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Goals
This chapter summarizes the contents and describes the plan of the thesis.

First, we highlight the motivations of this work. Then, we state the addressed
issues in this thesis.
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1.1 Context and motivations

In a traditional setting of supervised learning task, the training set is composed of
feature vectors (instances), where each feature vector has a label. In MIL task, we
learn a classi er based on a training set of bags, where each bag contains multiple
feature vectors and it is the bag that carries a label. We do not know the labels
of the instances inside the bags.

This work was originally proposed to solve the problem of ionizing radiation
resistance (IRR) prediction in bacterizophlami et al. 2019gb, 2018gb] [Aridhi
et al, 2014. lonizing-radiation-resistant bacteria (IRRB) are important in biotech-
nology. In fact, they could be used for the treatment of radioactive wastes as well
as the therapeutic industry[im et al, 2003 [Gabani and Singl2013. Several
in vitro works studied the causes of the high resistance of IRRB to ionizing radi-
ation to determine peculiar features in their genomes and improve the treatment
of radioactive wastes. Predicting if a bacterium belongs to IRRB usimgro
experiments is not an easy task, it requires a big e ort and a time consuming
lab work. In this thesis, we aim to use machine learning in order to perform the
bacterial IRR prediction task . As far as we know, there is no bioinformatics tool
that performs a such task in the literature. We propose an MIL formalization of
the problem since each bacterium is represented by a set of protein sequences.
Bacteria represent the bags and protein sequences represent the instances. In par-
ticular, each protein sequence may di er from a bacterium to another, e.g., each
bag contains the protein namdghdonuclease |Ibut it is expressed di erently
from one bag to another: these are called orthologous proteimsy[et al, 201(.

To learn the label of an unknown bacterium, comparing a random couple of
sequences makes no sense, it is rather better to compare the protein sequences
that have a functional relationship/dependency: the orthologous proteins. Hence,
this work deals with the MIL problem that has the following three criteria:

The instances inside the bags are sequences: to deal with sequences,

we have to deal with data representation. A widely used technique to rep-
resent MIL sequence data is to apply a preprocessing step which extracts
features/motifs to represent the sequencésiifkever et al.2014 [Lesh
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et al, 1999 [She et al. 2003. Other works keep data in their original
format and use sequence comparison techniques such as de ning a distance
function to measure the similarity between pairs of sequerces| et al,

2014 [Saigo et al. 2004 [Xing et al, 2014.

All the instances inside a bag contribute to de ne the bag's label:

the standard MIL assumption states that every positive bag contains at least
one positive instance while in every negative bag all of the instances are
negative. Some methods following this assumption try to identify positive
instances which are relevant to learn the label of a Bagd et al, 2017 [Li

et al, 2014. However, the collective assumptiginjores 2013 considers

that all the instances contribute to the bag' s label. This suits the problem
of bacterial IRR prediction since all the protein sequences have to contribute
to the nal decision.

The instances may have dependencies across the bags: one ma-

jor assumption of most existing MIL methods is that each bag contains a
set of instances that are independently distributed. Nevertheless, in many
applications, the dependencies between instances naturally exist and if in-
corporated in the classi cation process, they can potentially improve the
prediction performance signi cantly ljang et al, 2017. Many real world
applications such as bioinformatics, web mining, and text mining have to
deal with sequence data. When the tackled problem can be formulated as
an MIL problem, each instance of each bag may have structural and/or
temporal relation with other instances in other bags. This is the case of
the IRR prediction problem in which the bags contain orthologous protein
sequences.

Considering this issue, the problem we want to solve in this work is the MIL
problem in sequence data that have dependencies between instances of di erent
bags.



4 Chapter 1. Introduction

1.2 Contributions

In this work, we present two novel MIL approaches for sequence data classi ca-
tion namedABClass( which stands forAcrossBag sequence€lass cation)

and ABSim ( which stands forAcrossBag sequenceSimilarity). ABCIlass is

a motif-based approach while ABSim uses a similarity measure between related
sequences. We applied both approaches to solve the problem of IRR prediction.
The experimental results were satisfactory.

1.2.1 First axis: Motif-based MIL approach for sequence
data with across-bag dependencies

As a rst contribution, we propose a motif-based approach, naAi@lasswhich

takes into account the across-bag relations between the sequences of di erent bags
in the classi cation process. In a motif-based classi cation for sequential data, a
sequence is transformed into a feature/motif vector. The feature extraction step
is very important in the classi cation process. Many parameters have an impact in
the classi cation results such as the motifs frequency and length, and the matching
type between motifs. Feature-based approaches are widely adopted for genomic
sequence classi cation. In ABClass, a preprocessing step is performed in order to
extract motifs from each set of related sequences. These motifs are then used
as attributes to construct a vector representation for each set of sequences. In
order to compute partial prediction results, a discriminative classi er is applied to
each sequence of the unknown bag and its correspondent related sequences in the
learning dataset. Finally, an aggregation method is applied to generate the nal
result.

We created a multiple instance dataset composed of real sequence data used
to test the approach. It consists of a set of bacteria where each bacterium is
represented using a set of primary structures of proteins implicated in basal DNA
repair in IRRB. Bacteria represent the bags and protein sequences represent the
instances. The used across-bag relation is the orthology. Orthologous proteins are
assumed to have the same biological functions in di erent species. The dataset is
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publicly available atttp://homepages.loria.fr/SAridhi/software/MIL/

1.2.2 Second axis: Similarity-based MIL approach for se-
guence data with across-bag dependencies

As a second contribution, we propose A&Simalgorithm. It does not use motifs

to represent data and no encoding step is needed. We use a similarity measure
between each sequence of the unknown bag and the corresponding sequences in the
learning bags in order to create a similarity score matrix. An aggregation method

is applied and the unknown bag is labeled according to the bag that presents more
similar sequences. We de ne two aggregation methods: Sum of Maximum Scores
(SMS) and Weighted Average of Maximum Scores (WAMS). In the experimental
study, we used the local alignment score to measure the similarity between two
protein sequences.

1.3 Outline

The remainder of this document is organized as follows. Chapter 2 presents the
bioinformatics eld and gives a background about the processed data and the
alignment of biological sequences. It also provides a description of the bacterial
IRR prediction problem. Chapter 3 provides a background about MIL fundamen-
tal notions and gives an overview of some related works in MIL. It also gives a
formalization of the problem of MIL in sequence data. In Chapter 4, we present
an MIL naive approach for sequence data followed by a description of the AB-
Class algorithm. We provide a simple use case that serves as a running example
throughout the chapters 4 and 5. Then we describe our experimental environment
and we discuss the obtained results. Chapter 5 describes the ABSim approach and
the two proposed aggregation methods. Concluding points and a presentation of
future work make the body of Chapter 6.
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Goals In this chapter, we will present basic notions of a main search eld in
this thesis: bioinformatics. We present mainly the speci city of the biological data
and we introduce the investigated IRR prediction problem. We present also the
particularity of sequence classi cation in the data mining eld and we focused on
the alignment of biological sequences.

2.1 Bioinformatics background

2.1.1 Bioinformatics

Bioinformatics in an interdisciplinary eld which can be simply de ned by the use
of computer science to deal with biological data. Developing software programs to
produce meaningful biological information involves the use of algorithms from dif-
ferent disciplines such as data mining, graph theory, statistics, arti cial intelligence
and image processing.

The aims of bioinformatics involve mainely the collection and storage of data
in a way that allows to access them e ciently and the development of algorithms
and tools that deal with the analysis, prediction and interpretation of the data.

To date, the genomic databases indicate the presence of thousands of genome
projects. It is not feasible to analyze the amount of collected data manually
without using tools that make the task easier. It is impossible to experimentally
annotate every biological molecule identi ed by sequencing projects. Bioinformat-
ics has then evolved in the past few years in order to provide software applications
that need minutes or even seconds to accomplish tasks that used to require a big
e ort and weeks of lab work. Computational approaches could be used to provide
initial prediction results related to the function of a biological molecule and help
to predict the usefullness of an experimental study scenario. Examples of bioinfor-
matics research elds include the sequencing of genomes, the 3-D visualisation of
molecules, the construction of evolutionary trees, the analyses of protein functions
and the ionizing radiation resistance prediction (See Se2t@n



2.1. Bioinformatics background 11

Table 2.1: The 20 amino acids in a protein sequence.

Letter Amino acid Letter Amino acid

Alanine Leucine
Arginine Lysine
Asparagine Methionine

L

K

M
Aspartic acid F Phenylalanine
Cysteine P Proline
Glutamine S Serine
Glutamic acid T Threonine
Glycine W Tryptophan
Histidine Y Tyrosine
Isoleucine Vv Valine

TIOMOOTZT>

2.1.2 Biological data

Mainly, bioinformatics deals with three biological macromolecules named protein,
DNA and RNA. The last two macromolecules are called nucleic acids.

Proteins They are macromolecules responsible of a variety of functions
within organisms such as DNA replication, and transporting molecules from
one location to another. They are complex chains of molecules known as
amino acidsso they can be viewed as strings of an alphabet of the 20 amino
acids provided in Tabl2.1

Nucleic acids. Nucleic acids include DNA and RNA macromolecules.

DNA Deoxyribonucleic acid (shortly DNA) is known to be the molecule
that carries the genetic instructions of organisms. It has a double
helical twisted structure. Each side is made of foaseswhich are
represented by the four letters A (adenine), C (cytosine), G (guanine)
and T (thymine). A DNA could then be represented by a sequence of
the alphabef A;C;G; Tg.

RNA Ribonucleic acid (shortly RNA) is a molecule very similar to DNA
but has some chemical dierences. It play various roles in coding,
decoding, and expression of genes. The four bases are the same as in
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DNA with thymine (T) replaced by uracyl (U). Then, an RNA molecule
could be represented by a sequence of the alpHah€t; G;Ug.

2.1.3 Proteins
2.1.3.1 Protein structures

There are four levels of protein structures as described in Fglure

Primary structure: A primary structure represents a protein as a sequence of
amino acids which attach to each other in long chains. The tpnoteinor
polypeptiderefers to sequences longer than 50 amino acids while sequences
with fewer amino acids are callpdptides

Secondary structure: The chain of amino acids can fold to form a three-
dimensional structure. Two main types of secondary structure ara the
helixes and-sheets.

Tertiary structure: The secondary structures are folded to form the over-all
shape of a protein, also known as the protein 3-D structure or the tertiary
structure.

Quaternary structure: Several proteins are composed of more than one se-
guence of amino acids. The combination of these sequences conform the
quaternary structure.

2.1.3.2 Protein sequence data databases

With the evolution of sequencing technologies, the amount of biological sequence
data has exponentially increased. Some publicly available databases o er to users
the possibility to search and download protein sequence data.

GOLD database The Genomes OnLine Database (GOLD)ukherjee
et al, 2014 provides a comprehensive information regarding genome and
metagenome sequencing projects with their associated metadata. Data are
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Figure 2.1: The four levels of the protein structtre

imported from three main sources: (1) projects deposited by users which
are regularly monitored for data accuracy and consistency, (2) projects
imported from public resources like BioProject databaselgrhen et gl

thttps://en.wikipedia.org/wiki/File:Protein_structure_(full).png ,  Novem-
ber 2019.
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2014 and (3) projects sequenced at the Joint Genome Institute (3GI)
The latest publication reported 97 212 Sequencing Projects. GOLD is
available athttps://gold.jgi.doe.gov/

UniProt The UniversalProt ein resource (UniProt) is a biological reposi-
tory of protein sequences and their functional informatiopfeiler et al.

2004. It contains four databases: Swiss-Prot and TrEMBL which are sub-
parts of UniProtKB, UniParc and UniRef.

SwissProt contains non-redundant, manually annotated protein sequences
[Boutet et al, 2014. In order to perform the annotations, information ex-
tracted from biological literature are combined with computational analysis
evaluated by biocurator. The goal is to provide relevant known informa-
tion related to proteins available in the database. Figu&shows the
increasing size of SwissProt database over thirty years. The amount of
available protein sequences was doubled during three years from 2007 to
2010. TTEMBL is a database that contains automatically annotated pro-
tein sequence<sane et al.2014. In fact, the large amount of data gen-
erated by genome projects could not be manually analysed and annotated
according to the process of UniProtKB/SwissProt. Thus, data are auto-
matically processed and added to the TrEMBL databddaiParc (for
UniProt Archive) [einonen et a).2004 contains non-redundant protein se-
guences from the main publicly available databatksRef (for UniProt
Reference Clusters}lizek et a].2007 contains clustered protein sequences
from SwissProt, TTEMBL and selected UniParc entries.

GenBank and RefSeq The National Centre for Biotechnology Infor-
mation (NCBI) 2 hosts two sequence databases named GenBaak- [

son et al, 2017 and RefSeqHruitt et al,, 2017]. GenBank and RefSeq
provide an annotated collection of publicly available nucleotide and pro-
tein sequences, while UniProt contains only protein sequence data, Un-

2https://jgi.doe.gov
3https://www.ncbi.nlm.nih.gov
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like GenBank sequences, RefSeq ones are non-redundant, curated and lim-
ited to some organisms for which su cient data are available. GenBank
contains sequences for any submitted organism. Refseq is available at
https://www.ncbi.nlm.nih.gov/refseq/ and GenBank is available at
https://www.ncbi.nlm.nih.gov/genbank/

Figure 2.2: Number of entries of SwissProt database overitime

2.1.3.3 Protein signatures

Protein signatures consist of models which describe protein families, domains or
sites. A protein family is a group of proteins that share the same evolutionary

origin. Proteins in a same family have similar sequences/structures and biological
functions. Families are usually hierarchically organized. A domain is a part of
a protein which is able to evolve, function, and exist independently of the rest

of the protein sequence/structure. From sequence perspective, a protein domain
is a subsequence of amino acids. Domains vary in length from about 25 amino
acids to 500 amino acids. They also vary in biological functions. The average
size of protein domains is 150 amino acids. The concept of protein domains

“https://www.uniprot.org/statistics/Swiss-Prot , November 2019
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and families are applicable to both sequences and structural proteins. Several
proteins are multi-domain. Figu&3 shows a visualization of the three domains

of the proteinPyruvate kinaseeach domain has a di erent color. The ordered
arrangement of domains in a protein, called the protein domain organization or
the protein domain architecture, is important to maintain the function and the
structure of the protein.

Figure 2.3: A visualization of the three domains of the protein Pyruvate Knase

Signature could be simple such as patterns or more complex such as Hidden
Markov Models (HMMs). Signature methods are divided into patterns, pro les,
ngerprints and HMMs. Conserved subsequences, also knovmoafs , are

Shttps://commons.wikimedia.org/wiki/File:Pyruvate_kinase_protein_domains.
png, November 2019
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extracted and then used to build regular expressions that serve as patterns. Pro les
are computed by converting multiple sequence alignments into position-speci c
scoring systems (PSSMs), i.e., assigning a score to amino acids at each position
according to the frequency with which they occur in the alignment. Fingerprints
are created using multiple pro les generated using multiple alignment techniques.
The main advantage of ngerprints is in identifying the di erences in protein
sequences at four levels of clan, superfamily, family and subfamily which helps
to make a more accurate functional predictions for unknown sequences. HMMs
are statistical models that, like pro les, convert multiple sequence alignments into
PSSMs and represent amino acid insertions and deletions. Its can model the entire
alignment, including divergent regions.

Figure2.4 shows a list of well known protein domain databases grouped based
on the used protein signatures. Domain databases are described below.

Prosite provides entries that describe protein domains and families, and
related patterns and pro les used to identify them. It contains documen-
tation about signatures and the structure and function of proteins. Fig-
ure 2.4 di erentiates between Prosite entries based on patterns (in or-
ange) and those based on proles (in green). The database is available
at http://prosite.expasy.org/

Prints is a database of ngerprintéiiwood et al, 2003 which contains an
annotation list for protein families and a diagnostic tool for newly discovered
protein sequences. The database is accessiblgt@t/www.bioinf.
man.ac.uk/dbbrowser/PRINTS/.

CDD [Marchler-Bauer et gl.2009 [Marchler-Bauer et gl.2014 is the
Conserved Domain Database for the functional annotation of proteins.
It includes manually curated domain models from NCBI (National Cen-
ter for Biotechnology Information in ) and other domain models im-
ported from a set of external databases such as Pfam, and TIGR-
FAMs. In order to generate NCBI-curated domains, 3D-structure in-
formation is used to characterize domains and relationship between into
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sequences and related structure and function. CDD is accessible at
http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml.

Pfam is a database of protein domains and families represented by multiple
sequence alignments and hidden Markov models (HMR&is):[nan et al.

2004 [Finn et al, 2019. It has a large coverage of proteins and a real-
istic way of naming domains. It provides two subsets data depending on
the quality of the families: Pfam-A and Pfam-B. Pfam-A provides man-
ually curated families with high quality alignments and well-characterized
protein domains. Pfam-B contains a lower quality data where families are
automatically generated.

TIGRFAMs [Haft et al, 2003 [Haft et al, 2017 is a database of pro-
tein families that supports manual and automated curated genome an-
notation. It includes multiple sequence alignments and a corresponding
HMM generated from the alignment. If the score of a sequence ex-
ceeds a de ned threshold of a given TIGRFAMs HMM, the protein se-
guence is assigned to the related protein family. TIGRFAMs is available
at http://www.jcvi.org/cgi-bin/tigrfams/index.cgi

Panther ( for Protein ANalysis THrough Evolutionary Relationships)
[Thomas et al. 2003 [Mi et al, 2014 is a large collection of protein fami-
lies manually subdivided into functionally related subfamilies. A phylogenetic
tree is built for each family and could be used in order to classify an un-
characterized protein sequence. Each node in the tree is annotated with
heritable attributes that are propagated to a decedent node. A protein is
then annotated according to its ancestor in the phylogenetic tree. Panther
database is available Vmitp://pantherdb.org/

SMART (Simple Modular Architecture Research Tosh{ultz et al, 1999
[Letunic et al, 2011 is a database that provides the identi cation of domains
and the analysis of their architectures. It uses HMMs built from multiple
sequence alignments in order to identify protein domains. SMART data was
used to create the CDD database.
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Figure 2.4: An overview of protein domains databa&é=fz, 2019.

CATH [Orengo et al. 1997 [Pearl et al, 2003 is a database of curated
classi cation of protein domain structures [Orengo et al., 1997, Pearl et
al., 2003]. In order to perform this classi cation, a combination of multiple
procedures is used including literature review, expert analysis, computational
algorithms and statistical analysis. It shares many features with the SCOP
resource, however they may di er greatly in detailed classi cation. CATH
database is available attp://www.cathdb.info/

SCOP (Structural Classi cation of Proteins) databaseifzin et al, 1999

is a classication of structural domains of the proteins based on their
evolutionary and structural relationships. The goal is to provide a com-
prehensive and detailed description of the relationships between all pro-
teins having known 3D structures. SCOP database is availaliiépat
/Iscop.mrc-lmb.cam.ac.uk/scop/ . It stopped updating in 2010 and a
successor named SCORP2\flreeva et a).2013 has been proposed. SCOP2

is available ahttp://scop2.mrc-lmb.cam.ac.uk/

InterPro All domains classi cations in Figu4 are integrated into the In-
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terPro databaseApweiler et al. 2007 [Finn et al, 2014. In fact, InterPro is

a composite database combining the information of many databases of protein
domains. The goal is to rationalise protein sequence analysis by combining infor-
mation from di erent resources in a consistent manner, removing redundancy, and
adding rich annotation about the proteins and their signatures. Features found in
known proteins are applied to unknown ones (such as new sequenced proteins) in
order to characterise their functions. It contains signatures and the proteins that
they signi cantly match. InterproScan is a tool used to search a query against
the diverse databases of protein domains, motifs, signatures and families. The
disadvantage is the runtime since the Interproscan webservice can be very slow if
we need to analyse thousands of proteins. A solution is to download and install
the whole suite locally.

2.2 The bacterial ionizing radiation resistance
problem

Bacteria are small single-cell organisms. Most bacteria are helpful for mankind,
but some are harmful. Few species cause disease. In particular, ionizing-radiation-
resistant bacteria (IRRB) are important in biotechnology. They could be used
for the treatment of mixed radioactive wastes by developing a strain to detoxify
both mercury and toluene3fim et al, 200(J. These organisms are also being
engineered foin situ bioremediation of radioactive wastés[n et al, 2003.
In [Gabani and SingR013, the authors discuss the potential uses of radiation-
resistant extremophiles (e.g. micro-organisms with the ability to survive in extreme
environmental conditions) in biotechnology and the therapeutic industry.
Severalin vitro and in silicoworks studied the causes of the high resistance
of IRRB to ionizing radiation to determine peculiar features in their genomes and
improve the treatment of radioactive wastes. However, limited computational
works are provided for the prediction of bacterial IRRdhi et al, 2014 [Sghaier
et al, 200g[Makarova et al.2007. In this thesis, we aim to develop a machine
learning algorithm which predicts whether an unlabelled bacterium belongs to
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IRRB or IRSB. Each bacterium is represented using a set of protein sequences
implicated in basal DNA repair (see Figaré).

Figure 2.5: An illustration o the IRR prediction problem.

2.3 Sequence Classi cation

2.3.1 De nition of a sequence

A sequence is an ordered list of events. An event can be represented as a
symbolic value, a numerical value, a vector of values or a complex dat&type [

et al, 201(. There are many types of sequences including symbolic sequences,
simple time series and multivariate time seriesd et al, 201(. In our work,

we are interested in symbolic sequences since the protein sequences are described
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using symbols (amino acids). We den8tan alphabetde ned as a nite set of
characters or symbols. A simple symbolic sequence is de ned as an ordered list of
symbols frons.

2.3.2 Sequence classication approaches in machine
learning

Existing sequence classi cation approaches can be divided into three large cate-
gories King et al, 201(: feature-based classi cation, distance-based classi cation
and model-based classi cation.

In feature-based classi cation, a sequence is transformed into a feature vector.
This representation scheme could lead to very high-dimensional feature spaces.
The feature extraction step is very important since it would impact the classi -
cation results. This step should deal with many parameters such as the criteria
used for selecting features (e.g. frequency and length) and the matching type
(i.e. exact or inexact with gaps). After adapting the input data format, a con-
ventional classi cation method is applied. Feature-based approaches are widely
adopted for genomic sequence classi catidiefas et al.2009 [She et al, 2003
[Chuzhanova et gl1994.

In distance-based classi cation, a similarity function should be de ned to mea-
sure the similarity between a pair of sequences. Then an existing classi cation
method could be used such as the Support Vector Machine (SVM) or the K-
Nearest Neighbors (KNN) algorithm. The similarity function determines the qual-
ity of the classi cation signi cantly. In bioinformatics, alignment based distances
are popularly adopted to deal with sequences such as protein sequences and DNA
sequences. Sectigh4 provides an overview on biological sequences alignment.

Model-based classi cation methods de ne a classi cation model based on the
probability distribution of the sequences over the di erent classes. This model
is then used to classify unknown sequences. Naive Bayes is a simple model-
based classi er that makes the assumption that the features of the sequences
are independent. InClheng et aj. 2009, the authors apply Decision Tree and
Naive Bayes classiers on a protein classi cation problem. Markov Model and
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Hidden Markov Model (HMM) could be used in order to model the dependencies
among sequences. ligkhnenko et a/.2009, a k-order Markov model is used to
classify protein sequences and text data. HMM and alignment scores are used in
[Srivastava et a].2007 in order to make a genomic sequences classi cation. A
protocol named HMM-ModE is de ned in order to generate family speci c HMMs.
Hierarchical clustering is also commonly used in genomic sequences/organisms
classi cation Ni et al, 201§ [Pagnuco et a).2017 [Lukjancenko et al.201(.
It groups the samples into groups called clusters. In the clustering process, inter-
cluster distances should be maximized and intra-cluster distances should be min-
imized. Hierarchical clustering produces a nested series of clusters which may
be represented in a tree structure, called a dendrogram, which may facilitate the
interpretation of the classi cation results. In order to create the clusters, the
genomic sequences are compared. Although the sequence alignment score is com-
monly used to make the comparison, some hierarchical clustering algorithms use
alignment-free comparison methods pt al, 2019 [Wei et al, 2017.

2.4 Aligning biological sequences: basic no-
tions

2.4.1 What is the alignment of biological sequences

The sequence alignment problem is one of the cornerstones of computational bi-
ology. Sequence alignment is a way of arranging sequences in order to identify
regions of similarity. This similarity could provide a structural, functional or evo-
lutionary signi cance. The majority of biological sequence comparison methods
rely on rst aligning sequences and computing a score for the aligniierita

and Almeida2003.

As stated, the goal is to line up two (or more) sequences in order to maximise
their degree of similarity. ldentical bases are matched In the case of DNA and
RNA. For proteins, amino acids are matched if they are identical. An amino acid
could be replaced by another one on the basis of a substitution matrix.
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Some genomic sequences comparison problems are not simply resolved using
one or two alignment tool. In(racy and Argqsl999, local similarity search
is coupled to multiple sequence alignment in order to classify an entire protein
sequence database. Additional contextual information could be integrated in or-
der to improve the genomic sequences comparison. Domain co-occurrence is a
powerful feature of proteins which can be used in this contéxhichelli et al.
2019.

2411 Gaps

When the sequences do not align well with each othgagmacould be inserted
into any of the sequences by pushing a letter one index. The goal is to obtain a
better alignment. A gap is marked by the symbolThe biological interpretation
of using a gap is that a mutation (a deletion or an insertion) occurred during the
evolution of a sequence.

Example of an alignment using the two sequences TACCAGT and CCCG-
TAA

No gaps Gaps
T ACCAGT T ACCAGT
cCc cCCGT AA C cC C G T A A

We note that other alignments are possible, an option is listed below.

2.4.1.2 Alignment scoring

As di erent alignments are possible, we can use a scoring function in order to

select the best alignment. Gap penalty functions are used in order to compute an
alignment score based on the number and length of gaps. The idea is that inserting
too many gaps can lead to a meaningless alignment, so we need to minimize the
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number of gaps. Some gap penalty functions are listed below.

Constant gap penalty It is a simple scoring function. A xed negative
cost is assigned to every gap, regardless of its length.

Linear gap penalty A xed negative score is assigned to every inserted
or deleted symbol. The penalty is then directly proportional to the length
of the gap.

A ne gap penalty. It is a widely used scoring function. Di erent scores
are assigned to the extension of a current gap and the starting of a new one.

If we perform an alignment of protein sequences, substitution matrices could
be used in the scoring alignment instead of using xed scores. In fact, some amino
acids have similar structures and can be substituted in nature. Mutations of amino
acids are quanti ed in the substitution matrices Two well-known matrices are PAM
[Dayho et al, 197§ and BLOSUM Ifieniko and Heniko, 1997.

2.4.2 Global alignment and local alignment

In pairwise alignment, only two sequences are involved in the alignment process,
otherwise, it is a multiple sequence alignment. Alignment technics could be divided
into two types based on the completeness:

global alignment which attempts to match the sequences to each other
from end to end. It is suitable for similar and equal length sequences.

local alignment which searches for highly similar regions of the two se-
guences. It is more suitable for sequences which are partially similar and/or
have di erent length. It is then useful for comparing sequences that share
a common conserved pattern (motif) but di er elsewhere.

Several sequence alignment approaches have been proposed. Some algorithms use
dynamic programming and provide optimal alignments such as the Needleman-
Wunsch algorithm Needleman and Wunsci97(0 and The Smith-Waterman
[Watermar) 1987 algorithm. Other alignment methods are based on heuristics
such as BLAST, the widely used alignment tool in bioinformatics.
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2.4.2.1 Dynamic programming based alignment

Dynamic programming is originally used in the eld of mathematical optimization
[Sniedovich201(q. In computer science, dynamic programming is the approach
based on dividing a problem into smaller subproblems. Each of the subproblems
is divided further into subproblems until some basic case is reached. Needleman-
Wunsch algorithmNeedleman and Wunsch97(Q and Smith-Waterman algo-

rithm are based on Dynamic Programming. The rst one is a classical global
alignment algorithm while the second one performs a local alignment. Both ap-
proaches produce an optimal alignment based on a scoring matrix. A gap penalty
could be used during the alignment process.

2.4.2.2 Heuristic based alignment

Heuristic approaches are much faster than dynamic programming ones, but they
may overlook optimal alignments. They are widely used in large-scale database
searches. BLASTAJischul et al, 199( (stands for Basic Local Alignment Search
Tool) is a well-known alignment tool. It performs local alignment, i.e., it does
not enforce the alignments on full length to measure the similarity between two
sequences. BLAST requires a query sequence to search for, and a target sequence
to search against or a sequence database containing multiple target sequences.
The algorithm splits the query sequence into small subsequences and scans the
database for word matches. All matches are then extended in both directions
as far as possible in order to seek high-scoring alignments. Many extensions of
BLAST have been proposed such as PSI-BLASEhul et al, 1997 and BLAT

[Kent, 2009 [Bhagwat et al, 2017. The main idea of BLAST-like methods is to
identify short common subsequences between the sequences, and then expand the
matching regions.

2.5 Conclusion

In this chapter, we introduced basic notions the bioinformatics research eld.
We presented the biologial data sequences and we introduced the bacterial IRR
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prediction problem that we aim to investigate in this work. We focused on the
alignment of biological sequences.
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Goals This chapter introduces the MIL and its paradigms. It is mainly dedi-
cated to present, in a simpli ed way, the basic notions related to MIL. We mainly
focus on presenting MIL paradigms and describing some approaches.
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3.1  Multiple instance learning

3.1.1 Multiple instance learning VS standard supervised
learning

The standard supervised learning task deals with data that consist of a set of
objects/examples, where each object is associated with a label. The learning

example ang; is the label that indicates the category that the objgcbelongs

to (see Figured.l) . An MIL task deals with data that consist of a set rof

bags where each bag is an unordered set of examples (see Bigurén an MIL
context, each example is called mstance. MIL can be seen as a variant of
supervised learning. However, labels are assigned to bags rather than individual
instances. This category of learning is consideredeskly supervisedince we

do not know the label of each instance inside the bag, and only bags carry the
labels. In this thesis, we only consider two-class classi cation problems, so the
label of each bag is either 1 for a positive bag or -1 for a negative one.

3.1.2 Problem formulation

Let DB be a learning database that contains a setnofabeled bag®B =
f(Bj;Y;);i= 1;2:::;ng whereY; = f 1;1g is the label of the bad;. Instances

in B are denoted bysjj. FormallyB; = fBjj;j = 1,2:::;mgig, wheremg; is the

total number of instances in the bd&j. We note that the bags do not contain

the same number of instances. The goal is to learn a multiple instance classi er
from DB. Given a query ba@ = fQy; k= 1;2:::;qg, whereq is the total number

of instances imQ, the classi er should use data in this bag and in each bdgBof

in order to predict the label d.

3.1.3 Applications

MIL has many real word applications including the drug activity problem, the
image categorization and the text categorization.
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Figure 3.1: Standard supervised classi cation (a) vs multiple instance classi cation

(b).

Drug activity The original application for MIL is the drug activity predic-
tion problem described im[etterich et al, 1997. It deals with the rst Mi
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dataset known as thenusk datasetwhich contains molecules occurring in

di erent conformations. One of the conformations determines if a molecule
belongs to either "musk" class or "non-musk" one. In fact, if a molecule is
able to bind strongly to a binding site on the target molecule, it is classi-
ed as a good drug. The molecule is a bag and its conformations are the
instances inside this bag. The musky smell is the positive label. We do not
know which conformations bind well on a target molecule so we have no
idea which instances are positive.

Image categorization When applying MIL to the image categorization
problem, an image is considered as a bag and its subimages are considered
as instances that conform the bag. A processed image is then a liated into
one class or another. Several works use MIL in image categorization. In
[Maron and Ratan1999, authors treat the natural scene images as bags.

A bag is classi ed as a scene of waterfall if at least one of its subimages is
a waterfall. In fndrews et a).2003 , the positive images show an animal

(a fox, a tiger or an elephant), the negative images are selected randomly
from other classes (the classes represent more than these three animals). An
other image categorization problem de nes a bag as an eye fundus image
and an instance as a patcigndemir and Hamprech2019. The goal is

to predict whether an image is of a subject with diabetes (positive) or a
healthy subject (negative).

Text categorization When dealing with a document categorization prob-
lem using an MIL setting, a document is considered as a bag, and its para-
graphes are considered as instances.Rhy [and Cravgn2009, authors
study a problem of biomedical text categorization. The goal was to predict
whether a text should be annotated as relevant for a particular protein. A
bag is a biomedical text and instances are paragraphs in the document. The
newsgroup dataset[iou et al, 2009 is a popular text categorization Ml
dataset. The goal is to categorize collections of posts from di erent news-
groups corpus. A bag is a collection of posts (instances). A positive bag for
a category contains 3% of posts about a topic while negative bags contain
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only posts about other topics.

3.2 Background

3.2.1 MIL assumptions

The standard MIL assumption states that a bag is positive if and only if one or
more of its instances are positive while in every negative bag all of the instances
are negative. This assumption is used in many MIL problems such as traditional
problem ofmuskdrug activity described in Secti@1.3 A molecule is classi ed
according to its conformations. If one on more conformations bind well to the
target site, then the molecule belongs to the positive class.

Figure 3.2: A classi cation problem of images into "beach" (bottom) and "non-
beach" (top).

The standard assumption is not suitable for some MI problems. For example,
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have the standard MI assumption witch is a special case of the presence-
based MI assumption.

The threshold-based MI Assumption requires that, in order to consider a
bag as positive, a certain number of instances in the bag have to belong to
each of the required concepts.

The count-based MI Assumption is close to the previous assumption but
it requires that a maximum and a minimum number of instances have to
belong to each of the required concepts.

The collective assumption supposes that all instances in a bag contribute
equally to the bag's labeFpulds and Frank201(q. All instances are con-
sidered in the learning process.

The weighted collective Ml assumption is an extension of the previous as-
sumption that uses di erent weights for each instance.

We note that many MI approaches do not use the standard assumption but it
is not always stated which new assumption is adopted instead.

3.2.2 Instance-level and bag-level learning

MIL methods could be categorized according to how the information contained in
the MIL data is exploited. InAjmores 2013, the author proposed to di erentiate
between the Instance-Space (IS) paradigm and the Bag-Space (BS) paradigm. A
third category of MIL approaches based on the Embedded-Space (ES) paradigm
was proposed. In this section, a lower-case notation will be adopted to refer
instances (x) and instance-level classi ers (f), an upper-case notation is used to
denote bags (X) and bag-level classi ers (F).

Instance level The IS paradigm is based on local instance-level infor-
mation since we consider the characteristics of individual instances in the
learning process without looking at more global characteristics of the whole
bag. Figure3.4 illustrates the IS paradigm. A discriminative instance level
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classi er f(x) is trained on the instances in order to separate instances of
positive bags f{(x) = 1) from instances in negative bag§X) = 0). A bag

level classi elF (X) is then obtained by applying an aggregation on instance
level results. Diverse Density and MISVM are two examples of algorithms
which use the IS paradigm (see Sectog).

Figure 3.4: lllustrative example using the IS paradigmdres 2013.

Bag level In the BS paradigm each bag is treated as a whole entity. Instead
of aggregating instance-level decisions, a global bag-level information is used
to make the discriminative decision. Fig®.® provides an illustrative ex-
ample using the BS paradigm. In the training step, a distance function is
de ned to compare two bags. Then, a learning algorithm is applied to create
a model. In order to predict its label, a new bag is compared to other bags
of the training set using the bag level distance function. A clasBi ases

the computed distances, the model and the learned param@téwsmake

the prediction. Citation-Knn is an example of algorithms which use the BS
paradigm.

Embedded level In the ES paradigm, the relevant information about each
bag is summarized in a single feature vector. The di erence between BS
and ES paradigms lies in the way this bag-level information is extracted: it
is done implicitly in the BS paradigm and explicitly in the ES one through
the de nition of a mapping function. An illustration of using ES learning is
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Figure 3.5: lllustrative example using the BS paradigmdres 2013: training
(a) and test (b)

provided by the Figur8.6. In the training step, the original training space

is mapped to a vectorial embedded space by de ning a mapping function
M which associates a feature vector to each bag. A standard discriminant
classi er G is then learned. In order to predict the class of a new Xag

the mappingM is used to generate the correspondent feature vectdhe
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bag classi erF(X) is the obtained using the discriminant classi@rand
the new vectow. It can be expressed & X) = G(v). A simple algorithm
that uses the ES paradigm is SimpleMI described is SegtBon

Figure 3.6: lllustrative example using the ES paradigmdres 2013: training
(a) and test (b)
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3.3 An overview of MIL methods

The original work that introduces the MIL problem proposes the axis-parallel hyper-
rectangle (APR) approactbjetterich et al, 1997. It tries to identify an hyper-
rectangle that includes at least one instance of every positive bag and does not in-
clude any instances from negative bags. Many MIL approaches are then proposed.
Diverse Density (DD)\laron and Lozano-Pergz999 is one of the popular MIL
algorithms. It was proposed as a general framework for solving MIL problems.
Several MIL approaches have been proposed. Some algorithms deal with the MIL
problem directly in either instance level such as mi-S¥Mljews et a].2003

and MILKDE [aria et al, 2017 or in bag level such as MI-SVM mi-SVMnf

drews et al.2003 and MIGraphZhou et al, 2009. Other algorithms try to shift

the MIL problems into instance space via embedding such as MLDEr¢§s

2019, Submil [fuan et al, 2014 and miVLAD [Vei et al, 2014. Several regular
supervised classi ers are extended to work in the MIL setting such as MI-SVM
and Citation-kNN which extend respectively the SVM and the k-nearest neigh-
bours approaches. Methods which are based on instance selection try to identify
representative instances of the bagsr[a et al, 2017 [Chen et al. 2009. In

[Zhou et al, 2009 and Zhang et al, 20117, authors try to identify the relations
which exists between bags/instances and use them to improve the classi cation
results. Some algorithms focus on de ning dissimilarities between bags/instances,
one example is MInDCheplygina et gl.2019 that uses a bag dissimilarity ap-
proach. A review of MIL approaches and a comparative study can be found in
[Amores 2013, [Alpayd n et al. 2019 and Herrera et al. 2014. A description

of some algorithms is provided below.

DD [Maron and Lozano-Peérg2999 attempts to nd the concept points in
the feature space that are close to at least one instance from every positive bag
and far from instances in negative bags. The optimum concept point is determined
by maximizing the diversity density score, which is a measure of how positive a
point is (i.e. positive bags have instances near the point and how far the negative
instances are away from it.) An unknown bag is classi ed as positive if at least one
of its instances is su ciently close to the concept point, otherwise it is classi ed
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as negative. Some MIL methods proposed later are based on the DD algorithm
such as EM-DDZhang and Goldmar20074 which uses a set of hidden variables

in order to identify which instance determines the label of a bag. These hidden
variables are estimated using an expectation maximization approach.

MI-SVM and mi-SVM are two algorithms which extend a regular supervised
learning approach. They are two extensions of support vector machines (SVM)
where margin maximization is rede ned in order to consider the MIL settings. MI-
SVM deals with the problem at bag level, whereas mi-SVM deals with instance
level. In regular SVMs for supervised learning, the labels of each instance in the
training set are known. However, this is not the case in MIL where only the labels
of the bags are known. Considering the standard MIL assumption, the labels of
the negative bags instances are known to be negative. The margin could be then
de ned as in a regular SVM. However, the problem with the labels of positive
bags instances is that they are unknown and therefore de ning the margin is a
complicated task. Then, mi-SVM propose to treat the instance labels as unknown
integer variables. It uses a maximum instance margin formulation which tries
to recover the instance labels of the positive bags. The goal is to nd both
the optimal labeling and the optimal hyperplane. On the other hand, MI-SVM
algorithm generalizes the notion of a margin to bags. The goal is to recoverthe
positive instancewhich are instances used to represent positive bags. In fact, the
margin of a positive bag is de ned by the margin of the most positive instance,
while the margin of a negative bag is de ned by the least negative instance.
The negative instances in the positive bags are ignored. The algorithm introduces
witness variables which represent the selected instances to represent positive bags.
A main di erence between the mi-SVM and MI-SVM margin formulation is that
in mi-SVM the margin of every instance in a positive bag matters and we can
de ne their labels in order to maximize the margin, however, in MI-SVM only one
instance in the positive bag matters to de ne the margin of the bag.

MIRSVM [Melki et al, 2019 is a an algorithm which uses a bag-representative
selector and trains an SVM based on a bag-level information. The idea is to se-
lect representative instances from both positive and negative bags and use them
in order to nd an optimal unbiased separating hyperplane. lIteratively, the algo-
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rithm chooses an instance used to represent each bag, then a new hyperplane is
de ned according to the selected representatives until they converge. During the
training process, MIRSVM gives preference to negative bags because all instances
inside these bags are guaranteed to be negative according to the standard M
assumption, whereas the distribution of the instance labels in positive bags is un-
known. A main di erence between MIRSVM and MI-SVM algorithms is that the

rst one uses representatives from positive and negative bags, while the second
one only optimizes over representatives from positive bags. Another di erence is
that MIRSVM allows for balanced selection of bag representatives, i.e. one rep-
resentative is allowed for each bag regardless of its label, while MI-SVM uses one
representative for positive bags and multiple representatives for negative ones.

In [Wang and Zuckegr200(, the authors present two extensions of the kNN
algorithm called Bayesian-KNN and Citation-KNN. In order to transform the mea-
sure between instances (such as in standard kNN) in a measure between bags,
authors propose to use the Hausdor distance: two sets A and B are within Haus-
dor distance d of each other if every point of A is within distance d of at least
one point of B, and every point of B is within distance d of at least one point
of A. In order to classify an unknown bag, the Bayesian method computes the
posterior probabilities of its label based on the labels of its neighbors. Citation-
kNN suggests the notion afitation. The idea is to take into account not only
the neighbors of a bag B (according to the Hausdor distance) but also its citers
which are the bags that count B as their neighbor.

Some MIL approaches focus on selecting positive instances. One example is
MILKDE which tries to nd the most representative instances in each positive
bag based on a likelihood computation. The idea is to select positive instances
having the common characteristics considering all positive bags. The Kernel Den-
sity Estimation (KDE) Parzen 1967 is used in order to compute the maximum
likelihood between those instances. The algorithm starts by looking for the most
positive instance considering all instances in all positive bags, i.e. the one pre-
senting the higher likelihood value. Given a positive bag, the algorithm computes
the Euclidean distance of all instances to the previously de ned MP instance. The
instance which presents the shortest distance is de ned as a representative of the
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processed bag. The resulting set of the selected positive instances as well as all
negative ones represent the data used to construct the classi er. MICES|

et al, 2009 is another algorithm based on positive instance selection, but it does
not make the instance selection in the beginning. It uses all instances in the bags
as a vocabulary and de nes a similarity between bags and instances in embedding
space. SVM is applied to the new space and an instance selection is then done.

MIGraph and miGraphZfiou et al, 2009 are two algorithms that use a graph
representation of the processed data. The key idea is to treat the instances as non
independently and identically distributed samples. Figufgives an illustrative
example which shows how taking into account the relation among instances could
impact the classi cation decision of three sample bags. In Figut¢a), if we
do not take into account the relations between the instances inside the same bag,
the three bags could be considered as similar since they have identical number of
similar instances. Whereas in Fig®.& (b), the rst two bags are more similar
than the third one if we take into account the relations between the instances.
MI-Graph works at a bag level. It maps every bag to an undirected graph and
designs a graph kernel for distinguishing the positive and negative bags. miGraph
constructs graphs implicitly. Similar instances in a bag are then grouped in cliques
and a graph kernel is computed based on the clique information.

In [Zhang et al, 2011, an optimization algorithm that deals with multiple
instance learning on structured data (MILSD) is proposed. The idea is to use
the rich dependency/structure information between instances/bags in order to
improve the performance of existing MIL algorithms. This additional information
is represented using a graph that depicts the structure between either bags or
instances. The proposed formulation deals with two sets of constraints caused by
learning on instances within individual bags and learning on structured data and
has a non-convex optimization problem. To solve this problem, authors present
an iterative method based on constrained concave-convex procedure (CCCP). It
is an optimization method that deals with the concave convex objective function
with concave convex constraintSnjiola et al. 2004. However, in many real
world applications, the number of the labeled bags as well as the number of links
between bags are huge. To solve the problem e ciently, an adaptation of the
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Figure 3.7: lllustrative example showing the impact of treating the instances as
non independently and identically distributed samplés | et al, 2009. See
text.

cutting plane methodHelley 196(Q is proposed. The goal is to nd two small
subsets of constraints from a larger constraint set.

MInD (Multiple Instance Dissimilarity) algorithr@feplygina et g/.2019 fo-
cuses in de ning dissimilarities between bags. The MIL problem is converted to a
standard supervised learning problem by representing each bag by its dissimilarities
to other bags. Authors discuss di erent ways to de ne a dissimilarity between two
bags: viewing a bag as a set of points, as a distribution instance space and as an
attributed graph. Many other algorithms convert the MIL problem to a supervised
learning one such as SimpleMiojig 2004 which maps each bag to the average
of the instances inside. It simply aggregates statistics about the instances without
making a di erence between them. It is e cient when the average of positive and
negative bags is di erent.

3.4 MIL for sequence data

3.4.1 Related works using sequence data

When the processed instances inside bags are sequences, we have an MIL problem
for sequence data. Using the attribute-value format in order to encode the input
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data is widely used when applying MIL algorithms on sequence data.

When MIL is applied in order to deal with the document categorization prob-
lem, documents are considered as bags and some sentences represent the instances
[Wang et al, 2019 [Liu et al, 2019 [Andrews et a}.2003. An extremely sparse
and high dimensional attribute-value representation of the data is generated when
terms are simply used to present the text. \Ivigjhg et al, 2014, authors we use
a convolution neural network model to learn sentence representations by combin-
ing both local (at sentence/instance level) and global (at document/bag level)
information.

Some works use MIL when dealing with the problem of transcription factor
binding sites (TFBS) identi cationfhang et al, 2019 [Hu et al, 2019 [Gao and
Ruan 2013. Transcription factors (TF) play important roles in the regulation of
gene expression. They can modulate gene expression by binding to speci c DNA
regions, which are known as TFBS. It is commonly assumed that a DNA sequence
that can be bound by a TF should contain one or more TFBS ( a positive bag),
while a DNA sequence that cannot be bound by the TF should have no TFBS
(a negative bag). A sliding window is applied to check the substrings of each
sequence and use them as instances mapped to feature vectors. Structural DNA
properties Baver et al, 2010 are commonly used to generate a feature vector
representation of the instances.

The identi cation of thioredoxin-fold (Trx-fold) proteins is another challeng-
ing problem in bioinformatics where an MIL-based problem formulation could be
applied on sequence data. The Trx-fold is a characteristic protein structural motif
that has been found in ve distinct classes of proteins.Tho[et al, 2004 and
[Zhang et al, 2017, a dataset of protein sequences is used in the empirical evalu-
ation: each protein sequence is considered as a bag and some of its subsequences
are considered as instances. These subsequences are aligned and mapped to an
8-dimensional feature space: 7 numeric properties Et al, 200(] and an &
feature that represents the residue's position. So we obtain an attribute-value
format description of the dataset. lZfjang et al, 2011, the alignment score
is used in order to identify the bag-level relations between proteins. If the score
between a pair of proteins exceed 25, then authors consider that there exists a
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link between them. We note that these works do not deal with the across-bag
relations that may exist between the instances.

3.4.2 Problem Formulation

We extend the problem formulation detailed in Sec8dn2to deal with sequence

data instances. Instanc&; of a bagB; are sequences . We note that there is

an equivalence relatioA between instances of di erent bags denothd across-

bag relationwhich is de ned according to the application domain. An equivalence
relation is a binary relation that is re exive, symmetric and transitive. To represent
A, we opt for an index representation. We note that this notation does not mean
that instances are ordered. In fact, a preprocessing step assigns an index number
to the instances inside each bag according to the following notation: each instance
Bij of a bagB; is related byA to the instanceBy,; of another bagsy, in DB. An
instance may not have any corresponding related instance in some bags, i.e., a
sequence is related to zero or one sequence per bag. We do not have necessarily
the same number of instances in each bag.

A :DB! DB
A(Bij) = Bp;

A is dened according to the application domain. The relati&n could

be generalised to deal with problems where each instance has more than one
target related instance in each bag. The index notation as described previously
will not be suitable in this case.

3.4.3 Delimitation of the problem

The goal of this thesis is to deal with the MIL problem that has the following
three criteria:
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The instances inside the bags are sequences: To deal with sequences,
we have to deal with data representation.

All the instances inside a bag contribute to de ne the bag's label:

In the problem of bacterial IRR prediction, all the protein sequences con-
tribute to the nal decision. The standard MIL assumption is not suitable
to our investigated problem, we adopt instead the collective assumption.

The instances may have dependencies across the bags: The bags
contain orthologous protein sequences. The across bag relation between
instances could be used in the learning process.

Considering this issue, the problem we want to solve in this work is the
MIL problem in sequence data that have dependencies between instances of
di erent bags.

3.5 Conclusion

In this chapter, we presented the MIL and some of its applications. We presented
the MIL assumptions and the di erent levels of learning (i.e. bag level and in-

stance level). Then we provided an overview of some MIL algorithms. Finally, we
explained the particularity of the investigated problem of MIL for sequence data
with across-bag dependencies and provide a formalization of the problem.
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Goals In this chapter we introduce the naive MIL approach for sequence data.
Then, we present our proposed approach named ABClass. We describe the algo-
rithm and we present the experimental study.
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4.1 Naive approach

4.1.1 The algorithm

The simplest way to solve the problem of MIL for sequence data is to use standard
MIL classi ers. The naive approach contains two steps (see&). We rst

make a preprocessing step that transforms the set of sequences to an attribute-
value matrix where each row corresponds to a bag of sequences and attributes
conform the columns. The second step consists in applying an existing MIL clas-
sier. In the case of sequence data, the most used technique to transform data
to an attribute-value format is to extract motifs that serve as attributes/features.
We note that nding a uniform description of all instances using a set of motifs is
not always an easy task. Since our naive approach takes into account the across
bag relations between instances, the preprocessing step extracts motifs from each
set of related instances. The union of these extracted motifs is then used as fea-
tures to construct an attribute-value matrix where each row corresponds to a bag.
The presence or the absence of an attribute in a sequence is respectively denoted
by 1 or 0. Using this approach, we obtain an attribute-value matrix that contains

a large number of motifs. It is worthwhile to mention that only a subset of the
used attributes is representative for each processed sequence. Therefore, we may
have a big sparse matrix when trying to present the whole sequence data using an
attribute value format.

4.1.2 Running example

In order to illustrate our proposed approach, we rely on the following running

(Bz; 1);(Bs; 1);(Bs; 1)galearning database that contains 5 baBs &nd B,

are positive bag®3s, B4 andBs are negative bags). Initially, the bags contain the
following sequences:

B; = {ABMSCD, EFNOGH, RUVR}

B, ={CCGHDDEF, EABZQCD}

B3 = {GHWMY, ACDXYZ}
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Figure 4.1: System overview of the naive approach for MIL in sequence data

B4 ={ABIJYZ, KLSSO, EFYRTAB}

Bs = {EFFVGH, KLSNAB}

We rst use the across bag relatidn to represent the related instances using the
index notation as described previously.

8
% Bi1 = ABMSCD 2 2
B,; = EABZQCD Bs; = ACDXYZ
B1= _ Bj,= EFNOGH B= . Bs=.
3 ' Byp,= CCGHDDEF ' Bgpy= GHWMY
’ 813: RUVR
8
3 Byr= ABIIYZ §
Bs, = EFFVGH
Bs= _ Bsy= EFYRTAB Bs=
3 * Bsz3= KL SNAB

* Bgz= KLSSO



Chapter 4. Motif-based MIL approach for sequence data with across-bag
52 dependencies

The goal here is to predict the class label of an unknowrJoad Q1; Q2; Q39

where:
8
2 Q1= ABWXCD

Q= _ Q;= EFXYGHN
~ Q3= KLOF

We apply the naive approach to our running example. We suppose that at-
tributes are subsequences (minimum length = 2) that occur at least in 2 in-
stances. LefttributeList = f AB;CD;Y Zg be the list of features extracted from

list of features extracted from the instancEB;s;i 2 f 1;4;,59g. The union of
AttributeList, AttributeLisp and AttributeLisg produces the lisAttributeList=
fAB,CD;Y ZEF,GH;KLg. In order to encode the learning sequence data, we
generate the following attribute-value matrix denoddd A missing value is de-
noted by "-".

0 instance 1 instance 2 instance 3 1
11 0 0 0 OjOOO110j) 0 0 0O 0O 0 0B
11 0 0 0 0j 0O 1 1 0j B,
M=Eo 12 1 0 0 0j 00 OO 1 O] Bs
1 01 00 0Oj12 0010O0j O0O0O0OTO0CTO0OTFGO By
i 000110j 1 00 0 0 1 Bs

The sparsity percentage bf is 77.2%. If we have a big learning databage,
could result to a huge and sparse matrix since only a subset of the used subse-
guences is representative for each processed sequence.
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Figure 4.2: System overview of the ABClass approach

4.2 ABClass: Across-Bag sequences Classi ca-
tion approach

4.2.1 The approach

ABClass takes advantage of the across-bag relationship between sequences in order
to reduce the number of attributes that are not representative for each processed
sequence during the encoding step. Hig2 represents the system overview of
ABClass. Each set of related instances will be presented by its own motifs vector.
This relationship is also used during the learning step when generating partial
models. Every vector of motifs will be used to produce a partial prediction result.
These results will be then aggregated to compute the nal result. Based on the
formalization, the algorithm discriminates bags by applying a classi cation model
to each instance of the query bag.

ABClass is described in Algorithin The acrossBagSeq function groups the
related instances among bags into a list. During the execution of the algorithm,



Chapter 4. Motif-based MIL approach for sequence data with across-bag
54 dependencies

we will use the following variables:
A matrix M to store the encoded data of the learning database.
A vectorQV to store the encoded data of the query bag.
A vectorPV to store the partial prediction results.

Informally, the main steps of th&BClassalgorithm are:

1. For each instance sequen@g in the query badQ, the related instances
among bags of the learning database are grouped into a list (lines 1 and 2).

2. The algorithm extracts motifs from the list of grouped instances. These
motifs are used to encode instances in order to create a discriminative model
(lines 3 to 5).

3. ABClassuses the extracted motifs to represent the insta@geof the un-
known bag into a vecto\, then it compares it with the corresponding
model. The comparison result is stored in tHe&ement of a vectoPV
(lines 6 and 7).

4. An aggregation method is applied RV in order to compute the nal
prediction resulP (line 9), which consists in a positive or a negative class
label.

4.2.2 Running example

We apply theABClassapproach to our running example. Since the query bag
contains 3 instance®1, Q2> and Q3, we need 3 iterations followed by an aggre-
gation step.

Iteration 1: The algorithm groups the set of instances that are related across
bags and extracts the corresponding motifs.

AcrossBagsList= f B11; Bo1; B31; B41g
MotifListy = f AB;CD;Y Zg
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Algorithm 1 ABClassalgorithm
Input: Learning databasBB = f (B;;Yj)ji= 1;2;:::;ng, Query bagQ = f Qyk=
1,2;:::,00
Output: Prediction resulP
1: for all Qx2 Q do
. AcrossBagSeqList AcrossBagSdd; DB)
MotifListy,  MotifExtractor AcrossBagsLig)
My  EncodeDatéMotif List; AcrossBagsLig)
Modek GenerateModéMy)
QW EncodeDatéMotifListy; Qk)
. PW  ApplyMode(QV; Modek)
8: end for
9: P Aggregat¢PV)
10: return P

NoarwN

Then, it generates the attribute-value mati describing the sequences related

to Q.

AB CD YZ
0 1
1 1 0 By
hM=%1 1 o%sﬂ
0 1 1ABg
1 0 1 By

The sparsity percentage of the produced maltixis reduced to 33% because
there is no need to use the motifs extracted from instaf@si = 1;::;59 and
fBj3;1 2 1;4;59 to describe instancdsB;1;i = 1;::;4g. A model is then created
using the encoded data and a ved@¥; is generated to descrilf@;.

01

1
Qv = E'Dlg
0

By applying the model to the vect®V;, we obtain the rst partial prediction
result and we store it into the vect&V.

55
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PVi  ApplyMode(QV:i; Modek)

Iteration 2: The second iteration concerns the second inst@pcef the
guery bag. We do the same instructions described in the rst iteration.

AcrossBagsList= f By1; Boy; B3o; Bao; Bsog
MotifList, = fEF,GHg

o EF GH,
1 1 Bp
1 1By
M2=B 0 1 &By
1 0 KBy
1 1 Bsg
!
1
\H =
Qv 1

PV,  ApplyMode(QV,; Modeb)
Iteration 3:  Only By, B4 and Bs have related instances @s.

AcrossBagsList= f By3; Bs3; Bs3g
MotifListz = fKLg

0 KI_1
0 Bss
Ms=@ 1 K Bss
1 Bss
Q= 1

PVz  ApplyMode(QVs; Modek)

The aggregation step is nally used to generate the nal prediction decision
using the partial prediction results. We opt for the majority vote.
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4.3 Creating the bacterial IRR database

We created a dataset composed of bags of real sequence data.4ThBleows
the 28 bacteria (the bags): 14 IRRB (B1 to B14) and 14 IRSB (B15 to B28).
Each bacterium contains 25 to 31 primary structures of proteins implicated in basal
DNA repair in IRRB. Tabld.2 contains the used proteins. More details about
the number of proteins in each bacterium and the number of protein sequences in
each positive bag (IRRB) and negative one (IRSB) are provided in App&ndix
Bacteria represent the bags and protein sequences represent the instances. The
used across-bag relation is the orthology. Orthologous genes are assumed to have
the same biological functions in di erent species.

Information on complete and ongoing IRRB genome sequencing projects was
obtained from the GOLD databas&dlios et al, 200§. We initiated our analyses
by retrieving orthologous proteins implicated in basal DNA repair in IRRB and IRSB
with sequenced genomes. Proteins of the bactef&imococcus radiodurans
(B7) were downloaded from the UniProt website. In the preprocessing step, we
used the perfectBLASTSEntiago-Sotelo and Ramirez-Pra@017 tool in order
to identify orthologous proteins. Proteomes of other bacteria were downloaded
from the NCBI FTP website. We note that some proteins do not have any ortholog
in some bags. We do not have the same number of instances in each bag. The
dataset is publicly available in the following lifktps://homepages.loria.
fr/SAridhi/software/MIL/#downloads

4.4 Experimental study

We applied the naive approach and ABClass to solve the problem of IRR predic-
tion in bacteria. The proposed MiL-based prediction systems aim to a liate an
unknown bacterium to either IRRB or IRSB.
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4.4.1 Experimental environment

For our tests, we used the dataset described in Seeti@n We used WEKA
[Hall et al, 2009 data mining tool in order to apply existing well known classi ers
to test the proposed approaches. When running ABClass experiments, we used
the following classi ers: SVM, SMO, IBk (a K-nearest neighbor implementation),
J48 (an implementation of C4.5 decision tree algorithm) and Logistic (a logistic
regression based classier). In order to test the naive approach, the following
classi ers of WEKA were used: MISVM (implementation of the instance based mi-
SVM algorithm), MISMO (uses the SMO algorithm4tt, 1999 for SVM learning

in conjunction with a multiple instance kernel), citationKNN (multiple instance
extension of K-nearest neighbor algorithm), MILR (multiple instance adaptation
of the logistic regression classi cation), MITI (a decision tree algorithm adapted
to multiple instance settings) and QuickDDlterative (an iterative faster version of
the basic DD algorithm).

4.4.2 Experimental protocol

In order to evaluate the naive approach and the ABClass approach, we rst encode
the protein sequences of each bag using a set of features/motifs generated by an
existing motif extraction method. Then, we apply an existing classi er to the
encoded data. We used the Leave-One-Out (LOO) evaluation technique. In our
tests, we used DMSV[addouri and Elloumi2004 as a motif extraction method.
DMS allows building motifs that can discriminate a family of proteins from other
ones. It rstidenti es motifs in the protein sequences. Then, the extracted motifs
are ltered in order to keep only the discriminative and minimal ones. A substring
is considered to be discriminative between the familgnd the other families

if it appears inF signi cantly more than in the other families. DMS extracts
discriminative motifs according ® andb thresholds whera is the minimum

rate of motif occurrences in the sequences of a famindb is the maximum

rate of motif occurrences in all sequences except those of the familyg the
following, we present the used motif extraction settings according to the values of
a andb:



Table 4.1: IRRB and IRSB learning set.

ID Bacterium Phylogenetic group 3 (kGy)?

B1  Chroococcidiopsis thermaliBCC 7203 Cyanobacteria °4Billi et al., 2007

B2  Deinococcus desertivCD115 DeinococcusThermus >7.5 [Slade and Radmgr2011]]

B3  Deinococcus geothermal®SM 11300 DeinococcusThermus 10-16 [lade and Radmar2011]]

B4  Deinococcus gobiensisO DeinococcusThermus 12.7 [Slade and Radmagr2017]

B5 Deinococcus maricopensBSM 21211 DeinococcusThermus 11 [Rainey et al, 2009

B6  Deinococcus proteolyticuMRP DeinococcusThermus > 15 [Brooks and Murray 1987

B7  Deinococcus radioduranR1 DeinococcusThermus 10 [lto et al,, 1983

B8 Geodermatophilus obscuru83SM 43160 Actinobacteria 9Gtari et al, 2017

B9  Kineococcus radiotoleranSRS30216 Actinobacteria Phillips et al, 2007

B10 Kocuria rhizophilaDC2201 Actinobacteria 2[Rainey et al. 1997 [Brooks and Murray 1981

B11 Methylobacterium radiotolerandCM 2831 Proteobacteria 1dreen and Bous eld1983 [Ito and lizukg 1977

B12 Modestobacter marinus Actinobacteria 6 [tari et al, 2017

B13 Rubrobacter xylanophiluPSM 9941 Actinobacteria 5.5Herreira et al, 1999

B14 Truepera radiovictrixkDSM 17093 DeinococcusThermus >5 [Albuquerque et al.2009

B15 Brucella abortusS19 Proteobacteria 0.34Federighi and Tholozan2001]

B16 Escherichia colB REL606 Proteobacteria 0.MDfaly et al, 2004

B17 Escherichia colstr. K-12 substr. DH10B Proteobacteria 0.Dhly et al, 2004

B18 Neisseria gonorrhoealéA 1090 Proteobacteria 0.07-0.12®§ly et al, 2004

B19 Neisseria gonorrhoea€CDC NG08107 Proteobacteria 0.07-0.1254ly et al, 2004

B20 Pseudomonas putid&16 Proteobacteria 0.29]aly et al, 2004

B21 Shewanella oneidensMR-1 Proteobacteria 0.070aly et al, 2004

B22 Shigella dysenteriai617 Proteobacteria 0.22ZHpderighi and Tholozan2007]]

B23 Thermus thermophiludHB27 DeinococcusThermus 0.8 [Federighi and Tholozgni2007]

B24 Thermus thermophiluHB8 DeinococcusThermus  0.8%Federighi and Tholozan2007]

B25 Thermus thermophilusIL-18 DeinococcusThermus 0.8 [Federighi and Tholozan2007]

B26 Thermus thermophilusSG0.5JP17-16 DeinococcusThermus 0.8 [Federighi and Tholozan2007]

B27 Vibrio parahaemolyticufkIMD 2210633 Proteobacteria 0.03-0.06¢derighi and Tholozgn2007]

B28 Yersinia enterocolitics8081 Proteobacteria 0.1-0.2Ffderighi and Tholozgn2001]
a. Dig: Dose for 90% reduction in Colony Forming Units (CFUs); for IRRB, it is greater than 1 kGy.

b. for Chroococcidiopsispp.
c. for Kocuria rosea
d. for T. thermophilusHB27.

Apnis [eluswuadxy vy
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Table 4.2: Replication, repair and recombination proteins.
ID Protein Function
P1 Hypothetical DNA polymerase
P2 DNA polymerase |l§ subunit
P3 DNA-directed DNA polymerase DNA polymerase
P4 DNA polymerase IIt,/ g subunit
P5 Single-stranded DNA-binding protein
P6 Replicative DNA helicase
P7 DNA primase Replication
P8 DNA gyrase, subunit B complex
P9 DNA topoisomerase |
P10 DNA gyrase, subunit A
P11 Smf proteins
P12 Endonuclease Il
P13 Holliday junction resolvase
P14 Formamidopyrimidine-DNA glycosylase
P15 Holliday junction DNA helicase
P16 RecF protein
P17 DNA repair protein radA
P18 Holliday junction binding protein
P19 Excinuclease ABC, subunit C
P20 DNA repair protein RecN Other DNA-
P21 Transcription-repair coupling factor associated
P22 Excinuclease ABC, subunit A proteins
P23 DNA helicase I
P24 DNA helicase RecG
P25 Exonuclease SbcD, putative
P26 Exonuclease SbcC
P27 Ribonuclease HIl
P28 Excinuclease ABC, subunit B
P29 A/G-speci ¢ adenine glycosylase
P30 RecA protein

P31 DNA-3-methyladenine glycosidase Il, putative

S1 (a=1andb = 0:5): used to extract frequent motifs with medium
discrimination.

S2 (a = 1andb = 1): used to extract frequent motifs without discrimina-
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tion.

S3 (a = 0:5andb = 1): used to extract motifs having medium frequencies
without discrimination.

S4: (a = 0andb = 1): used to extract infrequent and non discriminative
motifs.

S5: (a = 1andb = 0): used to extract frequent and strictly discriminative
motifs.

We calculated the accuracy, speci city and sensitivity results of the used ap-
proaches. It is helpful at this point to introduce the confusion matrix which could

be presented as:

Real class
Positive (IRRB) Negative (IRSB)
Positive | True prositive False prositive
(IRRB) (TP) (FP)

Negative| False negative True Negative
(IRSB) (FN) (TN)

Predicted clasp

The accuracy measures the proportion of true results (both true positives and
true negatives) among the total number of classi ed bags. The speci city rate
measures the proportion of actual negatives which are correctly identi ed as such.
The sensitivity rate measures the proportion of actual positives which are correctly
identi ed as such. In terms of the above confusion matrix, the accuracy, speci city
and sensitivity are de ned as:

accuracy = (TP +TN)/(TP +FP +FN +TN).
sensitivity = TP /(TP + FN )
speci city = TN/(FP +TN).
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Table 4.3: Sparsity of the attribute-value matrix used in the naive approach.

Motif extraction Total number Sparsity

setting of motifs (%)
S1 519 84.3
S2 1141 84
S3 4167 89.6
S4 7670 93.5

4.4.3 Experimental results

In order to use standard multiple instance classi ers, we apply a preprocessing
technique that consists in extracting motifs from each set of protein sequences
using the DMS method. Tabke4 presents for each extraction setting the number

of extracted motifs from each set of orthologous protein sequences. For the set-
ting S5 @ = 1 andb = 0), there is no frequent and strictly discriminative motifs

for most proteins. This is why we will not use these values ahd b for our

next experiments. We note that the number of extracted motifs increases for high
values ob and low values ad. As presented in Tablé.3 the number of infre-
guent and non discriminative motifs is very high. In order to encode data in the
naive approach, the union of the extracted motifs from each protein is used as at-
tributes. Consequently, the attribute-value matrix representing the data becomes
large and sparse since only a small subset of the used motifs is representative for
each protein. We show in Tab#e3 the sparsity of the matrix which measures
the fraction of zero elements over the total number of elements. The sparsity is
generally proportional to the number of used motifs. For example, it goes from
84% with 1141 motifs to 93.5% with 7670 motifs.

ABClass provides good overall accuracy, speci city and sensitivity results (see
Figures4.3 4.4 and 4.5 compared to those obtained using the naive approach.
This shows that the proposed approach is e cient. The best result is reached
using ABClass approach and the motif extraction settings S1, S2 and S3. Using
these three settings, a minimum threshold of frequency and/or discrimination
should be reached when extrcating motifs. The gute(a) and (b) show the
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Table 4.4: Number of extracted motifs for each set of orthologous protein se-
guences using a minimum motif length = 3.

Motif extraction setting

Proin D —r——=3 57 5
P1 348 352 612 2226 229
P2 15 76 1139 5152 0
P3 6 41 681 4361 O
P4 2 21 446 3751 O
P5 1 1 119 1698 O
PG 11 29 349 3379 0
p7 5 18 371 3907 1
P8 3 62 484 3910 O
P9 7 42 780 4211 O
P10 25 90 719 3830 0
P11 3 7 200 2769 0
P12 4 17 144 1871 0O
P13 0 1 111 1544 O
P14 2 12 133 2444 O
P15 3 50 303 2071 O
P16 0 1 187 2659 0
P17 3 27 349 2712 0
P18 o 1 8l 1752 0
P19 7 14 427 3800 O
P20 2 20 343 3218 O
P21 21 79 882 4581 1
P22 18 173 785 3910 1
P23 5 43 524 4152 0
P24 5 48 520 3861 O
P25 1 5 264 2563 0
P26 22 72 778 3355 2
P27 5 9 162 1667 0
P28 16 111 572 3308 1
P29 2 11 189 2729 0
P30 9 66 281 1852 O
P31 0O 0 92 2061 O

Total 551 1499 13072 95304 235
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Figure 4.3: Accuracy results of the naive approach and ABClass
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Figure 4.4: Sensitivity results of the naive approach and ABClass
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Table 4.5: Rate of successful classi cation models for each bacterium using AB-
Class approach and LOO evaluation method

Bacterium ID

S1 motif extraction setting

S4 motif extraction setting

SVM SMO Logistic IBk J48 SVM SMO Logistic IBk J48

Bl
B2
B3
B4
BS
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20
B21
B22
B23
B24
B25
B26
B27
B28

86.3
96.2
92.5
96.1
100
100
88.8
92
95.6
88

86.3
96.2
92.5
96.1
100
100
88.8
92
92
100

90.9
96.2
92.5
96.1
100
100
92.5
92
91.3
88

54.1 62.5 45.8

91.6
95.6
84
83.3
100
95.8
100
100
88
100
96.1
88.8
88.8
88.8
88.8
100
96.1

91.6
95.6
80.7
83.3
100
95.8
100
100
96
100
96.1
92.5
92.5
92.5
92.5
100
96.1

91.6
95.6
84.6
87.5
100
95.8
100
100
92
100
96.1
96.2
96.2
96.2
96.2
100
96.1

909 81.84 68 80
96.2 96.2 61.2 100 100
92.5 92,5 61.2 100 100
96.1 92.3 66.6 100 100
100 92.83.3 100 100
100 92.36.6 100 100
92.5 88.8 58 100 100
92 92 41.3 100 100
91.3 86.86 100 100
88 84 32.1 100 100
458 41.6 14.2 17.8 46.4
91.6 91.62.8 100 100
95.6 82.85.9 92.5 96.2
84.6 61.83.3 96.6 96.2
87.5 79.17.8 10.7 3.5
100 100 80 100 100

95.8 95.8 81.4 96.2 96.2

100 100 68 100 100
100 100 65.3 100 100
92 88 51.7 86.2 89.6
100 10(5.1 93.1 93.1
96.1 96.1 80 100 100
96.2 92.88.3 100 100
96.2 92.88.3 100 100
96.2 92.88.3 100 100
96.2 92.88.3 100 100
100 100 62.9 100 100
96.1 96.2 66.6 96.6 100

44 60

100 96.7
100 90.3
100 93.3
100 86.6
100 86.6
100 93.5
96.5 93.1
9% 84
92.8 82.1

10.7 46.4

100 92.8
18.5 66.6
43.3 70

10.7 28.5

100 100
100 96.2
100 100
100 100
93.158.6
93.1 82.7
100 100
100 96.7
100 100
100 96.7
100 100
100 96.2
96.6 96.6
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Figure 4.5: Speci city results of the naive approach and ABClass

impact of the motif extraction settings on the prediction results using the naive
approach and ABClass. For example, using MISVM classi er, the accuracy varies
from 53.5% using S1 to 82.1% using S3. Although the motifs extracted using S1
are discriminative, the naive approach does not provide good accuracy results for
most multiple instance classi ers. For some classi ers, the results using S1 are the
lowest comparing with the other motif extraction settings. However, using this
setting, ABClass provides good results since it reaches 100% of accuracy using
SVM, SMO and IBk classi ers, 96.4% using Logistic and 93.3% using J48. This
could be explained by the fact that the naive approach looses the advantage of
representing the instances using discriminative motifs when it uses the union of
all motifs in the data encoding step. Using S4, ABClass does not reach 100%
of accuracy although it succeeds to reach it with some classi ers using the other
three settings S1, S2 and S3. No constraints related to frequeney @) or
discrimination b = 1) were required when extracting motifs using S4.

We compute the rate of classi cation models that contribute to predict the
true class of each bacterium using ABClass approach (see 4&pleln each
LOO iteration, this rate is calculated for each bag as the quotient of the number
of models (already generated for each set of related sequences) which successfully
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predict the class of that bag by the total number of sequences which belong to that
bag. We present this rate for the motif extraction setting that provides the best
accuracy rates i.e., S1 and the setting that provides low accuracy pourcentages,
i.e., S4. The rate of successful classi cation models that does not exceed 60% are
marked with bold text. The two bacteria B11 and B15 often generate low rates.
Biological explanation

The results illustrated in Tablé.5 may help to understand some characteristics

of the studied bacteria. In particular, the IRRB radiotolerans(B11) and the
IRSBB. abortus(B15) present a high rate of failed predictions. Although B11 is
sometimes successfully classi ed, its higher successful classi cation rate does not
exceed 62.5%. The rate of B15 does not reach 30% usindgS4adiotolerans

is often predicted as IRSB aml abortusis predicted as IRRB; the former is an
intracellular parasite-{alling et al, 2009 and the latter is an endosymbiont of most
plant speciestedorov et a].2013. We provided a possible biological explanation

in [Aridhi et al, 2019 and [Zoghlami et al. 2018l}. The explanation could

be the increased rate of sequence evolution in endosymbiotic baoteria i

and Bromham 2003. As our training set is composed mainly of members of
the phylumDeinococcuslhermus expectedly, th®einococcudbacteria (B2-B7)
present a very low rate of failed predictions.

4.5 Conclusion

In this chapter, we presented the naive MIL approach for sequence data. We de-
scribed our novel approach for MIL in sequence data with across-bag relations. We
applied it to the problem of prediction of IRR in bacteria. By running experiments,
we have shown that the proposed approach is e cient.
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Goals This chapter introduces the ABSim approach for MIL in sequence data
with across-bag dependencies. we provide a description of the algorithm and
the two used aggregation methods. We apply ABSim to the illustrative running
example used in the previous chapter. Finally, we present an experimental study
by applying ABSim to solve the bacterial IRR prediction problem.
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5.1 ABSim: Across-Bag sequences Similarity
approach

We propose an algorithm, named ABSim, that focuses on discriminating bags
based on a similarity measure which could be de ned according to the speci city of
the processed instances. ABSim was originally presentéddini[et al, 2019 as

an algorithm used for IRR prediction. When applied on genomic sequences, ABSim
uses the alignment score as similarity measure to compare protein sequences.

5.1.1 The approach

According to the speci city of the processed data, a similarity measure can be

de ned and used to discriminate instances. In order to discriminate the bags,

ABSIim measures the similarity between each sequence in the query bag and its

corresponding related sequences in the di erent bags of the learning database.
LetM be a matrix used to store similarity measurement score vectors during the

execution of the algorithm. Th&BSimalgorithm works as follows (see Algorithm

2).

Algorithm 2 set AcrossBagSequencesSimilaiiii Q)
Input: Learning databasBB = f (B;;Y;)ji = 1;2:::;ng, Query bagQ = f Qyjk=
1,2;:::,p9

Output: Prediction resulP

. for all Qc2 Qdo

for all Bj 2 DB do
Mix  similarityMeasuréQy; Bik) {Bixk is the instance numbek in the
bag Bi}

end for

. end for

: P AggregatéM)

return P

w N R

A S

Informally, the algorithm is described as follows:

1. For each instance sequer@g in the query bad), it computes the corre-
sponding similarity scores (line 1 to 4). The similarity scores of all instances
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of the query bag are grouped into a mathik (line 3). The elementMy
corresponds to the similarity score between the instgcef Q and the
instanceBj, of the bagB;.

2. An aggregation method is applied M in order to compute the nal pre-
diction resultP (line 6). According to the aggregation result, a class label
is associated to the query Bag.

5.1.2 Aggregation methods: SMS and WAMS

In our work, we de ne two aggregation methods: Sum of Maximum Scores (SMS)
and Weighted Average of Maximum Scores (WAMS). AlgoritBianrsd4 illustrate
the SMS and WAMS aggregation methods.

For each sequence in the query bacterium, we scan the corresponding line of
M, which contains the obtained scores against all the other bags of the training
database. TheSMSmethod selects the maximum score among the similarity
scores against bags that belong to the positive class label (which waaog)l
and the maximum score among the similarity scores against bags that belong to
the negative class label (which we caly). These scores are then compared.
If madp is greater tharmayy, it addsmax to the total score of the positive class
label (which we denotmtalp(M)). Otherwise, it addsnax to the total score of
the negative class label (which we dertotaly(M)). When all selected sequences
were processed, tH&M Smethod compares total scores of positive class label and
negative class label. tibtalo(M) is greater thartotaly(M), the prediction output
is the positive class label. Otherwise, the prediction output is the negative class
label.

Using theW AMSmethod, each sequen€g has a given weight;. For each
sequence in the query bag, we scan the corresponding IMe which contains
the obtained scores against all other bags of the training database WRiMS
method selects the maximum score among the similarity scores against bags that
belong to positive class label (which we demogep(M)) and the maximum score
among the similarity scores against bags that belong to the negative class label
(which we denotenaxy(M)). It then compares these scores. If timevp(M) is
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Algorithm 3 SMSM)
Input:  Similarity matrixM = f M;jji= 1;2::;;nand j = 1;2:::; pg
Output: A prediction resulP

1: totalp O

2: totaly O

3: for i 2 [1;n] do

4: mayx O

5 may O

6: for j2[1;p] do

7: if Yj=+ 1andMjj max then
8: maxe M

o: else if Yj= 1landMijj max then
10: maxy  Mij

11: end if

12:  end for

13:  if mayx maxy then

14: totalp  totalp+ maxpe
15: else

16: totaly  totaly + maxy
17:  end if

18: end for

19: if totalp totaly then

20 P +1

21: else

22: P 1

23: end if

24: return P

greater thamrmaxy (M), it addsmaxp(M) multiplied by the weight of the sequence

to the total score of the positive class label and it increments the number of
positive bags having a max score. Otherwise, it adds (M) multiplied by

the weight of the sequence to the total score of the negative class label and it
increments the number of negative bags having a max score. When all the selected
sequences were processed, we compare the average of total scores of positive class
labels (which we denotavg-(M)) and the average of total scores of negative
class labels (which we denaegy(M)). If avge(M) is greater thamavgy(M),

the prediction output is the positive class label. Otherwise, the prediction output
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Algorithm 4 WAMSM, W)

Input:  Similarity matrixM = f Mjjji= 1;2:::;nandj = 1;2:::; pg, Weight vector
W= fwji= 1,2:::;pg

Output: A prediction resulP

1; totalp O

2: totaly O

3:nbp O

4:nby O

5. for i 2 [1;p] do

6: mapx O

72 may O

8. for j2[1;n] do

o: if Yj=+ 1landM;; max then
10: maxe  Mij

11; else if Yj= 1landM;; max then
12: maxy  Mij

13: end if

14:  end for

15:  if ma¥ye maxy then

16: totalp totalp+( maxe w;)
17: nbe nbp+1

18: else

19: totaly totaly +( maxy w;)
20: nby nby+1

21:  end if

22: end for

23: avgp(M)  totalp=nbp

24: avgny(M)  totaly=nby

25: if avgp(M) avgy(M) then

26:. P +1

27: else

28: P 1

29: end if

30: return P
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is the negative class label.

5.1.3 Running example

In order to apply theABSim approach to our running example, we use a simple
similarity measure that consists in the number of common symbols between the
sequences. The rstiteration computes the common symbols between the instance
Q1 of the query bag and the four related instanBges, Bo1, B31 and By (there

is no related instance in the b&g). The results are stored in the rst column of

the matrix M. 0 1

Bs (5.1)

I N NN
@
N

The second iteration computes the similarity score between the ins@nead
its ve related sequences. The results are stored in the second colukhn of

0 1
4 5 B1
4 4 By
2 3 Bs
5 Bs

The last iteration computes the third column of the matvix
0 1
0

(5.3)

g w w b o
vy)
w
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Using theSMSaggregation method, we have the following results:

totalp(M) = 9
totalny(M) = 0

The query bagQ is nally classied as positive. In order to use téAMS
aggregation method, we need to specify a weight value for each instance. We
suppose that all sequences are equally weighted, then we have the following results:

avgp(M) = 4.5
avgy(M)= 0

The query bad is nally classi ed as positive.

5.2 Experimental study

5.2.1 Experimental environment

We used the dataset described in the previous chapter in Sec8ohe sim-

ilarity measure used when applying the ABSim approach is the local alignment
bit-score computed using the BLAST alignment tool. We downloaded the stan-
dalone executable of BLAST+ and integrated it into our pipeline using the
command-line. In each run, the alignment used two related sequences (a query
and a subject). Append& shows two examples of two sequence alignment results
(an alignment using two IRRB and another one using one bacterium IRRB and
one bacterium IRSB).

5.2.2 Results

In order to study the importance of considering the problem of predicting bacterial
IRR as a multiple instance learning problem, we present in Babldne experi-
mental results using a set of proteins to represent the studied bacteria. For each

thttps://blast.ncbi.nim.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&
DOC_TYPE=Download
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set of proteins and for each aggregation method, we present the accuracy, the
sensitivity and the speci city percentages. TWAMS aggregation method was
used with equally weighted proteins. We notice that the use of the whole set of
proteins to represent the studied bacteria allows good accuracy accompanied by
high values of sensitivity and speci city. This can be explained by the pertinent
choice of basal DNA repair proteins to predict the phenotype of IRR. The high
values of speci city presented by ABSim indicate the ability of this algorithm to
identify negative bags (IRSB). Using all proteins, we haveé/®df8accuracy and
speci city. As shown in Tabl&.1, the SMS aggregation method allows better
results than the WAMS aggregation method using the whole set of proteins to
represent the studied bacteria. Using the other subsets of proteins (DNA poly-
merase, replication complex and other DNA-associated proteins) to represent the
bacteria, SMS and WAMS present the same results.

Table 5.2 presents for each bacterium in the learning database the number of
runs that succeed to classify the bacterium. More than 89% of tested bacteria
show successful predictions of 100%. This means that we succeed to correctly
predict the IRR phenotype of those bacteria. On the other hand, the results
illustrated in Tables.2 may help to understand some characteristics of the studied
bacteria. In particular, the IRRBI. radiotolerangdB11) and the IRSEB. abortus
(B15) present a high rate of failed predictions. We note that results are similar to
those found using ABClass. A possible biological explanation is provided at the
end of the Sectiod.4.3

Figures4.3, 5.2 and 5.3 show that both ABClass and ABSim approaches
provide good overall results compared to those obtained using the naive approach.
A better result could be provided either by ABClass or by ABSim according to
the used settings. The highest accuracy pourcentage was reached using ABClass
and the motif extraction settings S1, S2 and S3 (see Sedtih13). The results
provided by ABSim using the SMS aggregation method are slightly better than
those obtained using WAMS. ABSim does not use motifs to represent data since
no encoding step is needed. The local alignment score is used to perform the
prediction. This makes ABSim faster and easier to use than ABClass unless we
already have the representative motifs for each set of orthologous proteins or if
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Table 5.1: Experimental results of ABSim with LOO-based evaluation technique.

Used proteins

Aggregation Accuracy Sensitivity Speci city

method (%) (%) (%)
All proteins SMS 92.8 92.8 92.8
WAMS 89.2 92.3 86.6
DNA polymerase SMS 89.2 92.3 86.6
proteins WAMS 89.2 92.3 86.6
Replication complex SMS 92.8 92.8 92.8
proteins WAMS 92.8 92.8 92.8
Other DNA-associated SMS 92.8 92.8 92.8
proteins WAMS 92.8 92.8 92.8
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Figure 5.1: Accuracy results of the naive approach, ABClass and ABSim.

we think that the extraction of motifs will not be an expensive task (according to
the data size, the used motifs extractor and the extraction settings e.g. required

motifs length).
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Table 5.2: Number of successful predictions (for 8 rumig following 4 settings
were used with SMS and WAMS aggregation methods: (1) all proteins (2) DNA poly-
merase proteins (3) replication complex proteins and (4) other DNA-associated proteins.

Phenotype Bacterium ID Successful predictions
Bl

B2

B3

B4

B5

B6

B7

B8

B9

B10

Bl1l

B12

B13

B14

B15

B16

B17

B18

B19

B20

B21

B22

B23

B24

B25

B26

B27

B28

a. Successfully classi ed bacterium using 5 settings: (1) all proteins with SMS
aggregation method (2) replication complex proteins with SMS and WAMS
aggregation methods and (3) other DNA-associated proteins with SMS and WAMS
aggregation methods.

IRRB

IRSB

00 00 00 00 00 00 00 CO 00 00 00 00 00 ©O| % o o © o 0 00 O 0O O O O O O
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Figure 5.2: Sensitivity results of the naive approach, ABClass and ABSim.
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Figure 5.3: Speci city results of the naive approach, ABClass and ABSim.
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5.3 Conclusion

In this chapter, we described a novel approach calgsimfor MIL in sequence

data with across-bag dependencies. It uses a matrix to store similarity measure-
ment score vectors to discriminate the related instances. Then it applies an aggre-
gation step in order to generate the nal classi cation result. We applied ABSim
and ABClass presented in Chapteto solve the problem of IRR prediction in
bacteria. By running experiments, we have shown that the proposed approaches
are e cient. A better accuracy result could be providedABClassaccording to

the used settings.
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6.1 Summary of the contributions

6.1.1 ABClass: a motif-based MIL approach for se-
guence data with across-bag dependencies

We addressed the issue of MIL in the case of sequence data. We focused on data
that present relationships between instances of di erent bags. The rst contribu-
tion of this thesis consists of an MIL approach that provides a prediction about the
bacterial IRR. We developed a motif-based MIL tool for bacterial IRR prediction.
We proposed an MIL formalization of the problem: each bacterium represent a
bag and protein sequences represent the instances inside this bag. Some instances
are related across the bags: the orthologous proteins. ABClass takes into account
this relations in the learning process. Each sequence is represented by one vector
of attributes extracted from the set of related instances. For each sequence of the
unknown bag, a discriminative classi er is applied in order to compute a patrtial
classi cation result. Then, an aggregation method is applied in order to generate
the nal result. We applied ABClass to solve the problem of bacterial lonizing
Radiation Resistance (IRR) prediction. We manually construct the dataset. The
experimental results were satisfactory.

6.1.2 ABSIim:. a similarity-based MIL approach for se-
guence data with across-bag dependencies

The second contribution of this thesis consists of an MIL approach that uses a
similarity measure to compare sequences instead of extracting motifs from related
instances and use them to represent the sequences of the bags and then apply a
classical classi er to make the prediction. ABSim discriminates bags by measuring
the similarity between each sequence in the query bag and its corresponding related
sequences in the di erent bags of the learning database. When applied on protein
sequences, ABSim uses the alignment score as similarity measure. ABSim and
ABClass were used to solve the problem of IRR prediction in bacteria. By running
experiments, we have shown that the proposed approaches are e cient. A better
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Table 6.1: Tools related to protein signatures identi cation.

Tool Description

InterProScan 5Jones et al.2014 scans sequences against InterPro
signatures.

PfamScan IJlistry et al, 2007 searches sequences against a collection of

[Li et al, 201§ Pfam HMMs.

HMMER-hmmbuild constructs pro les from multiple
sequence alignments

HMMER-hmmscah searches sequence(s) against a pro le
database

Pratt [Jonassenl1997 Searches for patterns conserved in sets of

[Li et al, 2019 unaligned protein sequences.

2 http://www.hmmer.org/

accuracy result could be provided by ABClass according to the used settings.

6.2 Future work and prospects

In this section, we present the main axes of our future works.

6.2.1 Short-term perspective

ABClass is based on motifs extracted from across-bag related instances. We aim
to extend our work by including di erent protein signatures including patterns
and domains in the learning process. We started by exploring the usefulness of
using protein domains to solve the bacterial IRR prediction problem. ®able
presents a short description of the tools which could be used to determine protein
signatures.

Motifs vs domains
Both motifs and domains are parts of the protein chain. But there are di erences
between them.
A protein domain could be seen asiadependent unit which has dunction .
A motif is a particular arrangement of amino acids that can be found in other
proteins, it does not necessary depict a functional role. A domain is always a
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functional unit of the protein. An other main di erence is that domains are in-
dependent units. If they are cleaved o the protein chain, motifs will loose their
functions while domains will be still able to perform their functions.

Using domains in our approach

Using protein domain annotation could be an alternative to sequence similarity
searchesHouchot et al, 2014. We are exploring the possibility of using protein
domains in the classi cation step. Domain databases were presented in the section
2.1.3.3 We propose to start by using Interproscan tool in order to identify protein
domains of each instance of each bag and use them to encode the sequences. In-
terproscan is a software that allows sequences to be scanned against InterPro's sig-
natures. It is available dtttps://www.ebi.ac.uk/interpro/interproscan.

html/ . The diagnostic uses protein signatures from multiple databases includ-
ing Pfam, PROSITE, PRINTS, SMART, SUPERFAMILY, TIGRFAMs and PAN-
THER. Figures.1shows the InterProScan analysis of the prolfNA polymerase

[11 subunit alphaof the bacteriumDeinococcus radioduran®k1. The provided
annotations concern families and domains from di erent source databases.

6.2.2 Long-term perspectives
6.2.2.1 Multi-criteria learning

We aim to introduce other criteria in the step of the data representation: using
some bio-chemical criteria to represent the sequences instead of using motifs to
represent the data. Some criteria could be fhrtein domairand some numeric
properties such as hydrophobicity, aromaticity, isoelectric point(pl), instability In-
dex (II), alpha-helix, coil and beta sheet.

6.2.2.2 De ning weights of the protein sequences

We will study how to use the priori knowledge in order to improve the e ciency

of our algorithm. In fact, some proteins may have more impact in making a
bacterium resistant to ionising radiation than other proteins. We speci cally want
to de ne weights for sequences usmgriori knowledge in the learning phase.
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Figure 6.1: Graphical representation of the InterProScan analysis of the protein
P2 of the bacterium B7

6.2.2.3 Extend the dataset

We encountered di culty in de ning the baterial IRR dataset used in this thesis:
bags that contain sequences with across-bag dependencies. In the future work, we
aim to de ne a larger dataset in order to study the computational complexity. One
possible solution could be to construct a dataset containing genomic sequences of
other extremophiles.
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Appendix A
Further details about the

dataset

This appendix gives further details about the bags and instances of the used
dataset. TableA.1 contains the number of proteins for each bacterium and Table
A.2 contains the number of occurrences of each type of protein sequence in the
positive bags (IRRB) and in the negative bags (IRSB).

Table A.1: Number of protein sequences for each bacterium.
IRRB ID Number of IRSB ID Number of

proteins proteins
Bl 25 B15 28
B2 31 B16 30
B3 31 B17 27
B4 30 B18 25
B5 30 B19 26
B6 30 B20 29
B7 31 B21 29
B8 29 B22 30
B9 25 B23 31
B10 28 B24 31
B11 28 B25 31
B12 28 B26 31
B13 27 B27 27
B14 30 B28 30

Total for IRRB 403 Total for IRSB 405
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Table A.2: Number of occurrences of each type of protein sequence in the positive
and negative bags.

Protein ID Positive bags Negative bags

P1 11 4
P2 14 14
P3 14 13
P4 13 14
PS5 13 14
P6 13 14
P7 14 14
P8 11 14
P9 14 14
P10 13 14
P11 14 14
P12 13 14
P13 12 14
P14 14 14
P15 14 14
P16 13 12
P17 14 14
P18 14 14
P19 13 14
P20 14 14
P21 14 13
P22 14 13
P23 13 14
P24 13 14
P25 11 10
P26 10 10
P27 11 14
P28 13 14
P29 12 14
P30 14 13
P31 13 9

Total 403 405




Appendix B
Examples of sequence alignment

In this appendix, we provide two sequence alignment results provided by BLAST.
- Alignment of the two protein sequences P4 of the two bacteria B6
and B7 (Two IRRB) .

BLASTP 2.2.26+

Query= tr|Q9RRS5|Q9RRS5 DEIRA DNA polymerase lll, tau/gamma subunit

OS=Deinococcus radiodurans (strain ATCC 13939 / DSM 20539 / JCM

16871 / LMG 4051 / NBRC 15346 / NCIMB 9279 / R1 / VKM B-1422)

GN=DR_2410 PE=4 Sv=1

Length=615

Subject= @i|325283277|ref|[YP_004255818.1] DNA polymerase lll, subunits gamma

and tau [Deinococcus proteolyticus MRP]

Length=810

Score = 655 bits (1691), Expect = 0.0, Method: Compositional matrix adjust.

Identities = 368/523 (70%), Positives = 417/523 (80%), Gaps = 25/523 (5%)

Query 1 MSAIYQRARPIRWEDVVGQEHVKDVLRTALEQGRIGHAYLFSGPRGVGKTTTARLIAMTA 60
MSAIYQRARPI W++VVGQEH+K VL+TALEQGR+GHAYLFSGPRGVGKTTTARLIAMTA

Shjct 1 MSAIYQRARPIHWDEVVGQEHIKGVLKTALEQGRVGHAYLFSGPRGVGKTTTARLIAMTA 60

Query 61 NCTGPAPKPCGECESCLAVRAGSHPDVMEIDAASNNSVDDVRDLREKVGLAAMRGGKKIY 120
NCTGP PKPCGECE+C AVRAGSHPDV+EIDAASNNSV+DVR+LREKVGLA MRGGKKIY

Shjct 61 NCTGPQPKPCGECENCRAVRAGSHPDVLEIDAASNNSVEDVRELREKVGLAPMRGGKKIY 120

Query 121 ILDEAHMMSRAAFNALLKTLEEPPEHVIFILATTEPEKIIPTILSRCQHYRFRRLTSEEI 180
ILDEAHMMSRAAFNALLKTLEEPPEHVIFILATTEPEKIIPTILSRCQHYRFRRLT+EEI

Sbjct 121 ILDEAHMMSRAAFNALLKTLEEPPEHVIFILATTEPEKIIPTILSRCQHYRFRRLTAEEI 180

Query 181 AGKLAGLVTLEGASADPDALNLIGRLADGAMRDGESLLERMLAAGTAVTRPAVEEALGLP 240
AGKLAGL EG SA+P+AL LIGRLADGAMRDGESLLERMLAAGTAVTR +VEEALGLP

Shjct 181 AGKLAGLAEGEGVSAEPEALGLIGRLADGAMRDGESLLERMLAAGTAVTRRSVEEALGLP 240

Query 241 PGERVRGVASALLVGDAGEAISGAAQLYRDGFAARTVVEGLVAAFGAALHAELGL----- 295
PGE++R +A AL GDAG A+S A +LYR GFAARTVVEGLV A A+HAELG+

Shjct 241 PGEQMRALAGALAQGDAGPALSSAGELYRAGFAARTVVEGLVEALSQAIHAELGVLEGAE 300

Query 296 GEEGRLEGAEVPRLLKLQAALDEQEARFARSADQQS----LELALTHALLAADGGTGGGA 351
+ RL+GA+VPRLL+LQAALDEQEARF+R+AD S L AL A ADG GGGA

Shjct 301 AQAARLDGADVPRLLRLQAALDEQEARFSRAADLLSLELALTHALLAADGGADGSAGGGA 360

Query 352 PSLGSAATSAPAQVPGDLLQRLNRLEKELSTLRSAPRAAAPASAVPAAPA-------- EK 403
+ +AA +A  V DL RL+RLE+EL+ LR+ A APA+A PA PA +

Shjct 361 AAARAAAPAASPAVSSDLAARLSRLERELAALRAGESAVAPAAAAPAGPAVDDFDPGQRR 420

Query 404 RGPAPAREAVREAAASIAP-AAAPTQGSWADVMAQTTMQMRAFLKPARMHAQDGYVSLTY 462
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R PAP A AP AAP G+WADV+ +MQ RAFLKPARMHA+ GYVSL+Y
Sbjct 421 RTPAP------- VGARPAPQVAAPANGTWADVLGMVSMQTRAFLKPARMHAEAGYVSLSY 473
Query 463 EDRSSFHAKQVAGKFDELAALVERVFGPITFELIAPEGLGRKR 505

+ + SFHA+Q+ K DEL L+ERVFGP+T ELI +G G ++
Sbjct 474 DAKGSFHARQIMTKLDELTPLLERVFGPVTLELITADGSGGRK 516

Lambda K H
0.315 0.130 0.375

Gapped

Lambda K H

0.267 0.0410 0.140
Effective search space used: 444096
Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Neighboring words threshold: 11
Window for multiple hits: 40

- Alignment of the two protein sequences P4 of the two bacteria
B7 (IRRB) and B16 (IRSB)

BLASTP 2.2.26+

Query= trlQ9RRS5|Q9RRS5_DEIRA DNA polymerase lll, tau/gamma subunit

OS=Deinococcus radiodurans (strain ATCC 13939 / DSM 20539 / JCM

16871 / LMG 4051 / NBRC 15346 / NCIMB 9279 / R1 / VKM B-1422)

GN=DR_2410 PE=4 Sv=1

Length=615

Subject= gi|254160539|ref|YP_003043647.1] DNA polymerase Ill subunits gamma

and tau [Escherichia coli B str. REL606]

Length=643

Score = 230 bits (586), Expect = 3e-070, Method: Compositional matrix adjust.

Identities = 118/250 (47%), Positives = 161/250 (64%), Gaps = 2/250 (1%)

Query 6 QRARPIRWEDVVGQEHVKDVLRTALEQGRIGHAYLFSGPRGVGKTTTARLIAMTANC-TG 64
++ RP + DVWGQEHV L L GRI HAYLFSG RGVGKT+ ARL+A NC TG

Sbjct 8 RKWRPQTFADVVGQEHVLTALANGLSLGRIHHAYLFSGTRGVGKTSIARLLAKGLNCETG 67

Query 65 PAPKPCGECESCLAVRAGSHPDVMEIDAASNNSVDDVRDLREKVGLAAMRGGKKIYILDE 124

PCG C++C + G D++EIDAAS V+D RDL +V A RG K+Y++DE

Shjct 68 ITATPCGVCDNCREIEQGRFVDLIEIDAASRTKVEDTRDLLDNVQYAPARGRFKVYLIDE 127

Query 125 AHMMSRAAFNALLKTLEEPPEHVIFILATTEPEKIIPTILSRCQHYRFRRLTSEEIAGKL 184
HM+SR +FNALLKTLEEPPEHV F+LATT+P+K+ TILSRC + + L E+l +L

Shjct 128 VHMLSRHSFNALLKTLEEPPEHVKFLLATTDPQKLPVTILSRCLQFHLKALDVEQIRHQL 187

Query 185 AGLVTLEGASADPDALNLIGRLADGAMRDGESLLERMLAAGT-AVTRPAVEEALGLPPGE 243

++ E + +P AL L+ R A+G++RD SL ++ +A+G V+ AV LG +

Sbjct 188 EHILNEEHIAHEPRALQLLARAAEGSLRDALSLTDQAIASGDGQVSTQAVSAMLGTLDDD 247

Query 244 RVRGVASALL 253
+ + A++

Sbjct 248 QALSLVEAMV 257

Score = 18.5 bits (36), Expect = 0.84, Method: Compositional matrix adjust.

Identities = 10/24 (42%), Positives = 13/24 (54%), Gaps = 0/24 (0%)

Query 404 RGPAPAREAVREAAASIAPAAAPT 427



RPP E R+ A+AP A T

Sbjct 362 RMPLPEPEVPRQSFAPVAPTAVMT 385
Lambda K H

0.315 0.130 0.375
Gapped
Lambda K H

0.267 0.0410 0.140
Effective search space used: 349085
Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Neighboring words threshold: 11
Window for multiple hits: 40



Multiple instance learning for sequence data: Application on bacterial ionizing
radiation resistance prediction

Abstract:

In Multiple Instance Learning (MIL) problem for sequence data, the instances inside the
bags are sequences. In some real world applications such as bioinformatics, comparing a ran-
dom couple of sequences makes no sense. In fact, each instance may have structural and/or
functional relationship with instances of other bags. Thus, the classi cation task should take
into account this across-bag relationship. In this thesis, we present two novel MIL approaches
for sequence data classi cation nametiBClass and ABSim. ABClass extracts motifs from
related instances and use them to encode sequences. A discriminative classi er is then applied
to compute a partial classi cation result for each set of related sequen@®Sim uses a simi-
larity measure to discriminate the related instances and to compute a scores matrix. For both
approaches, an aggregation method is applied in order to generate the nal classi cation result.
We applied both approaches to the problem of bacterial ionizing radiation resistance prediction.
The experimental results were satisfactory.

Keywords: multiple instance learning, sequence data classi cation, prediction of bacterial ion-
izing radiation resistance.

Apprentissage multi-instance des données de séquences: Application & la prédiction de
la radio-résistance chez les bactéries.

Resumé:

Dans l'apprentissage multi-instances (M) pour les séquences, les données d'apprentissage
consistent en un ensemble de sacs ou chaque sac contient un ensemble d'instances/séquences.
Dans certaines applications du monde réel, comme la bioinformatique, comparer un couple aléa-
toire de séquences n'a aucun sens. En fait, chaque instance de chaque sac peut avoir une
relation structurelle et/ou fonctionnelle avec d'autres instances dans d'autres sacs. Ainsi, la
tadche de classi cation doit prendre en compte la relation entre les instances sémantiguement
liées a travers les sacs. Dans cette thése, nous présentons deux approches de classi cation Ml
des séquences nomméABClasset ABSim. ABClass extrait les motifs a partir des instances
reliées et les utilise pour encoder les séquences. Un classi eur discriminant est ensuite appliqué
pour calculer un résultat de classi cation partiel pour chaque ensemble de séquences liées. AB-
Sim utilise une mesure de similarité pour discriminer les instances reliées et calcule une matrice
de scores. Pour les deux approches, une méthode d'agrégation est appliquée a n de générer le
résultat nal de la classi cation. Nous appliquons les deux approches au probléeme de prédiction
de la résistance aux rayonnements ionisants chez les bactéries. Les résultats expérimentaux sont
satisfaisants.

Mots-clés: apprentissage multi-instances, classi cation des séquences , prédiction de la résis-
tance aux rayonnements ionisants chez les bactéries.
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