, KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease, Kidney international supplements, vol.3, 2013.

V. A. Luyckx, M. Tonelli, and J. W. Stanifer, The global burden of kidney disease and the sustainable development goals, Bulletin of the World Health Organization, vol.96, pp.414-422, 2018.

R. L. Perlman, Quality of life in chronic kidney disease (CKD): a cross-sectional analysis in the Renal Research Institute-CKD study. American journal of kidney diseases : the official journal of the National Kidney Foundation, vol.45, pp.658-666, 2005.

C. S. Fox, Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis, Lancet, vol.380, pp.1662-1673, 2012.

D. Marcelli, Body composition and survival in dialysis patients: results from an international cohort study, Clin J Am Soc Nephrol, vol.10, pp.1192-1200, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02005484

W. R. Frontera and J. Ochala, Skeletal muscle: a brief review of structure and function, Calcified tissue international, vol.96, pp.183-195, 2015.

A. R. Gillies and R. L. Lieber, Structure and function of the skeletal muscle extracellular matrix, Muscle & nerve, vol.44, pp.318-331, 2011.

K. Hayashi, R. G. Miller, and K. W. Brownell, Three-dimensional architecture of sarcoplasmic reticulum and T-system in human skeletal muscle, Anat Rec, vol.218, pp.275-283, 1987.

H. Yin, F. Price, and M. A. Rudnicki, Satellite cells and the muscle stem cell niche, Physiological reviews, vol.93, pp.23-67, 2013.

S. Schiaffino and C. Reggiani, Fiber types in mammalian skeletal muscles, Physiological reviews, vol.91, pp.1447-1531, 2011.

S. Von-haehling, M. S. Anker, and S. D. Anker, Prevalence and clinical impact of cachexia in chronic illness in Europe, USA, and Japan: facts and numbers update 2016, J Cachexia Sarcopenia Muscle, vol.7, pp.507-509, 2016.

G. R. Williams, Frailty and skeletal muscle in older adults with cancer, Journal of geriatric oncology, vol.9, pp.68-73, 2018.

K. Kalantar-zadeh, Why cachexia kills: examining the causality of poor outcomes in wasting conditions, J Cachexia Sarcopenia Muscle, vol.4, pp.89-94, 2013.

A. Bye, Muscle mass and association to quality of life in non-small cell lung cancer patients, Journal of cachexia, sarcopenia and muscle, vol.8, pp.759-767, 2017.

N. Noori, Mid-arm muscle circumference and quality of life and survival in maintenance hemodialysis patients, Clinical journal of the American Society of Nephrology : CJASN, vol.5, pp.2258-2268, 2010.

D. Taillandier, Coordinate activation of lysosomal, Ca 2+-activated and ATP-ubiquitindependent proteinases in the unweighted rat soleus muscle, The Biochemical journal, vol.316, pp.65-72, 1996.

W. E. Mitch and A. L. Goldberg, Mechanisms of muscle wasting. The role of the ubiquitinproteasome pathway, N Engl J Med, vol.335, pp.1897-1905, 1996.

R. C. May, R. A. Kelly, and W. E. Mitch, Mechanisms for defects in muscle protein metabolism in rats with chronic uremia. Influence of metabolic acidosis, J Clin Invest, vol.79, pp.1099-1103, 1987.

D. Adey, R. Kumar, J. T. Mccarthy, and K. S. Nair, Reduced synthesis of muscle proteins in chronic renal failure, American journal of physiology. Endocrinology and metabolism, vol.278, pp.219-225, 2000.

M. Sandri, Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitinproteasome, The international journal of biochemistry & cell biology, vol.45, pp.2121-2129, 2013.

V. E. Baracos, L. Martin, M. Korc, D. C. Guttridge, and K. C. Fearon, Cancer-associated cachexia, Nature reviews. Disease primers, vol.4, p.17105, 2018.

P. O. Hasselgren, Novel aspects on the regulation of muscle wasting in sepsis, Int J Biochem Cell Biol, vol.37, pp.2156-2168, 2005.

S. S. Rudrappa, Human Skeletal Muscle Disuse Atrophy: Effects on Muscle Protein Synthesis, Breakdown, and Insulin Resistance-A Qualitative Review, Front Physiol, vol.7, p.361, 2016.

R. C. Langen, H. R. Gosker, A. H. Remels, and A. M. Schols, Triggers and mechanisms of skeletal muscle wasting in chronic obstructive pulmonary disease, Int J Biochem Cell Biol, vol.45, pp.2245-2256, 2013.

T. A. Ikizler, Hemodialysis stimulates muscle and whole body protein loss and alters substrate oxidation, American journal of physiology. Endocrinology and metabolism, vol.282, pp.107-116, 2002.

V. Solomon and A. L. Goldberg, Importance of the ATP-ubiquitin-proteasome pathway in the degradation of soluble and myofibrillar proteins in rabbit muscle extracts, The Journal of biological chemistry, vol.271, pp.26690-26697, 1996.

L. A. Passmore and D. Barford, Getting into position: the catalytic mechanisms of protein ubiquitylation, The Biochemical journal, vol.379, pp.513-525, 2004.

J. Sluimer and B. Distel, Regulating the human HECT E3 ligases, Cell Mol Life Sci, vol.75, pp.3121-3141, 2018.

C. Polge, Recent progress in elucidating signalling proteolytic pathways in muscle wasting: potential clinical implications, Nutr Metab Cardiovasc Dis, vol.23, issue.1, pp.1-5, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00966602

L. Budenholzer, C. L. Cheng, Y. Li, and M. Hochstrasser, Proteasome Structure and Assembly, Journal of molecular biology, vol.429, pp.3500-3524, 2017.

W. Dubiel, K. Ferrell, and M. Rechsteiner, Subunits of the regulatory complex of the 26S protease, Mol Biol Rep, vol.21, pp.27-34, 1995.

J. L. Bailey, The acidosis of chronic renal failure activates muscle proteolysis in rats by augmenting transcription of genes encoding proteins of the ATP-dependent ubiquitinproteasome pathway, J Clin Invest, vol.97, pp.1447-1453, 1996.

D. D. Lazarus, A new model of cancer cachexia: contribution of the ubiquitin-proteasome pathway, Am J Physiol, vol.277, pp.332-341, 1999.

D. Fischer, G. Gang, T. Pritts, and P. O. Hasselgren, Sepsis-induced muscle proteolysis is prevented by a proteasome inhibitor in vivo, Biochem Biophys Res Commun, vol.270, pp.215-221, 2000.

N. E. Tawa, . Jr, R. Odessey, and A. L. Goldberg, Inhibitors of the proteasome reduce the accelerated proteolysis in atrophying rat skeletal muscles, The Journal of clinical investigation, vol.100, pp.197-203, 1997.

S. R. Price, Muscle wasting in insulinopenic rats results from activation of the ATPdependent, ubiquitin-proteasome proteolytic pathway by a mechanism including gene transcription, J Clin Invest, vol.98, pp.1703-1708, 1996.

M. Bossola, Increased muscle proteasome activity correlates with disease severity in gastric cancer patients, Annals of surgery, vol.237, pp.384-389, 2003.

C. A. Ottenheijm, Activation of the ubiquitin-proteasome pathway in the diaphragm in chronic obstructive pulmonary disease, American journal of respiratory and critical care medicine, vol.174, pp.997-1002, 2006.

Y. Ye, H. H. Meyer, and T. A. Rapoport, The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol, Nature, vol.414, pp.652-656, 2001.

A. Tanaka, Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin, The Journal of cell biology, vol.191, pp.1367-1380, 2010.

N. O. Bodnar and T. A. Rapoport, Molecular Mechanism of Substrate Processing by the Cdc48 ATPase Complex, Cell, vol.169, p.729, 2017.

J. Du, Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions, The Journal of clinical investigation, vol.113, pp.115-123, 2004.

S. W. Lee, Regulation of muscle protein degradation: coordinated control of apoptotic and ubiquitin-proteasome systems by phosphatidylinositol 3 kinase, Journal of the American Society of Nephrology : JASN, vol.15, pp.1537-1545, 2004.

J. Hu, XIAP reduces muscle proteolysis induced by CKD, J Am Soc Nephrol, vol.21, pp.1174-1183, 2010.

K. A. Silva, Inhibition of Stat3 activation suppresses caspase-3 and the ubiquitinproteasome system, leading to preservation of muscle mass in cancer cachexia, J Biol Chem, vol.290, pp.11177-11187, 2015.

M. A. Boivin, Activation of caspase-3 in the skeletal muscle during haemodialysis, European journal of clinical investigation, vol.40, pp.903-910, 2010.

L. Slimani, The worsening of tibialis anterior muscle atrophy during recovery postimmobilization correlates with enhanced connective tissue area, proteolysis, and apoptosis, Am J Physiol Endocrinol Metab, vol.303, pp.1335-1347, 2012.

D. Verzola, Apoptosis and myostatin mRNA are upregulated in the skeletal muscle of patients with chronic kidney disease, Kidney Int, vol.79, pp.773-782, 2011.

S. H. Lecker, Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression, FASEB J, vol.18, pp.39-51, 2004.

J. M. Sacheck, Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases, FASEB J, vol.21, pp.140-155, 2007.

A. Williams, X. Sun, J. E. Fischer, and P. O. Hasselgren, The expression of genes in the ubiquitinproteasome proteolytic pathway is increased in skeletal muscle from patients with cancer, Surgery, vol.126, pp.744-749, 1999.

M. Bossola, Increased muscle ubiquitin mRNA levels in gastric cancer patients, American journal of physiology. Regulatory, integrative and comparative physiology, vol.280, pp.1518-1523, 2001.

G. Tiao, Sepsis is associated with increased mRNAs of the ubiquitin-proteasome proteolytic pathway in human skeletal muscle, The Journal of clinical investigation, vol.99, pp.163-168, 1997.

T. Ogawa, Ubiquitin ligase gene expression in healthy volunteers with 20-day bedrest, Muscle & nerve, vol.34, pp.463-469, 2006.

C. Polge, D. Attaix, and D. Taillandier, Role of E2-Ub-conjugating enzymes during skeletal muscle atrophy, Front Physiol, vol.6, p.59, 2015.

O. Mansoor, Increased mRNA levels for components of the lysosomal, Ca2+-activated, and ATP-ubiquitin-dependent proteolytic pathways in skeletal muscle from head trauma patients, Proceedings of the National Academy of Sciences of the United States of America, vol.93, pp.2714-2718, 1996.
URL : https://hal.archives-ouvertes.fr/hal-01981148

J. Khal, A. V. Hine, K. C. Fearon, C. H. Dejong, and M. Tisdale, Increased expression of proteasome subunits in skeletal muscle of cancer patients with weight loss, Int J Biochem Cell Biol, vol.37, pp.2196-2206, 2005.

Y. W. Chen, Transcriptional pathways associated with skeletal muscle disuse atrophy in humans, Physiological genomics, vol.31, pp.510-520, 2007.

S. C. Bodine, Identification of ubiquitin ligases required for skeletal muscle atrophy, Science, vol.294, pp.1704-1708, 2001.

R. A. Siddiqui, Attenuation of proteolysis and muscle wasting by curcumin c3 complex in MAC16 colon tumour-bearing mice, Br J Nutr, vol.102, pp.967-975, 2009.

S. W. Jones, Disuse atrophy and exercise rehabilitation in humans profoundly affects the expression of genes associated with the regulation of skeletal muscle mass, FASEB journal : official publication of the Federation of American Societies for Experimental Biology, vol.18, pp.1025-1027, 2004.

M. Doucet, Muscle atrophy and hypertrophy signaling in patients with chronic obstructive pulmonary disease, Am J Respir Crit Care Med, vol.176, pp.261-269, 2007.

C. Polge, Muscle actin is polyubiquitinylated in vitro and in vivo and targeted for breakdown by the E3 ligase MuRF1, FASEB J, vol.25, pp.3790-3802, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02420104

I. J. Smith, Calpain activity is increased in skeletal muscle from gastric cancer patients with no or minimal weight loss, Muscle & nerve, vol.43, pp.410-414, 2011.

C. D'orlando, Gastric cancer does not affect the expression of atrophy-related genes in human skeletal muscle, Muscle & nerve, vol.49, pp.528-533, 2014.

A. J. Murton, Consequences of Late-Stage Non-Small-Cell Lung Cancer Cachexia on Muscle Metabolic Processes, Clinical lung cancer, vol.18, pp.1-11, 2017.

L. Yuan, Muscle-specific E3 ubiquitin ligases are involved in muscle atrophy of cancer cachexia: an in vitro and in vivo study, Oncol Rep, vol.33, pp.2261-2268, 2015.

B. A. Clarke, The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle, Cell metabolism, vol.6, pp.376-385, 2007.

V. Kedar, Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I, Proceedings of the National Academy of Sciences of the United States of America, vol.101, pp.18135-18140, 2004.

C. Polge, A muscle-specific MuRF1-E2 network requires stabilization of MuRF1-E2 complexes by telethonin, a newly identified substrate, J Cachexia Sarcopenia Muscle, vol.9, pp.129-145, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01730000

S. Hirner, MuRF1-dependent regulation of systemic carbohydrate metabolism as revealed from transgenic mouse studies, Journal of molecular biology, vol.379, pp.666-677, 2008.

S. Koyama, Muscle RING-finger protein-1 (MuRF1) as a connector of muscle energy metabolism and protein synthesis, Journal of molecular biology, vol.376, pp.1224-1236, 2008.

L. A. Tintignac, Degradation of MyoD mediated by the SCF (MAFbx) ubiquitin ligase, The Journal of biological chemistry, vol.280, pp.2847-2856, 2005.

M. Jogo, S. Shiraishi, and T. A. Tamura, Identification of MAFbx as a myogenin-engaged F-box protein in SCF ubiquitin ligase, FEBS letters, vol.583, pp.2715-2719, 2009.

A. Csibi, M. P. Leibovitch, K. Cornille, L. A. Tintignac, S. A. Leibovitch et al., Atrogin-1 controls the activity of the initiation factor eIF3-f in skeletal muscle atrophy by targeting multiple C-terminal lysines, The Journal of biological chemistry, vol.284, pp.4413-4421, 2009.

S. Lokireddy, Identification of atrogin-1-targeted proteins during the myostatin-induced skeletal muscle wasting. American journal of physiology, Cell physiology, vol.303, pp.512-529, 2012.

R. Sartori, BMP signaling controls muscle mass, Nat Genet, vol.45, pp.1309-1318, 2013.

P. K. Paul, Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice, J Cell Biol, vol.191, pp.1395-1411, 2010.

C. Polge, UBE2D2 is not involved in MuRF1-dependent muscle wasting during hindlimb suspension, Int J Biochem Cell Biol, vol.79, pp.488-493, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01512230

P. Nagpal, The ubiquitin ligase Nedd4-1 participates in denervation-induced skeletal muscle atrophy in mice, PLoS One, vol.7, p.46427, 2012.

S. Cohen, B. Zhai, S. P. Gygi, and A. L. Goldberg, Ubiquitylation by Trim32 causes coupled loss of desmin, Z-bands, and thin filaments in muscle atrophy, J Cell Biol, vol.198, pp.575-589, 2012.

S. Nicklas, TRIM32 regulates skeletal muscle stem cell differentiation and is necessary for normal adult muscle regeneration, PLoS One, vol.7, p.30445, 2012.

W. E. Mitch, Metabolic acidosis stimulates muscle protein degradation by activating the adenosine triphosphate-dependent pathway involving ubiquitin and proteasomes, J Clin Invest, vol.93, pp.2127-2133, 1994.

S. Temparis, Increased ATP-ubiquitin-dependent proteolysis in skeletal muscles of tumor-bearing rats, Cancer Res, vol.54, pp.5568-5573, 1994.
URL : https://hal.archives-ouvertes.fr/hal-00899722

L. Combaret, Glucocorticoids regulate mRNA levels for subunits of the 19 S regulatory complex of the 26 S proteasome in fast-twitch skeletal muscles, Biochem J, vol.378, pp.239-246, 2004.

R. Medina, S. S. Wing, and A. L. Goldberg, Increase in levels of polyubiquitin and proteasome mRNA in skeletal muscle during starvation and denervation atrophy, The Biochemical journal, vol.307, pp.631-637, 1995.

R. T. Jagoe, C. P. Redfern, R. G. Roberts, G. J. Gibson, and T. H. Goodship, Skeletal muscle mRNA levels for cathepsin B, but not components of the ubiquitin-proteasome pathway, are increased in patients with lung cancer referred for thoracotomy, Clin Sci, vol.102, pp.353-361, 2002.

M. Oku and Y. Sakai, Three Distinct Types of Microautophagy Based on Membrane Dynamics and Molecular Machineries, BioEssays : news and reviews in molecular, cellular and developmental biology, vol.40, p.1800008, 2018.

S. Takikita, The values and limits of an in vitro model of Pompe disease: the best laid schemes o' mice an' men, Autophagy, vol.5, pp.729-731, 2009.

S. Catarino, P. Pereira, and H. Girao, Molecular control of chaperone-mediated autophagy, Essays in biochemistry, vol.61, pp.663-674, 2017.

W. Li, Q. Yang, and Z. Mao, Signaling and induction of chaperone-mediated autophagy by the endoplasmic reticulum under stress conditions, Autophagy, pp.1-3, 2018.

K. R. Parzych and D. J. Klionsky, An overview of autophagy: morphology, mechanism, and regulation, Antioxidants & redox signaling, vol.20, pp.460-473, 2014.

F. Nazio and F. Cecconi, Autophagy up and down by outsmarting the incredible ULK, Autophagy, vol.13, pp.967-968, 2017.

V. Romanello and M. Sandri, Mitochondrial Quality Control and Muscle Mass Maintenance, Front Physiol, vol.6, p.422, 2015.

J. Kim, M. Kundu, B. Viollet, and K. L. Guan, AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1, Nat Cell Biol, vol.13, pp.132-141, 2011.

H. Nakatogawa, Two ubiquitin-like conjugation systems that mediate membrane formation during autophagy, Essays in biochemistry, vol.55, pp.39-50, 2013.

M. W. Wooten, Essential role of sequestosome 1/p62 in regulating accumulation of Lys63-ubiquitinated proteins, The Journal of biological chemistry, vol.283, pp.6783-6789, 2008.

A. Hishiya, A novel ubiquitin-binding protein ZNF216 functioning in muscle atrophy, The EMBO journal, vol.25, pp.554-564, 2006.

J. Strachan, Insights into the molecular composition of endogenous unanchored polyubiquitin chains, Journal of proteome research, vol.11, 1969.

S. Geisler, PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1, Nature cell biology, vol.12, pp.119-131, 2010.

A. C. Poole, R. E. Thomas, S. Yu, E. S. Vincow, and L. Pallanck, The mitochondrial fusionpromoting factor mitofusin is a substrate of the PINK1/parkin pathway, PloS one, vol.5, p.10054, 2010.

S. Rikka, Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover, Cell death and differentiation, vol.18, pp.721-731, 2011.

R. Medina, S. S. Wing, A. Haas, and A. L. Goldberg, Activation of the ubiquitin-ATP-dependent proteolytic system in skeletal muscle during fasting and denervation atrophy, Biomedica biochimica acta, vol.50, pp.347-356, 1991.

L. R. Lapierre, C. Kumsta, M. Sandri, A. Ballabio, and M. Hansen, Transcriptional and epigenetic regulation of autophagy in aging, Autophagy, vol.11, pp.867-880, 2015.

M. Sandri, L. Coletto, P. Grumati, and P. Bonaldo, Misregulation of autophagy and protein degradation systems in myopathies and muscular dystrophies, Journal of cell science, vol.126, pp.5325-5333, 2013.

M. Sandri, Protein breakdown in cancer cachexia, Semin Cell Dev Biol, vol.54, pp.11-19, 2016.

L. Voisin, Muscle wasting in a rat model of long-lasting sepsis results from the activation of lysosomal, Ca2+ -activated, and ubiquitin-proteasome proteolytic pathways, The Journal of clinical investigation, vol.97, pp.1610-1617, 1996.

C. Deval, Identification of cathepsin L as a differentially expressed message associated with skeletal muscle wasting, The Biochemical journal, vol.360, pp.143-150, 2001.

N. Mizushima, A. Yamamoto, M. Matsui, T. Yoshimori, and Y. Ohsumi, In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker, Molecular biology of the cell, vol.15, pp.1101-1111, 2004.

M. Sandri, Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy, Cell, vol.117, pp.399-412, 2004.

C. Mammucari, FoxO3 controls autophagy in skeletal muscle in vivo, Cell Metab, vol.6, pp.458-471, 2007.

J. Zhao, FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells, Cell Metab, vol.6, pp.472-483, 2007.

N. Tardif, M. Klaude, L. Lundell, A. Thorell, and O. Rooyackers, Autophagic-lysosomal pathway is the main proteolytic system modified in the skeletal muscle of esophageal cancer patients, Am J Clin Nutr, vol.98, pp.1485-1492, 2013.

Z. Aversa, Autophagy is induced in the skeletal muscle of cachectic cancer patients, Sci Rep, vol.6, p.30340, 2016.

Z. Su, Chronic kidney disease induces autophagy leading to dysfunction of mitochondria in skeletal muscle, Am J Physiol Renal Physiol, vol.312, pp.1128-1140, 2017.

J. M. Argiles, F. J. Lopez-soriano, and S. Busquets, Muscle wasting in cancer: the role of mitochondria. Current opinion in clinical nutrition and metabolic care, vol.18, pp.221-225, 2015.

C. Tezze, Age-Associated Loss of OPA1 in Muscle Impacts Muscle Mass, Metabolic Homeostasis, Systemic Inflammation, and Epithelial Senescence, Cell metabolism, vol.25, pp.1374-1389, 2017.

J. L. Brown, Mitochondrial degeneration precedes the development of muscle atrophy in progression of cancer cachexia in tumour-bearing mice, J Cachexia Sarcopenia Muscle, vol.8, pp.926-938, 2017.

D. Borgia, Increased mitophagy in the skeletal muscle of spinal and bulbar muscular atrophy patients, Hum Mol Genet, vol.26, pp.1087-1103, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02086926

M. Zhang, Curcumin attenuates skeletal muscle mitochondrial impairment in COPD rats: PGC-1alpha/SIRT3 pathway involved, Chemico-biological interactions, vol.277, pp.168-175, 2017.

J. Liu, Mitochondrial Dysfunction Launches Dexamethasone-Induced Skeletal Muscle Atrophy via AMPK/FOXO3 Signaling, Mol Pharm, vol.13, pp.73-84, 2016.

J. P. White, Muscle oxidative capacity during IL-6-dependent cancer cachexia, American journal of physiology. Regulatory, integrative and comparative physiology, vol.300, pp.201-211, 2011.

A. Zorzano, M. I. Hernandez-alvarez, M. Palacin, and G. Mingrone, Alterations in the mitochondrial regulatory pathways constituted by the nuclear co-factors PGC-1alpha or PGC-1beta and mitofusin 2 in skeletal muscle in type 2 diabetes, Biochimica et biophysica acta, vol.1797, pp.1028-1033, 2010.

G. Vescovo, B. Ravara, V. Gobbo, A. Angelini, and L. Dalla-libera, Skeletal muscle fibres synthesis in heart failure: role of PGC-1alpha, calcineurin and GH, International journal of cardiology, vol.104, pp.298-306, 2005.

K. Tang, P. D. Wagner, and E. C. Breen, TNF-alpha-mediated reduction in PGC-1alpha may impair skeletal muscle function after cigarette smoke exposure, J Cell Physiol, vol.222, pp.320-327, 2010.

M. Sandri, PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription, Proceedings of the National Academy of Sciences of the United States of America, vol.103, pp.16260-16265, 2006.

C. M. Op-den-kamp, Preserved muscle oxidative metabolic phenotype in newly diagnosed non-small cell lung cancer cachexia, J Cachexia Sarcopenia Muscle, vol.6, pp.164-173, 2015.

J. P. White, IL-6 regulation on skeletal muscle mitochondrial remodeling during cancer cachexia in the ApcMin/+ mouse, Skelet Muscle, vol.2, p.14, 2012.

J. P. White, The regulation of skeletal muscle protein turnover during the progression of cancer cachexia in the Apc(Min/+) mouse, PLoS One, vol.6, p.24650, 2011.

N. A. Stephens, Evaluating potential biomarkers of cachexia and survival in skeletal muscle of upper gastrointestinal cancer patients, J Cachexia Sarcopenia Muscle, vol.6, pp.53-61, 2015.

J. A. Carson, J. P. Hardee, and B. N. Vanderveen, The emerging role of skeletal muscle oxidative metabolism as a biological target and cellular regulator of cancer-induced muscle wasting, Seminars in cell & developmental biology, vol.54, pp.53-67, 2016.

J. Abrigo, Role of Oxidative Stress as Key Regulator of Muscle Wasting during Cachexia, Oxid Med Cell Longev, p.2063179, 2018.

L. Puente-maestu, Site of mitochondrial reactive oxygen species production in skeletal muscle of chronic obstructive pulmonary disease and its relationship with exercise oxidative stress, Am J Respir Cell Mol Biol, vol.47, pp.358-362, 2012.

J. B. Mclean, J. S. Moylan, and F. H. Andrade, Mitochondria dysfunction in lung cancer-induced muscle wasting in C2C12 myotubes, Frontiers in physiology, vol.5, p.503, 2014.

S. T. Russell, H. Eley, and M. J. Tisdale, Role of reactive oxygen species in protein degradation in murine myotubes induced by proteolysis-inducing factor and angiotensin II, Cell Signal, vol.19, pp.1797-1806, 2007.

A. Schulz, J. Jankowski, W. Zidek, and V. Jankowski, Absolute quantification of endogenous angiotensin II levels in human plasma using ESI-LC-MS/MS, Clin Proteomics, vol.11, p.37, 2014.

T. Kadoguchi, Possible Role of NADPH Oxidase 4 in Angiotensin II-Induced Muscle Wasting in Mice, Frontiers in physiology, vol.9, p.340, 2018.

Y. Enoki, Indoxyl sulfate potentiates skeletal muscle atrophy by inducing the oxidative stress-mediated expression of myostatin and atrogin-1, Scientific reports, vol.6, p.32084, 2016.

K. Schulze-osthoff, Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation, The Journal of biological chemistry, vol.267, pp.5317-5323, 1992.

R. C. Langen, Tumor necrosis factor-alpha inhibits myogenesis through redox-dependent and -independent pathways, American journal of physiology. Cell physiology, vol.283, pp.714-721, 2002.

F. Derbre, Inhibition of xanthine oxidase by allopurinol prevents skeletal muscle atrophy: role of p38 MAPKinase and E3 ubiquitin ligases, PloS one, vol.7, p.46668, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01159428

R. Nemes, Reactive Oxygen and Nitrogen Species Regulate Key Metabolic, Anabolic, and Catabolic Pathways in Skeletal Muscle, Antioxidants (Basel), p.7, 2018.

Y. Seo, K. Lee, K. Park, K. Bae, and I. Choi, A proteomic assessment of muscle contractile alterations during unloading and reloading, J Biochem, vol.139, pp.71-80, 2006.

H. Sun, Investigation of differentially expressed proteins in rat gastrocnemius muscle during denervation-reinnervation, J Muscle Res Cell Motil, vol.27, pp.241-250, 2006.

W. Guo, W. P. Fu, Y. Yang, and L. M. Dai,

, Zhonghua Yi Xue Za Zhi, vol.92, pp.948-951, 2012.

S. Ciciliot, A. C. Rossi, K. A. Dyar, B. Blaauw, and S. Schiaffino, Muscle type and fiber type specificity in muscle wasting, The international journal of biochemistry & cell biology, vol.45, pp.2191-2199, 2013.

D. R. Engineer and J. M. Garcia, Leptin in anorexia and cachexia syndrome, Int J Pept, vol.2012, p.287457, 2012.

B. Guillory, A. Splenser, and J. Garcia, The role of ghrelin in anorexia-cachexia syndromes, Vitamins and hormones, vol.92, pp.61-106, 2013.

W. W. Cheung, A pegylated leptin antagonist ameliorates CKD-associated cachexia in mice, J Am Soc Nephrol, vol.25, pp.119-128, 2014.

H. Tsubouchi, Ghrelin relieves cancer cachexia associated with the development of lung adenocarcinoma in mice, Eur J Pharmacol, vol.743, pp.1-10, 2014.

M. N. Khatib, Ghrelin for the management of cachexia associated with cancer, Cochrane Database Syst Rev, vol.2, p.12229, 2018.

A. M. Sanchez, AMPK promotes skeletal muscle autophagy through activation of forkhead FoxO3a and interaction with Ulk1, J Cell Biochem, vol.113, pp.695-710, 2012.

K. Nakashima and Y. Yakabe, AMPK activation stimulates myofibrillar protein degradation and expression of atrophy-related ubiquitin ligases by increasing FOXO transcription factors in C2C12 myotubes, Bioscience, biotechnology, and biochemistry, vol.71, pp.1650-1656, 2007.

S. Sengupta, T. R. Peterson, and D. M. Sabatini, Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress, Molecular cell, vol.40, pp.310-322, 2010.

J. L. Jewell, R. C. Russell, and K. L. Guan, Amino acid signalling upstream of mTOR, Nature reviews. Molecular cell biology, vol.14, pp.133-139, 2013.

J. M. Han, Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway, Cell, vol.149, pp.410-424, 2012.

D. J. Ham, M. K. Caldow, G. S. Lynch, and R. Koopman, Leucine as a treatment for muscle wasting: a critical review, Clin Nutr, vol.33, pp.937-945, 2014.

J. D. Kopple and D. Fouque, Pro: The rationale for dietary therapy for patients with advanced chronic kidney disease. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association, European Renal Association, vol.33, pp.373-378, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01847502

G. Woodrow, Con: The role of diet for people with advanced Stage 5 CKD. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association, European Renal Association, vol.33, pp.380-384, 2018.

E. R. Spector, S. M. Smith, and J. D. Sibonga, Skeletal effects of long-duration head-down bed rest, Aviation, space, and environmental medicine, vol.80, pp.23-28, 2009.

B. T. Wall, Substantial skeletal muscle loss occurs during only 5 days of disuse, Acta Physiol (Oxf), vol.210, pp.600-611, 2014.

R. H. Fitts, Prolonged space flight-induced alterations in the structure and function of human skeletal muscle fibres, The Journal of physiology, vol.588, pp.3567-3592, 2010.

T. P. Stein and C. E. Wade, Metabolic consequences of muscle disuse atrophy, The Journal of nutrition, vol.135, pp.1824-1828, 2005.

P. A. Tesch, F. Von-walden, T. Gustafsson, R. M. Linnehan, and T. A. Trappe, Skeletal muscle proteolysis in response to short-term unloading in humans, J Appl Physiol, vol.105, pp.902-906, 1985.

C. Jamart, J. M. Raymackers, G. Li-an, L. Deldicque, and M. Francaux, Prevention of muscle disuse atrophy by MG132 proteasome inhibitor, Muscle Nerve, vol.43, pp.708-716, 2011.

A. Kashiwagi, Anesthesia with Disuse Leads to Autophagy Up-regulation in the Skeletal Muscle, Anesthesiology, vol.122, pp.1075-1083, 2015.

T. Maki, Branched-chain amino acids reduce hindlimb suspension-induced muscle atrophy and protein levels of atrogin-1 and MuRF1 in rats, Nutrition research, vol.32, pp.676-683, 2012.

R. Ferreira, Proteolysis activation and proteome alterations in murine skeletal muscle submitted to 1 week of hindlimb suspension, European journal of applied physiology, vol.107, pp.553-563, 2009.

C. F. Mckenna and C. S. Fry, Altered satellite cell dynamics accompany skeletal muscle atrophy during chronic illness, disuse, and aging. Current opinion in clinical nutrition and metabolic care, vol.20, pp.447-452, 2017.

S. Klossner, A. C. Durieux, D. Freyssenet, and M. Flueck, Mechano-transduction to muscle protein synthesis is modulated by FAK, European journal of applied physiology, vol.106, pp.389-398, 2009.

E. E. Talbert, Immobilization-induced activation of key proteolytic systems in skeletal muscles is prevented by a mitochondria-targeted antioxidant, J Appl Physiol, vol.115, pp.529-538, 1985.

C. P. Ingalls, J. C. Wenke, and R. B. Armstrong, Time course changes in [Ca2+]i, force, and protein content in hindlimb-suspended mouse soleus muscles. Aviation, space, and environmental medicine 72, pp.471-476, 2001.

M. Vermaelen, Differential localization of autolyzed calpains 1 and 2 in slow and fast skeletal muscles in the early phase of atrophy. American journal of physiology, Cell physiology, vol.292, pp.1723-1731, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01824385

N. F. Hu, Tetramethylpyrazine ameliorated disuse-induced gastrocnemius muscle atrophy in hindlimb unloading rats through suppression of Ca(2+)/ROS-mediated apoptosis. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme, vol.42, pp.117-127, 2017.

H. Sorimachi and Y. Ono, Regulation and physiological roles of the calpain system in muscular disorders, Cardiovasc Res, vol.96, pp.11-22, 2012.

J. Bogomolovas, Titin kinase is an inactive pseudokinase scaffold that supports MuRF1 recruitment to the sarcomeric M-line, Open biology, vol.4, p.140041, 2014.

M. Fouladiun, Daily physical-rest activities in relation to nutritional state, metabolism, and quality of life in cancer patients with progressive cachexia, Clinical cancer research : an official journal of the American Association for Cancer Research, vol.13, pp.6379-6385, 2007.

G. B. Stene, Effect of physical exercise on muscle mass and strength in cancer patients during treatment--a systematic review, Critical reviews in oncology/hematology, vol.88, pp.573-593, 2013.

R. Matsuzawa, Exercise Training in Elderly People Undergoing Hemodialysis: A Systematic Review and Meta-analysis, Kidney international reports, vol.2, pp.1096-1110, 2017.

C. Van-de-bool, A randomized clinical trial investigating the efficacy of targeted nutrition as adjunct to exercise training in COPD, J Cachexia Sarcopenia Muscle, vol.8, pp.748-758, 2017.

A. Otto and K. Patel, Signalling and the control of skeletal muscle size, Experimental cell research, vol.316, pp.3059-3066, 2010.

D. Fliser, Insulin resistance and hyperinsulinemia are already present in patients with incipient renal disease, Kidney international, vol.53, pp.1343-1347, 1998.

Y. Noguchi, Insulin resistance in cancer patients is associated with enhanced tumor necrosis factor-alpha expression in skeletal muscle, Biochemical and biophysical research communications, vol.253, pp.887-892, 1998.

S. S. Thomas, Y. Dong, L. Zhang, and W. E. Mitch, Signal regulatory protein-alpha interacts with the insulin receptor contributing to muscle wasting in chronic kidney disease, Kidney Int, vol.84, pp.308-316, 2013.

A. G. Oliveira and M. C. Gomes-marcondes, Metformin treatment modulates the tumourinduced wasting effects in muscle protein metabolism minimising the cachexia in tumourbearing rats, BMC Cancer, vol.16, p.418, 2016.

D. E. Long, Metformin to Augment Strength Training Effective Response in Seniors (MASTERS): study protocol for a randomized controlled trial, Trials, vol.18, p.192, 2017.

M. B. Hudson and S. R. Price, Calcineurin: a poorly understood regulator of muscle mass, The international journal of biochemistry & cell biology, vol.45, pp.2173-2178, 2013.

W. Qin, J. Pan, Y. Wu, W. A. Bauman, and C. Cardozo, Anabolic steroids activate calcineurin-NFAT signaling and thereby increase myotube size and reduce denervation atrophy, Mol Cell Endocrinol, vol.399, pp.336-345, 2015.

Y. Mavros, Oxandrolone Augmentation of Resistance Training in Older Women: A Randomized Trial, Med Sci Sports Exerc, vol.47, pp.2257-2267, 2015.

O. Ragnarsson, M. G. Burt, K. K. Ho, and G. Johannsson, Effect of short-term GH and testosterone administration on body composition and glucose homoeostasis in men receiving chronic glucocorticoid therapy, Eur J Endocrinol, vol.168, pp.243-251, 2013.

L. V. Magnussen, Testosterone therapy preserves muscle strength and power in aging men with type 2 diabetes-a randomized controlled trial, Andrology, vol.5, pp.946-953, 2017.

M. Sinclair, M. Grossmann, R. Hoermann, P. W. Angus, and P. J. Gow, Testosterone therapy increases muscle mass in men with cirrhosis and low testosterone: A randomised controlled trial, J Hepatol, vol.65, pp.906-913, 2016.

J. A. Kraut and N. E. Madias, Adverse Effects of the Metabolic Acidosis of Chronic Kidney Disease, Adv Chronic Kidney Dis, vol.24, pp.289-297, 2017.

K. L. Raphael, Metabolic Acidosis and Subclinical Metabolic Acidosis in CKD, J Am Soc Nephrol, vol.29, pp.376-382, 2018.

I. Loniewski and D. E. Wesson, Bicarbonate therapy for prevention of chronic kidney disease progression, Kidney Int, vol.85, pp.529-535, 2014.

N. Goraya, J. Simoni, C. H. Jo, and D. E. Wesson, A comparison of treating metabolic acidosis in CKD stage 4 hypertensive kidney disease with fruits and vegetables or sodium bicarbonate, Clin J Am Soc Nephrol, vol.8, pp.371-381, 2013.

B. Di-iorio, Dialysate bath and QTc interval in patients on chronic maintenance hemodialysis: pilot study of single dialysis effects, J Nephrol, vol.25, pp.653-660, 2012.

L. Gabutti, G. Bianchi, D. Soldini, C. Marone, and M. Burnier, Haemodynamic consequences of changing bicarbonate and calcium concentrations in haemodialysis fluids, Nephrol Dial Transplant, vol.24, pp.973-981, 2009.

B. Kirschbaum, Effect of high bicarbonate hemodialysis on ionized calcium and risk of metastatic calcification, Clin Chim Acta, vol.343, pp.231-236, 2004.

M. Vermeulen, Acidosis improves uptake of antigens and MHC class I-restricted presentation by dendritic cells, J Immunol, vol.172, pp.3196-3204, 2004.

S. Galijasevic, Myeloperoxidase interaction with peroxynitrite: chloride deficiency and heme depletion, Free Radic Biol Med, vol.47, pp.431-439, 2009.

C. M. Avesani, Inflammation and wasting in chronic kidney disease: Partners in crime, Kidney international, vol.70, pp.8-13, 2006.

L. Zhang, Stat3 activation links a C/EBPdelta to myostatin pathway to stimulate loss of muscle mass, Cell Metab, vol.18, pp.368-379, 2013.

M. T. Tierney, STAT3 signaling controls satellite cell expansion and skeletal muscle repair, Nature medicine, vol.20, pp.1182-1186, 2014.

R. W. Jackman, C. L. Wu, and S. C. Kandarian, The ChIP-seq-defined networks of Bcl-3 gene binding support its required role in skeletal muscle atrophy, PloS one, vol.7, p.51478, 2012.

C. De-alvaro, T. Teruel, R. Hernandez, and M. Lorenzo, Tumor necrosis factor alpha produces insulin resistance in skeletal muscle by activation of inhibitor kappaB kinase in a p38 MAPKdependent manner, The Journal of biological chemistry, vol.279, pp.17070-17078, 2004.

D. C. Henstridge, Skeletal muscle-specific overproduction of constitutively activated c-Jun N-terminal kinase (JNK) induces insulin resistance in mice, Diabetologia, vol.55, pp.2769-2778, 2012.

G. Zhang, B. Jin, and Y. P. Li, C/EBPbeta mediates tumour-induced ubiquitin ligase atrogin1/MAFbx upregulation and muscle wasting, The EMBO journal, vol.30, pp.4323-4335, 2011.

O. Schakman, S. Kalista, C. Barbe, A. Loumaye, and J. P. Thissen, Glucocorticoid-induced skeletal muscle atrophy, Int J Biochem Cell Biol, vol.45, pp.2163-2172, 2013.

B. T. Steffen, S. J. Lees, and F. W. Booth, Anti-TNF treatment reduces rat skeletal muscle wasting in monocrotaline-induced cardiac cachexia, J Appl Physiol, vol.105, pp.1950-1958, 1985.

D. L. Mann, Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL), Circulation, vol.109, pp.1594-1602, 2004.

B. Wiedenmann, A multicenter, phase II study of infliximab plus gemcitabine in pancreatic cancer cachexia, J Support Oncol, vol.6, pp.18-25, 2008.

K. Subramaniam, Infliximab reverses inflammatory muscle wasting (sarcopenia) in Crohn's disease, Aliment Pharmacol Ther, vol.41, pp.419-428, 2015.

M. D. Deboer, Increases in IGF-1 After Anti-TNF-alpha Therapy Are Associated With Bone and Muscle Accrual in Pediatric Crohn Disease, J Clin Endocrinol Metab, vol.103, pp.936-945, 2018.

C. Y. Chen, C. Y. Tsai, P. C. Lee, and S. D. Lee, Long-term etanercept therapy favors weight gain and ameliorates cachexia in rheumatoid arthritis patients: roles of gut hormones and leptin, Curr Pharm Des, vol.19, pp.1956-1964, 2013.

S. M. Marcora, K. R. Chester, G. Mittal, A. B. Lemmey, and P. J. Maddison, Randomized phase 2 trial of anti-tumor necrosis factor therapy for cachexia in patients with early rheumatoid arthritis, Am J Clin Nutr, vol.84, pp.1463-1472, 2006.

J. Reid, Thalidomide for managing cancer cachexia, Cochrane Database Syst Rev, p.8664, 2012.

J. Reid, C. M. Hughes, L. J. Murray, C. Parsons, and M. M. Cantwell, Non-steroidal antiinflammatory drugs for the treatment of cancer cachexia: a systematic review, Palliat Med, vol.27, pp.295-303, 2013.

Y. Yan, Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation, Immunity, vol.38, pp.1154-1163, 2013.

M. J. Tisdale and J. K. Dhesi, Inhibition of weight loss by omega-3 fatty acids in an experimental cachexia model, Cancer Res, vol.50, pp.5022-5026, 1990.

A. Folador, Effect of fish oil supplementation for 2 generations on changes in macrophage function induced by Walker 256 cancer cachexia in rats, Int J Cancer, vol.120, pp.344-350, 2007.

S. M. Deger, High Dose Omega-3 Fatty Acid Administration and Skeletal Muscle Protein Turnover in Maintenance Hemodialysis Patients, Clin J Am Soc Nephrol, vol.11, pp.1227-1235, 2016.

G. Mantovani, Randomized phase III clinical trial of five different arms of treatment in 332 patients with cancer cachexia, Oncologist, vol.15, pp.200-211, 2010.

N. J. Cano, A. E. Heng, and C. Pison, Multimodal approach to malnutrition in malnourished maintenance hemodialysis patients, J Ren Nutr, vol.21, pp.23-26, 2011.

Y. Elkina, S. Von-haehling, S. D. Anker, and J. Springer, The role of myostatin in muscle wasting: an overview, Journal of cachexia, vol.2, pp.143-151, 2011.

L. Zhang, Pharmacological inhibition of myostatin suppresses systemic inflammation and muscle atrophy in mice with chronic kidney disease, FASEB J, vol.25, pp.1653-1663, 2011.

Y. Wang and J. E. Pessin, Mechanisms for fiber-type specificity of skeletal muscle atrophy. Current opinion in clinical nutrition and metabolic care, vol.16, pp.243-250, 2013.

A. E. Heng, Coordinate expression of the 19S regulatory complex and evidence for ubiquitin-dependent telethonin degradation in the unloaded soleus muscle, The international journal of biochemistry & cell biology, vol.40, pp.2544-2552, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01919657

R. Baliga and S. V. Shah, Effects of dietary protein intake on muscle protein synthesis and degradation in rats with gentamicin-induced acute renal failure, Journal of the American Society of Nephrology : JASN, vol.1, pp.1230-1235, 1991.

G. Milan, Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy, Nat Commun, vol.6, p.6670, 2015.

R. D'cruz, PDLIM7 is a novel target of the ubiquitin ligase Nedd4-1 in skeletal muscle, Biochem J, vol.473, pp.267-276, 2016.

M. M. Desgeorges, Molecular mechanisms of skeletal muscle atrophy in a mouse model of cerebral ischemia, Stroke, vol.46, pp.1673-1680, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01585137

E. Kudryashova, D. Kudryashov, I. Kramerova, and M. Spencer, Trim32 is a ubiquitin ligase mutated in limb girdle muscular dystrophy type 2H that binds to skeletal muscle myosin and ubiquitinates actin, J Mol Biol, vol.354, pp.413-424, 2005.

A. Volodin, I. Kosti, A. L. Goldberg, and S. Cohen, Myofibril breakdown during atrophy is a delayed response requiring the transcription factor PAX4 and desmin depolymerization, Proc Natl Acad Sci U S A, vol.114, pp.1375-1384, 2017.

N. Dave, J. Wu, and S. Thomas, Chronic Kidney Disease-Induced Insulin Resistance: Current State of the Field, Curr Diab Rep, vol.18, p.44, 2018.

T. N. Stitt, The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors, Mol Cell, vol.14, pp.395-403, 2004.

D. T. Wang, Y. J. Yang, R. H. Huang, Z. H. Zhang, and X. Lin, Myostatin Activates the Ubiquitin-Proteasome and Autophagy-Lysosome Systems Contributing to Muscle Wasting in Chronic Kidney Disease, Oxid Med Cell Longev, p.684965, 2015.

Y. Enoki, Potential therapeutic interventions for chronic kidney disease-associated sarcopenia via indoxyl sulfate-induced mitochondrial dysfunction, J Cachexia Sarcopenia Muscle, vol.8, pp.735-747, 2017.

R. Mota, Post-translationally modified muscle-specific ubiquitin ligases as circulating biomarkers in experimental cancer cachexia, Am J Cancer Res, vol.7, pp.1948-1958, 2017.

B. Wang, MicroRNA-23a and MicroRNA-27a Mimic Exercise by Ameliorating CKD-Induced Muscle Atrophy, J Am Soc Nephrol, vol.28, pp.2631-2640, 2017.

S. Wada, Translational suppression of atrophic regulators by microRNA-23a integrates resistance to skeletal muscle atrophy, J Biol Chem, vol.286, pp.38456-38465, 2011.

M. B. Hudson, miR-23a is decreased during muscle atrophy by a mechanism that includes calcineurin signaling and exosome-mediated export, Am J Physiol Cell Physiol, vol.306, pp.551-558, 2014.

M. Wade, Y. C. Li, G. M. Wahl, and . Mdm2, MDMX and p53 in oncogenesis and cancer therapy, Nat Rev Cancer, vol.13, pp.83-96, 2013.

G. Arena, Mitochondrial MDM2 Regulates Respiratory Complex I Activity Independently of p53, Mol Cell, vol.69, pp.594-609, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01837662

A. S. Brack, Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis, Science, vol.317, pp.807-810, 2007.

H. A. Brauer, Dermcidin expression is associated with disease progression and survival among breast cancer patients, Breast Cancer Res Treat, vol.144, pp.299-306, 2014.

S. C. Bodine and L. M. Baehr, Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. American journal of physiology, Endocrinology and metabolism, vol.307, pp.469-484, 2014.

E. Ferraro, The metabolic modulator trimetazidine triggers autophagy and counteracts stress-induced atrophy in skeletal muscle myotubes, FEBS J, vol.280, pp.5094-5108, 2013.

F. Molinari, The mitochondrial metabolic reprogramming agent trimetazidine as an 'exercise mimetic' in cachectic C26-bearing mice, J Cachexia Sarcopenia Muscle, vol.8, pp.954-973, 2017.

. Résumé,

. Le, Sa masse est régulée par les processus cellulaires de protéolyse et de protéosynthèse. De nombreuses situations physiologiques ou pathologiques conduisent à une diminution de la masse musculaire. La compréhension des mécanismes de l'atrophie musculaire est nécessaire pour envisager des stratégies thérapeutiques. L'un des objectifs de ce travail était donc d'identifier les modifications métaboliques survenant au cours d'une atrophie musculaire engendrée par une insuffisance rénale

, Aucune augmentation n'a été observée pour les E3 ligases Nedd4, Trim32 et FbxO30/MUSA1. Ces changements concernaient les muscles rapides indiquant leur plus grande sensibilité à l'atrophie induite par l

, Nous avons retrouvé une augmentation de l'expression des ARNm de plusieurs acteurs de l'UPS (dont les E3 MuRF1 et MAFbx) et de l'autophagie chez les patients LC et HD. En spectrométrie de masse, plus de 230 protéines sur 1700 identifiées étaient exprimées de façon différentielle dans le muscle de patients LC et HD par rapport aux patients CT. Ces protéines sont impliquées dans la protéolyse, le métabolisme des acides aminés, la glycolyse, la phosphorylation oxydative, la défense contre le stress oxydant, la contraction musculaire, Dans un second temps, des biopsies musculaires chirurgicales ont été réalisées au cours d'interventions programmées chez des patients atteints d'un cancer bronchique (LC), hémodialysés chroniques (HD) ou indemnes de pathologies (CT)

, Nous avons donc identifié un programme d'atrophie musculaire comprenant l'activation de l'UPS et de l'autophagie et s'accompagnant de modifications métaboliques caractérisées principalement par une augmentation de la glycolyse et une dysfonction mitochondriale. Les mécanismes en jeu sont autant de pistes pour la mise au