streptozotocin-induced diabetes, Curr Eye Res, vol.3, issue.9, pp.1135-1144, 1984.

E. A. Newman, D. A. Frambach, and L. L. Odette, Control of extracellular potassium levels by retinal glial cell K+ siphoning, Science, vol.225, issue.4667, pp.1174-1179, 1984.

X. Ning, Q. Baoyu, L. Yuzhen, S. Shuli, E. Reed et al., Neuro-optic cell apoptosis and microangiopathy in KKAY mouse retina, Int J Mol Med, vol.13, issue.1, pp.87-92, 2004.

S. Nunes, L. Ribeiro, C. Lobo, and J. Cunha-vaz, Three different phenotypes of mild nonproliferative diabetic retinopathy with different risks for development of clinically significant macular edema, Invest Ophthalmol Vis Sci, vol.54, issue.7, pp.4595-604, 2013.

M. S. Ola, Effect of hyperglycemia on insulin receptor signaling in the cultured retinal Muller glial cells, Biochemical and biophysical research communications, vol.444, pp.264-269, 2014.

S. Omri, F. Behar-cohen, Y. De-kozak, F. Sennlaub, L. M. Verissimo et al.,

, Microglia/macrophages migrate through retinal epithelium barrier by a transcellular route in diabetic retinopathy: role of PKC? in the Goto Kakizaki rat model, Am J Pathol, vol.179, issue.2, pp.942-53, 2011.

V. Parisi and L. Uccioli, Visual electrophysiological responses in persons with type 1 diabetes, Diabetes Metab Res Rev, vol.17, issue.1, pp.12-20, 2001.

S. H. Park, J. W. Park, S. J. Park, K. Y. Kim, J. W. Chung et al., Apoptotic death of photoreceptors in the streptozotocin-induced diabetic rat retina

, Diabetologia, vol.46, issue.9, pp.1260-1268, 2003.

M. G. Petrovic, P. Korosec, M. Kosnik, and M. Hawlina, Vitreous levels of interleukin-8 in patients with proliferative diabetic retinopathy, Am J Ophthalmol, vol.143, pp.175-176, 2007.

C. J. Pournaras, E. Rungger-brändle, C. E. Riva, S. H. Hardarson, and E. Stefansson, Regulation of retinal blood flow in health and disease, Prog Retin Eye Res, vol.27, issue.3, pp.284-330, 2008.

A. W. Qiu, Z. Bian, P. A. Mao, and Q. Liu, IL-17A exacerbates diabetic retinopathy by impairing Muller cell function via Act1 signaling, Experimental & molecular medicine, vol.48, p.280, 2016.

J. C. Ralston, A. H. Metherel, K. D. Stark, and D. M. Mutch, SCD1 mediates the influence of exogenous saturated and monounsaturated fatty acids in adipocytes: Effects on cellular stress, inflammatory markers and fatty acid elongation, J Nutr Biochem, vol.27, pp.241-249, 2015.

S. Rangasamy, P. G. Mcguire, C. Franco-nitta, F. Monickaraj, S. R. Oruganti et al., Chemokine mediated monocyte trafficking into the retina: role of inflammation in alteration of the bloodretinal barrier in diabetic retinopathy, PLoS One, vol.9, issue.10, p.108508, 2014.

A. Reichenbach, C. Frömter, R. Engelmann, H. Wolburg, M. Kasper et al., Müller glial cells of the tree shrew retina, J Comp Neurol, vol.360, issue.2, pp.257-70, 1995.

A. Reichenbach and A. Bringmann, Role of Purines in Muller Glia, Journal of ocular pharmacology and therapeutics, vol.32, pp.518-533, 2016.

L. I. Reyes-aguirre and M. Lamas, Oct4 Methylation-Mediated Silencing As an Epigenetic Barrier Preventing Muller Glia Dedifferentiation in a Murine Model of Retinal Injury, Frontiers in neuroscience, vol.10, p.523, 2016.

M. E. Ridano, P. V. Subirada, M. C. Paz, V. E. Lorenc, J. C. Stupirski et al., Galectin-1 expression imprints a neurovascular phenotype in proliferative retinopathies and delineates responses to anti-VEGF, Oncotarget, vol.8, pp.32505-32522, 2017.

J. Ruberte, E. Ayuso, M. Navarro, A. Carretero, V. Nacher et al.,

, in transgenic mice lead to diabetes-like eye disease, The Journal of clinical investigation, vol.113, pp.1149-1157, 2004.

A. Rübsam, S. Parikh, and P. E. Fort, Role of Inflammation in Diabetic Retinopathy, Int J Mol Sci, vol.19, issue.4, p.942, 2018.

E. Rungger-brändle, A. A. Dosso, and P. M. Leuenberger, Glial reactivity, an early feature of diabetic retinopathy, Invest Ophthalmol Vis Sci, vol.41, issue.7, pp.1971-80, 2000.

H. Sakai, Y. Tani, E. Shirasawa, Y. Shirao, and K. Kawasaki, Development of electroretinographic alterations in streptozotocin-induced diabetes in rats, Ophthalmic Res, vol.27, issue.1, pp.57-63, 1995.

M. C. Sanchez, J. D. Luna, P. F. Barcelona, A. L. Gramajo, P. C. Juarez et al., Effect of retinal laser photocoagulation on the activity of metalloproteinases and the alpha(2)-macroglobulin proteolytic state in the vitreous of eyes with proliferative diabetic retinopathy, Experimental eye research, vol.85, pp.644-650, 2007.

M. Sasaki, R. Kawasaki, S. Rogers, R. E. Man, K. Itakura et al., The Associations of Dietary Intake of Polyunsaturated Fatty Acids With Diabetic Retinopathy in Well-Controlled Diabetes, Invest Ophthalmol Vis Sci, vol.56, issue.12, pp.7473-7482, 2015.

M. L. Schwartzman, P. Iserovich, K. Gotlinger, L. Bellner, M. W. Dunn et al., Profile of lipid and protein autacoids in diabetic vitreous correlates with the progression of diabetic retinopathy, Diabetes, vol.59, issue.7, pp.1780-1788, 2010.

W. Shen, S. Li, S. H. Chung, and M. C. Gillies, Retinal vascular changes after glial disruption in rats, J Neurosci Res, vol.88, issue.7, pp.1485-99, 2010.

M. V. Simon, F. H. Prado-spalm, L. E. Politi, and N. P. Rotstein, Sphingosine-1-Phosphate Is a Crucial Signal for Migration of Retina Muller Glial Cells, Investigative ophthalmology & visual science, vol.56, pp.5808-5815, 2015.

K. Singh, S. Kant, V. K. Singh, N. K. Agrawal, S. K. Gupta et al., Toll-like receptor 4 polymorphisms and their haplotypes modulate the risk of developing diabetic retinopathy in type 2 diabetes patients, Mol Vis, vol.20, pp.704-713, 2014.

A. W. Stitt, The role of advanced glycation in the pathogenesis of diabetic retinopathy, Exp Mol Pathol, vol.75, issue.1, pp.95-108, 2003.

P. V. Subirada, M. C. Paz, M. E. Ridano, V. E. Lorenc, M. V. Vaglienti et al., A journey into the retina: Müller glia commanding survival and death, Eur J Neurosci, vol.47, issue.12, pp.1429-1443, 2018.

M. Takeuchi, T. Sato, A. Tanaka, T. Muraoka, M. Taguchi et al., Elevated Levels of Cytokines Associated with Th2 and Th17 Cells in Vitreous Fluid of Proliferative Diabetic Retinopathy Patients, PloS one, vol.10, 2015.

S. Thanos, J. Mey, and M. Wild, Treatment of the adult retina with microglia-suppressing factors retards axotomy-induced neuronal degradation and enhances axonal regeneration in vivo and in vitro, J Neurosci, vol.13, issue.2, pp.455-66, 1993.

M. Tikhonenko, T. A. Lydic, Y. Wang, W. Chen, M. Opreanu et al., Remodeling of retinal Fatty acids in an animal model of diabetes: a decrease in long-chain polyunsaturated fatty acids is associated with a decrease in fatty acid elongases Elovl2 and Elovl4, Diabetes, vol.59, issue.1, pp.219-246, 2009.

C. Treins, S. Giorgetti-peraldi, J. Murdaca, M. N. Monthouel-kartmann, and E. Van-obberghen, Regulation of hypoxia-inducible factor (HIF)-1 activity and expression of HIF hydroxylases in response to insulin-like growth factor I, Molecular endocrinology, vol.19, pp.1304-1317, 2005.

A. K. Toft-kehler, D. M. Skytt, and M. Kolko, A Perspective on the Müller Cell-Neuron Metabolic Partnership in the Inner Retina, Mol Neurobiol, vol.55, issue.6, pp.5353-5361, 2017.

M. J. Tolentino, J. W. Miller, E. S. Gragoudas, F. A. Jakobiec, E. Flynn et al., Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate, Ophthalmology, vol.103, issue.11, p.1820, 1996.

M. J. Tolentino, D. S. Mcleod, M. Taomoto, T. Otsuji, A. P. Adamis et al., Pathologic features of vascular endothelial growth factor-induced retinopathy in the nonhuman primate, Am J Ophthalmol, vol.133, issue.3, pp.373-85, 2002.

D. Toussaint, D. G. Cogan, and T. Kuwabara, Extravascular lesions of diabetic retinopathy, Arch Ophthalmol, vol.67, pp.42-49, 1962.

M. O. Tso, Pathology of cystoid macular edema, Ophthalmology, vol.89, issue.8, pp.902-917, 1982.

J. D. Unterlauft, T. Claudepierre, M. Schmidt, K. Müller, Y. Yafai et al., Enhanced survival of retinal ganglion cells is mediated by Müller glial cellderived PEDF, Exp Eye Res, vol.127, pp.206-220, 2014.

I. A. Van-den-oever, H. G. Raterman, M. T. Nurmohamed, and S. Simsek, Endothelial dysfunction, inflammation, and apoptosis in diabetes mellitus, Mediators Inflamm, p.792393, 2010.

E. Vecino, F. D. Rodriguez, N. Ruzafa, X. Pereiro, and S. C. Sharma, Glia-neuron interactions in the mammalian retina, Prog Retin Eye Res, vol.51, pp.1-40, 2015.

P. Villacampa, A. Ribera, S. Motas, L. Ramirez, M. Garcia et al., Insulin-like growth factor I (IGF-I)-induced chronic gliosis and retinal stress lead to neurodegeneration in a mouse model of retinopathy, The Journal of biological chemistry, vol.288, pp.17631-17642, 2013.

J. A. Vincent and S. Mohr, Inhibition of caspase-1/interleukin-1beta signaling prevents degeneration of retinal capillaries in diabetes and galactosemia. Diabetes, vol.56, pp.224-254, 2007.

S. Vogler, T. Pannicke, M. Hollborn, M. Kolibabka, P. Wiedemann et al., Impaired Purinergic Regulation of the Glial (Muller) Cell Volume in the Retina of Transgenic Rats Expressing Defective Polycystin-2, Neurochemical research, vol.41, pp.1784-1796, 2016.

S. Vujosevic, S. Bini, and T. Torresin, Hyperreflective retinal spots in normal and diabetic eyes: B-scan and en face spectral domain optical coherence tomography evaluation, Retina, vol.37, pp.1092-1103, 2017.

J. Wan and D. Goldman, Retina regeneration in zebrafish, Curr Opin Genet Dev, vol.40, pp.41-47, 2016.

J. Wang, X. Xu, M. H. Elliott, M. Zhu, and Y. Z. Le, Muller cell-derived VEGF is essential for diabetes-induced retinal inflammation and vascular leakage, Diabetes, vol.59, pp.2297-2305, 2010.

J. R. Wolter, R. I. Goldsmith, and R. L. Phillips, Histopathology of the star figure of the macular area in diabetic and angiospastic retinopathy, AMA Arch Ophthalmol, vol.57, issue.3, pp.376-85, 1957.

J. D. Wolter and . Retinopathy, Am J Ophthalmol, vol.51, pp.1123-1164, 1961.

J. R. Wolter, Cystoid macular edema in vitreo-retinal traction, Ophthalmic Surg, vol.12, issue.12, pp.900-904, 1981.

L. Xu, G. Xun, Z. Yao, Y. Liu, Y. Qiu et al., Effects of generated trans-arachidonic acids on retinal capillary during nitrative stress in diabetic rats, Ophthalmologica, vol.222, issue.1, pp.37-41, 2007.

Y. Xu, Z. Jiang, J. Huang, Q. Meng, P. Coh et al., The association between toll-like receptor 4 polymorphisms and diabetic retinopathy in Chinese patients with type 2 diabetes, Br J Ophthalmol, vol.99, pp.1301-1305, 2015.

Y. Xue, S. Q. Shen, J. Jui, A. C. Rupp, L. C. Byrne et al., CRALBP supports the mammalian retinal visual cycle and cone vision, The Journal of clinical investigation, vol.125, pp.727-738, 2015.

Y. Yafai, W. Eichler, I. Iandiev, J. D. Unterlauft, C. Jochmann et al., Thrombospondin-1 is produced by retinal glial cells and inhibits the growth of vascular endothelial cells, Ophthalmic research, vol.52, pp.81-88, 2014.

S. Yamagishi, T. Okamoto, S. Amano, Y. Inagaki, K. Koga et al., Palmitate-induced apoptosis of microvascular endothelial cells and pericytes, Mol Med, vol.8, issue.4, pp.179-84, 2002.

M. Yamaguchi, S. Nakao, Y. Kaizu, Y. Kobayashi, T. Nakama et al., High-Resolution Imaging by Adaptive Optics Scanning Laser Ophthalmoscopy Reveals Two Morphologically Distinct Types of Retinal Hard Exudates. Sci Rep, vol.6, p.35127, 2016.

E. Yego, J. A. Vincent, V. Sarthy, J. V. Busik, and S. Mohr, Differential regulation of high glucoseinduced glyceraldehyde-3-phosphate dehydrogenase nuclear accumulation in Müller cells by IL-1beta and IL-6, Invest Ophthalmol Vis Sci, vol.50, issue.4, pp.1920-1928, 2009.

P. H. Yong, H. Zong, R. J. Medina, G. A. Limb, K. Uchida et al., Evidence supporting a role for N-(3-formyl-3,4-dehydropiperidino)lysine accumulation in Müller glia dysfunction and death in diabetic retinopathy, Mol Vis, vol.16, pp.2524-2562, 2010.

A. Yoshida, S. Yoshida, A. K. Khalil, T. Ishibashi, and H. Inomata, Role of NF-kappaB-mediated interleukin-8 expression in intraocular neovascularisation, Invest Ophthalmol Vis Sci, vol.39, pp.1097-1106, 1998.

Y. Yoshida, S. Yamagishi, T. Matsui, Y. Jinnouchi, K. Fukami et al., Protective role of pigment epithelium-derived factor (PEDF) in early phase of experimental diabetic retinopathy, Diabetes Metab Res Rev, vol.25, issue.7, pp.678-86, 2009.

T. Yuuki, T. Kanda, Y. Kimura, N. Kotajima, J. Tamura et al., Inflammatory cytokines in vitreous fluid and serum of patients with diabetic vitreoretinopathy, J Diabetes Complications, vol.15, pp.257-259, 2001.

X. X. Zeng, Y. K. Ng, and E. A. Ling, Neuronal and microglial response in the retina of streptozotocininduced diabetic rats, Vis Neurosci, vol.17, issue.3, pp.463-71, 2000.

H. Y. Zhang, J. Y. Wang, and H. P. Yao, Epigallocatechin-3-gallate attenuates lipopolysaccharide-induced inflammation in human retinal endothelial cells, Int J Ophthalmol, vol.7, pp.408-412, 2014.

T. Zhou, D. Che, Y. Lan, Z. Fang, J. Xie et al., Mesenchymal marker expression is elevated in Muller cells exposed to high glucose and in animal models of diabetic retinopathy, Oncotarget, vol.8, pp.4582-4594, 2017.

X. Zhu, Y. Sun, Z. Wang, W. Cui, Y. Peng et al., Expression of glial cell line-derived neurotrophic factor and its receptors in cultured retinal Müller cells under high glucose circumstance. Anat Rec (Hoboken), vol.295, pp.532-541, 2012.

H. Zong, M. Ward, A. Madden, P. H. Yong, G. A. Limb et al., Hyperglycaemiainduced pro-inflammatory responses by retinal Muller glia are regulated by the receptor for advanced glycation end-products (RAGE), Diabetologia, vol.53, issue.12, pp.2656-66, 2010.