P. A. Allen, Sediment Routing Systems: the Fate of Sediment from Source to Sink, 2017.

P. A. Allen and J. R. Allen, Basin Analysis: Principles and Application to Petroleum Play Assessment, 2013.

M. Ambert and P. Ambert, Karstification des plateaux et encaissement des vallées au cours du Néogène et du Quaternaire dans les Grands Causses méridionaux, pp.37-50, 1995.

P. Anadón, R. Utrilla, and A. Vázquez, Use of charophyte carbonates as proxy indicators of subtle hydrological and chemical changes in marl lakes: example from the Miocene Bicorb Basin, eastern Spain, Sediment. Geol, vol.133, pp.47-53, 2000.

P. Angrand, M. Ford, and A. B. Watts, Lateral variations in foreland flexure of a rifted continental margin: the Aquitaine Basin (SW France), Tectonics, vol.37, pp.430-449, 2018.

P. Antoine, F. Duranthon, and P. Tassy, L'apport des grands mammifères (Rhinocérotidés, Suoidés, Proboscidiens) à la connaissance des gisements du Miocène d, Mem. Trav. E.P.H.E. Inst. Montpellier, vol.21, pp.581-590, 1997.

J. J. Armitage, P. A. Allen, P. M. Burgess, G. J. Hampson, A. C. Whittaker et al., Sediment transport model for the Eocene Escanilla sedimentrouting system: implications for the uniqueness of sequence stratigraphic architectures, J. Sediment. Res, vol.85, pp.1510-1524, 2015.

G. Barruol and M. Granet, A Tertiary asthenospheric flow beneath the southern French Massif Central indicated by upper mantle seismic anisotropy and related to the west Mediterranean extension, Earth Planet. Sci. Lett, vol.202, pp.31-47, 2002.

C. Beaumont, Foreland basins, Geophys. J. Int, vol.65, pp.291-329, 1981.

C. Beaumont, J. A. Muñoz, J. Hamilton, and P. Fullsack, Factors controlling the Alpine evolution of the central Pyrenees inferred from a comparison of observations and geodynamical models, J. Geophys. Res, vol.105, issue.B4, pp.8121-8145, 2000.

J. P. Berger, B. Reichenbacher, D. Becker, M. Grimm, K. Grimm et al., Paleogeography of the upper Rhine Graben (URG) and the Swiss Molasse basin (SMB) from Eocene to Pliocene, Int. J. Earth Sci, vol.94, pp.697-710, 2005.

P. Bessin, F. Guillocheau, C. Robin, J. Braun, H. Bauer et al., Quantification of vertical movement of low elevation topography combining a new compilation of global sea-level curves and scattered marine deposits (Armorican Massif, western France), Earth Planet. Sci. Lett, vol.470, pp.25-36, 2017.
URL : https://hal.archives-ouvertes.fr/insu-01521638

J. Biteau, L. Marrec, A. Le-vot, M. Masset, and J. , The Aquitaine Basin, Pet. Geosci, vol.12, pp.247-273, 2006.

T. C. Blair and J. G. Mcpherson, Processes and forms of alluvial fans, Geomorphology of Desert Environments, pp.413-467, 2009.

G. V. Bosch, A. Teixell, M. Jolivet, P. Labaume, D. Stockli et al., Timing of Eocene-Miocene thrust activity in the western axial zone and Chaînons Béarnais (west-central Pyrenees) revealed by multi-method thermochronology, Compt. Rendus Geosci, vol.348, pp.246-256, 2016.

R. Bourrouilh, J. Richert, and G. Zolnaï, the North Pyrenean Aquitaine Basin , France : evolution and hydrocarbons 1, AAPG Bull, vol.6, pp.831-853, 1995.

N. Brault, S. Bourquin, F. Guillocheau, M. P. Dabard, S. Bonnet et al., Mio-Pliocene to Pleistocene paleotopographic evolution of Brittany (France) from a sequence stratigraphic analysis: relative influence of tectonics and climate, Sediment. Geol, vol.163, issue.03, pp.193-196, 2004.

H. Bremer, On the geomorphology of the South German scarplands, Catena, vol.15, pp.45-67, 1989.

L. F. Brown and W. L. Fisher, Seismic-stratigraphic interpretation of depositional systems: examples from Brazilian rift and Pull-apart basins: section 2. Application of seismic reflection configuration to stratigraphic interpretation, AAPG Mem, vol.26, pp.213-248, 1977.

P. Cadenas and G. Fernández-viejo, The Asturian basin within the north Iberian margin (bay of Biscay): seismic characterisation of its geometry and its Mesozoic and Cenozoic cover, Basin Res, vol.29, pp.521-541, 2017.

B. Cahuzac, Stratigraphie et paléogéographie de l'Oligocène au Miocène moyen en Aquitaine sud-occidentale, vol.1, 1980.

E. Carminati, M. Cuffaro, and C. Doglioni, Cenozoic uplift of Europe, Tectonics, vol.28, p.4016, 2009.

O. Catuneanu, O. Catuneanu, V. Abreu, J. P. Bhattacharya, M. D. Blum et al., Towards the standardization of sequence stratigraphy, Earth Sci. Rev, vol.92, pp.1-33, 2006.

O. Catuneanu, C. Beaumont, and P. Waschbusch, Interplay of static loads and subduction dynamics in foreland basins: reciprocal stratigraphies and the "missing" peripheral bulge, Geology, vol.25, pp.1087-1090, 1997.

C. Cavelier, G. Fries, J. L. Lagarigue, and J. P. Capdeville, Sedimentation progradante au Cenozoique inférieur en Aquitaine méridionale: un modèle, pp.69-79, 1997.

S. Chevrot, M. Sylvander, J. Diaz, R. Martin, F. Mouthereau et al., The non-cylindrical crustal architecture of the Pyrenees, Sci. Rep, vol.8, p.9591, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02350798

C. Clerc, Y. Lagabrielle, P. Labaume, J. C. Ringenbach, A. Vauchez et al., Basement -cover decoupling and progressive exhumation of metamorphic sediments at hot rifted margin. Insights from the Northeastern Pyrenean analog, Tectonophysics, vol.686, pp.82-97, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01355131

B. Cochelin, B. Lemirre, Y. Denèle, . De-saint, M. Blanquat et al., Structural inheritance in the central Pyrenees: the variscan to alpine tectonometamorphic evolution of the axial zone, J. Geol. Soc. Lond, vol.175, pp.336-351, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01761295

M. Covey, The Evolution of Foreland Basins to Steady State: Evidence from the Western Taiwan Foreland Basin. 8. International Association of Sedimentologists Spec, Pub, pp.77-90, 1986.

M. Cremer, Approches sédimentologique et géophysique des accumulations turbiditiques: l'éventail profond du Cap-Ferret (Golfe de Gascogne), la série des grès d'Annot, 1983.

C. Crouzel, Le Miocene du Bassin d'Aquitaine, 1957.

M. E. Curry, P. Van-der-beek, R. S. Huismans, S. G. Wolf, and J. Muñoz, Evolving paleotopography and lithospheric flexure of the Pyrenean Orogen from 3D flexural modeling and basin analysis, Earth Planet. Sci. Lett, vol.515, pp.26-37, 2019.

P. G. Decelles and K. A. Giles, Foreland basin systems, Basin Res, vol.8, pp.105-123, 1996.

E. Defive, J. Pastre, Y. Lageat, J. Cantagrel, and J. Meloux, L'évolution géomorphologique néogène de la haute vallée de la Loire comparée à celle de l'Allier, Du continent au basin versant. Théorie et pratique en géographie physique. Presses Universitaires Blaise-Pascal, pp.469-484, 2007.

P. Desegaulx, H. Kooi, and S. Cloetingh, Consequences of foreland basin development on thinned continental lithosphere: application to the Aquitaine basin (SW France), Earth Planet. Sci. Lett, vol.106, pp.116-132, 1991.

P. Desegaulx, M. Brunet, and . Fran, Tectonic subsidence of the Aquitaine basin since Cretaceous times, Bull. Soc. Géol. France, vol.8, pp.295-306, 1990.

W. R. Dickinson, Plate tectonics and sedimentation, SEPM Spec. Pub, vol.22, pp.1-27, 1974.

R. Dubarry, Interpretation dynamique du paléocène et de l'éocène inférieur et moyen de la région de pau-Tarbes (avant-pays nord des Pyrénées occidentales, sw France): Sédimentologie, corrélations dia graphiques, décompaction et calculs de subsidence, 1988.

J. Dubreuilh, J. P. Capdeville, G. Farjanel, G. Karnay, J. P. Platel et al., , pp.3-26, 1995.

N. Espurt, P. Angrand, A. Teixell, P. Labaume, M. Ford et al., Marine and Petroleum Geology, vol.112, p.104085, 2020.

S. , Crustal-scale balanced cross-section and restorations of the Central Pyrenean belt (Nestes-Cinca transect): highlighting the structural control of Variscan belt and Permian-Mesozoic rift systems on mountain building, Tectonophysics, vol.764, pp.25-45, 2019.

G. Fernández-viejo, J. A. Pulgar, J. Gallastegui, and L. Quintana, The fossil accretionary wedge of the bay of Biscay: Critical wedge analysis on depth-migrated seismic sections and geodynamical implications, J. Geol, vol.120, pp.315-331, 2012.

O. Ferrer, M. P. Jackson, E. Roca, and M. Rubinat, Evolution of salt structures during extension and inversion of the offshore Parentis Basin (eastern bay of Biscay), 2012.

, Geol. Soc. Lond., Spec. Publ, vol.363, pp.361-380

C. Fillon and P. Van-der-beek, Post-orogenic evolution of the southern Pyrenees: constraints from inverse thermo-kinematic modelling of low-temperature thermochronology data, Basin Res, vol.24, pp.418-436, 2012.

P. G. Fitzgerald, J. A. Muñoz, P. J. Coney, and S. L. Baldwin, Asymmetric exhumation across the Pyrenean Orogen; implications for the tectonic evolution of a collisional orogen, Earth Planet. Sci. Lett, vol.173, pp.157-170, 1999.

P. B. Flemings and T. E. Jordan, A synthetic stratigraphic model of foreland basin development, J. Geophys. Res. Solid Earth, vol.94, pp.3851-3866, 1989.

M. Ford, L. Hemmer, A. Vacherat, K. Gallagher, and F. Christophoul, Retro-wedge foreland basin evolution along the ECORS line, eastern Pyrenees, France, J. Geol. Soc. Lond, vol.173, pp.419-437, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01392395

J. Gallastegui, J. A. Pulgar, and J. Gallart, Initiation of an active margin at the North Iberian continent-ocean transition, Tectonics, vol.21, pp.11-15, 2002.

P. Gardère, La Formation des Sables Fauves: dynamique sédimentaire au Miocène moyen et évolution morpho-structurale de l'Aquitaine (SW France) durant le Néogène, Eclogae Geol. Helv, vol.98, pp.201-217, 2005.

P. Gardère, J. Rey, and F. Duranthon, Les "Sables fauves, Compt. Rendus Geosci, vol.334, pp.987-994, 2002.

M. Gibson, H. D. Sinclair, G. J. Lynn, and F. M. Stuart, Late-to post-orogenic exhumation of the central Pyrenees revealed through combined thermochronological data and modelling, Basin Res, vol.19, pp.323-334, 2007.

E. H. Gierlowski-kordesch, Lacustrine carbonates, Dev. Sedimentol, vol.61, pp.6101-6110, 2010.

M. Gómez, J. Vergés, and C. Riaza, Inversion tectonics of the northern margin of the Basque Cantabrian Basin, Bull. Soc. Géol. Fr, vol.173, pp.449-459, 2002.

N. Gourdon-platel, J. P. Platel, and J. G. Astruc, La formation de Rouffignac, témoin d'une paléoaltérite cuirassée intra-éocène en Périgord-Quercy, Géol. France, vol.1, pp.65-76, 2000.

P. C. Graciansky, . De, J. Hardenbol, T. Jacquin, and P. R. Vail, Mesozoic and Cenozoic Sequence Stratigraphy of Eurpoean Basins, vol.60, p.786, 1998.

F. M. Gradstein, J. G. Ogg, M. Schmitz, and G. Ogg, The Geologic Time Scale, 2012.

M. Granet, G. Stoll, J. Dorel, U. Achauer, G. Poupinet et al., Massif Central (France): new constraints on the geodynamical evolution from teleseismic tomography, Geophys. J. Int, vol.121, pp.33-48, 1995.

M. Granet, M. Wilson, and U. Achauer, Imaging a mantle plume beneath the French massif central, Earth Planet. Sci. Lett, vol.136, pp.281-296, 1995.

F. Guillocheau, N. Brault, E. Thomas, and J. Barbarand, Histoire géologique du massif Armoricain depuis 140 Ma (Crétacé-Actuel), Bull. Inf. Géol. Bass. Paris, vol.40, pp.13-28, 2003.

M. Gurnis, Rapid continental subsidence following the initiation and evolution of subduction, Science, vol.255, pp.1556-1558, 1992.

C. R. Handford and R. G. Loucks, Carbonate depositional sequences and systems tractsresponses of carbonate platforms to relative sea-level changes, AAPG Mem, vol.57, pp.3-41, 1993.

B. U. Haq, J. A. Hardenbol, and P. R. Vail, Chronology of fluctuating sea levels since the Triassic, Science, vol.235, pp.1156-1167, 1987.

B. U. Haq, J. Hardenbol, and P. R. Vail, Mesozoic and Cenozoic Chronostratigraphy and Cycles of Sea-Level Change, vol.42, pp.71-108, 1988.

J. A. Hardenbol, J. Thierry, M. B. Farley, T. Jacquin, P. De-graciansky et al., Mesozoic and Cenozoic Sequence Chronostratigraphic Framework of European Basins, vol.60, pp.3-13, 1998.

W. Helland-hansen and J. G. Gjelberg, Conceptual basis and variability in sequence stratigraphy: a different perspective, Sediment. Geol, vol.92, issue.94, pp.90053-90054, 1994.

W. Helland-hansen and G. J. Hampson, Trajectory analysis: concepts and applications, Basin Res, vol.21, pp.454-483, 2009.

W. Helland-hansen and O. J. Martinsen, Shoreline trajectories and sequences; description of variable depositional-dip scenarios, J. Sediment. Res, vol.66, pp.670-688, 1996.

P. Homewood, P. A. Allen, and G. D. Williams, Dynamics of the Molasse basin of western Switzerland, Foreland Basins, vol.8, pp.199-217, 1986.

D. Hunt and M. E. Tucker, Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level fall, Sediment. Geol, vol.81, pp.1-9, 1992.

D. Huyghe, F. Mouthereau, and L. Emmanuel, Oxygen isotopes of marine mollusc shells record Eocene elevation change in the Pyrenees, Earth Planet. Sci. Lett, issue.C, pp.345-348, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00909541

M. T. Jervey, Quantitative geological modeling of siliciclastic rock sequences and their seismic expression, SEPM Spec. Pub, vol.42, pp.47-69, 1988.

D. D. Johnson and C. Beaumont, Preliminary results from a planform kinematic model of orogen evolution, surface processes and the development of clastic foreland basin stratigraphy, SEPM Spec. Pub, vol.52, pp.3-24, 1995.

D. K. Jones, The Tertiary evolution of south-east England with particular reference to the Weald, The Shaping of Southern England, pp.13-47, 1980.

C. Kruit, J. Brouwer, and P. Ealey, A deep-water sand fan in the Eocene Bay of Biscay, Nat. Phys. Sci, vol.240, pp.59-61, 1972.

Y. Lagabrielle, P. Labaume, . De-saint, and M. Blanquat, Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): insights from the geological setting of the lherzolite bodies, Tectonics, vol.29, p.4012, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00512818

L. Pochat and G. , Bassins paléozoiques cachés sous l, Aquitaine. Doc. du Bur. Rech. Géol. Min, vol.80, pp.79-86, 1984.

E. Masini, G. Manatschal, J. Tugend, G. Mohn, and J. Flament, The tectonosedimentary evolution of a hyper-extended rift basin: the example of the Arzacq-Mauléon rift system, Int. J. Earth Sci, vol.103, pp.1569-1596, 2014.

C. Mathieu, Histoire géologique du sous-bassin de Parentis, Bull. Centres Rech. Explor. Elf-Aquitaine, vol.10, pp.22-47, 1986.

A. D. Miall, Alluvial sedimentary basins: tectonic setting and basin architecture, Sedimentation and Tectonics in Alluvial Basins, vol.23, pp.1-33, 1981.

N. Michael, A. Carter, A. Whittaker, A. C. Allen, and P. A. , Erosion rates in the source region of an ancient sediment routing system: comparison of depositional volumes with thermochronometric estimates, J. Geol. Soc. Lond, vol.171, pp.401-412, 2014.

N. A. Michael, A. C. Whittaker, and P. A. Allen, The functioning of sediment routing systems using a mass balance approach: example from the Eocene of the southern Pyrenees, J. Geol, vol.121, pp.581-606, 2013.

N. Michael, A. Whittaker, A. C. Carter, A. Allen, and P. A. , Volumetric budget and grain-size fractionation of a geological sediment routing system: Eocene Escanilla Formation, south-central Pyrenees, Bull. Geol. Soc. Am, vol.126, pp.585-599, 2014.

K. Miller, J. Wright, M. Katz, J. Browning, B. Cramer et al., A view of antarctic ice-sheet evolution from sea-level and deep-sea isotope changes during the late Cretaceous-Cenozoic, Antarctica: A Keystone in a Changing World. Nat, pp.55-70, 2008.

K. G. Miller, K. G. Miller, M. A. Kominz, J. V. Browning, J. D. Wright et al., The Phanerozoic record of global sea-level change, Science, vol.310, pp.1293-1298, 2005.

K. G. Miller, G. S. Mountain, J. D. Wright, and J. V. Browning, A 180 million year record of sea level and ice volume variations, Oceanography, vol.24, pp.40-53, 2011.

R. M. Mitchum, P. R. Vail, and J. B. Sangree, Seismic stratigraphy and global changes of sea level: Part 6. Stratigraphic interpretation of seismic reflection patterns in depositional sequences: section 2. Application of seismic reflection configuration to stratigraphic interpretation, AAPG Mem, vol.26, pp.53-62, 1977.

J. X. Mitrovica, C. Beaumont, and G. T. Jarvis, Tilting of continental interiors by the dynamical effects of subduction, Tectonics, vol.8, pp.1079-1094, 1989.

F. Mouthereau, A. Vacherat, O. Lacombe, F. Christophoul, P. Filleaudeau et al., Placing limits to shortening evolution in the Pyrenees: role of margin architecture and implications for the Iberia/Europe convergence, Tectonics, vol.33, pp.2283-2314, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01103259

P. J. Mudie, F. Marret, K. N. Mertens, L. Shumilovskikh, and S. A. Leroy, Atlas of modern dinoflagellate cyst distributions in the Black sea Corridor: from aegean to aral seas, including Marmara, Black, azov and Caspian seas, Mar. Micropaleontol, vol.134, pp.1-152, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01765575

M. Naylor and H. D. Sinclair, Pro-vs. retro-foreland basins, Basin Res, vol.20, pp.285-303, 2008.

P. Nehlig, H. Leyrit, A. Dardon, G. Freour, A. De-goer-de-herve et al., Constructions et destructions du stratovolcan du Cantal, vol.172, pp.295-308, 2005.

F. Paris and G. Le-pochat, The Aquitaine Basin, Pre-Mesozoic Geology in France and Related Areas, pp.405-415, 1994.

S. Patruno and W. Helland-hansen, Clinoform systems: review and dynamic classification scheme for shorelines, subaqueous deltas, shelf edges and continental margins, Earth Sci. Rev, vol.185, pp.202-233, 2018.

A. G. Plint and D. Nummedal, The falling stage systems tract: recognition and importance in sequence stratigraphic analysis, Geol. Soc. Lond., Spec. Publ, vol.172, pp.1-17, 2000.

J. P. Ponte, C. Robin, F. Guillocheau, S. Popescu, J. P. Suc et al., East Africa): high resolution dating combining bio-orbital and seismic stratigraphies to determine climate (palaeoprecipitation) and tectonic controls on a passive margin, Mar. Pet. Geol, vol.105, pp.293-312, 2019.

H. W. Posamentier and G. P. Allen, Siliciclastic sequence stratigraphic patterns in foreland, ramp-type basins, Geology, vol.21, pp.455-458, 1993.

H. W. Posamentier, M. T. Jervey, P. R. Vail, B. S. Hastings, C. G. Kendall et al., Eustatic controls on clastic deposition I-conceptual framework, Sea Level Changes: an Intregrated Approach, vol.42, pp.109-124, 1988.

H. W. Posamentier, P. R. Vail, B. S. Hastings, C. G. Kendall, . Stc et al., Eustatic controls on clastic deposition II-sequence and systems tract models, Sea Level Changes: an Intregrated Approach, vol.42, pp.125-154, 1988.

C. Puigdefàbregas, P. ;. Souquet, and . Ortiz, Tecto-sedimentary cycles and depositional sequences of the Mesozoic and tertiary from the Pyrenees, Marine and Petroleum Geology, vol.129, p.104085, 1986.

(. Sibuet, est lié à la remontée de la plaque Africaine vers le Nord qui entraine la plaque Ibérique et initie la collision Pyrénéenne vers 80 Ma (Choukroune et Team ECORS, 1989.

. Vergés, A savoir que c'est durant cet épisode, que des mouvements verticaux de massifs cristallins s'initient au centre de la chaîne, 2000.

. Sinclair, , 2005.

, III.3.B. Formation et remplissage des bassins flexuraux

, Lors de l'initiation de la collision, les premiers bassins flexuraux accompagnés d'un remplissage turbiditique sont formés, avec au même moment, la mise en place des premières unités chevauchantes sur la plaque Ibérique et l'inversion des bassins de la ZNP, Camara et Klimowitz, 1972.

G. Vergés, Pendant le Priabonien, la connexion de l'Ebre avec l'Océan Atlantique est fermée (36Ma ; Costa et al. 2010) ce qui a pour conséquence de faire passer le bassin de l'Ebre dans un régime endorhéique avec une sédimentation de type continentale et lacustre (fluviatile, lacustre et évaporite), jusqu'au Miocène moyen, Sud du bassin Aquitain. Ces conglomérats, 1995.

, III.3.C. Evolution tectono-sédimentaire des Pyrénées

. Muñoz, Ce processus d'exhumation rapide était associé à un fort taux d'érosion. Les profils âge/altitude publiés par Fitzgerald et al. (1999) montrent qu'un ralentissement ou un arrêt de l'exhumation dans l'Oligocène moyen a eu lieu et marque sans doute la fin de l'activité tectonique dans la région de la Maladeta et ainsi dans les Pyrénées centrales. Ces résultats ont établi que l'exhumation dans les Pyrénées s'est initiée début Eocène, et les sédiments qui alimentent les bassins proviennent de l'érosion de la haute chaîne dont le relief était déjà bien formé, Les études de thermochronologie basse température ont permis de mettre en évidence une phase rapide d'exhumation du centre de la zone Axiale, fin Eocène / début Oligocène, 1992.

V. , Présentation de la base de données

, Depuis maintenant quelques années, l'évolution de la chaîne Pyrénéenne commence à bien être connue, notamment par les publications de données thermochronologiques et de modélisations de ces dernières. A l'heure actuelle, ce sont près de 500 âges qui ont pu être déterminés au sein des Pyrénées, dans la ZNP, ZA et ZSP. Parmi ces âges nous retrouverons des âges AFT, 1999.

. Herman, , 2013.

. Juez-larré, Jolivet, 1991.

. Maurel, , 2007.

. Vacherat, AHe (Bosch, Juez-Larré, 2003.

. Metcalf, , 2009.

. Vacherat, Chacun des âges thermochronométriques ont été enregistrés avec des coordonnées Longitude/Latitude, reporté au massif ou à la zone d'étude auxquels ils correspondent, 2008.

, ? Trois-seigneurs

, Son soulèvement débute aux alentours de 42 Ma et se termine vers 39 Ma. Le chemin taux d'exhumation -temps montre que le massif des trois seigneurs s'est exhumé avec un taux d'environ 0,6 km/Ma entre 42 et 39 Ma. D'après la littérature, il a été trouvé selon Vacherat et al. (2016), un taux aux alentours de 0,54 km/Myr. Entre 50 et 42Ma, nous avons décidés de ne pas étudier les résultats obtenus car se rapprochant trop du modèle a priori et par un manque de données, Le massif des Trois-seigneurs est un des premiers à s'être exhumé lors de la formation des Pyrénées

L. Maladeta,

. Gibson, la période Eocène-oligocène selon la littérature, avec un taux moyen avoisinant les 2,6 km/Myr. Son exhumation est à ce jour très discutée pour essayer d'évoquer le remplissage du bassin de l'Ebre qui a montré de fort flux sédimentaire durant cette période. D'après notre modèle, la Maladeta s'exhume entre 33 et 30 Ma à un taux d'environ 1,55 km/Myr. Malgré un écart entre notre résultat et la valeur moyenné de la littérature, si l'on se focalise exclusivement sur les travaux de Gibson et al. (2007), nous pouvons remarquer que les résultats obtenus sont très similaires à ces derniers. En effet, 2007.

S. Néouvielle and . Au-nord-ouest-de-la-chaîne, Nos résultats démontrent cette particularité, avec une première phase de soulèvement entre 27 et 24 Ma présentant un taux de 1,15 km/Myr puis une deuxième phase entre 15 et 12 Ma avec un taux de 1 km/Myr. Il est important de constater pour ce massif, qu'une légère différence avec les taux issus de la littérature est à noter. En effet, il a été trouver pour Néouvielle, un taux de 2 km/Ma vers 30Ma et un autre de 1,5 km/Myr vers 10 Ma. Cependant, malgré un petit écart au niveau des taux et une légère différence sur les périodes de temps d'exhumations

, Ce qui suggère que la calibration du modèle à l'aide des massifs Néouvielle, Maladeta et Canigou a fonctionné. Malgré une réelle différence des valeurs de taux calculés durant la calibration avec la littérature, ceux pour l'inversion avec la totalité des Pyrénées corrèlent relativement bien. Ainsi, nous pouvons voir que le choix de se baser sur le temps des phases d'exhumations et non sur les valeurs des taux peut être validé. Par conséquent, le modèle proposé montre des résultats cohérents. Pour montrer la robustesse du modèle, plusieurs arguments peuvent être évoqués, Enfin, nous pouvons voir que les résultats de l'inversion à l'échelle des Pyrénées corrèlent de manière significatives avec les valeurs issues de publications

. Arche-a, Some considerations on the initiation of the present SE Ebro river drainage system: Post-or pre-Messinian?, 2010.

. Ardèvol-l, Depositional sequence response to foreland deformation in the Upper Cretaceous of the Southern Pyrenees, Spain, AAPG bulletin, vol.84, pp.566-587, 2000.

. Beamud-e, Magnetostratigraphy and detrital apatite fission track thermochronology in syntectonic conglomerates: constraints on the exhumation of the South-Central Pyrenees, Basin Research, vol.23, pp.309-331, 2011.

. Beaumont-c, Factors controlling the Alpine evolution of the central Pyrenees inferred from a comparison of observations and geodynamical models, Journal of Geophysical Research: Solid Earth, vol.105, pp.8121-8145, 2000.

. Bernet-m, A field-based estimate of the zircon fission-track closure temperature, Chemical Geology, vol.259, pp.181-189, 2009.

M. Bernet and G. , Fission-track analysis of detrital zircon, Reviews in Mineralogy and Geochemistry, vol.58, pp.205-237, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00097116

. Bour-i, Histoire thermique des massifs ardennais et bohémien: Conséquences sur la dynamique de l'Europe de l'Ouest au méso-cénozoïque, Diss. Paris, vol.11, 2010.

. Bourrouilh-r, The north Pyrenean Aquitaine basin, France: evolution and hydrocarbons, AAPG Bulletin, vol.79, pp.831-853, 1995.

B. M. , Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State, Geological Society of America Bulletin, vol.110, pp.985-1009, 1998.

J. Braun, Quantitative thermochronology: numerical methods for the interpretation of thermochronological data, 2006.
URL : https://hal.archives-ouvertes.fr/insu-00221429

. F. Brunet-m, The influence of the evolution of the Pyrenees on adjacent basins, Tectonophysics, vol.129, pp.343-354, 1986.

P. Cámara, Interpretación geodinámica de la vertiente centro-occidental surpirenaica (Cuencas de Jaca-Tremp), Estudios geológicos, vol.41, pp.391-404, 1985.

. Choukroune-p, The ECORS Pyrenean deep seismic profile reflection data and the overall structure of an orogenic belt, Tectonics, vol.8, pp.23-39, 1989.

C. E. , Closing and continentalization of the South Pyrenean foreland basin (NE Spain): magnetochronological constraints, Basin Research, vol.22, pp.904-917, 2010.

. Daignières-m, Implications of the seismic structure for the orogenic evolution of the Pyrenean range, Earth and Planetary Science Letters, vol.57, pp.88-100, 1982.

J. Deramond, Relationships between thrust tectonics and sequence stratigraphy surfaces in foredeeps: model and examples from the Pyrenees (Cretaceous-Eocene, Special Publications, vol.71, pp.193-219, 1993.

J. Dercourt, Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the Lias, pp.241-315, 1986.

. Desegaulx-p, Consequences of foreland basin development on thinned continental lithosphere: Applications to the Aquitane basin, 1991.

. Dodson-m.-h, Closure temperature in cooling geochronological and petrological systems, Contributions to Mineralogy and Petrology, vol.40, pp.259-274, 1973.

. Farley-k, The effects of long alpha-stopping distances on (U Th)/He ages, Geochimica et cosmochimica acta, vol.60, pp.4223-4229, 1996.

. A. Farley-k, U-Th)/He dating: Techniques, calibrations, and applications, Reviews in Mineralogy and Geochemistry, vol.47, pp.819-844, 2002.

. A. Farley-k, Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite, Journal of Geophysical Research: Solid Earth, vol.105, pp.2903-2914, 2000.

. Farrell-s.-g, Constraints on the age of movement of the Montsech and Cotiella Thrusts, south central Pyrenees, Spain, Journal of the Geological Society, vol.144, pp.907-914, 1987.

. Fidalgo-gonzález-l, La cinématique de l'Atlantique Nord: la question de la déformation intraplaque, 2001.

P. Y. Filleaudeau, Croissance et dénudation des Pyrénées du Crétacé Supérieur au Paléogène, vol.29, 2011.

C. Fillon, Oligocene-Miocene burial and exhumation of the Southern Pyrenean foreland quantified by low-temperature thermochronology, Journal of the Geological Society, vol.170, pp.67-77, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00772598

. Fillon-charlotte, . Van-der, and . Beek-p, Post-orogenic evolution of the southern P yrenees: constraints from inverse thermo-kinematic modelling of low-temperature thermochronology data, Basin Research, vol.24, pp.418-436, 2012.

. Fischer-m.-w, Thrust tectonics in the North Pyrenees, Journal of Structural Geology, vol.6, pp.721-726, 1984.

. G. Fitzgerald-p, Asymmetric exhumation across the Pyrenean orogen: implications for the tectonic evolution of a collisional orogen, Earth and Planetary Science Letters, vol.173, pp.157-170, 1999.

. Ford-m, Retro-wedge foreland basin evolution along the ECORS line, Journal of the Geological Society, vol.173, pp.419-437, 2016.

. Fox-m, A linear inversion method to infer exhumation rates in space and time from thermochronometric data, Earth Surface Dynamics, vol.2, issue.1, p.47, 2014.

G. K. , Low temperature thermochronology and modeling strategies for multiple samples 1: Vertical profiles, Earth and Planetary Science Letters, vol.237, pp.193-208, 2005.

. García, Cuencas extensivas del Cretácico Inferior en los Pirineos centrales. Formación y subsecuente inversión, 2002.

D. Garcia-castellanos and . Cruz, Quantifying the post-tectonic topographic evolution of closed basins: The Ebro basin (northeast Iberia), Geology, vol.43, pp.663-666, 2015.

. Garcia-castellanos-d, Interplay between tectonics, climate, and fluvial transport during the Cenozoic evolution of the Ebro Basin (NE Iberia), Journal of Geophysical Research: Solid Earth, vol.108, 2003.

. Garrido-megías-a, Síntesis geológica del Secundario y Terciario entre los ríos Cinca y Segre (Pirineo central de la vertiente surpirenaica, provincias de Huesca y Lérida), Boletín Geológico y Minero de España, vol.83, pp.1-47, 1972.

. Gibson-m, Late-to post-orogenic exhumation of the Central Pyrenees revealed through combined thermochronological data and modelling, Basin, vol.19, pp.323-334, 2007.

Y. Gunnell, Les traces de fission dans l'apatite, un outil thermochronologique adapté à la mesure de la dénudation: panorama des connaissances actuelles/Apatite fission track thermochronology. Its potential in geomorphology: an overview, vol.3, pp.257-280, 1997.

Y. Gunnell, Low long-term erosion rates in high-energy mountain belts: Insights from thermoand biochronology in the Eastern Pyrenees, Earth and Planetary Science Letters, vol.278, pp.208-218, 2009.

. Huyghe-d, Oxygen isotopes of marine mollusc shells record Eocene elevation change in the Pyrenees, Earth and Planetary Science Letters, vol.345, pp.131-141, 2012.

. Jolivet-m, Thermochronology constraints for the propagation sequence of the south Pyrenean basement thrust system (France-Spain), Tectonics, vol.26, 2007.

J. Juez-larré and . A. Andriessen-p, Tectonothermal evolution of the northeastern margin of Iberia since the break-up of Pangea to present, revealed by low-temperature fission-track and (U-Th)/He thermochronology: A case history of the Catalan Coastal Ranges, Earth and Planetary Science Letters, vol.243, issue.2, pp.159-180, 2006.

. A. Ketcham-r, Forward and inverse modeling of low-temperature thermochronometry data, Reviews in mineralogy and geochemistry, vol.58, pp.275-314, 2005.

E. Konstantinovskaia, Erosion and exhumation in accretionary orogens: Experimental and geological approaches, Geochemistry, Geophysics, Geosystems, vol.6, 2005.

L. Olivier, Structural and kinematic relationships between Corsica and the Pyrenees-Provence domain at the time of the Pyrenean orogeny, Tectonics, vol.24, 2005.

L. E. Pichon and X. , Plate kinematics and tectonics leading to the Alpine belt formation; a new analysis, Geological Society of America Special Papers, vol.218, pp.111-132, 1988.

C. Macchiavelli, A new southern North Atlantic isochron map: Insights into the drift of the Iberian plate since the Late Cretaceous, Journal of Geophysical Research: Solid Earth, vol.122, pp.9603-9626, 2017.

. Maurel-o, The Meso-Cenozoic thermo-tectonic evolution of the Eastern Pyrenees: an 40 Ar, p.39

, Ar fission track and (U-Th)/He thermochronological study of the Canigou and Mont-Louis massifs, International Journal of Earth, vol.97, pp.565-584, 2008.

. Maurel-o, L'exhumation de la Zone Axiale des Pyrénées orientales: Une approche thermochronologique multi-méthodes du rôle des failles, Diss. Université Montpellier II-Sciences et Techniques du Languedoc, 2003.

J. R. Metcalf, Thermochronology of a convergent orogen: Constraints on the timing of thrust faulting and subsequent exhumation of the Maladeta Pluton in the Central Pyrenean Axial Zone, Earth and Planetary Science, vol.287, pp.488-503, 2009.

. G. Morris-r, Exhumation of the Pyrenean orogen: implications for sediment discharge, Basin Research, vol.10, pp.69-85, 1998.

. Mouchene?-m, Évolution post-orogénique du système couplé piémont/bassin versant: le méga-cône alluvial de Lannemezan et son bassin versant au Nord des Pyrénées, Diss. Grenoble Alpes, 2016.

M. J. , Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced crosssection, Thrust tectonics, pp.235-246, 1992.

M. Naylor and S. H. , Pro-vs. retro-foreland basins, Basin Research, vol.20, pp.285-303, 2008.

, Norman DARIL -5 ème année de l'école d'ingénieur Polytech Sorbonne 62

P. , Essai sur la minéralogie des monts Pyrénées, Didot, 1784.

J. Poblet, Quantifying the kinematics of detachment folds using three-dimensional geometry: Application to the Mediano anticline, Geological Society of America Bulletin, vol.110, pp.111-125, 1998.

P. W. Reiners, Zircon (U-Th)/He thermochronometry, Reviews in Mineralogy and Geochemistry, vol.58, pp.151-179, 2005.

. Rocher-m, Cenozoic folding and faulting in the south Aquitaine Basin (France): insights from combined structural and paleostress analyses, Journal of Structural Geology, vol.22, pp.627-645, 2000.

. Roure-f, ECORS deep seismic data and balanced cross sections: Geometric constraints on the evolution of the Pyrenees, Tectonics, vol.8, pp.41-50, 1989.

C. R. Rushlow, Exhumation of the southern Pyrenean fold-thrust belt (Spain) from orogenic growth to decay, Tectonics, vol.32, pp.843-860, 2013.

R. E. , Some cosmical aspects of radioactivity, Journal of the Royal Astronomical Society of Canada, vol.1, p.145, 1907.

T. F. Schildgen, Spatial correlation bias in late-Cenozoic erosion histories derived from thermochronology, Nature, vol.559, p.89, 2018.

S. , Pyrenean orogeny and plate kinematics, Journal of Geophysical Research: Solid Earth, vol.109, 2004.

H. D. Sinclair, Tectonostratigraphic model for underfilled peripheral foreland basins: An Alpine perspective, Geological Society of America Bulletin, vol.109, pp.324-346, 1997.

H. D. Sinclair, Asymmetric growth of the Pyrenees revealed through measurement and modeling of orogenic fluxes, American Journal of Science, vol.305, pp.369-406, 2005.

. Soddy-f, The Chemistry of the Radio-elements, 1915.

. Souquet-p, La chaîne alpine des Pyrénées, vol.2, pp.193-216, 1977.

E. Team and . Pyrenees, Deep reflection seismic survey across an entire orogenic belt, the ECORS Pyrenees profile, Nature, vol.331, pp.508-511, 1988.

. Teixell-a, The crustal evolution of the west-central Pyrenees revisited: Inferences from a new kinematic scenario, Comptes Rendus Geoscience, vol.348, pp.257-267, 2016.

. Vacherat-a, Rift-to-collision transition recorded by tectonothermal evolution of the northern Pyrenees, pp.907-933, 2016.

. Vacherat-a, Thermal imprint of rift-related processes in orogens as recorded in the Pyrenees, Earth and Planetary Science Letters, vol.408, pp.296-306, 2014.

J. Vergés, Eastern Pyrenees and related foreland basins: pre-, syn-and post-collisional crustalscale cross-sections, Marine and Petroleum geology, vol.12, pp.903-915, 1995.

J. Vergés, Quantified vertical motions and tectonic evolution of the SE Pyrenean foreland basin, Special Publications, vol.134, pp.107-134, 1998.

J. Vergés, The Pyrenean orogen : pre-, syn-, and postcollisional evolution, Journal of the Virtual Explorer, vol.8, pp.55-74, 2002.

S. J. Vincent, The Sis palaeovalley: a record of proximal fluvial sedimentation and drainage basin development in response to Pyrenean mountain building, Sedimentology, vol.48, pp.1235-1276, 2001.

. Wagner-g, Van den haute, Fission-Track Dating. Enke, p.1992, 1992.

. A. Wolf-r, Helium diffusion and low-temperature thermochronometry of apatite, Geochimica et Cosmochimica Acta, vol.60, pp.4231-4240, 1996.