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A B S T R A C T

Applications in Music Information Retrieval and Compu-
tational Musicology have traditionally relied on features
extracted from the music content in the form of audio, but
mostly ignored the song lyrics. More recently, improve-
ments in �elds such as music recommendation have been
made by taking into account external metadata related to
the song. In this thesis, we argue that extracting knowl-
edge from the song lyrics is the next step to improve the
user's experience when interacting with music. To extract
knowledge from vast amounts of song lyrics, we show for
different textual aspects (their structure, content and per-
ception) how Natural Language Processing methods can
be adapted and successfully applied to lyrics. For the struc-
tural aspect of lyrics, we derive a structural description of it
by introducing a model that ef�ciently segments the lyrics
into its characteristic parts (e.g. intro, verse, chorus). In a
second stage, we represent the content of lyrics by means
of summarizing the lyrics in a way that respects the charac-
teristic lyrics structure. Finally, on the perception of lyrics
we investigate the problem of detecting explicit content in
a song text. This task proves to be very hard and we show
that the dif�culty partially arises from the subjective nature
of perceiving lyrics in one way or another depending on
the context. Furthermore, we touch on another problem
of lyrics perception by presenting our preliminary results
on Emotion Recognition. As a result, during the course of
this thesis we have created the annotated WASABI Song
Corpus, a dataset of two million songs with NLP lyrics
annotations on various levels.

KEYWORDS
Natural Language Processing, Text Segmentation, Multi-
modality, Text Summarization, Emotion Recognition, Text
Classi�cation, Lyrics Corpus
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R É S U M É

Les applications en Recherche d'Information Musicale et
en musicologie computationnelle reposent traditionnelle-
ment sur des fonctionnalités extraites du contenu musical
sous forme audio, mais ignorent la plupart du temps les
paroles des chansons. Plus récemment, des améliorations
dans des domaines tels que la recommandation de mu-
sique ont été apportées en tenant compte des métadonnées
externes liées à la chanson. Dans cette thèse, nous soute-
nons que l'extraction des connaissances à partir des paroles
des chansons est la prochaine étape pour améliorer l'expé-
rience de l'utilisateur lors de l'interaction avec la musique.
Pour extraire des connaissances de vastes quantités de pa-
roles de chansons, nous montrons pour différents aspects
textuels (leur structure, leur contenu et leur perception)
comment les méthodes de Traitement Automatique des
Langues peuvent être adaptées et appliquées avec succès
aux paroles. Pour l'aspect structurel des paroles, nous en
dérivons une description structurelle en introduisant un
modèle qui segmente ef�cacement les paroles en leurs par-
ties caractéristiques (par exemple, intro, couplet, refrain).
Puis, nous représentons le contenu des paroles en résumant
les paroles d'une manière qui respecte la structure carac-
téristique des paroles. En�n, sur la perception des paroles,
nous étudions le problème de la détection de contenu ex-
plicite dans un texte de chanson. Cette tâche s'est avèree
très dif�cile et nous montrons que la dif�culté provient
en partie de la nature subjective de la perception des pa-
roles d'une manière ou d'une autre selon le contexte. De
plus, nous abordons un autre problème de perception des
paroles en présentant nos résultats préliminaires sur la re-
connaissance des émotions. L'un des résultats de cette thèse
a été de créer un corpus annoté, le WASABI Song Corpus,
un ensemble de données de deux millions de chansons
avec des annotations de paroles TAL à différents niveaux.
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1
I N T R O D U C T I O N

In this Chapter we introduce the context and the motivation
underlying the present research work, and position it in the
multidisciplinary framework of the research.

contents

1.1 Context and Motivation . . . . . . . . . . . . . 1
1.2 Thesis Contributions . . . . . . . . . . . . . . . 4
1.3 Structure of the Thesis . . . . . . . . . . . . . . 6

1.1 context and motivation

When a popular song plays on the radio, it is easy to re-
member and sing along with the melody, but it is much
harder to remember the lyrics. While we intuitively and
automatically process the melody, understanding and mem-
orizing the lyrics can require an effort from us. Because
of this asymmetry in perception, we can listen to a song
many times and only remember small parts of the lyrics.
It is only understandable then, why in everyday life the
lyrics are often perceived as less important to a song than
the melody.

What factors are responsible for the perception of music
and how to extract and use such information, is studied
in the �eld of Music Information Retrieval (MIR) . Music
perception is in�uenced by the factors music content , mu-
sic context and listener-related factors [103]. The music
content is de�ned by the audio and the lyrics of the song.
The music context, on the other hand, is de�ned by the
relations of the song to the world, such as knowledge on
the artist or the genre. And the listener-related factors are,
for instance, his music preferences or her current mood.
Building on this model of perception, MIR applications

1



2 introduction

leverage one or more of the above mentioned factors with
the goal of improving or focusing the music listening expe-
rience. Example applications of automated systems in MIR
are music recommendation and music search engines. To
provide the listener with relevant recommendations, large
databases of music are automatically analyzed by content
aspects (e.g. song melody, song topic, song structure and
emotions) and song context (e.g. artist and genre). Then,
songs with similar content or context aspects can be rec-
ommended. For music search engines, an abundance of
search criteria may be used in an advanced search interface,
allowing a search for songs of a speci�c topic, structure,
emotion and genre. Common to both of these higher level
MIR applications is that they require high quality lower
level automated tasks to be carried out, such as topic iden-
ti�cation, melody estimation and emotion recognition.

Before and besides MIR, musicologists and music en-
thusiasts have gathered a plethora of knowledge about
music over the times. Musical knowledge, however, can
be unstructured (e.g. a blog post about the favorite band)
and musicologists are usually not experts in MIR. As an
example, imagine a journalist who prepares a radio show
about the life of David Bowie. The show may require an
overview of the work of the singer which is so far not read-
ily available. Easy access to a music search engine enables
the journalist to search for David Bowie's songs, grouped
by, for instance, their topics, the time of their publication
and the emotions they convey. An automatic historical mu-
sic analysis can be provided to reveal how different musical
properties have changed over time, for instance the artist
may have changed his style signi�cantly over time in an
attempt to stick up with the trend or to set it. Given such
deep analysis of songs, the journalist is provided with valu-
able knowledge, enabling him to rapidly assemble all the
data needed for his show.

Traditionally, MIR has focused only on one part of the
music content: the audio track. More recent approaches
[85] showed that considering the context of the song is
bene�cial. For instance, they show that performance in the
task of retrieving similar artists is improved by enriching



1.1 context and motivation 3

the artist representation by semantically linking them to
a knowledge base [86]. While these approaches succeed
in leveraging the music context, they still put little weight
on the lyrics. As the lyrics are not integrated into modern
music recommendation systems, recommending songs with
lyrics that convey similar topics or have a similar writing
style is not possible. We argue that, just as the music, the
lyrics are an integral part of a song's content. Despite that,
song lyrics have seen only low attention compared to audio.

While MIR has enabled more and more useful applica-
tions and has put vast knowledge into the hands of mu-
sicologists, we believe that putting more emphasis on the
inclusion of lyrics into the MIR paradigm will improve the
music listening experience even further. For instance, this
will allow for music recommendations based on the topics
and core ideas expressed in the lyrics. Today, discovering
playlists of a given topic is only possible when curated
playlists are available, as topics are inherently encoded in
the lyrics but not in the audio. Furthermore, the lower level
modules that the recommender relies on perform better
when lyrics are taken into account. For instance, genre clas-
si�cation and emotion detection systems have been shown
to perform better when the lyrics content is considered
aside the audio content.

To approach MIR with lyrics in mind, we need to auto-
matically process large amounts of text and our solution to
this is Natural Language Processing (NLP) . In the frame-
work of Arti�cial Intelligence, the �eld of NLP is located at
the intersection of linguistics and computer science and its
goal is to automatically process natural languages. Meth-
ods in NLP have been developed, for example, to extract
knowledge from texts, such as the topics, the emotion or
the author's style. We believe that a textual content analysis
of the lyrics via NLP will enable novel searches like �nd
songs where the chorus talks about hope, but the verse talks about
struggleand allow the user to �nd songs that are on a cur-
rently hot topic. Our decision to apply NLP to song lyrics
makes us face some core challenges. Song lyrics have a
distinctively different language than other domains which
poses problems for standard NLP methods. This is why we
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have developed NLP methods to deal with the peculiarities
of lyrics. Some relevant differences are the following. Lyrics
are structurally special in the way that they do not consist
of sentences and paragraphs, but of lines and segments
where line breaks can occur in the middle of a sentence.
This can prohibit the use of off-the-shelf NLP models such
as POS taggers, parsers and consequently downstream
tasks such as information extraction. Furthermore, lyrics
are fundamentally highly repetitive texts. Ignoring this fact
can for instance lead to highly redundant summaries. Fi-
nally, lyrics are tightly related to poems and as such can
contain an abundance of �gurative and poetic language.
Leaving large parts of it to the interpretation of the listener
is �ne. Because of this, tasks such as the detection of ex-
plicit language (full of profanities) in lyrics is inherently
subjective.

1.2 thesis contributions

Since (i) song lyrics are texts that are inherently connected
to a piece of music and as (ii) we develop automated meth-
ods to study song lyrics, this Thesis is located at the cross-
road of (i) the musicological �eld of Music Information
Retrieval and (ii) the computer science �eld of Natural
Language Processing.

To cope with the different levels of analysis required to
face the challenges raised in our work, the overall structure
of this Thesis is in analogy to the levels of abstraction in
NLP theory as explained in the following. Human language
can be thought to work on different levels of abstraction,
where the lower abstraction level of Syntax deals with ques-
tions such as what kinds of words are there?(e.g. verb, noun,
adjective) and in which order are words arranged in sentences?
(e.g. subject-predicate-object). The higher abstraction level
of Semantics deals with the question what is the meaning of
this word?and what is the meaning of this text?. The highest
abstraction level, Pragmatics, is concerned with the ques-
tions how is language used and perceived?. In analogy to the
questions asked in these three levels of abstraction, we stip-
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Figure 1.1: Typical NLP pipeline view (left) and the analogy
we follow when applying NLP to MIR in this the-
sis (right).

ulate three corresponding levels of lyrics analysis and make
a contribution to each one of them: the Lyrics Structure ,
the Lyrics Content and the Lyrics Perception . Figure 1.1
visualizes the different levels of analysis and the structure
of this Thesis. We further develop NLP methods which
overcome the previously described limitations caused by
the anomalous nature of lyrics as texts.

Lyrics Structure: We segment lyrics into their structural
building blocks (such as intro, verse and chorus). Our seg-
mentation method draws from audio structure analysis
and is fundamentally based on the repetitive nature of
the lyrics. Furthermore, we show that using both the text
and the audio of a song improves on segmentation perfor-
mance. This work was partially published at the conference
COLING 2018(unimodal text-based part) and is under re-
view in the journal Natural Langue Engineering(bimodal
text-audio-based part).

Lyrics Content: Our method for lyrics summarization
takes into account their audio nature. First, we adopt the
generic text summarization view to produce summaries
that contain the central sentences of the text. Then we incor-
porate the lyrics thumbnail perspective into the summary
by weighting the more repetitive and representative parts
of the lyrics higher. With this we draw an analogy to audio
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summarization and we can show that summaries created
in such a way are perceived as of higher quality. This work
was published at RANLP 2019.

Lyrics Perception: We show the limitations of existing
NLP methods to deal with subjective and artistic text genres
such as lyrics. We compare different methods to detect
explicit content in lyrics . Our �ndings show that the task
is highly subjective and therefore very hard. The �gurative
and poetic language used in lyrics together with contexts
such as music genre impedes reaching a consensus on what
quali�es the language in lyrics to be “explicit”. This work
was published at RANLP 2019.

Integrating our work, we release the large-scale WA-
SABI Song Corpus enriched by different NLP annotations,
partially devised from our methods developed in this thesis.
The dataset of 2 million songs is introduced in Section 2.3
and the result of the annotation is described in Chapter 6.
This work has been accepted at LREC2020.

1.3 structure of the thesis

The Thesis is structured as follows:

Chapter 2 introduces the WASABI Project in which this
thesis has been written and introduces the reader to the
WASABI Song Corpus, the central dataset we use for ex-
perimentation throughout this thesis.

Chapter 3 deals with the structural aspect of lyrics. Given
a song text, we derive a structural description of it. We in-
troduce a model that ef�ciently segments the lyrics into
its characteristic parts. We �nally discuss an estimation of
labelling the segments.

Chapter 4 deals with the problem of representing the
content of lyrics. We initially explore different possible
representations based on topic models and information
extraction. We then introduce our content representation
by means of summarizing the lyrics in a way that respects
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the characteristic lyrics structure. We end with an outlook
on a more abstractive summarization.

Chapter 5 deals with the perception of lyrics in the world.
As an instantiation we discuss the problem of detecting
explicit content in a song text. This task proves to be very
hard and we show that the dif�culty partially arises from
the subjective nature of perceiving lyrics in one way or
another depending on the context. Furthermore, we touch
on another problem of lyrics perception by presenting our
preliminary results on Emotion Recognition.

Chapter 6 describes the annotated WASABI Song Cor-
pus, a dataset we have created by enriching the dataset
described in Section 2.3 with NLP annotations of different
levels based on methods we developed in the previous
Chapters.

Chapter 7 concludes the Thesis drawing �nal remarks
and suggesting directions for future improvements.





2
T H E WA S A B I P R O J E C T

In this Chapter we give a brief overview over the WASABI
Project in the context of which this thesis has been written. We
clarify the differences to similar projects and introduce the reader
to the WASABI Song Corpus, the central dataset we use for
experimentation throughout this work.

contents

2.1 Motivation and Goals . . . . . . . . . . . . . . 9
2.2 Related Work . . . . . . . . . . . . . . . . . . . 11
2.3 The WASABI Song Corpus . . . . . . . . . . . 11

2.1 motivation and goals

The WASABI project 1 (Web Audio Semantic Aggregated
in the Browser for Indexation)[ 75] is a research project con-
ducted from early 2017until mid 2020which is founded by
the French National Agency for Research (ANR) under the
contract ANR- 16-CE23-0017-01. Its goal is to enable scenar-
ios in Music Information Retrieval and Musicology such
as described in Section1.1. The multidisciplinary project
assembles partners from various backgrounds: computa-
tional linguists, computer scientists and software engineers
from the I 3S laboratory of Université Côte d'Azur, IRCAM,
Deezer, and the Parisson company. Other collaborators are
journalists and archivists from Radio France, as well as mu-
sic composers, musicologists, music schools and sound en-
gineering schools. The �rst of the two goals of the WASABI
Project is the construction of a large-scale song knowledge
base, which we call the WASABI Song Corpus . It was spec-
i�ed to combine metadata collected from music databases

1 http://wasabihome.i3s.unice.fr/

9

http://wasabihome.i3s.unice.fr/
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Figure 2.1: The pedalboard with loaded plugins. Illustration
taken from [ 21].

on the Web (e.g. artists, discography, producers, year of pro-
duction), metadata resulting from the audio analysis (e.g.
beat, loudness, chords, structure, cover detection, source
separation) and metadata resulting from the analysis of
song lyrics to answer questions auch as What topics is this
song about?, Which emotions are conveyed?and What is the
structure of the song lyrics?. The second project goal is the de-
velopment of semantic applications that add high value by
exploiting the semantic database. Apps such as an online
mixing table, guitar amp simulations with a virtual pedal-
board (see Figure 2.1), audio analysis visualization tools,
annotation tools and a similarity search tool that works by
uploading audio extracts or playing some melody using a
MIDI device.

While similar attempts as ours have been made (see next
Section), our project is uniquely built on a broader scope
than other projects and mixes a wider set of metadata. The
WASABI Project is based on the collaboration between the
Semantic Web models and algorithms to obtain semantic
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metadata from the web, the Natural Language Processing
algorithms that extract information from the song lyrics
and the algorithms from the Music Information Retrieval
domain that work on the audio, altogether producing a
richer and more consistent knowledge base.

2.2 related work

The Million Song Dataset (MSD) project 2 [12] is a collection
of audio features and metadata for a million contempo-
rary popular music tracks. The metadata is extracted from
Web resources (e.g. artist names, tags, years) and the audio.
Given that MSD mainly focuses on audio data, the com-
plementary the musiXmatch dataset 3 has been released,
associating MSD songs with their lyrics in bag-of-words
(BOW) representation. Contrarily, in the WASABI Project
we extract knowledge from the full lyrics.

MusicWeb and its successor MusicLynx [2] link music
artists within a Web-based application for discovering con-
nections between them and provide a browsing experience
using extra-musical relations. The project shares some ideas
with WASABI, but works on the artist level, and does not
perform analyses on the audio and lyrics content itself. It
reuses, for example, MIR metadata from AcousticBrainz.

Companies such as Spotify, GraceNote, Pandora, or Ap-
ple Music have sophisticated private knowledge bases of
songs and lyrics to feed their search and recommendation
algorithms, but such data is not available publicly, and they
mainly rely on audio features.

2.3 the wasabi song corpus

In the context of the WASABI research project, a two million
song database has been built, theWASABI Song Corpus .
It contains metadata on 77k artists, 208k albums, and 2.10M
songs. The metadata has beeni) aggregated, merged and
curated from different data sources on the Web, and ii)

2 http://millionsongdataset.com
3 http://millionsongdataset.com/musixmatch/

http://millionsongdataset.com
http://millionsongdataset.com/musixmatch/
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enriched by pre-computed or on-demand analyses of the
lyrics and audio data. The partners in the WASABI Project
have performed various levels of analysis and built inter-
active Web Audio applications on top of the output. For
example, the TimeSide analysis and annotation framework
have been linked [47] to make on-demand audio analysis
possible. In connection with the FAST project 4, an of�ine
chord analysis of 442k songs has been performed, and both
an online enhanced audio player [ 94] and chord search en-
gine [95] have been built around it. A rich set of Web Audio
applications and plugins has been proposed [ 17–19], that
allow, for example, songs to be played along with sounds
similar to those used by artists.

All these metadata, computational analyses and Web
Audio applications have now been gathered in one easy-
to-use web interface, the WASABI Interactive Navigator 5,
illustrated in Figure 2.2.

The partners in the WASABI Project started building the
WASABI Song Corpus by collecting for each artist the com-
plete discography, band members with their instruments,
time line, equipment they use, and so on. For each song
they collected its lyrics from LyricWiki 6, the synchronized
lyrics when available 7, the DBpedia abstracts and the cate-
gories the song belongs to: genre, label, writer, release date,
awards, producers, artist and band members, the stereo
audio track from Deezer, the unmixed audio tracks of the
song, its ISRC, bpm and duration. Then, they matched
the song identi�ers from the WASABI Song Corpus with
the identi�ers from MusicBrainz, iTunes, Discogs, Spotify,
Amazon, AllMusic, GoHear and YouTube. Figure 2.3 shows
all the data sources we have used to create the WASABI
Song Corpus. We have also aligned the WASABI Song Cor-
pus with the publicly available LastFM dataset 8, resulting
in 327k tracks in our corpus having a LastFM id.

4 http://www.semanticaudio.ac.uk
5 http://wasabi.i3s.unice.fr/
6 http://lyrics.wikia.com/
7 from http://usdb.animux.de/
8 http://millionsongdataset.com/lastfm/

http://www.semanticaudio.ac.uk
http://wasabi.i3s.unice.fr/
http://lyrics.wikia.com/
http://usdb.animux.de/
http://millionsongdataset.com/lastfm/
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Figure 2.2: The WASABI Interactive Navigator. Illustration taken
from [ 20].
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Figure 2.3: The datasources connected to the WASABI Song Cor-
pus. Illustration taken from [ 21].
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As of today, the corpus contains 1.73M songs with lyrics
(1.41M unique lyrics). 73k songs have at least an abstract
on DBpedia, and 11k have been identi�ed as classic songs,
meaning they have been number one, got a Grammy award
or have lots of cover versions. About 2k songs have a multi-
track audio version, and on-demand source separation
using Open-Unmix [ 108] or Spleeter [54] is provided as a
TimeSide plugin.

In the remainder of this Chapter, we �rst present key
statistics on the initial corpus (before NLP annotations).
We then introduce the NLP annotations we have added
to obtain the annotated WASABI Song Corpus , which is
described in detail in Chapter 6. We close the current Chap-
ter with the technical details on the accessibility of the
annotated WASABI Song Corpus.

language distribution
Figure 2.4a shows the distribution of the ten most fre-
quent languages in the WASABI Song Corpus9. In total,
the corpus contains songs of 36 different languages. The
vast majority ( 76.1%) is English, followed by Spanish ( 6.3%)
and by four languages in the 2-3% range (German, French,
Italian, Portugese). On the bottom end, Swahili and Latin
amount to 0.1% (around 2k songs) each.

genre distribution
In Figure 2.4b we depict the distribution of the ten most fre-
quent genres in the WASABI Song Corpus10. In total, 1.06M
of the titles are tagged with a genre. It should be noted
that the genres are very sparse with a total of 528different
ones. This high number is partially due to many subgenres
such as Alternative Rock, Indie Rock, Pop Rock, etc. which
we omitted in Figure 2.4b for clarity. The most common
genres are Rock (9.7%), Pop (8.6%), Country ( 5.2%), Hip
Hop ( 4.5%) and Folk (2.7%).

9 Based on language detection performed on the lyrics.
10 We take the genre of the album as ground truth since song-wise genres

are much rarer.
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(a) Language distribution ( 100% = 1.73M)

(b) Genre distribution ( 100% = 1.06M)

(c) Decade of publication distribution ( 100% = 1.70M)

Figure 2.4: Statistics on the WASABI Song Corpus
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publication year
Figure 2.4c shows the number of songs published by de-
cade11. We �nd that over 50% of all songs in the WASABI
Song Corpus are from the 2000s or later and only around
10% are from the seventies or earlier.

nlp annotations
Several Natural Language Processing methods have been
applied to the lyrics of the songs included in the WASABI
Song Corpus, as well as various analyses of the extracted
information have been carried out. As we develop these
NLP methods in the following Chapters, we will �nally de-
scribe the different annotations we have added to the song
lyrics in the dataset in Section 6.2. Based on the research
we have conducted, we add the following lyrics annota-
tions: lyrical structure, lyrics summary, explicit content in
lyrics, emotions contained in lyrics, and topics in lyrics. We
conclude with a diachronic analysis of prominent topics in
the WASABI Song Corpus in Section 6.3.

accessibil i ty of the wasabi song corpus
The WASABI Interactive Navigator relies on multiple da-
tabase engines: it runs on a MongoDB server altogether
with an indexation by Elasticsearch and also on a Virtu-
oso triple store as a RDF graph database. It comes with
a REST API12 and an upcoming SPARQL endpoint. All
the database metadata is publicly available13 under a CC
licence through the WASABI Interactive Navigator as well
as programmatically through the WASABI REST API. We
provide the �les of the current version of the WASABI Song
Corpus, the models we have built on it as well as updates
here: https://github.com/micbuffa/WasabiDataset .

11 We take the album publication date as proxy since song-wise labels are
too sparse.

12 https://wasabi.i3s.unice.fr/apidoc/
13 There is no public access to copyrighted data such as lyrics and full

length audio �les. Instructions on how to obtain lyrics are nevertheless
provided and audio extracts of 30s length are available for nearly all
songs.

https://github.com/micbuffa/WasabiDataset
https://wasabi.i3s.unice.fr/apidoc/




3
LY R I C S S T R U C T U R E

In this Chapter we deal with the problem of detecting the structure
in lyrics. We reduce the problem to the subtasks lyrics segmenta-
tion and segment labelling. We introduce a model that ef�ciently
segments the lyrics1. We further discuss segment labelling.
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3.1 introduction

As we all know, lyrics are texts that accompany a piece
of music, and just like music they come in all shapes and
sizes. For instance, consider the three lyrics depicted in

1 This work has been published at the conference COLING 2018(uni-
modal text-based part) and is under review in the journal Natural
Language Engineering(bimodal text-audio-based part).

19
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Figure 3.1. The green and yellow lyrics are both from the
Rock band Guns N' Roses while the violet one is from the
Rappers Wu-Tang Clan. These examples illustrate a num-
ber of different structural properties of lyrics. First, note
that all lyrics consist of text lines which in turn consist
of words. As our illustration shows, these text lines come
in different lengths - ranging from short (green) to very
long (violet) - and can be single words, phrases or even
full sentences. As these lyrics are associated with a song,
matching the melody, rhythm and beat with the lyrics line
is more important to the composer than forming a gram-
matically correct sentence. Second, a song text typically is
formed of different text segments consisting of text lines.
The green text consists of two segments while the yellow
one is made of six segments. The violet lyric is basically a
single giant segment, which is a typical property of lyrics
from the genre of Rap. Looking a bit closer we �nd that
in the yellow and the green lyrics certain segments are
repeated, constituting a typical structure of a large range
of songs. More precisely, the repeated elements are chorus,
which we indicate with the green and yellow boxes in Fig-
ure 3.1. The chorus usually is one of the most important
parts of a song and is the part people remember best of a
song. While repetition is a key element in song lyrics, it is
not always there, as illustrated by the violet text.

In many lyrics, characteristic text segments are present
and can be labelled with terms such as intro, verse, bridge,
chorusand outro [16]. These labels have a tradition in musi-
cology as descriptions of song structure, but we can also
use them to describe the lyrics since their structure tends
to mirror the song structure.

Accurately describing the structure of a song text is a non-
trivial task that requires diverse knowledge. Algorithms
that aim to automatically detect the structure usually oper-
ate in two steps: a lyrics segmentation stage that divides
lyrics into segments, and a segment labelling stage that
labels each segment with a structure type (e.g. intro, verse,
chorus).

Although a few works have addressed the task of �nding
chorus or repeated parts in music [ 6, 72], full structure
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Figure 3.1: Visualization of different lyrics structures of two Rock
songs (green and yellow) and one Rap song (violet).
The transparent boxes in the green and yellow lyrics
indicate the chorus. The green song is Double Talkin'
Jive, the yellow is Don't Cry - both by Guns 'N Roses.
The violet one is called Impossibleby the Wu-Tang
Clan.
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detection remains challenging unless some complexity re-
duction strategies are applied - such as selecting a subset
of songs belonging to musical genres characterized by re-
peating patterns (e.g. Country or Pop songs). Given the
variability in the set of structure types provided in the lit-
erature according to different genres [ 16, 109] and the lack
of large annotated datasets, attempts to achieve segment
labelling have been rare. Furthermore, as the accuracy of
lyrics segmentation in the state of the art is not fully satis-
fying yet [ 115], we focus on improving the performance in
lyrics segmentation and leave the task of semantic labeling
to the discussion (see Section3.6).

The remainder of this Chapter is structured as follows: In
Section 3.2 we detail our approach to lyrics segmentation:
we explain why we made it multimodal and formulate
our research questions and constributions. In Section 3.3
we setup and discuss the two experiments we conducted
using either unimodal (text-based) lyrics representations or
bimodal (text-audio-based) lyrics representation. We follow
up with an error analysis in Section 3.4. We then position
our work in the current state of the art in Section 3.5 and
discuss the task of lyrics segment labelling in Section 3.6.
Finally, in Section 3.7 we conclude with future research
directions.

3.2 our approach to lyrics segmentation

The task of lyrics segmentation is fundamental for full
structure detection of song lyrics. While the �nal goal lies
in detecting the building blocks (e.g. intro, verse, chorus)
of a song text, this �rst step is a prerequisite to segment
labelling when segment borders are not known. Thus, a
method to automatically segment unsegmented song texts
is needed to automate that �rst step.

Many heuristics can be imagined to �nd the segment
borders. In our example (see Figure 3.2), separating the
lyrics into segments of a constant length of four lines gives
the correct segmentation. However, in another example,
the segments can be of different length. This is to say that
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enumerating heuristic rules is an open-ended task. Among
previous works in the literature on lyrics structure anal-
ysis, [115] heavily exploited repeated patterns present in
the lyrics to address this task, and it shows that this gen-
eral class of pattern is very helpful with segment border
detection.

For this reason, in this work we follow [ 115] by casting
the lyrics segmentation task as binary classi�cation . Let
L = f a1, a2, ...,ang be the lyrics of a song composed of n
lyrics lines and seg � (L,B ) be a function that returns
for each line ai 2 L if it is the end of a segment. The task
is to learn a classi�er that approximates seg. At the learn-
ing stage, the ground truth segment borders are observed
from segmented text as double line breaks. At the testing
stage the classi�er has to predict the now hidden segment
borders.

In order to infer the lyrics structure, we develop a Con-
volutional Neural Network-based model . Our model ar-
chitecture is detailed in Section 3.2.4. It detects segment
boundaries by leveraging the repeated patterns in a song
text that are conveyed by the Self-Similarity Matrices.

3.2.1 The Need for Multimodality

We fundamentally base our approach on (i) repeated pat-
terns in lyrics and (ii) the intimate relation between lyrics
and music. We �rst introduce a method relying on purely
textual features which we call unimodal lyrics segmenta-
tion . While the method provides good results, it falls short
in capturing the structure of the song in case there is no
clear structure in the lyrics - when sentences are never
repeated, or in the opposite case when they are always
repeated. In such cases however, the structure may arise
from the acoustic/audio content of the song, often from
the melody representation. Therefore, as a second step, we
extend our method by complementing the textual analy-
sis with acoustic aspects. We perform lyrics segmentation
on a synchronized text-audio representation of a song to
bene�t from both textual and audio features. We call this
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method bimodal lyrics segmentation . Consequently, in
our model, each lyrics line is naturally associated to a seg-
ment of audio. We de�ne a bimodal lyrics line ai = ( l i , si )
as a pair containing both the i-th text line l i , and its associ-
ated audio segment si . In the case we only use the textual
information, we model this as unimodal lyrics lines , i.e.
ai = ( l i ). This de�nition can be straightforwardly extended
to more modalities, ai then becomes a tuple containing
time-synchronized information.

detailed example
To better understand the rational underlying the proposed
multimodal approach, consider the segmentation of the Pop
song depicted in Figure 3.2. The left side shows the lyrics
and its segmentation into its structural parts: the horizontal
green lines indicate the segment borders between the differ-
ent lyrics segments. We can summarize the segmentation
as follows: Verse1-Verse2-Bridge1-Chorus1-Verse3-Bridge2-
Chorus2-Chorus3-Chorus4-Outro. The middle of Figure 3.2
shows the repetitive structure of the lyrics. The exact nature
of this structure representation is introduced later and is
not needed to understand this introductory example. The
crucial point is that the segment borders in the song text
(green lines) coincide with highlighted rectangles in the
chorus (the Ci) of the lyrics structure (middle). We �nd
that in the verses (the Vi) and bridges (the Bi) highlighted
rectangles are only found in the melody structure (right).
The reason is that these verses have different lyrics, but
share the same melody (analogous for the bridges). While
the repetitive structure of the lyrics is an effective represen-
tation for lyrics segmentation, we believe that an enriched
segment representation that also takes into account the
audio of a song can improve segmentation models. While
previous approaches relied on purely textual features for
lyrics segmentation, showing the discussed limitations, we
propose to perform lyrics segmentation on a synchronized
text-audio representation of a song to bene�t from both
textual and audio features.
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3.2.2 Research Questions and Contributions

We aim to answer the following research question: given
the text and audio of a song, can we learn to detect the lines
delimiting segments in the song text?This question is broken
down into two sub questions: 1) given solely the song text,
can we learn to detect the lines delimiting segments in the song?
and 2) do audio features - in addition to the text - boost the model
performance on the lyrics segmentation task?

To address these questions, this Chapter contains the
following contributions.

� We introduce a convolutional neural network-based
model that i) ef�ciently exploits the Self-Similarity
Matrix representations (SSM) used in the state-of-the-
art [115], and ii) can utilize traditional features along-
side the SSMs (see this Section).

� We experiment with novel features that aim at re-
vealing different properties of a song text, such as its
phonetics and syntax. We evaluate this unimodal text-
based approach on two standard datasets of English
lyrics, the Music Lyrics Database and the WASABI
corpus (see Section3.3.1). We show that our proposed
method can effectively detect the boundaries of music
segments outperforming the state of the art, and is
portable across collections of song lyrics of heteroge-
neous musical genre (see Section3.3).

� We experiment with a bimodal lyrics representation
(see Section3.2.5) that incorporates audio features
into our model. For this, we use a novel bimodal cor-
pus (DALI, see Section 3.3.1) in which each song text
is time-aligned to its associated audio. Our bimodal
lyrics segmentation performs signi�cantly better than
the unimodal approach. We investigate which text and
audio features are the most relevant to detect lyrics
segments and show that the text and audio modali-
ties complement each other. We perform an ablation
test to �nd out to what extent our method relies on
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the alignment quality of the lyrics-audio segment re-
presentations (see Section3.3).

3.2.3 Self-Similarity Matrices

We produce Self-Similarity Matrices (SSMs) based on bi-
modal lyrics lines ai = ( l i , si ) in order to capture repeated
patterns in the text line l i as well as its associated audio
segment si . SSMs have been previously used in the lit-
erature to estimate the structure of music [ 31, 49] and
lyrics [ 44, 115]. Given a song consisting of bimodal lines
f a1, a2, ...,ang, a Self-Similarity Matrix SSMM 2 Rn� n is
constructed, where each element is set by computing a sim-
ilarity measure between the two corresponding elements
(SSMM ) i j = simM (xi , xj). We choosexi , xj to be elements
from the same modality, i.e. they are either both lyrics lines
(l i) or both audio segments (si) associated to lyrics lines.
simM is a similarity measures that compares two elements
of the same modality to each other. In our experiments, this
is either a text-based or an audio-based similarity (see Sec-
tion 3.3.2). As a result, SSMs constructed from a text-based
similarity highlight distinct patterns of the text, revealing
the underlying structure (see Figure 3.2, middle). Analo-
gously, SSMs constructed from an audio-based similarity
highlight distinct patterns of the audio (see Figure 3.2,
right). In the unimodal case, we compute SSMs from only
one modality: either text lines l i or audio segments si .

There are two common patterns that were investigated in
the literature: diagonals and rectangles. Diagonals parallel
to the main diagonal indicate sequences that repeat and
are typically found in a chorus. Rectangles, on the other
hand, indicate sequences in which all the lines are highly
similar to one another. Both of these patterns were found
to be indicators of segment borders.
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3.2.4 Convolutional Neural Network-based Model

Lyrics segments manifest themselves in the form of dis-
tinct patterns in the SSM. In order to detect these pat-
terns ef�ciently, we introduce the Convolutional Neural
Network (CNN) architecture which is illustrated in Fig-
ure 3.3. The model predicts for each lyrics line if it is
segment ending. For each of the n lines of a song text
the model receives patches (see Figure3.3, step A) ex-
tracted from SSMs 2 Rn� n and centered around the line:
input i = f P1

i , P2
i , ...,Pc

i g 2 R2w� n� c, where c is the num-
ber of SSMs or number of channels and w is the window
size. To ensure the model captures the segment-indicating
patterns regardless of their location and relative size, the
input patches go through two convolutional layers (see Fig-
ure 3.3, step B) [51], using �lter sizes of (w + 1) � (w + 1)
and 1 � w, respectively. By applying max pooling after
both convolutions each feature is downsampled to a scalar.
After the convolutions, the resulting feature vector is con-
catenated with the line-based features (see Figure3.3, step
C) and goes through a series of densely connected layers.
Finally, the so f tmax is applied to produce probabilities
for each class (border/not border) (see Figure 3.3, step D).
The model is trained with supervision using binary cross-
entropy loss between predicted and ground truth segment
border labels (see Figure3.3, step E). Note that while the
patch extraction is a local process, the SSM representation
captures global relationships, namely the similarity of a
line to all other lines in the lyrics.
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3.2.5 Bimodal Lyrics Lines

To perform lyrics segmentation on a bimodal text-audio
representation of a song to bene�t from both textual and
audio features, we use a corpus where the annotated lyrics
ground truth (segment borders) is synchronized with the
audio. This bimodal dataset is described in Section 3.3.1.
We focus solely on the audio extracts that have singing
voice, as only they are associated to the lyrics. For that let
t i be the time interval of the (singing event of) text line l i
in our synchronized text-audio corpus. Then, a bimodal
lyrics line ai = ( l i , si ) consists of both a text line l i (the
text line during t i) and its associated audio segmentsi (the
audio segment during t i). As a result, we have the same
number of text lines and audio segments. While the textual
information l i can be used directly to produce SSMs, the
complexity of the raw audio signal prevents it from being
used as direct input of our system. Instead, it is common to
extract features from the audio that highlight some aspects
of the signal that are correlated with the different musical
dimensions. Therefore, we describe each audio segment
si as set of different time vectors. Each frame of a vector
contains information of a precise and small time interval.
The size of each audio frame depends on the con�guration
of each audio feature. We call an audio segment si featurized
by a feature f if f is applied to all frames of si . For our
bimodal segment representation we featurize each si with
one of the following features:

� Mel-frequency cepstral coef�cients ( mfcc 2 R14):
these coef�cients [32] emphasize parts of the signal
that are related with our understanding of the musical
timbre. They have proven to be very ef�cient in a large
range of audio applications.

� Chroma feature ( chr 2 R12): this feature [50] de-
scribes the harmonic information of each frame by
computing the presenceof the twelve different notes.
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3.3 experiments

In this Section we describe the setup we have used to ex-
periment our approach. We �rst de�ne the datasets, we
then lay out the similarity measures for the SSM compu-
tation. Finally, we specify the parameters of our different
experimental models.

3.3.1 Datasets

We used two kinds of corpora in our segmentation exper-
iments. First, the WASABI Song Corpus (see Section2.3)
and the Music Lyrics Database (introduced below) con-
tain textual representations of the lyrics. Second, to effec-
tively test our bimodal approach we experiment on DALI,
a dataset which contains bimodal representations of the
lyrics where text and audio are synchronized.

The Music Lyrics Database (MLDB) V.1.2.72 is a propri-
etary lyrics corpus of popular songs of diverse genres. We
use MLDB as it has been used before by the state of the
art [115]. To facilitate a close comparison with their work,
we also use the same con�guration, considering only the
103k English song texts that have �ve or more segments 3

and using the same training, development and test indices
(60%-20%-20% split). From the WASABI Song Corpus we
sample the English song texts that contain at least �ve
segments, resulting in 744k lyrics.

The DALI corpus 4 [74] contains synchronized lyrics-
audio representations on different levels of granularity:
syllables, words, lines and segments. The alignment quality
of the text-audio representations differs and we partition
the corpus according to the alignment quality. This way,
we can test the in�uence of the alignment quality on the
outcome of our segmentation experiment. We describe the
partitioning process in the following.

2 http://www.odditysoftware.com/page-datasales1.htm
3 92% of the remaining song texts count between six and twelve segments
4 https://github.com/gabolsgabs/DALI

http://www.odditysoftware.com/page-datasales1.htm
https://github.com/gabolsgabs/DALI
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partit ioning the dali dataset
DALI was created by joining two datasets: ( 1) a corpus
for karaoke singing 5 (Animux) which contains alignments
between lyrics and audio on the syllable level and ( 2) a
subset of the WASABI Song Corpus of lyrics that belong to
the same songs than the lyrics in Animux. Note that corre-
sponding lyrics in WASABI Song Corpus can differ from
those in Animux to some extent. Also, in Animux there
is no annotation of segments. DALI provides estimated
segments for Animux lyrics, projected from the ground
truth segments from WASABI Song Corpus. For example,
Figure 3.4 shows on the left side the lyrics lines as given
in Animux. The right side shows the lyrics lines given in
WASABI Song Corpus as well as the ground truth lyrics
segments. The left side shows the estimated lyrics segments
in Animux. Note how the lyrics in WASABI Song Corpus
have one segment more, as the segmentW3 has no counter
part in Animux.

Based on the requirements for our task, we derive a mea-
sure to assess how well the estimated Animux segments
correspond / align to the ground truth WASABI Song Cor-
pus segments. Since we will use the WASABI Song Corpus
segments as ground truth labels for supervised learning,
we need to make sure, the Animux lines (and hence audio
information) actually belong to the aligned segment. As
only for the Animux lyrics segments we have aligned audio
features and we want to consistently use audio features
in our segment representations, we make sure that every
Animux segment has a counterpart WASABI Song Corpus
segment (see Figure3.4, A0 � W0, A1 � W1, A2 � W2,
A3 � W4). On the other hand, we allow WASABI Song Cor-
pus segments to have no corresponding Animux segments
(see Figure3.4, W3). We further do not impose constraints
on the order of appearance of segments in Animux segmen-
tations vs. WASABI Song Corpus segmentations, to allow
for possible rearrangements in the order of correspond-
ing segments. With these considerations, we formulate a
measure of alignment quality that is tailored to our task of

5 from http://usdb.animux.de/

http://usdb.animux.de/
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Corpus name Alignment quality Song count

Q+ high (90-100%) 1048

Q0 med (52-90%) 1868

Q� low ( 0-52%) 1868

full dataset - 4784

Table 3.1: The DALI dataset partitioned by alignment quality

bimodal lyrics segmentation. Let A,W be segmentations,
where A = A0A1...Ax and the A i are Animux segments
and W = W0W1...Wy with WASABI Song Corpus lyrics
segmentsWi . Then the alignment quality between the seg-
mentations A,W is composed from the similarities of the
best-matching segments. Using string similarity simstr as
de�ned in Section 3.3.2, we de�ne the alignment quality
Qual as follows:

Qual(A,W) = Qual(A0A1...Ax, W0W1...Wy)
= min

0� i � x
f max

0� j � y
f simstr(A i ,Wj) g g

In order to test the impact of Qual on the performance of
our lyrics segmentation algorithm, we partition the DALI
corpus into parts with different Qual. Initially, DALI con-
sists of 5358 lyrics that are synchronized to their audio
track. Like in previous publications [ 44, 115], we ensure
that all song texts contain at least 5 segments. This con-
straint reduces the number of tracks used by us to 4784. We
partition the 4784tracks based on their Qual into high ( Q+ ),
med (Q0), and low ( Q� ) alignment quality datasets. Table
3.1 gives an overview over the resulting dataset partitions.
The Q+ dataset consists of50842lines and 7985segment
borders and has the following language distribution: 72%
English, 11% German, 4% French,3% Spanish,3% Dutch,
7% other languages.

The central input features used by our Convolutional
Neural Network-based model are the different SSMs. There-
fore, the choice of similarities used to produce the SSMs is
essential to the approach. We experiment with both text-
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Figure 3.4: Lyrics lines and estimated lyrics segments in Animux
(left). Lyrics lines and ground truth lyrics segments in
WASABI (right) for the song (“Don`t Break My Heart”
by Den Harrow)
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based and audio-based similarities, these are de�ned in
Section 3.3.2. We then present the experiments using uni-
modal lyrics lines (text only) in Section 3.3.3 and bimodal
lyrics lines (text and audio) in Section 3.3.4, respectively.

3.3.2 Similarity Measures

We produce SSMs based on three line-based text similarity
measures. We further add audio-based similarities - the
crucial ingredient that makes our approach multimodal. In
the following, we de�ne the text-based and audio-based
similarities used to compute the SSMs.

Text similarities: given the text lines of the lyrics, we com-
pute different similarity measures, based on either their
characters, their phonetics or their syntax.

� String similarity (sim str): a normalized Levenshtein
string edit similarity between the characters of two
lines of text [ 65]. This has been widely used - e.g. [44,
115].

� Phonetic similarity (sim phon ): a simpli�ed phonetic
representation of the lines computed using the Dou-
ble Metaphone Search Algorithm[99]. When applied to
the textual snippets “i love you very much” and “i'l
off you vary match” it returns the same result: “ALF-
FRMX”. This algorithm was developed to capture the
similarity of similar sounding words even with possi-
bly very dissimilar orthography. We translate the text
lines into this “phonetic language” and then compute
simstr between them.

� Lexico-syntactical similarity (sim lsyn ): this measure,
initially proposed in [ 43], combines lexical with syntac-
tical similarity. simlex captures the similarity between
text lines such as “Look into my eyes” and “I look
into your eyes”: these are partially similar on a lexical
level and partially similar on a syntactical level. Given
two lines x, y lexico-syntactical similarity is de�ned as:
simlsyn(x, y) = sim2

lex(x, y) + ( 1 � simsyn) � simsyn( x̂, ŷ),
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where simlex is the overlap of the bigrams of words
in x and y, and simsyn is the overlap of the bigrams
of pos tags in x̂, ŷ, the remaining tokens that did not
overlap on a word level.

Audio similarities: There are several alternatives to mea-
sure the similarity between two audio sequences (e.g. mfcc
sequences) of possibly different lengths, among which Dy-
namic Time Warping Td is the most popular one in the
Music Information Retrieval community. Given bimodal
lyrics lines au, av (as de�ned in Section 3.2.5), we compare
two audio segments su and sv that are featurized by a
particular audio feature (mfcc, chr) using Td:

Td( i , j) = d(su( i), sv( j)) + min

8
><

>:

Td( i � 1, j),
Td( i � 1, j � 1),
Td( i , j � 1)

9
>=

>;

Td must be parametrized by an inner distance d to measure
the distance between the frame i of su and the frame j of
sv. Depending on the particular audio feature su and sv

are featurized with, we employ a different inner distance
as de�ned below. Let m be the length of the vector su

and n be the length of sv. Then, we compute the minimal
distance between the two audio sequences asTd(m, n) and
normalize this by the length r of the shortest alignment
path between su and sv to obtain values in [ 0,1] that are
comparable to each other. We �nally apply l x.(1 � x) to
turn the distance Td into a similarity measure Sd:

Sd(su, sv) = 1 � Td(m, n) � r � 1

Given bimodal lyrics lines ai , we now de�ne similarity
measures between audio segmentssi that are featurized by
a particular audio feature presented previously (mfcc, chr)
based on our similarity measure Sd:

� MFCC similarity (sim mfcc): Sd between two audio
segments featurized by the mfcc feature. As inner
distance we use the cosine distance:
d(x, y) = x � y � (kxk � kyk) � 1
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� Chroma similarity (sim chr): Sd between two audio
segments featurized by the chroma feature; using co-
sine distance as inner distance

3.3.3 Unimodal Lyrics Segmentation

In our �rst experiment we represent song texts via uni-
modal lyrics lines (textual representation) and experiment
on the Music Lyrics Database and the WASABI Song Cor-
pus. We compare to the state of the art [115] and success-
fully reproduce their best features to validate their ap-
proach. Two groups of features are used in the replication:
repeated pattern features (RPF) extracted from SSMs and
n-grams extracted from text lines. The RPF basically act as
hand-crafted image �lters that aim to detect the edges and
the insides of diagonals and rectangles in the SSM.

Then, our own models are neural networks as described
in Section 3.2.4, that use as features SSMs and two line-
based features: the line length and n-grams. For the line
length, we extracted the character count from each line, a
simple proxy of the orthographic shape of the song text.
Intuitively, segments that belong together tend to have sim-
ilar shapes. Similarly to [ 115]'s term features we extracted
those n-grams from each line that are most indicative for
segment borders: using the tf-idf weighting scheme, we ex-
tracted n-grams that are typically found left or right from
the segment border, varied n-gram lengths and also in-
cluded indicative part-of-speech tag n-grams. This resulted
in 240term features in total. The most indicative words at
the start of a segment were: {ok, lately, okay, yo, excuse,
dear, well, hey}. As segment-initial phrases we found: {Been
a long, I've been, There's a, Won't you, Na na na, Hey, hey}.
Typical words ending a segment were: {..., .., !, ., yeah, ohh,
woah. c'mon, wonderland}. And as segment-�nal phrases
we found as most indicative: {yeah!, come on!, love you., !!!,
to you., with you., check it out, at all., let's go, ...}

In this experiment we consider only SSMs made from
text-based similarities; we note this in the model name as
CNN text. We further name a CNN model by the set of SSMs
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that it uses as features. For example, the modelCNN text{str}
uses as only feature the SSM made from string similarity
simstr, while the model CNN text{str, phon, lsyn} uses three
SSMs in parallel (as different input channels), one from
each similarity.

For convolutional layers we empirically set wsize = 2 and
the amount of features extracted after each convolution to
128. Dense layers have512hidden units. We have also tuned
the learning rate (negative degrees of 10), the dropout prob-
ability with increments of 0.1. The batch size was selected
from the beginning to be 256 to better saturate our GPU.
The CNN models were implemented using Tensor�ow.

In addition to our reimplementation of the RPF method
described previously, we implement two baselines. The
random baseline guesses for each line independently if it
is a segment border (with a probability of 50%) or not. The
line length baseline uses as only feature the line length in
characters and is trained using a logistic regression classi-
�er.

For comparison with the state of the art, we use as a �rst
dataset the same they used, the MLDB (see Section3.3.1).
To test the system portability to bigger and more heteroge-
neous data sources, we further experimented our method
on the WASABI corpus (see Section3.3.1). In order to test
the in�uence of genre on classi�cation performance, we
aligned MLDB to WASABI as the latter provides genre in-
formation. Song texts that had the exact same title and artist
names (ignoring case) in both data sets were aligned. This
rather strict �lter resulted in an amount of 58567(57%) song
texts with genre information in MLDB. Table 3.3 shows the
distribution of the genres in MLDB song texts. We then
tested our method on each genre separately, to test our
hypothesis that classi�cation is harder for some genres in
which almost no repeated patterns can be detected (as Rap
songs). To the best of our knowledge, previous work did
not report on genre-speci�c results.

In this work we did not normalize the lyrics in order to
rigorously compare our results to [ 115]. We estimate the
proportion of lyrics containing tags such as Chorusto be
marginal ( 0.1-0.5%) in the MLDB corpus. When applying



3.3 experiments 39

our methods for lyrics segmentation to lyrics found online,
an appropriate normalization method should be applied as
a pre-processing step. For details on such a normalization
procedure we refer the reader to [ 43], Section 2.1.

Evaluation metrics are Precision (P), Recall (R), and f-
score (F1). Signi�cance is tested with a permutation test [ 84],
and the p-value is reported.

results and discussion
The results on the MLDB dataset are shown in Table 3.2.
We start by measuring the performance of our replication
of [115]'s approach. This reimplementation exhibits 56.3%
F1, similar to the results reported in the original paper
(57.7%). The divergence could be attributed to a different
choice of hyperparameters and feature extraction code.
Much weaker baselines were explored as well. The random
baseline resulted in 18.6% F1, while the usage of simple line-
based features, such as the line length (character count),
improves this to 25.4%.

The best CNN-based model, CNN text{str, phon, lsyn} +
n-grams, outperforms all our baselines reaching 67.4% F1,
8.2pp better than the results reported in [ 115]. When per-
forming the permutation test of this model against all other
models we �nd that, in every case, the performance differ-
ence is statistically signi�cant ( p < .05).

Subsequent feature analysis revealed that the model
CNN text{str} is by far the most effective. The CNN text{lsyn}
model exhibits much lower performance, despite using a
much more complex feature. We believe the lexico-syn-
tactical similarity is much noisier as it relies on n-grams
and PoS tags, and thus propagates error from the tokeniz-
ers and PoS taggers. TheCNN text{phon} exhibits a small
but measurable performance decrease from CNN text{str},
possibly due to phonetic features capturing similar regular-
ities, while also depending on the quality of preprocessing
tools and the rule-based phonetic algorithm being relevant
for our song-based dataset. The CNN text{str, phon, lsyn}
model that combines the different textual SSMs yields a
performance comparable to CNN text{str}.
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Model Features P R F1
Random baseline n/a 18.6 18.6 18.6

Line length baseline text line length 16.7 52.8 25.4

Handcrafted �lters
RPF (our replication) 48.2 67.8 56.3

RPF [115] 56.1 59.4 57.7

RPF + n-grams 57.4 61.2 59.2

CNN text

{str} 70.4 63.0 66.5

{phon} 75.9 55.6 64.2

{lsyn} 74.8 50.0 59.9

{str, phon, lsyn} 74.1 60.5 66.6

{str, phon, lsyn} + n-grams 72.1 63.3 67.4

Table 3.2: Results with unimodal lyrics lines on MLDB dataset in
terms of Precision (P), Recall (R) and f-score (F1) in %.

In addition, we test the performance of several line-based
features on our dataset. Most notably, the n-grams feature
provides a signi�cant performance improvement producing
the best model. Note that adding the line length feature to
any CNN text model does not increase performance.

To show the portability of our method to bigger and
more heterogeneous datasets, we ran the CNN model on
the WASABI dataset (as described in Section2.3), obtaining
results that are very close to the ones obtained for the
MLDB dataset: precision: 67.4% for precision, 67.3% recall,
and 67.4% f-score using the CNN text{str} model.

Results differ signi�cantly based on genre. We split the
MLDB dataset with genre annotations into training and
test, trained on all genres, and tested on each genre sep-
arately. In Table 3.3 we report the performances of the
CNN text{str} on lyrics of different genres. Songs belonging
to genres such as Country, Rock or Pop, contain recurrent
structures with repeating patterns, which are more easily
detectable by the CNN text algorithm. Therefore, they show
signi�cantly better performance. On the other hand, the
performance on genres such as Hip Hop or Rap, is much
worse.
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Genre Lyrics[#] P R F1
Rock 6011 73.8 57.7 64.8

Hip Hop 5493 71.7 43.6 54.2

Pop 4764 73.1 61.5 66.6

RnB 4565 71.8 60.3 65.6

Alternative Rock 4325 76.8 60.9 67.9

Country 3780 74.5 66.4 70.2

Hard Rock 2286 76.2 61.4 67.7

Pop Rock 2150 73.3 59.6 65.8

Indie Rock 1568 80.6 55.5 65.6

Heavy Metal 1364 79.1 52.1 63.0

Southern Hip Hop 940 73.6 34.8 47.0

Punk Rock 939 80.7 63.2 70.9

Alternative Metal 872 77.3 61.3 68.5

Pop Punk 739 77.3 68.7 72.7

Gangsta Rap 435 73.6 35.2 47.7

Soul 603 70.9 57.0 63.0

Table 3.3: Results with unimodal lyrics lines. CNN textf strg
model performances across musical genres in the
MLDB dataset in terms of Precision ( P), Recall (R) and
F1 in %. Underlined are the performances on genres
with less repetitive text. Genres with highly repetitive
structure are in bold.
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3.3.4 Bimodal Lyrics Segmentation

In the second experiment we represent song texts via bi-
modal lyrics lines (text+audio) and experiment on the DALI
corpus. In order to test our hypotheses which text and
audio features are most relevant to detect segment bound-
aries, and whether the text and audio modalities comple-
ment each other, we compare different types of models:
baselines, text-based models, audio-based models, and �-
nally bimodal models that use both text and audio features.
We provide the following baselines: the random baseline
guesses for each line independently if it is a segment border
(with a probability of 50%) or not. The line length baselines
use as feature only the line length in characters (text-based
model) or milliseconds (audio-based model) or both, respec-
tively. These baselines are trained using a logistic regression
classi�er. All other models are CNNs using the architecture
described previously and use as features SSMs made from
different textual or audio similarities as described in Sec-
tion 3.3.2. The CNN-based models that use purely textual
features (str) are named CNN text, while the CNN-based
models using purely audio features (mfcc, chr) are named
CNN audio . Lastly, the CNN mult models are multimodal in
the sense that they use combinations of textual and au-
dio features. We name a CNN model by its modality (text,
audio, mult) as well as by the set of SSMs that it uses as fea-
tures. For example, the model CNN mult {str, mfcc} uses as
textual feature the SSM made from string similarity simstr

and as audio feature the SSM made from mfcc similarity
simmfcc.

As dataset we use the Q+ partition of the DALI, i.e.
the partition which has the highest alignment quality. See
Section 3.3.1 for explanation of the DALI partitioning. We
split the data randomly into training and test sets using
the following scheme: considering that the DALI dataset
is relatively small, we average over two different 5-fold
cross-validations. We prefer this sampling strategy for our
small dataset over a more common 10-fold cross-validation
as it avoids the test set to become too small.
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results and discussion
The results are depicted in Table 3.4. The random baseline
and the different line length baselines reach a performance
of 15.5%-33.5% F1. Interestingly, the audio-based line length
(33.5% F1) is more indicative of the lyrics segmentation than
the text-based line length (25.0% F1)6.

The model CNN text{str} performs with 70.8% F1 simi-
larly to the CNN text{str} model from the �rst experiment
(66.5% F1). The models use the exact sameSSMstr feature
and hyperparameters, but another lyrics corpus (DALI in-
stead of MLDB). We believe that as DALI was assembled
from karaoke singing instances, it likely contains more
repetitive song texts that are easier to segment using the
employed method. Note that the DALI dataset is too small
to allow a genre-wise comparison as we did in the previous
experiment using the MLDB dataset.

The CNN audio models perform similarly well than the
CNN text models. CNN audio {mfcc} reaches65.3% F1, while
CNN audio {chr} results in 63.9% F1. The model CNN audio
{mfcc, chr} performs with 70.4% F1 signi�cantly ( p < .001)
better than the models that use only one of the features.
As the mfcc feature models timbre and instrumentation,
whilst the chroma feature models melody and harmony,
they provide complementary information to the CNN audio
model which increases its performance.

Most importantly, the CNN mult models combining text-
with audio-based features constantly outperform
the CNN text and CNN audio models. CNN mult {str, mfcc} and
CNN mult {str, chr} achieve a performance of 73.8% F1 and
74.5% F1, respectively - this is signi�cantly ( p < .001) higher
compared to the 70.8% (70.4%) F1 of the best CNN text

(CNN audio ) model. Finally, the overall best performing
model is a combination of the best CNN text and CNN audio
models and delivers 75.3% F1. CNN mult {str, mfcc, chr} is
the only model to signi�cantly ( p < .05) outperform all
other models in all three evaluation metrics: precision, re-
call, and F1. Note, that all CNN mult models outperform all

6 Note that adding line length features to any CNN-based model does
not increase performance.
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Model Features P R F1
Random baseline n/a 15.7 15.7 15.7

Line length baselines
text length 16.6 51.8 25.0

audio length 22.7 63.8 33.5

text length + audio length 22.6 63.0 33.2

CNN text {str} 78.7 64.2 70.8

CNN audio

{mfcc} 79.3 55.9 65.3

{chr} 76.8 54.7 63.9

{mfcc, chr} 79.2 63.8 70.4

CNN mult

{str, mfcc} 80.6 69.0 73.8

{str, chr} 82.5 69.0 74.5

{str, mfcc, chr} 82.7 70.3 75.3

Table 3.4: Results with multimodal lyrics lines on the Q+ dataset
in terms of Precision (P), Recall (R) and F1 in %. Note
that the CNN text{str} model is the same con�guration
as in Table 2, but trained on different dataset.

CNN text and CNN audio models signi�cantly ( p < .001) in
recall.

We perform an ablation test on the alignment qual-
ity. For this, we train CNN-based models with those fea-
ture sets that performed best on the Q+ part of DALI.
For each modality (text, audio, mult), i.e. CNN text{str},
CNN audio {mfcc, chr}, and CNN mult {str, mfcc, chr}, we train
a model for each feature set on each partition of DALI
(Q+ , Q0, Q� ). We always test our models on the same
alignment quality they were trained on. The alignment
quality ablation results are depicted in Table 3.5. We �nd
that independent of the modality (text, audio, mult.), all
models perform signi�cantly ( p < .001) better with higher
alignment quality. The effect of modality on segmenta-
tion performance ( F1) is as follows: on all datasets we �nd
CNN mult {str, mfcc, chr} to signi�cantly ( p < .001) outper-
form both CNN text{str} and CNN audio {mfcc, chr}. Further,
CNN text{str} signi�cantly ( p < .001) outperforms
CNN audio {mfcc, chr} on the Q0 and Q� dataset, whereas
this does not hold on the Q+ dataset (p � .05).
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Dataset Model Features P R F1

Q+
CNN text {str} 78.7 64.2 70.8

CNN audio {mfcc, chr} 79.2 63.8 70.4

CNN mult {str, mfcc, chr} 82.7 70.3 75.3

Q0
CNN text {str} 73.6 54.5 62.8

CNN audio {mfcc, chr} 74.9 48.9 59.5

CNN mult {str, mfcc, chr} 75.8 59.4 66.5

Q�
CNN text {str} 67.5 30.9 41.9

CNN audio {mfcc, chr} 66.1 24.7 36.1

CNN mult {str, mfcc, chr} 68.0 35.8 46.7

Table 3.5: Results with multimodal lyrics lines for the alignment
quality ablation test on the datasets Q+ , Q0, Q� in
terms of Precision (P), Recall (R) and F1 in %.

3.4 error analysis

An SSM for a Rap song is depicted in Figure 3.5. As com-
mon for Rap song texts, there is no chorus (diagonal stripe
parallel to main diagonal). However, there is a highly repet-
itive musical state from line 18 to 21 indicated by the cor-
responding rectangle in the SSM spanning from ( 18,18)
to (21,21). As texts in this genre are less repetitive, the
SSM-based features are usually less reliable to determine
a song's structure. Moreover, when returning to the intro-
ductory example in Figure 3.2, we observe that verses (the
V i) and bridges (the Bi) are not detectable when looking at
the text representation only (see Figure 3.2, middle). The
reason is that these verses have different lyrics. However, as
these parts share the same melody, highlighted rectangles
are visible in the melody structure.
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Indeed, we found our bimodal segmentation model to
produce signi�cantly ( p < .001) better segmentations (75.3%
F1) compared to the purely text-based (70.8% F1) and audio-
based models (70.4% F1). The increase inF1 stems from both
increased precision and recall. The model increase in pre-
cision is observed as CNN mult often produces less false
positive segment borders, i.e. the model delivers less noisy
results. We observe an increase in recall in two ways: �rst,
CNN mult sometimes detects a combination of the borders
detected by CNN text and CNN audio . Secondly, there are
cases whereCNN mult detects borders that are not recalled
in either of CNN text or CNN audio .

Segmentation algorithms that are based on exploiting pat-
terns in an SSM, share a common limitation: non-repeated
segments are hard to detect as they do not show up in
the SSM. Note, that such segments are still occasionally
detected indirectly when they are surrounded by repeated
segments. Furthermore, a consecutively repeated pattern
such as C2-C3-C4 in Figure 3.2 is not easily segmentable
as it could potentially also form one (C 2C3C4) or two (C 2-
C3C4 or C2C3-C4) segments. Another problem is that of
inconsistent classi�cation inside of a song: sometimes, pat-
terns in the SSM that look the same to the human eye are
classi�ed differently. Note, however that on the pixel level
there is a difference, as the inference in the used CNN is
deterministic. This is a phenomenon similar to adversar-
ial examples in image classi�cation (same intension, but
different extension).

We now analyze the predictions of our different mod-
els for the example song given in Figure 3.2. We compare
the predictions of the following three different models:
the text-based model CNN text{str} (see Figure 3.2, repeti-
tive lyrics structure), the audio-based model CNN audio {chr}
(see Figure3.2, repetitive melody structure), and the bimodal
model CNN mult {str, mfcc, chr}. Starting with the �rst cho-
rus, C1, we �nd it to be segmented correctly by both
CNN text{str} and CNN audio {chr}. As previously discussed,
consecutively repeated patterns are hard to segment and
our text-based model indeed fails to correctly segment
the repeated chorus (C2-C3-C4). The audio-based model
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CNN audio {chr} overcomes this limitation and segments the
repeated chorus correctly. Finally, we �nd that in this ex-
ample both the text-based and the audio-based models fail
to segment the verses (the Vi) and bridges (the Bi) correctly.
The CNN mult {str, mfcc, chr} model manages to detect the
bridges and verses in our example.

Note that adding more modalities to a model does not
always increase its ability to detect segment borders. While
in some examples, the CNN mult {str, mfcc, chr} model de-
tects segment borders that were not detected in any of
the models CNN text{str} or CNN audio {mfcc, chr}, there are
also examples where the bimodal model does not detect
a border that is detected by both the text-based and the
audio-based models.

Finally, Figure 3.6 shows an example song where an oc-
tave shift in the chorus appears. The octave-shifted chorus
appears as repetition in the lyrics structure, but is absent
in the melody structure (green circles). Since octave-shifted
notes are dissimilar under our employed audio similarity
metrics, the diagonals parallel to the main diagonal, i.e.
repetitions, are absent in the repetitive melody structure.
Since in the lyrics the same text lines are used, the repeti-
tion appears in the repetitive lyrics structure. Note on the
other hand how the overall acoustic pitch changes after
20 lines, this is visible in the melody structure, but not in
the lyrics structure. In the melody structure, the upper left
corner square that is clearly separated from the lower right
corner square, demonstrates this. This further exempli�es
how lyrics and audio complement each other.
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3.5 related work

Besides the work of [115] that we have discussed in detail in
Section3.2, only a few papers in the literature have focused
on the automated detection of the structure of lyrics. [ 72]
report experiments on the use of standard NLP tools for the
analysis of music lyrics. Among the tasks they address, for
structure extraction they focus on lyrics having a clearly rec-
ognizable structure (which is not always the case) divided
into segments. Such segments are weighted following the
results given by descriptors used (as full length text, rela-
tive position of a segment in the song, segment similarity),
and then tagged with a label describing them (e.g. chorus,
verses). They test the segmentation algorithm on a small
dataset of 30 lyrics, 6 for each language (English, French,
German, Spanish and Italian), which had previously been
manually segmented.

More recently, [ 6] describe a semantics-driven approach
to the automatic segmentation of song lyrics, and mainly
focus on pop/rock music. Their goal is not to label a set of
lines in a given way (e.g. verse, chorus), but rather identify-
ing recurrent as well as non-recurrent groups of lines. They
propose a rule-based method to estimate such structure
labels of segmented lyrics, while in our approach we apply
machine learning methods to unsegmented lyrics.

[28] propose a new method for enhancing the accuracy of
audio segmentation. They derive the semantic structure of
songs by lyrics processing to improve the structure labeling
of the estimated audio segments. With the goal of iden-
tifying repeated musical parts in music audio signals to
estimate music structure boundaries (lyrics are not consid-
ered), [31] propose to feed Convolutional Neural Networks
with the square-sub-matrices centered on the main diag-
onals of several SSMs, each one representing a different
audio descriptor, building their work on [ 49].

For a different task than ours [ 76], use a corpus of 100
lyrics synchronized to an audio representation with in-
formation on musical key and note progression to detect
emotion. Their classi�cation results using both modalities,
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textual and audio features, are signi�cantly improved com-
pared to a single modality.

As an alternative to our CNN-based approach, Recurrent
Neural Networks can also be applied to lyrics segmentation,
for example in the form of a sequence labeller [ 70] or a
generic text segmentation model [67].

3.6 discussion : segment labell ing

Previously in this Chapter we have dealt with lyrics seg-
mentation while leaving the consecutive task of segment
labelling untouched. In this section we sketch a labelling
approach based on a song text where the segmentation is
already known. Figure 3.7 shows a song text and its seg-
mentation into the segments A, B, C, D, E, as given by the
annotation of the text. As a Pop song, this example has a
fairly common structure which can be described as: Verse
1-Chorus-Verse2-Chorus-Outro. The reasoning behind this
structure analysis is that perfectly repeating parts usually
correspond to the chorus. Hence, B and D should both be a
chorus. A and C are verses, as they lead to the chorus and
there is no visible bridge. The last segment, E, repeats the
end of the chorus and is very short, so it can be classi�ed
as an outro. While the previous analysis appears plausible,
it relies on world knowledge, such that the chorus is the
most repeated part, a verse usually leads into a chorus
(optionally via a bridge), and an outro ends a song text, but
is optional 7.

One can imagine formalizing the previously used rules
to build an automatic segment labeller. As a �rst approxi-
mation, identifying a chorus becomes tractable if we de�ne
it as the most repeated part in a song. Given the lyrics
segments, we can cluster them and measure how highly
they are repeated, while also allowing for partial repeti-
tions. What this approach boils down to is �nding useful

7 For more details on the set of structure types, we refer the reader to [ 16,
109]
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Figure 3.7: Segment structure of a Pop song (“Don't Rock The
Jukebox” by A. Jackson, MLDB-ID: 2954)
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similarity metrics to compare the lyrics segments 8. While
chorus tend to repeat themselves close to verbatim, this
does not hold for verses. While similar chorus instances are
clustered well with a simple edit distance, which similarity
metric will cluster the verses successfully remains an open
question. Combining different similarity metrics can lead
to successful clustering, for instance taking into account
the audio, as we did in the lyrics segmentation approach,
the verses will often cluster since they tend to share the
same melody, while using different words.

3.7 conclusion

In this Chapter, we have considered the problem of struc-
ture detection of song lyrics. We have broken down the
task into the two subtasks lyrics segmentation and segment
labelling. We then have addressed the task of lyrics seg-
mentation on synchronized text-audio representations of
songs. For the songs in the corpus DALI where the lyrics
are aligned to the audio, we have derived a measure of
alignment quality speci�c to our task of lyrics segmenta-
tion. Then, we have shown that exploiting both textual
and audio-based features lead our Convolutional Neu-
ral Network-based model to signi�cantly outperform the
state-of-the-art system for lyrics segmentation that relies
on purely text-based features. Moreover, we have shown
that the advantage of a bimodal segment representation
pertains even in the case where the alignment is noisy. This
indicates that a lyrics segmentation model can be improved
in most situations by enriching the segment representa-
tion by another modality (such as audio). We have brie�y
discussed the task of segment labelling and gave an ap-
proximation to chorus detection based on clustering the
lyrics segments using different similarity metrics.

As for future work, the problem of inconsistent classi�ca-
tion inside of a song (SSM patterns look almost identically,

8 Note that we use this approach with a simple edit distance to ap-
proximately �nd the chorus in our lyrics summarization approach in
Chapter 4.
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but classi�cations differ) may be tackled by clustering the
SSM patterns in such a way that very similar looking SSM
patterns end up in the same cluster. This can be seen as
a preprocessing denoising step of the SSMs where details
that are irrelevant to our task are deleted, without losing
relevant information. Furthermore, the problem that the
bimodal model sometimes fails to detect a segment border,
even if the submodels correctly detected that border may
be tackled by implementing a late fusion approach [ 105]
where the prediction of the bimodal model is conditioned
on the predictions of both the text-based and the audio-
based submodels. Finally, we would like to experiment
with further modalities, for instance with subtitled music
videos where text, audio, and video are all synchronized
to each other. For segment labelling an obvious way to go
would be to manually label a dataset and then learn to
predict the segment labels using supervised learning. We
hypothesize that this labelling is mostly useful for lyrics
with a canonical structure in genres such as Pop or Country.
Instead of regressing to prede�ned labels, an alternative di-
rection is to identify types of segments that are meaningful
to downstream tasks such as music recommendation and
then try to come up with new taxonomies to house these
types of segments.
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LY R I C S C O N T E N T

In this Chapter we deal with the problem of representing the
content of lyrics. We explain the limitations we found with repre-
sentations based on topic models and information extraction. We
then introduce our �nal content representation by means of text
summarization. We propose a method to summarize the lyrics in
a way that respects their intimate relation to music1.
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4.1 introduction

There are different routes to go about describing the content
of a song text and which way to go depends on the goal
we want to achieve with the content representation. We

1 This work has been published at RANLP 2019.
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fundamentally had two applications in mind: ( 1) generating
useful search engine snippets when someone searches for
lyrics and ( 2) allowing a user search for general themes in
lyrics.

With “theme” we mean for example (T) Someone is swim-
ming in the sea. Such a theme T can be instantiated in lyrics
with lines such as (t1) I swam in the oceanor (t2) He saw
her swimming with the dolphins. Given a method that can
identify the main themes of the lyrics and induce T from
instances t1, t2, we can generate a useful content represen-
tation of the song text by means of the central themes in
it. In turn, this can help solving the dual problem ( 2), i.e.
�nding examples t 1, t2 of lyrics that instantiate T. To work
towards achieving such an endeavor, we initially explored
methods based on topic modelling and information extrac-
tion. In the following, we describe the limitations of those
approaches and converge to the approach we ultimately
took - based on extractive summarization.

Using standard topic modelling methods such as Latent
Dirichlet Allocation (LDA) [ 14] or Non-negative Matrix Fac-
torization (NMF) [ 61] we get for each song text a probability
distribution over topics. In turn, topics are represented as
weighted bags of words (wBOW). To associate these wBOW
with semantically meaningful concepts, there are two stan-
dard approaches. First, manually labelling the wBOW and
second, automatically inducing the topic labels [ 13]. While
the manual labelling is an arguably subjective task, we
found the automatic labelling approaches not suitable for
our datasets. In both cases, the labels tend to be rather
abstract, such asloveor family or war - more abstract than
what our requirements for the themes are. We consequently
ruled out a content description of the lyrics as a mixture of
topics2.

We also experimented with an information extraction
approach, with the goal to identify the main relations in
the lyrics. For instance, I walked up the hilland She climbed
the mountainwere supposed to result in similar extracted

2 Note that we nevertheless implement a basic topic model in our NLP
annotations for the WASABI Song Corpus, as described in Section 6.2.
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relations. This then would facilitate search for lyrics where
someone climbs a mountain. To achieve this technically, we
extracted from each lyrics line the relations using Open
Information Extraction [ 3]. We tried to use this approach to
extract simple relations from a sentence, such asclimbs(She,
the mountain). However, the low quality of the resulting
relations prohibited the successful use of this approach.
As discussed previously, standard NLP tools such as part
of speech (POS) taggers are not well-suited for applica-
tion to lyrics, given that lyrics lines often consist of partial
sentences, also employing higher degrees of �gurative lan-
guage. Consequently, higher-level tasks that rely on POS
taggers, such as information extraction applications, can
suffer in performance.

While the topic model approach generated results that
were too abstract for our application, the information ex-
traction approach in turn gave us results that were neither
abstract nor correct enough. We �nally decided as an in-
termediate step towards �nding abstract themes in lyrics
to represent the main themes by generating an extractive
summary of the lyrics. While this approach does not ab-
stract over instances, we see this as a successful �rst step
for extracting correct instancesof the themes. In Section 4.6
we describe how we aim to reach more abstraction for our
method.

Automatic text summarization is the task of producing a
concise and �uent summary while preserving key informa-
tion content and overall meaning of a text [ 1]. Numerous
approaches have been developed to address this task and
applied widely in various domains including news arti-
cles [29], scienti�c papers [ 73], web content as blogs [56],
customer reviews [96] and social media messages [53]. But
no approaches exist for summarizing song lyrics. Such
summaries can, however be useful, for instance to produce
adequate snippets for a search engine dedicated to an on-
line song collection or for music digital libraries. From a
linguistic point of view however, lyrics are a very peculiar
genre of document and generic summarization methods
may not be appropriate when the input for summarization
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comes from a speci�c domain or type of genre as songs
are [83]. Compared to news documents, for instance, lyrics
have a very different structure. Given the repeating forms,
peculiar structure (e.g. the segmentation into verse, cho-
rus, etc.) and other unique characteristics of song lyrics,
we need the summarization algorithms to take advantage
of these additional elements to more accurately identify
relevant information in song lyrics. But just as such char-
acteristics enable the exploration of new approaches, other
characteristics make the application of summarization algo-
rithms very challenging, as the presence of repeated lines,
the discourse structure that strongly depends on the inter-
relation of music and words in the melody composition,
the heterogeneity of musical genres each featuring charac-
teristic styles and wording [ 16], and simply the fact that
not all songs tell a story.

In this direction, this Chapter focuses on the following
research questions:What is the impact of the context in sum-
marizing song lyrics?. This question is broken down into
two sub questions: 1) How do generic text summarization
methods perform over lyrics?and 2) Can such peculiar context
be leveraged to identify relevant sentences to improve song text
summarization?

To answer our research questions, we experiment with
generic unsupervised state-of-the-art text summarization
methods (i.e. TextRank, and a topic distribution based
method) to perform lyrics summarization, and show that
adding contextual information helps such models to pro-
duce better summaries. Speci�cally, we enhance text sum-
marization approaches with a method inspired by audio
thumbnailing techniques, that leverages the repetitive struc-
ture of song texts to improve summaries. We show how
summaries that take into account the audio nature of the
lyrics outperform the generic methods according to both
an automatic evaluation over 50k lyrics, and judgments of
26 human subjects.

In the following, Section 4.2 reports on related work.
Section 4.3 presents the lyrics summarization task and the
proposed methods. Sections4.4 and 4.5 report on the exper-
iments and on the evaluation, respectively. In Section 4.6 we
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discuss how to make our method more abstract. Section 4.7
concludes the Chapter.

4.2 related work in summarization

This section reports on the related work on both text and
audio summarization methods.

4.2.1 Text Summarization

In the literature, there are two different families of ap-
proaches for automatic text summarization: extraction and
abstraction [1]. Extractive summarization methods identify
important elements of the text and generate them verbatim,
i.e. they depend only on extraction of sentences or words
from the original text. In contrast, abstractive summariza-
tion methods interpret and examine the text to generate a
new shorter text that conveys the most critical information
from the original text. Even though summaries created by
humans are usually not extractive, most of the summariza-
tion research has focused on extractive methods. Purely
extractive summaries often give better results [ 82], due
to the fact that latter methods cope with more complex
problems such as semantic representation, inference and
natural language generation. Existing abstractive summa-
rizers often rely on an extractive pre-processing component
to produce the abstract of the text [ 10, 62]. Consequently, in
this Chapter we focus on extractive summarization meth-
ods, also given the fact that lyrics i) strongly use �gurative
language which makes abstractive summarization even
more challenging; and ii) the choice of the words by the
composer may also have an importance for capturing the
style of the song.

As no available gold-standard of human-produced sum-
maries of song texts exists, we focus on unsupervised
methods for text summarization, the ones targeted in our
study. Most methods have in common the process for sum-
mary generation: given a text, the importance of each sen-
tence of that text is determined. Then, the sentences with
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highest importance are selected to form a summary. The
ways different summarizers determine the importance of
each sentence may differ:Statistics-based summarizersextract
indicator features from each sentence, e.g. [42] use among
others the sentence position and length and named enti-
ties as features.Topic-based summarizersaim to represent
each sentence by its underlying topics. For instance, [55]
apply Probabilistic Latent Semantic Analysis, while Latent
Dirichlet Allocation is used in [ 4] to model each sentence's
distribution over latent topics. Another type of summa-
rization methods is graph-based summarizers. Three of the
most popular graph-based summarization algorithms are
TextRank [77], LexRank [39], and [92]. These methods work
by constructing a graph whose nodes are sentences and
whose graph edge weights are sentence similarities. Then,
the sentences that are central to the graph are found by
computing the PageRank [88]. Contrarily to all previously
described methods, systems using supervised machine learn-
ing form another type of summarizers. For instance, [ 41]
treats extractive summarization as a binary classi�cation
task, where they extract indicator features from sentences
of gold summaries and learn to detect the sentences that
should be included in a summary.

context -specific summarization . If speci�c knowl-
edge about the application scenario or the domain of the
summarized text is available, generic summarization meth-
ods can be adapted to take into account the prior informa-
tion. In query-based summarization [ 87, 113], the user's
query is taken into account when generating a summary.
Summarization of a scienti�c paper can be improved by
considering the citations of it, as in [ 34]. However, to the
best of our knowledge no summarization methods have
been proposed for the domain of song texts. In this pa-
per we present a summarization method that uses prior
knowledge about the text it summarizes to help generic
summarizers generate better summaries.

evaluation criteria and methods . Summaries
should i) contain the most important information from
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input documents, ii) not contain redundant information,
iii) be readable, hence they should be grammatical and
coherent [93]. While a multitude of methods to identify
important sentences has been described above, several ap-
proaches aim to make summaries less redundant and more
coherent. The simplest way to evaluate summaries is to let
humans assess the quality, but this is extremely expensive.
The factors that humans must consider when giving scores
to each candidate summary are grammaticality, non redun-
dancy, integration of most important pieces of information,
structure and coherence [102]. The more common way is
to let humans generate possibly multiple summaries for a
text and then automatically assess how close a machine-
made summary is to the human gold summaries comput-
ing ROUGE scores [68], which boils down to measuring
n-gram overlaps between gold summaries and automatic
summary. More recently there have been attempts to rate
summaries automatically without the need for gold sum-
maries [83]. The key idea is that a summary should be
similar to the original text in regard to characteristic cri-
teria as the word distribution. [ 71] �nd that topic words
are a suitable metric to automatically evaluate micro blog
summaries.

4.2.2 Audio Summarization

Lyrics are texts that accompany music. Therefore, it is
worthwhile to see if methods in audio summarization can
be transferred to lyrics summarization. In audio summa-
rization the goal is to �nd the most representative parts
in a song, in Pop songs those are usually the chorus and
the bridge, in instrumental music the main theme. The task
of creating short audio summaries is also known as audio
thumbnailing [8, 25, 66], as the goal is to produce a short
representation of the music that �ts onto a thumbnail, but
still covers the most representative parts of it. In a recent
approach of audio thumbnailing [ 59], the authors generate
a Double Thumbnailfrom a musical piece by �nding the
two most representative parts in it. For this, they search for
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candidate musical segments in an a priori unsegmented
song. Candidate musical segments are de�ned as sequences
of music that more or less exactly repeat themselves. The
representativeness of each candidate segment to the whole
piece is then estimated by their �tness metric. They de�ne
the �tness of a segment as a trade-off between how exactly
a part is repeated and how much of the whole piece is
covered by all repetitions of that segment. Then, the audio
segments along with their �tness allow them to create an
audio double thumbnail consisting of the two �ttest audio
segments.

4.3 our approach to lyrics summarization

Song texts are arranged in segments and lines. For instance
the song text depicted in Figure 4.1 consists of 8 segments
and 38 lines. Given a song text S consisting of n lines of text,
S = ( x1, ...,xn), we de�ne the task of extractive lyrics summa-
rization as the task of producing a concise summary sumof
the song text, consisting of a subset of the original text lines:
sum(S) � S, where usually jsum(S)j << jSj. We de�ne
the goal of a summary as to preserve key information and
the overall meaning of a song text.

We address this task with the following unsupervised
extractive summarization methods. We �rst apply the pop-
ular graph-based summarizer TextRank. Second, we adapt
of a topic-based method, which we call TopSum. Third, we
introduce a method inspired by audio thumbnailing, which
we dub Lyrics Thumbnail . This method aims at identify-
ing the most representative parts of the original song text
and then creating a summary from them. Lastly, based on
these three methods, we build model combinations. The
combination process is described in Section 4.4.2. While for
TextRank we rely on the off-the-shelf implementation of [ 7],
in the following we describe the other two methods.
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4.3.1 Topic-based Summarization: TopSum

We implement a simple topic-based summarization model,
which we dub TopSum , that aims to construct a summary
whose topic distribution is as similar as possible to that
of the original text. Following [ 61], we train a topic model
by factorizing a tf-idf-weighted term-document matrix of
a song text corpus (see Section4.4.2) using non-negative
matrix factorization into a term-topic and a topic-document
matrix. Given the learnt term-topic matrix, we compute a
topic vector t for each new document (song text). In order
to treat t as a (pseudo-) probability distribution over latent
topics t i , we normalize t by applying l t.t/ å t i2 t t i to it.
Given the distributions over latent topics for each song text,
we then incrementally construct a summary by greedily
adding one line from the original text at a time (same
mechanism as in the KLSum algorithm in [ 52]); that line
x� of the original text that minimizes the distance between
the topic distribution tS of the original text S and the topic
distribution of the incremental summary sum(S):

x� = argmin
x2 (Snsum(S))

f W(tS, tsum(S)+ x)g

W is the Wasserstein distance [112] and is used to mea-
sure the distance between two probability distributions (an
alternative to Jensen-Shannon divergence [69]).

4.3.2 Fitness-based Summarization: Lyrics Thumbnail

Inspired by work in audio thumbnailing [ 59], we transfer
their �tness measure for audio segments to compute the
�tness of lyrics segments. Analog to an audio thumbnail,
we de�ne a Lyrics Thumbnail as the most representative
and repetitive part of the song text. Consequently, it usu-
ally consists of (a part of) the chorus. In our corpus the
segments are annotated (as double line breaks in the lyrics),
so unlike in audio thumbnailing, we do not have to induce
segments, but rather measure their �tness. In the following,
we describe the �tness measure for lyrics segments and
how we use this to generate a summary of the lyrics.



4.3 our approach to lyrics summarization 65

lyrics fitness
Given a segmented song text S = ( S1, ...,Sm) consisting of
text segments Si , where each Si consists of jSi j text lines,
we cluster the Si into partitions of similar segments. For
instance, the lyrics in Figure 4.1 consists of 8 segments and
38 lines, where the cluster f S5, S6, S7g are the instances of
the chorus. f S1, S3g are the verses and f S4g is the bridge
leading into the chorus. The �tness Fit of the segment
cluster C � S is de�ned through the precision pr of the
cluster and the coverage coof the cluster. pr describes how
similar the segments in C are to each other while cois the
relative amount of lyrics lines covered by C:

pr(C) = ( å
Si ,Sj2C

i< j

1) � 1 � å
Si ,Sj2C

i< j

sim(Si , Sj)

co(C) = ( å
Si2S

jSi j)
� 1 � å

Si2C
jSi j

where sim is a normalized similarity measure between text
segments.Fit is the harmonic mean between pr and co. The
�tness of a segment Si is de�ned as the �tness of the cluster
to which Si belongs:

8Si 2 C : Fit(Si ) = Fit(C) = 2
pr(C) � co(C)
pr(C) + co(C)

For lyrics segments without repetition the �tness is de-
�ned as zero. Based on the �tness Fit for segments, we
de�ne a �tness measure for a text line x. This allows us
to compute the �tness of arbitrary summaries (with no
or unknown segmentation). If the text line x occurs fi (x)
times in text segment Si , then its line �tness f it is de�ned
as:

f it (x) = ( å
Si2S

fi (x)) � 1 � å
Si2S

fi (x) � Fit(Si )
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f i tness -based summary
Analog to [ 59]'s audio thumbnails, we create �tness-based
summaries for a song text. A Lyrics Double Thumbnailcon-
sists of two segments: one from the �ttest segment cluster
(usually the chorus), and one from the second �ttest seg-
ment cluster (usually the bridge) 3. If the second �ttest clus-
ter has a zero �tness, we generate a Lyrics Single Thumbnail
solely from the �ttest cluster. If the thumbnail generated
has a length of k lines and we want to produce a summary
of p < k lines, we select the p lines in the middle of the
thumbnail following [ 25]'s Section-transition Strategythat
they �nd to capture the hookof the music more likely 4.

4.4 experimental setting

In the following we describe the experimental setup we
have used to evaluate the different lyrics summarization
approaches. In Section4.4.1 we describe the dataset used.
Then, in Section 4.4.2 we detail the parametrizations of the
summarization models and de�ne the method of combin-
ing different summarization methods.

4.4.1 Dataset

From the WASABI Song Corpus (see Section2.3) we select
a subset of 190k unique song texts with available genre
information, to allow for a genre-wise evaluation. We focus
on the ten most frequent genres in the corpus, as the corpus
has spurious genres, in total 416 different ones. We add
two additional genres from the underrepresented Rap �eld:
Southern Hip Hop and Gangsta Rap. The dataset then
contains 95k song lyrics from 12 different genres.

To allow for a fair comparison between different sum-
maries we control for the summary length. [ 8] recommend
to create audio thumbnails of the median length of the

3 We pick the �rst occurring representative of the segment cluster. Which
segment to pick from the cluster is a potential question for future work.

4 They also experiment with other methods to create a thumbnail, such
as section initial or section ending.
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chorus on the whole corpus. We follow this and estimate
the chorus of each song text by computing its Lyrics Sin-
gle Thumbnail. We �nd the median chorus length to be
four lines, hence we decide to generate summaries of such
length for all lyrics and all summarization models to ex-
clude the length bias in the methods comparison 5. As the
length of the lyrics thumbnail is lower-bounded by the
length of the chorus in the song text, we keep only those
lyrics with an estimated chorus length of at least four lines.
The �nal corpus of 12 genres consists of50k lyrics with
the following genre distribution: Rock: 8.4k, Country: 8.3k,
Alternative Rock: 6.6k, Pop: 6.9k, R&B: 5.2k, Indie Rock:
4.4k, Hip Hop: 4.2k, Hard Rock: 2.4k, Punk Rock: 2k, Folk:
1.7k, Southern Hip Hop: 281, Gangsta Rap:185.

4.4.2 Models and Con�gurations

We create summaries using the three summarization meth-
ods described in Section 4.3. The TextRank method is based
on graph centrality ; it creates summaries that contain the
sentences that are most central to the text. The TopSum
method creates summaries that contain sentences that cap-
ture the topics of the text; based on an analysis of the
topic distribution . Finally, the Lyrics Thumbnail contains
the lines that are most repeated and representative for the
lyrics; based on the �tness metric of the lyrics. We hypothe-
size that these methods are somewhat complementary and
therefore we also experiment with model combinations (de-
scribed below). While the Lyrics Thumbnail is generated
from the full segment structure of the lyrics including its du-
plicate lines, all other models are fed with unique text lines
as input (i.e. rendundant lines are deleted). This is done to
produce less redundant summaries, given that for instance,
TextRank scores each duplicate line the same, hence it is
prone to create summaries with all identical lines. TopSum
can suffer from a similar shortcoming: if there is a duplicate
line close to the ideal topic distribution, adding that line

5 We leave the study of other measures to estimate the summary length
to future work.
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again will let the incremental summary under construction
stay close to the ideal topic distribution. As previously ex-
plained, all models were instructed to produce summaries
of four lines. The summary lines were arranged in the same
order they appear in the original text 6. We use the TextRank
implementation 7 of [7] without removing stop words. Since
the lyrics lines in the input can be quite short, we avoid
losing all content of the line if removing stop words. The
topic model for TopSum is built using non-negative ma-
trix factorization with scikit-learn 8 [97] for 30 topics on
the full corpus of 190k lyrics 9. For the topical distance, we
only consider the distance between the three most relevant
topics in the original text, following the intuition that one
song text usually covers only a small amount of topics. The
Lyrics Thumbnail is computed using String-based distance
between text segments to facilitate clustering. This similar-
ity has been shown in [ 115] to indicate segment borders
successfully. In our implementation, segments are clustered
using the DBSCAN [ 40] algorithm 10.

model combination
To test the hypothesis if summaries can bene�t from the
complementary perspectives the three different summariza-
tion methods take, we experiment with model combina-
tions. Table 4.1 de�nes the models we use in the experi-
ments along with the model names we will use henceforth
to refer to them.

In the following we detail the method we have used
to combine different summarizers. For any lyrics line, we
can obtain a score from each of the applied models. Rank
provides a score for each line, T opic provides a distance
between the topic distributions of an incremental summary
and the original text, and Fit provides the �tness of each
line. We treat our summarization methods as blackboxes

6 In case of repeated parts, the �rst position of each line was used as
original position.

7 https://github.com/summanlp/textrank
8 https://scikit-learn.org
9 loss='kullback-leibler'

10 eps=0.3, min_samples=2

https://github.com/summanlp/textrank
https://scikit-learn.org
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Model Summarization Methods

Rank TextRank

T opic TopSum

Fit Lyrics Thumbnail (LT)

RankT opic TextRank, TopSum

RankT opicFit TextRank, TopSum, LT

Table 4.1: The models used in our experiment and the summa-
rization methods they use.

and use a simple method to combine the scores the dif-
ferent methods provide for each line. Given the original
text separated into lines S = ( x1, ...,xn), a summary is con-
structed by greedily adding one line x� at a time to the
incremental summary sum(S) � S such that the sum of
normalized ranks of all scores is minimal:

x� = argmin
[

x
f å

A
RA (x)g

Here x 2 (Sn sum(S)) and A 2 f Rank, T opic, Fitg. The
normalized rank RA (x) of the score that method A assigns
to line x is computed as follows: �rst, the highest scores 11

are assigned rank 0, the second highest scores get rank1,
and so forth. Then the ranks are linearly scaled to the [ 0,1]
interval, so each sum of ranks å A RA (x) is in [ 0,3].

4.5 evaluation

We evaluate the quality of the produced lyrics summary
both soliciting human judgments on the goodness and
utility of a given summary (Section 4.5.1), and through
an automatic evaluation of the summarization methods
(Section 4.5.2) to provide a comprehensive evaluation.

11 In the case of topical distance, a “higher score” means a lower value.
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4.5.1 Human Evaluation

We performed human evaluation of the different summa-
rization methods introduced before by asking participants
to rate the different summaries presented to them by spec-
ifying their agreement / disagreement according to the
following standard criteria [ 93] plus one additional crite-
rion coming from our de�nition of the lyrics summarization
task:

� Informativeness : The summary contains the main
points of the original song text.

� Non-redundancy : The summary does not contain du-
plicate or redundant information.

� Coherence: The summary is �uent to read and gram-
matically correct.

� Meaning : The summary preserves the meaning of the
original song text.

An experimental psychologist expert in Human Computer
Interaction advised us in de�ning the questionnaire and
setting up the experiment. 26 participants - 12 nationalities,
18 men, 8 women, aged from 21 to 59 - were taking a
questionnaire (Google Forms), consisting of rating 30 items
with respect to the criteria de�ned before on a Likert scale
from 1 (low) to 5 (high). Each participant was presented
with 5 different summaries - each produced by one of
the previously described summarization models - for 6
different song texts. Participants �rst read the experimental
instruction (see Figure 4.2) to familiarize themselves with
the task at hand.

The experimental subjects were given example ratings for
the different criteria in order to familiarize them with the
procedure. Then, for each song text, the original song text
along with its 5 summaries were presented in random order
and had to be rated according to the above criteria. For the
criterion of Meaning, we asked participants to give a short
explanation in free text for their score. The selected 6 song
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Figure 4.2: The experimental instruction we provided to the par-
ticipants to explain the experimental paradigm.

texts12 have a minimum and a median chorus length of 4
lines and are from different genres, i.e. Pop/Rock ( 4), Folk
(1) and Rap (1), similar to our corpus genre distribution.
Song texts were selected from different lengths (18-63 lines),
genders of singer (3 male, 3 female), topics (family, life,
drugs, relationship, depression), and mood (depressive,
angry, hopeful, optimistic, energetic). The artist name and
song title were not shown to the participants.

results
Figure 4.3 shows the ratings obtained for each criterion.
We examine the signi�cant differences between the mod-
els performances by performing a paired two-tailed t-test.
The signi�cance levels are: 0.05� , 0.01�� , 0.001��� , and n.s.
First, Informativeness and Meaning are rated higher �� for
the combined model RankT opic compared to the single
models Rank and T opic. Combining all three models im-

12 Pills N Potionsby Nicki Minaj, Hurt by Nine Inch Nails, Real to meby
Brian McFadden, Somebody That I Used To Knowby Gotye, Receiveby
Alanis Morissette, Let's Start A Bandby Amy MacDonald
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Figure 4.3: Human ratings per summarization model in terms of
average and standard deviation.

proves the summaries further: both for Informativeness and
Meaning the model RankT opicFit is rated higher ��� than
RankT opic. Further, summaries created by RankT opicFit
are rated higher ��� in Coherence than summaries from
any other model - except from Fit (n.s. difference). Sum-
maries are rated on the same level (n.s. differences) for
Non-redundancy in all but the Rank and Fit summaries,
which are perceived as lower ��� in Non-redundancy than
all others. Note, how the model RankT opicFit is more
stable than all others by exhibiting lower standard devi-
ations in all criteria except Non-redundancy. The criteria
Informativeness and Meaning are highly correlated (Pear-
son correlation coef�cient 0.84). Correlations between other
criteria range between 0.29 and 0.51.

Overall, leveraging the Lyrics Fitness in a song text
summary improves summary quality. Especially with re-
spect to the criteria that, we believe, indicate the sum-
mary quality the most - Informativeness and Meaning - the
RankT opicFit method is signi�cantly better performing
and more consistent.

Figure 4.1 shows an example song text and example sum-
maries from the experiment. Summary 1 is generated by
Fit and consists of the chorus. Summary 2 is made by the
method RankT opicFit and has relevant parts of the verses
and the chorus, and was rated much higher in Informa-
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Evaluation criterion Genre Rank T opic RankT opic Fit RankT opicFit original text

Distributional
Semantics [%]

Rock / Pop 92 100 97 90 93

Rap 94 100 99 86 92 n/a

å 92 100 98 90 93

Topical [%]
Rock / Pop 44 100 76 41 64

Rap 58 100 80 48 66 n/a

å 46 100 77 42 64

Coherence [%]
Rock / Pop 110 95 99 99 100

Rap 112 115 112 107 107 100

å 110 97 101 100 101

Lyrics
�tness [%]

Rock / Pop 71 53 63 201 183

Rap 0 0 0 309 249 100

å 62 47 55 214 191

Table 4.2: Automatic evaluation results for the 5 summarization
models and 2 genre clusters. Distributional Semantics
and Topical are relative to the best model (= 100%),
Coherence and Fitness to the original text (=100%).

tiveness and Meaning. We analyzed the free text written
by the participants to comment on the Meaning criterion,
but no relevant additional information was provided; the
participants mainly summarized their ratings.

4.5.2 Automatic Evaluation

We computed four different indicators of summary qual-
ity on the dataset of 50k songs that we have described
previously (see Section 4.4.1). Three of the criteria use the
similarity between probability distributions P, Q, i.e. we
compute the Wasserstein distance between P and Q (cf.
Section 4.3.1) and apply l x. x� 1 to it 13. Our criteria for the
automatic evaluation of summary quality are the following:

� Distributional Semantics : similarity between the word
distributions of original and summary, cf. [ 69]. We
give results relative to the similarity of the best per-
forming model (= 100%).

� Topical : similarity between the topic distributions of
original and summary. Restricted to the 3 most rele-
vant topics of the original song text. We give results

13 This works as we always deal with distances > 0.
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relative to the similarity of the best performing model
(=100%).

� Coherence: average similarity between word distri-
butions in consecutive sentences of the summary, cf.
[104]. We give results relative to the coherence of the
original song text (= 100%).

� Lyrics �tness : average line-based �tness f it (cf. Sec-
tion 4.3) of the lines in the summary. We give results
relative to the Lyrics �tness of the original song text
(=100%).

results
When evaluating each of the 12 genres, we found two clus-
ters of genres to behave very similarly. Therefore, we report
the results for these two groups: the Rapgenre cluster con-
tains Hip Hop, Southern Hip Hop, and Gangsta Rap. The
Rock / Popcluster contains the 9 other genres. Results of
the different automatic evaluation metrics are shown in
Table 4.2. Distributional Semantics metrics have previously
been shown [69, 104] to highly correlate with user respon-
siveness judgments. We would expect correlations of this
metric with Informativeness or Meaning criteria therefore,
as those criteria are closest to responsiveness, but we have
found no large differences between the different models
for this criterion. The summaries of the T opicmodel have
the highest similarity to the original text and the Fit have
the lowest similarity of 90%. The difference between the
highest and lowest values are low.

For the Topical similarity, the results are mostly in the
same order as the Distributional Semantics ones, but with
much larger differences. While the T opic model reaches
the highest similarity, this is a self-ful�lling prophecy, as
summaries of T opicwere generated with the objective of
maximizing topical similarity. The other two models that
incorporate T opic (RankT opic and RankT opicFit ), show
a much higher topical similarity to the original text than
Rank and Fit .

Coherence is rated best in Rank with 110%. All other
models show a coherence close to that of the original text
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- between 97% and 101%. We believe that the increased
coherence ofRank is not linguistically founded, but merely
algorithmic. Rank produces summaries of the most central
sentences in a text. The centrality is using the concept of
sentence similarity. Therefore, Rank implicitly optimizes
for the automatic evaluation metric of coherence, based on
similar consecutive sentences. Sentence similarity seems to
be insuf�cient to predict human judgments of coherence in
this case.

As might be expected, methods explicitly incorporating
the Lyrics �tness produce summaries with a �tness much
higher than the original text - 214% for the Fit and 191% for
the RankT opicFit model. The methods not incorporating
�tness produce summaries with much lower �tness than
the original - Rank 62%, T opic47%, and RankT opic55%.
In the Rap genre this �tness is even zero, i.e. summaries
(in median) contain no part of the chorus.

Overall, no single automatic evaluation criterion was
able to explain the judgments of our human participants.
However, considering Topical similarity and Lyrics �tness
together gives us a hint. The model Fit has high �tness
(214%), but low Topical similarity ( 42%). The T opicmodel
has the highest Topical similarity ( 100%), but low �tness
(47%). RankT opicFit might be preferred by humans as
it strikes a balance between Topical similarity ( 64%) and
�tness ( 191%). Hence,RankT opicFit succeeds in capturing
lines from the most relevant parts of the lyrics, such as the
chorus, while jointly representing the important topics of
the song text.

Our experimental participants regularly commented that
the task at hand was quite hard, leading us to believe
that more context - especially the accompanying music - is
required to better assess the quality of the presented lyrics
summaries.

4.6 discussion : abstract themes

As we explained in the introduction, our ultimate goal of
content description is to �nd the important general themes
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from the lyrics. While our previously presented method
achieves to derive important sentences of the song text, an
interesting approach to experiment can be to �rst summa-
rize extractively, then abstract over the space of extracted
lyrics lines. A straightforward way to achieve abstraction is
with sentence embeddings [35], i.e. embed the lyrics lines
into a vector space, such that I swam in the oceanand He saw
her swimming with the dolphinshave similar vectors. Then,
in a further step, we can measure the level of abstraction
of each sentence with the help of ontologies. For exam-
ple, I and Shecan be abstracted toSomeone. Depending on
the requirement of the speci�c application, we then can
instantiate the theme with a useful level of abstraction.

4.7 conclusion

In this Chapter we have discussed content descriptions
of lyrics by different means, such as topic models, infor-
mation extraction and ultimately developed an extractive
summarization method tailored to song lyrics. We have
de�ned and addressed the task of lyrics summarization.
We have applied both generic unsupervised text summa-
rization methods (TextRank and a topic-based method we
called TopSum), and a method inspired by audio thumb-
nailing on 50k lyrics from the WASABI corpus. We have
carried out an automatic evaluation on the produced sum-
maries computing standard metrics in text summarization,
and a human evaluation with 26 participants, showing
that using a �tness measure transferred from the musicol-
ogy literature, we can amend generic text summarization
algorithms and produce better summaries.

In future work, we will model the importance of a line
given the segment to avoid cutting off important parts of
the chorus, as we sometimes observed. Moreover, we plan
to address the challenging task of abstractive summariza-
tion over song lyrics, with the goal of creating a summary
of song texts in prose-style - more similar to what humans
would do, using their own words. For the more general task
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of �nding abstract themes in lyrics, we have sketched in the
previous discussion (see Section4.6) a route to progress.





5
LY R I C S P E R C E P T I O N

In this Chapter, we deal with the problem of how lyrics are per-
ceived in the world. As an instantiation, we discuss the problem
of detecting explicit content in a song text1. This task proves
to be very hard and we show that the dif�culty partially arises
from the subjective nature of perceiving lyrics in one way or
another depending on the context. Furthermore, we glance at the
problem of how emotions are perceived in lyrics: we present our
preliminary results on Emotion Recognition.
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Figure 5.1: Dimensions of musical perception. Illustration taken
from [ 103].

5.1 introduction

As we explained at the beginning of this Thesis (Section 1.1),
the different dimensions of perception of music can be de-
scribed as music content, music context and listener-related
factors. In this model of music perception, as illustrated in
Figure 5.1, the listener-related factors are called user prop-
erties and user context. As an example, thesocial context
as part of the user context, and the musical preferences
as part of the user properties, both in�uence how we feel
when we listen to music with a lot of swear words. While
a more sensitive person who favors Country music may
�nd this language use offensive, someone who favors Rap
music and is not bothered by the use of strong language,
may �nd it even funny.

While in the previous Chapters we have mostly focused
on the music content and context dimensions, in this Chap-
ter we face problems which to a larger degree involve the
listener's perspective and thus ultimately a more subjective
judgement. As an instantiation, we discuss the problem of
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detecting explicit content in a song text . This task proves
to be very hard and we show that the dif�culty partially
arises from the subjective nature of perceiving lyrics in one
way or another depending on the context. Furthermore, we
glance at the problem of how emotions are perceived in
lyrics by presenting our preliminary results on Emotion
Recognition.

Some content is inappropriate for some ages and mu-
sic is no exception. Content industries have been actively
searching for means to help adults determine what is and
is not appropriate for children. In the USA, in 1985, the
Recording Industry Association of America (RIAA) intro-
duced the Parental Advisory Label (PAL) in order to alert
parents of content unsuitable for children because of pro-
fanity or inappropriate references 2. PAL is “a notice to
consumers that recordings identi�ed by this mark may
contain strong language or depictions of violence, sex or
substance abuse”3 and that parental discretion is advised.
In the UK, the British Phonographic Industry (BPI) adds
to this list “racist, homophobic, misogynistic or other dis-
criminatory language or behavior; or dangerous or criminal
behavior” 4.

In the case of a song, the explicit logo is applied when
the lyrics or content of a song matches one of these criteria,
raising the problem of detecting and labelling explicit songs
in a scalable way.

Within the Natural Language Processing community,
there have been several efforts to deal with the problem
of online abusive language detection, since the computa-
tional analysis of language can be used to quickly identify
offenses and ease the removal of abusive messages. Several
workshops [ 48, 90] and evaluation campaigns [ 15, 46, 116]
have been recently organized to discuss existing approaches

2 Parental Advisory https://en.wikipedia.org/wiki/Parental _

Advisory
3 RIAA PAL https://www.riaa.com/resources-learning/

pal-standards/
4 BPI Parent Advisory https://www.bpi.co.uk/media/1047/

parental-advisory-guidelines.pdf

https://en.wikipedia.org/wiki/Parental_Advisory
https://en.wikipedia.org/wiki/Parental_Advisory
https://www.riaa.com/resources-learning/pal-standards/
https://www.riaa.com/resources-learning/pal-standards/
https://www.bpi.co.uk/media/1047/parental-advisory-guidelines.pdf
https://www.bpi.co.uk/media/1047/parental-advisory-guidelines.pdf
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to abusive language detection, propose shared tasks and
foster the development of benchmarks for system evalua-
tion. These have led to the creation of a number of datasets
for abusive language detection in different languages, that
have been shared within the NLP research community.
The SemEval2019tasks HatEval [9] and OffensEval [ 119]
have aimed at the multilingual detection of hate speech
against women or immigrants and the categorization of
hate speech, respectively.

In this direction, and given the similarity with the abu-
sive language detection task, this Chapter addresses the
problem of explicit content detection in song lyrics as a
binary classi�cation task: a song can be labelled either as
explicit or clean (=not explicit). To this end, we deal with
the following research question: given the lyrics of a song,
can we learn to detect if that text contains explicit content?This
question is broken down into the sub questions: 1) how effec-
tive are different machine learning methods in learning to detect
explicit content in lyrics?and 2) What qualitative characteristics
contribute to the task's inherent dif�culty and subjectivity?

To address our research questions, we compare auto-
mated methods ranging from dictionary-based lookup to
state-of-the-art deep neural networks to automatically de-
tect explicit contents in English lyrics. We show that more
complex models perform only slightly better on this task,
and relying on a qualitative analysis of the data, we discuss
the inherent dif�culty and subjectivity of the task.

The Chapter is organized as follows: in Section 5.2 we
survey the state of the art in explicit lyrics detection. In Sec-
tions 5.3 we introduce the classi�cation methods we have
applied and experiment them in Section 5.4. We discuss
an alternate problem in Lyrics Perception, i.e. Lyrics-based
Emotion Recognition, in Section 5.5. Finally, Conclusions
end the Chapter (see Section5.6).

5.2 related work in explicit lyrics detection

Only a few works on the problem of explicit lyrics detection
exist. [11] consider a dataset of English lyrics (see Table5.1,
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B18) to which they apply classical machine learning al-
gorithms such as Support Vector Machine and Random
Forest. As features they extract either (i) tf-idf weighted
bag-of-word (BOW) representations of each song text or
(ii) represent the lyrics with paragraph vectors [ 63]. The
explicit labels are obtained from Soundtrack Your Brand 5.
They �nd the Random Forest with tf-idf BOW to perform
best, especially in combination with a random undersam-
pling strategy to the highly imbalanced dataset. They also
experiment with adding lyrics metadata to the feature set,
such as the artist name, the release year, the music energy
level, and the valence/positiveness of a song. This results
in marginal improvements for some of their models.

[30] apply explicit lyrics detection to Korean song texts.
They also use tf-idf weighted BOW as lyrics representation
and aggregate multiple decision trees via boosting and
bagging to classify the lyrics for explicit content. On their
corpus (see Figure 5.1, C18) they report 78% F1 using the
bagging method. Note, that bagging with decision trees is
similar to the Random Forest method used by [ 11]. Inter-
estingly, they also report a baseline for dictionary lookup,
i.e. given a profanity dictionary the song text is classi�ed
as explicit if and only if one of its words occurs in the
profanity dictionary. With such a baseline they obtain 61%
F1.

More recently, [ 60] proposed a method to create explicit
words dictionaries automatically by weighting a vocabulary
according to the word frequencies in the explicit class vs.
the clean class, accordingly. For instance the word “fuck”
is typical for explicit lyrics and atypical for clean lyrics.
They compare different methods to generate such a lexicon.
The achieved performances using solely dictionary lookup
range from 49% F1 for a man-made dictionary to 75.6% F1
when using relative class frequencies. Note, that the latter
performance is achieved with a dictionary of only 25 words.
They work with a corpus of Korean lyrics (see Figure 5.1,
K19). Unlike previous work, they apply a recurrent neural
network (RNN) to the task, resulting in 76.6% F1, slightly

5 https://www.soundtrackyourbrand.com
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higher than the simple dictionary lookup. They �nd per-
formance to increase to 78.1% when combining the vector
representation of the RNN with a one-hot vector indicat-
ing for each profane word from the dictionary if the lyric
contains it. They argue to use the RNN to �nd such cases
where the expliciteness arises from the context and not
from a dictionary check. However, no examples of �nding
this phenomenon are presented.

5.3 detection methods

We compare a range of classi�cation methods for the task
of explicit lyrics detection. Common to all methods is that
they classify a full song into one of two mutually exclusive
classes - explicit or clean (=not explicit). This means, the
decision if a song text is explicit is taken globally, rendering
our task as text classi�cation. We assess the performance
of different classi�cation methods ranging from simple
dictionary lookup / lexicon checking to general purpose
deep learning language understanding models. We try
to identify contextual effects by applying a method that
outputs the importancefor each word (see Section5.3.4).

5.3.1 Dictionary-Based Methods

The most straightforward way to implement an automated
explicit content detection method, is checking against a
dictionary of explicit words. The dictionary can be man-
made or automatically created from example explicit and
clean lyrics. Then, a classi�er uses this dictionary to predict
the class of an unseen song text.

dictionary creation
It is possible to use handcrafted dictionaries such as No-
Swearing6. However, performance using an automatically
created lexicon has previously been shown [60] to improve
over the manually created dictionary. We therefore consider
only the case of the machine-made dictionary in this work.

6 https://www.noswearing.com/

https://www.noswearing.com/
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We generate a dictionary of words that are indicative of
explicit lyrics. We de�ne the importance I of a word w
for explicit lyrics by the frequency f (w, ex) of w in explicit
lyrics compared to its frequency f (w, cl) in clean lyrics:

I (w) = f (w, ex)/ f (w, cl)

We �lter out unique and too common words and restrict
the number of terms to 1,000to avoid overreliance on terms
that are very corpus speci�c. The dictionary Dn of the n
words most important for explicit lyrics, is now straightfor-
wardly de�ned as containing the n words with the highest
I score.

dictionary lookup
Given a dictionary Dn, this method simply checks if a song
text S contains any of the explicit terms de�ned in Dn.
Then, S is classi�ed as explicit iff it contains at least one
explicit term from Dn.

dictionary regression
This method uses BOW made from Dn as the feature set
of a classi�er. We used a logistic regression as classi�er,
but Random Forest and Support Vector Machine have been
used alike in [ 11].

5.3.2 Tf-idf BOW Regression

Similar to the Dictionary Regression, but the BOW contains
the whole vocabulary of a training sample instead of only
the explicit terms. The word features are weighted with the
well-known tf-idf weighting scheme.

5.3.3 Transformer Language Model

Recently, approaches based on self-attention [111] have
been proposed and have proven effective for natural lan-
guage understanding tasks. These models are structured
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as an encoder-decoder, and they are trained on unsuper-
vised tasks (such as masked language modelling) in order
to learn dense representations of sentences or documents.
These models differ from more traditional recurrent neural
networks in different aspects. In particular, while recurrent
models can process sequences (in NLP, typically word em-
beddings) in order, transformers use a joint model of the
right and left context of each word in order to encode an
entire sequence or document. Additionally, transformers
are typically less computationally expensive than recurrent
models, especially when trained on a GPU accelerator.

One of the most successful transformer-based models
proposed in the last few years is BERT [36]. This model is
composed of multiple transformers connected by residual
connections. Pre-trained models are provided by the au-
thors, and they are used in our work to perform explicit
language detection in lyrics, without re-training the full
model.

5.3.4 Textual Deconvolution Saliency

We use the Textual Deconvolution Saliency (TDS) model
of [110], which is a Convolutional Neural Network (CNN)
for text classi�cation. It is a simple model containing an
embedding layer for word representations, a convolutional
layer with max pooling and two fully connected layers. The
interesting part about this model is that they manage to
reverse the convolution. Given the learned feature map (the
output of the convolution before max pooling) of the CNN,
they upsample it to obtain a 3-dimensional sample with
dimensions (#words, embedding size, #�lters). The TDS for
each word is now de�ned as the sum along the embedding
axes of the output of the deconvolution. The TDS represents
the importance of each word of the input with respect to
the learned feature maps. We use this model with the goal
to �nd local explanations for the global decision of the
classi�cation as explicit or clean. Such explanations can
arise from contexts or phrases that the model assigns a
high importance.
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5.4 experimental setting and evaluation

We compare the different methods as introduced in the
previous section in the task of explicit lyrics detection. We
attempt a comparison to the related work as well, although
due to different datasets comparing the reported scores
directly is problematic. We �nally analyze the classi�cation
qualitatively with examples, and demonstrate the intrinsic
dif�culty and subjectivity of the explicit lyrics detection
task.
Abbreviations used : to refer to related works in Table 5.1
and 5.3, we use the following abbreviations. B 18 stands for
[11], C18 is [30], K19 means [60], while Ours is this work.

5.4.1 Dataset

The WASABI Song Corpus (see Section2.3) contains song-
wise labels for explicit lyrics, such as explicit, unknown, no
advice available, or clean(=not explicit). These labels are pro-
vided by the music streaming service Deezer7. We selected
a subset of English song texts from the corpus which are
tagged as either explicit or clean. We �ltered out duplicate
lyrics and such that contain less than 10 tokens. Finally, our
experimental dataset (henceforth called WAS) comprises of
179k lyrics, with a ratio of explicit lyrics of 9.9%. The details
and comparison with related work datasets are depicted in
Table 5.1.

For training any of the models described in the previous
Section, we once randomly split the data into training-
development-test sets with the common 60%-20%-20% ratio.
We tuned the hyperparameters of the different classi�cation
algorithms on the development set to then test with the
best performing parameters on the test set. As evaluation
metrics we use precision (P), recall (R), and f-score (F1).
Unless stated otherwise, the scores are macro-averaged
over the two possible classes.

7 https://www.deezer.com

https://www.deezer.com
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Work total explicit ratio language

B18 25,441 3,310 13.0% English

C18 27,695 1,024 3.7% Korean

K19 70,077 7,468 10.7% Korean

Ours 179,391 17,808 9.9% English

Table 5.1: Comparison of our dataset (# songs) to the related
works datasets.

5.4.2 Hyperparameters

For the dictionary-based methods, we found the ideal dic-
tionary size to be 32 words for the lookup and 128words
for the regression. The Tf-idf BOW regression performed
best when the full vocabulary of unigrams and bigrams
was used. We used the sklearn implementation of logistic
regression with the class weighting scheme balancedto ac-
count for the class imbalance in the dataset. We used TDS
with max sequence length 512and dropout probability 50%.
As is the default with TDS, corpus-speci�c word vectors
were trained using Word 2Vec [78] with dimensionality 128.
The BERT model comes pre-trained and no further pre-
training was performed. We used the smaller of the two
published models (bert-base-uncased). BERT then was �ne-
tuned to our task using max sequence length 256and batch
size 16, otherwise default parameters for text classi�cation
task learning. We used the PyTorch implementation 8 of
HuggingFace [117].

5.4.3 Results

Overall, the results of the different classi�cation methods
we tried are all close to each other. The simple dictionary
lookup with 32 words performs comparably to the deep
neural network with 110M parameters (bert-base-uncased).
As baseline, we include the majority class classi�er that
always predicts the clean class. Furthermore, all related

8 https://github.com/huggingface/transformers

https://github.com/huggingface/transformers
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works show similar tendencies of performance on their
respective datasets. The results of all the different methods
we applied are depicted in Table 5.2 and described in the
following.

The majority class classi�er delivers a performance of
47.4% F1, which is the only outlier in the sense that this
is far below any other model. The dictionary lookup with
a vocabulary of the 32 most indicative explicit words ob-
tains a balanced performance as precision and recall are
close to each other, the overall performance is 77.3% F1.
The dictionary regression performs somewhat better in
terms of f-score (78.5% F1), achieving this with the highest
overall recall of 81.5%, but it has lower precision. The tf-idf
BOW regression performs very similarly to the dictionary
regression. This proves that a limited number of words
in�uences the overall performance of the models, and that
they do not need to consider the whole vocabulary, just the
most offensive words. The increased vocabulary of 929k
unigrams and bigrams is gigantic compared to the explicit
words dictionary ( 32 words). As most of these n-grams
may be noise to the classi�er, this could explain the slight
decrease in performance over the dictionary regression.
Finally, the neural-network-based methods behave a bit
differently: the BERT language model is clearly better in
precision (84.4%) over all other models - the second best
is TDS with 81.2%. However, BERT performs the worst in
recall with only 73.7%. The overall performance of BERT is
average with 77.7% F1. Finally, TDS performs best in terms
of 79.6% F1. We tested if TDS outperforming BERT was
due to TDS using domain-speci�c word vectors trained
on our corpus (BERT is trained on books and Wikipedia).
This was not the case as TDS performed almost identically,
when using generic word vectors (GloVe [ 98], 200d): 80.4%
P, 78.7% R, 79.5% F1.

A closer look at the classi�cation performance shows
that the F1 scores for the minority class (explicit lyrics) is
highest with TDS ( 63%) and lowest with the dictionary
lookup ( 58.9%). The majority class (clean lyrics) on the
other hand is best detected by BERT (96.3% F1) and worst
with the tf-idf BOW ( 95.1% F1).
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Model P R F1
Majority Class 45.0 50.0 47.4

Dictionary Lookup 78.3 76.4 77.3

Dictionary Regression 76.2 81.5 78.5

Tf-idf BOW Regression 75.6 81.2 78.0

TDS Deconvolution 81.2 78.2 79.6

BERT Language Model 84.4 73.7 77.7

Table 5.2: Performance comparison of our different models. Pre-
cision (P), Recall (R) and f-score (F1) in %.

Work Model F1
Ours Dictionary Lookup 77.3

Ours Dictionary Regression 78.5

C18 Man-made Dictionary 61.0

K19 Man-made Dictionary 49.0

K19 Dictionary Lookup 75.6

Ours Tf-idf BOW Regression 78.0

C18 Tf-idf BOW 78.0

C18 Tf-idf BOW+ 80.0

B18 Tf-idf BOW 67.5

B18 Tf-idf BOW+ 82.6

Ours TDS Deconvolution 79.6

Ours BERT Language Model 77.7

K19 HAN 76.7

K19 HAN + Dictionary 78.1

Table 5.3: Performances of dictionary-based methods (top), tf-idf
BOW models (middle) and deep models (below). Note
that different works use different datasets. f-score ( F1)
in %.
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We attempt a comparison of the different approaches
used in the different related works as well as ours. While
the scores achieved (see Table5.3) are not strictly compa-
rable, we can see clear tendencies. According to K19, a
man-made dictionary is inferior to an automatically gen-
erated one. This is supported by the man-made lexicon
in C18 performing subpar to their tf-idf BOW. An appro-
priate lexicon of explicit terms, on the other hand, can
compete with a tf-idf BOW model, as we showed with
both the dictionary lookup and the regression performance.
This is further supported by the generated dictionary of
K19 which competes with the deep Hierarchical Attention
Network (HAN) [ 118]. Optimizations to the standard tf-
idf BOW models are marked with the + sign. Restricting
the POS tags to more likely ones found in explicit terms
(C18) improves performance slighly. Using random un-
dersampling to �ght the imbalanced class problem (B 18)
increases performance drastically, however makes the prob-
lem somewhat different from the imbalanced problem. The
�nal takeaway is that deep models do not necessarily out-
perform shallow models . Neither HAN, TDS, nor BERT
deliver much higher scores than the dictionary-based or
the BOW method.

5.4.4 Qualitative Analysis

In this section we analyze examples of explicit content
lyrics and point to the inherent dif�culty and subjectivity
in classifying and even labelling such data.

explicitness in context ?
The highest difference in model performance we measured
was between the deep TDS model (79.6% F1) and the dictio-
nary lookup ( 77.3% F1). We analyzed why the TDS method
performed better than the dictionary lookup by inspecting
those examples that (i) were explicit, (ii) were classi�ed as



92 lyrics perception

clean by the dictionary lookup, and (iii) were detected as
explicit by TDS with high con�dence 9.

From the 13 examples analyzed, we found three main
phenomena: (1) Four texts contained explicit terms that
were not contained in the dictionary of explicit terms.
Words such as f**kin', motherf**kerswere too rare to be
included in the generated lexicon and other words like
fucking, cunt, cum, shitwere not uniquely contained in ex-
plicit lyrics. The reason why this is the case can be traced
back to problems in the annotations or the fact that these
words are relatively frequently used in lyrics. ( 2) Five texts
whose explicitness arises in context rather than on a word
level. Examples with violent context found were “organi-
zation with horns of satan performs the ancient rituals” or
“bombin on mc's, crushin crews with ease”. There were also
instances of sexual content such as “give it to him down
in the parking lot in the backseat, in the backseat of the
car”. Note that the words {give, it, to, him} in isolation do
not belong to an explicit terms list and the sexuality arises
from the context. Similarly in “(turn the lights on) so i can
see that ass work”. Also here, putting “ass” in an explicit
terms dictionary is tempting but may not be ideal, as its
meaning is not necessarily explicit. (3) Four texts appeared
to have been mislabelled since no explicitness could be
found. We found for three of them that the album the song
is contained in is tagged as explicit. In cases as these, inher-
iting the label from the album is wrong, but it seems this is
exactly what had happened here. In one Raggae lyric, in
particular, we found no explicit content, so we suspect the
song was mislabelled.

Since we found some annotation to be problematic, we
will discuss dif�culties that arise from annotating explicit-
ness in lyrics.

how hard is this task ?
As stated in the introduction, the explicit label is voluntary
and we will argue that it is also somewhat subjective in its

9 The last layer of TDS outputs probabilities for the input text being
explicit or clean. We looked at examples where the explicit class was
predicted with at least 80% probability.
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nature. There are lyrics which are not tagged as explicit
although they have profanity in them. Consider for exam-
ple the song Bitch by Meredith Brooks. While it already
contains profanity in the title, it does not carry the explicit
label and one can argue that in the context of the song,
the term “bitch” is used as a contrastive term and to raise
attention to the struggle the songwriter sees in her life,
torn between potentially con�icting expectations of society
(“I'm a little bit of everything - All rolled into one - I'm a
bitch, I'm a lover - I'm a child, I'm a mother - I'm a sinner,
I'm a saint - I do not feel ashamed”).

Another example is Check Your Headby Buckcherry where
it says “Ooh and you still bitch about your payments”
where “bitch” is used as a verb and one can argue that
the acceptance in this verb form is higher than in the noun
form. A similar case where the part of speech in�uences
the perceived level of profanity is Hail Hail Rock 'n' Roll by
Discipline. It contains the line “the band starts to play loud
as fuck”.

We encounter a different kind of problem when dealing
with substance abuse or other drug-related content. It is
evident that the legal status of the substances mentioned
plays a major role in how such content is labelled. This
is further complicated by the fact that legislation about
substances can vary wildly between different countries. The
labels applied to this content are not culture-invariant, and
furthermore changes in the societal view can lead to labels
that are not relevant anymore. This, like other examples,
shows why the labels applied to lyrics are subject to change
in different cultures and time periods.

Another aspect that is very sensitive to time periods and
cultures comes from words themselves: an inoffensive word
can become offensive in slang or common language. One
such example can be found in Johnny Cash's The Christmas
Guest: “When the cock was crowing the night away - The
Lord appeared in a dream to me”. Here, cock means male
chicken, as opposed to the offensive meaning that is now
arguably more common.

We �nally want to raise attention to the problem of genre
confounding. We found that the genre Hip Hop contributed
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by far the most to all explicit lyrics - 33% of all Hip Hop
lyrics. Since only about 5% of the whole corpus are tagged
asHip Hop, this genre is highly overrepresented. This raises
the question in how far our task is confounded with genre
classi�cation. When inspecting the explicit terms dictionar-
ies we have created, we clearly see that genre bias re�ected.
The dictionary of 32 terms that we used for the dictionary
lookup method consists approximately half of terms that
are quite speci�c to the Rap genre, such as glock, gat, clip
(gun-related), thug, beef, gangsta, pimp, blunt (crime and
drugs). Finally, the terms holla, homie, and rapper are ar-
guably no causes for explicit lyrics, but highly correlated
with explicit content lyrics. Biasing an explicit lyrics de-
tection model away from genres is an interesting future
direction of work.

5.5 towards music emotion recognition

Just like in the explicit lyrics detection problem, we have
treated before, listeners, to some extent, also disagree on
which emotions are conveyed in a song. Ultimately, their
judgement relies not only on factors inherent to the songs,
but also to their socialization and other personal factors.

On the one hand, the task of Music Emotion Recogni-
tion (MER) has a long tradition in the MIR community. Its
goal is to automatically identify which emotion / mood
is conveyed in a song. Consequently, identifying songs as
e.g. happyor sad, allows to recommend other tracks with
similar emotion to the listener or generate playlists full of
happy songs.

On the other hand, emotion recognition from text is of
interest in NLP. The task originates from the more basic
task of sentiment analysis. The goal of the latter is to predict
if a text has a positive or a negative emotional valence. In
the recent years, a transition from sentiment analysis to
more complex formulations of emotion detection (e.g. joy,
fear, surprise) [80] has become more visible; even tackling
the problem of emotion in context [ 26].
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While the music plays a central role in how the emo-
tion in a song is perceived, it has also been shown that
the mood can be inferred solely from the song text. We
conducted preliminary experiments in MER based on song
lyrics which we will describe in the following, proceeding
as follows. We introduce two popular models of represent-
ing emotions in Section 5.5.1 and describe approaches for
the conversion between different emotion representations.
Then in Section 5.5.2, we review a state-of-the-art approach
to MER and conduct our own preliminary experiment. In
Section5.5.3 we give an overview over the available datasets
for MER, and recommend which kinds of datasets to use
and why.

5.5.1 Emotion Representations

Two common models to represent emotion are Plutchik's
wheel of emotion [ 100] and Russell's valence-arousal plane
[101]. In the wheel of emotions, a �xed number of basic
emotions is laid out as depicted in Figure 5.2. Opposing
emotions are located in opposite positions, e.g. joy is above
and sadnessis below the center of the wheel - angeris left
of the center and fearis right to it. The model also speci�es
how combinations of emotions can form more complex
emotions, for example serenity and acceptanceform love.
Since this model puts all emotions into categories, it is also
called a categorical model of emotion. As an alternative
description, the valence-arousal model of emotion [ 101], lo-
cates every emotion in a continuous two-dimensional plane
based on its valence (positive vs. negative) and arousal
(excited vs. calm)10. Figure 5.3 illustrates the placement of
emotions in the valence-arousal model. We �nd the pro-
totypical emotions in the corners of the four quadrants of
plane to be joyful (high valence, high arousal), angry (low
valence, high arousal), content(high valence, low arousal),
and depressing(low valence, low arousal). Between these
extreme emotions, all other emotions can be placed. For ex-
ample, annoyedand boredare both emotions of comparably

10 Sometimes, a third dimension of dominance is part of the model.
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Figure 5.2: Emotion model of Plutchik. Illustration taken from
Wikimedia Commons.
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Figure 5.3: Placement of emotions in the valence-arousal model
of Russell. Illustration taken from [ 89].
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low valence, but boredhas low arousal while annoyedhas
a high arousal. Since all emotions are represented by their
intensites in two different dimensions, this model is often
called a dimensional model of emotion.

emotion annotations
Researchers have created emotion lexicons, i.e. dictionaries
where each word is manually annotated with either a basic
emotion from the wheel of emotions [ 79] or a coordinate
in the valence-arousal plane [114]. Annotating sentences
or larger units of texts is very time-consuming, as new
annotations have to be created for each new context. There-
fore, to obtain gold labels for song lyrics, researchers have
resorted to methods of distant supervision by leveraging
social tags from LastFM . While such tags in principle can
be any word (e.g. Rock, favorite songs, happy, best song
ever, yeeeeeeeahhhh,1975), these approaches [24, 58] de�ne
a list of social tags that are related to emotion (e.g. happy,
anger, mellow, celebrate). Then lyrics datasets are �ltered
such that only lyrics associated with emotion tags pertain.
The placement of the emotion associated (in the wheel or
the plane) in turn is de�ned by the de�nition of the so-
cial tag in one of the emotion lexicons that we previously
discussed.

converting representations
As both emotion representations have their advantages and
disadvantages, some applications lean themselves more
to one of them. For instance, you may want to build an
emotion detection system based on the dimensional model,
but only have categorical annotations at hand. To that end,
there have been several attempts at converting between the
different emotion representations. For example, in [ 107] the
authors convert from categorical to dimensional model by
using a dictionary lookup and a BOW model of compo-
sition. Speci�cally, in their annotation a text T is labelled
with probabilities of categorical emotions ei . Then, given
a lexicon of emotion annotations according to the dimen-
sional model [ 114], they look up the valence and arousal
V (ei ), A(ei ) and weight them according to their probabili-
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ties P(ei ) in T. While this model simpli�es the conversion
problem in several ways, e.g. by modelling T as BOW and
by equating the name of the emotion with the actual emo-
tion, they demonstrate the approach to yield promising re-
sults. While this approach can be seen as assuming the com-
position function from word level to text level as a weighted
average (V, A) = ( å i P(ei ) � V (ei ), å i P(ei ) � A(ei )) , recently
supervised learning has been employed to learn a more
complex and precise mapping from the categorical to the
valence-arousal-dominance representation [91].

5.5.2 Lyrics-based Music Emotion Recognition

In the following, we describe our preliminary experiments
with music emotion regression, which are restricted to the
static and lyrics-based case11. For this, we closely follow
the problem formulation of [ 33]. The goal of this task is to
predict as closely as possible the valence and arousal (VA)
of a song, which has previously been annotated with VA.
We only consider the lyrics-based regression problem in
the following, leaving the multimodal case for future work.

dataset
Deezer has created and made available VA annotations
for 18k English songs12. These annotations have been con-
structed using both the social tags �ltering and the categori-
cal-to-dimensional conversion methods described above.
Since the dataset does not come with lyrics (for obvious
copyright reasons), we aligned it to our WASABI Song Cor-
pus. We successfully aligned 16k of the original 18k of the
lyrics, which makes our dataset somewhat different from
the one Deezer used in their experiments.

11 The end goal of our experiments is dynamic emotion modelling [ 22],
i.e. assuming that emotion can change over the course of the song.
Since we so far have no positive results on that, we present our �ndings
on static emotion modelling, which will be the baseline to compare our
future dynamic emotion approaches to.

12 https://github.com/deezer/deezer _mood_detection _dataset

https://github.com/deezer/deezer_mood_detection_dataset
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Model valence arousal average

Best feature engineering [33] 14.0 3.2 8.6

Best neural approach [33] 13.4 2.6 8.0

RNN with attention 10.9 4.2 7.6

Finetuned BERT 17.2 8.6 12.9

Table 5.4: R2 scores in % of the different models on the Deezer
lyrics dataset for the different dimensions valence and
arousal as well as their average.

models
We compare four models which all work in a comparable
way and are described in the following. First, they extract
features from the lyrics, then they predict the valence and
arousal of that song text. Since the problem is formulated as
regression against the VA gold labels, the supervised learn-
ing works by minimizing the mean squared error between
predicted and gold VA values. The models differ in the fea-
ture extraction step, which can be based on convolutional
�lters or recurrent layers (in the case of neural approaches)
or even on hand-crafted feature computation in the case of
the feature-engineering approach. As baselines, we report
two results of [ 33]: the best-performing feature engineer-
ing approach [ 57] and the best neural approach of Deezer
(a combination of a CNN and an RNN). Then, we imple-
ment a similar neural architecture in the form of an RNN
with attention mechanism [ 37]. And lastly, we �netune the
transformer-based pretrained language model BERT [35],
which has shown state-of-the-art performance in numerous
text classi�cation tasks before.

preliminary results
Figure 5.4 shows both the results reported by Deezer on
their dataset of 18k lyrics and our results on our aligned 16k
lyrics dataset. One important �nding of Deezer was that,
unlike in most other NLP tasks, the feature engineering
approach is on par with the neural approach ( R2 average
8.6%) vs. (R2 average 8.0%). Then, our RNN with atten-
tion achieves similar results ( R2 average 7.6%) as the best
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approaches reported by Deezer. Furthermore, it has been
observed in previous work that the arousal is much harder
to predict from the lyrics than the valence - and our models
con�rm this. Note that our RNN exhibits a different trade-
off between valence and arousal performance, trading in
lower valence for higher arousal. Finally, BERT performs
far superior ( R2 average 12.9%) in this task as it can lever-
age its pretraining to create more useful document vectors
for each song text. While this may not be too surprising
in light of BERT's previous successes in text classi�cation,
it is noteworthy that this is the �rst neural approach we
know of that performs clearly better than the best feature
engineering approach for music emotion regression.

5.5.3 Which Dataset to use?

existing song -emotion datasets
Only a few datasets exist in which songs are associated
with emotions. We describe two of them and argue based
on a comparative experiment how to select a high qual-
ity dataset for lyrics-based MER. The �rst dataset is the
previously described Deezer corpus of 18k song-emotion
associations. Then, the second dataset is calledMoody-
Lyrics 4Q, in which 2,000 songs are associated with each
one emotion from the corners of the valence-arousal plane:
joy, sadness, anger or fear (cf. Section5.5.1). The authors
[23, 24] “polarize” the emotions, which means that only
songs which are highly associated with an emotion e from
the corners of the plane and lowly associated with emo-
tions different from e, are �nally tagged with e. This aims
at reducing noise in the dataset, since unclear cases are
removed.

consequences of conversion and polarization

Note that besides the dataset size, the Deezer corpus and
MoodyLyrics 4Q differ in the following two regards. First,
in the Deezer corpus the emotions were converted from
categorical into dimensional representation; the labels were
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Dataset Converted Polarized Domain

Deezer corpus yes no Lyrics

Rappler converted yes no News

MoodyLyrics 4Q no yes Lyrics

Rappler polarized no yes News

Table 5.5: Different datasets to disentangle the factors conversion,
polarization and domain.

not polarized. In MoodyLyrics 4Q on the other hand, the
labels were not converted, but polarized. To test the im-
pact of representation conversion and polarization on emo-
tion recognition performance, we introduce a third corpus
called the Rappler corpus , previously described in [ 107].
This corpus does not contain lyrics, but 14k news articles,
each tagged with a probability distribution over the cat-
egorical emotions of the Plutchik model. The labels are
manually annotated via crowdsourcing. We have selected
it to allow for comparing our emotion recognition models
on different text domains.

We created two versions of the Rappler corpus: Rappler
polarized is a subset which only contains texts which are
associated with one emotion with more than 50% prob-
ability mass and tagged the text with this emotion; we
discarded less certain cases. Then, we createdRappler con-
verted by applying the categorical-to-dimensional conver-
sion procedure (described in Section 5.5.1) to the Rappler
corpus. We consequently obtained three datasets from two
domains and different conversion and polarization status;
as summarized in Table 5.5.

We measure the effects of the domain, the conversion
and the polarization on emotion recognition performance
as follows. Based on BERT, we experiment the different
datasets as follows: we perform emotion regression on the
converted (dimensional) corpora and emotion classi�ca-
tion on the non-converted (categorical) corpora. First, we
compare the datasets Deezer and Rappler converted. The
emotion regression on the Deezer dataset yields 12.9% aver-
age R2, as previously reported in Section 5.5.2 while on the



5.6 conclusion 103

Rappler converted dataset we achieve an average31.6% R2.
Second, we compare MoodyLyrics4Q with Rappler polar-
ized in emotion classi�cation with the three most common
emotions (to ensure we have enough data). The results on
both corpora are similar, slightly above 70% F1 for 3-class
classi�cation.

recommendation
The conclusions from these experiments are as follows.
From our experiments, we cannot clearly conclude which
effect the conversion from categorical into dimensional rep-
resentation has. However, the promising result of Rappler
converted hints that conversion does not drastically dimin-
ish performance. Polarization on the other hand appears
to improve performance drastically, as shown by emotion
classi�cation results on MoodyLyrics 4Q being similar to
those on Rappler polarized. The latter result also hints to
the lyrics domain being just as viable for emotion recog-
nition as the news domain. Consequently, our recommen-
dation for selecting or creating a lyrics emotion dataset is
to de�nitely use polarization and to be optimistic about
conversion .

5.6 conclusion

Classifying song lyrics as explicit or clean is an inherently
hard task to accomplish since what is considered offensive
strongly depends on cultural aspects that can change over
time. We showed that shallow models solely based on a
dictionary of profane words achieve a performance com-
parable to deep neural networks. We argued that even the
hand-labelling is highly subjective, making it problematic
to automatically detect if a song text should be tagged as
explicit or clean. Furthermore, we have presented our pre-
liminary work on lyrics-based emotion recognition (ER).
We have described the different competing emotion rep-
resentations that emphasize different aspects of emotions
and pointed out attempts to harmonize them. We have
conducted a comparative experiment and shown that pre-
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trained language models excel in this text classi�cation
task, with BERT clearly outperforming the previous state of
the art. We found that datasets of suf�cient quality and size
are hard to get by, but we have given recommendations on
how to construct such datasets based on our understanding
of existing work and our experiments. We �nally want to
point to the assumption that musical emotion and lyrical
emotion are congruent. This may not always be the case
and such a detail causes ER to become more subjective.

For ER, we are currently experimenting with dynamic
emotion recognition, i.e. under the assumption that emo-
tion changes during a song. We believe that understanding
the changes in emotion can improve overall detection rates.
For explicit lyrics detection, we propose as a possible sim-
pli�cation and objecti�cation to study the local detection
of explicit content. If we present an authority a report on
found trigger words, found contextual sexual content, and
alike, they can come to their own subjective conclusion
about the �nal label of the text. For both tasks, explicit
lyrics detection and ER, we think that the intended emo-
tion and the intended explicitness can be inferred with
higher accuracy when extra-linguistic context is available,
such as the music clip, the music, or information about the
band from interviews etc.
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T H E A N N O TAT E D WA S A B I S O N G C O R P U S

In this Chapter, we describe the annotated WASABI Song Corpus,
as resulting from enriching the initial dataset described in Section
2.3 with NLP annotations of different levels. The annotations
result from the application of the methods we proposed in this
work to extract relevant information from the lyrics.1.
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6.1 introduction

We have previously introduced the WASABI Song Cor-
pus, a large corpus of 2.10M songs (1.73M with lyrics)
enriched with various kinds of metadata extracted from
music databases on the Web and resulting from the process-
ing of audio analysis (see Section2.3). Alongside, we have
given an overview over its key statistics, such as the lan-
guage and genre distributions and the years of publication
of its songs.

Based on the results of the NLP methods for lyrics anal-
ysis which we have proposed in the previous chapters, we
have annotated the lyrics in the WASABI Song Corpus
on the following levels: their structure segmentation, the
explicitness of the lyrics content, the salient passages of
a song, the addressed topics and the emotions conveyed.
We detail these annotations in Section 6.2. An analysis of
the correlations among the above mentioned annotation
layers reveals interesting insights about the song corpus.

1 This work will be published at LREC 2020.
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For instance, we demonstrate the change in corpus anno-
tations diachronically: we show that certain topics become
more important over time and others are diminished. We
also analyze such changes in explicit lyrics content and
expressed emotion (see Section6.3). Finally, in Section 6.4
we give an overview over the most relevant annotations in
the WASABI Song Corpus and conclude.

6.2 corpus annotations

lyrics structure
Previously, in Chapter 3 we have proposed a method to
segment lyrics based on their repetitive structure in the
form of a self-similarity matrix (SSM). Figure 6.1 shows a
line-based SSM for the song text written on top of it 2. The
song text consists of seven segments and shows the typical
repetitive structure of a Pop song. The main diagonal is
trivial, since each line is maximally similar to itself. Notice
further the additional diagonal stripes in segments S2, S4
and S7; this indicates a repeated part, typically the chorus.
Based on the simple idea that eyeballing an SSM will reveal
(parts of) a song's structure, we proposed a Convolutional
Neural Network architecture that successfully learned to
predict segment borders in the lyrics when “looking at”
their SSM.

In the WASABI Interactive Navigator, the line-based SSM
of a song text can be visualized. It is toggled by clicking
on the violet-blue square on top of the song text. For a
subset of songs the color opacity indicates how repetitive
and representative a segment is, based on the �tness metric
that we de�ned in Section 4.3.2. For illustration, note how
in Figure 6.1 the segmentsS2, S4 and S7 are shaded more
darkly than the other ones. As highly �t (opaque) segments
often coincide with a chorus, this is a �rst approximation
of chorus detection. A more complete labelling of the seg-
ments as Intro, Verse, Bridge, Chorus etc seems still out
of reach, given the variability in the set of structure types

2 https://wasabi.i3s.unice.fr/#/search/artist/Britney%

20Spears/album/In%20The%20Zone/song/Everytime

https://wasabi.i3s.unice.fr/#/search/artist/Britney%20Spears/album/In%20The%20Zone/song/Everytime
https://wasabi.i3s.unice.fr/#/search/artist/Britney%20Spears/album/In%20The%20Zone/song/Everytime
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Figure 6.1: Structure of the lyrics of Everytimeby Britney Spears
as displayed in the WASABI Interactive Navigator.

provided in the literature according to different genres [ 16,
109]. For each song text we provide an SSM based on a
normalized character-based edit distance3 on two levels
of granularity to enable other researchers to work with
these structural representations: line-wise similarity and
segment-wise similarity.

lyrics summary
In Chapter 4 we have introduced a method for extractive
summarization of song lyrics which is reminiscent of audio
thumbnailing approaches that summarize audio. Figure 6.2
shows an example summary of four lines length obtained
with our proposed method. It is toggled in the WASABI
Interactive Navigator by clicking on the green square on
top of the song text. The four-line summaries of 50k En-

3 In our segmentation experiments we found this simple metric to out-
perform more complex metrics that take into account the phonetics or
the syntax.
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Figure 6.2: Summary of the lyrics of Everytimeby Britney Spears
as displayed in the WASABI Interactive Navigator.

glish lyrics (cf. Section 4.4.1) is freely available within the
WASABI Song Corpus; the Python code of the applied
summarization methods is also available 4.

explicit language in lyrics
In Chapter 5 we have compared different approaches for
automated explicit lyrics detection. We found a very simple
method of checking against an automatically generated
swear word lexicon to perform on par with much more
complex models such as BERT [35] as a text classi�er. Our
corpus contains 52k tracks labelled as explicit and 663k
clean (not explicit) tracks 5. We have trained a classi�er
(77.3% f-score on test set) on the438k English lyrics which
are labelled and classi�ed the remaining 455k previously
untagged English tracks. We provide both the predicted la-
bels in the WASABI Song Corpus and the trained classi�er
to apply it to unseen text.

emotional description
As previously described, the Deezer corpus consists of
valence-arousal annotations for 18k songs (cf. Section5.5.3).
We aligned the Deezer corpus to our WASABI Song Cor-
pus since the Deezer corpus lacks the song lyrics (due to
obvious copyright reasons). In Figure 6.3 the green dots
visualize the emotion distribution of these songs. Based on
their annotations, we trained an emotion regression model
on the aligned portion of the WASABI Song Corpus using

4 https://github.com/TuringTrain/lyrics _thumbnailing
5 Labels provided by Deezer. Furthermore, 625k songs have a different

status such as unknown or censored version.

https://github.com/TuringTrain/lyrics_thumbnailing
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Figure 6.3: Emotion distribution in the corpus in the valence-
arousal plane. Illustration without scatterplot taken
from [ 89].

BERT, with an evaluated 0.44/ 0.43 Pearson correlation/S-
pearman correlation for valence and 0.33/ 0.31 for arousal
on the test set. We integrated Deezer's labels into the WA-
SABI Song Corpus and also provide the valence-arousal
predictions for the 1.73M tracks with lyrics. We also pro-
vide the LastFM social tags (276k) and emotion tags (87k
entries) to facilitate researchers to build variants of emotion
recognition models.

topic modell ing
We built a topic model on the lyrics of our corpus using
Latent Dirichlet Allocation (LDA) [ 14]. We determined the
hyperparameters a, h and the topic count such that the
coherence was maximized on a subset of200k lyrics. We
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Figure 6.4: Topic War Figure 6.5: Topic Death

Figure 6.6: Topic Love Figure 6.7: Topic Family

Figure 6.8: Topic Money Figure 6.9: Topic Religion

then trained a topic model of 60 topics on the unique
English lyrics ( 1.05M). We have manually labelled a number
of more recognizable topics. Figures 6.4-6.9 illustrate these
topics with word clouds 6 of the most characteristic words
per topic. For instance, the topic Money contains words of
both the �eld of earning money (job, work, boss, sweat)
as well as spending it (pay, buy). The topic Family is both
about the people of the family (mother, daughter, wife) and
the land (sea, valley, tree). We provide the topic distribution
of our LDA topic model for each song and make available

6 made with https://www.wortwolken.com/

https://www.wortwolken.com/
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the trained topic model to enable its application to unseen
lyrics.

6.3 diachronic analysis

We examine the changes in the annotations over the course
of time by grouping the corpus into decades of songs ac-
cording to the distribution shown in Figure 2.4c.

changes in topics
The importance of certain topics has changed over the
decades, as depicted in Figure 6.10a. Some topics have
become more important, others have declined, or stayed
relatively the same. We de�ne the importance of a topic for
a decade of songs as follows: �rst, the LDA topic model
trained on the full corpus gives the probability of the topic
for each song separately. We then average these song-wise
probabilities over all songs of the decade. For each of the
cases of growing, diminishing and constant importance, we
display two topics. The topics War and Death have appre-
ciated in importance over time. This is partially caused by
the rise of Heavy Metal in the beginning of the 1970s, as
the vocabulary of the Death topic is very typical for the
genre (see for instance the “Metal top 100words” in [ 45]).
We measure a decline in the importance of the topics Love
and Family. The topics Money and Religion seem to be
evergreens as their importance stayed rather constant over
time.

changes in explicitness
We �nd that newer songs are more likely being tagged
as having explicit content lyrics. Figure 6.10b shows our
estimates of explicitness per decade, the ratio of songs in
the decade tagged as explicit to all songs of the decade.
Note that the Parental Advisory Label was �rst distributed
in 1985and many older songs may not have been labelled
retroactively. The depicted evolution of explicitness may
therefore overestimate the “true explicitness” of newer mu-
sic and underestimate it for music before 1985.
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changes in emotion
We estimate the emotion of songs in a decade as the average
valence and arousal of songs of that decade. We �nd songs
to decrease both in valence and arousal over time. This
decrease in positivity (valence) is in line with the dimin-
ishment of positively connotated topics such as Love and
Family and the appreciation of topics with a more negative
connotation such as War and Death.

6.4 conclusion

In this chapter we have described the WASABI dataset of
songs, in particular the lyrics annotations resulting from
the applications of the methods we proposed to extract
relevant information from the lyrics. So far, lyrics anno-
tations concern their structure segmentation, their topic,
the explicitness of the lyrics content, the summary of a
song and the emotions conveyed. Some of those annotation
layers are provided for all the 1.73M songs included in the
WASABI corpus, while some others apply to subsets of the
corpus, due to various constraints described in this chapter.
Table 6.1 summarizes the most relevant annotations in our
corpus.

As the creation of the resource is still ongoing, we plan
to integrate an improved emotional description in future
work. In [ 5] the authors have studied how song writers
in�uence each other. We aim to learn a model that detects
the border between heavy in�uence and plagiarism.
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(a) Evolution of topic importance

(b) Evolution of explicit content lyrics

(c) Evolution of emotion

Figure 6.10: Evolution of different annotations
during the decades.
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Annotation Labels Description

Lyrics 1.73M segments of lines of text

Languages 1.73M 36 different ones

Genre 1.06M 528different ones

Last FM id 326k UID

Structure 1.73M SSM 2 Rn� n (n: length)

Social tags 276k S = {rock, joyful, 90s, ...}

Emotion tags 87k E � S = {joyful, tragic, ...}

Explicitness 715k True (52k), False (663k)

Explicitness ¨ 455k True (85k), False (370k)

Summary¨ 50k four lines of song text

Emotion 16k (valence, arousal) 2 R2

Emotion ¨ 1.73M (valence, arousal) 2 R2

Topics¨ 1.05M Prob. distrib. 2 R60

Total tracks 2.10M diverse metadata

Table 6.1: Most relevant song-wise annotations in the WASABI
Song Corpus. Annotations with ¨ are predictions of
our models.
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C O N C L U S I O N

This Thesis presents and discusses the relevant results on
our research on Natural Language Processing for Music
Information Retrieval. We have performed a deep analy-
sis of song lyrics, focusing on their structure, content and
perception. This work has been done as fundamental re-
search towards establishing the inclusion of song lyrics in
MIR applications with the end goal of improving the music
listening experience for everyone.

In Chapter 2 we have given a brief overview over the
WASABI Project in the context of which this Thesis has
been written. We have clari�ed the differences to similar
projects and introduced the reader to the WASABI Song
Corpus, the central dataset we have used for experimenta-
tion throughout this work.

In Chapter 3 we have dealt with the problem of detecting
the structure in lyrics. We have reduced the problem to
the subtasks lyrics segmentation and segment labelling. We
have introduced a model that ef�ciently segments the lyrics.
More speci�cally, we have addressed the task of lyrics seg-
mentation on synchronized text-audio representations of
songs. For the songs in the corpus DALI where the lyrics
are aligned to the audio, we have derived a measure of
alignment quality speci�c to our task of lyrics segmenta-
tion. Then, we have shown that exploiting both textual
and audio-based features lead our Convolutional Neu-
ral Network-based model to signi�cantly outperform the
state-of-the-art system for lyrics segmentation that relies
on purely text-based features. Moreover, we have shown
that the advantage of a bimodal segment representation
pertains even in the case where the alignment is noisy. This
indicates that a lyrics segmentation model can be improved
in most situations by enriching the segment representa-
tion by another modality (such as audio). Finally, we have
brie�y discussed the task of segment labelling and gave an
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approximation to chorus detection based on clustering the
lyrics segments using different similarity metrics.

In Chapter 4 we have dealt with the problem of represent-
ing the content of lyrics. We have explained the limitations
we have found with representations based on topic models
and information extraction. We then have introduced our
�nal content representation by means of text summariza-
tion. We have proposed a model to summarize the lyrics in
a way that respects their intimate relation to music. More
speci�cally, we have de�ned and addressed the task of
lyrics summarization. We have applied both generic un-
supervised text summarization methods (TextRank and
a topic-based method we called TopSum), and a method
inspired by audio thumbnailing on 50k lyrics from the
WASABI corpus. We have carried out an automatic eval-
uation on the produced summaries computing standard
metrics in text summarization, and a human evaluation
with 26 participants, showing that using a �tness measure
transferred from the musicology literature, we can amend
generic text summarization algorithms and produce better
summaries.

In Chapter 5 we have dealt with the problem how lyrics
are perceived in the world. As an instantiation we have
discussed the problem of detecting explicit content in a
song text. This task has proven to be very hard and we
have shown that the dif�culty partially arises from the
subjective nature of perceiving lyrics in one way or another
depending on the context. Classifying song lyrics as explicit
or clean is an inherently hard task to accomplish since
what is considered offensive strongly depends on cultural
aspects that can change over time. We have shown that
shallow models solely based on a dictionary of profane
words achieve a performance comparable to deep neural
networks. We have argued that even the hand-labelling is
highly subjective, making it problematic to automatically
detect if a song text should be tagged as explicit or clean.
Finally, we have glanced at the problem of how emotions
are perceived in lyrics: we have presented our preliminary
results on Emotion Recognition.
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In Chapter 6 we have described the annotated WASABI
Song Corpus, as resulting from enriching the initial dataset
described in Section 2.3 with NLP annotations of different
levels. The annotations have resulted from the application
of the methods we proposed in this work to extract rele-
vant information from the lyrics. So far, lyrics annotations
concern their structure segmentation, their topic, the explic-
itness of the lyrics content, the summary of a song and the
emotions conveyed. Some of those annotation layers are
provided for all the 1.73M songs included in the WASABI
corpus, while some others apply to subsets of the corpus,
due to various constraints described.

recsys challenge 2018
We participated in the RecSys Challenge 20181 as members
of of the D 2KLab team. The Challenge focused on music
recommendation, speci�cally the task of automatic playlist
continuation. The idea is to recommend additional songs
for a playlist to make playlist creation easier, as well as to
extend listening beyond the end of existing playlists. The
ground truth for training a machine learning model for
playlist continuation, was the Million Playlist Dataset from
Spotify, a public dataset of playlists, consisting of a large
number of playlist titles and associated track listings. The
evaluation contained a set of playlists from which a number
of tracks had been withheld. The task was then to predict
the missing tracks in those playlists. Our team proposed an
ensemble strategy of different RNNs leveraging pre-trained
embeddings representing tracks, artists, albums, and titles
as inputs. Our speci�c contribution to the team effort was
to align the Challenge dataset to the lyrics in our WASA-
BI Song Corpus, and then extract such features from the
lyrics that model different dimensions of the lyrics, such as
vocabulary, style, semantics, orientation towards the world,
and song emotion. Our lyrics features were used along
the other features in the RNN where they contributed
to improve the performance of our playlist completion
approach [81]. This �nding supports the hypothesis that

1 http://www.recsyschallenge.com/2018/

http://www.recsyschallenge.com/2018/
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lyrics are a valuable addition for numerous applications in
Music Information Retrieval.

7.1 perspectives

The research we have conducted in this Thesis leaves space
for future improvements and opens up possibilities for dif-
ferent applications in MIR. In the following, we enumerate
some ideas we have for interesting future work to broaden
and deepen the path of our research.

For dataset creation we think that a broad range of the
applications we have discussed in this Thesis can pro�t
from a resource such as Genius2, a crowdsourcing platform
for lyrics annotations. Here, parts of the lyrics are annotated
and explained or given background information by the
platform users. Such structured contextual data could help
improve extracting the most important content in the lyrics.

For multimodality , we have shown improvements of
lyrics segmentation performance when using both the text
and the audio modality. We envision both using more
modalities (such as an additional aligned video clip) and
experimenting such an approach on more tasks, such as
the tasks we worked on - summarization, explicit lyrics
detection, emotion recognition - and beyond. We are hope-
ful, that the prerequisite for this, multimodal datasets, are
becoming more and more available [ 74, 89].

For music search engines we are excited to see our
newly released WASABI Song Corpus put to use in the
MIR landscape. While we have provided NLP annotations
for our two million song dataset, we will also continue
working in the WASABI Project towards more complex and
useful search interfaces to facilitate searches such as�nd
songs where the chorus talks about hope, but the verse talks about
struggle.

For music recommendation we envision a deeper in-
tegration of lyrics-based knowledge. While we obtained
promising results in the RecSys Challenge 2018, as de-
scribed above, that approach was based on manual feature

2 https://genius.com/

https://genius.com/
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engineering. The advent of pretrained language models
such as BERT [35] paves the way to the extraction of even
more useful features from the lyrics.

In the spirit of [ 64] who learn style transfer for lyrics
between the musical genres Hip Hop and Pop, we imagine
to create lyrics from prose text or spoken language. To
produce a text of similar length, in a �rst step, we may need
to summarize the input text to then add the characteristic
traits of lyrics such as rhyme and repetition. This might
be a valuable help to composers, assisting them in rapdily
writing lyrics to trending topics or news.

Finally, there is evidence that musical emotion arises
strongly from the dynamics [ 22] and is formed by ex-
pectations [38]. This line of dynamic emotion modelling
has seen little attention, also because of the lack of larger
datasets [27, 106]. We believe that modelling emotion dy-
namically, e.g. one emotion per sentence instead of per
document, will ultimately improve emotion recognition
performance.





B I B L I O G R A P H Y

[1] Mehdi Allahyari, Seyed Amin Pouriyeh, Mehdi As-
se�, Saeid Safaei, Elizabeth D. Trippe, Juan B. Gutier-
rez, and Krys Kochut. “Text Summarization Tech-
niques: A Brief Survey.” In: CoRRabs/ 1707.02268
(2017).

[2] A. Allik, F. Thalmann, and M. Sandler. “MusicLynx:
Exploring music through artist similarity graphs.”
In: Companion Proc. (Dev. Track) The Web Conf. (WWW
2018). Lyon, France, 2018.

[3] Gabor Angeli, Melvin Jose Johnson Premkumar, and
Christopher D. Manning. “Leveraging Linguistic
Structure For Open Domain Information Extrac-
tion.” In: Proceedings of the53rd Annual Meeting of the
Association for Computational Linguistics and the7th
International Joint Conference on Natural Language Pro-
cessing (Volume1: Long Papers). Beijing, China: Asso-
ciation for Computational Linguistics, 2015, pp. 344–
354.

[4] Rachit Arora and Balaraman Ravindran. “Latent
dirichlet allocation based multi-document summa-
rization.” In: Proceedings of the second workshop on
Analytics for noisy unstructured text data. ACM. 2008,
pp. 91–97.

[5] Jack Atherton and Blair Kaneshiro. “I Said it First:
Topological Analysis of Lyrical In�uence Networks.”
In: ISMIR. 2016, pp. 654–660.

[6] A. Baratè, L. A. Ludovico, and E. Santucci. “A Semantics-
Driven Approach to Lyrics Segmentation.” In: 2013
8th International Workshop on Semantic and Social Me-
dia Adaptation and Personalization. 2013, pp. 73–79.

[7] Federico Barrios, Federico López, Luis Argerich, and
Rosa Wachenchauzer. “Variations of the Similarity

121



122 bibliography

Function of TextRank for Automated Summariza-
tion.” In: CoRRabs/ 1602.03606(2016).

[8] Mark A. Bartsch and Gregory H. Wake�eld. “Au-
dio Thumbnailing of Popular Music Using Chroma-
based Representations.” In: Trans. Multi. 7.1 (2005),
pp. 96–104. issn: 1520-9210.

[9] Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-
ora Nozza, Viviana Patti, Francisco Manuel Rangel
Pardo, Paolo Rosso, and Manuela Sanguinetti. “Semeval-
2019task 5: Multilingual detection of hate speech
against immigrants and women in twitter.” In: Pro-
ceedings of the13th International Workshop on Semantic
Evaluation. 2019, pp. 54–63.

[10] Taylor Berg-Kirkpatrick, Dan Gillick, and Dan Klein.
“Jointly Learning to Extract and Compress.” In: Pro-
ceedings of the49th Annual Meeting of the Association
for Computational Linguistics: Human Language Tech-
nologies - Volume1. HLT ' 11. Portland, Oregon: Asso-
ciation for Computational Linguistics, 2011, pp. 481–
490. isbn: 978-1-932432-87-9.

[11] Linn Bergelid. Classi�cation of explicit music content
using lyrics and music metadata. 2018.

[12] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian
Whitman, and Paul Lamere. “The Million Song Dataset.”
In: Proceedings of the12th International Conference on
Music Information Retrieval (ISMIR2011). 2011.

[13] Shraey Bhatia, Jey Han Lau, and Timothy Baldwin.
“Automatic labelling of topics with neural embed-
dings.” In: arXiv preprint arXiv:1612.05340(2016).

[14] David M Blei, Andrew Y Ng, and Michael I Jordan.
“Latent dirichlet allocation.” In: Journal of machine
Learning research3.Jan (2003), pp. 993–1022.

[15] Cristina Bosco, Felice Dell'Orletta, Fabio Poletto,
Manuela Sanguinetti, and Maurizio Tesconi. “Overview
of the EVALITA 2018Hate Speech Detection Task.”
In: Proceedings of the Sixth Evaluation Campaign of
Natural Language Processing and Speech Tools for Ital-
ian. Final Workshop (EVALITA2018) co-located with the



bibliography 123

Fifth Italian Conference on Computational Linguistics
(CLiC-it 2018), Turin, Italy. 2018.

[16] David Brackett. Interpreting Popular Music. Cambridge
University Press, 1995. isbn: 9780521473378.

[17] M. Buffa and J. Lebrun. “Real time tube guitar ampli-
�er simulation using WebAudio.” In: Proc.3rd Web
Audio Conference (WAC2017). London, UK, 2017.

[18] M. Buffa and J. Lebrun. “Web Audio Guitar Tube
Ampli�er vs Native Simulations.” In: Proc.3rd Web
Audio Conf. (WAC2017). London, UK, 2017.

[19] Michel Buffa, Jerome Lebrun, Jari Kleimola, Stéphane
Letz, et al. “Towards an open Web Audio plugin
standard.” In: Companion Proceedings of the The Web
Conference2018. International World Wide Web Con-
ferences Steering Committee.2018, pp. 759–766.

[20] Michel Buffa, Jerome Lebrun, Johan Pauwels, and
Guillaume Pellerin. “A 2 Million Commercial Song
Interactive Navigator.” In: WAC 2019- 5th WebAudio
Conference2019. Trondheim, Norway, 2019.

[21] Michel Buffa, Jerome Lebrun, Guillaume Pellerin,
and Stéphane Letz. “WebAudio Plugins in DAWs
and for Live Performance.” In: 14th International Sym-
posium on Computer Music Multidisciplinary Research
(CMMR' 19). 2019.

[22] Marcelo Caetano, Athanasios Mouchtaris, and Frans
Wiering. “The role of time in music emotion recogni-
tion: Modeling musical emotions from time-varying
music features.” In: International Symposium on Com-
puter Music Modeling and Retrieval. Springer. 2012,
pp. 171–196.

[23] Erion Çano. “Text-based Sentiment Analysis and
Music Emotion Recognition.” PhD thesis. Turin, Italy:
Computer Engineering, Politecnico di Torino, 2018.

[24] Erion Çano and Maurizio Morisio. “Music Mood
Dataset Creation Based on Last.fm Tags.” In: 2017
International Conference on Arti�cial Intelligence and
Applications, Vienna Austria. 2017.



124 bibliography

[25] Wei Chai and Barry Vercoe. “Music thumbnailing
via structural analysis.” In: Proceedings of the eleventh
ACM international conference on Multimedia. 2003,
pp. 223–226.

[26] Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. “SemEval-2019task 3:
EmoContext contextual emotion detection in text.”
In: Proceedings of the13th International Workshop on
Semantic Evaluation. 2019, pp. 39–48.

[27] Yu-An Chen, Yi-Hsuan Yang, Ju-Chiang Wang, and
Homer Chen. “The AMG 1608 dataset for music
emotion recognition.” In: 2015 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE.2015, pp. 693–697.

[28] H. T. Cheng, Y. H. Yang, Y. C. Lin, and H. H. Chen.
“Multimodal structure segmentation and analysis
of music using audio and textual information.” In:
2009 IEEE International Symposium on Circuits and
Systems. 2009, pp. 1677–1680.

[29] Jianpeng Cheng and Mirella Lapata. “Neural Sum-
marization by Extracting Sentences and Words.” In:
Proceedings of the54th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume1: Long
Papers). Berlin, Germany: Association for Computa-
tional Linguistics, 2016, pp. 484–494.

[30] Hyojin Chin, Jayong Kim, Yoonjong Kim, Jinseop
Shin, and Mun Y Yi. “Explicit Content Detection
in Music Lyrics Using Machine Learning.” In: 2018
IEEE International Conference on Big Data and Smart
Computing (BigComp). IEEE.2018, pp. 517–521.

[31] Alice Cohen-Hadria and Geoffroy Peeters. “Mu-
sic Structure Boundaries Estimation Using Multi-
ple Self-Similarity Matrices as Input Depth of Con-
volutional Neural Networks.” In: AES International
Conference Semantic Audio2017. Erlangen, Germany,
2017.



bibliography 125

[32] Steven B. Davis and Paul Mermelstein. “Comparison
of parametric representations for monosyllabic word
recognition in continuously spoken sentences.” In:
ACOUSTICS, SPEECH AND SIGNAL PROCESSING,
IEEE TRANSACTIONS ON (1980), pp. 357–366.

[33] Rémi Delbouys, Romain Hennequin, Francesco Pic-
coli, Jimena Royo-Letelier, and Manuel Moussallam.
“Music mood detection based on audio and lyrics
with deep neural net.” In: arXiv preprint arXiv:1809.07276
(2018).

[34] Jean Yves Delort, Bernadette Bouchon-Meunier, and
Maria Rifqi. “Enhanced Web Document Summa-
rization Using Hyperlinks.” In: Proceedings of the
Fourteenth ACM Conference on Hypertext and Hyperme-
dia. HYPERTEXT '03. Nottingham, UK: ACM, 2003,
pp. 208–215. isbn: 1-58113-704-4.

[35] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. “Bert: Pre-training of deep bidi-
rectional transformers for language understanding.”
In: arXiv preprint arXiv:1810.04805(2018).

[36] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. “Bert: Pre-training of deep bidi-
rectional transformers for language understanding.”
In: arXiv preprint arXiv:1810.04805(2018).

[37] Changshun Du and Lei Huang. “Text classi�cation
research with attention-based recurrent neural net-
works.” In: International Journal of Computers Commu-
nications & Control13.1 (2018), pp. 50–61.

[38] Hauke Egermann, Marcus T Pearce, Geraint A Wig-
gins, and Stephen McAdams. “Probabilistic models
of expectation violation predict psychophysiological
emotional responses to live concert music.” In: Cog-
nitive, Affective, & Behavioral Neuroscience13.3 (2013),
pp. 533–553.

[39] Günes Erkan and Dragomir R Radev. “Lexrank:
Graph-based lexical centrality as salience in text
summarization.” In: Journal of arti�cial intelligence
research22 (2004), pp. 457–479.



126 bibliography

[40] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xi-
aowei Xu, et al. “A density-based algorithm for
discovering clusters in large spatial databases with
noise.” In: Kdd. Vol. 96. 1996, pp. 226–231.

[41] Mohamed Abdel Fattah. “A hybrid machine learn-
ing model for multi-document summarization.” In:
Applied intelligence40.4 (2014), pp. 592–600.

[42] Mohamed Abdel Fattah and Fuji Ren. “GA, MR,
FFNN, PNN and GMM Based Models for Automatic
Text Summarization.” In: Comput. Speech Lang.23.1
(2009), pp. 126–144. issn: 0885-2308.

[43] Michael Fell. “Lyrics classi�cation.” MA thesis. Ger-
many: Saarland University, 2014.

[44] Michael Fell, Yaroslav Nechaev, Elena Cabrio, and
Fabien Gandon. “Lyrics Segmentation: Textual Macrostruc-
ture Detection using Convolutions.” In: Proceedings
of the27th International Conference on Computational
Linguistics. 2018, pp. 2044–2054.

[45] Michael Fell and Caroline Sporleder. “Lyrics-based
analysis and classi�cation of music.” In: Proceed-
ings of COLING2014, the25th International Conference
on Computational Linguistics: Technical Papers. 2014,
pp. 620–631.

[46] Elisabetta Fersini, Paolo Rosso, and Maria Anzovino.
“Overview of the Task on Automatic Misogyny Iden-
ti�cation at IberEval 2018.” In: IberEval@SEPLN. Vol. 2150.
CEUR Workshop Proceedings. CEUR-WS.org,2018,
pp. 214–228.

[47] Thomas Fillon, Joséphine Simonnot, Marie-France
Mifune, Stéphanie Khoury, Guillaume Pellerin, and
Maxime Le Coz. “Telemeta: An open-source web
framework for ethnomusicological audio archives
management and automatic analysis.” In: Proceed-
ings of the1st International Workshop on Digital Li-
braries for Musicology. ACM. 2014, pp. 1–8.



bibliography 127

[48] Darja Fišer, Ruihong Huang, Vinodkumar Prab-
hakaran, Rob Voigt, Zeerak Waseem, and Jacque-
line Wernimont. “Proceedings of the 2nd Workshop
on Abusive Language Online (ALW 2).” In: Proceed-
ings of the2nd Workshop on Abusive Language Online
(ALW2). Brussels, Belgium: Association for Compu-
tational Linguistics, 2018.

[49] Jonathan Foote. “Automatic audio segmentation us-
ing a measure of audio novelty.” In: Multimedia and
Expo,2000. ICME 2000. 2000IEEE International Con-
ference on. Vol. 1. IEEE.2000, pp. 452–455.

[50] Takuya Fujishima. “Realtime Chord Recognition of
Musical Sound: a System Using Common Lisp Mu-
sic.” In: ICMC. Michigan Publishing, 1999.

[51] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. http://www.deeplearningbook.org .
MIT Press, 2016.

[52] Aria Haghighi and Lucy Vanderwende. “Explor-
ing content models for multi-document summariza-
tion.” In: Proceedings of Human Language Technologies:
The 2009 Annual Conference of the North American
Chapter of the Association for Computational Linguis-
tics. Association for Computational Linguistics. 2009,
pp. 362–370.

[53] Ruifang He and Xingyi Duan. “Twitter Summariza-
tion Based on Social Network and Sparse Recon-
struction.” In: AAAI . 2018.

[54] Romain Hennequin, Anis Khlif, Felix Voituret, and
Manuel Moussallam. Spleeter: A Fast And State-of-
the Art Music Source Separation Tool With Pre-trained
Models. Late-Breaking/Demo ISMIR 2019. Deezer
Research.2019.

[55] Leonhard Hennig. “Topic-based multi-document
summarization with probabilistic latent semantic
analysis.” In: Proceedings of the International Confer-
ence RANLP-2009. 2009, pp. 144–149.

http://www.deeplearningbook.org


128 bibliography

[56] Meishan Hu, Aixin Sun, Ee-Peng Lim, and Ee-Peng
Lim. “Comments-oriented Blog Summarization by
Sentence Extraction.” In: Proceedings of the Sixteenth
ACM Conference on Conference on Information and
Knowledge Management. CIKM ' 07. Lisbon, Portugal:
ACM, 2007, pp. 901–904. isbn: 978-1-59593-803-9.

[57] Xiao Hu and J Stephen Downie. “Improving mood
classi�cation in music digital libraries by combining
lyrics and audio.” In: Proceedings of the10th annual
joint conference on Digital libraries. 2010, pp. 159–168.

[58] Xiao Hu, J Stephen Downie, and Andreas F Ehmann.
“Lyric text mining in music mood classi�cation.” In:
American music183.5,049(2009), pp. 2–209.

[59] Nanzhu Jiang and Meinard Müller. “Estimating dou-
ble thumbnails for music recordings.” In: 2015IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 2015, pp. 146–150.

[60] Jayong Kim and Y Yi Mun. “A Hybrid Modeling Ap-
proach for an Automated Lyrics-Rating System for
Adolescents.” In: European Conference on Information
Retrieval. Springer. 2019, pp. 779–786.

[61] Florian Kleedorfer, Peter Knees, and Tim Pohle. “Oh
Oh Oh Whoah! Towards Automatic Topic Detection
In Song Lyrics.” In: Ismir. 2008, pp. 287–292.

[62] Kevin Knight and Daniel Marcu. “Statistics-Based
Summarization - Step One: Sentence Compression.”
In: Proceedings of the Seventeenth National Conference
on Arti�cial Intelligence and Twelfth Conference on In-
novative Applications of Arti�cial Intelligence. AAAI
Press,2000, pp. 703–710. isbn: 0-262-51112-6.

[63] Quoc Le and Tomas Mikolov. “Distributed repre-
sentations of sentences and documents.” In: Interna-
tional conference on machine learning. 2014, pp. 1188–
1196.



bibliography 129

[64] Joseph Lee, Ziang Xie, Cindy Wang, Max Drach,
Dan Jurafsky, and Andrew Y Ng. “Neural Text Style
Transfer via Denoising and Reranking.” In: Proceed-
ings of the Workshop on Methods for Optimizing and
Evaluating Neural Language Generation. 2019, pp. 74–
81.

[65] Vladimir I Levenshtein. “Binary codes capable of
correcting deletions, insertions, and reversals.” In:
Soviet physics doklady. Vol. 10. 1966, pp. 707–710.

[66] Mark Levy, Mark Sandler, and Michael Casey. “Ex-
traction of high-level musical structure from audio
data and its application to thumbnail generation.”
In: 2006 IEEE International Conference on Acoustics
Speech and Signal Processing Proceedings. Vol. 5. IEEE.
2006, pp. V–V.

[67] Jing Li, Aixin Sun, and Sha�q Joty. “SegBot: A
Generic Neural Text Segmentation Model with Pointer
Network.” In: IJCAI. 2018, pp. 4166–4172.

[68] Chin-Yew Lin. “ROUGE: A Package for Automatic
Evaluation of Summaries.” In: Text Summarization
Branches Out. 2004.

[69] Annie Louis and Ani Nenkova. “Automatically As-
sessing Machine Summary Content Without a Gold
Standard.” In: Computational Linguistics39.2 (2013).

[70] Xuezhe Ma and Eduard Hovy. “End-to-end sequence
labeling via bi-directional lstm-cnns-crf.” In: arXiv
preprint arXiv:1603.01354(2016).

[71] Stuart Mackie, Richard McCreadie, Craig Macdon-
ald, and Iadh Ounis. “On choosing an effective au-
tomatic evaluation metric for microblog summarisa-
tion.” In: Proceedings of the5th Information Interaction
in Context Symposium. ACM. 2014, pp. 115–124.

[72] Jose P. G. Mahedero, Álvaro Martínez, Pedro Cano,
Markus Koppenberger, and Fabien Gouyon. “Natu-
ral Language Processing of Lyrics.” In: Proceedings
of the13th Annual ACM International Conference on
Multimedia. MULTIMEDIA ' 05. Hilton, Singapore:
ACM, 2005, pp. 475–478. isbn: 1-59593-044-2.



130 bibliography

[73] Qiaozhu Mei and ChengXiang Zhai. “Generating
Impact-Based Summaries for Scienti�c Literature.”
In: ACL. 2008.

[74] Gabriel Meseguer-Brocal, Alice Cohen-Hadria, and
Geoffroy Peeters. “DALI: a large Dataset of synchro-
nized Audio, Lyrics and notes, automatically created
using teacher-student machine learning paradigm.”
In: ISMIR Paris, France. 2018.

[75] Gabriel Meseguer-Brocal et al. “WASABI: a Two Mil-
lion Song Database Project with Audio and Cultural
Metadata plus WebAudio enhanced Client Applica-
tions.” In: Web Audio Conference2017– Collaborative
Audio #WAC2017. Queen Mary University of Lon-
don. London, United Kingdom, 2017.

[76] Rada Mihalcea and Carlo Strapparava. “Lyrics, mu-
sic, and emotions.” In: Proceedings of the2012Joint
Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learn-
ing. Association for Computational Linguistics. 2012,
pp. 590–599.

[77] Rada Mihalcea and Paul Tarau. “TextRank: Bringing
Order into Text.” In: Proceedings of the2004Conference
on Empirical Methods in Natural Language Processing.
2004.

[78] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. “Ef�cient estimation of word representations
in vector space.” In: arXiv preprint arXiv:1301.3781
(2013).

[79] Saif M. Mohammad and Peter D. Turney. “Crowd-
sourcing a Word-Emotion Association Lexicon.” In:
29.3 (2013), pp. 436–465.

[80] Saif Mohammad, Felipe Bravo-Marquez, Moham-
mad Salameh, and Svetlana Kiritchenko. “Semeval-
2018 task 1: Affect in tweets.” In: Proceedings of
the12th international workshop on semantic evaluation.
2018, pp. 1–17.



bibliography 131

[81] Diego Monti, Enrico Palumbo, Giuseppe Rizzo, Pas-
quale Lisena, Raphaël Troncy, Michael Fell, Elena
Cabrio, and Maurizio Morisio. “An Ensemble Ap-
proach of Recurrent Neural Networks using Pre-
Trained Embeddings for Playlist Completion.” In:
Proceedings of the ACM Recommender Systems Chal-
lenge, RecSys Challenge2018, Vancouver, BC, Canada,
October2, 2018. 2018, 13:1–13:6.

[82] Ramesh Nallapati, Feifei Zhai, and Bowen Zhou.
“SummaRuNNer: A Recurrent Neural Network based
Sequence Model for Extractive Summarization of
Documents.” In: AAAI . 2016.

[83] Ani Nenkova, Kathleen McKeown, et al. “Automatic
summarization.” In: Foundations and TrendsR in In-
formation Retrieval5.2–3 (2011), pp. 103–233.

[84] Markus Ojala and Gemma C. Garriga. “Permutation
Tests for Studying Classi�er Performance.” In: J.
Mach. Learn. Res.11 (2010), pp. 1833–1863. issn: 1532-
4435.

[85] Sergio Oramas, Luis Espinosa Anke, Mohamed Sordo,
Horacio Saggion, and Xavier Serra. “ELMD: An au-
tomatically generated entity linking gold standard
dataset in the music domain.” In: Proceedings of the
Tenth International Conference on Language Resources
and Evaluation (LREC'16). 2016, pp. 3312–3317.

[86] Sergio Oramas, Mohamed Sordo, Luis Espinosa-
Anke, and Xavier Serra. “A semantic-based approach
for artist similarity.” In: Müller M, Wiering F, editors.
Proceedings of the16th International Society for Mu-
sic Information Retrieval (ISMIR) Conference;2015Oct
26-Oct 30; Malaga, Spain.[Sl]: International Society for
Music Information Retrieval;2015. p. 100-6. Interna-
tional Society for Music Information Retrieval (IS-
MIR). 2015.

[87] Jahna Otterbacher, Güneş Erkan, and Dragomir R
Radev. “Using random walks for question-focused
sentence retrieval.” In: Proceedings of the conference
on Human Language Technology and Empirical Meth-



132 bibliography

ods in Natural Language Processing. Association for
Computational Linguistics. 2005, pp. 915–922.

[88] Lawrence Page, Sergey Brin, Rajeev Motwani, and
Terry Winograd. The PageRank citation ranking: Bring-
ing order to the web.Tech. rep. Stanford InfoLab, 1999.

[89] Loreto Parisi, Simone Francia, Silvio Olivastri, and
Maria Stella Tavella. “Exploiting Synchronized Lyrics
And Vocal Features For Music Emotion Detection.”
In: CoRRabs/ 1901.04831(2019).

[90] Ji Ho Park and Pascale Fung. “One-step and Two-
step Classi�cation for Abusive Language Detection
on Twitter.” In: Proceedings of the First Workshop on
Abusive Language Online. Vancouver, BC, Canada: As-
sociation for Computational Linguistics, 2017, pp. 41–
45.

[91] Sungjoon Park, Jiseon Kim, Jaeyeol Jeon, Heeyoung
Park, and Alice Oh. “Toward Dimensional Emotion
Detection from Categorical Emotion Annotations.”
In: arXiv preprint arXiv:1911.02499(2019).

[92] Daraksha Parveen, Hans-Martin Ramsl, and Michael
Strube. “Topical coherence for graph-based extrac-
tive summarization.” In: Proceedings of the2015Con-
ference on Empirical Methods in Natural Language Pro-
cessing. 2015, pp. 1949–1954.

[93] Daraksha Parveen and Michael Strube. “Integrat-
ing Importance, Non-redundancy and Coherence in
Graph-based Extractive Summarization.” In: Proceed-
ings of the24th International Conference on Arti�cial In-
telligence. IJCAI'15. Buenos Aires, Argentina: AAAI
Press,2015, pp. 1298–1304. isbn: 978-1-57735-738-4.

[94] J. Pauwels and M. Sandler. “A Web-Based System
For Suggesting New Practice Material To Music
Learners Based On Chord Content.” In: Joint Proc.
24th ACM IUI Workshops (IUI2019). Los Angeles, CA,
USA, 2019.



bibliography 133

[95] J. Pauwels, A. Xambó, G. Roma, M. Barthet, and
G. Fazekas. “Exploring Real-time Visualisations to
Support Chord Learning with a Large Music Col-
lection.” In: Proc.4th Web Audio Conf. (WAC2018).
Berlin, Germany, 2018.

[96] Samuel Pecar. “Towards Opinion Summarization
of Customer Reviews.” In: Proceedings of ACL2018,
Student Research Workshop. Melbourne, Australia: As-
sociation for Computational Linguistics, 2018, pp. 1–
8.

[97] Fabian Pedregosa et al. “Scikit-learn: Machine Learn-
ing in Python.” In: Journal of Machine Learning Re-
search12 (2011), pp. 2825–2830.

[98] Jeffrey Pennington, Richard Socher, and Christopher
Manning. “Glove: Global vectors for word represen-
tation.” In: Proceedings of the2014conference on empir-
ical methods in natural language processing (EMNLP).
2014, pp. 295–313.

[99] Lawrence Philips. “The Double Metaphone Search
Algorithm.” In: C/C++ Users Journal18(2000), pp. 38–
43.

[100] Robert Plutchik and Henry Kellerman. Emotion, the-
ory, research, and experience. Academic press, 1980.

[101] James A Russell. “A circumplex model of affect.” In:
Journal of personality and social psychology39.6 (1980),
p. 1161.

[102] Horacio Saggion and Thierry Poibeau. “Automatic
Text Summarization: Past, Present and Future.” In:
Springer, Berlin, Heidelberg, 2013, pp. 3–21.

[103] Markus Schedl, Arthur Flexer, and Julián Urbano.
“The neglected user in music information retrieval
research.” In: Journal of Intelligent Information Systems
41.3 (2013), pp. 523–539. issn: 1573-7675.



134 bibliography

[104] Elaheh Sha�eiBavani, Mohammad Ebrahimi, Ray-
mond Wong, and Fang Chen. “Summarization Eval-
uation in the Absence of Human Model Summaries
Using the Compositionality of Word Embeddings.”
In: Proceedings of the27th International Conference
on Computational Linguistics. Santa Fe, New Mex-
ico, USA: Association for Computational Linguistics,
2018, pp. 905–914.

[105] Cees G. M. Snoek, Marcel Worring, and Arnold
W. M. Smeulders. “Early Versus Late Fusion in Se-
mantic Video Analysis.” In: Proceedings of the13th
Annual ACM International Conference on Multimedia.
MULTIMEDIA ' 05. Hilton, Singapore: ACM, 2005,
pp. 399–402. isbn: 1-59593-044-2.

[106] Jacquelin A Speck, Erik M Schmidt, Brandon G Mor-
ton, and Youngmoo E Kim. “A Comparative Study
of Collaborative vs. Traditional Musical Mood Anno-
tation.” In: ISMIR. Vol. 104. Citeseer.2011, pp. 549–
554.

[107] Jacopo Staiano and Marco Guerini. “Depeche Mood:
a Lexicon for Emotion Analysis from Crowd An-
notated News.” In: Proceedings of the52nd Annual
Meeting of the Association for Computational Linguistics
(Volume2: Short Papers). Baltimore, Maryland: Asso-
ciation for Computational Linguistics, 2014, pp. 427–
433.

[108] Fabian-Robert Stöter, Stefan Uhlich, Antoine Liutkus,
and Yuki Mitsufuji. “Open-unmix-a reference imple-
mentation for music source separation.” In: Journal
of Open Source Software(2019).

[109] Philip Tagg. “Analysing popular music: theory, method
and practice.” In: Popular Music2 (1982), pp. 37–67.

[110] Laurent Vanni, Mélanie Ducoffe, Carlos Aguilar,
Frederic Precioso, and Damon Mayaffre. “Textual
Deconvolution Saliency (TDS): a deep tool box for
linguistic analysis.” In: Proceedings of the56th Annual
Meeting of the Association for Computational Linguistics
(Volume1: Long Papers). 2018, pp. 548–557.



bibliography 135

[111] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, �ukasz
Kaiser, and Illia Polosukhin. “Attention is All you
Need.” In: Advances in Neural Information Processing
Systems30. Ed. by I. Guyon, U. V. Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett. Curran Associates, Inc.,2017, pp. 5998–
6008.

[112] Cédric Villani. Optimal transport: old and new. Vol. 338.
Springer Science & Business Media,2008.

[113] Lu Wang, Hema Raghavan, Vittorio Castelli, Radu
Florian, and Claire Cardie. “A sentence compression
based framework to query-focused multi-document
summarization.” In: arXiv preprint arXiv:1606.07548
(2016).

[114] Amy Beth Warriner, Victor Kuperman, and Marc
Brysbaert. “Norms of valence, arousal, and domi-
nance for 13,915 English lemmas.” In: Behavior re-
search methods45.4 (2013), pp. 1191–1207.

[115] Kento Watanabe, Yuichiroh Matsubayashi, Naho
Orita, Naoaki Okazaki, Kentaro Inui, Satoru Fukayama,
Tomoyasu Nakano, Jordan Smith, and Masataka
Goto. “Modeling Discourse Segments in Lyrics Us-
ing Repeated Patterns.” In: Proceedings of COLING
2016, the 26th International Conference on Computa-
tional Linguistics: Technical Papers. 2016, pp. 1959–
1969.

[116] Michael Wiegand, Melanie Siegel, and Josef Rup-
penhofer. “Overview of the GermEval 2018Shared
Task on the Identi�cation of Offensive Language.”
In: Proceedings of GermEval2018, 14th Conference on
Natural Language Processing (KONVENS2018). 2018.

[117] Thomas Wolf et al. “HuggingFace's Transformers:
State-of-the-art Natural Language Processing.” In:
ArXiv abs/ 1910.03771(2019).



136 bibliography

[118] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. “Hierarchical Atten-
tion Networks for Document Classi�cation.” In: Pro-
ceedings of the2016Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies. San Diego, Cali-
fornia: Association for Computational Linguistics,
2016, pp. 1480–1489.

[119] Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
“SemEval-2019Task 6: Identifying and Categorizing
Offensive Language in Social Media (OffensEval).”
In: CoRRabs/ 1903.08983(2019).


	Abstract
	Resume
	Dedication

