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Abstract

The evolution of metropolitan structures and the development of urban systems have created various
kinds of urban networks, among which two types of networks are of great importance for our daily
life, the transportation networks corresponding to human mobility in the physical space, and the
communication networks supporting human interactions in the digital space. The rapid expansion
in the scope and scale of these two networks raises a series of fundamental research questions on
how to optimize these networks for their users. Some of the major objectives include demand
responsiveness, anomaly awareness, cost effectiveness, energy efficiency, and service quality.

Despite the distinct design intentions and implementation technologies, both the transportation
and communication networks share common fundamental structures, and exhibit similar spatio-
temporal dynamics. Correspondingly, there exists an array of key challenges that are common in the
optimization in both networks, including network profiling, mobility prediction, traffic clustering,
and resource allocation. To achieve the optimization objectives and address the research challenges,
various analytical models, optimization algorithms, and simulation systems have been proposed and
extensively studied across multiple disciplines. Generally, these simulation-based models are not
evaluated in real-world networks, which may lead to sub-optimal results in deployment.

With the emergence of ubiquitous sensing, communication and computing diagrams, a massive
number of urban network data can be collected. Recent advances in big data analytics techniques
have provided researchers great potentials to understand these data. Motivated by this trend, we
aim to explore a new big data-driven network optimization paradigm, in which we address the
above-mentioned research challenges by applying state-of-the-art data analytics methods to achieve
network optimization goals. Following this research direction, in this dissertation, we propose two
data-driven algorithms for network traffic clustering and user mobility prediction, and apply these
algorithms to real-world optimization tasks in the transportation and communication networks.

First, by analyzing large-scale traffic datasets from both networks, we propose a graph-based
traffic clustering algorithm to better understand the traffic similarities and variations across different
area and time. Upon this basis, we apply the traffic clustering algorithm to the following two
network optimization applications.

• Dynamic traffic clustering for demand-responsive bikeshare networks. In this applica-
tion, we dynamically cluster bike stations with similar usage patterns to obtain stable and
predictable cluster-wise bike traffic demands, so as to foresee over-demand stations in the
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network and enable demand-responsive bike scheduling. Evaluation results using real-world
data from New York City and Washington, D.C. show that our framework accurately foresees
over-demand clusters (e.g. with 0.882 precision and 0.938 recall in NYC), and outperforms
other baseline methods significantly.

• Complementary traffic clustering for cost-effective C-RAN. In this application, we cluster
RRHs with complementary traffic patterns (e.g., an RRH in residential area and an RRH in
business district) to reuse the total capacity of the BBUs, so as to reduce the overall deploy-
ment cost. We evaluate our framework with real-world network data collected from the city
of Milan, Italy and the province of Trentino, Italy. Results show that our method effectively
reduces the overall deployment cost to 48.4% and 51.7% of the traditional RAN architecture
in the two datasets, respectively, and consistently outperforms other baseline methods.

Second, by analyzing large-scale user mobility datasets from both networks, we propose a
spatio-temporal mobility prediction algorithm to better model the mobility patterns and fluctuations
across different area and time. Based upon this, we apply the mobility prediction algorithm to the
following two network optimization applications.

• Spatio-temporal mobility prediction for anomaly-aware road networks. In this appli-
cation, we model the spatial correlations and temporal dependencies of of vehicle GPS tra-
jectories in a unified spatio-temporal mobility model, and predict abnormal mobility events
which may correspond to abnormal road conditions. Experiments with real-world data col-
lected from Xiamen City show that our approach accurately predicts and identifies the road
obstacles during the 2016 typhoon season with precision and recall both above 90%, and
outperforms other baselines.

• Deep mobility prediction for energy-efficient and quality-aware C-RAN. In this appli-
cation, we propose a deep-learning model to capture the spatio-temporal dynamics of user
mobility in C-RAN, and accurately predict their movement patterns in next hour, so as to
enable RRH cooperation to improve handover performance and increase BBU utilization.
Real-world evaluations are conducted on two large-scale mobile network datasets collected
from Ivory Coast and Senegal. Results show that our framework effectively increases the
BBU utilization rate to more than 75.0% and achieve an RRH internal handover rate above
76.7%, which consistently outperforms the traditional RANs and other baseline methods.

Finally, we summarize the insights learned from the big data-driven network optimization
paradigms, and discusses the future research directions from various perspectives, including po-
tential optimization goals, other challenges and issues, new data analytics methods, and real-world
deployment.

Key Words

transportation networks, communication networks, network optimization, big data analytics, graph-
based traffic clustering, spatio-temporal mobility prediction, deep-learning, bikeshare networks,
road networks, C-RAN, RRH-BBU mapping, urban computing, ubiquitous computing, cyber-
physical systems
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Résumé

Optimisation à base de l’analyse de données dans les réseaux de transport et des réseaux de
communications

L’évolution des structures métropolitaines ont créé divers types de réseaux urbains. Parmi les-
quels deux types de réseaux sont d’une grande importance pour notre vie quotidienne : les réseaux
de transport correspondant à la mobilité humaine dans l’espace physique et les réseaux de commu-
nications soutenant les interactions humaines dans l’espace numérique. L’expansion rapide dans
la portée et l’échelle de ces deux réseaux soulève des questions de recherche fondamentales sur la
manière d’optimiser ces réseaux. Certains des objectifs principaux comprennent le provisioning de
ressources à la demande, la détection des anomalies, l’efficacité énergétique et la qualité de service.

Malgré les différences dans la conception et les technologies de mise en œuvre, les réseaux
de transport et les réseaux de communications partagent des structures fondamentales communes,
et présentent des caractéristiques spatio-temporelles dynamiques similaires. En conséquence, ils
existent les défis communs dans l’optimisation de ces deux réseaux : le profil du trafic, la prédic-
tion de la mobilité, l’agrégation de trafic, le clustering des nœuds et l’allocation de ressources. Pour
atteindre les objectifs d’optimisation et relever les défis de la recherche, différents modèles analy-
tiques, algorithmes d’optimisation et systèmes de simulation ont été proposés et largement étudiés
à travers plusieurs disciplines. Ces modèles analytiques sont souvent validés par la simulation et
pourraient conduire à des résultats sous-optimaux dans le déploiement.

Avec l’émergence de l’Internet, un volume massif de données de réseau urbain peuvent être col-
lecté. Les progrès récents dans les techniques d’analyse de données Big Data ont fourni aux cher-
cheurs de grands potentiels pour comprendre ces données. Motivé par cette tendance, l’objectif de
cette thèse est d’explorer un nouveau paradigme d’optimisation des réseaux basé sur les données.
Nous abordons les défis scientifiques mentionnés ci-dessus en appliquant des méthodes d’analyse
de données pour l’optimisation des réseaux. Nous proposons deux algorithmes data-driven pour le
clustering de trafic réseau et la prédiction de la mobilité d’utilisateur, et appliquer ces algorithmes
à l’optimisation dans les réseaux de transport et de communications.

Premièrement, en analysant les jeux de données de trafic à grande échelle des deux réseaux,
nous proposons un algorithme de clustering à base de graphe pour mieux comprendre les simili-
tudes de la circulation et les variations de trafic entre différents zones et heures. Sur cette base, nous
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appliquons l’algorithme d’agrégation (clustering) de trafic aux deux applications d’optimisation de
réseau suivants :

• Un clustering de trafic dynamique pour la planification à la demande des réseaux de
vélos partagés. Dans cette application, nous regroupons dynamiquement les stations de vélos
avec des motifs de trafic similaires pour obtenir des demandes de trafic groupées (en cluster)
plus stables et plus prédictible, de manière à pouvoir prévoir les stations surchargés dans le
réseau et à permettre une planification dynamique de réseau en fonction de la demande. Les
résultats d’évaluation en utilisant les données réelles de New York City et Washington, D.C.
montrent que notre solution prévoit précisément des clusters surchargés (avec une précision
de 0,882 et un recall de 0,938 à New York) et elles sont bien meilleures que les méthodes de
référence.

• Un clustering de trafic complémentaire pour les réseaux C-RAN (Cloud Radio Access
Network). Dans cette application, nous regroupons les RRHs (Remote Radio Head) avec des
modèles de trafic complémentaires (par exemple, des RRHs dans un quartier résidentiel et
des RRHs dans un quartier business) pour réutiliser la capacité totale des BBUs (Base Band
Unit), afin de réduire le coût de déploiement global. Nous évaluons notre solution avec des
données de réseau réelles collectées dans la ville de Milan, en Italie et dans la province du
Trentinno, en Italie. Les résultats montrent que notre méthode est efficace en réduisant le coût
de déploiement global entre 48,4% et 51,7% pour les deux jeux de données respectivement,
par rapport à l’architecture RAN (Radio Access Network) traditionnelle, et fonctionne mieux
que les autres méthodes de base.

Deuxièmement, en analysant les jeux de données sur la mobilité des utilisateurs à grande
échelle des deux types de réseaux, nous proposons un algorithme de prédiction de mobilité spatio-
temporelle pour mieux modéliser la mobilité et les fluctuations dans de différentes zones et temps.
Sur cette base, nous appliquons l’algorithme de prédiction de mobilité à deux applications d’opti-
misation de réseau suivantes :

• Prédiction de mobilité spatio-temporelle pour les réseaux routiers en prenant en compte
des anomalies. Dans cette application, nous modélisons les corrélations spatiales et les dé-
pendances temporelles des trajectoires GPS des véhicules dans un modèle de mobilité spatio-
temporelle unifiée, et prédire des événements de mobilité anormaux ce qui peut correspondre
à des conditions de route anormales. Expériences avec des données réelles collectées de la
ville de Xiamen montrent que notre approche prédit et identifie avec précision les obstacles
de la route pendant la saison des tempêtes 2016, avec une précision et un recall plus de 90%,
qui sont meilleurs par rapport aux méthodes de base.

• Prédiction profonde de mobilité pour l’économie d’énergie et la qualité de service dans
les réseaux C-RAN. Dans cette application, nous proposons un modèle d’apprentissage en
profondeur pour capturer la dynamique spatio-temporelle de la mobilité d’utilisateur dans
les réseaux cellulaires, et de prédire avec précision leurs mobilité dans l’heure qui suit, afin
de permettre la coopération entre les RRHs et d’améliorer les performances de handover
ainsi que d’augmenter le taux d’utilisation des BBUs. Les évaluations sont réalisées sur deux
jeux de données de réseaux mobiles à grande échelle de la Côte d’Ivoire et du Sénégal. Les
résultats montrent que notre solution augmente efficacement le taux d’utilisation des BBU à
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plus de 75,0% et atteint un taux de handover entre les RRHs du même BBU (intra-BBU) plus
de 76,7%, ce qui sont meilleurs que les réseaux RAN traditionnels et les autres méthodes de
base.

Enfin, nous résumons les grandes lignes dans l’optimisation de réseau à base de l’analyse de
données, et discutons les futures directions de recherche de divers points de vue, y compris les
objectifs d’optimisation potentiels, les défis et questions ouvertes, les nouvelles méthodes d’analyse
des données et le déploiement dans le monde réel.

Mots Clés

réseaux de transport, réseaux de communications, optimisation des réseau, analyse de données
Big Data, clustering à base de graphe, prédiction de mobilité spatio-temporelle, l’apprentissage en
profondeur, réseaux de vélos partagés, réseaux routiers, C-RAN, RRH-BBU mapping, informatique
urbaine, informatique ubiquitaire, systèmes cyber-physiques
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1.1 Background

The rapid progress of urbanization has modernized many people’s lives. Today, 54% of the world’s
population lives in urban areas [1]. The evolution of metropolitan structures and the development of
urban systems have created various kinds of urban networks [2], such as transportation networks,
communication networks, electric networks, financial and economic networks. The rapid expansion
in the scope and scale of these urban networks raises a series of fundamental research questions,
e.g., how to reduce network deployment cost, how to decrease network energy consumption, and
how to improve network quality of services. Research on urban network optimization now extends
across many disciplines and over many scales, ranging from geography, sociology, engineering to
physics [2]. However, it is still challenging to develop unified and effective mechanisms to answer
the above-mentioned questions.

In this dissertation, we focus our research on two of the most important urban networks corre-
sponding to human mobility in the physical space and human communication in the digital space,
i.e., the urban transportation networks and the urban communication networks. We start by elabo-
rating on the basic concepts and optimization goals of these two categories of networks.

25
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Urban Transportation Networks: in the physical urban space, transportation networks serve
as the key infrastructure in modern cities, facilitating the movement of people in urban space and
allowing for social interactions and activities [3]. In urban planning and management, a typical
transportation network usually consists of two components, the transit networks and the road net-
works [3]. Transit systems provide various means to meet human mobility demands, including
metro, bus, cars, bikeshare [4], and rideshare [5]. Road systems forms the most basic level of urban
transportation infrastructure by connecting different geographical areas and social communities to
accommodate vehicles and pedestrian traffic [6].

With the rapid growth of urban scale and population, urban transportation networks face signif-
icant challenges today, especially in demand responsiveness and anomaly awareness. On one hand,
due to transportation resource limitation, urban transit networks often suffer from overcrowding at
peak times, leading to serious traffic congestion and air pollution [7]. According to INRIX [8], it
is estimated that traffic congestion costs $124 billion a year in the United States. The incapability
of fulfilling the travel demands in a responsive manner greatly hinders urban transportation effi-
ciency and satisfactory [9]. On the other hand, the availability of road networks is not consistent
but rather depends on various social and environmental factors. For example, large-scale social
events may cause abnormal traffic congestions around the arenas [10], and hurricane-caused wa-
ter logging may paralyze large numbers of road segments [11]. Failing to monitor the real-time
road anomalies have caused serious problems in urban management, such as stampede and chain
accidents [12]. Therefore, it is essential to build demand-responsive urban transit networks and to
monitor the anomaly-aware of road networks for sustainable urban development.

The evolution of information and communication technologies (ICT) in recent decades have
provided new potentials to realize the above-mentioned vision [13]. With the wide deployment
of physical sensors, wireless communication, Internet-of-Things, and cloud computing technolo-
gies, researchers have proposed various systems, methodologies, and theories to develop and im-
prove urban transportation systems, which is now recognized as Intelligent Transportation Systems
(ITS) [14]. Some of the typical ITS technologies and applications include camera-based traffic
surveillance [15], traffic light coordination [15], GPS-equipped vehicle tracking [16], smart card-
based bikeshare [4], and Internet-based rideshare [5]. The benefits of intelligent transportation
systems can be elaborated from the following two aspects.

• Demand Responsiveness: traditional public transit networks provide fixed routes on pre-
defined schedules with limited adaption to user mobility dynamics. With bikeshare and
rideshare networks, the dynamics of user travel demands can be accommodated from both
spatial and temporal dimensions. Bikeshare networks are densely deployed in the urban ar-
eas, making it easy to pick up and return bikes in almost any time and any bike stations for
short and long trips [4]. Rideshare networks enable drivers and riders to pair their travel de-
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mands with each other in an online manner, making it possible to dynamically schedule trans-
portation resources to accommodate demands with flexible travel time and destination [5].

• Anomaly Awareness: the traffic situation and road connectivity can be monitored efficiently
via the widely-available sensors in road infrastructures and GPS equipped vehicles. Road
infrastructures, including traffic surveillance cameras, ground inductive coils, speed sensor
radar, are capable of monitoring road traffic flows and generate congestion and accident
reports in real-time. GPS equipped vehicles, on the other hand, can be regarded as mobility
sensors in the road networks to provide fine-grained mobility patterns and road anomalies.
By collecting and analyzing information from these ubiquitous sensors, we can be aware of
road networks conditions, detect anomalies, and provide information services for users in a
real-time and predictive manner.

Urban Communication Networks: in the digital urban space, communication networks are
the fundamental layer for social and community interactions [17]. Among various kinds of commu-
nication networks, cellular networks are becoming increasingly important. In recent decades, the
number of cellular network subscriptions is continuously raising at almost 6 percent year-on-year,
reaching 7.8 billion at the end of 2017 [18]. Correspondingly, the cellular traffic volume has grown
18-fold over the past five years and will continue to increase exponentially in the upcoming 5G era,
as smartphones and Internet-of-Things (IoT) devices become increasingly popular [19].

As cellular network scale and capacity grow, the deployment cost and energy consumption are
becoming increasingly high [20,21], while the quality-of-service of the entire network is becoming
increasingly difficult to ensure [22]. First, network operators need to cover the expenses for network
construction, operation, maintenance and upgrade [23]. According to Juniper Research Report [21],
the deployment cost of the network infrastructures may exceed operator’s revenue as network scale
grows over the next few years. Second, the energy consumption of cellular network infrastructures
are substantially increasing, taking up more than 3% of the worldwide electric energy consumption
nowadays [24]. Third, as various sizes of base stations (e.g., pico-cells, micro-cells, and macro-
cells) and different generations of technologies (e.g., LTE, UMTS, and GSM) co-exist in real-world
cellular networks [25], it is becoming extremely difficult for network operators to provide unified
and consistent experiences for users in a heterogeneous network environment, such as enabling
seamless handover between base stations. Therefore, designing cost-effective, energy efficient, and
high-quality cellular network architectures is now a great necessity in the field of mobile network
operation and research [21].

Fortunately, the emergence of Cloud Radio Access Network (C-RAN) [26] has provided new
opportunities to address the above mentioned challenges. In C-RAN, a traditional base station is
split into two components: the Remote Radio Head (RRH) for radio communication with mobile
devices, and the Baseband Unit (BBU) for signal and data processing [23]. The BBUs are further
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detached from the RRHs and hosted in centralized BBU pools [27]. The RRHs and BBU pools are
usually connected via high speed optical fiber [28] to reduce the delay of data transmission. In this
way, the baseband resources are pooled, so that they can be shared among base stations, making it
possible to achieve statistical multiplexing gain for the whole network [23]. We details the benefits
of the C-RAN over the traditional RAN from the following three perspectives:

• Cost Effectiveness: in traditional RAN architectures, the capacity of the BBU needs to cover
the traffic volume in each base station. As the traffic demand is usually non-uniform and
highly dynamic, the deployed BBU capacity are wasted during off-peak hours. With the
C-RAN architecture, the RRHs with different traffic patterns can complement each other to
generate stable aggregate traffic. Consequently, the utilization rate of BBUs are increased,
and fewer BBUs are needed in C-RAN architecture compared with traditional RAN [23].
Moreover, since BBUs are hosted in centralized data centers, the cost to operate, repair, and
upgrade these devices are much lower than the distributed on-site solution.

• Energy Efficiency: in C-RAN architecture, multiple RRHs can be connected to one BBU and
share the processing capacity. Therefore, the number of needed BBUs can be dynamically
determined, and the unused BBUs can then be dynamically shutdown to save energy. Conse-
quently, the energy consumption is reduced compared with the traditional RAN. Moreover,
by adopting advanced data centers power management technologies, the power consumption
in BBU pools can also be significant reduced [29].

• Service Quality: when two RRHs are connected to one BBU, the handover and roaming
events between them can be handled directly inside the BBU, which greatly reduces the
handover delay and roaming overhead [23, 30]. Such a seamless handover and roaming
experience is of key importance in 5G networks to support direct video streaming and real-
time IoT applications. Consequently, the quality-of-service of the network can be improved.

1.2 Research Challenges

In order to achieve the above-mentioned optimization goals in transportation and communication
networks, a number of challenges need to be addressed to optimize the architecture and configura-
tion of these networks [31]. Despite the distinct design intentions and implementation technologies,
both the transportation and communication networks share common fundamental structures, and
exhibit similar spatio-temporal dynamics [32, 33]. Specifically, the spatial correlations among net-
work nodes and the temporal dependencies of network traffic and user mobility make the networks
high dynamic and complicated to model and optimize. We elaborate on some of the key challenges
that are common to both networks, which have been studied in the literature of network optimiza-
tion, including network profiling, mobility prediction, traffic clustering, and resource allocation.
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• Network Profiling. Although the overall users and traffic volumes in the transportation and
communication networks are growing, the demand patterns in different areas and during
different periods of time are not evenly distributed. For example, during weekday working
hours, business districts and transit hubs usually observe high traffic volume and massive user
movement, while residential areas usually observe fewer users and lower traffic volumes.
Such a spatial-temporal non-uniform property of network demands poses great challenges
for the design and deployment of both networks. Optimally, the cognitive networks [34]
shall be able to perceive the non-uniformed traffic demand and to react accordingly. In order
to realize this vision, algorithms and models are needed to profile the variations in traffic
demand in an automatic manner.

• Mobility Prediction. In both networks, users move freely and spontaneously among the road
networks and base stations, generating mobility patterns that are highly dynamic in both
spatial and temporal dimensions. Being able to predict users’ mobility in next few hours
and even in next few days are of great importance for a wide range of network optimiza-
tion applications, including vehicle scheduling and balancing in bikeshare networks [35],
dynamic navigation and routing in rideshare networks [36], distributed content caching in
C-RAN [37], and seamless handover handling via base station cooperation in C-RAN [23].
How to develop an accurate user mobility modeling and prediction method for network opti-
mization applications still remains a challenge.

• Traffic Clustering. Clustering geographic areas or base stations into larger, semantic regions
and groups has been proposed in the literature for many purposes, such as reducing traffic
and mobility fluctuations [38], understanding region functions [39], enabling base station
cooperations, and improving handover handling [23]. For example, in bikeshare networks,
clustering bike stations with similar usage patterns can help understand regional functions
and predict future usages; in C-RAN, by clustering RRHs with complementary traffic pat-
terns, the utilization rate of BBUs can be increased. Considering the dynamic nature of traffic
and mobility, how to design effective clustering mechanisms with the above-mentioned ob-
jectives is a key challenge for network optimization.

• Resource Allocation. In the design and implementation of the above-mentioned network
optimization goals, network resource constraints shall be taken into consideration to align
with the real-world situations. For example, in bikeshare networks, the constraints generally
include the number of available bikes and docks, and the geographic distances of bike sta-
tions. In C-RAN, the constraints may include the RRH coverage area, the available BBUs
in the pools, the network bandwidth, etc. How to optimally allocate these resources so as to
maximize resource utilization or minimize total budgets is still an open challenge in network
optimization research.
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To address the above-mentioned challenges, various analytical models, optimization algorithms,
and simulation systems have been proposed and extensively studied in network optimization re-
search. However, most of these works are built upon simulation environments without real-world
evaluations. For example, network traffic demands are usually generated via Poisson variables [40],
while user mobility patterns are generally simulated as random walk processes [28]. Network nodes
(e.g., RRHs) are ideally assumed to be distributed in rectangle or hexagonal cells [41], while the
available resources (e.g. bikes or bandwidth) are ideally assumed values determined by simulation
models [35]. Such a simulation-based mechanism introduces a large number of parameters in the
models and algorithms, which need to be carefully selected and fine-tuned when deploying these
system to real-world networks. Moreover, since the real-world network traffic and user mobil-
ity patterns are highly dynamic, the assumed generation models might not be able to characterize
these dynamically accurately. Consequently, the simulation-based models and algorithms may lead
to sub-optimal results in real-world deployment.

1.3 Thesis Contributions

With the emergence of ubiquitous sensing, communication and computing diagrams [42, 43], a
massive number of urban data have been collected from various kinds of urban networks, provid-
ing researchers with great opportunities to understand the dynamics of urban networks [44, 45].
The knowledge discovered from these urban big data can be used to design effective mecha-
nisms for network optimization. In this dissertation, aiming at achieving the above-mentioned
optimization goals in transportation and communication networks, we explore a big data-driven
network optimization paradigm to address the research challenges mentioned in the previous sec-
tion. Specifically, we propose two data-driven algorithms for network traffic clustering and user
mobility prediction, and apply these algorithms to real-world optimization tasks transportation and
communication networks. Figure 1.1 illustrates the scheme of the dissertation contributions. The
detailed contributions are described as follows.

First, by analyzing large-scale traffic datasets from both networks, we propose a graph-based
traffic clustering algorithm to better understand the traffic similarities and variations across different
area and time. Upon this basis, we apply the traffic clustering algorithm to the following two
network optimization applications.

• Dynamic traffic clustering for demand-responsive bikeshare networks. In this applica-
tion, we dynamically cluster bike stations with similar usage patterns to obtain stable and
predictable bike traffic demands, so as to foresee over-demand stations in the network and
enable demand-responsive bike scheduling. Since the bike usage pattern of a station is highly
dynamic and context dependent, directly predicting individual over-demand stations to carry
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Figure 1.1: The scheme of dissertation contributions.

out preventive measures is difficult. In addition, bike usage pattern is affected not only by
common contextual factors (e.g., time and weather) but also by opportunistic contextual fac-
tors (e.g., social and traffic events). We propose a dynamic cluster-based framework for
over-demand prediction. Depending on the context, we construct a weighted correlation
network to model the relationship among bike stations, and dynamically group neighboring
stations with similar bike usage patterns into clusters. We then adopt Monte Carlo simulation
to predict the over-demand probability of each cluster. Evaluation results using real-world
data from New York City and Washington, D.C. show that our framework accurately foresees
over-demand clusters (e.g. with 0.882 precision and 0.938 recall in NYC), and outperforms
other baseline methods significantly.

• Complementary traffic clustering for cost-effective C-RAN. In this application, we clus-
ter RRHs with complementary traffic patterns (e.g., an RRH in residential area and an RRH
in business district) to reuse the total capacity of the BBUs, so as to reduce the overall de-
ployment cost. Specifically, we first employ the deep learning-based MuLSTM algorithm
to predict the hourly traffic profile for the next day, and then exploit the RCLP algorithm to
cluster RRHs with different peak hours (complementary) and within a distance to generate
stable aggregated traffic patterns. Finally, we allocate BBUs to satisfy the traffic demands
of the clusters under the pool resource constraints. We evaluate our framework with real-
world network data collected from the city of Milan, Italy and the province of Trentino, Italy.
Results show that our method effectively reduces the overall deployment cost to 48.4% and
51.7% of the traditional RAN architecture in the two datasets, respectively, which consis-
tently outperforms other baseline methods.

Second, by analyzing large-scale user mobility datasets from both networks, we propose a
spatio-temporal mobility prediction algorithm to better model the mobility patterns and fluctuations
across different area and time. Upon this basis, we apply the mobility prediction algorithm to the
following two network optimization applications.
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• Spatio-temporal mobility prediction for anomaly-aware road networks. In this appli-
cation, we model the spatial correlations and temporal dependencies of of vehicle GPS tra-
jectories in a unified spatio-temporal mobility model, and predict abnormal mobility events
which may correspond to abnormal road conditions. We apply this prediction techniques
to post-disaster road obstacle identification. One of the first priority in disaster response is
to identify and clear road obstacles, such as fallen trees and ponding water. We propose
a low-cost and real-time approach to identify road obstacles leveraging large-scale vehicle
mobility data and heterogeneous road environment sensing data. First, based on the obser-
vation that road obstacles may cause abnormal slow mobility behaviors of vehicles in the
surrounding road segments, we detect road obstacles by identifying the collective anomalies
of slow mobility behaviors from vehicle trajectory data. Then, we classify the detected road
obstacles leveraging the correlated spatial and temporal features extracted from various road
environment data, including satellite images and meteorological records. Experiments with
real-world data collected from Xiamen City show that our approach accurately detects and
classifies the road obstacles during the 2016 typhoon season with precision and recall both
above 90%, and outperforms other baselines.

• Deep mobility prediction for energy-efficient and quality-aware C-RAN. In this appli-
cation, we propose a deep-learning model to capture the spatio-temporal dynamics of user
mobility in C-RAN, and accurately predict their movement patterns in next hour, so as to
enable RRH cooperation to improve handover performance and increase BBU utilization. To
achieve these goals, we first employ the deep learning-based algorithm to model the spatial-
temporal dynamics of the traffic pattern and user mobility, and accurately predict the traffic
volumes and handover events in the network for the next hour. Then, we exploit a resource-
constrained clustering algorithm to find a set of cooperative RRH clusters, so that the traffic
volume and handover events are properly handled within the corresponding BBUs. Finally,
we make the optimal RRH-BBU mapping schemes under the BBU pool resource constraints.
Real-world evaluations are conducted on two large-scale mobile network datasets collected
from Ivory Coast and Senegal. Results show that our framework effectively increases the
BBU utilization rate to more than 75.0% and achieve an RRH internal handover rate above
76.7%, which consistently outperforms the traditional RANs and other baseline methods.

1.4 Thesis Outline

This dissertation is organized as follows. In Chapter 2, we first review the existing related work
in network big data analytics and network optimization. The following chapters describe our main
contributions. In Chapter 3, we present the application of dynamic traffic clustering for demand-



CHAPTER 1. INTRODUCTION 33

responsive bikeshare networks. In Chapter 4, we describe the application of complementary traffic
clustering for energy-efficient C-RAN. In Chapter 5 and Chapter 6, we present two applications
of the mobility prediction algorithms in transportation networks and communication networks,
i.e., spatio-temporal mobility prediction for anomaly-aware road networks, and deep mobility pre-
diction for cost-effective and quality-aware C-RAN. Finally, Chapter 7 summarizes the insights
learned from the big data-driven network optimization paradigms, and discusses the future research
directions from various perspectives, including potential optimization goals, other challenges and
issues, new data analytics methods, and real-world deployment.
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In this chapter, we review the existing research works in mobile network optimization. First,
we present a brief survey on the optimization of urban transportation and communication networks,
covering various optimization objectives and challenges. Next, we discuss the relevant works in big
data analytics and state-of-the-art methodologies.

2.1 Urban Transportation Network Optimization

Urban transportation systems provide various means to meet human mobility demands, including
metro, bus, cars, bikeshare [4], and rideshare [5]. Based on the applications of our work, we present
a brief survey on existing works in bikeshare networks and road networks.

35
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2.1.1 On Bikeshare Networks

Recently, bike sharing systems have been intensively studied from different perspectives, including
bike sharing history [4], infrastructure [46], worldwide deployment [47,47], and bike usage patterns
[48–51]. The research interests mainly focus on the following problems: (1) system planning, such
as determining the number, capacity and locations of stations [52, 53]. (2) system balancing, such
as strategies to transport bikes among stations [35], and mechanisms to encourage users to rent
bikes from (or return bikes to) specific stations through incentives [54, 55]. (3) system prediction,
such as predicting station status and bike usage number using different models.

The earlier work mainly focuses on predicting the number of available bikes and docks (i.e.
station status) in the station level. For example, Froehlich et al. [56] adopted a Bayesian network
to predict station status based on the current time and current bike/dock number. Kaltenbrunner et
al. [51] proposed to model and predict the station status as a time series using an ARIMA model.
However, due to the impact between neighboring stations [57] and the complicated contextual
factors impacting bike usage (e.g., weather, temperature, social events) [52, 58–60], these station-
level prediction methods do not consistently achieve accurate results.

To address this issue, researchers have proposed to cluster similar stations into clusters, and
then predict bike usage on a cluster-level. For example, Li et al. [61] first proposed a method to
cluster stations based on their geographical locations and transition patterns, then predicted the bike
usage of the whole system, and finally allocated the overall bike rental and return number to each
cluster based on a proportion learned from historical data. However, the cluster scheme is static
across different contexts. Etienne et al. [50] introduced a model-based method to group stations
with similar bike usage patterns, such as stations near restaurants and train stations, and predicted
their bike usage pattern in different temporal settings. These cluster-level prediction methods could
improve the prediction accuracy, however the clusters used in these methods are static regardless of
context at the time. Since the bike usage patterns of stations might be affected by various contextual
factors such as weather condition and social events [58–60], the prediction results of static clusters
may not yield consistent accuracy across different contexts.

2.1.2 On Road Networks

The other important component of urban transportation systems are road networks. Research on
road traffic monitoring and transportation anomaly detection of have been conducted in the litera-
ture, especially in the disaster response perspective. Restoring the transportation network is usually
considered the first step [62, 63], since road network disruptions impede timely rescue, evacua-
tion, and supply [62]. In order to evaluate the post-disaster transportation system performance,
Chang et al. [64] develop various transportation quality and accessibility indicators in a quantita-
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tive approach. To improve the post-disaster transportation accessibility, Aksu et al. [62] propose a
dynamic-path-based mathematical model to clear critical road obstacles in an optimal order with
limited resources. However, few works in the transportation research area have addressed the prob-
lem of identifying road obstacles in disaster response scenarios.

The road obstacle detection problems have been studied by the computer vision community
using several vision-based approaches [65–67]. For example, LeCun et al. [66] proposed a convo-
lution neural network-based approach to detect road obstacles from videos captured by vehicle’s
on-board camera, and Lefaix et al. [67] used a vehicle-mounted camera to detect and track road ob-
stacles by analyzing the image motion patterns. However, deploying these vision-based solutions
to a large crowd of vehicles requires extremely high cost and thus are infeasible for large-scale road
obstacle detection, especially in disaster response scenarios. Another approach for road obstacle
detection can be inspired by the existing traffic accident reporting systems, where citizens volun-
tarily report to the traffic police and media outlets about observed road obstacles using phone calls,
social networks, etc. However, the processing of these reports include cross-validating the sources,
labeling the locations and scopes on the map, and broadcasting the message back to drivers. Such
a process can still be labor intensive and time consuming.

2.2 Urban Communication Network Optimization

The fast evolution of cellular networks have shown its great importance in modern urban commu-
nication systems [68, 69]. Cellular network operators and researchers are continuously seeking for
solutions to optimization to provide stable telecommunication, high speed data rate, and high qual-
ity of services to their users [26, 70]. However, the cost to build, operate and upgrade the network
infrastructures is becoming increasingly expensive for mobile operators [71]. As the deployment
and commercial operation of 4G systems are reaching maturity, researchers and network operators
worldwide have begun searching for next generation (5G) mobile network solutions [71].

Cloud radio access network (C-RAN) is targeted by worldwide mobile network operators as a
typical realization of green and soft RAN architecture in the 5G mobile networks [23]. In 2010,
IBM proposed wireless network cloud (WNC) [72]. The WNC system exploits emerging cloud-
computing technology and various wireless infrastructure technologies, such as remote radio head
and software radio, to enable RAN resource processing operating in a cloud mode [72]. In 2011,
China Mobile Research Institute envisioned a cloud-based RAN architecture to provide mobile
broadband Internet access to wireless customers with low bit-cost, high spectral and energy ef-
ficiency [26]. Texas Instruments also proposed an enhanced version of its KeyStone multicore
architecture to be used to create cloud base stations. For a comprehensive technology survey on
C-RAN, the reader is referred to [23].
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2.2.1 On C-RAN Traffic Demands

One of the key vision in C-RAN is to provide flexible and configurable data processing capacity
according to the mobile traffic demands [26,73]. In [74], such a vision is coined as a cognitive net-
working diagram in the context of mobile network. Specifically, C-RAN algorithms and solutions
need to adapt to the variations of mobile demand. This raises a fundamental problem of under-
standing the mobile traffic demand patterns. Traditionally, researchers have proposed various kinds
of models to simulate mobile traffic demands of RRHs. For example, Poisson processes are usually
employed to simulate the number of phone calls in RRHs [28,75]. However, These models usually
require specific parameters for each RRH, and may not be able to accurate characterize the patterns
in real-world networks. Furno et al. took a first step in the direction of RRH traffic profiling lever-
aging a data-driven approach [74]. By leveraging mobile traffic analytics algorithms for large-scale
real-world mobile network datasets, they were able to understand the network demand patterns and
the resource utilization in an automated manner. In their later work, Furno et al. further presented
an approach to infer the spatial-temporal structures hidden in the traffic demand [76].

Cooperation between RRHs is necessary to cope with the vibrations in traffic demands, and to
achieve statistical multiplexing gains in C-RAN [23]. An optimal RRH cooperation scheme should
facilitate the BBU pool capacity utilization and reduce the BBU deployment cost [23, 40]. To this
end, a cooperative cluster usually consists of RRHs from different areas, such as office, residential,
and commercial districts [23]. Other factors need to be considered in the RRH clustering algorithm
include cluster size, geographic constraints, etc. In the literature, several clustering schemes and
algorithms have been proposed with various goals. For example, Bhaumik et al. [77] proposed
CloudIQ, a framework for partitioning a set of RRHs into groups and process the signals in a shared
data center. By exploiting the variations in the processing load across RRHs, the framework was
able to save up to 19% of the computing resources for a probability of failure of one in 100 million.
In [78], Namba et al. proposed an C-RAN architecture that can dynamically change the clustering
schemes of RRHs in response to traffic demand. They further presented and evaluated adaptive
BBU-RRH mapping schemes for C-RAN in [79], where it was proved that the number of BBUs
can be reduced by 47% for the proposed adaptive schemes compared with the static assignment.

2.2.2 On C-RAN Mobility Dynamics

Another key issue in the design and implement of C-RAN is the factor of user mobility [80, 81].
One of the important objectives in next generation mobile networks (5G) is improving the quality
of cellular service, with handover events nearly invisible to the mobile users [80]. To this end,
the RRHs in a network need to be able to cooperate with each other to seamlessly transfer user
contexts, forward network resources, and assign cellular channels [30]. This raises an important
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problem of foreseeing the mobile user mobility dynamics in next few hours. Traditionally, user
mobility is usually ideally modeled with specific assumptions, e.g., random walk variables with
specific moving speed and diameters [30]. These assumptions ignore the spatio-temporal variations
and dynamics of mobile user mobility, which might be inaccurate to foresee the user movement in
a future period of time.

There are still few work on data-driven user mobility modeling and prediction for C-RAN
optimization. One of the most relevant work on investigating mobile user dynamics is presented by
Naboulsi et al. [82]. The authors introduced a methodology to manage user mobility in C-RAN by
dynamically adapt the topology of the C-RAN to minimize handover in the network. The proposed
method is evaluated with a real-world dataset. In their later work [83], they proposed an algorithm
to optimize the mapping between BBUs and RRHs on a time-varying graph representation of the
C-RAN. Evaluation results in two large-scale real-world datasets confirmed that the total number
of handovers is reduced by more than 20% compared with the current architectures.

2.3 Big Data Analytics Methodologies

With the emergence of ubiquitous sensing and computing diagrams [42], a massive number of
mobile datasets have been available for academic research and industrial analytics. They can be
collected either from operators’ infrastructures [84–86], or by leveraging mobile crowdsensing
paradigms [87, 88] with user participation. For example, Telecom Italia [86] have released a large-
scale call detail record dataset containing two-months of calls, SMSs and network traffic data from
the city of Milan and the province of Trentino, Italy. Orange [84] have also granted access to
researchers participating in their Data for Development (D4D) challenges the access to a large-
scale anonymized call detail record dataset, which consists of phone calls and SMS exchanges
between five million of Orange’s customers in Ivory Coast in half a year.

These heterogeneous mobile big data have been extensively analyzed in the literature to retrieve
interesting and informative knowledge. For example, Furno et al. [74] proposed a data analytics
framework to builds profiles of the city-wide traffic demand, and identifies unusual situations in
network usages, aiming at facilitating the design and implementation of cognitive networking [34].
In their later work, Furno et al. [89] further investigated the heterogeneous patterns emerging in the
mobile communication activity recorded within metropolitan regions. They applied the proposed
method to extensive real-world data collected by mobile operators in ten cities. Results indicates
the diversity of baseline communication activities across cities in different countries, as well as the
common mobile traffic signatures in all studied areas. Cici et al. [90] studied the decomposition of
cell phone activity series, and connect the decomposed series to socio-economic activities such as
regular working patterns and opportunistic social events.
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Among these big data analytics works, two of the most relevant topics to this dissertation are
(1) spatial-temporal traffic clustering, and (2) spatial-temporal mobility prediction. We present a
literature review of related works as follows.

2.3.1 Spatio-Temporal Traffic Clustering

In the literature of mobile big data analytics, clustering is a very important and useful technique
for discovering patterns from a wide range of spatial regions [74], and for reducing fluctuations in
individual spatial areas [91]. In these situations, the formed clusters also need to meet some explicit
and implicit constraints, including the geographic distance of the cluster, the global constraints on
the resource blocks available, etc. We survey these works on spatio-temporal data clustering and
allocation as follows.

Clustering for discovering patterns. The spatio-temporal dynamics of various stations in a
network may exhibit similarities and correlations, which can provide useful knowledge about the
hidden urban functions and demographic characteristics in these regions [92]. In [93], Naboulsi
et al. proposed a framework to identify a set of clusters of mobile call profiles, and classify the
network usages accordingly. By analyzing the cluster traffic patterns, they were able to identify
normal and outlying call behaviors. The framework was evaluated on a large-scale call detail
record dataset. Similarly, Cici et al. [90] proposed a spectral method to cluster area units with
similar activity patterns and validate the results with external municipal and social data sources.
Furno et al. [74] proposed to cluster the mobile traffic demand in the temporal dimension, by
adopting a hierarchical clustering method on the city-wide traffic snapshots. These methods laid
the foundation for our work to cluster the spatio-temporal traffic data in a unified framework.

Clustering for reducing fluctuations. In many real-world network systems, due to insufficient
users, over-sparse placement, or limited capacities, the stations (e.g., RRHs in mobile networks)
usually observe fluctuating traffic and user mobility patterns. For example, in bike sharing systems,
the number of bike usage exhibits highly dynamic and fluctuating patterns due to that fact that
users move freely and pick up and return bikes arbitrarily. To address this issue, researchers have
proposed to group these stations into clusters, and perform data analytics on a cluster-level. For
example, Li et al. [61] first proposed a method to cluster bike stations based on their geographical
locations and transition patterns, then predicted the bike usage of the whole system, and finally
allocated the overall bike rental and return number to each cluster based on a proportion learned
from historical data. However, the cluster scheme is static across different contexts. Etienne et
al. [50] introduced a model-based method to group stations with similar bike usage patterns, such
as stations near restaurants and train stations, and predicted their bike usage pattern in different
temporal settings. These cluster-level prediction methods could improve the prediction accuracy,
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however the clusters used in these methods are static regardless of context at the time. Since the
dynamics of these stations might be affected by various contextual factors, the prediction results of
static clusters may not yield consistent accuracy across different contexts.

2.3.2 Spatio-Temporal Mobility Prediction

During the past decades, spatial-temporal mobility data modeling and prediction have been exten-
sively studied in the literature [94, 95]. We survey two of the popular approaches in the literature
as follows.

Autoregressive Integrated Moving Average (ARIMA) models: In time series analysis, ARIMA
models are commonly used to fit a time series data and to forecast future variations in the se-
ries [96, 97]. ARIMA models explicitly extract from a time series three intuitive features, i.e.,
auto-regression, moving average, and integration. The auto-regression (AR) part indicates that the
evolving variable of a time series is regressed on its own lagged values. The moving average (MA)
part indicates that the regression error can be represented as a linear combination of error terms
dependent on the values in the past. The integration (I) part is applied to the regression model to
represent non-stationary time series (i.e., the variable in the time series shows a trend of increasing
or decreasing). ARIMA models are capable of rapidly adjusting for sudden changes in trend, and
it has been proved successful in many short-term forecasting problems [97, 98].

However, for long-term forecasting problems which involve predicting multiple future steps, the
error of ARIMA models accumulate significantly and the forecasting confidence decrease rapidly
as the forecasting step grows [96]. In this dissertation, we need to accurately forecast the RRH
traffic for several hours to foresee the traffic patterns in the future for RRH clustering, which poses
great challenge for ARIMA models. Moreover, ARIMA models are usually used to capture the
trends and dynamics of single variables, and it is not trivial to directly applying ARIMA mod-
els to multi-variables simultaneously [99]. Therefore, it leads to another challenge when dealing
with spatio-temporal data, where multiple time series denoting traffic of various correlated regions
should be modeled at the same time.

Artificial Neural Network (ANN) models: Recently, ANN models are widely employed to
understand time series and forecast the future trend of various kinds of spatio-temporal data [95,
100]. The basic procedure of applying ANNs to time-series modeling is by leveraging a sliding-
window-based technique, which can be named windowed-ANN, or WANN [101]. More specifically,
this technique first slices a time series into several equal-length windows, and then feeds these
windows into an ANN model as features. The output of the model is the forecast of the future
values of the time series, which can either be short-term or long-term results, depending on the
application scenario. The WANN models have been applied in various domains, such as financial
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market [102] and operation research [100].

However, one of the biggest problem of the WANN model is its incapability to model the
temporal dependence between the elements in each time series window. In fact, the elements in a
window is treated equally as input features and thus the sequential order of the elements is ignored.
As a result, the WANN model can make fluctuating and inconsistent forecasts which are not desired
in our problem.

In this dissertation, we propose a deep-learning-based [103] architecture to model the temporal
dependency and the spatial correlations among RRHs in a unified framework. Such kind of spatial-
temporal deep-learning framework has been widely used in IP and transportation network traffic
prediction [75,104], electronic health records understanding [105], and human motion and behavior
recognition [106]. For a survey about deep-learning-based prediction model for spatio-temporal
data, the reader is referred to [75].

2.4 Summary

In this chapter, we have reviewed the literature related to big data-driven network optimization.
We start from a brief introduction of the optimization of urban transportation and communication
networks. Afterwards, we present the relevant works in data analytics methodologies from both
traffic and mobility perspectives. In the next chapters, we are going to introduce the applications of
data-driven analytics in network optimization.
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3.1 Introduction

In response to the growing concerns over urban sustainability, practices of green transportation such
as bikeshare [107] have emerged. Today, more than 700 cities worldwide have launched bikeshare
systems [54]. These systems allow people to pick up and drop off public bikes at self-service
stations scattered around a city to make short trips. Given the large investment in infrastructure
necessary to support a bikeshare system, such as setting up bike stations and renovating bike lanes,
it is important for city authorities to ensure that the system is fully functional [108]. One of the
key requirements is to prevent stations from over-demand, i.e., being completely empty or full over
an extended period of time [49, 54]. Users’ experiences may be greatly impaired if they run into
an over-demand station, as they need to find another available station to rent or return the bike,
which may ultimately hinder user participation in the bikeshare system [54, 56]. Therefore, city
authorities often urge bikeshare system operators to resolve and prevent the over-demand problem,
for example, by issuing fines when it occurs [109].

Operators have implemented different strategies to address the over-demand issue [59, 109],
such as sending trucks to redistribute bikes before rush hours [35], or setting up temporary bike
corrals for large social events to provide extra docks [59]. The ability to accurately foresee over-
demand stations in the system is critical to the success of these strategies. However, predicting
over-demand of individual stations is difficult as users usually choose a station near their origins
or destinations on an ad hoc basis [54]. As a result, existing station-level bike demand prediction
methods [51, 57] usually have relatively low accuracy.

Based on our observation, while the bike usage of a single station might exhibit high variabil-
ity, the bike usage of the stations in a certain area over a certain time window (e.g., one hour) can
have similar trends. For example, stations near a residential area in morning rush hours usually
have more bikes rented than returned (Figure 3.1(a)), and stations near a stadium usually have a
surge in dock demand before concerts (Figure 3.1(b)). Such bike usage patterns are highly context
dependent [110, 111]: time of the day, day of the week, weather condition, social events, and traf-
fic conditions can all lead to different bike usage patterns [49, 58, 112, 113]. Hence, we propose
to cluster neighboring stations with similar bike usage patterns according to context, and predict
over-demand at the cluster level. We define an over-demand cluster as a cluster containing at least
one over-demand station in a given time window. Despite some existing work on bike demand
prediction [56, 61] also consider station clustering to boost performance, they usually cluster sta-
tions statically regardless of context, which do not obtain consistent prediction accuracy when the
context varies.

However, clustering stations and consequently predicting over-demand occurrence according
to the varied and highly dynamic context is not trivial. In fact, bike usage patterns are mainly im-
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Figure 3.1: Examples of bike usage patterns in different contexts. (a) Almost empty stations near
a residential area in morning rush hours (7:00–8:00, 06/17/2015). (b) Almost full stations near a
stadium before a concert (19:00–20:00, 05/13/2014). (c) An opportunistic context with a concert
and two subway delays (12:00–13:00, 11/17/2015).

pacted by two types of contextual factors: (1) the common contextual factors that occur frequently
and affect all the stations, such as time and weather, and (2) the opportunistic contextual factors
that happen irregularly and only affect a subset of stations, such as social and traffic events. An
intuitive method to cluster stations according to context is to build a statistical clustering template
using historical records (e.g., a cluster template for sunny weekday rush hours). Then, given a
specific context in a future time window, we can simply apply its corresponding template to cluster
the stations and make cluster-level over-demand prediction. Although this template-based method
can cope with the common contextual factors, it does not work well when incorporating the oppor-
tunistic contextual factors (events) that have rather few instances in history. In other words, these
opportunistic events are sparse in time, making it difficult to find enough historical records con-
taining the same events to generate a template. For example, Figure 3.1(c) shows a sunny weekday
afternoon (12:00–13:00, 11/17/2015) with a concert in a stadium (Event A) and two subway delay
events (Event B and C); no historical records having the same context can be found during the
period from 01/01/2014 to 12/31/2015. Therefore, we need to design an effective method to model
the impact of both common and opportunistic contextual factors simultaneously, which allows us
to cluster station and predict over-demand accordingly.
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In this work, we propose a dynamic cluster-based framework to predict over-demand occur-
rence in bikeshare systems according to context. First, we extract the common and opportunistic
contextual factors from various urban data [42, 114, 115]. Then, depending on the current context,
we construct a weighted correlation graph [116] to model the relationship among bike stations.
Specifically, we take each station as a node and connect neighboring stations with links. We use
the link weight of two stations to model the relationship between them with consideration of both
common and opportunistic contextual factors. The link weight of two stations associated with the
common contextual factors is calculated based on the correlation between their historical bike us-
age patterns, such that two stations with similar bike usage patterns have high link weight. The link
weight of two stations with respect to the opportunistic contextual factors is calculated based on the
number and types of events taking place near the stations, such that two stations impacted by the
same array of events have high link weight. We then build the complete graph by merging the two
sets of link weights, and group highly connected stations into clusters, so that each cluster consists
of neighboring stations with similar bike usage patterns. Finally, we estimate the number of bikes
rented and returned in each cluster, and predict the cluster over-demand probability accordingly.
The contributions of this work include:

• To the best of our knowledge, this is the first work on dynamic cluster-based over-demand
prediction according to context. Such a dynamic clustering approach leads to high and con-
sistent over-demand prediction accuracy in bikeshare systems.

• We propose a two-phase framework to predict over-demand clusters by considering both
common and opportunistic contextual factors. In the dynamic station clustering phase, de-
pending on the context, we build a weighted correlation graph to model the relationship
among bike stations, and propose a geographically-constrained clustering method to dynam-
ically cluster stations over the graph. In the over-demand cluster prediction phase, we first
estimate the number of bikes rented and returned in each cluster, and then adopt Monte Carlo
simulation to predict the cluster over-demand probability.

• We evaluate the performance of our framework using two years of real-world bikeshare data
and urban data in New York City and Washington, D.C. Results show that our framework
accurately predicts over-demand clusters across different contexts in both cities (e.g. with
0.882 precision and 0.938 recall in NYC), and outperforms the start-of-the-art methods.

3.2 Preliminary and Framework

Definition 1. Station Status: the status of station i at time t is defined as a tuple 〈Bi(t),Di(t)〉, where
Bi(t) and Di(t) are the number of available bikes and docks in station i at time t, respectively.
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Figure 3.2: Overview of the framework.

Definition 2. Bike Usage: the bike usage of station i in a given time window [t, t +∆t] is defined as
a tuple 〈U−i (t),U+

i (t)〉, where U−i (t) and U+
i (t) are the number of bikes rented from and returned

to station i during [t, t +∆t], respectively. We further define U−i (t) and U+
i (t) as the bike rental

number and bike return number, respectively, and the sum of absolute values of the bike rental and
return number as the bike usage number.

Definition 3. Context: we denote the context of a bikeshare system in a time window [t, t +∆t]
as Ψ(t) = 〈Ψc(t),Ψo(t)〉, where Ψc(t) denotes the common contextual factors including time and
weather, and Ψo(t) denotes the opportunistic contextual factors including social and traffic events.

Definition 4. Over-Demand Station: we define a station i as an over-demand station if the station
is full or empty for a period of time longer than a threshold. In this work, we empirically set the
threshold as 10 minutes.

Definition 5. Cluster: we define a set of neighboring stations with similar bike usage patterns in a
given time window as a cluster C. We define the bike usage number of a cluster as the sum of the
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bike usage number of its member stations.

Definition 6. Over-Demand Cluster: we define an over-demand cluster as a cluster containing at
least one over-demand station in a given time window1.

We propose a two-phase dynamic cluster-based framework to predict over-demand occurrence
in a bikeshare system according to context. As shown in Figure 6.2, we extract discriminative
features from urban data to model the contextual factors relevant to bike usage, such as weather
condition and social events. In the dynamic station clustering phase, we first construct a weighted
correlation graph to model the relationship among bike stations according to the current context,
and then propose a geographically-constrained clustering method to cluster stations over the graph.
In the over-demand cluster prediction phase, we first estimate the bike rental and return number in
each cluster, and then predict the cluster over-demand probability.

3.3 Context Modeling Leveraging Urban Data

The bike usage pattern of a bikeshare system may be affected by various contextual factors, such as
weather condition and social events [58, 112]. Traditionally, collecting city-wide context informa-
tion usually requires substantial time and labor [42]. With the ubiquity of urban sensing infrastruc-
tures and paradigms, these contextual factors can now be captured at low cost via assorted urban
data [114]. However, given the considerable volume and variety of urban data, we need to identify
factors relevant to bike usage patterns for modeling contexts. To this end, we conduct a series of
empirical studies to analyze the relationship between bike usage and various contextual factors.

3.3.1 Common Contextual Factors

Based on previous studies and surveys [59, 61, 109], the common contextual factors relevant to
bike usage patterns usually include date and time, weather condition, and air temperature. By
exploiting the bikeshare data from the NYC Citi Bike system [117] and the meteorological data
from the Weather Underground API [118], we study the impact of the common contextual factors
as follows.

Date and Time

Intuitively, the bike usage pattern of a station might be different according to time of the day, and
day of the week. However, there may be correlations and similarities among different temporal

1Our solution in this work can directly adapt to the definition of ‘at least K over-demand stations’ if necessary. For
clarity, we focus on the definition of K = 1 now and discuss it later.
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Figure 3.3: The bike usage number of all stations in two months (06/01/2014–07/31/2014).

Table 3.1: Groups for modeling temporal context
Day type Group name Time span

Weekdays

morning rush hours 07:00–11:00
day hours 11:00–16:00
evening rush hours 16:00–20:00
night hours 20:00–24:00

Weekends/Holidays day hours 09:00–19:00
night hours 19:00–01:00

groups. Figure 3.3 shows a sample of the bike usage number of all Citi Bike stations in two months
from 06/01/2014 to 07/31/2014. We observe different bike usage patterns between weekdays and
weekends/holidays, as well as between different hours of a day. Based on such observations, we
derive six different temporal groups, as shown in Table 3.1. Note that we only consider the active
hours with intensive bike usage, and discard temporal groups of 0:00–7:00 in weekdays and 1:00–
9:00 in weekends/holidays.

Weather Condition

As presented in previous studies [59,119], bike usage patterns may vary significantly under different
weather condition, such as rain or snow. We quantitatively study the relationship between the bike
usage number and weather condition leveraging the hourly weather forecast data during the year of
2014. Specifically, we define the following five weather condition categories: clear, cloudy, rain,
snow, and haze. Figure 3.4(a) shows the average hourly bike usage number of all stations under
different weather condition. We observe that in rainy and snowy days, the bike usage number drops
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Figure 3.4: The hourly bike usage number of all stations across different meteorological contexts.

significantly, suggesting that weather condition should be considered as an important contextual
factor impacting the bike usage patterns.

Air Temperature

Similarly, air temperature is also considered as an important factor impacting the bike usage pat-
terns [58,119]. By exploiting the same weather forecast data, we study the relationship between the
hourly bike usage number and the air temperature over the year of 2014. As shown in Figure 3.4(b),
we observe strong correlation between the two variables. We empirically split the air temperature
range into four groups according to the seasonal temperature variations, i.e. below zero (< 0◦C),
cold ([0◦C,10◦C)), comfortable ([10◦C,22◦C)), and warm (≥ 22◦C).

3.3.2 Opportunistic Contextual Factors

The opportunistic contextual factors, including social events and traffic events, may cause unusual
bike usage in a subset of stations near the event locations [112, 119, 120]. For social events, the
impact on bike usage may be observed before, during and after the events. As the information
about the event time and location is usually posted by organizers in advance, we can model the
impact of these social events in the corresponding time windows. For traffic events (e.g., subway
delays), the impact on bike usage is usually observed after the occurrence of the events with a delay.
As such traffic events are published by urban authorities in real time, we can model the after-event
impact for these traffic events.
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Figure 3.5: An example event bulletin containing event name, type, time, and location. Bike icon
denotes the nearby bikeshare stations.

Table 3.2: Top 5 most impactive social and traffic event types
Social event IF Traffic event IF

City festival 4.73 Subway delay 1.47
Sports game 3.30 Traffic accident 1.23

Concert 3.24 Road restriction 1.20
Street fair 2.67 Traffic congestion 1.14

Parade/Marathon 2.33 Transit incident 1.11

Social Event

Riding public bikes to attend social events is a convenient transportation mode, especially when
there are vehicle restrictions or traffic congestion in the event locations. In order to quantitatively
study the impact of social events on bike usage, we collect the event bulletin data from the Eventful
API [121]. Figure 3.5 shows an example event bulletin for a concert with detailed event name,
type, time, and location. For each event, we select the stations located within a walking distance τ

of the event location (we empirically set τ = 620m based on experiment results as discussed later),
and then compare the bike usage number of these stations from one hour before the event start time
to one hour after the event end time with the value in the same time window without event. We
define the impacting factor (IF) of each event as the ratio of the event-time bike usage number to
the normal value, and derive the IF of each event type. Table 3.2 shows the top 5 most impactive
social event types on bike usage with regard to the IF.

Traffic Event

Previous surveys [59, 107] have shown that people might resort to public bikes as an alternative
means to avoid transportation problems, such as subway delays and traffic accidents. We quanti-
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tatively study the impact of these traffic events by exploiting the NYC 511 traffic data feed [122]
and the subway delay alerts from the NYCT Subway Twitter account [123]. We employ a similar
method as mentioned in the social event analysis to calculate the impacting factor for each type of
traffic event on its nearby stations in the next hour after the traffic event occurs. The top 5 most
impactive traffic event types are also presented in Table 3.2.

3.4 Dynamic Station Clustering

In this phase, our objective is to dynamically group neighboring stations into clusters according to
context, so that the stations in the same cluster have similar bike usage patterns. To this end, we
first model the relationship among bike stations using a weighted correlation graph [116], which
has been widely used in bioinformatics applications such as gene co-expression graph analysis
[124, 125]. Specifically, we regard bike stations as nodes, and connect two stations with a link if
they are geographically close to each other. We calculate the weight of each link according to the
associated common and opportunistic contextual factors, and merge them together to construct the
weighted graph model.

We then group neighboring stations with similar bike usage patterns into clusters. These clus-
ters can be considered as communities that are densely connected internally and loosely connected
between each other [126]. In the literature, various algorithms have been proposed to find commu-
nity structures in a graph, such as the Label Propagation algorithm [127] and the Girvan-Newman
algorithm [128]. However, directly applying these algorithms to detect communities may not be
adequate in our scenario, since we also need to constrain the geographic span of the formed clusters
within a reasonable bound for practical purposes. For example, a single cluster spanning several
kilometers is not useful for operators to schedule bike redistribution routes or set up temporary
bike corrals. Therefore, we proposed a Geographically-Constrained Label Propagation (GCLP)
method to solve this problem.

3.4.1 Station Correlation Network Construction

We model the relationship among bike stations as an undirected, weighted graph G = (V,E), where
V = {s1, . . . ,sN} denotes the set of N stations, and E denotes the set of links between two stations.
We then define the adjacency matrix A of graph G, which is an N×N symmetric matrix with entries
ai, j = 1 when there is a link between station si and station s j, and ai, j = 0 otherwise (i, j = 1, . . . ,N).
We further determine the weight of each link w(si,s j) based on the common and opportunistic
contextual factors.
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Adjacency Matrix

By definition, only neighboring stations could be grouped into the same cluster. Therefore, we
use the geographic distance of two stations to determine whether they are adjacent or not. More
specifically, for station si and station s j, we define:

ai, j =

{
1, if dist(si,s j)≤ τ

0, otherwise
(3.4.1)

where dist(si,s j) is the geographic distance between the two stations2, and τ is a neighborhood
threshold controlling the geographic distance of neighboring stations.

Link Weight

We determine the link weight by considering both common and opportunistic contextual factors as
follows:

w(si,s j) = ai, j× (µ wc(si,s j)+(1−µ) wo(si,s j)) (3.4.2)

where wc(si,s j) and wo(si,s j) correspond to the link weight associated with the common and op-
portunistic contextual factors, respectively, as detailed later. µ ∈ (0,1) controls the influence degree
of each type of contextual factor. We consider the case of normalized symmetric positive weights
(w(si,s j) ∈ [0,1]) with no loops (w(si,si) = 0). We note that w(si,s j) = 0 when there is no link
between si and station s j (ai, j = 0).

In order to calculate the link weight associated with the common contextual factors wc(si,s j),
we characterize the two stations by the historical bike usage records having the same common
contexts. More specifically, for the two stations si and s j composing the link, we construct a
corresponding feature vector

fc(si) = [U+
i (t1),U−i (t1), . . . ,U+

i (tK), . . . ,U−i (tK)] (3.4.3)

and
fc(s j) = [U+

j (t1),U
−
j (t1), . . . ,U

+
j (tK), . . . ,U

−
j (tK)] (3.4.4)

respectively, using the bike rental and return number of historical records having the same common
contexts Ψc. We remove records with over-demand stations, since in these situations the observed
bike rental or return number may be relatively small and not rewarding the potential demand on the
station, as users are not able to rent or return bikes in the station. We then calculate the Pearson

2Here we use the city-block distance to approximate the real-world walking or riding distance between stations.
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correlation coefficient [129] of fc(si) and fc(s j), denoted as corrc(si,s j), and normalize it to [0,1]
to obtain the link weight associated with the common contextual factors, i.e.,

wc(si,s j) =
1+ corrc(si,s j)

2
(3.4.5)

In order to calculate the link weight associated with the opportunistic contextual factors wo(si,s j),
we characterize the two stations by the number and type of events taking place near the stations.
More specifically, for the two stations si and s j composing the link, we search for the events tak-
ing place within the neighborhood threshold τ of each station, and count the number of events
by type as defined in Table 3.2. We construct a feature vector fo(si) = [Vi(1), . . . ,Vi(10)] and
fo(s j) = [Vj(1), . . . ,Vj(10)], where each Vi(m) and Vj(m) (1 ≤ m ≤ 10 since we consider 5 so-
cial event types and 5 traffic event types) corresponds to the number of events of type m taking
place near station si and s j, respectively. Similarly, we then calculate the Pearson correlation co-
efficient of fo(si) and fo(s j), denoted as corro(si,s j), and normalize it to [0,1] to obtain the link
weight associated with the opportunistic contextual factors, i.e.,

wo(si,s j) =
1+ corro(si,s j)

2
(3.4.6)

3.4.2 Geographically-Constrained Station Clustering

Problem Formulation

In this step, we need to group stations into clusters, so that each cluster consists of neighboring
stations with similar bike usage patterns. In the constructed station correlation graph, as the link
weight encodes the similarity between the two nodes, we need to cluster nodes with high link
weights together, which can be identified as a community detection problem [128]. Specifically,
given the weighted correlation graph G = (V,E), we first define a set of clusters P= {C1, . . . ,CK},
where

∪∀Ck∈P =V and ∩∀Ck∈P = /0 (3.4.7)

Then, given a node v, we define the connectivity of v to a cluster C as the sum of link weights
between v and the nodes in the cluster C:

con(v,C) = ∑v′∈C wv,v′ (3.4.8)

Finally, we define the adjacent clusters C(v) of node v as

C(v) = {C|con(v,C)> 0,C ∈ P} (3.4.9)
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With the above definition, our objective is to find an optimal set of clusters P, such that the
internal connectivity within a cluster is higher than the inter-cluster connectivity, i.e.,

∀v ∈Ck, con(v,Ck)≥ max{con(v,Cl),Cl ∈ P} (3.4.10)

We also need to bound the geographic span of a cluster within the neighborhood threshold, i.e.,

∀v,v′ ∈Ck, dist(v,v′)≤ τ (3.4.11)

Clustering Method

To obtain clusters with high internal connectivity (Equation 4.4.11) while meeting the geographic
constraint (Equation 4.4.12) at the same time, we propose the Geographically-Constrained Label
Propagation (GCLP) algorithm, which is built on the popular community detection algorithm Label
Propagation [127]. The basic idea of GCLP is iteratively assigning nodes to the adjacent clusters,
where the gain of assigning node v to cluster C is evaluated by a value function. Based on previous
discussion, the value function should be designed to reward the connectivity con(v,C) and penalize
the geographic span dist(v,v′),∀v′ ∈C. Therefore, we define the value function as

value(v,C) = con(v,C)× log
(

τ

max{dist(v,v′)}

)
(3.4.12)

The GCLP method greedily assigns the node to the adjacent cluster with highest value3 until none
of the nodes are moved among clusters [127]. As the convergence of such a greedy approach is
hard to prove [130], we set a maximum iteration number max_iter to ensure the algorithm will stop.

Example We use an example to illustrate the node assignment process. As shown in Figure
3.6, node v has three adjacent clusters C1,C2,C3, and the connectivity between v and each adja-
cent cluster is 7,4+ 2,9+ 8, respectively. The maximum distance between v and each cluster is
dist(v,v1) = 900m,dist(v,v4) = 500m,dist(v,v7) = 950m, respectively. Suppose the neighboring
threshold τ = 620m, then the value function of each cluster will yield −1.13,0.65,−1.30, respec-
tively. Hence, we assign node v to cluster C2 with the highest value.

Algorithm The GCLP algorithm is initialized by assigning each node in the graph to a unique
cluster label. In each iteration, we randomly populate a list of nodes L, and traverse the list to
update the cluster label of each node. The label update process is as follows. First, we remove the
node from its current cluster, and find the set of adjacent clusters to the current node. Then, we
compute the value function for all the adjacent clusters, and assign the node to the cluster with the
highest value. We mark the the node as moved among clusters if its new cluster label is different
from the old one. After we finish iterating over the node list, we decide whether to perform another

3If two clusters yield the same value, we randomly choose one.
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Figure 3.6: An illustrative example of the node assignment process of the GCLP algorithm. The
number on each link denotes the weight, and dist is the geographic distance between two nodes.

iteration or finish the algorithm based on the following stop criteria: (1) the user specified maximum
iteration number max_iter is reached, or (2) none of the nodes are moved among clusters.

Time Complexity For each iteration of the GCLP algorithm, it first takes O(|V |) steps for node
permutation, and then processes all the links when computing the value function for each node,
taking O(|V | ∗ |E|) steps in the worst case. Since we limit the number of iterations by max_iter, the
final time complexity of the algorithm is O(|V | ∗ |E|).

3.5 Over-Demand Cluster Prediction

After grouping stations into clusters, our objective in this phase is to predict the occurrence of over-
demand clusters. An intuitive method is to directly model the cluster over-demand probability with
regard to the contextual factors. However, since the opportunistic contextual factors are sparse in
time, it is difficult to find enough samples for a specific context to train the model. Moreover, the
ad hoc bike usage behaviors within a cluster also introduce uncertainty in over-demand prediction.
To address these issues, we first estimate the bike rental and return number of each cluster, and then
adopt Monte Carlo simulation to predict the cluster over-demand probability.

We separately exploit the common and opportunistic contextual factors to estimate the bike
rental and return number of a cluster. Specifically, we first estimate the base bike rental and return
number of the cluster leveraging historical records having the same common contextual factors.
We then infer an inflation rate [131] to quantitatively measure the impact of the nearby social and
traffic events on the cluster. Finally, we multiply the base bike rental and return number by the
inflation rate to obtain the final estimation value the cluster.

With the estimated bike rental and return number and the current station status of a cluster,
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we adopt Monte Carlo simulation [132] to predict the over-demand probability for each cluster.
Specifically, we first model the bike rental and return events in the prediction time window as
a Poisson process [133] parameterized by the predicted bike rental and return number. We then
generate two stochastic sequences [134] of bike rental and return events based on the corresponding
distributions. We simulate the bike rental and return processes by randomly dispatching these
events to available stations in the cluster in chronological order, until a station over-demand occurs
(i.e., the station stays full or empty for more than 10 minutes), or both sequences are traversed. We
repeat the simulation for a number of times, and use a threshold to detect over-demand clusters.

3.5.1 Bike Rental and Return Number Estimation

First, we estimate the base bike rental and return number of a cluster using the cluster’s average
value in historical records having the same common contextual factors. Note that we deliberately
remove records with social or traffic events in the cluster, since in these records, the bike rental
and return number caused by opportunistic events are mixed with the ones related to the common
contextual factors.

Then, we model the inflation rate at the event type level. We assume that under the same
common context, the same type of events have similar inflation rates on the nearby clusters. Here
we define an event as being near a cluster if the geographic distance of the event and the cluster
center is within the neighborhood threshold τ . Specifically, under a common context Ψc(t), we
denote the inflation rate of event type i as θ i (i = 1, . . . ,10 corresponding to the types in Table 3.2).
For cluster C, the overall inflation rate is then ∑

I
i=1 ni θ i, where ni is the number of events of type

i observed near the cluster. In order to infer each θ i, we select historical records of cluster C with
events under the same common contexts Ψc(t), and calculate the overall inflation rate in each record
by dividing the bike rental and return number by the base number of the cluster (which is calculated
in the previous step). We collect the corresponding event number and the overall inflation rate from
all clusters, and train a linear regression [135] model to infer each θ i. With the learned θ i, we
calculate the overall inflation rate for cluster C.

Finally, we multiply the base bike rental (return) number by the overall inflation rate to obtain
the final prediction of the bike rental (return) number for each cluster.

3.5.2 Over-Demand Probability Prediction

Given the predicted bike rental and return number in a cluster, we adopt a Monte Carlo method
to simulate the bike rental and return process in the cluster. According to [50], the number of
bikes rented or returned in the predicted time window follows a Poisson distribution. We take the
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bike return number as an example to elaborate on the details. Given a cluster C with the predicted
bike return number NC in the time window [t, t +∆t ] (e.g., one hour), we divide ∆t into T small
consecutive time intervals δ t = ∆t/T (e.g., one minute). The number of bikes returned to this
cluster k in δ t follows a Poisson distribution with mean parameter λ = Nc/T :

p(k|λ ) = e−λ λ
k

k!
, k = 0,1,2, . . . (3.5.13)

We then generate a stochastic sequence Q+
i = [k1, . . . ,kT ] from the distribution to simulate the

bike return events in the cluster. Similarly, we generate a stochastic sequence Q−i based on the bike
rental distribution for the bike rental events.

Afterward, we randomly dispatch the bike return and rental events from both sequences to any
available stations in chronological order4. If a station is observed to be full or empty for more than
10 minutes, we mark the cluster as an over-demand cluster and stop the process. Otherwise we
traverse the sequences and output the cluster as a normal cluster in the given time window. We note
that if we define the over-demand cluster as ‘containing at least K over-demand member stations’,
our method can directly adapt to the new definition by observing K over-demand stations in the
cluster before marking the cluster as being an over-demand cluster.

We repeat the simulation for Γ times (e.g., 10,000 times) to count the over-demand occurrences
γ , and estimate the over-demand probability of the cluster as the rate p = γ/Γ. We use a discrimi-
nation threshold ε to classify a cluster as an over-demand cluster if p≥ ε .

3.6 Evaluation

3.6.1 Experiment Settings

Datasets

We evaluate our framework in New York City and Washington, D.C., respectively. We collect
bikeshare data and context data for two years (01/01/2014–12/31/2015), as presented in Table 6.1.
The data processing details are as follows.

• Bike sharing data: we collect two years’ bike trip historical records from the data portals
of NYC Citi Bike [117] and DC Capital Bikeshare [60], respectively. The data format of
each trip record is: (rental station, rental time, return station, return time). Based on the
records, we count the bike rental number and bike return number in each hour for each

4In reality, users might have preferences on specific stations, while such preferences are not always significant and
consistent within a small cluster based on our observations on the dataset. We plan to model user preferences in our
future work.
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Table 3.3: Summary of Datasets
Data type Item New York City Washington, D.C

Bike sharing
# Stations 327 203
# Bike trips 18,019,196 6,138,428
# Station status hourly hourly
# Over-demand 626,856 318,576

Contextual factors
# Weather forecast hourly hourly
# Social events 435 329
# Traffic events 958 745

Data collection period 01/01/2014–12/31/2015

station, respectively. We also collect the hourly station status data from the Citi Bike station
feed [117] and the Capital Bikeshare station feed [60], respectively, to obtain the number of
available bikes and docks in each station at the beginning of each hour.

• Meteorological data: we retrieve the hourly weather forecast data for both cities from the
Weather Underground API [118], and parse the weather condition and air temperature value
for each hour based on the data.

• Social event data: we compile a list of social events from the Eventful API [121] in the two
years for both cities. We select events based on the types defined in Table 3.2. Each social
event record contains the following fields: (name, type, time, location).

• Traffic event data: we retrieve the traffic events of NYC from the NYC 511 traffic feed and
the NYCT Subway Twitter account, and the traffic events of DC from the DC Police Traffic
Twitter account [123]. We process these data records and filter relevant traffic events based
on Table 3.2.

We collect the ground truth of over-demand clusters as follows: at the beginning of the hour,
we obtain the current numbers of available bikes and docks in each station of a cluster from
the station feeds, and then update the status of each station based on the bike rental and return
data during the hour. As soon as we observe a station staying full or empty for more than
10 minutes, we mark the enclosing cluster as an over-demand cluster. Otherwise, we mark
the cluster as normal in the hour. In this way, we obtain 626,856 and 318,576 over-demand
events in NYC and DC during the two years, respectively. These over-demand events usually
occur in stations near transportation hubs during rush hours, and stations near parks during
weekend daytime.
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Table 3.4: The contingency table with an example

Prediction
Truth

Over-demand clusters Normal clusters

Over-demand clusters
True Positive (TP)

11
False Positive (FP)

2

Normal clusters
False Negative (FN)

1
True Negative (TN)

54

Evaluation Plan

We use the data of 2014 as the training set to learn the relationship between bike usage patterns
and contextual factors, and use the data of 2015 for evaluation. We perform a prediction every hour
during the active hours of a day. For each prediction, we first obtain the context of the corresponding
time window, including the temporal group, the weather and temperature forecast, the social events
starting/happening/ending in the next hour, and the traffic events occurred in the previous hour. We
then dynamically cluster stations according to the context, and predict the over-demand clusters for
the corresponding time window.

Evaluation Metrics

We compare the over-demand prediction of each cluster to the ground truth, and organize the results
according to Table 3.4. For example, Table 3.4 shows a clustering scheme with 68 clusters, among
which 12 clusters are over-demand, and the proposed method successfully predicts 11 of them. We
define the following metrics to evaluate the prediction accuracy [136]:

precision =
|T P|

|T P|+ |FP|
, recall =

|T P|
|T P|+ |FN|

(3.6.14)

F1-Score =
2 ·precision · recall
precision+ recall

(3.6.15)

To further evaluate the prediction performance, we draw the ROC Curve [137] by plotting the
true positive rate ( |T P|

|T P|+|FN| ) against the false positive rate ( |FP|
|FP|+|T N| ) under various discrimination

threshold settings. We compute the AUC (Area Under ROC Curve) [137] values as another metric
to evaluate the prediction performance.

Baseline Methods

We name our method WCN-MC (Weighted Correlation Network and Monte Carlo simulation),
and compare our method with two sets of baselines, i.e., the station-level and the cluster-cluster
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prediction methods. In particular, we design three station-level baselines:

• ARIMA: this baseline method models the number of available bikes (docks) in a station as a
time series, and uses an auto-regressive integrated moving average (ARIMA) model [51] to
predict the station status in the future. It then detects the occurrence of over-demand stations
based on the predicted station status.

• B-MC: this baseline method uses a Bayesian network to model and predict the bike rental and
return number of each station leveraging station status and the context features [56]. It then
directly applies the Monte Carlo simulation method on each single station for over-demand
prediction.

• ANN-S: this baseline method directly models the over-demand probability with regard to
the current station status and the context features by leveraging an Artificial Neural Network
(ANN) model.

To make a fair comparison with our method, for each of these station-level baselines, we further
infer its cluster-level prediction by clustering the stations in the same way as our method. We also
design three cluster-level baselines as follows:

• SC-MC: the Static Clustering (SC) baseline method uses the clustering approach proposed
by [61] to group stations into static clusters based on the geographic distance and the bike
usage patterns of stations in all contexts . It then uses the same Monte Carlo method as in
WCN-MC to predict over-demand clusters.

• CCF-MC: the Common Contextual Factor-based Clustering (CCF) method does not con-
sider the opportunistic contextual factors and use a template-based method in station cluster-
ing. It then applies the same Monte Carlo method as in WCN-MC to predict over-demand
clusters.

• ANN-C: this baseline method uses the same clustering results from our method, and then
directly predicts cluster over-demand probability based on the status of stations in the cluster
and the context features using an ANN model. We design this method to verify the effective-
ness of our Monte Carlo-based method.

3.6.2 Evaluation Results

We first present the overall prediction results in both cities, and then study the impact of two pa-
rameters (neighborhood threshold τ and discrimination threshold ε) on the NYC results, while the
results of DC are similar.
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Overall Prediction Results

We compare the over-demand prediction results of different methods in Table 3.5. Our WCN-
MC method achieves 0.882 precision and 0.938 recall in NYC, and 0.857 precision and 0.923
recall in DC, outperforming all the baseline methods. In general, the cluster-level methods achieve
higher accuracy than the station-level methods. In particular, among the station-level methods, the
context-aware method B-MC achieves significantly better results than the time series-based method
ARIMA, which justifies the necessity of incorporating context information in over-demand predic-
tion. Among the cluster-level methods, CCF-MC outperforms SC-MC by involving the common
contextual factors in the clustering phase. Our WCN-MC method further improves the performance
upon CCF-MC by considering not only the common contextual factors but also the opportunistic
contextual factors. We also note that the ANN-S and ANN-C methods do not achieve best results in
the corresponding station-level and cluster-level baseline groups, indicating that directly exploiting
context features to model the over-demand probability does not achieve consistent improvement
in prediction accuracy. In contract, our method separately models the impact of the common and
opportunistic contextual factors and consistently achieves high over-demand prediction accuracy.

Parameter Impact Study

We examine the impact of the neighborhood threshold τ on the prediction performance. Based
on bikeshare system operation reports [59, 108], we vary the threshold τ from 500m to 700m,
corresponding to the common walking distance range of users. Figure 3.7(a) shows the F1-Score
under different τ values. We can see that setting a small neighborhood threshold leads to relatively
lower accuracy, probably because the resulting clusters might be too small to exhibit consistent
bike usage pattern. On the other hand, a large cluster might not be practically useful for operators.
Therefore, we set τ = 620m in our experiments, and obtain an average of 67.08 clusters out of
327 stations. Each cluster contains an average of 4.74 stations with an average geographic span of
613.40m. Based on this setting, we then determine the optimal influence degree µ = 0.53 which
maximizes the F1-Score.

We also study the prediction performance under different discrimination thresholds by varying
the values of ε from 0 to 1. Figure 3.7(b) shows the ROC curve of our WCN-MC method as well as
the two cluster-level baselines CCF-MC and SC-MC. Our method achieves an AUC of 0.97, which
is higher than the two baselines (0.93 for CCF-MC and 0.89 for SC-MC, respectively). Based on
the ROC plot, we select ε = 0.71 as the optimal discrimination threshold in our experiments.
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(a) Neighborhood threshold (b) ROC curves

Figure 3.7: Parameter impact analysis.

Table 3.5: Over-demand prediction results of different methods
Methods Precision Recall F1 Precision Recall F1

NYC DC

ARIMA 0.548 0.506 0.526 0.520 0.541 0.530
B-MC 0.753 0.656 0.692 0.636 0.539 0.583

ANN-S 0.776 0.571 0.658 0.667 0.428 0.521

SC-MC 0.790 0.647 0.711 0.793 0.821 0.807
CCF-MC 0.833 0.832 0.828 0.815 0.880 0.846

ANN-C 0.673 0.852 0.752 0.857 0.600 0.706

WCN-MC 0.882 0.938 0.909 0.857 0.923 0.889

3.6.3 Case Studies

Weekday Rush Hours

Figure 3.8(a) shows the dynamic clustering and over-demand prediction results during the morning
rush hours of a typical weekday (8:00–9:00, 06/07/2015), where the red/green/black colors encode
full/normal/empty cluster status, respectively. We observe several clusters near major transportation
hubs and business/residential districts, such as the Penn Station area (Circle 1), the Wall Street area
(Circle 2), and the Brooklyn Heights area (Circle 3). During rush hours, these clusters are usually
full or empty, revealing the underlying dynamics and directions of the commuting flow. With
such knowledge, bikeshare system operators could take preventive actions to ensure the station
availability, such as sending trucks to redistribute bikes among these areas before rush hours.
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(a) Weekday morning rush hours (b) Sunny spring weekend

Figure 3.8: Dynamic clustering and prediction results in different temporal and weather contexts.

Weather Condition and Air Temperature

We present the result of a sunny spring weekend afternoon (14:00–15:00, 05/24/2015) in Figure
3.8(b). We observe several full clusters near the major parks of NYC, such as Central Park (Circle
1), Union Square Park (Circle 2), and Battery Park (Circle 3). A possible explanation is that people
like to ride bikes to parks to enjoy outdoor activities in the springtime [138]. With such knowledge,
bikeshare system operators can provide more pleasant weekend riding experience by, for example,
setting up temporary bike corrals around these parks to ensure sufficient docks.

Social Events

We study the case of the city festival Summer Streets [139] in 2015. Summer Streets is a celebration
of NYC’s streets on three Saturdays in August (we present the results of 12:00–13:00, 08/08/2015),
featuring bike tours, block parties, and street arts along Park Avenue from Central Park to New York
City Hall (Figure 3.9(a)). Taking the event information into account, our dynamic clustering and
prediction method successfully identifies several empty clusters along Park Avenue near Central
Park and City Hall, as highlighted in Figure 3.9(b). Interestingly, we notice a full cluster near Union
Square (the circle in Figure 3.9(b)). We examine the events and find the Union Square Greenmarket
[140] is being held in the park. The Greenmarket features foods and cooking demonstrations,
which might attract crowds of riders to stop for a rest. With the prediction, operators can adjust
bike redistributing plans in Park Avenue before the festival, and set up temporary bike corrals near
Union Square.
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Figure 3.9: Clustering and prediction results of NYC Summer Streets.

Table 3.6: Running time analysis
Procedures Time (ms)

NYC DC

GCLP clustering 863 532
Bike usage number prediction 701 428
Monte Carlo simulation 8,523 5,349

Total 10,087 6,309

3.6.4 Running Time Analysis

We evaluate the runtime efficiency of our approach on a 64-bit server with an quad-core 3.20GHz
CPU and 32GB RAM. We find that the prediction accuracy regarding F1-Score does not increase
significantly when the Monte Carlo simulation times Γ exceeds 8,000. Therefore, we set Γ = 8,000
in each prediction cycle, and present the detailed processing time in Table 3.6. The average time
for running a prediction is about 10 seconds for NYC Citi Bike system and about 6 seconds for DC
Capital Bikeshare system, respectively.

3.7 Conclusion

In this work, we propose a dynamic cluster-based framework to predict over-demand occurrence in
bikeshare systems according to the varied and highly dynamic contexts. To effectively model the
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relationship among bike stations, we consider two sets of contextual factors, i.e., the common con-
textual factors including time, weather, and temperature, and the opportunistic contextual factors
including social and traffic events. We model the relationship using a weighted correlation graph,
and propose a geographically-constrained clustering method to group stations into clusters. Evalua-
tions on NYC and DC show that our framework consistently achieves high over-demand prediction
accuracy in both cities across different contexts, and outperforms the start-of-the-art methods.

In the future, we intend to improve this work from the following aspects. First, we plan to
better characterize the contexts with richer urban data, such as incorporating the social network
check-ins. Second, we plan to explore the impacts of newly established stations and cluster size on
the prediction accuracy. Third, we plan to evaluate our method on bikeshare systems in other cities
with different cultural settings.
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4.1 Introduction

Today, mobile network data traffic is growing explosively as Internet-enabled smartphones and
tablets become increasingly popular [141]. According to Cisco [19], global mobile network data
traffic has grown 18-fold over the past five years, and the next-generation cellular systems (e.g.,
5G) are expected to experience tremendous data traffic growth [142]. In order to accommodate
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(a) (b)

Figure 4.1: (a) Data traffic patterns in different areas of Milan during a typical weekday. The blue
solid line denotes the data traffic in a business district (Centro Direzionale), while the red dashed
line corresponds to the data traffic in a residential area (Quintosolo District). (b) The aggregated
data traffic pattern of the two areas. Triangles indicate the peak traffic hour and volume.

the fast growing data traffic demand, mobile network operators need to increase their data pro-
cessing capacity, such as deploying more base stations, and adding more data processing units to
base stations. Consequently, the capital expenditures of deploying these network infrastructures
are becoming increasingly high, and may harm operator’s revenue as network scale grows [21].
Moreover, the operating expenses of mobile network infrastructures, such as energy consumption
and maintenance spending, are substantially increasing [24]. Therefore, optimizing the capital ex-
penditures and operating expenses has become a necessity for mobile network operators [23, 143].

Even though the overall data traffic demand of the mobile network is growing, the demand in
different areas and during different periods of time is not evenly distributed [144]. For example,
as shown in Figure 4.1(a), the traffic in a business district (denoted as a blue solid line) observes
peaks during working hours, while the traffic in a residential area (denoted as a red dashed line) is
relatively higher during evening hours than in working hours. Such a spatial-temporal non-uniform
property of traffic demand poses great challenges for operators to optimize the capital expenditures
and operating expenses of their network infrastructures. On one hand, the data processing capacity
of each base station needs to cover its peak traffic volume, leading to high deployment cost. On the
other hand, the capacity in individual base station is wasted during off-peak hours, resulting in low
capacity utility.

Fortunately, with the rapid evolution of mobile network architectures, the emergence of Cloud
Radio Access Network (Cloud-RAN) [26] has presented new opportunities to address the above
challenges. In Cloud-RAN, a traditional base station is split into two components: a Remote Radio
Head (RRH) for radio communication, and a Baseband Unit (BBU) for mobile data processing. The
BBUs are further detached from the RRHs and hosted in centralized BBU pools [23]. The RRHs
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and BBU pools are usually connected via high speed optical fiber [23]. By clustering RRHs with
complementary traffic patterns to a BBU, the data processing capacity in the BBU can be shared
among RRHs in different time periods, and thus increasing the capacity utility of the BBU [77].
Furthermore, the required capacity of the BBU is expected to be smaller than the sum of capacities
of single base stations, leading to a decrease in deployment cost. For example, in Figure 4.1, if
we cluster the RRHs in the business district (blue) and in the residential area (red) to a BBU, the
aggregated traffic pattern will become relatively stable and the BBU will have a higher capacity
utility (Figure 4.1(b)). Meanwhile, the capacity required for the BBU can be reduced from the
sum of the two peaks (1.50 = 0.65+ 0.85) to a lower aggregated value (1.10). In summary, by
pooling BBUs from multiple base stations into a centralized BBU pool, the statistical multiplexing
gain [23] can be achieved in the cloud-RAN architecture [26].

In order to unlock the power of the Cloud-RAN architecture, it is of great importance to char-
acterize the traffic patterns of RRHs, and to cluster complementary RRHs to a set of BBUs [77,91],
so as to maximize the capacity utility and minimize the deployment cost. However, since the data
traffic generated in the RRHs are highly dynamic over different time and locations, accurately fore-
seeing and characterizing the RRH traffic patterns in advance is quite challenging, hindering the
optimization of RRH clustering and BBU mapping. More specifically, given a set of RRHs in a city,
we need to accurately foresee their data traffic patterns in a future period of time (e.g., one day),
and find optimal schemes to cluster RRHs with complementary traffic patterns, and map them to a
set of BBUs. In order to achieve these goals, we need to address the following issues:

1. How to foresee the RRH traffic for a future period of time? The data traffic in each
RRH can vary significantly, depending on the impacts of temporal contexts (e.g., weekdays
or weekends), human mobility, and social events, etc. Moreover, the data traffic of RRHs
located in similar functional areas may demonstrate potential correlations. For example,
during weekdays, the RRHs located in business districts usually observe data traffic peaks
during working hours, and low data traffic volumes at nights. Capturing the hidden temporal
dependency and spatial correlation among RRH traffic patterns is not trivial using state-of-
the-art time series models, such as ARIMA [94] or neural networks [97]. Therefore, we need
to foster more effective techniques for accurate RRH traffic pattern forecasting.

2. How to measure the complementarity among RRHs? In order effectively to share and
reuse the capacity of a BBU mapped to a cluster of RRHs, the traffic peaks of the RRHs
in the cluster should be scattered temporally (i.e., occur at different hours). Meanwhile, to
make full use of the BBU mapped to a cluster and avoid BBU overloading, the aggregated
cluster traffic should be close to the BBU capacity to a maximal extent, while not exceed
the BBU capacity too much. Therefore, we need to take into account both aspects, i.e.,
the peak distribution and the capacity utility, to design an effective metric to measure the
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complementarity of RRHs.

3. How to optimally cluster complementary RRHs into BBUs? Given the traffic forecast
and the complementarity measurements of RRHs, there are potentially enormous numbers
of schemes to cluster these RRHs and map them to BBUs in a pool. The optimal scheme
not only needs to maximize the average BBU capacity utility, but also needs to minimize the
overall deployment cost. Moreover, in order to support fast handover and content offloading
between neighboring RRHs [23, 37], the distances among a cluster of RRHs should be con-
strained within a reasonable range. Therefore, we need to design an effective algorithm to
find the optimal RRH clustering scheme under the distance constraint.

With the above-mentioned objectives and issues, the main contributions of this work are:

• We propose a deep-learning-based approach to accurately foresee RRH traffic patterns for
a future period of time. The proposed approach are capable of modeling the temporal de-
pendency and spatial correlation among the RRH data traffic, and accurately forecasting the
future traffic pattern based on historical observations.

• We propose a two-phase framework to dynamically find optimal RRH clustering and BBU
mapping schemes under different contexts. In the first phase, we forecast the traffic patterns
of RRHs leveraging the proposed MuLSTM model, and propose an entropy-based metric
to characterize the complementarity of RRHs, taking into account both the peak distribution
and capacity utility. In the second phase, we build a weighted graph to model the comple-
mentarity of RRHs, and propose a distance-constrained clustering algorithm to find optimal
RRH clustering schemes with the objectives of both capacity utility and deployment cost.

• We evaluate the performance of our method using datasets in two months from real-world
mobile networks in Milan and Trentino, Italy. Results show that our method effectively in-
creases the average capacity utility to 83.4% and 76.7%, and reduces the overall deployment
cost to 48.4% and 51.7% of the traditional RAN architecture in the two datasets, respectively,
which consistently outperforms the state-of-the-art baseline methods.

4.2 Preliminaries and Framework

4.2.1 Preliminaries

In mobile network architectures, a set of base stations are deployed over geographical areas called
cells [145]. Each base station provides the cell with the network coverage which can be used for
transmission of voice and data. With the recent emergence of smartphones and tablets, the data
traffic generated from users connected to the RRHs is increasing rapidly [19, 21].
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In order to benchmark the data processing capacity of base stations, many operators have col-
lected large scales of RRH traffic statistics data and make them publicly available [141]. In this
work, we exploit the dataset released by Telecom Italia for the Big Data Challenge initiative [86].
We extract two months of network traffic data from 11/01/2013 to 12/31/2013 in the city of Milan,
Italy and the province of Trentino, Italy. We also collect the locations of active base stations in
Milan and Trentino during the two months from CellMapper.net1, and derive the traffic volume of
each base station during the two months on an hourly basis. The traffic data pre-processing steps
will be detailed in the evaluation section.

In this work, we consider a Cloud-RAN architecture with one BBU pool for the city-wide
mobile network. The benefits of adopting such a centralized pool are two-fold. First, the deploy-
ment cost and energy consumption can be greatly reduced by employing data center virtualization
technologies [146]. Second, the handover handing and contents offloading among RRHs can be
processed internally in the pool, which significantly reduces delays and increases throughput [23].
BBUs in the pool are implemented as virtual machines with specific predefined capacities. In this
work, for fair of comparison and simplicity, we assume the BBU capacity to be fixed and equal to
the on-site BBUs in the traditional architecture.

4.2.2 Framework Overview

We propose a two-phase framework to dynamically cluster complementary RRHs to a set of BBUs,
so that the BBU capacity utility and the deployment cost of the entire network can be optimized.
As shown in Figure 6.2, in the dynamic RRH profiling phase, given a set of RRHs at a time point,
we first propose a deep-learning-based approach to forecast the traffic patterns of RRHs in a future
period of time based on their historical traffic data, and then calculate the complementarity of RRHs
using a proposed entropy-based metric. In the dynamic RRH clustering phase, we first build a graph
model to represent the complementarity among RRHs, and then propose a distance-constrained
clustering algorithm to cluster RRHs with complementary traffic patterns. We elaborate on the
details of this framework in the following sections.

4.3 Dynamic RRH Profiling

In order to cluster RRHs with complementary traffic patterns to a BBU, we need to be able to
forecast the traffic pattern of each RRH in a future period of time. Since the traffic of RRHs vary
significantly and exhibit potential spatial correlations, we propose a deep-learning-based approach
to model the spatial-temporal dynamics and to forecast the future traffic pattern accurately. Based

1https://www.cellmapper.net/map
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Figure 4.2: Framework overview.

on the traffic forecast, we dynamically characterize the complementarity of RRHs, focusing on the
peak distribution and capacity utility of a cluster of RRHs, and design an entropy-based metric to
characterize their complementarity.

4.3.1 RRH Traffic Forecasting

Based on the historical traffic data, we observe that the traffic patterns of RRHs are highly dynamic
under different temporal contexts. For example, Figure 6.5(b) shows the traffic patterns of two
RRHs located in two business districts in Milan during one week, respectively. We observe signif-
icant traffic peaks during the working hours of weekdays, and low capacity utility during off-work
hours. Moreover, we observe that the traffic patterns of RRHs located in similar functional areas
usually demonstrate similar trends. For example, in Figure 6.5(b), the traffic patterns in the two
business districts of Milan show similar weekday-weekend patterns.

Basic Idea

In order to accurately forecast the traffic patterns of the RRHs in a future period of time, we need
to be able to effectively capture their temporal dependency and spatial correlation. However, this
is not trivial using the state-of-the-art techniques. In this work, we propose a deep-learning-based
approach for our problem. More specifically, we exploit the Recurrent Neural Network (RNN) to
automatically capture the intrinsic temporal dependency in our traffic data. An RNN is a special
type of neural network designed for sequential pattern mining problems [147]. Built upon the
windowed-ANN architecture, an RNN features additional loops to the neurons in the layers of the
neural network. Each neuron may pass its signal laterally in addition to forward to the next layer,
and consequently, the output of the network for a window may feedback as an input to the network
for the next window. Such recurrent connections add state or memory to the windowed-ANN
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Figure 4.3: The locations of base stations in Milan and two of the illustrative examples of traffic
patterns observed in two business districts from 11/25/2013 to 12/01/2013. Red color denotes high
average traffic volume and green color corresponds to low average traffic volume.

architecture and allow it to learn and harness the intrinsic temporal dependency in the time series.

Unfortunately, training an RNN effectively is technically challenging due to the vanishing or
exploding gradient problem, i.e., the weights in the training procedure quickly became so small as
to have no effect (vanishing gradients) or so large as to result in very large changes (exploding gra-
dients). To overcome this problem, researchers proposed the Long Short-Term Memory Network
(LSTM) model [148], which introduces the concepts of memory cells and forget gates to generate
consistent data flow between the layers of the network and keep the weights stable [149]. In this
work, we exploit the LSTM model to effectively learn the temporal dependency of our traffic data.

The other challenge is to model the spatial correlation between RRHs in the network. The
above-mentioned approaches typically model the traffic of each RRH as a separate time series, mak-
ing it difficult to capture the correlation between RRHs. In this work, we propose a multivariate-
Long Short-Term Memory Network (MuLSTM) approach to model the RRH traffic in a city in
a unified model, putting each RRH traffic as a sequence for training and forecasting, and conse-
quently learn the spatial correlation between RRHs.

The MuLSTM Model

Before introducing the MuLSTM model, we define several important terminologies as follows:

Definition 7. Remote Radio Head (RRH): The RRHs in a city-wide mobile network can be de-
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scribed as a set of points denoted by the following 3-tuple:

{r|r = (rid, lat, lng)}

where rid, lat, lng are the unique ID, latitude, and longitude of the RRH.

Definition 8. RRH Traffic: The mobile data traffic collected from each RRH can be denoted by a
set of fixed-length sequences:

{ f | fi = [ui(1), . . . ,ui(t), . . . ,ui(Nt)]}

where ui(t) is the traffic volume of RRH i in time span t(1 ≤ t ≤ Nt). In this work, we use an one
hour time span.

With the collected traffic data, we first organize the collected RRH traffic into a matrix FRNt×RNr ,
where Nt is the number of time spans, and Nr denotes the number of RRHs in the network. We
denote the traffic of RRHs we have observed until time t as F([0, t], :), and the traffic of RRHs we
would like to forecast in a future period of time ∆t as F([t, t +∆t], :). In this work, to simplify the
implementation, we use one hour time span, and ∆t = 24 hours with t mod 24= 0, i.e., we forecast
the hourly traffic of RRHs for the next day at the end of each day, and dynamically update the RRH
clustering scheme based on the forecast. Based upon this, we generate a set of traffic snapshots
from the traffic matrix, which is defined as follows.

Definition 9. RRH Traffic Snapshot: A traffic snapshot is defined as a matrix Fi, which corre-
sponds to the traffic of all the RRHs during a given period of time ∆t, i.e.,

F = {Fi|Fi = F([(i−1)∗∆t, i∗∆t], :), i = 1,2, . . .}

In order to make traffic forecast, we train a sequence to sequence model [147] leveraging a
unified multivariate LSTM model. During each forecasting, the model accepts Fi as input and
outputs Fi+1. Note that such a model is called a many-to-many sequential model because both
the input and output contain ∆t time spans, and the order of the time spans play an important
role in shaping the model’s inner structure. Moreover, the traffic of RRHs are input to the model
as multivariate features simultaneously, which enables the model to learn the spatial correlation
between RRHs.

Finally, we elaborate on the design of the MuLSTM network structure. In general, the MuL-
STM model follows the encoder-decoder structure by stacking two LSTM layers L1 and L2. The
encoder L1 accepts a snapshot of size [∆t,Nr], learns the temporal and spatial structures in the
snapshot, and passes the encoded sequences to the decoder. The decoder then makes forecast for
a future snapshot of size [∆t,Nr] based on the learned structures. The model is trained using the
popular Backpropagation Through Time (BPTT) algorithm for multiple iterations. We elaborate
the details of the model parameters in the evaluation section.
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4.3.2 RRH Complementarity Measurement

Once we have the traffic snapshot forecast for the next day, we are able to evaluate the comple-
mentarity of RRHs in that context, and cluster complementary RRHs to a BBU. We consider the
following two aspects to design an effective complementarity metric of RRHs.

Peak Distribution

The peak traffic volume of a set of RRHs clustered to the same BBU should be scattered in different
temporal contexts, so that the capacity of the BBU can be shared among these RRHs. To this end,
we design an entropy-based metric to measure the peak distribution of a set of RRH. Specifically,
given a set of clustered RRHs C = {r1, . . . ,rn} , we first find the peak hours in their traffic profiles,
respectively, i.e.,

T (ri) = {ti1 , ti2 , . . . , tim}, 1≤ im ≤ 24 (4.3.1)

where tim denotes the mth peak time of ri. Then, we calculate the Shannon entropy [150] of the peak
hours of the set of clustered RRHs T (C) = ∪T (ri) as follows:

H(C) =−
K

∑
k=1

pk log pk (4.3.2)

where K = |T (C)| corresponds to the total quantity of peaks in C, and pk is the probability of
observing the corresponding peak hour in the set T (C). A larger entropy value of a RRH cluster
indicates that the RRHs are more complementary in the cluster w.r.t. traffic patterns.

Capacity Utility

To make full use of the BBU mapped to a cluster C, the aggregated cluster traffic should be close to
the BBU capacity in different hours of the day. Meanwhile, to prevent the BBU from overload, the
aggregated cluster traffic should not exceed the BBU capacity too much. To this end, we design the
following metric to quantitatively measure the capacity utility of a BBU B mapped to a cluster C:

U(C) = (
mean f(C)

|B|
)
−ln mean f(C)

|B| (4.3.3)

where f(C) =∑
n
i=1 f(ri) denotes the aggregated traffic profile of the RRH cluster, and |B| is the fixed

BBU capacity measured in traffic volume. Figure 4.4 shows the illustrative curve of the capacity
utility function, which achieves its maximal when the mean aggregated traffic volume is equal to
the BBU capacity.
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Figure 4.4: The curve of the designed capacity utility function, which reaches its maximal when
the cluster traffic volume equals the BBU capacity.

Finally, we calculate the complementarity of the RRH cluster C as follows:

M(C) =U(C)∗H(C) (4.3.4)

=−(mean f(C)

|B|
)
−ln mean f(C)

|B|
K

∑
k=1

pk log pk (4.3.5)

4.4 Complementary RRH Clustering

In this phase, our objective is to cluster RRHs with complementary traffic patterns to a set of BBUs
in a pool. One intuitive method is to exhaustively search for RRHs with complementary traffic
patterns and iteratively cluster them. However, since there are a tremendous number of clustering
schemes, such a method can be computationally intractable as the network scale increases. More-
over, the distance between RRHs and BBU pool should also be constrained within a range, since
the propagation delay between RRHs and BBU pool may exceed quality-of-service requirements
as distance increases, and we also need to enable machine to machine communications between
RRHs such as handover [81] in the mobile network.

Therefore, we propose a graph-model-based algorithm to effectively cluster neighboring RRHs
to the same BBU under distance-constraints. First, we construct a weighted graph model to rep-
resent the relationship of RRHs, exploiting graph links to express the RRH distance constraints,
and link weights to characterize the RRH complementarity measurement. Then, we propose a
community-detection-based algorithm to iteratively cluster RRHs into clusters, so that the comple-
mentarity of RRHs is maximized within each cluster and minimized across different clusters.
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4.4.1 Weighted-Graph-Based RRH Modeling

We model the complementarity among RRHs as an undirected, weighted graph G = (V,E), where
V = {r1, . . . ,rN} denotes the set of N RRHs, and E denotes the set of links between two RRHs.

We then define the adjacency matrix A of graph G, which is an N×N symmetric matrix with
entries ai, j = 1 when there is a link between RRH ri and RRH r j, and ai, j = 0 otherwise (i, j =
1, . . . ,N). We use the geographic distance of two RRHs to determine whether they are adjacent or
not. More specifically, for RRH ri and RRH r j, we define:

ai, j =

{
1, if dist(ri,r j)≤ τ

0, otherwise
(4.4.6)

where dist(ri,r j) is the geographic distance between the two RRHs, and τ is a neighborhood thresh-
old controlling the geographic distance of neighboring RRHs.

Given two neighboring RRHs, we use their complementarity measurement to determine their
link weight, i.e.,

w(ri,r j) = M({ri,r j})∗ai, j (4.4.7)

We consider the case of normalized symmetric positive weights (w(ri,r j)∈ [0,1]) with no loops
(w(ri,ri) = 0). We note that w(ri,r j) = 0 when there is no link between ri and r j (ai, j = 0).

4.4.2 Distance-Constrained RRH Clustering

In this step, we need to cluster RRHs to a BBU, so that each cluster consists of neighboring RRHs
with complementary traffic patterns. As the link weight of graph G encodes the complementary
of RRHs, we need to cluster RRHs with high link weights together, which can be identified as a
community detection problem [128].

Problem: Given graph G = (V,E), we first define a set of clusters P= {C1, . . . ,CK}, where

∪∀Ck∈P =V and ∩∀Ck∈P = /0 (4.4.8)

Then, given a RRH v, we define the connectivity of v to a cluster C as the sum of link weights
between v and the RRHs in the cluster C:

con(v,C) = ∑v′∈C wv,v′ (4.4.9)

Finally, we define the adjacent clusters C(v) of v as

C(v) = {C|con(v,C)> 0,C ∈ P} (4.4.10)
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With the above definition, our objective is to find an optimal set of clusters P, so that the internal
connectivity within a cluster is higher than the inter-cluster connectivity, i.e.,

∀v ∈Ck, con(v,Ck)≥ max{con(v,Cl),Cl ∈ P} (4.4.11)

We also need to bound the distance span of a cluster within the neighborhood threshold, i.e.,

∀v,v′ ∈Ck, dist(v,v′)≤ τ (4.4.12)

Solution: Based on the label propagation concept [91,127], we propose a Distance-Constrained
Complementarity-Aware (DCCA) algorithm to cluster RRHs. The basic idea of DCCA is iteratively
assigning RRHs to the adjacent clusters, where the gain of assigning RRH v to cluster C is itera-
tively evaluated by a value function as follows:

value(v,C) = con(v,C)× log
(

τ

max{dist(v,v′)}

)
(4.4.13)

The DCCA algorithm greedily assigns the RRHs to the adjacent cluster with highest value2 until
none of the RRHs are moved among clusters [127]. As the convergence of such a greedy approach
is difficult to prove, we set a maximum iteration number max_iter to ensure the algorithm will stop.

Algorithm: The DCCA algorithm is initialized by assigning each RRH in the graph to a unique
cluster label. In each iteration, we randomly populate a list of RRH L , and traverse the list to
update the cluster label of each RRH. The label update process is as follows. First, we remove the
RRH from its current cluster, and find the set of adjacent clusters to the current RRH. Then, we
compute the value function for all the adjacent clusters, and assign the RRH to the cluster with the
highest value. We mark the the RRH as moved among clusters if its new cluster label is different
from the old one. After we finish iterating over the RRH list, we decide whether to perform another
iteration or finish the algorithm based on the following stop criteria: (1) the specified maximum
iteration number max_iter is reached, or (2) none of the RRH are moved among clusters.

4.5 Evaluation

In this section, based on a real-world mobile network traffic dataset, we evaluate the performance
of our framework by assessing its ability to reduce deployment cost and energy consumption. We
first describe the experiment settings, and then present the evaluation results and case studies.

2If two clusters yield the same value, we randomly choose one.
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Table 4.1: Dataset Description

Item Milan Trentino

# Grids 10,000 11,466
Grid size 55,225 m2 1000,000 m2

# RRH 182 522
# Covered grids 2,918 2,035
Average coverage 885,420 m2 3,932,950 m2

Average traffic volume 0.19 0.13

Data collection period 11/01/2013–12/31/2013

4.5.1 Experiment Settings

Datasets

The Telecom Italia Big Data Challenge dataset [86] contains two months of network traffic data
from 11/01/2013 to 12/31/2013 in Milan and Trentino, Italy, respectively. The city of Milan is
partitioned into 100×100 grids with grid size of about 235×235 square meters, while the province
of Trentino is partitioned into 117×98 grids with grid size of about 1,000×1,000 square meters.
In each grid, the traffic volume is recorded on an hourly basis. We compile a base station dataset
from CellMapper.net, which consists of the locations and coverage areas of active base stations
observed in the two months. Based on the location and coverage of each base station, we find the
corresponding covered grids and calculate their traffic volume. Finally, we normalize the traffic
volumes of each base station to the [0,1] range for the convenience of analytics. The details of
these two datasets are listed in Table 4.1.

BBU Capacity

We determine the BBU capacity based on the normalized traffic volume. For the traditional archi-
tecture, we assume that each RRH is equipped with a on-site BBU with a capacity of one normalized
traffic volume. In this way, the traffic in each RRH can be covered by the BBU. We define the ca-
pacity of the on-site as a capacity unit. For the cloud-RAN architecture, we assume that the BBUs
in the pool (pool BBU) are of the same size, and the capacity is of Q ( Q = 1,2, . . . ) capacity unit,
so that the traffic of a cluster of RRHs traffic can be handled in a BBU without causing significant
overload. In this work, based on a series of empirical experiments, we choose Q = 8 for the city of
Milan, and Q = 10 for the province of Trentino, respectively.
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Evaluation Plan

Based on the collected datasets, we map the grids to the coverage areas of RRHs, and aggregate the
traffic data to the corresponding RRHs on an hourly basis. We then generate a set of 61 daily traffic
snapshots F , each containing the 24 hours’ traffic for all the 182 RRHs. We use the snapshots
of the first 70% as the training set Ftrain, and the snapshots of the remaining 30% as the test set
Ftest . For the test set, we calculate the complementarity of RRHs based on the traffic forecast, and
construct a graph of 182 nodes with the corresponding link structure based on the complementarity
metrics. Finally, we perform the DCCA algorithm to cluster the complementary RRHs to a set of
BBUs in a centralized pool.

Model Specification

We construct a MuLSTM model with two stacked LSTM layers. The encoder layer L1 contains
Nencoder memory units, which accepts a traffic snapshot of shape [24,182] as input, and outputs an
encoded sequence for the decoder. The decoder contains Ndecoder memory units, which accepts the
encoded sequence as input and outputs the forecast of the traffic snapshot. We train the network
with the training set Ftrain for Niter iterations to ensure that the network learns the potential temporal
and spatial structures.

Model Training

We use the popular Tensorflow [151] library for constructing our deep-learning model. Based on a
series of empirical experiments, we choose the optimal Nencoder =Ndecoder = 32, and Niter = 10,000.
The model is trained on a 64-bit server with an NIVIDA GeForce GTX 1080 graphic card and 16GB
of RAM. Each training iteration takes about 3 seconds and the whole process takes 8.3 hours.

Evaluation Metrics

We design the following evaluation metrics to evaluate the RRH traffic forecasting phase and the
RRH clustering phase respectively.

(1) For the RRH traffic forecasting phase, we compare the traffic snapshot forecast F̂i with the
ground truth data Fi in the test set, and calculate the Mean Absolute Error (MAE) for each snapshot:

MAE(Fi, F̂i) =
∑

Nt
t=1 ∑

Nr
r=1 |Fi(t,r)− F̂i(t,r)|

Nr×Nt

(2) For the RRH clustering phase, we quantitatively measure the statistical multiplexing gain
from two aspects, i.e., the increase of average capacity utility and the decrease of overall deploy-
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ment cost, compared with the on-site BBUs in traditional architecture. In order to measure the
capacity utility of a clustering scheme P = {C1, . . . ,CK}, we derive the following metric based on
Equation 4.3.3, i.e.,

Utility(P) = meanCkU(Ck) (4.5.14)

based upon this, we calculate the average capacity utility of the test set. In order to to measure
the overall deployment cost, we sum up the total BBU capacity units required in the pool for a
clustering scheme P, i.e.,

Cost(P) =
K

∑
k=1
|{Ck}| (4.5.15)

based upon this, we use the maximal quantity of capacity units measured in the test set as the overall
deployment cost required in the pool.

Baseline Methods

We design the following baseline methods for comparison.

• Traditional: In the traditional architecture, one RRH is equipped with one on-site BBU with
one capacity unit. The traffic forecast and RRH clustering is not necessary and thus not
performed.

• ARIMA-DCCA: This baseline method uses the traditional ARIMA model for RRH traf-
fic forecasting, one RRH at a time, and then use the proposed GCLP algorithm for RRH
clustering.

• WANN-DCCA: This baseline method uses a windowed-ANN model for RRH traffic fore-
casting, which inputs a traffic snapshot for a day and outputs a traffic snapshot for the next
day. The RRH clustering algorithm is the same as the proposed method.

• MuLSTM-DC: This baseline method uses the proposed MuLSTM model for RRH traffic
forecasting, and then employs a distance-constrained (DC) clustering algorithm that clusters
neighboring RRHs without considering their traffic complementarity. The clustering steps
are similar to the propose DCCA method.

4.5.2 Evaluation Results

Overall Results

Table 6.2 shows the overall evaluation results of the proposed method as well as the baseline meth-
ods. For the RRH traffic forecast accuracy, we can see that the proposed Mu-LSTM model achieves
the lowest mean absolute error score (0.074 in Milan and 0.083 in Trentino) compared with the two
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Table 4.2: Evaluation Results

Methods Traffic Forecast Error (MAE) Average Capacity Utility Overall Deployment Cost

Milan Trentino Milan Trentino Milan Trentino

Traditional - - 38.8% 29.4% 182 522
ARIMA-DCCA 0.202 0.237 65.3% 45.2% 112 160
WANN-DCCA 0.175 0.198 73.4% 58.8% 96 120
MuLSTM-DC 0.074 0.083 58.7% 39.2% 120 180
MuLSTM-DCCA 0.074 0.083 83.4% 76.7% 88 270

baselines (ARIMA and WANN), validating its capability of modeling the temporal dependency and
spatial correlation of RRH traffic and make accurate forecast. In contrast, the ARIMA method does
not capture the spatial correlation among RRHs, while the WANN method is not capable of mod-
eling the intrinsic temporal dependency of RRH traffic patterns. Consequently, the two baselines
have higher forecast error rate in both datasets.

For the RRH clustering results, the proposed method consistently achieves the highest average
capacity utility (83.4% in Milan and 76.7% in Trentino), as well as the lowest overall deployment
cost (88 capacity units in Milan and 270 capacity units in Trentino). Compared with the tradi-
tional architecture with on-site BBUs, the clustering schemes increase the average capacity utility
rate from 38.8% to 83.4%, and reduce the overall deployment cost from 182 capacity units to 88
capacity units (48.4% of the original cost) in Milan, validating the possibility of achieving signif-
icant statistical multiplexing gain though Cloud-RAN optimization. In comparison, the distance-
constrained (MuLSTM-DC) clustering baseline does not consider RRH traffic complementarity in
the optimization process, and thus are not able to increase capacity utility and decrease deployment
cost as effective as the proposed method. Due to inaccurate traffic forecast results, the ARIMA-
DCCA and WANN-DCCA baseline methods tend to produce suboptimal clustering schemes and
thus achieving lower statistical multiple gain.

We also note that our method performs better in the city of Milan than in the province of
Trentino, which can be explained by the geographic characteristic of Trentino. Specifically, Trentino
is a mountainous region where cities and villages scatter among valleys. The RRHs are scattered
distantly, making it difficult to form complementary RRH clusters in their neighborhoods. In con-
trast, the metropolitan areas of Milan are larger, more concentrated and more populated, making it
easier to form complementary clusters for cloud-RAN optimization.
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(a) MuLSTM forecast (b) ARIMA forecast (c) WANN forecast

Figure 4.5: RRH traffic forecast results for the base station located in a business district (Centro
Direzionale) from 12/25/2013 to 12/01/2013 (one week). The first day traffic is used for input and
thus there is not prediction.

Case Studies

We conduct some case studies in Milan to showcase the effectiveness of our method. For RRH
traffic forecasting, Figure 4.5 shows an illustrative example of the forecasting results using the
proposed MuLSTM method as well as the ARIMA and WANN baseline methods. We can see that
our method accurately forecasts the weekday and weekend traffic patterns based on the temporal
dependency and spatial correlation it learns from the training set. Instead, the ARIMA method fails
to learn the hybrid temporal dependency patterns and outputs the averaged traffic forecast. The
WANN method is able to learn some hidden temporal dependency from the single RRH data but is
not stable (e.g., on Friday and Saturday).

Figure 4.6 shows the RRH clustering scheme with the proposed method on 2013/11/25 (Mon-
day) in Milan. In general, we obtain 12 RRH clusters, each connected to a BBU in the centralized
pool. In Figure 4.6(a), we can see that many clusters (e.g., Cluster A, B, and C) are composed of
an urban part and a suburban part, indicating that the traffic patterns in these areas are potentially
complementary during a typical weekday. We also note that cluster D is concentrated in a rela-
tively small area, indicating the diverse traffic patterns within this area (Figure 4.6(b)). The reason
is probably due to the hybrid functions of this area, which consists of a large residential district
(the Washington neighborhood), several national museums and theaters (e.g., Museo Nazionale
Scienza e Tecnologia Leonardo da Vinci and Teatro Nazionale CheBanca), and a transportation hub
consisting of several train and metro stations (e.g., Milano Porta Genova and Milano Cadorna).
The algorithm is able to identify the RRHs with complementary traffic patterns during the day and
effectively cluster them into a BBU to achieve statistical multiplexing gain.
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Figure 4.6: (a) An illustrative example of RRH clustering scheme on 2013/11/25 (Monday) in Mi-
lan using the proposed method. Each colored area denotes a cluster and its corresponding coverage
area. (b) Cluster D in details: a hybrid area with diverse traffic patterns. Icons denote the featuring
city functions in this area.

4.6 Conclusion

In this work, we focus two of the most important objectives in Cloud-RAN optimization to achieve
statistical multiplexing gain, i.e., increasing capacity utility and reducing deployment cost. Ac-
cordingly, we proposed a deep-learning-based framework to achieve these goals in Cloud-RAN
optimization. Specifically, we forecast the traffic patterns of RRHs using a multivariate LSTM
model, and then cluster complementary base stations to BBUs based on the traffic patterns. The
proposed MuLSTM model is capable of modeling the temporal dependency and spatial correlation
between RRHs in the network, and the proposed DCCA clustering algorithm is effective in finding
optimal clustering schemes under certain distance constraints, with the objectives of both maximiz-
ing the capacity utility and minimizing the deployment cost. Real-world evaluation results in Milan
and Trentino show that our framework effectively increases the average capacity utility to 83.4%
and 76.7%, and reduces the overall deployment cost to 48.4% and 51.7% of the traditional RAN
architecture in the two datasets, respectively, which consistently outperforms the state-of-the-art
baseline methods.

In the future, we plan to improve this work in the following directions. Firstly, we plan to
explore the variations in the BBU pool, such as considering different sizes of BBU capacity. Sec-
ondly, we plan to evaluate our framework in more datasets, and to study the performance of the
deep-learning based method under different traffic patterns.
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5.1 Introduction

Natural disasters, such as typhoons, hurricanes, and earthquakes, often bring extensive damage
to city infrastructures and cause great loss of lives every year. With the rapid population growth
and economic development, the cost of natural disasters have been constantly increasing in urban
areas [152]. For example, on September 15, 2016, Typhoon Meranti made landfall in Xiamen City,
China, leaving more than US$2.6 billion in economic losses1. In order to reduce human injuries
and prevent further damage after natural disaster strikes, it is important for urban authorities to
make efficient disaster response plans and take quick disaster response actions [153]. One of the
first steps is to restore road transportation, such as cleaning fallen trees, draining ponding waters,
and removing crashed vehicles on the road [62, 63]. These road obstacles may impede timely
search and rescue, evacuation to shelters, and restoration of food and electric supply. Therefore, it
is essential for urban authorities to identify and clear road obstacles in a timely manner.

Different strategies have been implemented to identify road obstacles for disaster response, such
as sending out investigators to conduct road condition surveys, or reviewing traffic surveillance
cameras to detect road obstacles from videos. The ability to accurately report when, where, and
what types of obstacles are occurring on the road network is critical to the timely restoration of
transportation. However, traditional strategies usually consume a great amount of human labor,
which is especially expensive in disaster response scenarios, and thus hindering the timely report
of road obstacles. Besides, sending out road investigators immediately after the disaster strikes
may induce potential human injuries, and traffic surveillance cameras may be destroyed during
the disaster, resulting in incomplete road obstacle reporting. Therefore, a real-time, low-cost, and
comprehensive road obstacle identification method is in great need for disaster response.

Fortunately, with the advance of ubiquitous sensing technologies and paradigms, large amounts
of urban sensing data are generated and collected in an unprecedented level [42, 43]. These cross-
domain heterogeneous urban sensing data provide us with new opportunities to understand road
conditions and identify potential road obstacles. In particular, two categories of urban sensing data
are highly correlated with road conditions. The first category is vehicle trajectory data, which are
generated by GPS-equipped vehicles (e.g., taxicabs) running on road surfaces [154]. These vehicles
can be viewed as ubiquitous mobile sensors (i.e., Vehicle-as-a-Sensor, VaaS) constantly probing
road conditions [43]. By analyzing the GPS trajectories of these vehicles, we can identify traffic
anomalies potentially caused by road obstacles. For example, when a road segment is blocked by
fallen trees, vehicles will not be able to go through it and their trajectories may vary from the normal
patterns. The second category is road environment data, which describe the spatial and temporal
environmental conditions of road segments, such as the road elevation, the roadside trees, and the

1https://en.wikipedia.org/wiki/Typhoon_Meranti
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(a) Number of vehicles (#Vehicle) (b) Number of slow mobility behaviors (#Slow)

Figure 5.1: Examples of traffic flow volumes and slow mobility behaviors observed in three dif-
ferent road segments in Xiamen City from September 12, 2016 (Monday) to September 18, 2016
(Saturday). During the landfall of Typhoon Meranti on September 15, 2016 (Thursday), significant
decreases of traffic flows are observed in all the three road segments, while only road segment #3
observe a significant increase of slow mobility behavior.

weather conditions [155]. These road environment data can help infer the types of road obstacles
after disaster strikes. For example, road segments with flourishing roadside trees may have higher
probability of being blocked by fallen trees after a typhoon strike.

Therefore, we propose to leverage the above-mentioned cross-domain urban sensing data for
automatic road obstacle detection and classification for disaster response. In the first step, we at-
tempt to detect potential traffic anomalies caused by road obstacles. One intuitive approach is to
extract a set of statistical traffic flow parameters (e.g., vehicle number) for each road segment from
historical data. Then, one can build anomaly detection models to find significant and unusual de-
creases in traffic flow, and correspond these anomalies to the potential obstacles in the road segment.
However, such a traffic-flow-based approach does not work well in disaster response scenarios. In
fact, after a disaster strikes, the number of vehicles running on road usually decreases significantly
due to safety concerns, generating abnormal traffic flows in almost every road segments. Conse-
quently, the traffic anomalies caused by potential road obstacles are overwhelmed and thus difficult
to detect. For example, in Figure 5.1(a), we observe significant decreases of traffic flow in all of
the three road segments in Xiamen City after Typhoon Meranti’s landfall, although only the third
one is reported with road obstacles (the details are presented in the Xianyue Road case study).

In order to detect road obstacle from vehicle trajectories, we propose a novel approach by ex-
ploiting the slow mobility behaviors in vehicle trajectories. Based on our observations, when a
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driver encounters road obstacles, they usually slow down the vehicle, observe the road conditions,
and then make a decision to either change direction or slowly bypass the obstacle. Such slow mo-
bility behaviors can be extracted from vehicle GPS trajectories, and be exploited to detect potential
road obstacles. For example, in Figure 5.1(b), we observe a significant increase of slow mobility
behaviors in road segment #3 after Typhoon Meranti’s landfall on Xiamen City, which is induced
by fallen trees on the road surface.

Nevertheless, it is still possible that some of the slow mobility behaviors are not induced by road
obstacles. For example, traffic lights at intersections may cause vehicles to slow down in a period-
ical pattern, and road segments with u-turn signs may also observe large number of slow-moving
vehicles constantly. These kinds of slow mobility behaviors, however, usually occur regularly on
specific road segments, demonstrating certain spatio-temporal patterns. In contrast, the slow mo-
bility behaviors induced by road obstacles are usually abnormal in the given road segment and
time span. Moreover, such an anomaly is usually observed in a collective way, i.e., impacting a
collection of neighboring road segments and lasting for a consecutive period of time. For example,
fallen trees in an intersection may cause unexpected slow mobility behaviors in the surrounding
roads until they are removed. Therefore, we need to design an effective algorithm to separate the
collective anomalies of slow mobility behaviors for road obstacle detection.

After detecting the road obstacles, it is essential for urban authorities to identify their types, such
as fallen trees, ponding water, and congested vehicles on road. Since different types of road ob-
stacles may induce similar slow mobility behaviors, it is difficult to classify these obstacles merely
based on the vehicle trajectory data. Therefore, we propose to involve the road environment data
to model the context of the obstacles, and thus inferring their corresponding types. For example,
obstacles observed on flourishing road segments after a typhoon strike may probably be classified
as fallen trees. To this end, the following challenges need to be addressed:

• Heterogeneous features. Due to the considerable variety and volume of road environment
data, it is not straightforward to select a set of representative features to model the context of
road obstacles. Moreover, how to effectively incorporate these heterogeneous features into a
data analytics model is also challenging.

• Insufficient labels. In order to train a model for road obstacle classification, we need to
collect a set of road obstacle instances as ground truth. However, validating road obstacles is
labor-intensive and time-consuming, making it difficult to collect a large enough training set.
Therefore, we need to propose an effective road obstacle classification model to learn from
these sparse labels.

In this work, we propose a two-phase framework for road obstacle detection and classification.
In the first phase, we extract the slow mobility behaviors from vehicle trajectories in each road
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segment, and build a spatio-temporal matrix to model these slow mobility behaviors in a city-wide
level. We then propose a robust matrix factorization-based method to separate the collective anoma-
lies from the slow mobility behavior matrix. To ensure that each separated anomalies are collective
in neighboring road segments for a consecutive period of time, we incorporate a clustering-based
outlier-remover method in the factorization algorithm, and detect road obstacles based on the corre-
sponding collective anomalies. In the second phase, we identify two categories of contextual factors
related to road obstacles from various road environment data, i.e., the spatial contextual features
(e.g., roadside trees, road elevation, and road properties) and the temporal contextual factors (e.g.,
wind, rainfall, and visibility). In order to accurately classify the road obstacle with these hetero-
geneous features and sparse labels, we propose a semi-supervised learning approach combining
co-training [156] with active-learning [157]. More specifically, we first train a spatial classifier and
a temporal classifier, respectively, using the corresponding feature categories and a sparse training
set. We then iteratively improve the model accuracy by adding the confident and salient instances
in the unlabeled set to the training set, and retrain the model. A confident instance is identified if it
receives the same label from both classifiers with high classification confidence [158], and a salient
instance is identified if it is difficult to classify for both classifiers, i.e., receiving different labels
with low confidence. We add the confident instances to the training set (co-training), and actively
collect the labels of the salient instances from a crowdsensing platform (active learning), and add
them back to the training set. Briefly, the contributions of this work include:

• To the best of our knowledge, this is the first work on road obstacle detection and classifica-
tion for disaster response leveraging cross-domain urban sensing data. By fusing the large-
scale vehicle trajectory data with the heterogeneous road environment data, we are able to
accurately identify road obstacles for disaster response in a low-cost and automatic manner.

• We propose a two-phase framework to identify road obstacles by leveraging the slow mobil-
ity behaviors and road environment contexts. In the detection phase, we exploit a sliding-
window based method to extract slow mobility behaviors from vehicle trajectories, and pro-
pose a cluster direct robust matrix factorization (CDRMF) approach to detect the collective
anomalies induced by road obstacles from the spatio-temporal slow mobility behavior matrix.
In the classification phase, we extract two categories of road obstacle contextual features (i.e.,
spatial-features and temporal-features) from various road environment datasets, and propose
a co-training and active learning (CORAL)-based approach to learn an effective classification
model using the spatio-temporal features and a sparse training set. The CORAL approach
iteratively improves the classification accuracy by adding confident instances to the training
set, and actively labeling salient instances using a crowdsensing platform.

• We evaluate our framework on Xiamen City with a large-scale taxi trajectory dataset and
various environment sensing datasets. Results show that our framework accurately detects
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and classifies different types of road obstacles during the 2016 typhoon season, achieving an
overall precision and recall both above 90%, and outperforms the state-of-the-art baselines.

5.2 Preliminary and Framework Overview

Definition 10. GPS Dataset: the vehicle GPS dataset we collect can be described by a set of GPS
points denoted by 4-tuples:

P = {p|p = (v, t, lat, lng)}

where v, t, lat, lng are the vehicle ID, time stamp, latitude, and longitude from GPS transmitters.

Definition 11. Vehicle Trajectory: we define a vehicle trajectory as a sequence of GPS points
p1→ p2→ ··· → pn, where pi ∈ P,1≤ i≤ n.

Definition 12. Road Segment: we partition a city into an I× J grid map based on the longitude
and latitude, and define a road segment r as a grid containing roads for vehicles.

Definition 13. Time Span: we divide the duration of observation data into equal time spans t, each
time span lasts for a period of time, e.g., half an hour.

We propose RADAR, a two-phase framework to detect and classify road obstacles for disaster
response. As shown in Figure 6.2, we first extract slow mobility behaviors from a large-scale
vehicle GPS trajectory dataset with a sliding-window-based method. In the road obstacle detection
phase, we organize the slow mobility behaviors into a spatio-temporal matrix with a road segment
dimension and a time span dimension. We then perform the CDRMF algorithm on the matrix
to extract collective anomalies of slow mobility behaviors, and correspond these anomalies to the
potential road obstacles. In order to classify these detected road obstacles, we identify several
relevant environment sensing data, and extract a set of spatial and temporal contextual features
correspondingly. In the road obstacle classification phase, we exploit the co-training diagram to
train a spatial classifier and a temporal classifier, respectively, using the corresponding contextual
features and a sparse training set. We iteratively add confident and salient unlabeled instances to
the training set to improve the model accuracy, leveraging a crowdsensing-based active learning
diagram which actively collect labels for the salient instances from a crowdsensing platform. We
elaborate the key steps of the framework in the following sections.

5.3 Slow Mobility Behavior Extraction

The slow mobility behaviors of vehicles may indicate potential obstacles on the road. For example,
fallen trees that block a road may force the drivers to slow down and change direction. Such slow
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Figure 5.2: Overview of the framework.

mobility behaviors can be captured from vehicles’ GPS trajectories if the data points are collected
frequently enough. In this work, we use a taxi GPS trajectory dataset collected every one minute.
We elaborate on the method to extract slow mobility behaviors from taxi trajectories as follows.

First, we employ an adaptive sliding-window-based method [159] to extract slow mobility se-
quences from taxi GPS trajectories. More specifically, for a trajectory p1 → p2 → ·· · → pn, we
extract every slow mobility sequence pm → pm+1 → ·· · → pm+k(1 ≤ m < n,1 ≤ k ≤ n−m) in
which the distance (dist) between each pair of adjacent points is less than a threshold δ p, i.e.,

∀m≤ i < m+ k,dist(pi, pi+1)< δ p (5.3.1)

We use a sliding-window with adaptive size along the trajectory to find such slow mobility
sequences. In particular, we dynamically extend the window size by adding new points until the
newly-formed sequence violates requirement 5.3.1. We use an example in Figure 5.3 to elaborate
on the process. For the trajectory p1→ p2→ ··· → p7, we start by creating a window consisting of
the first two points (p1, p2 in this case), and check whether the distance between p1 and p2 is less
than δ p. Since dist(p1, p2)> δ p, we discard this window, and slide the window to start over from
the end point (p2), and create a new window (p2, p3). We see dist(p2, p3) < δ p so the window
is kept; since dist(p3, p4) < δ p, we extend the window by adding p4, and repeat this procedure
for the next adjacent points until the distance constraint is violated. Finally, we obtain a sequence
containing a set of consecutive points p2→ ··· → p6.

We filter out sequences with long-term duration, which may correspond to non-driving be-
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Figure 5.3: Slow mobility sequence extraction from GPS trajectory leveraging an adaptive sliding-
window.

haviors such as taxi driver shift or vehicle repair. Finally, we map each slow mobility sequence
pm→ pm+1→ ··· → pm+k to a slow mobility behavior, as denoted by a triple:

b = (v,r, t)

where v is the corresponding vehicle ID. We determine the road segment r by mapping the co-
ordinates of the sequence centroid [(pm.lat + pm+k.lat)/2,(pm.lng+ pm+k.lng)/2] to the city grid
system, and determine the time span t by mapping the middle of the duration (pm.t + pm+k.t)/2 to
the time span partition system.

Figure 5.4(a) shows a visualization of the extracted slow mobility behaviors after the landfall
of Typhoon Meranti in Xiamen. We observe a cluster of slow mobility behaviors on the major
roads of the downtown area, which may be induced by ponding water on the road surface, since
the elevation of downtown Xiamen is relatively low2. Another cluster of slow mobility behaviors
can be found along the Xianyue expressway, which was covered by flourishing trees, and the slow
mobility behaviors may be induced by fallen trees during the typhoon landfall.

5.4 Road Obstacle Detection

In this phase, our objective is to detect road obstacles from the extracted slow mobility behaviors.
The rationale behind this approach is that when an obstacle is present in a road segment, it may
induce a collective anomaly [160] of slow mobility behaviors. The meaning of collectiveness is
two-fold. First, such an anomaly may be observed in a collection of neighboring road segments.
Second, such an anomaly may last for a consecutive period of time after the road obstacle is present.
For example, when fallen trees block a lane, various slow mobility behaviors, such as turning and
bypassing, can be observed in the surrounding road segments and last for a period of time until
the road obstacle is removed. Consequently, simply building a time series anomaly detection [161]

2http://www.floodmap.net/elevation/ElevationMap/?gi=1790645
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Figure 5.4: An illustrative visualization of the extracted slow mobility behaviors after the land-
fall of Typhoon Meranti in Xiamen City (2016/09/15 09:00–2016/09/15 17:00), and the temporal
variations of slow mobility behaviors in three typical road segments during one month (2016/09/01–
2016/09/30). (#1: Xianyue Expressway, #2: Hubin South Road, #3: Qianpu East Road)

model for each road segment to detect road obstacle does not work well in this problem, as the
spatio-temporal collectiveness is not properly preserved and modeled.

The second challenge is that the slow mobility behaviors we collect are in a mixed state due
to various causal factors. Based on our observations, slow mobility behaviors can be induced not
only by road obstacles, but also by traffic lights and turning signs, rush hour traffic congestions,
picking up and dropping off passengers, etc. Directly detecting anomalies from such a mixed state
and corresponding them to road obstacles can be very difficult and unreliable [10, 162].

To address these challenges, we propose a robust matrix factorization-based approach to sep-
arate the spatio-temporal collective anomalies from the mixed slow mobility behaviors, and cor-
respond them to the road obstacles. First, we build a slow mobility behavior matrix with a road
segment dimension and a time span dimension. Each cell of the matrix denotes the number of
slow mobility behaviors observed in the specific road segment during the specific time span. Then,
we separate the slow mobility behaviors induced by different causal factors based on their spatio-
temporal properties. We note that slow mobility behaviors induced by traffic lights and turning signs
are usually observed regularly in some specific road segments and time spans, while the collective
anomalies of slow mobility behaviors induced by road obstacles tend to be abnormal events in the
spatio-temporal space. Moreover, such collective anomalies are usually observed in geographically
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clustered road segments over a consecutive period of time. With these insights, we propose a Clus-
ter Direct Robust Matrix Factorization (CDRMF) [163,164] approach to automatically decompose
the mixed slow mobility behavior matrix into a low-rank component and a sparse-and-clustered
component. The low-rank component represents the regular slow mobility behaviors induced by
traffic lights and turning signs, etc., while the sparse-and-clustered component corresponds to the
unusual and clustered collective anomalies induced by road obstacles. We elaborate on the details
of our approach as follows.

5.4.1 Slow Mobility Behavior Matrix Construction

We build a spatio-temporal matrix M ∈ RNr×Nt with two-dimensions denoting Nr road segments
and Nt time spans. Each entry of the matrix M(r, t) denotes the number of slow mobility behaviors
observed in road segment r during time span t.

In particular, we analyze the temporal variations of slow mobility behaviors in three typical road
segments in Xiamen City during one month (September 2016), as shown in Figure 5.4(b). For road
segment #1 (Xianyue Expressway), we observe a significant increase of slow mobility behaviors
during Typhoon Meranti’s landfall in Xiamen (September 15–17), which corresponds well with the
fact that fallen trees induced by strong winds block several lanes in Xianyue Expressway3. We also
observe several abnormal increases of slow mobility behaviors in road segment #2 (Hubin South
Road), which is built in a low elevation area. These anomalies might be correlated with the road
surface water ponds induced by heavy rains. As an counter example, we observe regular patterns
of slow mobility behaviors on road segment #3 (Qianpu East Road), which is a popular business
and activity district in Xiamen City, and thus the regular patterns may correspond to the passenger
pick-up and drop-off events instead of road obstacles.

5.4.2 CDRMF-Based Road Obstacle Detection

With the slow mobility behavior matrix M constructed, we then need to separate the regular and
anomalous slow mobility behaviors apart. Such a problem can be addressed by matrix decomposi-
tion techniques [165] by imposing structural constraints on the decomposed components [166]. In
particular, Robust Matrix Factorization (RMF) [163, 164, 166] approaches have been proposed to
decompose a mixed matrix into a low-rank part and a sparse part in an automatic manner, and have
been widely adopted in robust modeling and anomaly detection [167]. The low rank component
can be used to describe the regular patterns of slow mobility behaviors, but the sparse component
may have arbitrary structure which does not necessarily correspond to the collective anomalies we

3http://weibo.com/1976447603/E8vIamwnv
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desire. Therefore, we improve the RMF approach by adding a clustering step to pursue a sparse-
and-clustered component that corresponds to the collective anomalies.

Problem: we define our objective as to decompose the mixed matrix M into a low-rank matrix
L and a sparse-and-clustered matrix S, i.e.,

M = L+S

s.t. rank(L)≤ k,

card(S)≤ c,

outlier(S)≤ ε

L≥ 0,S≥ 0

(5.4.2)

where card(S) denotes the cardinality of S, i.e., the number of non-zero elements in S. By impos-
ing the constraints on rank(L) and card(S), we pursue a low-rank L and a sparse S, respectively.
Besides, we need to make sure that the non-zero elements in S are distributed collectively in neigh-
boring road segments and consecutive time spans. Therefore, we use outlier(S) ≤ ε to prevent
outliers that are isolated from their spatio-temporal neighbors, where ε is a relatively small value.

Solution: solving Problem (5.4.2) is not trivial due to its non-convex constraints [168]. Tradi-
tionally, such kind of problem is solved using relaxation techniques [167], i.e., by relaxing the ma-
trix rank of L with its nuclear norm [167], and relaxing the cardinality of S using its `1 norm [169].
The relaxed problem is then solved using alternating minimization techniques [167]. However,
the traditional relaxation techniques have several limitations. First, it is difficult to represent and
impose the clustered structure of S to the relaxation problem. Second, it is unknown how well the
relaxation approximate the original problem in general [168].

In this work, we proposed a Clustered Direct Robust Matrix Factorization (CDRMF) approach
for collective anomaly detection, which is built on the recently proposed Direct Robust Matrix
Factorization (DRMF) method [168]. Instead of using relaxation techniques, the DRMF approach
directly solves the matrix decomposition problem by alternatively optimizing the low-rank compo-
nent and the sparse component. In order to impose the clustered structure constraint, we improve
the DRMF algorithm by iteratively removing the isolated outliers in the sparse component in the
optimization process.

Algorithm: the detailed process of CDRMF is described in Algorithm 1. The CDRMF algo-
rithm is initialized with the mixed matrix m, the rank constraint k, and the cardinality constraint c.
In each iteration, we perform two steps to update the low-rank component L and the sparse-and-
clustered component S. In the first step, we fix and remove the sparse component S from M, and
approximate M−S by a low-rank component L. In the second step, we fix and remove the low-rank
approximation L from M to obtain the residual M−L, and find the optimal sparse-and-clustered
S to recover the residual. We repeat the process until the algorithm is converged or the maximum
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iteration number is reached. Finally, we output the low-rank component L as the regular patterns,
and the sparse-and-clustered component S as the collective anomalies.

In order to solve the low-rank approximation problem, we perform Single Value Decomposition
(SVD) [170] on M−S, and truncate its top-k singular vectors to construct a rank-k approximation
L = M−S. Since only the first k singular vectors are required, we accelerate the computation using
partial SVD algorithms [171]. We propose a two-step approach to solve the sparse-and-clustered
optimization problem. First, we find the optimal approximation of the residual M− L under the
cardinality constraint card(S)≤ c. This can be done directly by copying the top-c largest values in
M−L to S and setting the rest entries of S to zeros. The proof of this method can be found in [168]
and thus omitted here. Then, we perform a clustering operation for the non-zero elements in S using
the DBSCAN algorithm [172], and remove the outliers that are isolated from their spatio-temporal
neighbors. In particular, we use the geographic distance between road segments and temporal
distance between time spans to determine the search distance in clustering. In this way, we obtain
a sparse-and-clustered component S to approximate the residual in the iteration.

Algorithm 1: The CDRMF algorithm for collective anomaly detection
Input: M the slow mobility behavior matrix

k the maximum rank
c the maximum cardinality
max_iter the maximum number of iterations

Output: L the low-rank component
S the sparse-and-clustered component

1 Initialize: S← 0
2 while not converged and iteration < max_iter do
3 a) Solve the low-rank approximation problem:
4 L = argminL ||A−L||F , A = M−S
5 s.t. rank(L)≤ k
6 b) Solve the sparse-and-clustered optimization problem:
7 S = argminS ||B−S||F , B = M−L
8 s.t. card(S)≤ c, outlier(S)≤ ε

9 error← ||M−L−S||F

5.4.3 Road Obstacle Detection

Finally, we map the detected sparse-and-clustered collective anomalies to the potential road obsta-
cle event. We note that one road obstacle may induce several collective anomalies spanning among
neighboring road segments and lasting for a consecutive period of time. In particular, we assign
each cluster in S with a label and use the cluster to denote the road obstacle event e , i.e.,

ei = {(r, t)|S(r, t).label = i}
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(a) Roadside tree coverage labeling sample results (b) Road segment elevation map (in meters)

Figure 5.5: Illustrative results of road environment contextual feature extraction.

5.5 Contextual Feature Extraction

With the road obstacles detected, our next objective is to recognize the types of these obstacles, such
as fallen trees and ponding water. However, since different types of obstacles may induce similar
slow mobility behaviors, it is rather difficult to distinguish different types of road obstacle merely
based on vehicle trajectory data. Therefore, we propose to incorporate the cross-domain environ-
ment sensing data to model the context of the road obstacles, and then infer their corresponding
types base on the contextual features.

However, due to the considerable variety and volume of these road environment sensing data,
it is still not trivial to identify the correlated factors and extract the effective features for road ob-
stacle classification. Therefore, we conduct a series of empirical studies to analyze the correlations
between road obstacles and various environment contextual factors, leveraging a set of road obsta-
cle events and road environment datasets collected from Xiamen City. We elaborate the details of
analysis as follows.

5.5.1 Spatial Contextual Factors

Based on previous studies and surveys [65, 66], the geographic environment conditions of a road
segment can provide strong evidence for inferring the types of potential road obstacles. For exam-
ple, road segments with flourishing trees may have higher probability of being blocked by fallen
trees after strong winds, and low-elevation road segments may be more vulnerable to heavy rains.
In particular, we identify the following three key spatial contextual factors and extract a set of
features from the corresponding road environment data.
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Roadside tree coverage: the conditions of roadside trees can be observed from high-definition
satellite images. However, labeling the degree of tree coverage for thousands of road segments
requires great human effort. Therefore, we employ a deep learning-based approach [173] to au-
tomatically label roadside tree coverage. First, we obtain a set of satellite images I from Google
Earth4, and randomly select a small subset of road segment images It as training examples. Then,
we manually label the degree of roadside tree coverage for the training examples into five cate-
gories, very flourishing, flourishing, median, sparse, clear. Some examples of the labeled images
can be seen in Figure 5.5(a). Finally, we use a pre-trained deep learning network, AlexNet [174], to
extract features from the set of unlabled road segment images I− It , and predict their corresponding
labels using a SVM classifier [175]. Examples of the predicted labels are present in Figure 5.5(a).

Road segment elevation: road segments with low elevation may be vulnerable to heavy rains
caused by typhoons and hurricanes. The elevation of road segments can be obtained from various
Digital Elevation Model (DEM) [176] data sources with different resolutions. In this work, we
extract road segment elevation data from Google Earth, which provides a base resolution of 30
meters [176] in Xiamen City. An extracted elevation map for all the road segments in Xiamen City
is shown in Figure 5.5(b).

Road segment properties: road obstacles, such as crashed vehicles caused by traffic accidents
and congested vehicles caused by malfunctioning traffic lights, tend to be observed in road seg-
ments with complicated conditions, e.g., road intersections, traffic circles, and tunnel entries and
exits. We identify these complicated road segments and use this prior knowledge as a feature to
infer traffic-induced road obstacles. In particular, we label the road segment properties by the fol-
lowing categories: intersection, circle, tunnel entry/exit, none. We retrieve the locations of road
interactions and circles from Xiamen Traffic Police, and manually label the locations of tunnel
entries and exits.

5.5.2 Temporal Contextual Factors

In a road segment, different types of obstacles may occur under different temporal contexts [177,
178]. For example, fallen trees are usually caused by strong winds, water ponds on road faces are
usually formed after heavy rains, and vehicle congestion and accidents are reported more frequently
when drivers have limited visibility. By exploiting the meteorological data from the Weather Under-
ground API5 and Xiamen Meteorological Bureau6, we identify the following temporal contextual
factors and extract a set of corresponding features.

4https://www.google.com/earth/
5https://www.wunderground.com/weather/api/
6http://www.xmqx.gov.cn
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Wind speed: since fallen trees are usually observed after strong winds with a delay, we extract
the wind speed one hour before for each obstacle as the contextual feature, measured in m/s.

Rain precipitation: similarly, water ponds are usually formed after heavy rains. Therefore we
extract the rain precipitation one hour before for each road obstacle as the corresponding contextual
feature, measured in centimeters.

Road visibility: visibility may greatly impact driving safety, especially in heavy rains and
foggy weather. Limited visibility in a road segment may cause potential risks of traffic accidents
and congestions, especially in complicated road segments. We extract fine-grained visibility data
in each road segment as the corresponding contextual feature, measured in meters.

5.6 Road Obstacle Classification

In this phase, our objective is to classify the detected road obstacles based on the extracted contex-
tual features. Intuitively, we can train a predictive model (e.g., artificial neural networks) to classify
the road obstacles using the various contextual features. However, since the spatial and temporal
features are extracted from heterogeneous sources and vary significantly in scales, equally treating
these features does not work well in our problem [179]. The other challenge is that obtaining a set
of labeled road obstacles large enough for training a predictive model is rather difficult, since road
obstacle reporting is labor intensive and time consuming, especially in disaster response scenarios.

In order to address the challenges of heterogeneous features and insufficient labels, we propose
a semi-supervised learning approach combining co-training with active-learning (CORAL). Co-
training is a multi-view learning technique that leverages two conditionally independent models
to predict the target labels, and use the confident prediction results to further improve the model
accuracy in an iterative manner [156,179]. We group the heterogeneous features into two sets, i.e.,
spatial and temporal feature sets, and input these features into the co-training framework. Active-
learning takes another approach to improve prediction accuracy by dynamically selecting a set of
uncertain predictions and asking the users to provide labels for these instances, and then it feeds
them back to retrain the model iteratively [180,181]. We propose a crowdsensing-based platform to
obtain a relatively small set of training labels, and use the active-learning mechanism to gradually
obtain new labels during the training process. The design diagram of the CORAL approach is
illustrated in Figure 5.6. We elaborate on the details as follows.

5.6.1 The Co-Training Paradigm

In the co-training paradigm, we feed the two categories of contextual features into a spatial and
temporal inference model, respectively, and iteratively add the instances with high prediction con-
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Figure 5.6: The learning diagram of the proposed CORAL model.

fidence to the training set to improve model accuracy.

More specifically, we denote the set of detected road obstacles as G = {G1,G2}, where G1 is
the small initial set of labeled obstacles, and G2 is the large unlabeled set. We obtain the labels of
G1 by leveraging a crowdsensing-based platform, which is detailed in the evaluation section. Using
the set of spatial features Fs and temporal features Ft , we train a spatial learner Ls and a temporal
learner Lt respectively, i.e.,

Ls← Ls.learn(Fs,G1) Lt ← Lt .learn(Ft ,G1) (5.6.3)

Afterward, we apply Ls and Lt to each instance of G2, and select Nc instances that receive the
same label from both Ls and Lt with highest confidence, respectively. Finally, we add the selected
instances to G1 as labeled instances. We repeat this process until G2 is empty or a maximum number
of iterations is reached.

5.6.2 The Active Learning Paradigm

Ideally, the co-training paradigm can improve the model accuracy with the confident unlabeled
instances. However, this approach does not ensure that the selected confident instances are always
valuable for improving the predictive capability of the model [180]. In other words, we can directly
select some salient instances to the models to improve their accuracy. To this end, we incorporate
a active learning process to the co-training diagram.

More specifically, in each iteration, after applying Ls and Lt to each instance of G2, we further
select Na instances that are considered most difficult to predict for both predictors. In particular,
we select instances that receive different labels from Ls and Lt with lowest confidence. We then use
the crowdsensing platform to collect the labels for these instances. Finally, we add these salient
labeled instances to G1 and retrain the models using the co-training paradigm.
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5.6.3 Online Learning and Classification

The CORAL model works in a online manner so that learning and classification can be achieved
simultaneously. More specifically, we maintain a learning set G for training the classification model
using the CORAL model. Given a new road obstacle e and the label set C = {c1,c2, . . . ,cl}, we
apply the learned Ls and Lt on e separately, and determine the final label c by the product of the
two confidence scores generated by the two learners, defined as follows:

c = argmax
ci∈C

Ps(C = ci)×Pt(C = ci) (5.6.4)

where Ps and Pt are the predicted probabilities of the spatial and temporal learners, respectively.
After that, we append e to the training set G and retrain the CORAL model. If additional labels
are required during the retraining, the corresponding crowdsensing platform tasks will be allocated
and completed in a given time constraint. Since online model updating is frequently performed,
we adopt a naïve Bayesian network [182] as the ideal multi-class classifier for the learners Ls and
Lt , which is highly scalable, easy to train, and outputs the desired classification probabilities for
confidence estimation.

5.7 Evaluation

In this section, we first introduce the experiment settings, and then present the evaluation results on
road obstacle detection and recognition. We also conduct a series of case studies to demonstrate
the effectiveness of our method.

5.7.1 Experiment Settings

Datasets

We evaluated our framework in Xiamen City during the 2016 Pacific typhoon season7. Xiamen
is a coastal city which suffers from an average of 4–5 times of typhoon each year. We collected
a large scale taxi GPS trajectory dataset and various road environment datasets from July 2016
to December 2016, as summarized in Table 6.1. The dataset details and pre-processing steps are
elaborated as follows.

Taxi GPS trajectory data: we obtained a large-scale taxi GPS trajectory dataset from Xiamen
Traffic Police. The dataset contains GPS trajectories of 5,486 taxis reported every 1 minute. We
extracted only trajectories data points in the metropolitan area (i.e., Xiamen Island) during the
second half year of 2016.

7https://en.wikipedia.org/wiki/2016_Pacific_typhoon_season
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Table 5.1: Summary of Datasets
Data type Item Value

Vehicle trajectory data
# Taxis 5,486
Sampling rate every minute

Road environment data
# Road segments 3,928
Satellite image resolution 2.5 meter
Elevation resolution 30 meter
Meteorology data every hour

Road Obstacles
# Fallen trees 71
# Ponding water 54
# Congested and crashed vehicles 34

Data collection period 07/01/2016 00:00–12/31/2016 23:59
Geographic coverage area Southwest: [24.423250, 118.064743]

Northeast: [24.561485, 118.198504]

Road environment data: we partitioned Xiamen City into 100m× 100m grids, and obtain
154×136 grids. We then extracted grids with vehicle density above average as road segments for
vehicles, obtaining 3,928 road segments in total. Upon this basis, we collected a set of satellite im-
age patches and elevation data for each road segment from Google Earth for roadside tree coverage
labeling and road elevation sensing, respectively. We also compiled an hourly meteorology dataset
for each road segment, containing the wind speed, rain precipitation, and visibility readings, based
on the data from the Weather Underground API and Xiamen Meteorological Bureau.

Road obstacle data: we developed a crowdsensing platform to collect road obstacles during
typhoon seasons, as shown in Figure 5.7. We recruited 10 participants to finish the crowdsens-
ing tasks, and each task was assigned randomly to three participants for cross-validation to avoid
observer bias. Each participant was asked to report the time, location, and type of the road obsta-
cle along with the source materials such as images and videos. An important source is the social
media accounts of urban authorities and local news agencies, such as the Weibo8 Based upon the
crowdsensing platform, we collected a total number of 159 road obstacle events from July 2016 to
December 2016. We use this dataset as the ground-truth for evaluating the performance of various
road obstacle detection and classification methods.

8Weibo is a Twitter-like social network popularly used in China. accounts of Xiamen Traffic Police9 and Xiamen
News Network10. Besides, the traffic congestion and accident records provided by Xiamen Traffic Police were used as
another important source to identify congested and crash vehicles on the road.
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Evaluation Plan

We evaluated the performance of our framework in an online manner. We first extracted taxi slow
mobility behaviors in all the road segment once every 30 minute. For road obstacle detection, we
maintained a slow mobility behavior matrix M with a time window of one month, i.e., 2∗24∗30 =

1440 time spans, and updated the matrix when data from a newer time window were collected.
We performed the CDRMF algorithm on M to detect a set of road obstacles {ei}, and compared
the detection results with the ground truth dataset. For road obstacle classification, we maintained
a learning set G and incrementally add new instances into the set. Specifically, for each newly
detected road obstacle {ei}, we used the learned CORAL model to classify it, and then add {ei} to
the training set and update the CORAL model. The initial labels and the additional labels required
during the model updating were obtained by dynamically allocating crowdsensing tasks to the
participants. Finally, we compared the overall classification results with the ground truth dataset to
evaluate the model accuracy.

Evaluation Metric

We compared the detected road obstacles with the ground truth dataset to evaluate the accuracy of a
detection method. Specifically, if a detected obstacle is found in the ground truth dataset, we call it
a true positive (TP), and otherwise a false positive (FP). For a true road obstacle that is not detected
using the detection method, we call it a miss, or false negative (FN). With these definitions, we
adopted the following metrics to quantitatively evaluate the performance of the detection method:

precision =
|T P|

|T P|+ |FP|
, recall =

|T P|
|T P|+ |FN|

, F1-Score =
2 · precision · recall
precision+ recall

(5.7.5)

We employed the similar metrics to evaluate the performance of the multi-class road obstacle
classification method. Specifically, we organized the classification results into a confusion matrix
[183] C, where each row of the matrix represents the instances in a predicted class and each column
represents the instances in a ground truth class. Each element Ci, j counts the number of road
obstacles that are predicted as class i while actually are in class j. With these definitions, we
derived the following metrics:

precision =
Ci,i

∑ j Ci j
, recall =

Ci,i

∑ j C ji
, F1-Score =

2 · precision · recall
precision+ recall

(5.7.6)

We can see that (5) is a special case of (6).
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Figure 5.7: The developed crowdsensing platform for collecting road obstacles.

Baseline Methods

We compared the proposed method with various baselines with regard to road obstacle detection
and classification. For road obstacle detection, we design the following baselines to compare with
the proposed CDRMF method:

TFBOY: the traffic-flow-based anomaly detection (TFBOY) baseline method directly uses the
number of vehicles in each road segment during each time span to construct a traffic flow matrix,
and use the same matrix decomposition approach for road obstacle detection.

ARIMA: the single-road-segment time-series-based baseline method models the number of
slow mobility behaviors in each road segment as a time series, and employs an auto-regressive inte-
grated moving average (ARIMA) model [184] to detect significant and unusual events as potential
road obstacles.
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DRMF: this baseline method differs from the proposed CDRMF method in that it does not
perform a clustering step to remove isolated anomalies.

For road obstacle classification, we design the following baselines to compare with the proposed
CORAL method:

ST-ANN: this baseline method directly concatenate the spatio-temporal contextual features,
and uses all the instances in the training set to train an Artificial Neural Network (ANN) model for
road obstacle classification.

SCAL: this baseline method exploits only the spatial contextual (SC) features to build a road
obstacle classifier using a naive Bayesian network. The active learning (AL) diagram is also ex-
ploited to train the model iteratively from a minimal training set.

TCAL: similarly, this baseline method exploits the temporal contextual (TC) features and active
learning (AL) to build a road obstacle classifier by iteratively training a naive Bayesian network
with a minimal training set.

COTA: this baseline method uses the co-training diagram (COTA) alone without active learn-
ing. It trains a naive Bayesian network-based spatio-temporal model and iteratively improves the
model accuracy using confident unlabeled data.

In order to achieve fair comparison, we make sure that the size of the initial label set and the
number of labels finally used in each active learning-based baselines (including SCAL, TCAL, and
CORAL) are the same.

5.7.2 Evaluation Results

We first present the overall results of road obstacle detection and classification using optimal pa-
rameters, and then study of the parameter selection strategies in the CDRMF and CORAL models.

Road Obstacle Detection Results

We compare the overall accuracy of different methods in Table 5.2. We can see that our CDRMF
method achieves an F1-score of 0.942 (precision=0.953 and recall=0.931), outperforming the other
baseline methods. In particular, the TFBOY method fails to detect most of the road obstacles, since
the traffic volume decrease induced by road obstacles are overwhelmed by the global decrease of
traffic volume during post disaster periods. The ARIMA method achieves a relatively low recall
but high precision, meaning that it fails to detect some of the road obstacles (false negatives) but it
does not have many wrong detections (false positives), neither. The probable reason is that ARIMA
does not model the spatio-temporal collectiveness and thus fails to capture collective anomalies that
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Table 5.2: Road obstacle detection results
Methods Precision Recall F1

TFBOY 0.503 0.489 0.496
ARIMA 0.872 0.697 0.775
DRMF 0.730 0.906 0.809

CDRMF 0.953 0.931 0.942

Table 5.3: Road obstacle classification results
Methods Precision Recall F1

ST-ANN 0.921 0.956 0.938
SCAL 0.772 0.738 0.755
TCAL 0.691 0.649 0.669
COTA 0.843 0.870 0.856

CORAL 0.902 0.931 0.916

are not obvious from the view of a single road segment. The DRMF method, on the other hand,
achieves relatively low precision and high recall, which means that it detects many road obstacles
but only some of them are present in the ground truth set (true positives). This is reasonable
since DRMF does not impose structural constraints on the anomalies and thus results in many
isolated anomalies that should not be considered being induced by road obstacles. In general,
our method successfully captures the collective anomalies induced by road obstacles in disaster
response scenario and achieves relatively high detection accuracy.

Road Obstacle Classification Results

We present the road obstacle classification results in Table 5.3. The ST-ANN method achieves the
highest precision and recall using both spatio-temporal features and a full label set. However, in
practice, collecting such a training set is labor-intensive and time-consuming, which hinders the
online deployment in disaster response scenarios. For the other methods, we start from an initial
label set of size 7, and limit the total number of labels to be 20. The SCAL and TCAL baseline
methods do not perform well, justifying the assumption that neither set of features are significant
enough for building an effective road obstacle classifier. In contrast, the COTA baseline performs
better by exploiting both sets of features in a co-training model. The proposed CORAL method
further improves the performance by incorporating the active-learning diagram, achieving an F1-
score of 0.916 with precision=0.902 and recall=0.931, outperforming the other semi-supervised-
learning-based baseline methods, and achieving accuracy comparable with the ST-ANN method
while using only 12.5% of the labels.

Parameter Study

Low-rank constraint k: in the CDRMF model, the rank constraint parameter k needs to be care-
fully selected in order to separate the regular patterns from the mixed slow mobility behaviors. We
perform a rank estimation on M using an SVD-shrinkage method [168], and select k = 6 in our
experiments that preserve most of the significant singular values of M.



CHAPTER 5. SPATIO-TEMPORAL MOBILITY PREDICTION FOR ANOMALY-AWARE
ROAD NETWORKS 107

(a) Sparsity constraint c in the CDRAM model (b) Initial label set size |G1| in the CORAL
model

Figure 5.8: Parameter impact analysis and optimal parameter selection.

Sparsity constraint c: the sparsity constraint in the CDRMF model determines the number of
collective anomalies that can be detected, and thus influences the precision and recall of the model.
Based on [168], we vary c from 0 to 5% of the size of M, and present the F1-score under different
c values in Figure 5.8(a). We can see that a sparsity constraint too small or too large may result in
suboptimal model accuracy, and thus we select c = 2% in our experiments.

Initial label set size |G1| : in the CORAL model, the set of initially labeled instances is of great
importance for iterative model training. A large initial label set can help achieve high classification
accuracy, however collecting these labeled instances requires great effort and reduces the feasibility
of online deployment. Therefore, we have to make trade-offs between performance and feasibility.
As shown in Figure 5.8(b), we study the F1-score of the CORAL method against various |G1|
values. We can see that an initial training set of size 7 is large enough to obtain an F1-score higher
than 90%. Therefore, we select |G1|= 7 as the optimal initial label set size in our experiments.

Furthermore, we determine the optimal distance threshold δ p = 1m for the slow mobility se-
quence extraction algorithm, which yields closest results to the observations over a series of re-
peated experiments. In the CORAL model, we empirically set the number of the selected instances
Nc = Na = 2 based on repeated experiments.

Runtime Performance

We implement the CDRMF and CORAL algorithms using Matlab, based on the DRMF matlab
package provided by [168]. We deploy our framework on a server with Intel core i7-6700K CPU
and 16GB RAM, and it takes an average of 6.1 seconds and 3.2 seconds to do one round of road
obstacle detection and classification11, respectively.

11We do not count in the extra time of the crowdsensing tasks
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Figure 5.9: Case studies on road obstacle identification after Typhoon Meranti’s landfall in Xiamen.

5.7.3 Case Studies

We conduct case studies on road obstacles identification after the landfall of Typhoon Meranti in
Xiamen from 09/15/2016 to 09/17/2016. Figure 5.9 shows the overall distribution of the detected
and classified road obstacles. In general, we observe several water ponds formed in the lower center
part of the island, which corresponds to the downtown area with relatively low elevation. Fallen
trees block some of the major roads and cause serious transportation problems. Traffic accidents
induced by heavy rains and limited visibility increase significantly in complicated road interactions
and tunnel entries. These road obstacles pose great challenges for disaster response, and thus need
to be identified and removed as early as possible. In the following analysis, we present two cases
of identified road obstacles.

Fallen Trees on Xianyue Expressway

Figure 5.9(b) shows the identified fallen trees in Xianyue Expressway, one of the busiest high-
capacity road in Xiamen City. Our framework successfully identifies the road obstacle in 3 neigh-
boring road segments at 2016/09/15 17:00, which is 16 hours ahead of the event report on the
Weibo account of Xiamen Traffic Police12. As we can see in Figure 5.9(b), the road segments were
covered by flourishing trees before the typhoon strike, which posed potential risks of fallen trees
during the strong winds brought by Typhoon Meranti. Our framework and analysis can not only

12http://weibo.com/1976447603/E8vIamwnv
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help urban transportation authorities to clear the obstacles in a timely manner, but also provide
decision support for urban environment authorities in roadside tree planning and pruning [178].

Ponding Waters on Hubin South Road

Figure 5.9(c) illustrates the identified ponding water on the surface of Hubin South Road, which is
the trunk road in downtown with a relatively low-elevation (Hubin means lakeside). We identified
5 road segments along the road influenced by ponding water at 2016/09/15 08:30, which is 2 hours
earlier than the event is reported on the news13. From Figure 5.9(c), we can see several low-lying
road segments alone Hubin South Road near the Yundang Lake, which are potentially vulnerable
to the heavy rains brought by Typhoon Meranti. With the real-time information at hand, the urban
authorities could take preventive actions, for example, by sending out crews to drain the ponding
water and prevent further security issues on the road.

5.8 Conclusion

In this work, we propose a two-phase framework to detect and classify road obstacles in disaster re-
sponse scenarios, leveraging large-scale vehicle trajectories and many cross-domain urban sensing
datasets. In order to detect road obstacles, we extract slow mobility behaviors from vehicle trajec-
tories, and propose the CDRMF approach to detect collective anomalies from a mixture of slow
mobility behaviors, and correspond them to road obstacles. In order to recognize the types of the
detected obstacles, we exploit the spatio-temporal contextual features extracted from various envi-
ronment sensing data to train a classification model. To address the challenges of heterogeneous
features and insufficient labels, we propose a semi-supervised approach combining co-training and
active learning. We evaluate our framework using real-world datasets collected from Xiamen City.
Results show that our framework accurately detects and classifies the road obstacles in the 2016
typhoon season with an overall accuracy both above 90%, and outperforms the baseline methods.

In the future, we intend to improve this work from the following aspects. First, we plan to use
trajectories of various kinds of vehicles besides taxis, such as buses and rental cars. Second, we
plan to characterize the slow mobility behaviors in a finer granularity, for example, by identifying
waiting and turning behaviors. Third, we plan to improve the granularity of road spatial features
by incorporating the high-resolution LIDAR (Light Detection and Ranging) data collected by our
team in Xiamen University for better classification of road obstacles. Fourth, we plan to evaluate
our framework in other cities with different geographic and meteorological settings, and explore
the obstacle identification problem under other nature disaster types.

13http://weibo.com/1750354532/E8lY2Etxr
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6.1 Introduction

In recent decades, the number of mobile subscriptions is growing at almost 6 percent year-on-
year, reaching 7.8 billion at the end of 2017 [18]. Correspondingly, the network traffic volume has
grown 18-fold over the past five years [19] as Internet-enabled devices become increasingly pop-
ular. In order to cope with the fast growing number of subscribers and the surging traffic demand,
mobile network operators are deploying more and more base stations to expand their network cov-
erage [18], and adding more powerful processing units to increase their network capacity [141].
However, as network scale and capacity grow, the capital expenditure (CAPEX) and operating
expenditure (OPEX) are becoming increasingly high [20, 21]. Consequently, the surging cost of
infrastructure investment and energy consumption may exceed operator’s revenue [24,185]. More-
over, the quality-of-service of the network, such as handover delay between base stations, becomes
increasingly difficult to ensure as various sizes of base stations (e.g., pico-cells, micro-cells, and
macro-cells) and different generations of technologies (e.g., LTE, UMTS, and GSM) co-exist in the
network [25]. Therefore, designing cost-effective and high-quality mobile network architectures is
now a great necessity in the field of mobile network operation and research [21].

Fortunately, with the rapid evolution of mobile network technologies, the emergence of Cloud
Radio Access Network (cloud-RAN) [26] has provided new opportunities to address the above men-
tioned challenges. In cloud-RAN, a traditional base station is split into two components: the Remote
Radio Head (RRH) for radio communication with mobile devices, and the Baseband Unit (BBU)
for signal and data processing [23]. The BBUs are further detached from the RRHs and hosted in
centralized BBU pools [27]. The RRHs and BBU pools are usually connected via high speed opti-
cal fiber [28]. For example, Figure 6.1 shows an illustrative network consisting of three RRHs and
one BBU pool. By employing the cloud-RAN architecture, the cost-effectiveness and quality-of-
service can be improved compared with the traditional radio access network architectures [23]. We
exploit the example in Figure 6.1 to elaborate the benefit of cloud-RAN. On one hand, since multi-
ple RRHs can be connected to one BBU and share the processing capacity (RRH #1 and #2 share
BBU #1), the utilization rate of the BBUs can be increased, and the unused BBUs (BBU #3) can
then be dynamically shutdown to save energy consumption. Consequently, the cost-effectiveness
of the network is improved. On the other hand, when two RRHs are connected to one BBU (RRH
#1 and #2), the handover events between them can be handled directly inside the BBU (BBU #1),
which greatly reduces the handover delay. Consequently, the quality-of-service of the network is
improved. With the benefits it brings, cloud-RAN architecture is foreseen as a typical realization
of soft and green technologies in fifth generation (5G) mobile network [71].

In order to unlock the power of the cloud-RAN architecture, one of the key problem is to design
optimal mapping schemes between RRHs and BBU pools, so as to maximize the utilization rate
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Figure 6.1: An illustrative example of a network consisting of three RRHs and one BBU pool.
The BBU pool and the RRHs are connected via high-speed optical fiber. The traffic volume of
each RRH is represented in the semicircle, and the mobile device between two RRHs denotes users
moving between them (i.g., handover events between RRHs).

(i.e., reduce cost) and minimize the handover overhead (i.e., improve quality) of the entire network
[28, 186, 187]. Ideally, a cost-effective and high-quality RRH-BBU mapping scheme partitions a
set of RRHs in the network into several clusters and allocates BBUs from the pool to the clusters,
so that (1) the aggregated traffic volume generated in each RRH cluster is close to the capacity
of the BBU allocated to the cluster, and (2) the handover events are handled within each RRH
cluster and processed inside the corresponding BBU to the maximal extent. However, finding such
optimal RRH-BBU mapping schemes is not trivial, since the traffic demands and handover events
among the RRHs are highly dynamic, and the possible mapping schemes are enormous to verify
one-by-one. More specifically, the following challenges need to be addressed:

• How to accurately foresee RRH traffic volume and handover count? In order to make op-
timal RRH-BBU mapping schemes for a future period of time, we need to foresee the traffic
volume and handover count in the network beforehand. However, due to the dynamic na-
ture of human activity and mobility, the traffic volume and handover count among the RRHs
can vary significantly, depending on the temporal contexts (e.g., weekdays or weekends) and
spatial functions (e.g., residential areas or business districts). For example, during weekday
working hours, the RRHs located in business districts and transit hubs usually observe high
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traffic volume and massive handover count. Existing work on RRH-BBU mapping usually
employ probability models to simulate traffic volume and handover count [27,28,187], which
may not be able to capture the traffic and handover dynamics in real-world, and might result
in sub-optimal mapping schemes in real-world deployment. Therefore, we need to propose
effective methods to model the dynamics of the network, and accurately predict the traffic
and handover among RRHs.

• How to efficiently find optimal RRH-BBU mapping schemes? Given the predicted RRH
traffic volume and handover count in the network, there are potentially enormous schemes
to cluster these RRHs and to allocate BBUs to these clusters. Moreover, the global re-
source constraints of the BBU pools, such as the pool capacity and the BBU size (e.g.,
CPU and memory specifications), should be taken into consideration during the search of
the optimal mapping schemes. Existing work using exhaustive search methods quickly be-
comes intractable as network scale grows [28], while competitive optimization methods such
as coalition games are difficult to impose the global constraints during the mapping proce-
dure [40]. Therefore, we need to design an effective algorithm to find optimal RRH-BBU
mapping scheme with cost and quality objectives under the BBU resource constraints.

With the above-mentioned objectives and challenges, the main contributions of this work are:

• To the best of our knowledge, this is the first work on data-driven cloud-RAN optimization
leveraging dynamic RRH clustering based on network traffic and user mobility prediction.
By analyzing real-world RRH traffic and handover data, we are able to capture the dynamics
of the network and develop optimal RRH-BBU mapping schemes for real-world deployment.

• We propose a two-phase framework to dynamically find optimal RRH-BBU mapping schemes
based on the accurate prediction of RRH traffic and handover in the network. In the first
phase, we employ a data-driven approach to model the spatio-temporal dynamics of a net-
work with real-world call detail records, and then propose a deep-learning-based model
leveraging Multivariate Long Short Term Memory (MuLSTM) algorithms to accurately pre-
dict the traffic volume and handover count in a future period of time. In the second phase,
we model the RRHs in a network as a weighted graph, taking into consideration the RRH
traffic volume and handover count as graph nodes and link weights, respectively. We then
formulate the optimal RRH-BBU mapping with cost and quality objectives as a set partition
problem, and propose a Resource-Constrained Label-Propagation (RCLP) algorithm to find
the optimal mapping schemes under the BBU pool resource constraints.

• We evaluate the performance of our framework using two real-world mobile network datasets
collected from Ivory Coast and Senegal. Real-world evaluation results show that our frame-
work effectively increases 24.74% of utilization rate and reduces 12.05% of energy con-
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sumption compared with traditional RAN architectures, and outperforms the state-of-the-art
baseline methods.

6.2 Preliminaries and Framework

6.2.1 Terminologies

In a traditional mobile network architecture, a set of base stations are deployed over geographical
areas called cells [145]. Each base station provides the cell with the network coverage which can
be used for transmission of voice and data. With the recent emergence of Internet-enabled devices,
such as smartphones and tablets, the data traffic generated from the bases stations are increasing
explosively [19, 21], demanding for higher data processing capacity in the network. Meanwhile,
with the rapid urbanization and economic development, the coverage and scale of mobile networks
are expanding tremendously, bringing about networks consisting of various sizes of base stations
and different generations of technologies [25]. Such a hybrid architecture poses great challenge
for operators to ensure the network quality-of-services (QoS), especially when handling handover
delays when users move among base stations [30, 80]. The cloud-RAN has been proposed to ad-
dress the above-mentioned challenges. We define some of the terminologies used in cloud-RAN as
follows:

Definition 14. Remote Radio Head (RRH): an RRH is the radio transceiver placed in a base station
site to facilitate wireless communication between user devices and the network [188]. We define
an RRH r as a 3-tuples:

r =< label, lat, lng > (6.2.1)

where label is the label used to identify the RRH, and lat and lng are the corresponding latitude
and longitude coordinates of the RRH.

Definition 15. RRH Traffic Volume: in this work, we refer to the term traffic volume as the quantity
of radio resource units [28] consumed in the RRH for communication during a period of time, which
can be the total duration of calls, the overall volume of Internet data, etc. Specifically, we denote
the traffic volume of RRH ri during time span t as f (ri, t).

Definition 16. RRH Handover Count: in this work, we refer to the term handover count as the
quantity of users moving between a pair of two RRHs during a period of time. Specifically, we
denote the handover count between RRH ri and RRH r j during time span t as h(ri,r j, t).

Definition 17. Baseband Unit (BBU): a BBU is a device providing digital signal processing func-
tionalities for RRHs from baseband processing to packet processing [188]. Specifically, we define
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a BBU as a 3-tuple:
b =< label, pool,cluster > (6.2.2)

where label is the label to identify a BBU instance, pool is the BBU pool where the BBU is
allocated, and cluster is the RRH cluster where the BBU is assigned to.

Definition 18. BBU Capacity: in the cloud-RAN architecture, BBUs are usually implemented as
virtual machine instances with specific sizes of computing resources, including CPU, memory, and
storage [23, 189]. Consequently, the resultant BBU capacity can be classified into a set of discrete
levels, e.g., LARGE, MEDIAN, and SMALL. Specifically, we define the set of BBU capacity level
as

L= {l1, . . . , lNl} (6.2.3)

where Nl is the number of capacity levels. Correspondingly, we denote the capacity level of BBU
bk as l(bk) ∈ L.

Definition 19. BBU Pool: in the cloud-RAN architecture, a BBU pool is a cloud-based data cen-
ter with low-cost and high-speed interconnect network, a real-time virtualization platform with
dynamic shared resource allocation and management, and a general-purpose baseband processing
platform with multiple BBUs [23, 26]. For a city-scale network, one or more BBU pools can be
implemented and connected to RRHs via high-speed optical fiber. Specifically, we denote a BBU
pool as a set of BBUs:

B= {b1,b2, . . . ,bk} (6.2.4)

In this work, we consider a Cloud-RAN architecture with one BBU pool for the city-wide
mobile network. The benefits of adopting such a centralized pool are three-fold. First, the deploy-
ment cost and energy consumption can be greatly reduced by employing data center virtualization
technologies [146]. Second, the handover handing and contents offloading among RRHs can be
processed internally in the pool, which significantly reduces delays and increases throughput [23].
Third, the network upgrades and hardware maintenance are easy to conduct just in one place, with-
out the need of labor-consuming on-site work.

6.2.2 Framework Overview

As presented in Figure 6.2, we propose a two-phase framework to accurately predict RRH traffic
volume and handover count based on historical data, and then dynamically find optimal RRH-
BBU mapping schemes for cloud-RAN optimization. In the RRH traffic and handover prediction
phase, we first model the traffic and handover dynamics among RRHs with spatial and temporal
dimensions, and then propose a deep-learning-based approach to predict the traffic and handover for
a future period of time. In the dynamic RRH-BBU mapping phase, we first model the network with
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Figure 6.2: Framework overview.

predicted RRH traffic volume and handover count as a weighted graph, and identify the resource
constraints from the BBU pools. We then propose a resource-constrained RRH-BBU mapping
algorithm with the objectives of maximizing the network cost and quality. In the following sections,
we elaborate on the details of this framework.

6.3 RRH Traffic and Handover Prediction

In this phase, our objective is to accurately predict the RRH traffic volume and handover count
in a future period of time, so that we can determine the optimal RRH-BBU mapping scheme in
the next phase. However, this is not trivial due to the highly dynamic nature of social activity and
user mobility. On one hand, the RRH traffic and user mobility behaviors may vary significantly
under different temporal contexts. On the other hand, the spatial function of an area may have
strong impacts on the traffic and mobility patterns of the RRHs located in that area. For example,
Figure 6.3 shows an illustrative example of the traffic and mobility dynamics in Abidjan, Ivory
Coast during one week. In the business district Plateau, we can observe significant different traffic
(Figure 6.3b) and mobility (Figure 6.3e) patterns between weekdays and weekends. In contrast, the
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Figure 6.3: The RRH traffic and user mobility dynamics in Abidjan, Ivory Coast during a sample
week (01/09/2012–01/15/2012). In map (a) and (c), each green dot corresponds to an RRH. In
map (c), the blue links denote the number of users moving between pairs of RRHs. Wider link
corresponds to higher mobility count.

traffic and mobility patterns in the residential area Marcory are quite different from that of Plateau.

In a word, the real-world traffic and mobility patterns demonstrate temporal dependency and
spatial correlation. However, traditional prediction methods usually model each RRH traffic as
single time series [96, 98], and model the user mobility as static graphs [39, 190], which fails to
integrate the spatial and temporal dynamics in a unified model, and hinders the accurate prediction
of RRH traffic and handover. Therefore, we propose a deep-learning based approach to model
the spatial and temporal dynamics as a multivariate Long Short Term Memory (MuLSTM) neural
network for accurate prediction. In this section, we first briefly introduce the datasets we use for
extracting the RRH traffic and user mobility in a network. Then, we details the models we use
to capture the spatial and temporal dynamics of the RRH traffic and handover data. Finally, we
propose a deep-learning-based approach for accurate prediction of the RRH traffic volume and
handover count.

6.3.1 Call Detail Records

In mobile networks, call detail records are data that document the details of phone calls, text
exchanges, or other telecommunication transaction that pass through the network infrastructures
[191]. Call detail record data contain rich information about social activity and user mobility, pro-
viding opportunities to optimize mobile network infrastructures, such as reducing operation cost
and improving service quality. In this work, we exploit two real-world large-scale anonymized call
detail record datasets released by Orange group via the Data for Development (D4D) Challenge1.
The datasets are collected from Orange customers from Ivory Coast for half-a-year, and Senegal in
one year, respectively. The datasets consists of the following information:

• RRH attributes: including the RRH labels and geographic coordinates.

1http://www.d4d.orange.com/
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• RRH communication: including the number and durations of phone calls and SMS ex-
changes between RRHs in the network on an hourly basis.

• User attributes: including anonymized user labels which are shuffled every two weeks for
privacy concerns.

• User Mobility: including the user mobility trajectories among RRHs in the network with
precise time and RRH information.

Based on the datasets, we aggregate the communication and mobility events by RRH, and
perform data cleansing process to extract the RRH traffic volume and RRH handover count on
hourly basis, respectively. More details about the datasets are presented in the evaluation section.

6.3.2 Spatio-Temporal RRH Traffic and Handover Modeling

In order to capture the spatial and temporal dynamics of the RRH traffic and handover, we construct
two tensors [10, 165] to model the traffic volume generated in each RRH and the handover counts
observed among each RRH pair, respectively. More specifically, given a network with Nr RRHs
and the corresponding call detail record data observed in Nt time spans, the RRH traffic tensor and
RRH handover tensor are defined as follows:

RRH traffic tensor: we build a tensor F ∈ RNr×Nt with two dimensions to model the RRH
traffic volume, where F(ri, t) corresponds to the total incoming and outgoing communication traffic
volume of RRH ri during time span t (i = 1, . . . ,Nr, t = 1, . . . ,Nt). We note that based on different
scenarios, the definition of traffic may vary, such as the total duration of calls, the number of
messages, and the overall volume of Internet data. For example, Figure 6.3b and 6.3c visualize two
typical traffic patterns extracted from two specific RRHs in F.

RRH handover tensor: we build a tensor H ∈ RNr×Nr×Nt with three dimensions to model
the RRH handover counts, where H(ri,r j, t) corresponds to the total count to handover events
between RRH ri and RRH r j during time span t. We consider the case of symmetric modeling
where H(ri,r j, t) =H(r j,ri, t). As an example, Figure 6.3e and 6.3f visualize two typical handover
patterns extracted from two specific pairs of RRHs in H.

6.3.3 Deep-Learning-Based Traffic and Handover Prediction

In this work, we use the similar deep-learning techniques introduced in Chapter 4 for traffic and
handover prediction. Specifically, we model the RRH traffic and handover simultaneously using
the MuLSTM model as follows.

The MuLSTM model: in this work, we use LSTM networks to effectively learn the temporal
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Figure 6.4: The MuLSTM model for RRH traffic and handover prediction.

dependency of RRH traffic patterns and handover patterns from historical data. To further model
the spatial correlation among RRHs in the network, we propose a multivariate Long Short Term
Memory Network (MuLSTM) architecture to simultaneously integrate all the RRHs in a unified
model. Specifically, each RRH traffic is regarded as an input variable to a shared LSTM model,
while each RRH handover pair is regarded as an input variable to another shared LSTM model.
The two LSTM models accept the multivariate inputs and are trained jointly. Figure 6.4 shows the
overview of the proposed MuLSTM model. We elaborate on the technical details as follows.

Snapshots: we first generate two sets of consecutive traffic and handover snapshots based on
the traffic tensor F and the handover tensor H, respectively. A snapshot is a slice of the tensor along
the time axis, which corresponds to the traffic or handover observations among all RRHs during one
hour, and can be denoted as Ft = F(:, t) or Ht =H(:, :, t), respectively. Consequently, a set of con-
secutive traffic snapshots can then be represented as {Ft ,Ft−1, . . . ,Ft−Ns}, and a set of consecutive
RRH handover snapshots as {Ht ,Ht−1, . . . ,Ht−Ns}, where Ns is the number of snapshots.

Inputs: we then extract the appropriate inputs for the LSTM layers based on the snapshots.
For traffic, we simply stack Nr RRH traffic observations in each snapshot to form an input vector,
and select Ns snapshots as the look-back time steps [192]. For handover, since there are Nr×Nr

handover pairs, directly constructing an input vector with such high dimension will be compu-
tational impossible for the LSTMs. In fact, many of the RRH pairs do not observe meaningful
handover counts since they are geographically distant from each other. Therefore, we adopt a
hypothesis-based method to select RRH pairs with statistical significant handover counts. Based
on our observation from the dataset, a significant handover count series exhibits large variations
(i.e., over-dispersion) [193], thus we make a hypothesis that the handover count of an RRH pair
follows the negative binomial distribution [194]. We test each RRH pair again this hypothesis and
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remove failure pairs. In this way, we obtain Nh pairs of RRHs with significant handover counts. We
stack the pairs in each snapshot to form an input vector, and use Ns snapshots as look-back time
steps for the LSTM layers.

LSTM layers: in the LSTM layers, we build two LSTM neural networks for the traffic and
handover inputs, respectively. The traffic LSTM accepts an input of Nr traffic variables with Ns

time steps, while the handover LSTM accepts an input of Nh handover pairs with Ns time steps,
respectively. As illustrated in Figure 6.4, for each time step, the hidden unit st in the network
computes its current activation ot as a nonlinear function of both the current input weights U and
the weights from the previous state W . In this way, the networks are able to keep a memory of the
previous perception and use the knowledge for current decision making.

Predictions: the LSTM layers output the RRH traffic volume and handover count for the next
time step as predictions. In order to exploit the correlation between RRH traffic and handover,
we aggregate the outputs, and train the the two LSTMs jointly using the popular Backpropagation
Through Time (BPTT) algorithm [192] for multiple iterations. The implementation details are
elaborated in the evaluation section.

We run our prediction algorithm in an online manner, i.e., at the end of each time step t, we make
a new prediction for the traffic and handover of t +1. We construct a tensor F̂ ∈RNr×Nt to store the
traffic prediction, and a tensor Ĥ ∈ RNr×Nr×Nt to store the handover prediction, respectively. The
prediction results are then used in the next phase for RRH-BBU mapping.

6.4 Dynamic Optimal RRH-BBU Mapping

In this phase, given the predicted RRH traffic and handover in a future period of time, as well as the
BBU size and pool capacity constraints, our objective is to find optimal RRH-BBU mapping scheme
to maximize BBU utilization rate and minimize RRH handover overhead. Such a problem has
been identified as set partitioning problem [195, 196], and its complexity is proven to be NP-hard
[197]. Therefore, exhaustively searching for every possible mapping scheme is computationally
intractable as the network scale increases [28]. Some of the existing work use distributed methods
such as coalition games, where the RRHs decide to form or leave clusters based on the gains of the
strategies. However, such distributed methods are difficult for imposing global resource constraints
in the centralized BBU pool [40] during the search procedure. In order to address these challenges,
we propose a resource-constrained RRH-BBU mapping approach based on the weighted-graph
model. We first introduce the system model and the problem formulation, and then propose the
algorithm to effectively find optimal RRH-BBU mappings under the resource-constraints.
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6.4.1 System Model

Based on the above-mentioned definitions, we model a mobile network as an undirected, weighted
graph G = (V,E), where V = {v1, . . . ,vNr} is the set of graph nodes denoting the Nr RRHs, and E
is the set of graph links corresponding to the significant handover pairs among RRHs. We consider
our dynamic RRH-BBU mapping problem in an online manner, i.e., at the end of time span t, we
make decision of the RRH-BBU mapping scheme for the next time span t+1. To this end, we need
to update the graph dynamically in each time span. We elaborate the details as follows.

Graph weights: we initialize the above-mentioned graph at t + 1 as G(t + 1) with the traffic
and handover predictions. Specifically, we define the weight of node |vi|= F̂(i, t +1), which corre-
sponds to the traffic volume of the RRH i in time span t +1. Similarly, we define the weight of link
|ei, j|= Ĥ(i, j, t +1), which is the handover count between RRH i and j in time span t +1. We note
that if there is no predicted handover count between RRH i and j, then the link weight is set to 0,
and we remove the corresponding link in G(t +1). We consider the case of symmetric link weights
(|ei, j|= |e j,i|) with no loops (|ei,i|= 0).

Constraints: we model the resource constraints in the BBU pool according to the available
BBU capacity. Since BBUs in the pools are implemented as virtual machine instances with specific
sizes of computing resources, their capacities can be classified into a set of discrete levels. For ex-
ample, we can denote a set of BBU capacity level as Φ = {PICO,SMALL,MEDIAN,LARGE, . . .},
each corresponding to a specific computing resource configuration. The capacity of an allocated
BBU bk shall be in one of the capacity levels, i.e., φ(bk) ∈ Φ. Note that we do not explicitly con-
strain the number of available BBU with specific capacity level, since large-capacity BBUs (virtual
machines) can be allocated by merging two or more small-capacity BBUs, and vice versa. Instead,
we constrain the overall capacity limit of a BBU pool to be O , since the capacity of a BBU pool
is usually fixed once it is deployed. We study the impacts of different capacity level and capacity
limit combinations in the evaluation section.

BBU utilization rate: once a BBU bk is allocated to an RRH or a cluster of RRHs ck in the
time span t +1, its utilization rate can be calculated as

U(bk) =
∑vi∈ck

|vi|
φ(bk)

∈ [0,1] (6.4.5)

where {vi} are the graph nodes corresponding to the cluster of RRHs mapped to the BBU. BBU
utilization rate is one of the key objectives in optimizing our RRH-BBU mapping scheme. Since
the BBU capacity φ(bk) is discrete and the traffic generated in a cluster is continuous, it is impor-
tant to ensure that the aggregated traffic volume in the cluster is close to the corresponding BBU
capacity. Note that in order to avoid throughput congestion [28] and hurting the network quality
of service, we do not allocate BBU for clusters whose aggregated traffic volume is larger than the
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maximum available BBU capacity in the pool. Thus, we constrain U(bk) ∈ [0,1] to avoid cluster
traffic overflow.

Inner-BBU handover rate: the other key objective in RRH-BBU mapping optimization is to
ensure that the handover events in t +1 are processed within a BBU (i.e., the corresponding RRHs
are in a cluster) to a maximum extent. Therefore, we calculate the inner-BBU handover rate of
cluster ck as

W (ck) =
∑vi∈ck ∑v j∈ck

|ei, j|
2|E|

∈ [0,1] (6.4.6)

where {ei, j} are the graph edges between the nodes that corresponding to the cluster of RRHs ck,
and |E| corresponds to the total handover count between all RRH pairs during t +1.

6.4.2 Problem Formulation

With the above-mentioned system model, we now present the problem formulation for the BBU-
RRH mapping problem with the objectives of maximizing BBU pool utilization and minimizing
handover costs. Specially, given the graph representation G(t + 1) of a set of RRHs with the cor-
responding traffic and handover prediction, as well as the BBU pool resource constraints, our ob-
jective is to partition the graph into a set of Nk disjoint clusters C = {c1, . . . ,cNk}, and map each
cluster ck to a BBU bk in the BBU pool B= {b1,b2, . . . ,bk}, with the following objective function
and constraints:

(P1) : maximize U(B)∗W (C) (6.4.7)

=maximize
1

Nk
∑

Nk
k=1U(bk)∗∑

Nk
k=1W (ck) (6.4.8)

=maximize
1

Nk
∑

Nk
k=1

∑vi∈ck
|vi|

φ(bk)
∗∑

Nk
k=1

∑vi∈ck ∑v j∈ck
|ei, j|

2|E| (6.4.9)

Subject to

(C1) : ∪∀ck∈C =V and ∩∀Ck∈P = /0 (6.4.10)

(C2) : U(bk) ∈ [0,1] (6.4.11)

(C3) : W (ck) ∈ [0,1] (6.4.12)

(C4) : φ(bk) ∈Φ (6.4.13)

(C5) : ∑ φ(bk)≤ O (6.4.14)

In this problem formulation, constraint C1 ensures that the clusters form a complete disjoint
partition of the graph. Constraints C2–C3 are posed to avoid large clusters with aggregated traffic
volume higher than the maximum available BBU capacity. Constraints C4–C5 make sure that the



124 6.4. DYNAMIC OPTIMAL RRH-BBU MAPPING

allocated BBU capacity can only be discrete values specified by the pool configuration, and their
overall capacity can not exceed the resource limit O .

6.4.3 Proposed Algorithm

The proposed problem P1 is indeed a graph partitioning problem (GPP) [198], which has been
proved to be an NP-hard problem [196, 198]. To tackle this difficult problem, we resort to a fast
heuristics approximation algorithm named label propagation (LP) [127, 130]. The basic idea of
label propagation is to initialize each node in the graph as a cluster, and iteratively assign a node
to its neighboring cluster based on a gain function [130]. However, directly applying an label
propagation algorithm to our problem may not be adequate, since we also need to impose the
resource constraints from the BBU pool, including available BBU capacity levels and pool capacity
limit. Therefore, we propose a Resource-Constrained Label Propagation (RCLP) algorithm to solve
this problem. We elaborate on the details as follows.

Algorithm: as shown in Algorithm 2, the RCLP algorithm is initialized by assigning each node
in the graph to a unique cluster label. In each iteration, we randomly populate a list of node labels
L, and traverse the list to update the cluster label of each node. The label update process is as
follows. First, we remove the node from its current cluster, and find the set of adjacent clusters to
the current node. Then, we compute the gain for adding the current node to the adjacent clusters,
and assign it with the label of the cluster with the highest gain2. We mark the the node as moved
among clusters if its new cluster label is different from the old one.

After we finish iterating over the node list, we evaluate whether the allocated resources of the
resultant cluster partition are within the capacity limit of the BBU pool. If not, we reset the cluster
labels and restart the optimization procedure. As the convergence of such a greedy algorithm is
difficult to prove, we set a maximum iteration number max_iter to ensure the algorithm will stop.
At the end of each iteration, we decide whether to perform another iteration or finish the algorithm
based on the following stop criteria: (1) the user specified maximum iteration number max_iter is
reached, or (2) none of the nodes are moved among clusters.

Gain function: the gain function is used to determine whether a node should be added to a
adjacent cluster, and it shall take into consideration the improvement in both BBU utilization and
handover performance. To this end, we first design the utilization gain of adding node vi to cluster
ck as

gain_u(vi,ck) = max Γ(|vi∪ ck|, l), l ∈ L (6.4.15)

2If two clusters yield the same gain, we randomly choose one.
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Algorithm 2: The RCLP algorithm
Input: Graph G(t +1) = (V,E), pool capacity limit L, maximum iteration number max_iter
Output: Cluster labels L for nodes in the graph
. cluster label assignment

1 Initialize: L← 1, . . . ,N
2 while (iter < max_iter)∧ (move > 0) do

. random permutation of nodes
3 rand_perm(V );
4 move← 0 ;
5 for i← 1 to Nr do

. remove current node from its cluster
6 old_label← L(vi);
7 L(vi)← null;

. select adjacent clusters
8 Cvi = get_ad jacent_clusters(vi,G,L);
9 max_gain← 0;

10 for c ∈ Cvi do
. find cluster with highest gain

11 gain← compute_gain(vi,c);
12 if gain≥ max_gain then
13 new_label← L(c);
14 max_gain← gain;

. update current node label
15 L(vi)← new_label
16 if old_label 6= new_label then
17 move← 1;

. reset labels if capacity limit exceeded
18 if allocated_capacity(L)> L then
19 L← 1, . . . ,N

where

Γ(|vi∪ ck|, l) =


|vi∪ ck|

l
if |vi∪ ck| ≤ l (6.4.16)

−log(
|vi∪ ck|

l
), if |vi∪ ck|> l (6.4.17)

The rationale is like this: suppose we add vi to ck to form a candidate cluster vi ∪ ck, we try to
allocate BBUs with different capacity levels l ∈ L to the cluster. If the aggregated traffic of the
candidate cluster does not exceed the BBU capacity, we calculate its utilization rate as Equation
(6.4.16). Otherwise, we punish the candidate cluster with a log function (Equation 6.4.17) to avoid
forming a cluster that no BBU can handle. Finally, we assign the maximum possible utilization rate
to the candidate cluster with Equation 6.4.15.
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Then, we define the handover gain of adding node vi to cluster ck as

gain_h(vi,ck) =
∑vk∈ck

|ei,k|+∑vki∈ck ∑vk j∈ck
|eki,k j |

2|E|
(6.4.18)

which is a measurement of how strong the nodes in the new cluster vi ∪ ck are connected to each
other. Finally, we define the gain function as the combination of both the utilization gain and the
handover gain:

gain(vi,ck) = gain_u(vi,ck)∗gain_h(vi,ck) (6.4.19)

where µ ∈ (0,1) controls the importance of each gain component.

Time Complexity: for each iteration of the RCLP algorithm, it first takes O(|V |) steps for node
permutation, and then processes all the links when computing the value function for each node,
taking O(|V | ∗ |E|) steps in the worst case. Since we limit the number of iterations by max_iter, the
final time complexity of the algorithm is O(|V | ∗ |E|).

6.5 Evaluation

We evaluate the performance of our framework using real-world mobile network traffic datasets.
We focus on the accuracy of the traffic and handover prediction method, and the statistical gain
of the RRH-BBU mapping schemes. In this section, we first describe the experiment settings, and
then present the evaluation results and case studies.

6.5.1 Dataset Description

We exploit two large-scale anonymized datasets released by Orange Group in the D4D challenges
[84,85]. The datasets contain call detail records from Orange customers from Ivory Coast for half-
a-year, and Senegal in one year, respectively. Based upon this, we extract two city-scale datasets
for Abidjan and Dakar, the two largest cities in Ivory Coast and Senegal, respectively. We perform
data cleansing to remove missing and incomplete data. Specifically, we exclude base stations with
no traffic or handover records, and compile two datasets containing the base station positions, call
durations, and handover counts. The details of these two datasets are listed in Table 6.1.

We assume the cloud-RAN architecture is deployed in the two cities during the data collection.
Specifically, the RRHs are placed in the base station sites, and the centralized BBU pools are
deployed and connected to the RRHs via high speed optical fiber. We quantify the RRH traffic based
on the aggregated radio resource units [28] allocated to the phone calls, which is proportional to the
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Table 6.1: Datasets Description

City Abidjan Dakar

Area 422 km2 83 km2

Population 4,707,404 1,146,053
Base stations 270 257

Duration
20 weeks 50 weeks
12/05/2011–04/22/2012 01/07/2013–12/22/2013

Average call duration 5.18 minutes 6.82 minutes
Handover events per hour 78,662 113,082

total call durations in each hour3. Due to privacy concerns, the mobility data is randomly sampled
from a portion of Orange customers (1% for Ivory Coast and 3.33% for Senegal, respectively)
[84, 85], therefore we estimate the actual handover count by multiplying the sample rate.

6.5.2 Evaluation on Prediction Accuracy

We first evaluate the accuracy of traffic and handover prediction in the first phase. We detail the
evaluation plan, metrics and baseline methods as follows, and present the evaluation results.

Evaluation Plan: we use 70% of the datasets for model training, and the remaining 30% for
testing. For each part, we use the first Ns time steps (hours) as input and the next one time step
(hour) as the desired output. We then use the training set to train the MuLSTM model. Since the
traffic and handover patterns are quite different during weekdays and weekends, we separately train
a weekday and a weekend model using the corresponding datasets, respectively. In the MuLSTM
model, we implement the LSTM layers using an encoder-decoder architecture. More specifically,
the encoder layer L1 contains Nencoder memory units, which accepts as input an array of traffic or
handover vectors of Ns time steps, and outputs an encoded sequence for the decoder. The decoder
contains Ndecoder memory units, which accepts as input the encoded sequence and outputs the traffic
or handover forecast.

Model Training: we use the popular Tensorflow [151] library for constructing our deep-
learning model. We train the MuLSTM model for Niter iterations to ensure that the network learns
the potential temporal and spatial structures of the traffic and handover patterns. Based on a se-
ries of empirical experiments, we choose the optimal Ns = 12 hours, Nencoder = Ndecoder = 32, and
Niter = 10,000. The model is trained on a 64-bit server with an NIVIDA GeForce GTX 1080
graphic card and 16GB of RAM. Each training iteration takes about 1.5 seconds and the whole

3We note that if fine-grained network traffic data, such as video stream, are available, our solution can easily adapt to
the optimization task with regard to each specific traffic type.
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process takes 4.2 hours.

Evaluation Metrics: in the model test period, we use the trained MuLSTM model to predict
the city-wide traffic volume and handover count at the beginning of each hour, and compare the
results with the ground truth data. We design the following evaluation metrics to evaluate the RRH
traffic and handover prediction accuracy.

For RRH traffic prediction, we compare the predicted traffic snapshot F̂(:, t) with the ground
truth data F(:, t) in the test set of size Ntest , and calculate the Mean Absolute Percentage Error
(MAPE) for each snapshot:

MAPE f =
1

Ntest

Ntest

∑
t=1
|F(:, t)− F̂(:, t)

F(:, t)
|×100% (6.5.20)

Similarly, for RRH handover prediction, we compare the predicted handover snapshot Ĥ(:, :, t)
with the ground truth data H(:, :, t) in the test set of size Ntest , and calculate the Mean Absolute
Error (MAE) for each snapshot:

MAPEh =
1

Ntest

Ntest

∑
t=1
|H(:, :, t)− Ĥ(:, :, t)

H(:, :, t)
|×100% (6.5.21)

Baseline Methods: we design the following prediction baselines to compare with the proposed
deep-learning-based approach.

• ARIMA: this baseline method models the traffic of each RRH as a time series, and uses
the traditional ARIMA model [199] for traffic prediction. Similarly, it models each signifi-
cant handover sequence as a time series, and builds individual ARIMA models for handover
prediction, respectively.

• MuANN: different from the previous two baselines, this baseline method models the RRHs
in the network as a whole, and adopts the same architecture as the proposed MuLSTM model
except that the predictors are implemented using ANN layers. Since the ANN layers do not
have an internal temporal state and thus are not able to model the temporal dependencies
among different time steps, the inputs of this method are the traffic and handover snapshots
in only one time step.

Evaluation Results: Figure 6.5 shows the results of traffic and handover prediction using the
baseline and proposed methods, respectively. Each method is evaluated on weekdays, weekends,
and all days. In RRH traffic prediction, the proposed MuLSTM method achieves an MAPE of
6.08% for all days, which is much lower than the MAPE of ARIMA (13.23%) and MuANN (9.08%)
methods. The possible reason is that the ARIMA method models the temporal dependency of RRH
traffic, but fails to capture the correlations among RRHs. Meanwhile, the MuANN method models
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the RRH correlations in the ANN layers, but is not able to capture the temporal dynamics of RRH
traffic. In contrast, the proposed MuLSTM method models the temporal dynamics and spatial
correlations simultaneously to achieve lower prediction errors. Furthermore, by separately training
different predictive models for weekdays and weekends, the prediction errors can be reduced for
the ARIMA and MuLSTM methods, since the temporal patterns can be modeled in a fine-grained
manner for these two methods.

We show two illustrative examples of RRH traffic handover predictions using the proposed
MuLSTM models (without weekday and weekend separation) in Figure 6.5(b) and Figure 6.5(d),
respectively. The example RRH is located in Plateau, the downtown area of Abidjan, Ivory Coast.
We can see that the proposed methods successfully learn the dynamic weekday and weekend pat-
terns in both traffic and handover dynamics, and make accurate predictions based on the temporal
and spatial factors.

6.5.3 Evaluation on RRH-BBU Mapping

With the predicted RRH traffic and handover in the test set, as well as the BBU size and pool
capacity constraints, we evaluate the effectiveness of the proposed method on finding optimal RRH-
BBU mapping schemes. Specifically, we run the mapping algorithms for each hour in the test set
and calculate the statistical multiplex gains for comparison. We elaborate the parameter selection,
evaluation metrics, baseline methods and evaluation results as follows.

Parameter Selection: the most important parameter in the RRH-BBU mapping phase is the
BBU size in the BBU pool. Since BBUs are implemented as virtual machines, their sizes are usually
discrete values corresponding to predefined VM configurations (e.g., PICO,SMALL,MEDIUM,LARGE).
However, the radio resource units occupied by RRHs are continuous. For example, Figure 6.6
shows the histogram of the radio resource units of all the RRHs in the training set of Abidjan,
which ranges from 1× 105 to 4× 105 radio resource units. The desired BBU size needs to ac-
commodate the demands of radio resource units occupied by both single RRH and RRH clusters.
Based on previous studies [28, 40] and empirical experiments, we design the BBU size category as
a discrete set as follows:

Φ = {1RU,2RU,4RU,8RU, . . .} (6.5.22)

where 1RU = 105 radio resource units in this example. In this way, an RRH that occupies 1.5×105

radio resource units can allocate a BBU of size 2RU , while a cluster of RRHs with an aggregated
radio resource units of 10.5×105 can allocate a BBU of size 16RU , respectively.

Evaluation Metrics: for an RRH-BBU mapping scheme that partition the RRHs into a set
of Nk disjoint clusters C = {c1, . . . ,cNk} and map each cluster ck to a BBU bk in the BBU pool
B= {b1,b2, . . . ,bk}, we evaluate its statistical multiplex gains from the following two aspects.
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(a) RRH traffic prediction error. (b) Downtown traffic example.

(c) RRH handover prediction error. (d) Downtown handover example.

Figure 6.5: Evaluation results of RRH traffic and handover prediction. Figure (b) and Figure (d)
demonstrate illustrative examples of the traffic patterns and prediction results from a downtown
RRH in Abidjan in one week (from 01/09/2012 to 01/15/2012).

For evaluating the improvement of BBU utilization, we define the average utilization rate of
the BBU pool based on Equation 6.4.5, i.e.,

U(B) =
1

Nk
∑

Nk
k=1U(bk) (6.5.23)

Similarly, for evaluating the improvement of handover quality, we define the inner-BBU handover
rate of the RRH clusters based on Equation 6.4.6, i.e.,

W (C) = ∑
Nk
k=1W (ck) (6.5.24)

Baseline Methods: we design the following two sets of baselines to compare with the proposed
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Figure 6.6: The histogram of RRH traffic in the training set of Abidjan, measured in radio resource
units.

RRH-BBU mapping method. The first set of baselines adopt straight-forward RRH-BBU mapping
schemes without clustering, i.e.,

• ONE-TO-ONE: in this baseline, we directly map one RRH to one BBU with maximal uti-
lization rate under the BBU resource constraints. Since no BBUs are shared by RRHs, the
inner-BBU handover rate is thus always zero.

• ALL-TO-ONE: in this baseline, we map all RRHs to a virtual BBU with the capacity of the
pool limit O . Since the BBU is shared among all RRHs, the inner-BBU handover rate is thus
always 100%.

The second set of baselines adopt the same RCLP clustering algorithm as the proposed method,
while differs in the design of the optimization objectives, i.e.,

• UTIL-RCLP: this baseline method finds RRH-BBU mapping schemes that maximize the
BBU utilization rate without considering the inner-BBU handover rate. The constraints and
algorithm are the same as the proposed method.

• HAND-RCLP: this baseline method finds RRH-BBU mapping schemes that maximize the
inner-BBU handover rate without considering the BBU utilization rate. The constraints and
algorithm are the same as the proposed method.

Similarly, we name the proposed method as DUAL−RCLP, which optimize the BBU utilization
rate and the inner-BBU handover rate at the same time.

Evaluation Results: Figure 6.5 shows the results of average utilization rate and inner-BBU
handover rate on the test set using the baseline and proposed methods, respectively. We can see
that the ONE-TO-ONE baseline method achieves lowest utilization rate and inner-BBU handover
rate, since each RRH is allocated a separated BBU in the pool, which not only wastes unused
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Table 6.2: Evaluation Results of the RRH-BBU Mapping Methods

Methods Abidjan Dakar

BBU Utilization RRH Internal Handover BBU Utilization RRH Internal Handover

ONE-TO-ONE 58.7% 0% 49.8% 0%
ALL-TO-ONE 79.9% 100% 51.4% 100%

UTIL-RCLP 99.3% 1.64% 99.2% 0.77%
HAND-RCLP 60.5% 85.8% 62.1% 83.5%

DUAL-RCLP 75.0% 84.6% 76.7% 81.1%

BBU capacity, but also hinders handover events to be processed within a BBU. The ALL-TO-ONE
baseline, on the other hand, achieves the highest BBU utilization rate and inner-BBU handover
rate. By aggregating all the RRH traffic in a city into a huge, virtual BBU, the utilization rate can
be improved and all the handover events can be processed within that BBU. However, we argue
that such a huge, virtual BBU is technically difficult to implement and manage as a virtual machine
in the BBU pool, and it may introduce risks to the availability and robustness of the whole network
if the BBU is not responding or being damaged.

Results also show that the UTIL-RCLP and HAND-RCLP baseline methods achieve their opti-
mization goals in both cities by adopting the RCLP algorithm. Specifically, the UTIL-RCLP method
achieves relatively high utilization rate (above 99.2%) of BBUs, but fails to arrange RRHs with fre-
quent handover events into clusters. In contrast, the HAND-RCLP method finds clusters with high
inner-BBU handover rate (above 83.5%), but these clusters do not necessarily occupy the allocate
BBU in an efficient manner (with a utilization rate about 61%).

Finally, the proposed DUAL-RCLP method consistently achieves a BBU utilization rate above
75.0% and an inner-BBU handover rate above 81.1% in both cities, validating the effectiveness of
our method in finding cost-effective and high-quality RRH-BBU mapping schemes. We note that
compared with the HAND-RCLP method, the proposed method only show a slight performance
decrease in inner-BBU handover rate, while achieving a significant BBU utilization rate increase.

6.5.4 Case Studies

In order to further evaluate the effectiveness of our framework, we conduct a series of case studies in
Abidjan and Dakar, respectively. In each case study, we showcase the traffic and handover snapshot
in a specific scenario, and present the RRH-BBU mapping results on the map.

Abidjan Rush Hour: we select a typical weekday morning rush hour (9:00–10:00, 04/10/2012)
in Abidjan from the test set for a case study. Figure 6.7(a) shows the RRH traffic and handover
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patterns during the rush hour, where larger dots denote RRHs with higher traffic volume, and thicker
lines correspond to more handover events observed between the two corresponding RRHs. We also
visualize the RRH-BBU mapping scheme using a Voronoi diagram [200] in Figure 6.7(a), where
each polygon corresponds to a RRH cluster.

In Figure 6.7(a), we can see that during the morning rush hour, the network traffic of the city
are mainly generated from the residential areas, the business districts, and the transportation hubs.
Correspondingly, the handover events are frequently observed in these areas. Our framework suc-
cessfully find an optimal RRH-BBU scheme with an average BBU utilization rate of 91.3% and an
RRH internal handover rate of 86.1%. In order to further elaborate on the clustering results, we
examine two of the typical clusters in this scheme as follows.

• Figure 6.7(b) shows the traffic and handover patterns of a cluster in Adjamé, a transportation
hub of Abidjan. Adjamé has several important bus stations from where buses serve the
greater Abidjan area as well as all of Ivory Coast. In the morning rush hour, large crowds
of commuters and long distance travelers arrive at and depart from this area, generating
significant handover events among the RRHs in this area, as well as large traffic volume. Our
method successfully identify this RRH cluster and assign a medium-size BBU (8RU) to it,
and thus achieving a high BBU utilization rate of 98.8%, as shown in Figure 6.7(b).

• Figure 6.7(c) shows a hybrid cluster formed by RRHs in Plateau and Treichville. Plateau is
the central business district of Abidjan, and Treichville is one of the most populated subur-
ban residential areas in Abidjan. In the morning rush hour, significant traffic volumes are
observed in the RRHs of Plateau and Treichville, respectively, most probably generated by
the residents, commuters, and workers in these areas. By sharing a medium-size BBU with
8RU, the cluster of RRHs in these areas achieves a high BBU utilization rate of 94.9%. More
importantly, the large volume of handover events between Plateau and Treichville during the
rush hour can be processed within the BBU, which significant improves the handover quality.

Dakar Independence Day: in Dakar, we investigate the RRH-BBU mapping scheme during
the morning hours of the 2013 Senegal Independence Day (04/04/2013 10:00–11:00), and compare
it with the scheme during the morning hours of a typical weekday (04/11/2013 10:00–11:00, one
week later). Figure 6.8 shows the RRH traffic and handover patterns on the two days, as well as the
RRH-BBU mapping scheme denoted by a Voronoi diagram.

In Senegal, the Independence Day is celebrated as a public holiday. In Figure 6.8(a), we can
see that during the morning hours of that day, most traffic and handover events are generated in
the central and northern parts of Dakar, which correspond to the city’s residential neighborhoods,
restaurants, and parks, etc. Consequently, our framework identifies these communities and allocate
high-capacity BBUs for the corresponding RRH clusters. For example, Figure 6.8(a) shows two
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Figure 6.7: The traffic and handover patterns of a cluster in Adjamé, a transportation hub of Abid-
jan.

RRH clusters in Parcelles Assainies and Grand Yoff, two of the largest residential neighborhoods in
Dakar, as well as the allocated BBU capacity, respectively. In contrast, the southern parts of the city,
including Hann Bel-Air and Dakar-Plateau, are the central industrial, business and administrative
districts of Dakar. On the Independence Day, these areas observe relatively fewer user activities
due to public holidays. Consequently, our framework tends to form large clusters consisting of
many RRHs to reduce handover cost, while allocating BBUs with relatively small capacities since
the aggregated traffic volumes are insignificant. For example, Figure 6.8(a) illustrates two clusters
in Hann Bel-Air (the port and industrial zone) and Dakar-Plateau (the business and administrative
center) and the allocated BBUs, respectively. We can see that these two clusters occupy large
geographic areas with many RRHs, however the small and micro size BBUs are already adequate
to process the traffic. In this way, our framework achieves an average BBU utilization rate of 81.4%
and an internal handover rate of 78.4%, respectively.

We also present the RRH-BBU mapping scheme in the morning hours of a typical weekday
(one week later) for comparison. From Figure 6.8(b), we can see that during the weekday morning,
a large number of RRHs in the southern parts of the city observe significant traffic volume and
handover events. Correspondingly, our framework identifies clusters with densely connected RRHs
in Hann Bel-Air and Dakar-Plateau, and allocate BBUs with high capacities for them. In contrast,
the clusters formed in the residential areas (e.g., Parcelles Assainies and Grand Yoff ) do not observe
significant user activities, and thus the BBUs allocated to them are of lower capacities. Similarly,
our framework effectively increase the average BBU utilization rate to 81.8% and achieves an
internal handover rate of 72.4%, respectively.

In summary, by adaptively forming different sizes of clusters and allocating BBUs with ade-
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Figure 6.8: (The RRH-BBU mapping scheme during the morning hours of the 2013 Senegal In-
dependence Day (04/04/2013 10:00–11:00), in comparison with the scheme during the morning
hours of a typical weekday (04/11/2013 10:00–11:00, one week later).

quate capacities, our framework effectively improves the BBU utilization rate and handover perfor-
mance in the Cloud-RAN architecture.

6.6 Conclusion

In this work, we identify two of the most important goals in cloud-RAN optimization, i.e., increas-
ing capacity utilization rate and reducing energy consumption of the entire network. We proposed
a deep-learning-based framework to help achieve these goals in cloud-RAN. Specially, we dynam-
ically forecast the traffic of base stations using a multivariate LSTM model, and then cluster the
complementary base stations into the same BBU pools based on the traffic forecast. The proposed
MuLSTM model is capable of modeling the temporal dependence and spatial correlation between
RRHs in the network, and DCCA clustering algorithm is effective in finding optimal clustering
schemes for base stations by considering both the distance constraints and the complementarity
metric. Real-world evaluation results show that our framework effectively increases 24.74% of
utilization rate and reduces 12.05% of energy consumption compared with traditional RAN archi-
tectures, and outperforms the state-of-the-art baseline methods.

In the future, we plan to improve this work in the following directions. Firstly, we plan to
explore the methods for dynamic capacity adjustment in BBU pools to adapt to the traffic demands.
Secondly, we plan to evaluate our framework in broader areas, such as Trentino Italy, and to study
the traffic complementarity property under different contexts.
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In this final chapter, we summarize the main contributions of this dissertation, and then discuss
the future research opportunities.

7.1 Summary of Contributions

In this dissertation, we explore a big data-driven network optimization paradigm to address the re-
search challenges in the optimization of transportation and communication networks. Specifically,
we propose two data-driven algorithms for network traffic clustering and user mobility prediction,
and apply these algorithms to real-world optimization tasks transportation and communication net-
works. The detailed contributions are described as follows.

• Dynamic traffic clustering for demand-responsive bikeshare networks. In this applica-
tion, we dynamically cluster bike stations with similar usage patterns to obtain stable and
predictable cluster-wise bike traffic demands, so as to foresee over-demand stations in the
network and enable demand-responsive bike scheduling. Evaluation results using real-world
data from New York City and Washington, D.C. show that our framework accurately foresees
over-demand clusters and outperforms other baseline methods significantly.

• Complementary traffic clustering for cost-effective C-RAN. In this application, we cluster
RRHs with complementary traffic patterns (e.g., an RRH in residential area and an RRH in
business district) to reuse the total capacity of the BBUs, so as to reduce the overall deploy-
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ment cost. We evaluate our framework with real-world network data collected from the city
of Milan, Italy and the province of Trentino, Italy. Results show that our method effectively
reduces the overall deployment cost to 48.4% and 51.7% of the traditional RAN architecture
in the two datasets, respectively, and consistently outperforms other baseline methods.

• Spatio-temporal mobility prediction for anomaly-aware road networks. In this appli-
cation, we model the spatial correlations and temporal dependencies of of vehicle GPS tra-
jectories in a unified spatio-temporal mobility model, and predict abnormal mobility events
which may correspond to abnormal road conditions. Experiments with real-world data col-
lected from Xiamen City show that our approach accurately predicts and identifies the road
obstacles during the 2016 typhoon season with precision and recall both above 90%, and
outperforms other baselines.

• Deep mobility prediction for energy-efficient and quality-aware C-RAN. In this appli-
cation, we propose a deep-learning model to capture the spatio-temporal dynamics of user
mobility in C-RAN, and accurately predict their movement patterns in next hour, so as to
enable RRH cooperation to improve handover performance and increase BBU utilization.
Real-world evaluations are conducted on two large-scale mobile network datasets collected
from Ivory Coast and Senegal. Results show that our framework effectively increases the
BBU utilization rate to more than 75.0% and achieve an RRH internal handover rate above
76.7%, which consistently outperforms the traditional RANs and other baseline methods.

7.2 Future Research Opportunities

This dissertation provides a step towards big data-driven optimization for urban network system
leveraging large-scale real-world data. While several key issues and challenges have been studied,
still a variety of research opportunities exist for further study. We charter the future work direction
from potential optimization goals, other challenges and issues, new data analytics methods, and
real-world deployment.

Optimization goals. Besides the key concerns on demand responsiveness, anomaly awareness,
cost effectiveness, energy efficiency, and service quality, there are potentially large arrays of com-
mon optimization objectives that need further investigation. For example, privacy issues and data
protection are a great concerns for urban authorities and network operators [201], demanding for
novel strategies to prevent personal and individual mobility and communication information from
being tracked, inferred, and leaked to third parties.

Challenges and issues. With the proposed data analytics algorithms, we have addressed several
key challenges and issues in network optimization, including network profiling, mobility predic-
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tion, traffic clustering, and resource allocation. Still, there are many other issues in both networks
we have not yet studied, such as opportunistic network resource allocation [202], routing and dis-
tributing traffic flows in networks [203], and the orchestration between the transportation and com-
munication networks.

Data analytics algorithms. We have proposed a traffic clustering and a mobility prediction
algorithm, and applied them to the network optimization applications. In fact, many other data
analytics algorithms may be needed, including data-driven traffic classification [93], anomaly de-
tection and causality inference [36], and privacy preservation [204]. The emerging deep-learning
technologies can also be used to improve the performance of these algorithms.

Real-world deployment. Currently, we have only evaluated our methods using real-world
datasets, but not yet being able to deploy our applications to real-world networks and systems. To
implement and deploy a platform that can incorporate the techniques proposed in this dissertation
as well as other state-of-the-art research advances, it will require extensive future endeavors from
both academia and industry.
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