Comportement des éléments lithophiles lors de la formation du noyau terrestre - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2019

Behavior of lithophile elements during the Earth's core formation

Comportement des éléments lithophiles lors de la formation du noyau terrestre

Résumé

Core formation is a pivotal event in early Earth history, causing a major segregation of elements according to their affinity with either metal (siderophile) or silicate (lithophile) phases. The Bulk Silicate Earth (BSE) shows a depletion in siderophile elements coherent with a core differentiation within a magma ocean. The affinity of these elements is a function of the physical and chemical conditions (P, T, fo2, chemical composition) of metal-silicate differentiation. The behaviour of any one element varies over the formation of the core within the magma ocean; hence, the elemental distribution of Earth's Building Blocks between the two reservoirs cannot be reproduced by considering a unique behaviour of each element.In order to determine the concentration of an element in the core and the BSE, it is necessary to characterize the behaviour of the element and its evolution during Earth's accretion. In comparison to siderophile elements, lithophile elements form a minority of core-mantle differentiation studies so far. However, significant disagreement can be found concerning the concentrations of these elements among published models of BSE composition. It has also been proposed that a late sulphur accretion event could be responsible for a significant amount of lithophile elements (Sm, Nd, U, Th, K) entering the core. In order to determine the effect of core formation on the distribution of these elements between the two reservoirs, we performed ~60 new high-pressure, high-temperature experiments of metal-silicate partitioning for several elements (Uranium, Thorium, Rare Earth Elements (REE), Alkali elements) with the aim of better understanding their behaviour during Earth's accretion. These studies allow us to bring new constraints on Earth's accretion models and to refine our understanding of the core and BSE composition.We show that the (Th/U)BSE is better reproduced when considering EL chondrites as Earth's Building Blocks rather than EH. The same ratio allows us to constrain the maximum oxygen concentration of the core to no more than 4 wt%. We confirm that these elements play a small role in the core thermal history, with their concentration in the metal remaining negligible.We also demonstrate that the BSE cannot be enriched in Refractory Lithophile Elements (RLE) by more than 2.1 times their concentrations in CI chondrites, when the Earth is made of Building Blocks mixing in agreement with isotopic studies. This shows a clear incompatibility between several models of BSE composition and isotopic observations.The study of U, Th and REE also allowed us to re-evaluate the impact of a late sulphur event at the end of Earth's accretion, which would neither lead to fractionation of Sm and Nd nor allow a significant amount of U and Th to enter the core to start the geodynamo.Finally, we widen the range of studied elements to include volatile elements. A study on potassium shows that this element concentration in the core cannot exceed 57 ppm. The core would then contain 15% of the total K budget of the Earth. This content is highly dependent on the timing of volatilisation processes. We then propose that the Earth is a result of the accretion of already volatile-depleted building blocks. Giant impacts would have a minor role in the volatile depletion observed in the BSE today.
La formation du noyau est un événement central de l'histoire de l'accrétion terrestre, responsable d'une ségrégation majeure des éléments chimiques selon leurs affinités pour le métal (sidérophile) ou le silicate (lithophile). La Terre silicatée montre en effet un appauvrissement en éléments sidérophiles cohérent avec la formation d'un noyau au sein d'un océan magmatique plus ou moins profond. Cette affinité d'un élément chimique est fonction des conditions physico-chimiques (P, T, fo2, composition chimique) dans lesquelles se déroule la différenciation métal-silicate. Le comportement d'un élément chimique est donc amené à évoluer tout au long de l'histoire de la formation du noyau dans l'océan magmatique. La distribution des éléments entre les deux grands réservoirs terrestres ne peut donc être reproduit en considérant un comportement constant des éléments. Afin de déterminer la composition de la Terre silicatée et du noyau, il est nécessaire de caractériser le comportement des éléments au cours de l'accrétion terrestre dans des conditions de pressions, températures et d'oxydo-réduction variables.Dans le cadre de l'étude de la différenciation manteau-noyau au cours de l'accrétion terrestre, les éléments dits lithophiles ont été relativement peu étudiés en comparaison des éléments dits sidérophiles. Pourtant les éléments lithophiles montrent des abondances significativement différentes entre les différents modèles de composition de la Terre silicatée. De même, il a été proposé que l'accrétion de matériel enrichi en soufre permette l'entrée d'éléments dits lithophiles dans le noyau (Sm, Nd, U, Th, K). Afin de clairement contraindre l'impact de la formation du noyau sur la distribution des éléments lithophiles entre les différents réservoirs, nous avons réalisé une soixantaine de nouvelles expériences de partage métal - silicate sous haute pression et haute température afin de contraindre le comportement de différents éléments (uranium, thorium, éléments terres rares et éléments alcalins) lors de l'accrétion terrestre. Ces études nous ont permis d'apporter plusieurs contraintes sur les modèles d'accrétion et la composition des différents réservoirs terrestres. Nous montrons que le rapport Th/U de la Terre silicatée est mieux reproduit par une accrétion de matériel de composition EL plutôt que EH. Ce même rapport permet de contraindre la composition en O du noyau terrestre, celle-ci ne pouvant excéder 4 wt%. Nous confirmons que la concentration de ces éléments radioactifs reste négligeable dans le noyau, faisant d'eux des acteurs mineurs de l'histoire thermique du noyau.Nous démontrons également que l’accrétion terrestre, lorsque modélisée à partir de briques élémentaires ayant une composition compatible avec les observations isotopiques, ne peut produire des concentrations compatibles avec certains modèles de composition de la Terre. La Terre silicatée ne pouvant être enrichie en éléments terres rares par rapport aux chondrites CI d'un facteur supérieur à 2.10.L'étude de U, Th, ainsi que des éléments du groupe des terres rares nous a permis de réévaluer l'impact attribué à l'apport de soufre à la fin de l'accrétion terrestre. Cet évènement n'entraîne aucun fractionnement des éléments terres rares ni ne permet l'entrée d'éléments radiogéniques dans le noyau en concentration suffisante pour démarrer la geodynamo. Enfin, nous élargissons notre étude aux éléments lithophiles volatils en nous intéressant au partage métal-silicate du potassium et au budget global de la Terre en cet élément. Nous montrons que la concentration de cet élément dans le noyau ne peut excéder 57 ppm, ce réservoir contenant alors près de 15% du budget total de la Terre en potassium. Ces concentrations sont également dépendantes de la chronologie de l'appauvrissement de la Terre en éléments volatils. (...)
Fichier principal
Vignette du fichier
2019CLFAC076_FAURE.pdf (29.96 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-02611688 , version 1 (18-05-2020)

Identifiants

  • HAL Id : tel-02611688 , version 1

Citer

Pierre Faure. Comportement des éléments lithophiles lors de la formation du noyau terrestre. Sciences de la Terre. Université Clermont Auvergne [2017-2020], 2019. Français. ⟨NNT : 2019CLFAC076⟩. ⟨tel-02611688⟩
461 Consultations
135 Téléchargements

Partager

Gmail Facebook X LinkedIn More