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Chapter 1

Introduction

The autonomous navigation has been the topic of intensive researches during the last decades
due to the increasing ability of robot to perform complex tasks autonomously. More and more
the Humans intend to replace some human tasks by robot to perform for example demanding
jobs such as the work in the mines, replace some expensive works such the detection of under-
water mines with surface vessels and to replace dangerous tasks such as the neutralization of
bomb.

The level of autonomy of a system is determined by its ability to complete a mission by using
smartly its energy, navigating in the environment and taking some decisions. The navigation
autonomy can be defined as the ability of a robot to navigate precisely and estimate its position
with little or non significant error over periods of time. Correctly estimating the position and the
attitude within the environment is the key of the success in the different robotics applications.
In outdoor environment, robotics applications can rely on the absolute positioning system
based on the Global Positioning System (GPS) since 2000. Initially developed for military
operations, it provides a centimeter accuracy of the position in terms of latitude and longitude.
The GPS signal can be unreliable where the interferences are too important in mountainous
environment, cities or when it faces jamming in battlefield. As in GPS denied environment,
another navigation solution has to be developed to still have autonomous robot and the solution
is not trivial.

The use of the GPS signal is not possible underwater due to the strong attenuation of the
electromagnetic waves in submarine environments. The lack of the absolute position has to be
overcome to provide an accurate navigation solution and to develop autonomous underwater
robot. An analogy can be made in indoor environment, when people enter a building they
don’t know, they firstly look for a map in the entry hall to find the way to the destination. At
any time they looked at their smartphone to know their position. The problem is then to find
a way to reach the destination. The solution adopted could be to minimize the path length
but they could risk to be lost if some ways go through restricted areas. Another solution would
be to walk between areas of interest such as the welcome desks of the different departments
in any big structure like hospitals. By navigating between the different areas of interest called
relocation areas and interacting with their environment, they will likely find their way. This
thesis will be focused on this last solution to improve the autonomy level of robots in underwater
environments. Obviously this problem could be extended to any GPS denied environment such
as indoor and confined environment like underground galleries. Many applications could benefit
from this human behaviour to find a way and complete a mission.
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(a) Poor visibility of an orange
buoy at 3 meters. Picture

extracted from [274].

(b) Sealife leading to outliers.
Picture extracted from [274].

(c) Unstructured aspect, sand ripples
area on a sonar mosaic.

Figure 1.1: Challenging environment

1.1 The underwater context

1.1.1 Challenges
Water covers a major part of the Earth surface and according to the American National Oceanic
and Atmosphere Administration (NOAA), 95% remains unknown by the Human. The recent
advances in underwater technologies enable the Human to discover and understand more and
more this environment feared during the navigation history and the discovery of new horizons.
Inaccessible areas for Humans due to the high pressures of the column water are now explored
with robots.

The success of an autonomous mission could be affected by the presence of strong currents.
For example in the Mine Counter Measure (MCM) context, navigating perpendiculary to the
direction of the current could degrade the image quality provided by a sonar during a survey
[337] and some potentially dangerous objects may not be detected by an operator or an algo-
rithm.

Moreover the poor visibility in the deepest water due to the lack of light or opacities in shal-
low water make useless the use of cameras as depicted in Figure 1.1(a). The sea life may lead
to outliers in the detection process of landmarks for example as shown in Figure1.1(b). The
underwater environment is an unstructured environment compared to man-made environment
as presented on a sonar mosaic depicted in Figure 1.1(c) which corresponds to a georeferenced
sonar image.

However acoustics seems to be an interesting mean in underwater environment to overcome
the communication and visibility issues. Indeed it has likely been the way of communicating
for the marine animals for millions of years. Leonardo Da Vinci was among the first to develop
the idea of underwater acoustics when he suggested [317]:

"If you cause your ship to stop and place the head of a long tube in the water and
place the outer extremity to your ear, you will hear ships at a great distance from
you."

A major step in the knowledge of underwater acoustics has been established during an ex-
periment on Lake Geneva in 1826, represented on figure1 1.2, where Daniel Colladon, a Swiss

1Picture extracted from J.D. Colladon, Souvernirs et Memoires, Albert-Schuchardt, Geneva, 1893.
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Figure 1.3: A sound speed profile: the speed varies according to the the depth

physicist, and Charles Sturm, a French mathematician, measured the sound speed at 1435 m/s
over a 17 kms distance. It was later realized [57][199] that the speed in saline water was greater
and it is affected by the temperature too. Usually the sound speed profile is represented as
a function of depth as shown in Figure 1.3 but in reality at a given depth, it depends on the
temperature, this depth and the salinity.

Figure 1.2: Experiment on Lake Geneva to determine the speed of sound in water. The bell
was struck simultaneously with ignition of gunpowder on the left boat. The sound and the
flash were observed 10 miles away on the right boat. The time between the flash and the sound
reaching the boat enables to calculate the speed.

An acoustic wave is well suited to perceive distance between an emitter and any obstacles
but the propagation depends on many factors. The direction of propagation is determined by
the sound speed gradients. The propagation comes from the wave equation. Some models [146]

3



CHAPTER 1. INTRODUCTION

Figure 1.4: Paths taken by an acoustic signal. Some are reflected on the surface water and others
on the seafloor. This figure is extracted from BELLHOP [273], an acoustic ray propagation
tracing program.

have established under some simplifications the set of solutions for the propagation, as the ray
theory shown in Figure 1.4, efficient at short range and high frequency. Therefore the sound
signal usually doesn’t propagate in a straight line.

1.1.2 Missions
Many sectors are interested by the use of underwater robots.

Defense

The defense is one of the first contributor in term of investment and research to the develop-
ment of underwater autonomous robots. Indeed, underwater autonomous systems present many
advantages to collect operational, tactical and strategic intelligence data for the commandmant.
Moreover the ease of clandestine deployment and the small footprint and signatures make them
an interesting ally in military operations. According to [36], the US Navy identified several
missions for Unmanned Underwater Vehicle (UUV) and ordered them according to their prior-
ity degree in the field. The top five missions are listed below and can obviously be conducted
without UUVs:

• Intelligence, Surveillance and Reconnaissance (ISR)

• Mine CounterMeasures (MCM)

• Anti Submarine Warfare (ASW)

• Inspection and Identification

• Oceanography

Among these missions, one can notice the MCM missions. The different steps in a MCM
mission will be detailed in section 1.1.3. This will be the concern of this thesis. Moreover the
U.S. navy mentioned the underwater mine removal as one of the most problematic mission for
UUVs and to the NAVY in general [231].
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Figure 1.5: Robots used for the exploration of the RMS Titanic wreck which sank in 1912.
On the left, the unmanned ROV Jason Jr. taking some photographs, tethered by the manned
submersible Alvin on the right picture.

Inspection and Identification missions are steps in MCM missions for mine identification and
removal. However these missions could refer to clandestine operations such as spying an enemy
ship with human divers setting up some electronic listening devices on a ship hull.

One of the listed mission is called Anti-Submarine Warfare (ASW). The main objective is
to secure an area from submarines [324] and detect any intruder that would enter an harbour
or an area desired to be safe.

Oceanography will be discussed in scientific missions.

All these operations can be conducted by an UUV.

Scientific missions

Oceanography takes today benefit from the use of Autonomous Underwater Vehicles (AUVs).
Indeed AUVs can perform oceanographic reconnaissance in shallow and deep water area to col-
lect various data. It is usually used to map the bottom, determine the profile of the bathymetry,
profile the sub-bottom, classify the underwater environment with the acoustic and optical im-
ages, and characterize the water-column including the determination of the ocean current-profile
(with tides), the temperature and salinity profiles. Oceanography is first-of-all highly related
to military operations and globally to any subsea operations.

The marine archaelogy [197] has been highlighted in 1985 with the discovery and exploration
of the wreck of the RMS2 Titanic, lying on the seabed at 3800 meters, 600 kms south-southeast
of Newfoundland. The ROV Jason Jr. controlled through a fiber optic cable from aboard the
DSV (Deep Submergence Vehicle)Alvin, carrying usually two scientists and a pilot, explored the
wreck and photographed the area where the submersible could not access. Figure 1.5 shows on
the left Jason Jr. and on the right Alvin. The pictures are extracted from Oceanus magazine3.

Recently, a 2400-year-old wooden vessel, likely a merchant greek vessel, has been discovered
in the Black Sea at 2000 meters depth by the Black Sea Maritime Archaeology Project (MAP).
The unusual preserved shipwreck, as shown in figure 1.6, has been photographed by a ROV

2Royal Mailing Ship
3http://www.whoi.edu/oceanus/feature/a-titanic-tale
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Figure 1.6: The black sea wreck found in an usual preservation state. c© HO / Black Sea MAP
/ EEF expeditions / AFP

equipped with cameras. It shows some ship construction features, such as the mast and rowing
benches, that have until now not been found in an intact conservation state on ships at this age.

Commercial missions

The main commercial mission occurs in the offshore oil and gas industry where they are
looking for underground reservoirs to better extract the hydrocarbons. Instead of dragging
long cables called streamers from surface vessels, which may be several kilometers long, a group
of AUVs are able to perform gravitometry, magnetometry or seismic surveys to localize the un-
derground reservoirs. Moreover, through the mapping of the seabed, it can help to determine
pipeline routes to save costs as for the deployment of undersea cables for communication. It
avoids the requirement of excessive length of cable from surface vessels in deep water. Moreover
AUVs enable the inspection of pipelines and cables to check the reliability and localize potential
failures.

In this thesis, we will focus our application in the MCM context and the need to develop
autonomous system for mine identification/neutralization. However, the concept presented can
obviously fit to other missions.

1.1.3 Robots
Compared to the submersible like the DSV Alvin, an underwater robot is an unmanned un-
derwater vehicle called UUV. As mentioned in the previous subsection, the UUVs proved to
be successful in many kind of applications and sometimes necessary in certain situations. It is
automatically propelled and is equipped with an energy source provided by embedded batteries
or by another vehicle such as a surface vehicle. It can be remotely controlled by a cable in
general or can perform autonomous mission. These robots are an interesting mean to collect
fastly physical, acoustical and visual information that are stored in an onboard memory. The
level of autonomy, briefly presented in the introduction, is based on the nature of the link to
the surface. Generally, the UUVs are divided in two categories: the Remotely Operated Vehicle
(ROV) and the Autonomous Underwater Vehicle (AUV).

1.1.3.1 Remotely Operated Vehicle (ROV)

The ROV is a Remotely Operated Vehicle controlled by a human pilot from a station on a boat.
The robot is linked to the surface by a cable by which a lot of information transit such as the
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Figure 1.7: Ocean One manipulating fragile objects

command to the engines or the data collected by the sensors. Due to the tension of the cable,
it enhances some disturbances on the robot motion that affect the stability and make it harder
to complete the different tasks. However, the presence of a cable enables an easier recovery of
the vehicle and avoids to loose contact. Usually a ROV is equipped with exteroceptive sensors
such as cameras and sonars to sense the environment and sometimes it is constituted of ma-
nipulator arms or hands for dexterous tasks such as marine archaeology which requires precise
motions to avoid any degradation of ancient objects. As depicted in Figure41.7, Ocean One has
been developed by the robotics laboratory of Standford University, led by Oussama Khatib, in
collaboration with the DRASSM (Département des Recherches Archéologiques Subaquatiques
et Sous-Marines), to imitate the sense of touch of a human diver during underwater search.

The size of the ROV is important when exploring in shallow waters or cluttered spaces.
Mini-ROVs are for example used in these difficult conditions thanks to their high maneuver-
ability, however they suffer from a weak propulsion. Consequently, the tether cable has an high
influence on the robot motion. To overcome this problem, a chain of mini ROVs is proposed in
[177] where several robots are linked by a tether. A portion of the tether linking two successive
robots, a leader and a follower, is managed by the follower robot to propose a visual regulation
of the tether thanks to embedded cameras.

In MCM context, the K-ster from ECA Group, represented in Figure 1.8, has been developed
for mine warfare. The model presented is the K-ster I, "I" for its identification purpose. The
design is the same as for the K-ster C which is the mine killer version, also called MNV (Mine
Neutralization Vehicle). Their head is tiltable to aim at the target for identification with a
camera or for mine disposal with a shaped charge. In the case of mine disposal, the vehicle is
intended to self detonate for time saving and neutralization guarantee. Therefore the design
has to be low-cost. Some characteristics of this ROV can be found in Table 1.1. Expensive
navigation sensors such as Inertial Navigation System (INS) and Doppler Velocity Log (DVL)
which can provide an accurate estimation of the position are prohibited. However the control
system enables the robot to get a fast and stable platform in various and difficult conditions
such as strong currents or turbulences behind the object to be inspected.

Another ROV from ECA Group, called Seascan MK2, represented in Figure 1.9, has a more
complete pannel of underwater tasks compared to the K-ster. Moreover it takes advantage
of real time data gathering through the optical fiber without the limitations of classical ROV

4https://cs.stanford.edu/group/manips/ocean-one.html
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Figure 1.8: K-ster I (Identification) from Eca Group. It is designed for mine warfare. The
K-ster on the picture has an inert head (yellow head). If the head was white, it would carry an
explosive charge and is named mine killer.

towing an umbilical. The Seascan is quite effective in difficult conditions with strong currents
and obstructed areas where an umbilical may be caught. Its long range may help for pipeline
inspection.

Feature Specifications

Hull

Length: 1500 mm
Height: 430 mm
Width: 500 mm
Weigth in air: 50 kgs

Endurance 2 Hours
Max speed 6 knots (3 m/s)
Cruise speed 3 knots (1.5 m/s)
Operating depth up to 300 m
Operational range up to 2000 m
Batteries Li ion

Sensors Dual Frequency Forward Looking Sonar (FLS)
Color video camera

Table 1.1: Some characteristics of the K-ster from ECA Group

1.1.3.2 Autonomous Underwater Vehicle (AUV)

The AUV is an Autonomous Underwater Vehicle that is equipped with localization and naviga-
tion devices to complete a mission autonomously. It is programmed before to follow a predefined
mission such as the survey of an area with a boustrophedon pattern for example. It is equipped
with its own source of energy with embedded batteries and it is usually possible to communi-
cate with an acoustic link. Depending on the depth of the mission, the characteristics of the
AUVs are not the same. Two types of AUV exist: the passively controlled and the dynamically
controlled vehicles.

Firslty, gliders [265][104] and buoys [189] are passively controlled autonomous underwater
robot, as they use the ocean current to navigate for a long period and on long range to gather
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Figure 1.9: Seascan from Eca Group. It is dedicated to inspection missions.

oceanic data. Buoys stay either at surface or can maintain a constant depth during the mis-
sion. As it relies on the current, the prediction of the path is a little bit random. Gliders and
wave gliders rely on wings to produce lift and forward motion, but their speed does not exceed
(0.25-0.5 m/s) that can enhance an undesired path in strong currents.

Secondly, AUVs, as commonly known, are mostly torpedo shaped to minimize the drag so
they do not require high propulsion power. Many models exist today, with a length varying
between less than a meter up to 10 meters, and a diameter from a dozen centimeters to meters.
The size depends on the mission which defines the embedded payload such as the sonars and
the batteries. These elements are the heaviest ones to carry. Recent works and technology
advances reduce the size of the AUVs that can be now human portable with modules added
depending on the desired mission. Many AUVs are available today on the market with different
performances, sizes and prices. ECA Group, for example, proposes a multi task AUV called
A9, represented in Figure 1.10. Several versions of the A9 exist today, such as the A9-E in
Figure 1.10(a) or the A9-M in Figure 1.10(b) for military missions. Its color is more adapted to
clandestine missions for mine disposal in the region around an harbour for instance. Many sen-
sors are embedded in the vehicle including in particular an INS and a DVL that can provide an
accurate navigation solution. These sensors will be discussed in the next section. Thanks to a
reliable navigation, it can perform long term underwater mission without surfacing to get GPS
fix. Moreover the interferometric Sidescan Sonar (SSS) provides simultaneously a 2D image of
the seabed and the bathymetry (bottom profile). This AUV is well adapted for REA (Rapid
Environment Assessment) missions thanks to its large coverage rate based on side-looking sonar.

9



CHAPTER 1. INTRODUCTION

(a) A9-E. (b) A9-M, military version of A9.

Figure 1.10: A9 from ECA Group. On the left, the model E and on the right military version
of A9 with its dark color.

Feature Specifications

Hull
Length: 2 m
Body diameter: 23 cm
Weigth in air: 70 kgs

Endurance up to 20 Hours
Max speed 5 knots (3 m/s)
Cruise speed 3 knots (1.5 m/s)
Operating depth 3-200 m

Sensors

Interferometric Sidescan Sonar
Video
CTD (Conductivity Temperature Depth)
Environment sensors

Navigation
Inertial Navigation System (INS)
Doppler Velocity Log (DVL)
Global Positioning System (GPS)

Table 1.2: Some characteristics of the A9-E from ECA Group

1.2 UUV localization and navigation
The underwater environment is challenging due to many issues introduced in Subsection 1.1.1.
Solving the localization problem is the key issue to complete any mission. The localization
describes the process to estimate the vehicle’s position in a given reference frame based on
proprioceptive and exteroceptive measurements. The first ones provide information relative to
the state of the robot through acceleration, heading, speed compared to the second ones that
gather information about temperature, distance from beacons, distance from landmarks, etc...

A "good" localization system is important to collect meaningful data and to ensure the
safety of the robot. Contrary to aerial or terrestrial robots that can rely generally on an ab-
solute positioning system (GPS), new solutions have to be developed for an UUV. Moreover,
the localization system has to be embedded to conduct autonomous mission. This subsection
provides an overview of the localization techniques and the sensors used to navigate in this
GPS denied environment.
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The different localization procedures lay mainly in three categories:

• Inertial/Dead-reckoning: estimating the position from successive proprioceptive measure-
ments.

• Acoustic beacons: estimating the position through the time of flight (TOF) of signals
from beacons.

• Geophysical: estimating the position with external environmental information as refer-
ence.

1.2.1 Definition of the problem
Before introducing the different techniques, it is necessary to formalize the localization problem.
As mentioned before, the sensors embedded gather different types of data to estimate the robot
current state. It is generally defined in robotics community as state equations where a slight
difference exist between bayesian and set-membership methods about the noise.

In the set-membership community, proposed in this thesis, the state equations are defined
as follows: 

ẋ = f(x(t),u(t)) (evolution equation)
z(t) = g(x(t),m) (observation equation)
x(0) ∈ X0 (initial state)

(1.1)

In these equations, t ∈ R defines the time and x ∈ Rn is the state vector of the vehicle:
position, heading, speed, etc... it is called the pose of the vehicle. The evolution equation
f : Rn × Rm → Rn is differential and describes the state evolution of the robot based on the
input vector u ∈ Rm of the system. When the system is an observer, the inputs are generally
measured and then u corresponds to proprioceptive measurements. Due to the presence of
noise, generally u(t) belongs to an interval [u(t)]. The observation equation corresponds to
exteroceptive measurements such as the distance to some beacons, the distance to landmarks
or a part of the environment (shape) through a vector z ∈ Rp related to the state of the vehicle
x and the observation function g : Rn → Rp. Again a noise may be present, it is then defined
as intervals or shapes. The notation m refers to any information about the environment, it
could the position of a beacon or a map M ⊂ Rq of the environment where q is the dimension
of the workspace (generally two or three). The last equation describes the initial state of the
problem at t = 0 where the position belongs to an initial domain X0 ⊂ Rn. The functions f
and g may be uncertain and non-linear.

For example, in a 2D environment, a robot can be described by x = (x1, x2, θ)ᵀ where x1 and
x2 are respectively the East and North positions, and θ corresponds to the heading of the vehicle.

1.2.2 Inertial/Dead-reckoning navigation
Dead-reckoning refers to the main mean of pose estimation of the robot when it cannot rely
on absolute positioning system or acoustic beacons. The position estimation is updated upon
the knowledge of its orientation and velocity or acceleration vector. These measurements are
called proprioceptive measurements since it enables the estimation of the current robot position
through the evolution function.
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Figure 1.11: 4 downward looking beams DVL (picture extracted from [65])

An embedded IMU (Inertial Motion Unit) provides information on linear accelerations and
rotation speeds of the system. Working with a magnetometer, the system is able to give the
Euler angles: the bank φ, the elevation θ and the heading ψ. These angles are generally known
as roll φ, pitch θ, yaw ψ. The Euler angles or rates are then in general inputs to an AHRS
(Attitude and Heading Reference System), which generates a stable estimation of vehicle ori-
entation. The stabilized roll, pitch, and yaw are then used by an INS that combines other
sensors information to provide a robot’s state estimation based on algorithms such as the fa-
mous Kalman filter [152] in the bayesian community.

In underwater environment, the DVLs provide information about the ground referenced
vehicle speed by emitting acoustic beams toward the seabed and using the acoustic Doppler
effect. A change in sound pitch is proportional to the relative radial velocity between the
source and the receiver. Most of the commercially DVLs use the time dilation to compute the
velocity from a set of discrete pings, in general four downward-looking acoustic transducers and
each oriented at 30◦ from the vertical. In this configuration, it results in four measurements
of beam-component velocities representing each a scalar of the sensor velocity projected along
each beam axis. A representation of the four downward looking beams is depicted in Figure 1.11.

The main disadvantage of the dead-reckoning method is that errors are cumulative, and
consequently the robot position grows unbounded with the distance travelled. The errors may
have various origins: noise, wrong calibrations of the units, etc... Moreover the local water
current has to be taken into account in the kinematics model of the robot. This current can
be measured with an ADCP (Acoustic Doppler Current Profiler) or can be obtained with the
velocity measurement of the DVL. The ocean current can also be obtained by ocean prediction
from current models [265].

The best INS system can achieve a drift of 0.1% of the distance traveled [94] for the most
expensive system but generally the drift is estimated at 2 − 5% of the distance travelled for
mostly affordable systems.

The maximum vehicle time during subsea operations will be dictated by dead-reckoning/inertial
navigation accuracy. Poor dead-reckoning quality will enhance frequent surfacing to get GPS
fix. Vehicles operating near the coast and requiring a high surfacing frequency may collide a
surface vessel. Surfacing frequently is not really possible for deep water applications and even
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impossible for ice-covered oceans. Moreover in MCM operations, surfacing is a risk of being
spotted by the enemy.

1.2.3 Acoustic-based navigation
Acoustic transponders can be used as beacons to guide the motion of the UUV without the
need of resurfacing. Localization is achieved by measuring ranges from the TOF (Time Of
Flight) of acoustic signals.

Most of the techniques fall into the following categories:

LBL (Long Baseline)

LBL is a solution where the beacons are placed over a wide mission area on the seabed.
The localization is computed by triangulation of acoustic signals. In general, the beacons are
georeferenced before the mission by a surface ship [170] or another AUV [323]. The AUV
sends out an interrogation signal and the beacons reply in a predefined sequence. The two way
travel time of the acoustic signal enables to compute the range. Alternatively the baseline can
be synchronized and emits pings at the same time and therefore does not require the vehicle
interrogation. It is similar to the solution of GPS intelligent buoys, where the beacons are
placed at the surface of the ocean and benefit of the absolute positioning system GPS. The
drawbacks of LBL system are the cost and the time needed to set up the beacons network.
Moreover the range is limited and the range measurements are affected by the variability of
the sound velocity profile of the water column due to different temperature, salinity, depth, etc...

Despite these limitations, it is a widespread system for robust, reliable and accurate local-
ization device. It is particularly used in high-risk missions such as under-ice surveys [167].

SBL (Short BaseLine) and USBL (Ultra Short BaseLine)

SBL and USBL navigation enable an AUV to localize itself relative to a surface vessel. In
the USBL method, the relative range is computed by the TOF and the relative bearing is com-
puted by phase differencing across an array of transducers that are about 10cm distant. The
major limitation is the range. In SBL system, the transceivers are placed at the extremity of
the surface ship and the same concept of triangulation as SBL system. The longer the surface
vessel is, the better the accuracy of the position will be. It is better adapted to long ship rather
than small boats.

A detailed review of these techniques, their advantages and their drawbacks has been dis-
cussed in [325].

1.2.4 Geophysical-based navigation
Geophysical navigation methods are based on the observation of physical features (or features
variation) to perform localization procedure. The measured geophysical properties could be
used as references for localization. As stated in [193], the idea is to match sensor measurements
with the reference map to determine the vehicle position within the map, under the assumption
that the parameters being measured are sufficiently variable to provide an accurate localiza-
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(a) SBL (b) USBL

(c) LBL (d) LBL with GPS buoy

Figure 1.12: Acoustic-based navigation configuration

tion. The main advantage compared to acoustic-based navigation is the direct availability of
the information and it does not require to set beacons. Moreover this kind of navigation is
completely on-board, without the need of GPS, and enables operations in larger environment
[211] such as clandestine mission in military context. The reference map can be built before
the mission: it is called an a priori map, if some data are available, or it can be built while the
robot is navigating: it is called Simultaneous Localization And Mapping (SLAM) method.

Geophysical-based navigation is commonly known in the robotics community as Terrain
Relative Navigation (TRN) or TBN (Terrain Based Navigation) or even TAN (Terrain Aided
Navigation). All the acronyms refer to the same principle. Underwater TRN has been the focus
of a huge number of research efforts due to its potentially powerful solution for long-term and
long-range navigation solution for AUVs as they can use directly the information available in
situ through exteroceptive sensors. It’s comparable to the human behaviour where a human
to navigate in a known or unknown environment uses his senses including the "traditional"
five senses, i.e. the sight, the hearing, the taste, the smell and the touch. This capacity that
provides data for perception of the environment will enable him to evolve in a static or dynamic
environment, react to avoid an obstacle for example, and localize himself in this environment.

Considering the sensors used in an UUV, TRN methods may refer to featureless and feature-
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based navigation. Bathymetric-based and Gravity/Geomagnetic-based navigation refer to fea-
tureless navigation compared to acoustic image based navigation or optical image (called vision)
based navigation which refer to feature-based navigation. Acoustic-navigation is classified as
a featureless-navigation when a ranging SONAR is used and is called acoustic-image based
method when it refers to imaging SONAR with features extraction. An exception can be made
for acoustic image based navigation when the images are registered through iconic registration
which is a featureless approach.

Two problems can be considered in both type navigation:

• Localization: with the aid of known a priori maps of the terrain, it consists in localizing
the AUV within these maps. It is commonly known as pose tracking problem. It considers
the map and the initial condition known.

• SLAM: when the maps are not available, it consists in mapping the environment and
localizing itself within the map.

A third problem could be considered: the initial localization problem where only the map is
available and the initial state must be revovered. This problem has already been tackled with
Particle Filter (PF) methods such as Monte Carlo Localization (MCL) [69] or Rao-Blackwellised
Particle Filter (RBPF)[82] where the map is represented by geometric features. The convergence
and robustness of these algorithms remains a challenging task compared to interval methods
[141] which are able to overcome these issues. The initial localization problem will not be dis-
cussed more in this thesis.

Some solutions in the two first problems in the underwater context will be discussed.

The following paragraphs refer to:

• Optical: vision-based navigation.

• Sonar: acoustic image-based navigation called "Imaging Sonar" and acoustic range-based
navigation (bathymetric-based navigation) called "Ranging sonar".

• Magnetic and gravity: Gravity/Geomagnetic-based navigation.

1.2.4.1 Optical

Visual odometry is the technique to estimate the robot pose based on a sequence of succes-
sive images. In underwater environment, embedded stereo or monocular cameras can provide
the images. Compared to monocular cameras, the full 6 DOF (Degree Of Freedom) transfor-
mations between successive images pair can be computed with the stereo cameras. The visual
odometry can be estimated through optical flow technique for example. Many feature detectors
have been applied such as Scale-Invariant Feature Transform (SIFT)[202], Speeded-Up Robust
Feature (SURF) [19] and the alternative algorithm of SIFT-SURF called ORB [279]. Proving
closing loops in the trajectory by associating non-consecutive images is one the most important
problem in visual odometry, which is necessary to have a bounded localization error.

The main limitations of visual odometry in underwater environment are the limited range
of the cameras due to the lack of visibility, the appearance of speckle noise and the presence
of outliers such as fish. It requires the use of artificial lights in dark water and to navigate
close to the seabed. This technique is well-suited for feature-rich environments as it depends
on feature detection and feature matching between successive images. It can be relevant in
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docking operations.

In [92], the author proposes the new concept of Visually Augmented Navigation (VAN) to
solve the underwater visual SLAM problem. It solves a view-based Extended Kalman Filter
(EKF)-SLAM fusing 6 DOF relative pose camera measurements from monocular overlapping
seafloor imagery with classical dead-reckoning navigation sensors. The camera-derived relative
pose measurements provide the spatial constraints for visual odometry and loop closure. The
VAN has then been extended in [91] to an Information filter SLAM form where it maintains
a sparse information matrix without approximations or pruning. It has been applied for the
inspection of the RMS Titanic with SIFT and Harris [123] detectors for features extraction.
In [285], a feature-based SLAM applied in underwater environment is proposed where the map
constructed contains a set of 3D points and their associated SIFT/SURF descriptors coming
from stereo camera. The SIFT/SURF features present many advantages because they are in-
variant to image rotation, translation, scaling and moreover they are not sensitive to changes
in illumination, presence of noise and clutter, and distortions. The 3D points with the feature
descriptors are stored as a local submap. It provides finally a large scale 3D reconstruction of
the seabed from the reconstruction of many aligned submaps.

In the work [115][113][114], a mosaic-based navigation (MBN) for an AUV with a monoc-
ular camera is proposed. The mosaic is firstly computed offline and then it is directly used
online for real-time navigation. The mosaic is built by taking into account the spatial pairwise
constraints and by assuming a flat seabed. Consequently it estimates only the robot motion
through the computation of homographies along 4 DOFs. It performed well on small areas
(approximately 65 m2) but it is not well-suited for large areas because it suffers from inconsis-
tencies coming from the extended planar scene assumption. Moreover the localization method is
only vision based localization and it does not fuse other sensors based navigation measurements.

1.2.4.2 Sonar

SONAR systems are the most spread exteroceptive sensors used in underwater environment as
it propagates acoustic signals. Many types of Sonar are available today on the market, however
they can be classified into two main categories: ranging Sonar and imaging Sonar. Both are
intended to be used at specific frequencies depending on the range and resolution desired. More
detailed information about imaging Sonar will be discussed in Chapter 2.

a) Imaging SONAR

The ensonified area for the different imaging Sonars are depicted in Figure 1.13. The table
below sums up the different characteristics, with some applications and products examples.
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Figure 1.13: Sonar sensor swaths: (a) Sidescan Sonar (SSS) (b) Multibeam Echo Sounder
(MBES) (c) Forward Looking Sonar (FLS) (d) Mechanical Scanning and Imaging Sonar (MSIS)
(e) Synthetic Aperture Sonar (SAS) (pictures extracted from [242]).

Sonar Description Figure Applications Products

SSS

Sidescan Sonar,
side-looking sonar, beams
are perpendicular to the
direction of the motion, 2D
image of the seabed based
on the intensity of the
backscattered signal
obtained after several ping
emissions along a straight
motion

1.13(a)

Area coverage in
MCM mission
for mine
detection

Klein 5000

SAS

Synthetic Aperture Sonar,
same configuration as SSS
but coherent processing of
consecutive displaced
returns to create a virtual
array, equivalent to SAR5

in radar

1.13(e)

Area coverage in
MCM mission
for mine
detection, better
resolution than
SSS but also
constant
resolution over
range

Kraken
MINSAS

2D FLS

Forward Looking Sonar, 2D
image of the seabed
obtained with one
multi-beams ping emission
oriented forward

1.13(c)
Obstacle
Avoidance and
Nadir gap filler

BlueView
P900

MSIS

Mechanical Scanned
Imaging Sonar, a single
beam is rotated through
the desired angle of view
mechanically, beams
oriented forward in general

1.13(d)
Obstacle
Avoidance and
area scanning

Tritech
Micron

Table 1.3: Imaging SONAR
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The different types of sonars will be more detailed now.

SSS: SideScan Sonar

It is a side-looking sonar. Usually in REA (Rapid Environment Assessment) missions, an
AUV is equipped with two side-looking sonars to form a star-board and a port image. Due to
this configuration, the nadir is the area just below the AUV where no data are available, it’s
usually called nadir gap. A sidescan sonar image is described by an along-track (cross-range)
and a cross-track (along-range) resolutions. The different resolutions are linked to the ping
emission frequency, the velocity of the vehicle and the range desired but more detailed will be
discussed in Chapter 2. The acoustic return from the seabed, called the backscattered signal,
depends on the bottom type and is recorded in a sequence of cross-track slices. The sequence
is then composed of the acoustic returns from each ping emitted at a specific frequency. Each
ping is also composed of a multi-beam emission. The resulting image is called a water-fall
image that represents the ping emitted in function of the range samples, which assemblies port
and star-board images. In general, the detection algorithms are looking for an echo-shadow
pair in the image, representative of an object protruding from the seabed. These objects are
called landmark points and can be used by any SLAM algorithm to relocate the position of the
robot. SLAM with the sidescan sonar has been firstly presented in [280] where an augmented
EKF is used to create a stochastic map. The Rauch-Tung-Striebel smoother is used to filter
the pose estimation when a loop closure occured to update all the previous poses. As precised
in [282], the choice of the landmarks (targets) and a suitable data association are vital in sonar
data where false returns called outliers are present. The automated feature detection is not
trivial and data association based on MHTF filter (Multi Hypothesis Tracking Filter) [268] is
adapted to sonar data. It consists in reducing the number of hypotheses when the data as-
sociation is performed based on the exteroceptive measurements, the stochastic map and the
vehicle navigation. Compared to FLS images, where the areas covered by the sensor swath
as it moves overlap, there is little or no overlap in sidescan imagery. Usually the detection is
done after a predefined sequence of pings and the data association is performed based on the
vehicle poses historical. Sometimes it is meaningful to wait the construction of the sidescan
image along a straight motion line to observe constellations of objects, homogeneous texture
regions or large objects such as wrecks transformed after the detection into a symbolic format
[344]. Then a fuzzy relaxation algorithm is used to perform the matching of sets. This concept
introduces a delay between the real time navigation and the matching results. This delayed
data association is known as image registration [348] in the image processing community. The
method presented is defined as symbolic registration due to the extraction of elements in the
image such as geographical coordinates of individual objects or contour line of a textured re-
gion. Symbolic registration is a two step algorithm: firstly images are segmented and classified,
and secondly a spatial transformation is estimated. It has been widely used in side-looking
sonar imagery [49][322]. As precised earlier, sidescan sonar image can be registered through
featureless registration, it is called iconic registration. This method consists in finding the
spatial transformation between the pixels of two gray images [50] based on similarity metrics.
Contrary to symbolic methods, it does not require any time consuming segmentation and is
quite robust to illumination variations, occultations and noise highly present in sonar imagery.
Moreover in featureless environment symbolic methods would fail whereas iconic methods would
still provide a registration. Among iconic methods, a Fourier-based registration method has
been applied in [235] to registrer parallel tracks in MCM context for change detection [234]
between high resolution sonar images.

In [135][143], the sidescan SLAM is proposed as an interval constraint satisfaction problem

18



CHAPTER 1. INTRODUCTION

involving set-memberhip method. Even if the data association is done manually, it could be
overcome with interval propagation involving integer variables (identity of a landmark). More-
over, since the high presence of outliers in underwater environment, an interval approach would
generally return an empty set and then no trajectory estimation would be available. An alter-
native method could be to maximize the number of constraints satisfied [171][145] to be more
robust to outliers. Recently, due to the unstructured aspect of the underwater environment,
a shape based SLAM [71] has been proposed involving Thick Set [75] representation for the
shapes. The problem is solved in a set-membership manner with contractors and separators.
More details will be discussed in Chapter 4. This method enables to construct a map with
shapes describing sets such as an area of texture like sand ripples. In [12], a selective submap
joining SLAM is considered where a cascaded Haar classifier [328] for object detection is used.
The difficulty with sidescan imagery is to design properly the features since it will be built
differently upon a revisit [341].

FLS: Forward Looking Sonar

This system is mainly used for obstacle avoidance and as nadir gap filler in association with
a sidescan sonar. It is commonly used in hovering AUV able to approach underwater structure.
In [330], a feature based SLAM is proposed for ship hull inspections. The problem of feature
extraction in FLS images is detailed in [147]. A feature based navigation (FBN) solution using
a FLS in the context of revisiting a previously mapped environment with a sidescan sonar is
proposed in [93]. It maintains a set of match hypotheses in parallel until the map matching
score exceeds a threshold. This map matching score called NAPS (Negative And Positive Scor-
ing) incorporates Positive and Negative information. Positive information refers to information
of prior features detected by the FLS sonar which are used in data association algorithm such
as JCBB (Joint Compatibility Branch and Bound)[232]. A priori features were detected pre-
viously by the sidescan sonar survey. Negative information [209] refers to information of prior
features that were expected but undetected by the FLS. It consists to give a lower weigth to the
trajectory (an hypothesis during the multi-hypotheses procedure) where it is expected to detect
a feature that was actually not detected [101]. The aim of the project in [93] is to propose the
revisit for a low-cost vehicle with a FLS, by using an a priori map built with detections from
sidescan sonar images. As indicated, this low-cost vehicle is intended to self detonate in MCM
operations for mine removal. The idea of revisiting behind this project is close to the work
developed in this thesis.

As in sidescan sonar imagery, symbolic and iconic methods can be used to register the im-
ages and reduce the uncertainty. In [133], a Fourier-based method based on phase correlation
technique is used for registration in order to create a FLS mosaic [326].

SAS: Synthetic Aperture Sonar

This system enables to improve the resolution in sonar imagery by using the same principle
as SAR (Synthetic Aperture Radar) imagery in radar applications. It uses the motion of the
sensor, i.e. the along-track motion of the vehicle, to create a large virtual array. As for the use
of the sidescan sonar, the optimal employment of the Synthetic Aperture Sonar (SAS) is along a
straight motion. The resulting resolution is comparable to the dimension of the transducer and
is independent of the range between the sensor and the target. Due to this range independance,
this system can be used at lower frequency, which enables longer range detection. However the
vehicle has to move precisely along a straight motion with a tightly prescribed speed, and it
enhances more complex image processing. Further details on the SAS concept can be found in
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[121], [126] with an application on the HUGIN AUV [122].

MSIS: Mechanical Scanned Imaging Sonar

This system will not be discussed in this thesis, but the reader may refer to the work at the
University of Girona for further details [271][270].

b) Ranging SONAR

It refers to bathymetric-based navigation as stated above. This method uses the spatial
variation of the terrain to bound the growing error of inertial navigation by comparing the
terrain measurements to maps stored in the robot. The physical features of the seabed are
stored in a DTM (Digital Terrain Model), or in french MNT (Modèle Numérique de Terrain),
known as bathymetric map. The accuracy of this method relies on the accuracy of the motion
sensors, the quality of the maps, the presence of variation in the morphology of the seabed and
the sensitivity of the ranging sensor to changes in AUV pose [211].

Bathymetric TRN was initially developed for military purposes, such as missile guiding [84]
or aerial military vehicles, when the absolute positioning system (GPS) was not yet reliable
enough. Moreover TRN methods are robust against interferences and jamming, and can be
used under all weather conditions and at any time (night or day). The development of high-
resolution DTMs provided by satellites plays an important role in the increasing interest of such
methods. Nowadays TRN methods are spreadly used in both civil and military applications
such as lunar landing [148] or aircraft system [63]. The first algorithms dedicated to TRN meth-
ods are TERrain COntour-Matching (TERCOM) and SITAN (Sandia Inertial Terrain Aided
Navigation) methods.

Due to this dual origin of the bathymetric-TRN method, it was firstly divided into two cat-
egories: Batch methods and Sequential methods. The difference are schematically represented
by the structure of the algorithms, depicted in Figure 1.14. In the case of TERCOM, due to
the acquisition of the terrain profiles by a set of readings from the altimeter sensor and then
the simultaneous process, it is called a Batch method. However, according to [211], this system
is successful when it is coupled with a highly accurate INS or a dense range sensor such as
MultiBeam EchoSounder (MBES) since the motion of the vehicle is not taken into account
during the different measurements acquisition. Initially, TERCOM was developed to provide
positional fixes to update the INS by taking the best match from the correlation between the
measured terrain profile and the DTM. In the literature, many metrics can evaluate the degree
of similarity such as the Cross-COrrelation (COR), the Absolute Square Distance (ASD), the
Mean Absolute Difference (MAD) or even the Minimum Square Distance (MSD). If the a priori
map is large, some methods [13] use the dead-reckoning estimate to bound the area when the
correction is performed to reduce the computational cost. On the contrary, the SITAN method,
which is sequential, considers each new measurements independently and feeds a Kalman filter.
Consequently it updates directly the navigation solution. The main advantage of SITAN is the
reduced computational cost compared to TERCOM due to the continuous position updates.
Nevertheless, the sequential method needs an accurate initial position of the robot, the missile
or the vehicle compared to batch processing techniques. Various algorithms based on these
two concept were proposed later [318], and even hybrid solution such as TERPROM (TERrain
PROfile Matching). The reader may refer to [318] or [215] for more detailed information.

An alternative classification of underwater TRN is proposed in [7] where the methods are de-
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(a) TERCOM principle (b) TERCOM algorithm (c) SITAN algorithm

Figure 1.14: TERCOM and SITAN algorithms. Pictures extracted from [107].

composed in Search Area methods and Gradient-based methods instead of Batch and Sequential
methods. TERCOM would refer to Search Area method and SITAN to Gradient-based method.
Another alternative classification of TRN is proposed in [118] where it differences between the
degree of integration with the INS. The TRN method can then be defined as loosely coupled
with the INS or at the opposite tightly coupled with the INS. In the latter approach, the bathy-
metric measurements are fused directly with all the other measurements in the filter with the
INS. On the contrary, in the loosely coupled approach, the bathymetric measurements are pro-
cessed in a filter apart until convergence, and then the position estimate is sent back to the INS.

Underwater TRN is a recent research domain compared to previous aerial techniques. The
difference lies in the sensors used and the vehicle dynamics. Compared to aerial TRN which
are more focused on the use of single beam sensor such as radar or altimeters, underwater TRN
methods are interested in using multi-beam sensors such as MBES or 3D FLS to provide a
large coverage of the seabed in high resolution.

One of the first work in underwater TRN is presented in [23]. A correlation position is
estimated between some MBES measurements and an a priori known bathymetric map. The
position estimation is then updated in a KF based on the correlation position. Later in [204]
it proposes to match high resolution local depth maps on a large low resolution map by using
a multi-scale analysis and some invariant points. In [237][236], the correlation is based on the
Maximum Likelihood Estimator (MLE) under the assumption of large time between measure-
ments. When the evolution and/or observation function are non-linear, EKF has been used
in [294] with measurement provided by the best estimation of a matching precedure between
common features of the observed map and the stored map, in order to refine the heading and
the position of the vehicle. However EKFs provide "good" estimate only when the uncertainty
is small, otherwise they diverge. Due to the non-linear aspect of the bottom profile, the TRN
problem is highly non linear. Therefore non linear Bayesian methods were also of great interest
to track the vehicle pose. In [236], a navigation filter based on the Unscented Kalman Filter
(UKF) is proposed but it is concluded to be a not-optimal method for TRN. Later the attention
was focused on non-parametric form of the Bayes filters such as Particle Filter (PF) or Point
Mass Filter (PMF) for their simplicity.

PFs are recursive filters for solving the Bayesian estimation problem with non-linear motion
and/or measurement models and without linearization techniques. A set of random "samples"
are used to represent the probability distribution and are generated according to its probability
density function (PDF). Each particles are then weighted based on the most recent observation.
It has been used as TRN navigation solution in several works [213][211][250].
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Not as popular as the PF, the Point Mass Filter assumes a posterior density represented by
a set of point masses ordered in a grid. The continuous PDF can be obtained by integrating
over the masses in the grid. The size of the grid is usually fixed but there are some algorithms
to adapt the grid mesh, which could be interesting for bottom profile where a high gradient
PDF occurs. In [118], the PMF is applied as the TRN solution for AUVs at low altitude.

According to [212] and [8], the PMF is more robust and accurate than the PF, but the
PF enables a higher dimensional search. However these filters show their limitations when
the state space increases which can be the case when dealing with sensor-limited systems.
Rao-Blackwellised Kalman Filter (RBPF), a combination of a PF and a KF, is an alternative
approach to overcome these limitations when the model contains a linear sub-structure. The
states following a linear model can be estimated with the KF whereas the non-linear states are
estimated with the PF. RBPF has been used as TRN solution in [306] to merge measurements
of bottom range from an altimeter, a 3D FLS and a MBES with dead-reckoning data provided
by a DVL and an IMU (Inertial Motion Unit). In the proposed approach, the state vector is
composed of the 2D position of the robot and a 2D velocity bias due to the unknown water
currents. It proposes the Smooth Kernel Particle Filter (SKPF) to obtain more consistent
results and it improves the robustness against outliers and flat terrains. This latter, usually
known as information poor terrain, may lead to false fixes. In [68], a new method is proposed
to avoid this false fixes. It proposes to adjust the filter weighting to depend on the relative
amounts of map error, sensor error and terrain information. The method is similar to the
variance adjustments used in robotics [309] to reduce the likelihood of overconfidence.

In many experimental cases, the MBES is usually coupled with high grade INS. However, in
recent works, the focus was on TRN techniques applied to sensor limited systems [65]. These
systems are usually composed of low accuracy inertial sensors and low-information exterocep-
tive sensors like DVLs or altimeters [81]. Due to the expensive cost of an accurate and complete
INS, this concept is legitimate.

The main bathymetric sensors are mentioned in the table 1.4. The DVLs are not listed in
Table 1.4 but as previously mentioned it corresponds in general to a set of four single beams
pointing downward.

Sonar Description Figure Applications Products

Echo Sounder

Single and narrow
beam to determine
the depth,
comparable to
altimeter

Altitude estimation

SBP

Sub Bottom Profiler,
low frequency echo
sounders to penetrate
the seabed, provides
information about the
layers of sediment

Geological and
geophysical
exploration survey,
route survey for
pipeline laying,
marine construction

Kongsberg
SBP
120/300

MBES

Multi-Beam Echo
SOunder, provides
bathymetric maps
from TOF returns

1.13(b)
Large coverage area,
seabed survey, REA
mission

Table 1.4: Ranging SONAR
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Bathymetric SLAM

Bathymetric SLAM in underwater environment presents many advantages since it does not
require features detection and tracking, and is applicable to unstructured environment. A
Bathymetric Particle SLAM (BPSLAM) is proposed in [16] based on a featureless FastSlam
[224][298] implementation. Each particle maintains a current state estimation of the vehicle
state and the 2D bathymetric map. The difficulty with such a large state space is the resam-
pling process, vital element of PF techniques.

In [71], a shape-based SLAM approach is proposed in a set-membership manner based on
interval computation. The bathymetric profiles generated by a MBES are decomposed in level
layers such as isobaths. These different layers represent shapes of the acquired terrain pro-
files. This enables to have several 2D images representing the level layers. It proposes an
inter-temporal SLAM with these layers to bound the error and reduce the uncertainty along
the trajectory. In [274], only based on the proprioceptive measurements, it proves loop closure
events with contractors in a set-membership context. Based on this guaranteed loop closure
events, a contractor based on the altimetric measurement is proposed in order to reduce the
error.

For detailed reviews on underwater bathymetric-based navigation, considering a priori known
reference map and SLAM problem, the reader may refer to [215] and [42].

1.2.4.3 Magnetism and Gravity

Magnetism based navigation is similar to the problem of TRN The difference occurs in the
data manipulated, which are here Earth’s Geomagnetic field. This concept is quite new and
only few works can be found. The problem has been adressed to underwater environment in
[227][331]. In [272] experimental results were published. The concept of maps composed of
invariant gradients of the geomagnetic field has been discussed in [306] where measuring the
vertical gradient could help to reduce the errors. In [56], the authors proposed to use the mag-
netic field for mapping and navigation.

Analogously, Gravity Field navigation could be considered [191] by measuring the local grav-
ity field using gradiometers but for now it is highly expensive to make the distinction between
the vehicle acceleration, Coriolis acceleration and the gravity itself.

1.2.4.4 How to map the environment?

As previously stated, environments could be featureless such as bathymetric maps or feature-
based such as landmark, segments,... An environment composed of geometric structures such as
points, lines, parametric curves are called structured environment. Man-made environment is a
meaningful example of structured environment. On the contrary, unstructured environment is
composed of random shapes that cannot be parametrized such as the underwater environment.
It is still possible to approximate a rock as a punctual landmark but a sand ripple region for
instance is usually defined by a random contour.

An environment can be described by topological or metric maps according to [307].
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A topological map is a simplified map where unnecessary information are removed and only
vital information remains. Scales and distances are not considered such as on the map of a
tube in London or Paris.

Metric maps consider the coordinates of the objects in the environment allowing the com-
putation of distances and angles. Two versions can be considered [309]: feature-based and
location-based maps.

Feature-based maps
Feature-based maps are composed of elements described by features such as the cartesian co-
ordinates, a pixel surface[282], a parametric structure such as a line or any other parametric
shapes [10]. In the SLAM context, these features are usually stored in a state augmented space
[223].

Location-based maps
In location-based maps, the space is covered by labels. A famous location-based map represen-
tation is called occupancy map [86]. In general the occupancy maps are represented by a regular
grid and then an occupancy value (label) is affected to each cell that informs the presence or
not of an obstacle. This value can be a Boolean number (0 or 1) or a probability of presence.
Handling the sensor and the pose uncertainties in grid-based methods is the most challenging
problem when updating the grid. For example, exteroceptive sensors that partially observe the
environment such as cameras or sonars, have to be correctly modelled. Recently, the notion of
shape has been introduced [71]. A shape is defined as a subset of Rq where q is smaller than the
dimension of the workspace and corresponds to a part of the environment that is seen by some
sensors. Shape intervals are defined to take into account the uncertain "contour". In conclusion,
a shape separates the environment into two complementary parts that can be for example the
space free of obstacles and the space including obstacles or in the underwater context it could
be the space defined by sand ripples and the complementary part that does not contain sand
ripples.

1.2.5 Spreadly embedded sensors for underwater environment
This subsection provides a brief overview of the sensors usually embedded in underwater appli-
cations with some performance and prices. Some previously introduced sensors are also summed
up in the following table. The values are given based on the analysis of different commercial
products in 2018.
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Name Description Performance Cost

3-axis Compass

Compass provides
bounded heading
reference.
Gyrocompass are
sometimes used in
marine applications.

Accuracy: ≈ 2◦ ≈ 100 e

Pressure sensor Underwater depth Accuracy: ≤ 10 cm ≈ 100 e

DVL

Velocity of the vehicle
relative to the seabed,
it determines the
surge, the sway and
the heave velocities.

Accuracy: 0.3 to 0.8
cm/s ≈ 30 Ke

GPS Surface GPS fix

Accuracy:
Commercial
off-the-shelf ≈ 10 m,
DGPS1 ≈ 0.3 to 10 m
and RTK2 0.05 to
0.5m

from hundreds
to thousands e

IMU

Vehicle’s orientation,
velocity and
gravitational forces.

• Gyroscopes:
angular rates
(presence of
drift in Euler
angles)

• Accelerometer:
proper
acceleration
relative to free
fall

• Gyroscopes:
drift can vary
from 0.0001◦/hr
(ring laser) to
60◦/hr (MEM3)

• Accelerometer:
Bias range from
0.01 mg
(MEMS) to
0.001 mg
(Pendulum)

from hundreds
e(MEMS) to
hundreds
Ke(ring laser,
FOG4)

Table 1.5: Spreadly used underwater sensor

1.3 Thesis context
Among the different applications in underwater environment listed in the section 1.1, this thesis
is focused on Mine Counter Measure missions called MCM missions. Mines played an impor-
tant role during the two World Wars and are still intensively used today. Mines are real threats
for naval navigation and maritime forces. Indeed it may affect the commercial trafic, the nav-
igation of submarines and could prevent the invasion of an harbour in the case of a conflict.
Many military operations are interested in the development of reliable solutions to detect and

1Differential Global Positioning System
2Real Time Kinematic
3MicroEletroMechanical System
4Fibre Optic Gyroscope
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(a) Tripartite class Mine Hunter Andromede
(M643)

(b) Human divers setting up a charge for
mine removal

Figure 1.15: Mine hunting operations

remove these mines. Moreover, the dangerosity and the development of new mines demand
an increasing effort of developing new solutions to "hunt" these mines. Mine hunting consists
in detecting all the mines in a search field, geolocalizing each of them and finally destroying
them. The detection phase in the mine hunting process was previously conducted by surface
ships called mine hunters, as depicted in Figure 1.15, where the design of the boats was special.
Indeed, to avoid triggering any mines, the surface vessels were built with low acoustic and
magnetic signatures. Moreover the mine hunter is equipped with specific sonar systems called
Hull-Mounted Sonar. Side-looking sonar, such as sidescan sonar, are embedded to cover fastly
a large area of the seabed and to build an image of the seabed. Onboard, a human expert
analyses the image to detect some potential dangerous objects. The signature of an object
(potentially a mine) in the sonar images is specific and will be discussed in Chapter 2. When
an object is classified by the operator as a potential dangerous object, it is necessary to revisit
this object to identify it. This identification phase was usually conducted by human divers, as
depicted in Figure 1.15, and finally the object is neutralized if it is really a mine. These differ-
ent phases are summed up in Figure 1.16 and give an overview of what is called a MCM mission.

The different steps are described below:

• Survey Mission Planning: it consists in planning a mission to cover an area and having a
high level of area coverage.

• Data Acquisition: during the survey, the exteroceptive sensors collect data and store them
in a memory.

• Mosaicking and Stitching: usually the data collected are exploited after the survey mission
to transform the raw data in exploitable data. This step includes preprocessing step and
georeferencing of the data (mosaicking).

• Mine detection/Object classification: an operator or an algorithm analyzes the images
to detect potential dangerous objects (mines) and classify them as Mine Like Contact
(MILCO) or NON MILCO.

• Re-acquisition and Re-identification: when a object is classified as MILCO, the deter-
mination as to whether the object is a mine or a non-mine can be done through visual
identification. This phase can be conducted by a human diver or a robot.

• Mine disposal: when the object is identified as a mine, the mine has to be destroyed.
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Survey Mission 

Planning

Data Acquistion

Mosaicking and

Stitching

Mine detection and 

object classification

Re-acquisition and 

Re-identification

Mine disposal

Figure 1.16: MCM mission overview

The increasing development in underwater robotics enables today the use of AUVs to per-
form the survey mission. An example of such AUV was presented in Figure 1.10 with the
embedded sensors presented in Table 1.2. In general, these AUVs are equipped with sidescan
sonars or SAS to collect high resolution sonar images to cover a large area on the seabed. These
AUVs can benefit of a reliable navigation system based on a INS coupled with a DVL that drifts
a little over time. The boustrophédon pattern, usually called lawn-mowing pattern [54], is used
to cover optimally an area of search with side-looking sonars. The space between the tracks
depends on the range of the side-looking sonars. Usually the distance inter-tracks is lower than
the range of the sonar to have an overlap on two consecutive tracks. Different methods are
proposed in the coverage path planning domain [2][1] to propose a complete coverage. However,
as stated in [54], the coverage will be complete according to the proposed motion planning but
not in the operating research field. In [244], an adaptive online coverage planning algorithm
is proposed based on the actual coverage area that accounts for pose uncertainty of the AUV.
The certainly explored area of a drifting AUV equipped with a side-looking sonar is computed
in [73] in a guaranteed manner based on a constraint satisfaction problem.

Once the data are collected, some automatic algorithms are able to detect the potential
dangerous objects. These algorithms are called Automatic Target Recognition (ATR). This
topic will be treated in Chapter 2. These detections reveal the presence of a suspicious object.
For each of these suspicious objects, seen once or more times (multi-view), a classification algo-
rithm outputs the tested object as MILCO or NON MILCO. If it looks like a mine, the object
has to be revisited to identify it. This phase is called "Re-acquisition/identification". If the
revisited object is actually a mine, it has to be removed. This phase is called "Mine disposal".
These two tasks were usually conducted by human divers as precised earlier but it is intended
to be replaced by AUVs. Indeed it faces many constraints such as the poor visibility, the diver
disorientation, the duration of the actual diver search, the time to find a search team, the se-
curing of the ship, many time consuming tasks that can be handled easily with an underwater
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robot. Moreover this task is not free of risk for human divers since they have to approach at the
maximum the mine. Due to the need to return to site, these two tasks are called "Revisit phase".

Due to the development of the autonomy of underwater robots, a fleet of heterogeneous
robots is proposed in [207] to conduct a complete MCM mission and to remove more and more
the necessity of a human expert in the decision making. From the detection to the neutraliza-
tion phase, a collaboration between the different robots is vital. In uncertain environment, as
the underwater environment, the decision making to achieve a goal (neutralization) with co-
operating heteregeneous vehicles that require communication to perform complete autonomous
mission is not trivial [14].

1.3.1 The revisit concept
Many applications can be interested in a revisit of some areas of interest. For example, in [340],
a study about the long-term effects of climate change and human activities on the benthos is
conducted. The benthos designates the organisms living on or near the seabed. By collecting
observations of the same place with AUVs at regular temporal intervals, it provides the eco-
logical data for the study. In the context of MCM missions, revisiting a potential dangerous
object may help to the classification process by getting other aspects of the targets. Indeed, in
[21][20], a reacquire-identify (RID) pattern inspired by the boustrophédon pattern is proposed
to revisit a set of geolocalized targets with a side-looking sonar. This pattern is defined to
reacquire the targets at different angles of view called aspects to increase the probability of
detection [343] and the classification performance [262][229]. The results were then used [233]
to determine a safe naval transit. Similarly, in [61], a route optimization algorithm is proposed
to get additional looks in MCM missions that takes into account the motion and the imaging
constraints. The problem is reduced to a travelling salesman problem (minimize the travelling
distance) with desired aspects of some targets and Dubins paths to take into account a min-
imum turning radius of the AUV. In the presence of water currents, [337] proposes to adapt
the AUV survey heading to ensure quality SAS data [335] and to adapt its route just after the
survey pattern with the remaining battery to reinspect some suspicious objects detected during
the survey at additional aspects.

However in the methods listed above, the uncertainty on the pose of the robot is not taken
into account in the planning process as the AUVs rely on high grade navigational sensors such
as an expensive INS coupled with a DVL.

This thesis addresses the difficulty to revisit a particular target in the context of MCM
mission with a "low" cost robot usually called "sensor-limited" vehicle [65]. Due to many cost
limitations and strategic reasons explained in this specific mine removal context, the AUV is
only equipped with low grade navigational sensor meaning the absence of an INS and a DVL.
Moreover it is equipped with a lower resoluted imaging exteroceptive sensor such as a FLS or a
camera to reacquire/identify the target. An altimeter can be used to use the bathymetric profile
of the seabed to follow isobaths [139] or for localization purpose [213] for example. A depth
sensor is obvisouly embedded. In this MCM context, the problem of reacquisition/identification
in the underwater environment has been solved with heavy multi-hypotheses data association
[93] but it requires to send the AUV in a features field environment to perform the data asso-
ciation of uncertain located punctual objects and finally to control the heading of the vehicle
to go to the target. Wouldn’t it be possible to follow a particular strategy to improve the data
association and reduce its computational complexity ? Based on the different sensors embedded
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in the vehicle and the map of the environment, may it be possible to propose a strategy in un-
derwater environment to guarantee the a priori revisit of the desired target ? These questions
highlight the interest developed in the thesis. Obviously this problem is not only dedicated
to MCM missions and can be exploited to other missions that require a revisit of a previous
surveyed area. This environment is said to be perfectly or partially known environment. The
solution proposed through this thesis takes into account the difficulties of the heterogeneous
means of detection during a survey and a revisit mission in the underwater environment, and
the difficulties to find a motion planning strategy for a low grade navigational robot that has to
rely on exteroceptive measurements to relocate itself. Moreover, for clandestine missions and
some operational constraints, the AUV could dive far from the desired target locations. An
overview of the solution proposed is detailed in the following section.

1.3.2 System overview
From the detailed definition of MCM mission in paragraph 1.3, the MCM task is globally
decomposed into two main operations: a survey mission and a revisit mission. Figure 1.17
depicts the solution adopted and will be detailed by making references to the chapters where it
will be discussed. The different steps of the process have already been basically explained but
it provides an overall aspect of the project.

1.3.2.1 Survey mission

In the context of MCM mission, Figure 1.17(a) depicts an environment that has to be surveyed
to detect any potential dangerous objects, called mines. An AUV conducts an autonomous
mission to collect data in this area following a boustrophédon pattern or any coverage pattern
1.17(b). The diagram 1.18 depicts the steps to build a data base of the information gathered in
this surveyed area. This data base is said to be "adapted" to the survey system since it enables
to collect the data with its own exteroceptive system. The part surrounded in blue will be the
topic of the Chapter 2. From the data base, a "contact" is classified as MILCO and requires to
be revisited. It will be called the "target".

1.3.2.2 Revisit mission

Based on the parameters of the revisit system such as the altitude of navigation of the AUV,
its exteroceptive sensors, its velocity, its manoeuvrability, ... the data base created with the
survey system is adapted to the revisit system. This concept is depicted in Figure 1.17(c) where
some landmarks have been removed due to the inability to detect them with the revisit system.
The diagram 1.19 depicts the process of the data base adaptation, discussed in Chapter 2 and
the creation of the registration maps, discussed in Chapter 5. These registration maps will be
used by a motion planner in Chapter 6 to provide a high level strategy taking into account the
navigation parameters of the AUV. Figure 1.20 shows the different steps. It may be possible
that no path is found. Two strategies are proposed in Figure 1.17(d) and 1.17(e) where any
shaped landmarks can be considered.
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(a) Environment composed of landmarks
such as rocks (punctual landmark), a sand
ripples area (2D landmark), and a mine (red

cross).

(b) Boustrophédon survey of the area with
SSS and detections. Cyan blue area depicts
the explored area between two configurations

of the AUV along a straight path.

(c) Filtering to keep the landmark
detectable by the revisit system.

(d) Guaranteed revisit strategy 1. The blue
pie shows the ensonified area of the

exteroceptive sensor.

(e) Guaranteed revisit strategy 2. The blue
pie shows the ensonified area of the

exteroceptive sensor.

Figure 1.17: Overview of the solution proposed
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Figure 1.18: Diagram of the survey mission
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Figure 1.19: Diagram of the adaptation to the revisit system
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Figure 1.20: Diagram of the high level strategy finding
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1.4 Document roadmap
In this introduction (Chapter 1), the underwater environment and its difficulties have been
presented. The unstructured aspect, presence of outliers (fishs,...) and the absence of absolute
positioning system (GPS) make it a difficult environment for an autonomous robot to reliably
navigate and localize itself. After presenting different types of mission with various robots, it
provided different ways for localization and navigation. Among them, the geophysical naviga-
tion seems to be of great interest since it enables to perform long-term and long-range mission
without surfacing for an AUV with the aid of an exteroceptive sensor to perceive the environ-
ment. In the context of MCM mission, the neutralization of a mine is vital and it is necessary
to renavigate the environment to recover the mine previously detected. Renavigating is a chal-
lenging task for a sensor-limited vehicle and the solution adopted in this thesis was roughly
explained with illustrations.

The remainder of the thesis is organized as follows:

Chapter 2
This chapter provides the knowledge of sonar imagery, one of the most used sensor in under-
water environment due to its capacity to work in dark area and at longer range than optical
sensors. Depending on the characteristics of the sensor, it can image the seabed to provide
information about potential dangerous objects such as mines. When using different exterocep-
tive sensors during different missions, the extracted information are not the same. Indeed the
features extracted may not be detected by another sensor. Therefore, based on the physical
properties, a filtering step is proposed to keep only the most likely detectable features according
to the sensor used.

Chapter 3
This chapter provides an overview of the state of the art on motion planning techniques, with
and without uncertainties. Some applications on our problem are proposed with the state of
the art algorithms.

Chapter 4
This chapter provides the set-membership tools that are used in this thesis. The set-membership
approach appears as a guarantee alternative to Bayesian tools. It has already been used for
localization but it has not been widely used for motion planning under uncertainty.

Chapter 5
This chapter introduces the first contribution of the thesis which is the definition of the relo-
cation area based on the sensor used and the characteristics of the landmark observed. Based
on the set-membership tools it provides the set of robot positions able to detect any landmark
considering the visibility area of a sensor-limited vehicle based on the range and/or the opening
(aperture) angle.

Chapter 6
This chapter presents the second contribution which is a motion planner under uncertainty
based on interval analysis and the relocation areas introduced in Chapter 5. It proposes an
approach to guarantee the reachability of a target geolocalized in the environment, which is
detectable by the sensor embedded. Based on the known position of other landmarks, the algo-
rithm finds a sequence of intermediate revisits enabling relocation process before reaching for
sure the target. It constructs a hyper-graph to find the links between the different sets defining
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the relocation areas. The path sequence proposed minimizes a cost function.

Chapter 7
The last chapter summarizes the contributions of this thesis and the remaining issues that need
to be solved for future applications. Moreover it proposes some perspectives.
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Chapter 2

Sonar imagery

2.1 Introduction
Sonar is the acronym of SOund NAvigation and Ranging and uses the propagation of a mechan-
ical wave, called acoustic wave, to transmit and receive information in underwater environment.
The acoustics propagation is four-five times faster than in the air. Contrary to the strong at-
tenuation of the electromagnetic waves, such as the light, enhancing a limited use of optical
system to navigate in underwater environment, acoustics system proved to be well adapted in
this context to navigate and transmit information (emit and receive). It enables to improve the
knowledge in the underwater environment with two types of sonar: passive and active sonars.
A passive sonar doesn’t emit any sound wave, it is only listening the environment. It could be
used to detect enemy vessels for the surveillance for example or to study the underwater fauna
and flora. Acoustics is the main mean of communication for the dolphins and the whales [316].
On the contrary an active sonar emits a signal and waits for the reflection on the target. In
both cases, an antenna enables the reception of the signal, and then the sonar data are pro-
cessed to detect particularities or to form an image. Due to the improvement of technologies,
sonar systems are used in many applications, as introduced in Chapter 1, from scientific to
commercial operations including obviously military operations.

In this thesis, a focus on the sidescan sonar, usually denoted as SSS, and Forward Looking
Sonar (FLS) is presented. Indeed, due to its high coverage, the sidescan sonar can provide high
resoluted images of the seabed by following a straight path to detect some potential dangerous
objects called mines. In the context of Mine Counter Measure (MCM) missions it is vital to
detect any mines to guarantee the safety of surface vessels and to enable military operations.
As presented in Chapter 1, FLS provides directly an acoustic image of the seabed and is par-
ticularly used in the revisit phase in the context for re-acquisition/identification purpose with
optical sensors. Due to the limitations of these latters, the FLS enables to renavigate this
challenging environment and to perform the localization task before approaching the mine for
identification with the camera. Both sonar systems provide an acoustic image, i.e. 2D image, of
the seabed coming from the backscattered signal from the seabed. This representation makes
the interpretation of the seabed easier, and can reveal the presence of protruding objects above
the seabed such as mines.

In this chapter, the general principles of imaging sonars will be briefly explained. Then a
focus on the sidescan imagery and FLS imagery will provide the knowledge required to under-
stand the filtering step explained in the process of adaptation of the data between the survey
mission and the revisit mission.
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2.2 General principles of imaging sonar

2.2.1 From emission to reception...
An imaging sonar is an active sonar, that means it can emit and receive a signal. The infor-
mation is carried by sound waves that are able to propagate in underwater environment.

The architecture of a sonar is composed of different modules:

• Emission module: generates an electrical signal that is intended to be propagated in the
underwater environment.

• Antenna module: transforms the electrical signal into a sound wave with specific charac-
teristics of the antenna such as the directivity and transforms the acoustics signal received
back into an electrical signal.

• Reception module: some processing before the storage of the exploitable data.

Emission

A pulse is generally generated at a frequency called f0 ranging from 300 to 900 kHz in
the case of imaging sonars [32]. The emitted signal is also determined by the duration of the
pulse T and a bandwidth B (frequency spread). Two types of signals are commonly used: a
monochromatic pulse, referring to gated Continuous Wave (CW) pulse, and a chirp which is
modulated in frequency. These parameters have direct consequences on the performance of the
sonar. Indeed the range of the sonar is determined by the pulse frequency according to Table
2.1. These values are computed based on the sonar equation. In the case of an active sonar,
the equation from an energetic point of view is:

SL− 2TL+ TS −NL+DI + PG > DT (2.1)
which means that the SNR (signal noise ratio) is above a threshold.

In this equation, the following terms are defined as follows:

• SL (Source Level): the power generated by the active sonar.

• NL (Noise Level): the noise of the system including the noise of the seabed.

• DI (Directivity Index): the antenna defined by its directivity.

• PG (Processing Gain): the processing gain.

• DT (Detection Threshold): the threshold enabling the detection.

• TL (Transmission Loss): the absorption of the energy by the underwater environment
and the geometric divergence.

• TS (Targer Strengh): the echo power of the target.

Frequency Range
10 kHz >10 km
50 kHz 5 km
100 kHz 1000 m
500 kHz 150 m
1 MHz 50 m
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Table 2.1: Maximal range of detection depending on the frequency.

Since the sound wave is propagating, its energy may be decreased with the distance to
source: it is called the geometric divergence. Moreover the sound wave energy is absorbed
by the underwater environment. This decreasing energy is known as the transmission loss TL
expressed by:

TL = 20log10(r) + α · r (2.2)
where r is the range and α the coefficient of absorption of the environment.

The higher the frequency is, the more details will be observed in the image. However, the
range of the sonar will be reduced due to the coefficient of the absorption α that appears in
the transmission loss (TL). This coefficient increases approximately with the square of the fre-
quency of the sonar. It is estimated at 30 dB/km at the frequency of 100 kHz enabling a range
detection at 1000 m. At 1 MHz, this coefficient is at 500 dB/km reducing the maximum range
detection at 50 m. The transmission loss (TL) is expressed as 2TL in the equation 2.1 due to
the two-way travel.

The electrical signal generated by the waveform generator, modulated and amplified is then
converted in the antenna module into an acoustic wave to propagate inside the underwater
environment.

Antenna

The antenna is composed of electroacoustic transducers that can convert an electric energy
into an acoustic energy and vice-versa. The module is in a mode called "emission" when the
electric signal generated will be transmitted to the underwater environment. The emitted pulses
are directed in a slant direction toward the seabed.

An antenna can be represented by two angles as shown in Figure 2.1:

• an azimuth angle θ: the angle between the axis of the propagation and an horizontal
reference axis.

• an elevation angle φ: the angle between the axis of the propagation and a vertical reference
axis.

The performance of an antenna is represented by the radiation pattern, also called antenna
pattern or far-field pattern. It refers to the directivity index (DI) which can be defined by a
directivity function D(θ, φ) at a particular frequency. This function computes the energetic
response in the far field of the transducer in function of the orientation. It is normalized by the
maximum of the function. This representation, as depicted in Figure 2.2, shows a main lobe
and side lobes. The main lobe is characterized by its aperture at -3 dB which corresponds to the
width of the beam at D(θ, φ) = 0.5. This width along the θ axis is denoted as 2θ3 and is called
the azimuth aperture angle or horizontal beam-width. Similarly the width along the φ axis is
denoted as 2φ3 and is called the elevation aperture angle or the vertical beam-width. The higher
the frequency is, the narrower the width will be but the higher the level of the side lobes will be
too. These side lobes disrupt the measurements. Depending on the application, the frequency
will have to be well adjusted based on the aperture angles desired and the level of the side lobes.

The formation of the sonar image consists in registering the backscattered acoustic waves in
a slant direction. The dimension of the pixel depends on the sonar characteristics.
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The direction of emission
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Figure 2.1: Geometry of a punctual antenna.

Figure 2.2: Example of antenna pattern in polar coordinates in dB around the 0◦ direction for
the azimuth angle. Extracted from [254].
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The azimuth resolution, known as angular resolution, corresponds to the minimal distance
between two objects to see them separately on the backscattered signal. This resolution is
defined as:

dx = 2rθ3 = rλ

La
= rc

f0La
(2.3)

where r is the distance to sonar, 2θ3 is the aperture of the antenna, La is the length of the
antenna, c is the sound velocity in the water (approximately 1500 m/s) and λ is the wave length
at the central frequency f0 of the sonar. The angular resolution depends on the distance to
sonar.

The range resolution, known as slant range resolution due to the slant range acquisition,
corresponds to the minimal distance along the propagation direction between two objects to
see them separately on the backscattered signal. This resolution is defined in the slant range
direction as:

dr = c

2B (2.4)

where B is the bandwidth of the signal and c is the sound velocity in the water.

The resolution of a pixel in the slant range direction at the distance r is then dx × dr. It
is possible to know the surface of the seabed highlighted by the sonar by projecting the dr on
the seabed. This resolution, known as ground range resolution, is defined as follows:

dy = c

2B sin(φ) (2.5)

where φ is the grazing angle.

These same transducers will convert the backscattered acoustic energy from the seabed or
from any target such as mines when it will be in mode "reception". The parameters of the
antenna in this mode are the same as in the "emission" mode.

Reception

When the backscattered signal is converted into an electrical signal through the transducers,
the signal has to be amplified due to the transmission loss in the underwater environment.
Moreover many noises are added to the signal:

• ambient noise: maritime trafic, surface trouble, rain, thermal agitation, ...

• reverberation: it is the sum of the multiple backscattering contributions such as the
volume, the surface (non uniform surface) and the seabed (not flat seabed), ...

• multi-path: the backscatter signal from the seabed and the surface.

• electronic: electronic processing.

• vehicle carrying the sonar: motion, propeller, ...

After the amplification, many systems propose a TVG (Time Varying Gain) correction to
reduce the dynamic of the signal by compensating the transmission loss at the different ranges
since the dependence in range according to the equation 2.2.

Finally the signal is digitized to be treated for any image processing such as detections. This
step depends on a spatial and temporal sampling during the beamforming which defines the
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real resolution of the output sonar image. Indeed, in general, the dimension of the pixel in the
output image is smaller than the resolutions described before in Equation 2.3 and Equation
2.4 to avoid any information loss. It induces an oversampling effect on the ensonified area by
the sonar but it improves the analysis of the images. The gray level of a pixel in the image
indicates an amplitude which is the sum of the backscattered waves by the different elements
inside the environment in this resolution cell.

In sonar systems, the antenna is composed of an array of transducers instead of an unique
transducer. This enables to improve the directivity by the beamforming and then to reduce
the noisy contributions from non desired directions.

All these operations enhance some changes to the raw signal which can be degraded. More-
over it can be seen in the sonar images the apparition of a noise named speckle.

2.2.2 What is the speckle noise?
When looking at a high resolution sonar image, one may notice a granular aspect of the seabed.
This is representative of the so-called speckle noise. This noise is inherently present in every
coherent system such as Synthetic Aperture Radar (SAR) images or in medical ultrasound
images. This noise appears when an electromagnetic wave or an acoustic wave interacts with a
rough surface made of many diffusers that are smaller than the wave length of the signal [112].
These diffusers reflect then a wave with the same wave length but with a random amplitude,
phase and direction. The transducers register the sum of all the different contributions includ-
ing these interferences coming from these specific diffusers inside the same resolution cell. The
reverberation is the combination of destructive (low amplitude compared to the mean level)
and constructive (high level compared to the mean level) information provided by all coherently
but randomly phase-shifted backscattered waves due to the roughness of the seabed (smaller
size than the wave length).

Different statistical modelisations of this phenomena have been proposed. The most famous
statistical distribution in sonar images is the Rayleigh distribution. It is widely used to model
the link between the seabed, the sonar characteristics and the distribution of the gray levels in
a sonar image under some hypotheses. It has been proved under this distribution modelisation
of the reverberation inside a same cell resolution that the speckle noise appears as a multi-
plicative noise [315]. This modelisation performs well when the size of the roughness is smaller
than the resolution cell. Other modelisations are proposed such as the K distribution or the
Weibull distribution when the seabed is composed of rocks or sand ripples which have similar
and greater dimension than the resolution cells [188].

All these statistical distributions enable to model the possible distribution of the gray levels
in the sonar images.

2.2.3 Presence of features
Features such as objects can be revealed in sonar images if their size are greater than the azimuth
and range resolutions. In the sonar image, an acoustic shadow indicates the presence of an
object protruding from the seabed as can be seen in Figure 2.3. This shadow is sometimes more
relevant than the direct echo of the object due to the complexity of the acoustic backscattering
from this object.

The presence or the lack of seabed reverberation may delimit the shadow area associated to
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Figure 2.3: Received sonar signal for one pulse emission in the vertical plane.

the object. In Figure 2.3, one may see different amplitudes of the signal in the received time
[32]:

• a low amplitude due to the volume reverberation (called the water column).

• a mean level corresponding to the seabed reverberation.

• a strong level revealing the echo of the object.

• a low level due to the shadow area of the object, it corresponds to volume reverberation,
multipath, ambient noise,...

• a mean level corresponding to the seabed.

The backscattered level of the object (echo) depends on the shape of the object and its
composition. Indeed the different materials do not react samely to the acoustic waves and if
the object has an ensonified orientation surface perpendicular to the sonar, the received signal
will be stronger. The rougher the surface of the object is, the more isotropic the direction of
the backscattered signal on this object will be. As can be seen in Figure 2.4, the shadow of the
object may indicate the height of the object, or at least the protruding height from the seabed,
with the following expression:

h = HL

L+D
(2.6)

where H is the altitude of the sonar above the seabed, D the distance to the beginning of
the shadow in the image (approximately the slantrange to the object) and L the length of the
shadow.

The higher the object is, the longer the shadow in the sonar image will be due to the grazing
aspect of the sonar.
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Figure 2.4: Height of the object based on the length of the shadow.

Figure 2.5: Mosaics of different seabed types. One may see sandy area, sand ripples, rocks,
dredging activities or objects protruded from the seabed. Pictures extracted from [254].

In the past, the resolution of the sonar did not enable to detect correctly an echo. The clas-
sification of the objects, such as for the mine as Mine Like Contact (MILCO) or non-MILCO,
was only based on the shadow of this object which is bigger due to the acquisition geometry.
Nowadays, high resolution sonars are available on the market such as Synthetic Aperture Sonar
(SAS) which provides very high resolution images.

The amplitude of the signal globally decreases with the range. Indeed it comes from the
transmission loss, the absorption of the acoustic wave in the underwater environment and the
grazing angle.

The analysis of the backscattered signal above indicates the presence of an object that may
appear punctual due to the representation in the vertical axis but in reality many features can
be seen in sonar, in both sidescan sonar images and FLS images. Many shaped or shapeless
features can be observed on sonar images based on this principle as depicted in Figure 2.5.
Sandy area is observable on the top-left image where it only appears noise due to the presence
of thin sand. On the contrary, on the top-right figure, one may see some sand ripples with a
geometric pattern. Textures may appear on high resolution sonar images revealing the type of
seabed. However it is difficult to give a definition [125]. A texture can be described by a region
in the image with a variable intensity and a repeated pattern based on a certain random level.
These textures depend on the physical properties of the seabed that may vary in function of
the meteorological conditions, seasons or geographical places.
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In conclusion, depending on the acquisition parameters of the sonar, different types of infor-
mation can be extracted from the seabed. These information can be classified into the following
categories:

• energetic: the backscattered signal.

• structure: presence of structures such as rocks, sand ripples, objects,...

• geometric: direction and orientation of sand ripples...

• multi-scale: different size of the structures.

Moreover the size of the objects detectable by a sonar system are directly linked to the sonar
parameters and the geometry of the acquisition.

Now a focus on particular imaging sonars will be provided such as the SideScan Sonar (SSS)
acquisition and geometry. Then a short presentation of the 2D Forward-Looking Sonar (FLS)
will be introduced.

2.3 Particular imaging sonars
In the previous section, a general introduction about acoustic imagery has been proposed. It
mainly introduced the basic knowledge about sonars, the cell resolution and what can be seen
in sonar images depending on the size of the features. Now the SideScan Sonar (SSS) and
the Forward-Looking Sonar (FLS) will be briefly presented to understand the difference of
acquisition geometry.

2.3.1 Sidescan Sonar (SSS)

2.3.1.1 Presentation

As previously presented in Chapter 1, the SideScan Sonar (SSS) is a specific imaging sonar well
adapted to cover a large area of the seabed. In general, the system is composed of two antennas,
each positioned on the sides of the vehicle embedding the sonar. It could be towed by a vehicle,
embedded in an Autonomous Underwater Vehicle (AUV), ship-hull mounted in a boat... This
system is called side-looking due to the geometry of acquisition as depicted in Figure 2.6. This
sonar is scanning the area perpendicularly to the motion direction of the vehicle. The elevation
aperture, in the vertical plane, is usually large to cover a large area sideways and the azimuth
aperture, in the horizontal plane, is narrow to obtain fine resolutions. Two images result from
the sonar processing, a starboard image and a port image. The process will be explained in
the following subsection.

seabed

Figure 2.6: Geometry of data acquisition for a sidescan sonar (SSS).
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2.3.1.2 Image formation

At every pulse emission, due to the narrow horizontal aperture, the signal received can be
considered as 1D signal as depicted in Figure 2.3. This signal is received by both antennas:
starboard and port antennas, that means there are actually 2 signals for one pulse emission. A
pulse emission is called a ping. This scanning process can be considered as a sweep exploration
[73]. This narrow acoustic beam illuminates only a narrow stripe of the seabed. By considering
a straight motion of the boat or the AUV, at every ping emission, a narrow stripe of the seabed
is covered and by concatenating these successive stripes, a wide area of the seabed is covered.
As previously presented, the main parameters affecting the range resolution called across track
resolution is the length of the antenna and the frequency of the acoustic beams. The along track
resolution (azimuth) depends on the speed of the platform and on the ping emission frequency.
Traditionally data coming from the starboard and the port antenna are treated simultaneously.
The general representation of a sidescan sonar image is a 2D image with port and starboard
images gathered. Every row in the image corresponds to one ping emission (it depends on the
motion) and every column corresponds to the received signal in the time. That means at every
ping emission, a row is added to the image, and the columns of this row correspond to the time
sampling of the received signal according to the 1D representation in Figure 2.3. Notice that
this representation is not in Cartesian coordinates but in time coordinates. In such images,
the vertical axis corresponds then to the time at which the beam (or ping) was emitted from
the sonar and the horizontal axis corresponds to the time of flight of the pulse in the across
track direction (perpendicular to the direction of the motion). This representation is called a
water-fall image and an example is depicted in Figure 2.7. The image is getting darker on both
sides starting from the middle due to the transmission loss. The TVG (Time Varying Gain)
correction has not been applied. The narrow dark band in the middle corresponds to the water
column which depends on the altitude, the roll of the platform, and on the direction of the
antennas. A box containing an object is represented in red in the port image, the shadow is
on the left as it comes after the echo. The null temporal reference along the samples is in the
middle of the image due to the concatenation of the port and starboard images.

Moreover some artefacts that can be corrected are inherent to sonar images and will be
preprocessed such as TVG correction before any image segmentation or classification.

2.3.1.3 Image preprocessing

In [29], three stages are proposed to convert raw sonar data into usable images:

• preprocessing: preparation of the raw sonar data by the cleaning of the navigation and
the sensor’s attitude, and the conversion between formats.

• processing: transformation to usable images or grids, with radiometric and geometric
corrections. Grid interpolation and mosaicking are considered too.

• post-processing: not necessary for correct sonar interpretation but can be a plus, it can
be visual enhancement and speckle removal for example.

These three stages are called in our case the preprocessing step before the exploitation of
the sonar data for detection/classification. That means all these stages are gathered.

Some file formats to store the sonar data, the navigation and attitude of the platform are
commercially proposed. Among them, the XTF (eXtended Triton Format) file format which
is used in our case. It enables to record different types of sonar, navigation, and bathymetry
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Figure 2.7: Water-fall image for a sidescan sonar.

measurements in only one file.

Firstly, the navigation and attitude information are usually filtered to remove outliers and
spikes based on smoothing filters such as the Kalman filter [151] and interpolation with poly-
nomial or spline functions.

Secondly, the sonar data are processed with radiometric and geographic corrections [45][44].

The radiometric corrections refer to the following corrections:

• Requantization: it consists in adapting the output from the sonar hardware to follow a
quantization schemes (8-bit quantization).

• Across-track correction: known as TVG (Time Varying Gain) to compensate the attenu-
ation of the backscattered signal with distance.

• Along-track correction: it comes from acquisition problems within the transducer or loss
of data. It results in lines shifted across track and can be compensated with averaged
values of adjacent lines.

TVG correction

A TVG correction is applied to compensate the transmission loss of the acoustic energy
with distance. In case of a flat seabed and a constant altitude for the acquisition platform,
the range and angular dependency factors for the correction can be treated together. In [9], it
is proposed to compute the average brightness on some number of pings. After removing the
water column, the brightness is expressed based on the grazing angle. It provides a 1D curve
with length equal to the number of samples contained in one ping. Every ping is multiplied by
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(a) Original sonar image. (b) With TVG correction.

Figure 2.8: Comparison between a non corrected (left) and a TVG corrected image (right).

the inverse of this 1D curve and its mean level to maintain the mean level of the image. The
result of this TVG compensation is proposed in Figure 2.8.

Moreover the backscatter intensity varies in function of the grazing angle and the type of
the seabed (sediment)[347].

In case of variable altitude of the platform or not flat seabed, it results in a variation of the
width of the water column compared to the images presented in Figure 2.8. It is particularly
common in shallow water and low altitude survey. Therefore the range and angular dependency
should be treated separately [39]. Based on a bottom track to estimate the sensor altitude at
each ping emission, a resampling strategy is proposed in [40] to compute an angular dependency
correction factor. This method is quite interesting when no a priori knowledge about the sonar
system is available. It can be classified as an heuristic method. In case of known acquisition
parameters and environment [188], a compensation can be computed based on simple models
such as the Lambert model [221].

Slant range correction

This correction comes from the slant range representation of the sonar image which is not
representative of the real distance between objects on the seabed. This process consists in
remapping the pixel from their apparent position to their true position by taking into account
the range (elapsed receiving time) and the altitude of the platform. It results in giving the
ground range of the pixels. Due to the grazing angle, the remapping is only important at short
range and the error is small at far range. By assuming a flat seafloor, the ground range distance
is:

Di =
√

(cTi2 )2 − h2 (2.7)

where Ri = cTi
2 is the slant range distance of the pixel i, c is the local sound speed and h is

the altitude of the sonar platform. It assumes a flat seabed and some artefacts could appear in
case of relief. If a bathymetry map is available, it should be taken into account.

After the slant range correction, the sonar image is corrected across-track but it still has to
be corrected along-track. This process is called anamorphosis [29]. It consists in having square
pixel, which results in the same along-track and across-track resolutions, by sub-sampling or
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replicating ping lines to have ground features correctly represented.

The following steps are classified as post-processing and non necessary according to [29] but
it improves the interpretation of the sonar images.

Visual enhancement

The distribution of the different gray levels in the image can be plotted through histograms.
The dynamic range is defined as [333]

D = Imax − Imin (2.8)

with Imin and Imax the minimum and maximum gray levels.

The contrast is defined as:
C = Imax − Imin

Imax + Imin
(2.9)

The larger the contrast is, the easier the interpretation of the sonar image is.

The visual enhancement operation does not increase the "quality" of the image but increases
the separation between different regions. Histogram operations [333] are used to improve the
interpretation. Histogram sliding consists in adding or subtracting a fixed value to all pixels. If
the offset is too large, some gray levels will be forced to the minimum range (under-saturation)
or to the maximum (saturation). Histogram stretching consists in redistributing the pixel values
to increase the dynamic range and the contrast by multiplying the values by a constant and
rescaling. For a n bits, each new gray level will be:

Inew = Iold − Imax
Imax − Imin

× (2n − 1) (2.10)

It results in a wider dynamic range and is well adapted to poorly contrasted image with a small
dynamic range. These two processes refer generally to histogram equalization.

Speckle removal

Speckle, as explained earlier, is a high frequency noise. Mean filters were proposed to average
the speckle but it lowers the resolution of the image [29]. Others are based on the minimization
of the mean quadratic error but the analysis window size is usually fixed. This issue is overcome
with wavelets decomposition that seems to be an interesting filter since the useful information
is generally gathered on few wavelet coefficients [190].

The reflection from the sea surface may appear on sonar images. There are some algorithms
to remove this artefact.

All these operations are necessary for correct interpretation of the sonar images. More-
over the reliability of any automatic detection/classification algorithms depends on the "good"
formation of the sonar images.

2.3.1.4 Mosaicking

Once the preprocessing phase is achieved, the final step is the mosaicking of the sonar image.
It consists in georeferencing the sonar image. The pixels at this moment are still located with
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Figure 2.9: Water-fall image for a sidescan sonar.

relative coordinates depending to the sonar platform. Georeferencing is the transformation of
these relative coordinates into an absolute coordinates system such as latitude and longitude.
A particular map projection has to be defined such as Mercator, UTM,... The georeferencing
process starts generally by defining a regular grid as a map with a desired resolution. Then
based on the navigation, the attitudes and the slant range correction, an interpolation algo-
rithm fills the grid with the pixel value of the sonar image. Simple interpolation algorithms
average overlapping pixels with the mean or the median whereas more complex ones are based
on polynomial or spline fitting techniques. The result of a simple median interpolation is pro-
posed in Figure 2.9 in the case of the sonar image proposed.

The transformation from the relative coordinates to the absolute coordinates system is com-
puted based on the rotation matrix and the position of the AUV.

LongijLatij
zij

 = R(φ(i), θ(i), ψ(i))


0

±
√
R(j)2 − h2

h

+

xAUV (i)
yAUV (i)
zAUV (i)

 (2.11)

where i the ith ping emitted (along-track) and j is the jth samples (across-track). The value h
refers to the altitude estimated by the bottom track or by a Doppler Velocity Log (DVL), and
R(j) is the slant range of the jth sample. The sign ± is + if the image is on the starboard side
and − if it is on the port side. Only the longitude Longij and the latitude Latij are used for
the mosaicking.

2.3.2 2D Forward-Looking Sonar (FLS)
Contrary to the sidescan sonar, the 2D FLS does not need the motion of the vehicle to form
a 2D acoustic image of the seabed. Generally this sonar is used for obstacle detection and
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avoidance due to its forward looking aspect [251]. It is mounted at the front of an AUV or
can be embedded in a Remotely Operated Vehicle (ROV) or an Autonomous Surface Vehicle
(ASV) due to the weak dimension and power requirements of the sonar in case of lower res-
olution FLS. Recently due to the improvement of the characteristics, the FLS has been used
for seabed mosaicking [326] and even intended to real-time mosaicking [100]. An application in
MCM context has been proposed in [99] with the use of a real-time mosaicking building. The
acoustic principle is the same for all sonar system. As precised earlier, the transducers emit
the acoustic wave spanning its beam width in the azimuth (θ) and elevation (φ) directions.
Therefore this sonar directly provides a range-bearing acoustic image of the seabed. However
it is not possible to disambiguate the elevation angle of the backscattered signal at a particular
range and bearing, meaning that the 3D information is lost during the projection into a 2D
image. Due to the acquisition nature, it results in a polar coordinates image. This latter is
composed of the number of beams in the angular direction and the number of range samples in
the range axis. This polar representation can be converted to a 2D image in Cartesian coordi-
nates for a true representation. Due to the non-uniform resolution as the range increases, one
pixel in polar coordinates may be mapped to multiple pixels in the Cartesian coordinates with
the same intensity. FLS is not really adapted to image around seamounts or abrupt terrain
changes with strong 3D changes but it is interesting to be used on a regular seafloor or plane
surfaces. The underlying surface should be approximately planar to obtain a correct imaging
angle. The surface can obviously be a slope inclined at any angle since it is possible to tilt the
sonar to image the underlying surface as a plane.

Three parameters are used to adjust the ensonified area on the seabed:

• the altitude to the plane a.

• the tilt angle φa of the sonar with respect to the plane.

• the sonar ranges (minimum Rmin and maximum Rmax).

Usually the roll of the vehicle is well controlled to gather exploitable acoustic data, conse-
quently only these 3 parameters are needed.

It is difficult in real scenario to adjust the image limits corresponding to minimum and
maximum set ranges as depicted in Figure 2.11. It shows a K-ster from Eca Group introduced
before with a tiltable head. The ideal case would be the ranges Rmin and Rmax corresponding
respectively to φa−φ3 and φa+φ3 with φ3 the half elevation aperture angle, as shown in Figure
2.10. The detection of the actual leading edge and trailing edge can be inaccurate as presented
in gray in Figure 2.11. As it can be expected, due to the large size of the first object ensonified,
it appears greater in the sonar image.

Some configurations based on these three parameters can be imagined to understand the
differences in the image perceived by the sonar, it is inspired by the work in [326]. In the
following figures, the robot configuration is presented on the left and the possible sonar image
in Cartesian coordinates is represented on the right. The sonar image is not the real one, it is
just an indication of what should be expected in the image.

Choice of the altitude

If the altitude of the robot is high, the tilt angle has to be large, and due to the elevation
aperture angle the ensonified area on the seabed will be small as depicted in Figure 2.12. The
seabed is ensonified but no features can be extracted due to the small coverage.
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Figure 2.10: The ranges Rmin and Rmax correspond to the leading and trailing image edges, at
the extremum φmin and φmax. The image on the right is the image in Cartesian coordinates
seen by the sonar. The two protruding object appear with a white echo and a black shadow.
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Figure 2.11: The ranges Rmin and Rmax do not correspond to the extremum φmin and φmax.
On the top figure, the trailing edge does not correspond to φmax and Rmin does not correspond
to the real leading edge. This latter can be detected in the image (gray part). On the bottom
figure, the leading edge has an angle bigger than φmin that is supposed being at Rmin. The real
trailing edge is at φmax but it does not correspond to Rmax. The trailing edge can be detected
in the image (gray part).
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Figure 2.12: Small coverage area with an high altitude and a large tilt angle.
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Figure 2.13: Large coverage area with an high altitude and large ranges.

To cover a larger area at high altitude, the idea is to increase the grazing angle, and therefore
the sonar maximum range has to be larger to observe the seabed as shown in Figure 2.13. As
presented earlier the leading can be detected.

If the sonar maximum range is not large enough, the seabed may not be ensonified with this
small grazing angle as depicted in Figure 2.14. It would result in a blind image.

Even if the longest ranges reach the seabed, the resulting image would have a lower resolution
(less good resolution) than imaging at lower altitude. Consequently, imaging at a low altitude
presents the advantages of larger coverage due to the small tilt angle and higher resolution due
to closer ranges as depicted in Figure 2.15. But as it can be seen, the set of ranges needs to be
correctly defined to increase the visibility in the sonar image.

However, the vehicle has to navigate at a minimum altitude to avoid any crash. Usually the
altitude above the seabed is approximately 2 to 5 meters. The altitude is now fixed, the last
two parameters (the tilt angle φa and the ranges Rmin and Rmax) have to be choiced.

Choice of the tilt angle

A too tilted angle reduces the coverage area (Figure 2.16) whereas a small grazing angle

large a

tilt

Rmin

Rmin

Rmax

Rmax

Figure 2.14: No seabed due to high altitude and too short ranges.
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Figure 2.15: Large coverage area and high resolution images.
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Rmin
Rmin

RmaxRmax

Small coverage area

Figure 2.16: Small coverage area with a small altitude of the robot due to large tilt angle.

ensures a large coverage area (Figure 2.15)
A small grazing angle, handled by the tilt angle, would create too long shadows. Conse-

quently the objects at further distances could be occluded by these shadows. Approximately
10-20 degrees seems to be a good compromise [326].

Choice of the ranges

A small tilt angle at low altitude provides a large coverage area with high resoluted images.
However, to avoid at maximum the blind areas depicted in gray in the different images, the set
of ranges has to be well defined. Indeed, the blind areas come from the leading and trailing
edges. The idea is to increase the minimum range Rmin until the first returns and reduce the
maximum range Rmax to the limit of the last returns as depicted in Figure 2.17 where no blind
areas are present in the sonar image. This case was cited as ideal case before.

In conclusion, the tilt angle, the altitude and the ranges have an effect on the resolution in
the FLS image, as expected according the general principles presented in the first subsection.

small a

tilt

Rmin

Rmin

RmaxRmax

Large coverage area

Figure 2.17: Large coverage area without blind zone in the sonar image.
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In this subsection, it deals with a vehicle equipped by a tiltable head that can change the
elevation angle for the ensonification of the seabed. However, this tilt angle can be fixed and
then the vehicle just has to change its pitch angle to ensonify toward the seabed. Usually in
case of navigation, the FLS is mounted in order to ensonify toward with a small tilt angle
between 10-20◦. The roll angle should be managed to keep the sonar as parallel as possible to
the imaged plane.

2.4 Detection in sonar images
In the previous subsection, the basic knowledge to understand the sonar imagery has been
introduced with special presentations of the sidescan sonar and the FLS. Indeed, the sidescan
sonar is widely used for seabed mapping due to its high resolution and some algorithms have
been developed to detect automatically objects or textures, especially in the case of MCM
context where an operator, in the past, was looking at the sonar image to detect a mine. Due
to the necessity of a reliable navigation to compensate the drift in position of the robot, the
relocate process of the robot and to avoid being lost, the geophysical navigation presented
in Chapter 1 requires the detection of elements in the environment the robot is navigating.
The automatic detection of these elements, called landmarks, is vital for the autonomy of the
different missions. These landmarks are naturally present in the underwater environment such
as rocks, frontiers between different types of seafloor, wrecks, etc... In this subsection, the main
features detection techniques in sonar images will be presented.

2.4.1 Landmarks detection
Landmarks in underwater environment are sometimes called "seamarks". They may be of var-
ious natures, from rocks to sand ripples going through man-made objects and wrecks. Many
algorithms exist today for automatic detection but they differ in the way of detecting. As
presented in the subsection 2.2.3, the presence of protuding objects is characterized by an echo-
shadow pair in the sonar images. Indeed due to the nature of the sonar image creation, the
pixels representing a protuding object has an intensity higher than the average intensity and the
shadow a lower intensity than the average. It may be possible than the echo is not detectable
due to a weak or isoptropic backscattering effect. A protruding objet could be a mine, a rock,
a wreck,... something that is lying on the seabed. The detection of such landmarks depends
on the ability of detection of this echo-shadow pair. This will be the subject of the next sub-
section. However, in the underwater environment, these landmarks revealing an echo-shadow
pair are not the only landmarks a navigation system with an imaging sonar could rely on to
relocate itself. Indeed, the seabed is composed of various sediment areas such as sand ripples,
posidonia, sand, mud, rocks region, etc... If the sonar system is able to detect all these areas,
it can actually relocate the robot with the frontier between these sediment regions. These
regions are known as textures. This will be briefly explained after the object detection. Even if
these two detections process appear separately in the way of detecting, having the knowledge of
the different sediment regions could help to the detection of the object inside these regions [254].

Generally these algorithms can be described by this architecture:

• Detection: detections in the sonar image.

• Extraction of features: features that characterize the detections.

• Classification: What is it?
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2.4.1.1 Objects detection

The detection of objects in underwater environment with sonars has been widely treated in the
context of MCM missions. Indeed, the automatic detection in such missions refers to Automatic
Target Recognition (ATR) algorithms which aim to detect, classify and identify a contact. The
detection process for these algorithms can be used to detect any objects on the seafloor that
can constitute a landmark. The detection phase is intended to find some regions of interest
(ROI) in the sonar images where an object could be present.

Matched filter

The presence of an object has been well defined in the section 2.2.3 due to the presence of
an echo corresponding to a high level of the backscattered signal and a shadow corresponding
to a low level. The dimension of the shadow depends on the grazing angle and on the height of
the object. A 1D filter has been proposed in [299] for the detection of this kind of responses.
This 1D presence is revealed after the convolution of the filter and the initial signal. It has
been extended to 2D in [78].

Segmentation

The segmentation is the most known process for detection in the image processing commu-
nity. In the case of objects detection, the segmentation aims usually to divide the sonar images
into three classes: echo, shadow and seabed.

It has been shown in [79] that the distribution of the pixels (intensity) associated to an object
is not the same compared to the distribution associated to the seabed. The author proposed
to use an adaptive threshold to highlight the echo of an object and then was looking for the
associated shadow.

Simple clustering techniques such as histogram thresholding [263] are the most famous seg-
mentation algorithms. An adaptive thresholding technique based on the local mean is proposed
in [313]. Fuzzy k-means [117] is also proposed. These techniques perform well on flat seabed
with high signal-to-noise ratio (SNR) but fails on complex environments such as sand ripples.

A fuzzy logic approach has been proposed in [97] to separate echo and shadow from the
background. Based on an iterative technique, a fuzzy function has a likelihood that increases
with the number of neighbouring pixels of the same class and decreases as the pixel intensity
value is far from the typical intensity value of the class.

Markov-Random Fields (MRF) is a statistical segmentation that uses a priori information
about the intensity values of different classes (shadows, echos and background), and the in-
tensity values of the neighbouring pixels to label all pixels belonging to the predefined classes
(shadows, echos and background). In other terms, a pixel surrounded by shadow pixels is most
likely to belong to the shadow class. MRFs were applied in medical images [346] and on sonar
images in [58][217][218] but the segmentation was long and the computation demanding. In
[266][267], the MRF algorithm were improved to increase the performance of the segmentation
by using the spatial a priori knowledge on the size and the geometry of the objects to divide
the image into the three classes (echo, shadow, seabed). This method was reviewed in [66] with
graph-cuts[33] technique to increase the speed of the MRF segmentation. The main difficulty
in MRF segmentation is the estimation of the parameters characterizing the a priori knowledge
of the environment. These parameters are the noise model parameters defined by Probability
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Density Functions (PDF) for each class and the Markovian parameters (known as MRF prior
parameters or cliques parameters). The Markovian parameters have the effect to gather pixels.
All these parameters are usually estimated with an Iterative Conditional Estimation (ICE)[286]
that enables the estimation of the Markovian parameters based on a Least Squares Estimator
(LSQR) described in [70], for example, and the estimation of the noise parameters based on
a Maximum Likelihood Estimator (MLE), for example. An "initial" segmentation needed for
the distribution estimation can be performed simply with a K-means algorithms as in [220]. A
Gaussian law is usually defined to describe the distribution of the shadow or the echo, and a
Rayleigh distribution to model the speckle noise [219]. A Weibull distribution has been used in
[95][96]. The Markovian parameters can be fixed a priori. After the parameters estimation, an
Iterated Conditional Modes (ICM) [24] is used to optimize the energy function of the marko-
vian model by looking for the Maximum A Posteriori (MAP). The Markovian segmentation
developped in the work [267] was used in Simultaneous Localization And Mapping (SLAM)
problem with a sidescan sonar in [280] to provide information in a stochastic map about the
echo-shadow detections and perform a data association based on the Joint Compatibility Test
(JCT) with a Mahalanobis distance to keep the consistency of the stochastic map.

Snakes are statistical active contours that assume the regions have a continuous edge [155].
It is a closed curve defined by a list of nodes. It tries to minimize a cost (energy) function by
deforming the contour [53]. It results then in a two-classes segmentation, a target region and a
background region. Snakes have been widely used in medical image segmentation [60]. It can
be seen as a matching technique between a deformable model and the object to detect in the
image based on the minimization of an energy function. The main drawback of snakes is the
requirement of an initial position or a contour to start moving from. The result of a previous
segmentation could be used to start the deformation of the initial snake. Due to the dual nature
of the object signature in the image (echo+shadow), a co-operating statistical snake has been
developped in [266] to extract features based on the results of a MRF segmentation. Actually
two snakes are used to segment both the echo and the associated shadow. It uses the a pri-
ori information between the shadow and the echo of an object to constrain the motion of the
snakes. Samely it has been used in [96]. Contrary to MRF segmentation, snake algorithms do
not need a priori information, only the intensity of the pixels influences the segmentation result.

Region growing [4] have been applied for classification of seabed in [154] and echo/shadow
detection in [87].

In morphological methods, watershed algorithm interprets the image as a relief or a topo-
graphic map and then finds the lines that separate the image in homogeneous areas based on
the morphological gradients [216].

Saliency detectors

The saliency can highlight some region where there are some differences between a textured
background and its neighbourhood. In other terms, an object is said to be salient if it stands
out from its background and all other objects.

In [11], a scale saliency object detection is proposed using the Shannon entropy. The scale
defines the size of the local neighbourhood in the image. The shadows and echos have a
stronger entropy than the seabed at specific scales. The algorithm is then looking for a peak
in the entropy function by varying the scales.

In [339][336] [334] a detector based on the integral image is proposed. Based on different
sized sliding windows, an echo and shadow map is generated in a cascaded architecture. The
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approach is able to make near real-time detection in sonar data onboard of an AUV and has
been used on high resolution SAS images. Due to the fast computation ability in sonar images,
this detector has been implemented to detect some objects on the sonar data in this thesis.
The principle of this detector will be the subject of the subsection 2.4.2. The integral image
has also been used for object detection considering the local clutter in Haar-cascaded classifier
[288] initially developped in image processing [327].

2.4.1.2 Environment characterisation

The texture detection relies mainly on simultaneous segmentation and classification techniques
with features extraction to characterize the different textures representing the seabed [269].
The classification can be supervised or unsupervised to differentiate the classes.

In [190], the seafloor is separated into 5 classes: rocks, sand ripples, sand, mud and shadows.
A supervised classification based a Nearest Neighbour (NN) is proposed after a Linear Dis-
criminant Analysis (LDA) [210] closed to the Principal Component Analysis (PCA) principle.
The parameters are obtained with a set of Gabor filters [134] to detect the local presence of a
frequency. The size of the windows is an important choice.

In [67] the seabed is classified into three categories: homogeneous, anisotropic and complex
regions. This idea comes from the fact that the false alarm rate increases in regions where
the environment is highly textured. An anistropic region refers to the sand ripples and the
complex region to a large number of rocks inside a region. On the contrary the homogeneous
regions are regions generally composed of sand and mud. Consequently the detection of a
protruding object on an homogeneous seabed will lead to an easier detection. These regions are
categorized based on complexity and anisotropy coefficients. These coefficients can be estimated
with Gabor filters [67], Haar filters [15], complex wavelet analysis [105] or with the monogenic
signal [254][255].

2.4.2 Integral image detector
A proposed implementation of the algorithm based on the integral image in [336] due to its
rapid computation, even near real time, is provided. The object detection is proposed on the
port image of the sidescan sonar image depicted in Figure 2.7 after the different corrections
explained. Moreover the image integral will be used for contractor image programming in
Chapter 4 about the set membership tools.

An integral image [329] is an image representation that enables fast computation of rect-
angular, Haar-like features at any scale or location in constant time. The sonar image is then
converted directly into an integral image.
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Figure 2.18: Easy computation of the sum of the pixels inside a rectangular area (A,B,C,D)
based on the integral image.

The construction of the integral image I corresponding to an original image A is defined as
follows:

I(x, y) =
∑

x′≤x,y′≤y
A(x′, y′) (2.12)

For a pixel location at (x, y) in the integral image it corresponds to the sum of the pixels
above and to the left of (x, y) in the image A. It can be recursively computed with:

I(x, y) = I(x− 1, y) + z(x, y) (2.13)
with z(x, y) is the cumulative sum of pixels in a row of the original image A computed by:

z(x, y) = z(x, y − 1) + A(x, y) (2.14)
The integral image corresponding to the port image is depicted in Figure 2.19. Notice that

the pixels belonging to the water-column are set to zero (in black). The boarders are usually
handled by replicating the pixels (mirror) or just zero padded. Other techniques could have
obviously been envisaged. Once the integral image is computed, it is easy to compute any sum
of pixels inside a rectangle as shown in Figure 2.18. If the integral image is called Y for an orig-
inal image X the sum of the pixels inside the rectangle (A,B,C,D) can be computed easily with:

∑
xA<x′≤xC ,yA<y′≤yC

X(x′, y′) = Y (A) + Y (D)− Y (B)− Y (C) (2.15)

(a) Original port image after TVG correction
and water-column removal.

(b) Integral image. Blue corresponds to low
values and yellow to high values.

Figure 2.19: Integral image computation on the port water-fall sonar image.
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Background map

Firstly, based on the integral image computation, a background map Bmap is generated. This
map is intended to represent the reverberation level of the seabed. As previously mentioned
the reverberation is highly dependent on the nature of the seabed. The background map is
estimated based on a split-window template composed of three equally sized horizontal rect-
angles due to the nature of sidescan imagery. Indeed, in this kind of imagery, the convention
is to have a representation with the echo coming first. The horizontal axis corresponds to the
across-track axis and the vertical axis is the along-track one. These rectangles are juxtaposed
in the along-track direction. The top and bottom rectangles contribute to the background
estimation and not the middle one. The idea is to identify the surrounding of an object. The
size of the bands is defined in along-track and in across-track direction. These sizes depend on
the length of the object research, they are user-defined parameters. Indeed the idea is to fix
the size in order that the middle rectangle fully contains the object. The background score at
the location (x, y) corresponds to the mean level between the top and the bottom rectangle.
This score is calculated as follows:

Bmap(x, y) = 0.5 ∗ (Itop(x, y) + Ibottom(x, y))
= a−1

b

[
I(x− 3dx2 , y −

dy
2 )− I(x− 3dx2 , y + dy

2 )
−I(x− dx

2 , y −
dy
2 ) + I(x− dx

2 , y + dy
2 )

+I(x+ dx
2 , y −

dy
2 )− I(x+ dx

2 , y + dy
2 )

−I(x+ 3dx2 , y −
dy
2 ) + I(x+ 3dx2 , y + dy

2 )
]

(2.16)

with dx and dy corresponding respectively to the number of pixels in the along-track and in
across-track direction. dx and dy are based on the resolution and the size of the rectangle
desired. ab is the number of pixels involved in the sum of the two rectangles. The contribution
of the middle rectangle is not considered, because if an object was present, it would bias the
background estimation.

The result of the background estimation is proposed in Figure 2.20. The background esti-
mation around a real target is like doubled due to the estimation of the bottom rectangle when
the estimation is computed above the target and the estimation of the top rectangle when the
estimation is computed under the target.

58



CHAPTER 2. SONAR IMAGERY

Figure 2.20: Background map.

Shadow map

The second step is the shadow map Smap estimation to identify area in the image where an
object protruding from the seabed is present. Contrary to the background estimation, only one
rectangle around the position (x, y) is used to directly compute the presence of an object. As
mentioned in the subsection 2.2.3, based on the explanation in Figure 2.4 and Equation 2.6,
the length of the shadow depends on the height of the object, the altitude of the sonar and the
slant range between the sonar and the object. Due to this range dependence, the size of the
rectangle for the shadow calculation will depend on the range between the sonar and the (x, y)
position. From Equation 2.6, the length of the shadow is:

L = hD

H − h
(2.17)

with H the altitude of the sonar, D the slant range, and h the height of the object. H is mea-
sured by a DVL or can be estimated with a bottom tracking algorithm and h is user-defined
parameter. h is set at 20cm for example.

The along-track dimension sx and the minimum height of the object h are user-defined
parameters for the rectangle. The across-track dimension sy of the rectangle is defined by
Equation 2.17 (sy = L). The shadow score is then computed with one rectangle around (x, y)
position as follows:

Smap(x, y) = a−1
s

[
I(x− dx

2 , y −
dy
2 )− I(x− dx

2 , y + dy
2 )

−I(x+ dx
2 , y −

dy
2 ) + I(x+ dx

2 , y + dy
2 )
] (2.18)

with as the number of pixels in the rectangle considered. dx and dy correspond respectively to
the number of pixels for the along-track dimension sx and the across-track dimension sy. The
result of the shadow map is depicted in Figure 2.21.
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Figure 2.21: Shadow map.

The advantage of the range dependent size of the rectangle is to take into account the ge-
ometry of the problem. In general, matched-filtering methods cannot use this range dependence.

Region of interest

Based on the background map Bmap and the shadow map Smap, the regions that may contain
targets of interest can be determined. A pixel belongs to a shadow when the value at this pixel
is lower than a certain amount of the background map estimated at this pixel. A pixel located
at (x, y) belongs to a shadow if:

Smap(x, y) < αBmap (2.19)

with α a threshold fixed. The result of the binary map obtained is depicted in Figure 2.22. It
enables to reduce the size of the image that has to be analysed and it highlights the regions of
interest where an object with a minimum height h may be present.
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Figure 2.22: Regions of interest.

Based on the result of the regions of interest, a snake algorithm [51] is applied to extract the
real shadow region. The result for one shadow is depicted in Figure 2.23. As mentioned earlier,
the initialization of the snake is based on the result of the regions of interest. The resulting
shadow are filtered based on the height of the object.

Figure 2.23: Snake algorithm to extract the shadow.

Echo detection

The presence of echos is only estimated at a shorter range than the shadows detected pre-
viously with the snakes. Similarly the echos are revealed with a threshold on the background
map as the pixels belonging to echos have a higher value than the background map. The result
of the echo detection and the shadow associated is represented in Figure 2.24.

Again a snake algorithm can be computed to extract the echo.
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(a) All detections in the port image. (b) Zoom on a detection result.

Figure 2.24: Final detections with contours surrounding the shadow and echo detections.

Figure 2.25: Detections on the mosaic. Red crosses indicate echo detection and green crosses
shadow detections.

The different detections are projected on the mosaic in Figure 2.9 previously computed. The
result is depicted in Figure 2.25.

Conclusion

Through this algorithm, it is possible to compute fastly object detections in sonar images.
The advantages of this method is the range dependence that is inherently present in this kind of
image due to the sonar geometry. Moreover a filtering step on the minimum height is provided
based on the length of the shadow. When using data from different sonars, it may be difficult
to associate the different data. Some features extracted from the different objects may help in
the data association process for relocation when an object is seen again at different times.

2.4.3 Extraction of features
Features extraction is usually the step just after the region of interest extraction, as explained
before, and just before the classification. The features describing a "contact" may help in the
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definition of the different object detected in the sonar image. It may indicate if the contact is a
MILCO or not a MILCO [254]. Some features extracted may help in the data assocation process
when navigating in an environment to disambiguate some association based on the nature of
the object and reduce the pose uncertainty. Obviously the position of the different landmarks
are the primary features but sometimes it is not sufficient to have an a priori indication of the
position. In [282], the position, the size of the target and the first invariant moment descrip-
tors [281] are taken into account in the stochastic map and for the MHTF (Multi Hypotheses
Tracking Filter) data association [268].

Statistical features may be extracted from the detections. They represent the intensity dis-
tribution of the different objects. It can be simple features such as the mean, the variance,
the energy or the entropy, or more complicated ones based on moments theory [132]. These
moments enable to compute some features invariant to translation, rotation and scale. In [262],
Zernike moments [305] are extracted for classification purpose on single look sonar image.

Fourier descriptors are proposed in [262] where the contour of an object can be described
in the frequency domain through a Fourier transformation. These descriptors are invariant to
translation, rotation, dilation or shift of the contour. Only a limited number of Fourier descrip-
tors can describe the object.

Finally, geometric features such as the length of the shadow, its width or its orientation can
be extracted in sonar images. The length of the shadow is directly linked in sonar images to
the protruding height of the object from the seabed.

More details on the features that can be extracted for classification with sidescan sonar can
be found in [98].

Features describing the different textures can also be determined as for example the orien-
tation and the spatial frequency of sand ripples regions.

2.5 Notion of aspects
The notion of aspects, i.e. point of view, is an important notion in underwater environment and
sonar imagery. Indeed, due to the shape of an object and the grazing angle of the sonar, the
backscattered signal from this object is not the same at every point of view in sonar imagery,
as mentionned in the subsection 2.2. Moreover the materials defining the objects, man-made
or natural objects, may not react the same way to acoustic waves. These aspects are par-
ticularly solicited in the classification of underwater objects and especially in MCM context.
The classification with a single-view may not be sufficient due to complex geometric shapes
sometimes. A classification based on a multi-view process may remove an ambiguity [262] and
is solved by fusing single-view classification in [98]. In [229], the multi-view classification prob-
lem is modeled as a POMDP (Partially Observative Markov Decision Process) problem where
it determines which additional point of view would reduce the uncertainty in classification of
different targets such as cylinders, truncated cones (Manta), rocks, or wedges. This multi-view
classification leads to the problem of revisiting some targets explained in the section 1.3.1 and
the necessity to reacquire some points of view of targets to increase the classification perfor-
mance. In [345] using simulated sonar images of various objects and height profiles as features,
the highest classification performance was achieved with an angular increment of 90◦ between
the two images. This result was then confirmed on real data [62].
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Moreover viewing the same a priori texture at different point of view does not mean that the
sonar will be able to detect it for sure. For example, due to the strong orientation dependence
of sand ripples, when scanning the seabed with a side-looking sonar such as SAS or a sidescan
sonar, the sand ripples region appears as a flat seabed when the orientation of the sand ripples
is in the along-track direction of the vehicle [338]. In others terms, when the acoustic waves are
oriented perpendicularly to the direction of the sand ripples, it may appear as a flat seabed.
In MCM context, the presence of sand ripples increases the false alarms rate in mine detection
[116] because the targets are hidden in the shadows of ripples. It could be interesting to revisit
this sand ripples region at a more favorably heading where the sand ripples appear as a flat
seabed to detect the mines hidden lying on the sand ripples seabed [338][64]. However, in case
of navigation, if the sand ripples region is considered as a landmark, the relocation process is
possible only if this region is detected. Therefore the orientation of the sand ripples has to be
taken into account in the path planning of the robot to be sure that it will detect it.

The notion of aspects is defined as an angle of view in case of objects or an orientation in case
of an anisotropic region such as sand ripples. In the MCM context, a survey mission provides
the data thanks to a sidescan sonar. Consequently the geometry of acquisition indicates the
angle of view of the detected objects in the post-processing of the sonar data. Moreover, if sand
ripples are present, it may be detectable by some algorithms such the ones in [255][338][336].
The aspects is illustrated in Figure 2.26.

AUV path

Figure 2.26: Aspects of the different detections depending on the AUV path and the sidescan
sonar geometry. The path of the AUV is depicted by a red arrow indicating the direction of
the AUV. The blue arrows show the echo detections according to the AUV path.

The angle of view is defined in the sidescan imagery as:

θdetection = HeadingAUV ± 90◦ (2.20)

with HeadingAUV in degrees and ± depending if the detection is on port or starboard side.
θdetection is the same reference as the heading of the vehicle.
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Consequently, the different landmark detections can be represented in the reference according
to Figure 2.27. θdetectionSS refers to the angle of view at the moment of the detection. An interval
around this angle of detection is introduced as it is quite impossible to revisit an object at the
exact same point of view. This interval provides a flexibility on the angle of view as in [61].

Figure 2.27: Aspects of detections.

This angular flexibility is then defined as follows:

θdetection = [θSS − α, θSS + α] (2.21)

with θSS referring to the angle of detection θdetectionSS and α the angular flexibility. Moreover,
introducing a low angular flexibility does not change the classification performance [61]. Along
this thesis α will be 10 or 15◦. Detecting an object at a specific angle of view does not mean
that the object is detectable at every point of view as stated at the beginning of this subsection.

2.6 Heterogeneous imaging sonars
Using heterogeneous sensors refer to multimodal/multisensor registration in image registration
process. SAR (Synthetic Aperture Radar) images are registered with optical images of urban
areas in [192] based on features extraction and Mutual Information (MI) registration, of various
environments in [198] based on a contour matching algorithm or on medical images of brains in
[256] with diffusion maps. Registering heterogeneous sensor images is not an easy task due to
the difference in intensities and geometry acquisition such as in sonar images. Indeed, the sonar
images are highly dependent on the altitude of the AUV, the angular aperture of the antenna,
the frequency of the sonar, the ping emission frequency, the speed of the vehicle, etc... All these
parameters influence directly the ability of detection of a sonar as previously mentioned in the
section 2.2. Due to the heterogeneity of information gathered during the survey and the revisit
mission, a filtering step is proposed to adapt the data base created during the survey and the
revisit system parameters. Obviously it is possible to use the same system for both missions.
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Figure 2.28: Creation of a data base after the survey mission.

Post-processing the survey data collected leads to some detections with automatic algo-
rithms presented earlier or manual detections by an operator according to Figure 2.28. This
data base contains all the landmarks characteristics including the positioning, the angle of view
and some features such as geometrical or other types of features. Moreover it can store an
eventual classification of the objects or textures such as rocks or sand ripples region with their
orientation and spatial frequency. A texture region can be stored as a shape as presented in
[71]. Due to the acquisition geometry, this data base is said to be only adapted to the survey
system. If afterwards another system is navigating this environment, the information may differ
from this data base. In the context of this thesis, the aim is to revisit an object classified as
potentially dangerous object (MILCO) in MCM missions. The objective is to guarantee the
revisit of this object with relocation process based on the map created in the data base. Based
on the characteristics of the revisit system (altitude of the vehicle, sonar, etc...), the filtering
step keeps only the landmarks a priori detectable by the revisit system. A simple filtering
step based on the dimensions of the landmark (width, length, height) is proposed in case of
objects. Indeed, the resolutions of the sonar images can be a priori computed based on the
different characteristics presented in the subsection 2.2. Assuming an altitude of the vehicle, a
desired range of detection to observe the landmarks and the shadows, the idea is to remove all
landmarks that may not be detectable by the revisit system as presented in Figure 2.29.
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(a) All the landmarks detected by the
sidescan sonar along a Boustrophédon survey.

(b) Landmarks detectable by the revisit
system.

Figure 2.29: Filtering of the data to adapt to the revisit system.

According to the sonar principle and considering an object with a width W , a length L and
a height h (protruding height from the seabed), the following inequalities have to be respected
in order to detect this object:

W > rdθ (2.22)
L > dr (2.23)

SL > dr (2.24)

with dθ = λ
La

and dr = c
2B the cell resolutions. The azimuth resolution depends on the range

r between the sonar and the object. SL corresponds to the length of the shadow in the sonar
images which is given by:

SL = rh

H − h
(2.25)

with H the altitude of the sonar and h the height of the object, assuming a flat seabed. If
the altitude is fixed a priori and as the height of the different objects are available in the data
base, it is possible to know the shadow length at different ranges r. In other terms, the cell
resolution should be smaller than the size of the object. Moreover, according to the Johnson’s
criteria [149], at least one pixel is needed for the detection purpose.

Several pixels are needed for the height estimation, therefore the length of the shadow of an
object should be sufficient. The resolutions in the sonar image do not correspond to the cell
resolution due to the over-sampling criteria for the conversion of the data not to loose data.

The set of ranges r has to be defined, and usually a detection in the mid range is better.

A study on the resolution needed for classification and identification has been proposed in
[241] for further details.

This filtering step is proposed in Figure 2.30 where a mission was conducted by an A9 from
ECA Group with a sidescan sonar. The sonar images presented earlier came from this mis-
sion. The AUV performed a boustrophédon pattern as it can be noticed by the yellow parallel
tracks. Only the navigation during the sonar acquisition along a straight line is represented
(not the turns). Four E-W tracks and four NW-SE tracks (N: North, S: South, E: East and
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W: West) are drawn in yellow. The result of the integral image detector is presented in Figure
2.30(a) where the blue crosses are the shadows detection and the red crosses are the echos
detection associated to the shadows if they exist. The sonar images have not been registered
and then the same landmark may appear at different locations. Due to the low uncertainty on
the robot position thanks to a reliable navigation, these locations (of the same landmark) are
really closed to each others (tens of centimeters). A zoom is provided in Figure 2.30(b) where
the median has been used for the complete mosaic representation to highlight the shadows.
It can be noticed that the environment is only composed of "punctual" landmarks on a sandy
area. Some landmarks are described by an echo and a shadow. The filtering step only kept
some landmarks as depicted in Figure 2.30(c) with a strong echo and a good size. A zoom is
provided in Figure 2.30(d) where the maximum has been used to create the complete mosaic to
highlight the echos (high gray values). The difference in location for the same landmarks can
be seen by the different red crosses. This final map will be used by the planner proposed in this
thesis to find a strategy for the revisit system since these landmarks are a priori detectable by
the revisit system. A manta mine is present at the coordinates (160, 250)m.

Notice that some "holes" are present at longer ranges in the sonar mosaic, it was an acoustics
communication where the pixels have been removed.

(a) All the landmarks detected by the
integral image detector.

(b) Zoom on some detections.

(c) Landmarks kept for the revisit with a
strong echo.

(d) Zoom on a single landmark. Notice
that this landmark is described by several
red crosses since the registration has not

been realized.

Figure 2.30: Filtering step on real data. The complete mosaic of some sonar passes on the
survey area. The sonar images have not been registered.

The automatic detection (may be manual) of the landmarks and the filtering step are nec-
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essary since it provides the map for the planning algorithm that will be proposed in Chapter
6. This map is adapted to the revisit system. Indeed, the revisit vehicle will be able to relo-
cate its position thanks to these geolocalized landmarks. Moreover, the target is also detected
automatically or manually and is an input of the planning algorithm.

2.7 Conclusion
In this Chapter, the sonar imagery has been introduced with specific details on sidescan sonar
and FLS imagery. The sidescan sonar is generally used for survey mission to cover a large area
on the seabed by constructing an acoustic image of the seabed by using the displacement of
the sonar and providing a high resolution sonar image. Some automatic algorithms have been
developed to detect objects such as mines in the context of MCM missions by considering firstly
the shadow created by the object due to the sonar geometry. Later more complex algorithms
have been developed to take into account the environment surrounding a mine. The seabed
is composed of many landmarks that can be extracted in sonar images and could be used to
relocate a robot navigating in underwater environment. Renavigating on an a priori surveyed
area may lead to different data in case of heterogeneous sensors or degraded sonar image. A
simple filtering step has been proposed to keep only the landmark that may be detectable by
a revisit system considering its performance, the dimension and the nature of the landmark
detected during the survey mission. These filtered landmarks are considered as geolocalized
landmarks in the rest of the document, and will be assumed that they are detectable by the
revisit system. These landmarks can be of any shape. A motion strategy has then to be found
to revisit the potentially dangerous object by revisiting some of these geolocalized landmarks.
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Chapter 3

Motion planning

3.1 Introduction
This Chapter provides a state-of-the-art in the motion planning. The terms motion planning
and trajectory planning define the conversion of high-level tasks from humans into low-level
descriptions of how to move. It usually refers to the well known Piano Mover’s Problem or
can be transposed in everyday life when moving a sofa to another room requires a plan before
starting to carry the sofa. Therefore, motion planning consists in determining a sequence of
robot configuration that will result in completing a task mission. In many Autonomous Under-
water Vehicle (AUV) applications, a plan is defined by a set of waypoints to be visited. These
waypoints are defined assuming a closed loop controller is able to stabilize the vehicle and track
the reference path. These waypoints can be pre-planned a priori as for survey mission with
boustrophédon pattern [21] or can be updated during the mission to revisit some targets for ex-
ample [337]. Alternative approaches to waypoints could be isobath following [139], maintaining
an altitude over the seafloor, avoiding obstacles, following a structure such as a pipe... In these
cases, the robot has to react based on what can be detected in the environment to achieve an
autonomous mission. Many AUV applications have a reliable navigation system based on an
Inertial Navigation System (INS) coupled with a Doppler Velocity Log (DVL) for position esti-
mation and waypoints following, but the cost is expensive. Even if this system is not drift free,
it can achieve long survey mission. Incorporating elements of the environment detected by the
exteroceptive sensors would even increase its autonomy. The development of low-cost systems
such as the mine killer in Mine Counter Measure (MCM) context enhances the improvement
of new localization techniques and the necessity to include uncertainties at the planning phase.
These uncertainties can come from imperfect knowledge of the environment, imperfect motion
and imperfect sensing.

Any planning algorithm is defined by a state space that describes all possible states of the
robot, it is commonly known as configuration space X. This configuration space can be par-
titioned into a free configuration space Xfree that the robot is able to reach without colliding
obstacles and an obstacle configuration space Xobs (occupied configuration space) that results
in a contact with an obstacle. The following relations are always true: X = Xfree ∪ Xobs and
Xfree = X\Xobs. The state of the system is generally defined by the position and the velocities.
When dealing with planning algorithms, the state is represented by the poses of the robot. It
has the dimension of the number of degrees of freedom of the robot. To fully describe an AUV,
six degrees of freedom are required: q = (x, y, z, φ, θ, ψ) where x, y and z represent the 3D
position of the robot and φ, θ and ψ are the Euler angles. In this thesis, it will be assumed
a 2D environment, then the system can be described by q = (x, y, ψ) with θ = θref , z = zref
and φ = φref . The aim of the robotics path planning is to compute a continuous function
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f : [0, 1] → Xfree connecting an initial state qstart = f(0) to a goal state qgoal = f(1). The
initial and goal state can obviously be a set of states, and are not reduced to singleton.

The following properties are inherently used to define any planning algorithms:

• feasibility: find a feasible plan (collision free path) that leads the robot to the goal state
regardless its efficiency.

• optimality: find a feasible plan that optimizes (minimizes or maximizes) some objectives
and reaches the goal state.

• completeness: it is complete if it always finds a solution if one exists or determines that
no solution exists in finite time.

Sometimes a planning algorithm is defined as online or offline if the plan is modified during
the mission or precomputed before. The workspace refers to the physical world, it could the
two or three dimensional Euclidean space in which the robot is moving.

A robot is defined by a state transition equation:

ẋ = f(x, u) (3.1)

where x belongs to the state space.

In motion planning, some actions u are applied to make evolving the system from an initial
state xinit ∈ Xinit to a final state xgoal ∈ Xgoal. A robot has to deal with configuration con-
straints by the presence of obstacles or joint limits such as tractor-trailer angles for example.
The dynamical constraints restrict the value of differential quantities such as velocity, accel-
eration or path curvature...The dynamical bounds are defined as inequalites on the maximum
allowed speed or path curvature for example. The differential constraints are equalities that
restrict the velocity to a reduced set of possible state space directions such as railway tracks
or rolling constraints. Generally the differential constraints are classified as holonomic when
they can be fully integrable and nonholonomic constraints when they are not completely in-
tegrable [311]. In most planning algorithms, the mechanics of a robot is not considered [183].
Nonholonomic planning was introduced in [180] to describe the problem of motion planning for
a wheeled mobile robots. Omnidirectional wheels are a holonomic system contrary to cars or
tricycles that are not. In many AUV applications, the sway is not actuated, and then the AUV
is underactuated.

Planning in discrete and continuous state space is possible through techniques that will be
described in this Chapter. When some algorithms are dedicated to nonholonomic planning, it
will mentioned with few references.

3.2 Graph-search
Firstly, the main graph-search algorithms are presented as they will be used in some planning
algorithms to find a feasible or optimal path between the initial configuration and the final
configuration. When looking for a feasible path, the breadth-first and the depth-first methods
can be mentioned but will not be discussed here.
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3.2.1 Definition of a graph
A graph is generally defined as an ordered pair (2-tuples) G = (V,E) with V a set of vertices
called nodes and E a set of edges. This latter is associated to two nodes in the set V . The
graph can have undirected edges when an edge coming from A and going to B is identical to
coming from B and going to A, and directed edge when the inverse case is not possible. The
nodes of the graph refer to a discrete representation of the robot configuration and the edges
to elementary motions between two states (nodes) inside this graph. Once a representation of
this graph is built, a graph-search strategy enables to find a path in this graph between the
initial state and the final state of the robot. The path is then a concatenation of states inside
the graph with edges linking the different states corresponding to elementary motions. The
path is found based on an optimality criterion that can be the length of the path for example.
This optimal criteria is to minimize or maximize a cost function. A famous graph example is
the graph of the cities and the roads, which is an undirected graph. The cities represent the
nodes of the graph and the roads the edges between the cities. The length of the roads between
the cities are mentioned in the edges. Looking for the shortest path in your GPS between a
starting location (Brest) to a final destination (Paris) is a graph-search to find the path that
minimizes the distance travelled.

3.2.2 Dijkstra
Dijkstra algorithm [77] is the most famous graph-search algorithm that optimizes a cost func-
tion. A description of this algorithm is provided in Algorithm 1. The graph G = (S,A) is
defined by a set of nodes S corresponding to possible states of the robot and a set of edges A
corresponding to a motion command between two nodes (states of the system) and a weight
(for example the euclidean distance between the two nodes). The initial state is denoted as xinit
and the final state to reach is xgoal. A queue Q is defined that contains at the beginning all the
nodes to be visited excepted xinit which is the starting node of the algorithm. An initialization
step is described in Algorithm 1 between the lines 2 and 5, where an infinite cost is defined
for all nodes excepted the starting node that has a null cost. The cost function is called f . It
stores the different costs updated at every nodes. The predecessor prev of each node are not
yet known. Then the algorithm consists in visiting all the nodes in the queue Q by selecting the
node u in line 7 with the minimum cost defined by Algorithm 2. This node u is then removed
as it is visited (line 8 in Algorithm 1). For each neighbour node v of u a test with the cost
(weight) of the edge inside A added to the cost at u is done to check if a shortest path can be
found. If it is true, the cost (line 11 Algorithm 1) and the predecessor (line 12 Algorithm 1)
are updated. The algorithm stops when no more nodes are in the queue Q. Finally the path
is returned by Algorithm 3 by starting from the final node xgoal and by using successively the
predecessor until it reaches the starting node xinit.

Actually it is not necessary to wait that the queue Q is empty, if the final node xgoal is
visited the algorithm can stop. The Dijkstra search is an isotropic search due to the visit of
all nodes in the graph with the minimum cost at each time. Figure 3.1(a) depicts the Dijkstra
graph search where a grid is considered. Each point in the grid is surrounded by 8 neighbours
excepted for the points on the boarder and around obstacles shown in black. The green points
are the visited nodes of the graph and the path minimizing the distance is represented in red.

3.2.3 A*
A* algorithm [124] is an updated version of the Dijkstra algorithm where a heuristic is used to
obtain a result faster. This algorithm is chosen when the computing time is preferred to the
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Algorithm 1 Dijkstra(in : G(S,A), xinit, xgoal, out : path[])
1: Q = S\{xinit} . Q is the queue
2: for all x ∈ S do . Initialization
3: f [x]←∞
4: prev[x]← undefined

5: f [xinit]← 0
6: while Q 6= ∅ do
7: u← DijkstraMin(Q) . Node with least distance will be selected
8: Q← Q\{u} . u is removed from the queue
9: for all neighbours v of u do . v is still in Q
10: if d[u]+cost(u,v)<d[v] then . A shorter path going to v is found
11: f [v]← f [u] + cost(u, v)
12: prev[v]← u

13: Return DijkstraPath(xgoal,prev[])

Algorithm 2 DijkstraMin(in : Q, out : u)
1: dmin ←∞
2: u← ∅
3: for all v ∈ Q do
4: if d[v] < dmin then
5: u← v
6: dmin ← d[v]
7: Return u

Algorithm 3 DijkstraPath(in : xgoal, prev[], out : path[])
1: path[]← ∅
2: u← xgoal
3: while prev[u] is defined do
4: insert u at the beginning of path
5: u← prev[u]
6: Return path[]
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(a) Dijkstra propagation. (b) A* propagation.

Figure 3.1: Comparaison between Dijkstra and A* algorithm. Examples computed based on
the work in [283].

optimality of the path. The heuristic enables to visit nodes that are closer to the final node
xgoal by taking into account the cost at these nodes. The A* algorithm uses two lists: the
OPEN list which gathers the candidate nodes and the CLOSED list that contains the visited
nodes. The OPEN list is similar to the queue Q in the Dijkstra’s algorithm. Two functions g
and h are defined:

• g(xi): real cost from the starting node xinit to the node xi.

• h(xi, xgoal): estimation of the cost from the node xi to the goal node xgoal.

The function f(xi) = g(xi) +h(xi, xgoal) is an estimation of the cost from xinit to xgoal by going
through the node xi. h(xi, xgoal) can be written h(xi) since the heuristic is always computed
according to the final node. This heuristic can be the Euclidean distance. The function f is
used in the algorithm to select the node to be visited. A pseudo-code is proposed in Algorithm 4.

The Dijkstra’s algorithm can be seen as an A* algorithm with a null heuristic, i.e f(xi) =
g(xi) and h(xi) = 0. Therefore the A* algorithm works similarly. An initialization is proposed
in Algorithm 4 between the lines 1 to 7 similarly to the initialization of the Dijkstra’s algo-
rithm. Then all the nodes in the OPEN list are visited based on the minimum of the function
f , similarly to Algorithm 2, until the current node is the goal node xgoal. If this condition
is true (line 10), the same algorithm for the construction of the path as the Dijkstra’s path
(Algorithm 3) is used to construct the path (line 11 in Algorithm 4). Figure 3.1 depicts the
difference in the propagation search between the two algorithms where the A* search is more
straight-forward to the final node. The resulting path is slightly different to the Dijkstra’s path.

An admissible heuristic never overestimates the cost from a current node to the final node,
it is always less or equal than the true cost between this node and the final node. A monotonic
heuristic satisfies the triangle inequality h(x) 6 d(x, y) + h(y) [228].

3.2.4 D*
If the A* algorithm is well adapted to find fastly a path from an initial state to a final state if
the environment is a priori known, when dealing with dynamic or partially known environment,
an A* algorithm should be computed again. Indeed when the robot faces an unknown situation
along the path such as an unknow obstacle, an A* algorithm is run again to find a path between
the current state and the goal state, which can be time comsuming. D* algorithm [296] has
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Algorithm 4 A*(in : G(S,A), xinit, xgoal, out : path[])
1: OPEN ← {xinit}
2: CLOSED ← ∅
3: prev ← empty map
4: g ← map with ∞ value
5: f ← map with ∞ value
6: g[xinit]← 0
7: f [xinit]← h(xinit, xgoal)
8: while OPEN 6= ∅ do
9: u← argminf{OPEN} . Node with least distance will be selected according to f
10: if u = xgoal then
11: Return ReconstructPath(xgoal,prev[])
12: OPEN ← OPEN\{u}
13: CLOSED ← CLOSED ∪ {u}
14: for all neighbour v of u do
15: if v ∈ CLOSED then
16: continue
17: testscore← g[u] + cost(u, v)
18: if v /∈ OPEN or testscore < g[v] then
19: prev[v]← u
20: g[v]← testscore
21: f [v]← g[v] + h(v, xgoal)
22: if v /∈ OPEN then
23: OPEN ← OPEN ∪ {v}
24: Return No solution
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been developed to plan a global path as previously with known information and then locally
circumvent unknown obstacles when detected by a sensor by modifying locally the path. It is a
generalization of the A* to dynamic environment. Contrary to A* or Dijkstra, firstly it perfoms
the search from the goal to the starting state (backward search). A backward search reduces
the influence of changes to be propagated. Originally in the D* algorithm, the backward search
was isotropic, like running a backward Dijkstra. Then the focussed D* algorithm was improved
to focus the propagation [297] such as a backward A*. A D* Lite version has then been de-
veloped in [164] based on a Lifelong Planning A* (LPA*)[163] that has similar properties to
A* and rigorous proofs of efficiency. Moreover the implementation requires fewer lines of code.
The reader must refer to the work in [164] for a detailed version of the algorithm. However an
example of the D* Lite is provided in Figure 3.2 where a complete implementation has been
realized. The map is composed of a 50× 50 grid with a resolution of one meter. The states of
the system is then discretized as 2500 possible (x, y) positions. The yellow squares represent a
priori known obstacles in this environment. The cyan squares are unexpected obstacles. Based
on the a priori known information in the terrain, a backward search provides a path painted
in red in Figure 3.2(b) where the initial state is at the bottom. The robot is equipped with a
sensor that can see at 3 meters around. When the robot is following the path, some unexpected
obstacles (cyan squares) are detected and the path is locally updated to avoid these obstacles.
The final path avoiding these unexpected obstacles is depicted in red in Figure 3.2(c). The
unexpected obstacles detected are marked by a blue asterisks. One may notice the detour at
the beginning of the mission and then it follows the path normally.

The D* Lite algorithm is pretty interesting due to the fast update of the path when un-
expected events occur in the path planned. It has been successfully implemented in [110]
that takes into account the uncertainty propagation along the path. Moreover in [109], the
algorithm can find fastly a new path when the landmark is not detected by joining another
landmark region. This will be more discussed in planning with uncertainty section.

77



CHAPTER 3. MOTION PLANNING

(a) Real map with yellow squares as known
obstacles and cyan squares as unknown

obstacles.

(b) Backward search for a path in red based on
the a priori information about the terrain

(obstacles in yellow). The initial state is at the
bottom and the goal state in the top right

corner.

(c) Path updated with D* Lite based on the
detection of the new obstacles in cyan. The
modified path is represented in red and the
cyan obstacles marked by blue asterisks are

obstacles detected by the sensor. Old path is in
green crosses.

Figure 3.2: D* Lite algorithm.

3.3 Planning
Many motion planning methods are today available by considering obstacles. Firstly, a state-
of-the-art of the algorithms is proposed here where the uncertainties, that could come from the
motion of the robot, the map or the measurements are not considered. Indeed, at the beginning
the algorithms were developed without considering uncertainties and then many of them have
been adapted to take into account some uncertainties.

3.3.1 Combinatorial planners
The combinatorial planners are among the first planner and are exact planner contrary to
sampling-based and grid-based planners due to the fact it finds paths in the continuous config-
uration space without any approximations and considering the boundary of polygonal obstacles
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Xobs
1. Moreover these algorithms are complete meaning it will find a solution if one exists.

These methods can be efficient when dealing with 2D environment and a robot able to move in
translation. Most of these methods cannot be extended to high dimension. All combinatorial
motion planning techniques consist in building a roadmap along the way to solve queries. The
graph G is called a roadmap and it satisfies the accessiblity and connectivity properties. The
roadmap provides therefore a discrete representation of the continuous motion planning prob-
lem. The query (xstart, xgoal) is solved by connecting each query point to the roadmap and a
simple graph search strategy presented in Section 3.2 can be used.

If the robot is not considered as a point robot, the Minkowski difference has to be applied
to the robot and the obstacle environment Xobs.

The first algorithm is called cell decomposition and especially vertical cell decomposition [52]
which partitions the space into a set of smaller cells by a left-to-right ordering of the vertices
of all polygonal obstacles and finally a sweep from left to right adding a vertical line when it
meets a vertex. A single sample point such as the centroid of the cell is chosen to represent
each cell and the roadmap is obtained by connecting the samples from neighbouring cells. A
representation of such roadmap is presented in Figure 3.3(a). The major differences between
cell decomposition are the methods to generate the cells and their shapes. The Boustrophédon
cell decomposition has been introduced in [54].

Maximum Clearance roadmaps [37] present the advantage of minimizing the risk of collision.
It usually refers to Generalized Voronoi Diagram (GVD). Each point along a roadmap edge
is equidistant from two points on the boundary of Xobs. The roadmap vertices are then the
intersections of at least two roadmap edges. A simple way to compute GVD is to assign a circle
with a small radius to each point of a grid representing Xfree and then increase the radius of
the circle until it reaches one obstacle. If it reaches only one obstacle, it does not correspond
to the roadmap. A representation of the result is depicted in Figure 3.3(b).

Shortest-path roadmaps refer to reduced visibility graph [179] and is close to the principle
of GVD because the shortest path tends to graze the corners in Xobs. The robot is actually
allowed to touch or graze the obstacles but not to collide it. Therefore the actual path is slightly
longer that the path found. Considering an obstacle environment, a reflex vertex is defined as
a polygon vertex with an interior angle greater than 180◦. All vertices of a polygon obstacle
are reflex vertices. These reflex vertices correspond to the nodes V of the graph G. Firstly,
the reflex vertices that form edges of a polygon obstacle are added to the roadmap. Secondly,
if a line (called bitangent) can be drawn between a pair of reflex vertices without intersecting
any obstacle, it is added to the roadmap as an edge. Finally the roadmap is obtained with
graph-search strategy as presented in Section 3.2. Figure 3.3(c) presents an application of this
kind of path.

These algorithms requires polygon obstacles and if the obstacles are more complicated than
squares it can be hard to find a solution. Moreover this assumption in underwater environment
is not acceptable due to the unstructured aspect. However these algorithms could be interesting
for a revisit of different textures areas on the seabed to make some relocation if they are a priori
detectable by a sensor. In this case Xobs is not considered anymore and the robot can cross the
frontier of a texture.

1A polygonal region has no holes.
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(a) Cell decomposition
method.

(b) Generalized
Voronoi diagram.

(c) Visibility graph.

Figure 3.3: Main combinatorial planners. Pictures extracted from [243] and [183].

3.3.2 Sampling-based planners
In high dimensional problems, sampling-based methods appear as an interesting alternative
method where computing the configuration space is not feasible [179]. Moreover when the envi-
ronment is partially known or uncertain combinatorial methods are not well suited. Sampling
methods avoid to construct explicitly Xobs and conduct a search in the sampled configuration
space. A collision detector module enables to remove dangerous path. Compared to combi-
natorial methods, sampling algorithms are not complete due to the weaker guarantee that the
problem will be solved. However, the higher the density of samples is, the higher the probabil-
ity of finding a path converges to one. Deterministic approaches such as grids are resolution
complete. Methods based on random sampling such as Rapidly-exploring Random Tree (RRT)
are probabilistically complete. Even if these algorithms are not complete, the probability that
the planner fails to return a solution, if one exists, decays to zero as the the number of samples
approaches infinity [17]. The convergence of such algorithms is difficult to establish. Some
of the main algorithms are proposed here. Some issues and proofs for the two main random
sampling-based planners, i.e. Probabilistic Roadmaps (PRM) and Rapidly-exploring Random
Tree (RRT), are proposed in [153][200].

3.3.2.1 Grid-based cost map

In grid-based path planning, a regular grid [109][228] is superimposed on the environment the
robot will be navigating. The costmap contains some cost proportional to the traversability
of the environment at that particular place called cell. A typical cost map representation is
the Occupancy Grid [86] introduced in Chapter 1. In indoor environment, the floor is usually
considered uniformally traversable and obstacles are represented as binary cost regions. A cost
of one can be used for free space and infinity for obstacles. In outdoor environment, height
information are incorporated in the map [226]. In [109], based on the terrain type such as paved
road, grass, water, etc... a cost is associated. Driving robots are more likely to move on roads
rather than water. In [310], each 2D location was classified as occupied, drivable or unknown
using a probabilistic test on the height distribution of neighbouring points.

The aim is to find the minimum cost path based on the value in the costmap. This grid
is considered as a graph G where the set of nodes (vertices) V corresponds to the center or
the corners of the grid cells. Usually each node has a 4 or 8-connexity which imposed a small
number of neighbours for each node. This 4 or 8-connexity defines the edges in the graph. The
problem of this reduced connexity is the restiction on motion with increments of 45 degrees in
case of 8 connexity. Moreover the nonholonomic constraint [180] of a vehicle cannot be taken
into account in grid-based planners. The cost function takes as input the value in the cost map
and a graph search strategy as presented in Section 3.2 that optimizes this cost function in
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(a) Relocation areas based on
the landmark locations and
the range of the sensor.

(b) Dijkstra’s search. (c) Final path minimizing a
cost function.

Figure 3.4: Grid-based path planning with a cost map.

then computed to find the shortest path.

Considering an environment composed of punctual landmarks (certainly located) and a robot
equipped with an isotropic sensor that can sense the environment up to 10 meters, a grid-based
path planning is proposed in Figure 3.4. As the landmarks are certainly located they can for
example reduce the uncertainty in the robot configuration and therefore a cost map based on
the density of the landmarks taking into account the ability of sensing is proposed. The cost
for each displacement proposed is:

cost = e−ndtravelled (3.2)

with n the number of landmarks detectable in the cell and dtravelled the distance travelled from
cell to cell. The resolution is fixed at 1m, so the distance travelled is 1 or

√
2 meters. An

exponential function is used to prioritize regions where the number of landmarks is high. The
path minimizing this cost function is obtained with a Dijkstra’s graph search strategy and is
depicted in red in Figure 3.4(c). The idea behind this cost function is to go through landmarks
field to reduce a potential uncertainty on the robot position and make some relocation processes.
The uncertainty on the robot has not been considered here.

Path planning with cost map will be used again when planning with uncertainty will be
presented.

3.3.2.2 Fast Marching

The fast Marching (FM) method [290] is a particular case of the Level Set methods [291]
enabling to track and model a physical wave interface propagating. It computes the time u
that a wave needs to reach every point of the space and can be generated from one or several
sources (T = 0). At a given point x, the motion of the front is described by the Eikonal
equation [290]:

|∇u(x)| = 1/f(x) for x ∈ Ω
u(x) = 0 for x ∈ ∂Ω (3.3)

with u(x) the minimum amount of time it would take to reach ∂Ω starting from x with the
speed f > 0 in the normal direction at the point x. ∇ denotes the gradient and |.| the Eu-
clidean norm. This describes the evolution of a closed surface as function of the time u. The
FM method is a numerical method to solve the boundary value problem of this Eikonal equa-
tion. It uses a first order numerical approximation of the Eikonal equation on a 2D grid map in
[291] inspired by the work [312] where the numerical scheme converges to a correct continuous
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Figure 3.5: On the left an isotropic FM as the Dijkstra’s algorithm and on the right the proposed
anisotropic version in [252] taking into account the currents represented by blue arrows around
an obstacle.

solution. The concept is basically a continuous version of the Dijkstra’s algorithm to find a
shortest path. This method aims at finding a control law for a given system such that a certain
optimality criteria is achieved: this is the definition of optimal control. The Eikonal equation
is a special case of the Hamilton-Jacobi equation.

Fast marching method has been used for AUV path planning in underwater environment in
[253][252] where it proposes a FM* version of FM method as a continuous version of A* with
an heuristic. This anisotropic search comes from the dynamic nature of ocean currents. The
cost function takes as input the directional constraints imposed by the currents. And finally
the vehicle kinematics have been taken into account to propose paths with some curvatures.
The results of this planner is proposed in Figure 3.5

The ocean currents have been taken into account in [201] with level-set methods to propose
a path planning method for gliders.

3.3.2.3 Potential Fields

Potential functions [160][162] can be generated when the obstacles and the goal location are a
priori known. The paths can then be obtained by following the negative gradient of the poten-
tial function. The potential function is mainly composed of two terms: the goal is considered as
an attractive force and the obstacles as a repulsive force. The potential function at any point
in the space is then the sum of the positive and the repulsive force [55]. The attractive force is
highly dependent on an heuristic [179]. This heuristic can be difficult to determine. Usually a
high resolution grid is used for the state representation where the repulsive and the attrative
field can be computed, and finally giving the combined field. Parameters can be defined to
control the distance to obstacles and the attractivity of the goal location. The negative gra-
dient corresponds to the direction that is progressing towards the goal. The main drawback
of this method is the potential presence of local minima that do not correspond to the goal
location, where the sum of the vectors is zero. Some methods are used to escape from these
local minima by choosing a random direction during a certain number of iterations. This is
called random walk and is similar to stochastic search and simulated annealing. It refers to
Randomized Potential Fields or Randomized Path Planner [179][156]. However it does guaran-
tee that an optimal path is found based on the potential function. Even if it can solve problems
in high dimension, the random walk may generate long path that are not always adapted to
the problem and the definition of the potential function requires some parameters to be well
adjusted for increasing the effectiveness of the heuristic.

82



CHAPTER 3. MOTION PLANNING

Potential fields method has been applied for AUV path planning in [332] around obstacles
to provide a safe path.

The wavefront planner [18] works similarly to the potential fields. The potentials at each
configuration in the free space are computed by simulating a wave propagating from the goal
location to the start location. The space is usually represented as a grid and the nodes are
marked as visited or unvisited based on the wave propagation. Iteratively it finds unvisited
neighbours of visited cells and increments the value of one greater than the visited cell. When
the start node is reached, a gradient descent from the start location enables to get the path.
Contrary to potential fields, no local minima is possible. However, it can be computationally
more expensive and can only be computed off-line.

3.3.2.4 Rapidly-exploring Random Tree (RRT)

The Rapidly-exploring Random Tree (RRT) algorithm, introduced in [182], builds a tree of
feasible trajectories from an initial configuration xinit ∈ Xinit, called the root. It is a single
query algorithm. A presentation of the algorithm is proposed in Algorithm 5. The algorithm
is initialized with a graph that includes only the initial state and no edges. At each iteration,
a sample xrand ∈ Xfree is generated. A connection is tested with the nearest neighbour v ∈ V
in the tree (graph) to this new sample xrand. An input u is selected among a set of inputs U
to join xnearest to xrand. By integration of the evolution equation ẋ = f(x,u) during a time
interval ∆t with u constant a new state xnew is generated. If the path from xnearest to xnew is
feasible, i.e. collision free, based on the input u and the time interval ∆t an edge is created. In
case of an holonomic robot, f(x,u) can be replaced by u. The RRT algorithm is probabistically
complete as the number of samples tends to infinity [166][184].

Algorithm 5 RRT (in : xinit ∈ Xinit, xgoal ∈ Xgoal, X, N ∈ N, ∆t, out : G)
1: G.init()
2: G.addV ertex(xstart)
3: i← 0
4: xtest ← ∅
5: while xtest /∈ Xgoal and i ≤ N do
6: xrand ← RandomState(Xfree)
7: xnearest ← NearestNeighbour(G, xrand)
8: u← SelectInput(xnearest, xrand)
9: xnew ← Steer(xnearest, u,∆t)
10: i← i+ 1
11: if CollisionFreePath(xnearest, xnew, u,∆t) then
12: G.addV ertex(xnew)
13: G.addEdge(xnearest, xnew, u)
14: xtest ← xnew

RRT algorithms are well-suited for handling differential constraints present in nonholonomic
robot [246][247][34][183][181][184]. An RRT algorithm has been used for AUV mission planning
in [128].

Different versions of RRT exist today to increase the performance of the original RRT. In-
stead of taking a random sample from Xfree through the RandomState function, RRT Goalbias
[184] returns the final configuration xgoal ∈ Xgoal with a probability p and other samples from
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Xfree with a probability (1− p). Even if p is small (p ≈ 0.05), the algorithm converges faster.
If p is too big, it may be trapped in local minima as in randomized potential fields method.
RRT Goalzoom [184] is an improvement of RRT Goalbias where a sample is selected with the
probability p in a disk centered in xgoal with a radius equals to the smallest distance between
xgoal and the RRT nodes in the tree at any iteration. The radius of the disk decreases until
converging to xgoal. Similarly it may be trapped in local minima. Some of the sampling meth-
ods presented in Probabilistic Roadmap planners (PRM) may be used. A bidirectional RRT,
called dual-RRT, is also proposed by growing two RRTs, one from xinit and one from xgoal. A
solution is found when the two RRTs meet.

A Rapidly-eploring Random Graph (RRG) has been proposed in [153] to build a connected
roadmap containing potential cycles. Contrary to RRT, when a new node xnew is added to the
vertex set (V ) of the tree, connections to other vertices of the graph in a ball of variable radius
centered at xnew are attempted. If a connection is successful, an edge is created. Consequently
the RRT graph (directed tree) is a sub-graph of the RRG graph (undirected tree). They share
the same node set but the edge set of the RRT is a subset of the RRG edge set. Some cycles
may then belong to the RRG graph. K-nearest RRG can also be considered with a variable K.

A more efficient version of RRT called RRT* is proposed to converge to the optimal path
in [153] by removing edges that are not part of a shortest path from the root (xinit) of the
tree to any nodes in the graph and consequently avoiding the formation of cycles present in
RRG. Actually it is an improvement of RRG. Similarly a variable radius of a ball or a variable
K-nearest neighbour can be considered.

3.3.2.5 Ariadne’s Clew algorithm

The Ariadne’s Clew algorithm [208][26] is a single query algorithm that grows a tree as RRT
algorithm from an initial configuration xinit toward the goal configuration xgoal. It is composed
of two phases: EXPLORE and SEARCH. The exploration phase consists in proposing a reach-
able sample xnew far from the other nodes in the graph G to explore at the maximum the
configuration space. The search phase then tries to reach the goal state xgoal from the proposed
sample xnew. A genetic algorithm is used to optimize the exploration by proposing a sample
reachable and far from the others. However this method requires a lot of parameters to be
defined and the choice of a heuristic is difficult.

A similar algorithm was proposed in [131] where it tries to grow a tree in unexplored areas
in Xfree. It picks a node that has a probability inversely proportional to the number of samples
in the graph G (tree) in a ball of a certain radius centered on this node. Consequently, the
most isolated point are selected.

3.3.2.6 Probabilistic Roadmap planner (PRM)

Probabilistic Roadmap Planner [158], also called Probabilistic Path Planner [302], builds proba-
bilistic roadmaps, known as a topological graph, by randomly selecting configurations in the free
configuration space and connecting the samples by simple feasible paths. As mentionned ear-
lier, this method is probilistically complete. The algorithm works in two phases: the roadmap
construction phase and the query phase [183].

The first phase, also known as preprocessing or learning phase, samples the configuration
space according to a sampling strategy (some strategies will be explained later) and builds
an undirected graph G = (V,E) with samples in the free space Xfree. The samples (xrand)
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constitute the vertices V of the graph G. The feasible paths, corresponding to the edges E
and known as local paths, connect the different samples by a local planner. This latter simply
connects two samples (vertices) if the local path between them does not collide an obstacle
(collision-free) and respects the kinematics constraints of the robot. In many applications, it
selects the shortest path to build the graph between the different samples leading in general to
collision-free path. However other methods, presented in [183], can be proposed such as select-
ing the K-nearest samples, meaning that for a specific sample xrand it looks for the K-nearest
samples in the graph that leads to feasible path connected to this sample xrand. Taking the
samples in a ball of radius r centered at the sample xrand and having a collision-free relation
could be another solution. In this case an upper limit is usually used to prevent too many con-
nections. Another solution for connecting the samples would be based on the visibility leading
to a variant of the PRM called visibility roadmap [293]. In this variant, two kinds of vertices
are defined: guards and connectors based on the visibility region defined at each samples.

The second phase is the query phase. It assumes that the graph G is sufficiently complete
with samples and edges to answer many queries. These latters give the initial xinit and final
xgoal configurations which are tried to be connected to nodes in the graph with the same local
planner that checks the collision and the vehicle’s constraints. If both are successfully con-
nected a simple graph search strategy such as the ones presented in Section 3.2 may be used
to connect xinit to xgoal. If the connection fails for both, it cannot be determined if a solution
exists and the query fails. This algorithm is said to be multiple-query.

A description of this algorithm is given in Algorithm 6. The construction of the roadmap
is mixed with the query phase. The graph G is initialized with the initial xinit and final xgoal
position. A parameter N is fixed by the user to constraint the possible number of samples.
The construction of the map is realized in the while loop and the query phase is expressed
in the condition ’No path exists from xstart to xgoal in G’ where it checks if the initial and
final configurations are linked to any samples in the roadmap (graph G). At each iteration, a
random sample is choiced and tested if it belongs to Xfree. The variable i is incremented only
if a sample belongs to Xfree. For this new sample, it looks for the neighbouring samples in the
graph G according to the strategies developed above such as the K-nearest neighbours (K-NN).
Finally the CONNECT function checks if a link can be made between the new sample and the
selected neighbouring samples. A link is possible if it does not collide any obstacles and respect
the kinematic constraint of the vehicle.

Algorithm 6 PRM (in : xinit, xgoal, X, N(samples number), out : path[])
1: G.init()
2: G.addV ertex(xstart) and G.addV ertex(xgoal)
3: i← 0
4: while No path exists from xstart to xgoal in G and i < N do
5: xrand ← random samples ∈ X
6: if xrand ∈ Xfree then
7: G.addV ertex(xrand)
8: i← i+ 1
9: for all v ∈ neighbourhood(x) in G and v 6= x do
10: if connect(xrand, v) then
11: G.addEdge(xrand, v)

PRM has been proposed for holonomic robots in [157]. It has been applied to nonholo-
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nomic robots such as car-like robots that can move forwards and backwards or only forwards
in [300][172][102]. The probabilistic completeness for nonholonomic robots is proven in [301].

Different variants of PRM exist today and mainly differ in the way of sampling as proposed
just below.

How to sample in X?

The sampling strategy has not yet been discussed. Uniform sampling is the main sampling
strategy but other methods exist to smartly sample the environment. The other main ap-
proaches are importance sampling and adaptive sampling.

Firstly, considering importance sampling methods, sampling on the boundary of Xfree is
considered in [6] to avoid wasting time with samples in large areas in X. Similarly, gaussian
sampling is considered around the boundary of Xfree in [30]. In the case of corridors, bridge-
test sampling is preferred in [130] to select the middle sample along a line segment where the
extremities belong to Xobs. On the contrary medial-axis sampling forces the samples to be
far from any obstacles in [129]. A sensor uncertainty sampling is proposed in [127] to provide
sample xnew where greater information gain is expected when a sensor measurement is taken
at xnew. It should then provide samples where a maximum localization accuracy of the vehicle
is possible. This strategy is based on the concept of the Sensor Uncertainty Field (SUF) [304].
SUF will be discussed in motion planning with uncertainty section.

Secondly, adaptive sampling provides samples based on information gained from previous
samples. It refers to the visibility roadmap presented in [293] discussed above.

Recently, a more computationally version of PRM called PRM* has been proposed in [153]
where some proofs on PRM and PRM* are provided. Basically, it considers a variable radius
r when looking for closest nodes in the graph to the tested sample xrand. The radius decreases
with the number of samples. The idea of a variable radius has already been proposed in [183].
It also proposed to consider a K-nearest PRM* where the number of neighbours K is not con-
stant and depends on the cardinality of the roadmap.

3.4 Planning under uncertainty
In the previous section, the main motion planning algorithms have been presented where the
notion of uncertainties has not been taken into account. These classical path planning algo-
rithms aim at finding the best path between two configurations (or locations) assuming the
position of the robot is known at every moment. However many uncertainties could be present:
the system itself, the motion of the robot, the sensing or the environment. When a system can
not access to an absolute positioning such as Global Positioning System (GPS), an uncertainty
on the position is induced. GPS position is not available in underwater environment and if the
robot does not use any acoustic positioning system (USBL,...), a drift in position occurs even
if the system is equipped with an expensive INS and DVL. When using these latters, it is still
possible to plan a mission with the techniques presented above due to the low drift in time
but the mission can not be too long due to this inherent drift and ocean currents. However
the AUV can make some online replanning if possible with a localization process based on a
a priori map or on the map that is currently built (SLAM). In the case of low cost robot,
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as for mine identification/neutralization in MCM missions, the drift in position is large and a
planning method that does not consider uncertainty will likely fail. Indeed, revisiting a target
or reaching a specific position from a far initial configuration might lead to the loss of the robot
if it is not equipped with a recovery system. As mentioned earlier, the source of uncertainties
could come from the motion, the map and the measurements. A planning method that con-
siders all the three uncertainties is more likely to propose a strategy that will succeed. In real
applications, these uncertainties are unavoidable and especially in underwater applications. In
the context proposed in this thesis, it is vital to propose a strategy that guarantees the revisit
of the designated Mine Like Contact (MILCO) for identification and therefore an overview of
the planning methods that consider uncertainties is proposed here with some applications to
the context proposed. Moreover, when considering obstacles, the pose uncertainty may lead to
collision, and the methods proposed have to guarantee the safety of the robot.

Due to the uncertainties present in the robot’s motion, sensory readings and map, the true
robot state is not available. One of the previous work on motion planning strategies with
uncertainty is the work in [89]. Partially Observable Markov Decision Process (POMDP)[150]
is a general framework to deal with these uncertainties.

3.4.1 POMDP problem
A Partially Observable Markov Decision Process (POMDP) is a generalization of the Markov
Decision Process (MDP) where both states and actions are uncertain. It models an agent
where the system dynamics is handled by a MDP but this agent cannot directly observe the
state, it is called partial state observability. The plans are expressed in information state space
known as belief space. In other words, it maintains a probability distribution over the set of
possible states. If the robot has an imperfect knownledge of its state, selecting the next action
must take into account all possible states that are consistent with its observations. Contrary
to classical planners that generate a sequence of actions, POMDP produces a universal policy
for action selection. A conditional probability function models the state transition from x to
xnew after some action a according to the Markov property, meaning that the new state only
depends on the previous state and the action. A reward function is defined to describe the
desired behaviour of the robot. At each time step, the robot takes some action and gets a
reward. The goal is to find a policy for selecting actions based on the current belief. An
exact solution to the POMDP problem proposes the optimal action for each belief over the
configuration state space. This optimality criteria maximizes the expected reward (or cost)
of the agent over a possible infinite horizon. Even if some efforts have been made to increase
the efficiency [259] of these approaches in large state space, it remains challenging. Due to its
significant complexity, solving the POMDP problem is often intractable for realistic problem
[150]. Therefore some approximate methods to the POMDP problem are able to carry the
robot state and the associated uncertainty.

3.4.2 Some methods...

3.4.2.1 Preimage backchaining

One of the first planning method dealing with uncertainty is called preimage backchaining [203].
The method consists in planning fine motions in the presence of uncertainty in a polygonal
world. A famous example of this approach is the peg-in-hole problem where the peg has to
be inserted into a hole slightly larger. The idea is to plan a sequence of motion plans that
guarantees the reachability of a goal region. This plan is built by starting from the goal region
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and then searching backwardly until the initial pose is included in a preimage. It results in N
open-loop strategies (composed of closed-loop motions) called f1, f2, .̇., fN leading to:

fN(...f2(f1(xinit))...) ∈ Xgoal (3.4)

Practical techniques to compute the preimages can be found in [179][178]. The notion of
preimage has been extended in [186][187][185] to propose a landmark based robot navigation
on the concept of preimage backchaining. The method assumes that the uncertainty on the
position of the robot can be modelled by a disk with a radius increasing linearly with the
distance travelled. Therefore some landmark regions, where sensing is perfect, are defined by
disks. The backprojection of a circular region is then a cone in a particular direction. The
uncertainty based on the distance travelled is modelled by a directional uncertainty as illus-
trated in Figure 3.6(a). If this backprojection does not collide any obstacles, it considers that
if the robot belongs to this backprojection, it can for sure reach this circular landmark region
with the particular command associated despite the directional uncertainty as shown in Figure
3.6(b). The cone enables to extend the reachable regions. Based on the backchaining process,
it builds a motion plan to reach the goal region assuming also circular obstacles, depicted in
Figure 3.6(c). The arrows show the direction the robot has to follow to reach the next landmark
region at the point considered.

The problem of this method remains in the definition of these safe circular areas where an
absolute positioning is available. Moreover the assumption of the linearly growing uncertainty
has still to be justified. This assumption is usually made in robotics and underwater robotics.
However this method seems interesting in our problem since it enables to find a guaranteed
plan under this assumption to reach a goal region. It will be the subject of Chapter 6 where the
landmark and goal regions are extended to unstructured shapes highly present in underwater
environment based on the measurement abilities of the sensor embedded in AUVs. Moreover
the problem will be solved in an elegant set-membership manner. More specifications about
the algorithm presented here will be detailed in Chapter 6.
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(a) Uncertainty
propagation
based on
uncertain
direction θ.

(b) Complex backprojections
with obstacles in black.

(c) Plan found to reach the goal region g0 from the initial
position I. The black circles are obstacles and white disks are
landmark regions. The directional uncertainty θ is defined at

5◦.

Figure 3.6: Preimage backchaining algorithm. Images extracted from [186]

3.4.2.2 Sensory Uncertainty Field

Sensory Uncertainty Field (SUF) has been proposed in [304][303] and could be considered as a
registration map.

Indeed, it indicates for every robot configuration, discretised by a grid, a relocation ability
by making an exteroceptive measurement for all these configurations based on a sensor model
and matching the measured data against an environment model. In other words it indicates the
uncertain pose the robot would have if it senses the environment at this particular pose with a
given map of the environment. The SUF is generated before the planning algorithm based on
simulated and real measurements for a laser/camera range sensor in each configuration. The
computation of such a map is proposed in [3] for cameras. Once the map is created, a Dijkstra
(or A*) algorithm is applied to find a path minimizing an objective function combining expected
errors and path length. However it does not consider the propagation of the uncertainty along
the path. It does not guarantee that the landmark considered is reachable or could be missed
it due to a large uncertainty in the robot pose. It proposes only to go through areas where a
relocation is possible and to optimize the use of the sensor.

The SUF has been extended in [239][240] by considering the uncertainty along the path
and the characteristics of the sensor when measuring the environment with different types of
landmarks. It enables the localization on walls and other polygonal obstacles with cameras or
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Figure 3.7: The black elements depict the coastal environment. On the left, a path minimizing
simply the path length. In the middle, a path optimizing the path and the relocation ability
where the gray areas indicate a possible relocation. On the right, the SUF is represented.
Picture extracted from [278].

other sensors.

The concept of SUF has been used in [277][278] to propose a coastal navigation, depicted
in Figure 3.7, inspired by traditional navigation ships when GPS is not available. Navigating
close to the land enables the sailors to determine where they are with accuracy. The POMDP
problem is solved by considering the uncertainty of the robot as a state variable, it is called
extended state space due to the integration of the uncertainty in the state vector. Based on
a grid, the aim of this algorithm is to minimize the uncertainty at the goal position. The
uncertainty is modelled as a single parameter which is the entropy of a Gaussian distribution
and then use Value Iteration [259] to find an optimal policy in the belief space. This Value
iteration tries to find the policy that maximizes the long term reward.

3.4.2.3 Contact sensor

Planning with contact sensor is proposed in [5][31][161] where a potential field method is used
to find a path in a polygonal environment. The state space is represented by a grid and the
propagation of the uncertainty is realized with a wave propagation that gives to any nodes in
the grid an uncertainty. This latter is represented by a radius of a circle (a ball) around the
state. The uncertainty grows linearly with the distance when it is going far from an object
where it can relocate and is reset when the robot enters a relocation area as shown in Figure
3.8(a). The ball of uncertainty is deformed when it reaches a wall, i.e. an obstacle, as depicted
in Figure 3.8(b). The obstacles are used as landmark and the corner between two walls is seen
as a reliable landmark. A plan consists in following a sequence of command such as "Follow the
wall", "Follow until it reaches an obstacle", "Follow to corner" or "Switch Wall". An example
of a plan generated is depicted in Figure 3.8 (c). The circles represent the growing uncertainty
along the path when no landmark is available. Firstly the path consists in joining a wall for
sure, then to follow the wall until the corner to reduce the uncertainty. Then the path proposes
to reach the obstacle in the middle by avoiding another obstacles by checking if the ball of
uncertainty does not collide an obstacle along the path. Once the wall is reached, it follows
until the corner again, move along the wall to reach again another corner. Finally it can reach
the desired configuration without collision along the path. The algorithm proposes a sort of
high level strategy based on simple commands such as "follow the wall" or "follow the wall until
the corner" for example. The uncertainty is reset when a corner or a landmark region is reached
for sure. The solution proposed in Figure 3.8(c) aims at minimizing the path. Another solution
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(a) Reset of the uncertainty
when the robot enters for sure
a relocation area shown by the

gray square.

(b) Deformation of the ball of
uncertainty when it reaches a

wall.

(c) Path found with the
uncertainty propagation.

Figure 3.8: Planning algorithm taking into account the uncertainty based on the wavefront
potential field method. Images extracted from [31].

could be minimizing the uncertainty at the goal location.

Another contact sensor method is proposed in [194][195][196][238] to find a path with only
a compass, a map and a contact sensor. The robot is able to move in any direction and
the uncertainty on the compass is bounded. The concept of the algorithm is inspired by the
notion of preimage [203] presented earlier and the error propagation in a cone shape. This
work is highly inspired by the work in [90] where the localization problem is addressed for a
blind robot such as a vaccum cleaner robot which is equipped only with contact sensors. The
algorithm provides a high level strategy similar to the problem of the coastal navigation [277]
by navigating between landmark regions.

3.4.2.4 Sampling based planners with uncertainty

It refers to planning methods based on sampling strategies such PRM, RRT or grid to construct
a graph, and that considers the uncertainty propagation between the edges, i.e. the path. Some-
times the uncertainty is added as a state variable and then it is called extended state space.
Some of the algorithms presented in the previous subsection belong to these kinds of methods
such as the coastal navigation [277] for example.

One of the first outdoor planning methods considering uncertainty was proposed in [119][120]
on a rough or difficult terrain. The path is found by a propagation algorithm on a grid that
consists in a wavefront expansion of a numerical potential similarly to [31](see contact sensor
approaches with uncertainty). Some visibility regions where a landmark is detectable are de-
fined. Out of the visibility regions, the uncertainty grows proportionally to the distance and
the difficulty of the terrain. Inside these regions, the uncertainty depends firstly on the same
model as outside the region and secondly on a localization procedure based on the maximal
distance of detection. The potential given at each node is obtained from the cost of a bitmap
that computes the slope and the roughness at this point and the uncertainty is computed based
on the models explained. However this method is unable to choose higher path cost (due to
the difficult terrain) to achieve a lower uncertainty at the goal location.

A grid-based planning algorithm is proposed in [111][109][108] where the uncertainty in-
creases linearly with the distance travelled and considers a 2σ safe path by assuming a bounded
error on the direction (heading). It shows how to simplify a Gaussian error model to a single
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parameter that increases linearly with the distance travelled at a specific rate (2−10%). Based
on a cost map, the algorithm finds a path using a A* search to satisfy the uncertainty condition
at the goal point. It uses some relocation areas where the robot (a car) can detect something
in the map like a pole or a tree to reduce the uncertainty. The landmarks are extracted from a
high resolution optical image and are considered as point when it deals with poles or trees and
linear when it deals with walls for example. To avoid any ambiguities with point landmarks,
i.e. wrong data association, it considers only unique detection regions. Considering a sensor
that can detect isotropically at a range R, the unique detection region for a point landmark
located in (x, y) is a circle centered at (x, y) with a radius R. The intersection between different
detection regions has to be removed to consider only unique detection region. Consequently if
the 2σ position of the robot (assuming containing all the posible location) is totally included
in a unique detection region, it guarantees the detection of the point landmark and then the
uncertainty can be reduced to a defined level. Moreover it proposes a replanning approach,
called RPUP (Replanning with Uncertainty in Position), based on a D* algorithm to modify
locally the graph if a landmark is not detected and finds a new path if possible. As presented
earlier, it consists in a backward graph search (starting from the end) until the starting point
is visited. When dealing with linear landmark, the full covariance matrix is needed. Entropy
is used as in [277] to reduce the dimension of the search space. Indeed entropy is proportional
to the product of the semi-axis of the covariance matrix [109]. However when comparing two
ellipses with identical semi-axes that are rotated to each other (same entropy then), one can
be in collision with an obstacle. Therefore it uses the concept developed in [43] to keep the full
covariance matrix by using an incremental binning approach called the "grow" operator.

The algorithm presented here will be the subject of the next section with an application to
our problem.

PRM algorithm have been used to deal with uncertainty in [261], it is called Belief RoadMap
(BRM). It explicitly addresses the problem of observability by simulating measurements along
candidate paths and selecting the path that has the minimal uncertainty at the goal location or
with a limited uncertainty along the entire path. However it assumes the mean of the system
is fully controllable at each time meaning that the controller is always able to drive the state
estimate to the desired path. This method can be considered when the vehicle is moving slowly.

PRM, also called PPP, are used in [103][102] to find a safe path for a car-like robot consider-
ing uncertainties on two parameters related to the control of the robot: the travelling distance
and the steering angle. An elaborated model of uncertainty propagation is then provided con-
sidering separately the uncertainty coming from the longitudinal and the steering controls. The
heading is added to the state variable to consider non-holonomic path. It considers circular
areas of relocation (named field of influence of the landmarks) where the uncertainty is reduced
to a certain level. During the learning phase of the PPP, the nodes are spread in the relocation
areas of the landmarks and the edges are checked to be robust, i.e. collision free.

PPP is used with a Kalman filter in [172] to estimate the state of the system. A perception
uncertainty field is proposed to estimate the localization abilities of different landmarks and
a sensor simulator is used to select the best features. However the uncertainty is not directly
included in the search space.

The concept of "Towers of uncertainty" is introduced in [173] which allows multiple covari-
ance at the same node of a graph proposed by a PPP. An A* graph search enables to find the
shortest path considering Dubins path distance between the samples. The state of the robot is
determined by a Kalman filter for the prediction and the update based on a sensor simulation

92



CHAPTER 3. MOTION PLANNING

provided in [174]. The estimation is done at each time step. An A* graph search is also used
to find the shortest path in [174] based on a grid discretization and considering observations
where pertinent features can be detected, feeding a Kalman filter. The trajectory is smoothed
with Bézier curve for nonholonomic robot.

The idea defended in [173][174] is to use the same localization procedure during the planning
and the execution phases, here it is a Kalman filter.

A PPP taking into account for uncertainty will be proposed in the next subsection.

RRT algorithms have also been extended to deal with uncertainty. In [249] a RRT algorithm
is used for a car-like robot with uncertainty propogation using a Kalman filter. Sensor mea-
surements coming from telemetric sensor simulation provided in [174] is used around the mean
position and feed the Kalman filter for the localization procedure. A box-RRT is provided in
[245][246][248] to propose a robust collision free path in case of bounded errors with a guaranteed
method of integration. The measurements are not taking into account in the update procedure.

A particle RRT is proposed in [214] where the state of the robot is represented by a discrete
set of states. The accuracy of the system depends on the number of particle used.

Based on many candidate paths generated with a RRT algorithm, an LQP-MP (Linear
Quadratic Gaussian Motion Planning)[319] is used to evaluate all these candidate paths to
select the best path by considering the sensors and the controller that will be used during the
execution of the path. This motion planner is based on a linear quadratic controller with a
gaussian model of uncertainty and estimates the a priori probability distributions of the state
along the path. In other words, it evaluates the probability of success of a given trajectory
instead of building an optimal one. This framework has been extended to solve a POMDP
problem in [320][321] but still requires an initialization with a RRT algorithm.

An optimal solution is proposed in the algorithm called RRBT (Rapidly-exploring Random
Belief Tree)[34][35] that shows interesting results in planning with nonholonomic constraint. It
combines a variant of LQG-MP with RRT* to provide a globally optimal solution considering
the controller. It builds incrementally a roadmap for a set of beliefs minimizing the uncertainty
at the goal while respecting the chance-constraints [28] (defined by a threshold) along the path.
The path provided by the algorithm is called a nominal path. The controller, when position
measurements are available, has to relocate the position of the robot onto this path considering
the nonholonomic constraints if there are some. Figure 3.9 shows the path found with this
algorithm and proves that the set of closed-loop trajectories around the nominal path avoids
the obstacle and uses the beacons measurements to relocate onto the nominal path found in red.

The approach has been improved in [257][258] where the samples are not anymore generated
uniformly but in areas where a localization is possible (around a beacon) reducing the number
of nodes and egdes.
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(a) On the left, a path found where the predicted covariance
ellipses using a Kalman filter are highly reduced when

measurements are received and the robot seems to pass safely the
obstacle. In the middle, a set of closed-loop trajectories (blue)
found with the previous nominal path. When these trajectories
enter the green area, the robot can relocate itself and join the

nominal path. However due to the time for the controller to pull
the robot back to the nominal path it results in collision. On the
right, the solid ellipses show the closed-loop distribution with

correct prediction of the collision.

(b) The path deviates to move parallely to the obstacle
(black square) in order to get the measurements for the
localization and to stabilize onto the nominal path to

reach the goal area in orange.

Figure 3.9: RRBT algorithm with Dubins dynamics and beacons measurements. The green
regions indicate the robot position where a range and a bearing measurement from the beacon
(corner) is available. The nominal path is depicted in red and the red ellipses show the predicted
covariance. The blue paths are closed-loop trajectories. Images are extracted from [34]

A review of some of sampling based motion planning techniques can be found in [85] con-
sidering or not uncertainty.

3.4.2.5 Conclusion

Many planning algorithms considering uncertainty are available today but few are applied to the
underwater environment due to the presence of currents and the possibility to loose the robot.
This environment is then very challenging for a low cost robot to find a path at a long distance
that guarantees the reachability of an objective. Indeed, in the context of this thesis, the
solution proposed, in Chapter 6, is to guarantee the revisit or the renavigation of a previously
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mapped object (mine). Due to the unstructured aspect of the underwater environment, many
planning algorithms show their limits. Moreover handling the uncertainties from motion and
sensing (and possibly the map) is a difficult task for a motion planner that has to provide the
guarantee of a successful mission.

3.5 Planning methods applied to our context

3.5.1 Introduction
In this section, two planning algorithms considering uncertainty, introduced in the previous
section, are applied to the context of this thesis to understand the difficulty of the motion
planning problem to provide the guarantee of the revisit of an object when localization proce-
dures are involved. It will be assumed a robot equipped with an exteroceptive sensor (a sonar)
that can sense the environment and some algorithms presented in Chapter 2 that can detect
automatically some landmarks. The planners will deal only with punctual landmarks for sim-
plification reasons and no obstacle will be present. The first algorithm, called Gonzalez planner,
is an implementation of the algorithm proposed in [109] where the motion planner searches a
path in an extended state space represented by a grid and an A* graph search. The second
algorithm, called Lambert-Gruyer planner, will be an adaptation of the algorithm proposed in
[173] where the Probabilistic Path Planner (PPP) is used with an A* graph search considering
uncertainty. In both algorithms, some punctual landmarks are present and then some visibility
regions based on the exteroceptive ability of the sensor embedded.

3.5.2 Gonzalez planner
This planner is inspired by the work in [109]. It presents a motion planner on a grid considering
uncertainty as a state variable and tries to find a path that satisfies an uncertainty constraint
at the goal location. The algorithm is originally based on a cost-map as it considers an outdoor
environment for a car-like robot. The values in the cost-map depend on the nature of the
terrain, if it is easy or not to drive on it.

The robot is described by simple Dubins vehicle dynamics:
ẋ = v cos θ
ẏ = v sin θ
θ̇ = w

(3.5)

where the state of the robot is represented by q = (x, y, θ) (the x-position, the y-position and
the heading respectively), and the inputs to the model by u = (v, w) (the linear or longitudinal
speed and the angular speed or rate of change in heading). Equation 6.3 can be expressed
generally as: {

ẋ = f(x,u)
x(0) = x0

(3.6)

where x0 is the initial position of the robot.

The drift is usually modelled as errors on the inputs [274] where wv is the error in v and ww
is the error in w. This gives then: 

ẋ = (v + wv) cos θ
ẏ = (v + wv) sin θ
θ̇ = (w + ww)

(3.7)
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which can be given in discrete time:
x(k + 1) = x(k) + (v(k) + wv(k)) cos(θ(k))∆t
y(k + 1) = y(k) + (v(k) + wv(k)) sin(θ(k))∆t
θ(k + 1) = θ(k) + (w(k) + ww(k))∆t

(3.8)

with ∆t a small time step.

Assuming zero-mean Gaussian errors, the Extended Kalman Filter (EKF) gives for the
discret system in Equation 3.8 the following covariance prediction:

Σ(k + 1) = F(k)Σ(k)F(k)T + L(k)Q(k)L(k)T (3.9)

where:
Q(k) = 1

∆t

(
σ2
v 0

0 σ2
w

)
(3.10)

with σv and σw the errors in the longitudinal speed and angular rate respectively.

Moreover Σ(k) = E(x̂(k)x̂(k)T ).

F and L correspond to Jacobians where Fij = ∂f(xi(k),uj(k))
∂xi and Lij = ∂f(xi(k),uj(k))

∂uj that give:

F =

1 0 −v∆t · sin(θ(k))
0 1 v∆t · cos(θ(k))
0 0 1

 (3.11)

and

L =

∆t · cos(θ(k)) 0
∆t · sin(θ(k)) 0

0 ∆t

 (3.12)

According to [159], a straight line trajectory (along the x-axis for example) maximizes the
error terms for these equations. As suggested in [109], this result can be used as an upper
bound on the error for any trajectory and it shows that the dominant error term is the error in
the initial heading which varies linearly with the distance travelled. It considers a 2σ contour as
a single isometric Gaussian parameter, which remains a good approximation of the 2σ contours
of the full EKF model. Planning in extended state space (known as augmented state space too)
considers uncertainty as additional dimensions, the configuration-uncertainty space is then:

q = (x, ε) = (p, θ, ε) (3.13)

where p = (x, y) is the position of the robot and θ is the heading of the robot. The param-
eter ε = (ε1, ε2, ..., εn) defines the uncertainties of the robot.

Considering a Gaussian uncertainty model xk ∼ N (µk,Σk), the most likely configuration is
given at time step k by µk = (µxk , µyk , µθk) and the full covariance matrix is given by:

Σk =

σxx σxy σxθ
σxy σyy σyθ
σθx σθy σθθ


k

(3.14)

The full covariance matrix contains 6 independent parameters. Consequently a full extended
state space q would have a dimension equal to 9, meaning planning in 9 dimensions. Under
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the assumption that changes in direction do not affect the heading error, it is not necessary
to include θ in the planning space. Due to the high dimension of the extended state space, a
simplest 2D isometric Gaussian is preferred where xk = (xk, yk) and xk ∼ N (µk,Σk). In this
case, the standard deviation is given by σk = σxk = σyk . The position of the robot is then given
by the following probability distribution:

pµk,σk(xk) = 1√
2πσ2

k

exp(−1
2

(xk − µk)(xk − µk)T
σ2
k

) (3.15)

By defining:
εk = 2 · σk (3.16)

the boundary of the uncertainty centered at µk with a radius εk, it corresponds to the 2σ contour
of the Gaussian distribution. As presented earlier, this assumption is valid if the dominant term
in the error propagation is the error in the initial heading. This model is a conservative estimate
of the true error.

The extended state space is then:
q = (x, y, ε) (3.17)

where the error term ε increases linearly with the distance travelled at a specific rate. The
following equation defines the propagation of the uncertainty:

εk+1 = εk + αd(µk, µk+1) (3.18)

where α is a user-defined parameter and d(µk, µk+1) is the distance between the two configura-
tions. Generally α belongs to the interval [1%, 10%].

The planning method is then based on a 3D grid with deterministic transitions where a
modified A* graph search is used to find the path. To reduce the computational burden in
the 3D search space, the successors of each state (node in the grid) are computed only in the
2D plane. In other words, for each state xk = (xk, yk) (2D point in the grid), the successors
are the 8-connected samples in the plane. The motion depends on the resolution of the grid in
the (x − y) plane. Usually a regular grid is used for the (x − y) plane. The new uncertainty
is computed for each neighbour according to Equation 3.18. It provides an augmented state
variable for each neighbour qk+1 = (xk+1, yk+1, εk+1). To determine if a successor qk+1 should
be placed in the OPEN list of the A* algorithm, a pruning strategy based on state dominance
is used to reduce the complexity of the path finding. When a successor is added to the OPEN
list, the state is expanded. A successor respecting one of these following conditions is added:

• no state with (x, y) coordinates has been expanded.

• the expected cost from q0 to qk+1 is lower than the cost of any state with the same (x, y)
coordinates.

• the computed uncertainty εk+1 is lower than the uncertainty of any other state with the
same (x, y) coordinates.

The A* algorithm runs until the goal position xk = xf is visited with a lower uncertainty εf
defined by the user. The path is finally reconstructed by connecting the successive predecessor
from qf to q0.

Cost map version of Gonzalez
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In the version of Gonzalez [109], a 2D cost map is assumed for a car-like robot. The cost
from one configuration qk to another qk+1 is based on the sum of the cost values in the map
weighted according to the Gaussian distribution for all states inside the 2σ (ε) uncertainty.
In the proposed A* algorithm, an Euclidean heuristic is used to reach more quickly the goal
location (f function). An example of the planner proposed by Gonzalez is depicted in Figure
3.10(a). A high cost region (may be an obstacle), depicted in black, has a cost defined at 100
and the free space is 5. In Figure 3.10(b), the path in the extended state space is shown in
green where the visited nodes (CLOSED set) are represented by red crosses and the OPEN
set by blue crosses. The final uncertainty, depending obviously on the discretization along the
uncertainty vector, is 5.85m.

(a) Path found with uncertainty propagation. (b) OPEN and CLOSED sets in the extended
state space.

Figure 3.10: Path search in extended state space where ε0 = 1.5m and εf = 6m. The high cost
region in black has a cost at 100 and in free space it is 5. The parameter α is fixed at 10% of
the distance travelled.

If the uncertainty at the end is not respected by getting around the high cost region, the
path goes through it as depicted in Figure 3.11. Indeed, assuming an increasing uncertainty
of α = 4% of the distance travelled, the uncertainty at the goal location is 3.48m with a cost
of the path at 151 by getting around the high cost region represented in Figure 3.11(a). If
εf < 3.48m, for example εf = 3m, the robot goes through the high cost area resulting in a
path cost of 552 and a final uncertainty at 2.52m respecting the final uncertainty condition as
shown in Figure 3.11(b).
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(a) Path getting around the high cost region
where the final uncertainty asked was

εf < 5m. The final uncertainty is actually
3.48m and the cost path 151.

(b) Path going through the high cost region in
black to respect the final uncertainty

condition fixed at εf < 3m. The path cost is
552 and the final uncertainty is 2.52m.

(c) Path going through the relocation area
(GPS for example) shown in green. The final

uncertainty is 2.14m respecting the final
uncertainty condition εf < 3m.

Figure 3.11: Path finding in extended state space where ε0 = 0m. The high cost region in black
has a cost at 100 and in free space it is 5. The drift parameter α is fixed at 4%.

When a state xk with the associated 2σ uncertainty (εk) is totally included in a landmark
region, the uncertainty εk is reduced to a fixed value εlandmark. It enables to avoid the high
cost region by going to these relocation areas and then having a lower cost path as depicted in
Figure 3.11(c) where εf is defined at 3m resulting in a final uncertainty at the goal location of
2.14m and a path cost of 230.

The concept of a cost map may be interesting in the context of underwater environment.
Indeed an high cost region could an area where the density of landmarks is close to 0, it could
area where some obstacles are present such as wrecks or it could be an area where the current
is too high.

Proposed version with relocation areas and sensing

In the version proposed as example in this thesis, the cost function, known as the g function
in the A* algorithm, is simply the length of the path, meaning that the transition cost between
two neighbours is equal to the Euclidean distance between these two configurations in the 2D
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plane.

cost(xk,xk+1) =

resolution grid the neighbour is in the vertical or the horizontal line
resolution grid ·

√
2 the neighbour is in the diagonal line

(3.19)
It will be assumed an Euclidean heuristic too.

On the same principle, it will be assumed that if an uncertain state qk, with mean state xk
and a 2σ circle of uncertainty (εk), is totally included in a relocation area, the uncertainty will
be reduced to a fixed value. That means all the possible states xk in the uncertain position are
able to detect the landmark considered.

Assuming a set of punctual landmarks M = {m1,m2, ...mn} where mi is the location of a
landmark. Contrary to the unique detection region proposed in the initial version [109] where
only one landmark could belong to this region to avoid any ambiguities and the problem of data
association, it will assumed here that some regions may intersect and that some process are able
to make the associations. When considering a sensor with a 360◦ field of view and a range R, the
detection region are circles centered at the landmark location with a radius equal to the range R.

Firstly, in our problem, it will be assumed that the sensor can detect between a minimal and
a maximal range (Rmin and Rmax) as the AUV is navigating above the seabed at the certain
altitude, and the sensor swath is tilted.

An uncertain extended state qk = (xk, yk, εk) is defined as:

Circle(qk) = {p ∈ R2|
√

(p(1)− xk)2 + (p(2)− yk)2 ≤ εk} (3.20)

that represents the set of the robot configuration inside the 2σ uncertainty circle.

A landmark i is then simply detected at the extended state qk if:

∀p ∈ Circle(qk)
√

(mi(1)− p(1))2 + (mi(2)− p(2))2 ∈ [Rmin, Rmax] (3.21)

Secondly, it will be assumed a sensor, such as a Forward Looking Sonar (FLS), that can
only sense in front of the robot in a defined angular aperture [−β, β] and in a interval of ranges
[Rmin, Rmax]. Under the assumption that the robot does not stop its motion to turn on itself
at the extended state qk (it depends on nonholonomic constraints), a part of the path has to
be taken into account. For a motion from the extended state qk to a neighbouring extended
state qk+1 where the new uncertainty is computed similarly as previously (Equation 3.18), a
landmark i will be detected at the extended state qk+1 if:

∀p ∈ Circle(qk+1)


√

(mi(1)− p(1))2 + (mi(2)− p(2))2 ∈ [Rmin, Rmax]
atan2(mi(2)− p(2),mi(1)− p(1))− atan2(yk+1 − yk, xk+1 − xk) ∈ [−β, β]

(3.22)
The first test checks for the range detection and the second test for the angular detection.

In the second test, atan2(yk+1 − yk, xk+1 − xk) corresponds to the heading of the robot along
the transition path between the two configurations.

Contrary to the classical path planning algorithm and the planner proposed by Gonzalez to
reach a unique final state (x, y) with possibly an uncertainty condition εf , a set of final states
is possible for the relocation of the landmark. Indeed, instead of reaching a final state, if an
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extended state checks the detection tests presented above for the target (assumed as punctual),
the algorithm should stop and the path is reconstructed by taking the successive predecessors
of this "winning" extended state. The target behaves as a landmark.

Example 1

Ten landmarks are generated randomly. One is selected as the target. The robot can be
equipped by a 360◦ field of view sensor with a range of detection between 4 and 20 meters or by
a FLS with a range of detection between 4 and 20 meters and an aperture angle of 60◦ (whole
aperture angle). The parameter α is fixed at 10% for the propagation of the uncertainty. The
regular grid has a resolution of 2 meters in the (x, y) plane and a resolution of 0.02m along
the uncertainty axis. This latter resolution should be chosen according to the parameter α and
the resolution of the grid. The initial state x0 = (x0, y0) is generated randomly with an null
uncertainty at the beginning. The uncertainty is reduced at 0 when a landmark is detected.
Figure 3.12 depicts the comparison of the path found between the two sensors. Figure 3.12(a)
shows the path found with the isotropic sensor. It can be seen in the zoom in Figure 3.12(b)
where the robot stays on the border of the relocation area when it detects the first landmark.
Then it goes straightforward to the second landmark to finally reach the area of the target to
detect it. The path is slightly different with the FLS as depicted in Figure 3.12(c). Indeed, in
the zoom in Figure 3.12(d) when the robot detects the first landmark, it goes to the second
landmark. As the landmark is not anymore in the field of view, the uncertainty grows even if
the state x = (x, y) belongs to the 2D relocation area based on ranges (blue circles). Before
leaving the area of influence of the first landmark, the robot changes its direction to redetect
the first landmark and relocate. Then the robot goes to the second landmark area and finally
to the target area to guarantee the detection.
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(a) Path generated with the 360◦ sensor and
the limited range.

(b) Zoom of the path (a).

(c) Path generated with the FLS. (d) Zoom of the path (c).

Figure 3.12: Comparison between the paths found with the two sensors. The black crosses show
the grid (the states). The blue points are the landmarks with the associated range detection
drawn by blue circles. It is drawn in red similarly for the target. The green asterisk is the
initial configuration. The path is in red with the uncertainty circles at 2σ in red too.

Example 2

The second example comes from real data. A survey mission in a boustrophédon pattern has
been conducted by an A9 from ECA Group in a training environment. Some landmarks (cubes)
are present in the environment and are detected with the integral image detector presented in
Chapter 2. The environment is mainly composed of sand with small rocks and the cubes. A false
manta mine is present for detection purpose. These landmarks are considered as punctual due
to their reduced size (≈ 1m× 1m). Figure 3.13 depicts the different position of the landmark.
The position of the false manta mine is represented by the red cross. The smallest landmarks
are removed and only the landmarks with the strongest backscattered signal are kept to be
detectable by the revisit system. This latter is supposed to be equipped with a compass that
has a low uncertainty and a Forward Looking Sonar (FLS) with a range detection between 4
and 30m enabling a good image at an altitude of 3m − 4m above the seabed. The aperture
angle is 60◦. The values for the FLS are defined according to some products.
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Figure 3.13: Real environment with punctual landmarks in blue and a false manta mine in red.

The initial position of the robot is assumed to be known but is generated on purpose far
from the target. The resolution of the grid is 5m allowing a fast computation of the algorithm.
The parameter α is fixed at 10%. The path found with the algorithm is proposed in Figure
3.14 with some zooms. The path consists in following the line of landmarks and then switching
to the target. On the last zoom in Figure 3.14(d), a sudden changes of the direction is present
to reduce the uncertainty. The path needs to be smoothed and can be computed with a higher
resolution to avoid this sudden changes.

Conclusion

This first algorithm is quite simple but shows a first implementation of the planning method
under uncertainty adapted to the problem of the revisit with an exteroceptive sensor. Based
on a simple discretization of robot configuration in a regular grid, an extended (augmented)
state space is created to include the uncertainty as a state variable with a single parameter
that increases linearly with the distance travelled at a certain rate. In many underwater ap-
plications, the uncertainty on the robot position is expressed per distance travelled. As it can
be seen in the different examples, the discretization in a regular grid implies many robot con-
figurations outside regions of influence of the landmarks. Planning methods based on strategic
sampling may appear as an interesting alternative solution that will be proposed in the next
subsection. Moreover planning on grids is not really adapted to propose plans for vehicle under
underactuation constraint.

3.5.3 Lambert-Gruyer planner
This second planner is inspired by the work proposed in [173] where a Probabilistic Path Plan-
ner (PPP) is used to create the graph. This PPP is based on the work in [102] to propose a
planning method for car-like robots with uncertainty in motion. Once the graph is generated
(vertices = samples and edges = connected paths), an A* algorithm is used to find the shortest
path based on the Dubins [83] distance between the samples. It introduces the notion of tower
of uncertainties to keep at the same node different path costs and uncertainties. It consists then
to plan in an uncertainty-configuration space as the extended configuration space on the grid
presented with the Gonzalez planner. It is necessary to plan in this uncertainty-configuration
space since the A* search tries to find the shortest path. Indeed in the original version of
the A* algorithm a previously explored node (in the CLOSED set) cannot be explored again
because the cost will be bigger than the previous path. If the algorithm has found the shortest
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(a) Path generated with the FLS. (b) Zoom of the path.

(c) Zoom on a part of the path. (d) Zoom on the change in direction for
relocation.

Figure 3.14: Path found for the revisit with the FLS. The black crosses show the grid (the
states). The blue points are the landmarks with the associated range detection drawn by blue
circles. It is drawn in red similarly for the target. The green asterisk is the initial configuration.
The path is in red with the uncertainty circles at 2σ in red too.

path to go to a specific configuration (node), it keeps only the shortest path and does not look
for a longer path with potentially a lowest uncertainty. Each tower has then a state (x, y, θ)
and levels are added to this tower that specify the uncertainty. When a node has not been
explored, a tower is created with a first level. A new level is created at this tower according
to a pruning strategy as in the Gonzalez planner. If the path computed is greater than all the
previous ones at a specific tower, a new level is created only if the uncertainty is better than
all the previous uncertainties. The uncertainties are ellipsoids generated based on the Kalman
filter. If the path has a lower cost than all the previous ones, a new level is added by checking
the upper levels of the tower corresponding to higher cost of the g function in the A* algorithm.
The algorithm stops when a tower of uncertainty is expanded in the goal area.

The planner is proposed in a bounded error context. Assuming a robot described by the
same dynamics as in Equation 6.3, the Dubins path will be considered to connect the samples.
The Dubins path will provide a minimum length path between two configurations. Only the
paths RSR, LSL, RSL and LSR will be considered. "L" corresponds to a left turn, "S" to a
straight path and "R" to a right turn. The Dubins paths propose then a sequence of three
commands to join the next samples. These three commands are defined by three durations. As
a compass will be assumed embedded in the vehicle, the heading of the robot θ will be known
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with an uncertainty. That means the heading belongs to an interval around the value given by
the compass: θ ∈ [−εcomp, εcomp] (εcomp = 3◦).

The other uncertainty will be on the linear speed v. It will be supposed that the angular
rate w is perfect. Assuming a constant but uncertain linear speed, the minimum turning radius
is given by:

[r] = [v]
w

(3.23)

where v is an interval around the desired speed. This speed interval is obtained as follows:

[v] = vdesired · α · [−1, 1] (3.24)

where α is a user specified value and vdesired is the motion speed of the vehicle assumed con-
stant along the path. This speed is fixed at 1m/s which is equivalent to 2 knots approximately.
Generally when conducting a survey mission, the AUVs are navigating at a speed of 3−4 knots.
The parameter α is chosen at 10% meaning that the speed is uncertain at 10%. The angular
rate is then defined to respect the turning radius of the vehicle navigating at the specified speed.

The Dubins paths provide a set of three commands U = {u1,u2,u3} with associated dura-
tions T = {t1, t2, t3} that are computed based on the desired speed and the angular rate. The
command ui = ([v], w) is composed of an uncertain linear speed and a perfect angular rate.

The initial pose of the robot x0 belongs to a set X0 represented by a box which can be reduced
to a singleton when the position is perfectly known. A simple integration model as in [245] is
used along a path where intervals are manipulated to generate the new state xk+1 = (x, y, θ)
coming from the state xk = (x, y, θ) after a Dubins command. Guaranteed integration with
tubes may be used [275][274]. The next Chapter will introduce the notion of intervals. Due
to the presence of a compass, the uncertainty on the heading does not have to be propagated,
only the growing uncertainty on the (x, y) position of the AUV is important.

It will be assumed again a Forward Looking Sonar (FLS) as exteroceptive sensor and an
environment composed of a set of punctual landmarks. Compared to the previous planner, the
notion of point of view introduced in Chapter 2 is proposed. Indeed this notion is relevant
in underwater environment due to the different backscattered signal according to the point of
view. To provide a guaranteed plan, it is meaningful to revisit the different landmark and the
target at the approximate same points of view. If the angle of detection of a landmark during
the survey mission was θdetection and assuming an angular flexibility γ, the landmark is then
detectable with a point of view as follows:

[θrevisit] = θdetection + [−γ, γ] (3.25)

That means the landmark can be revisited with a point of view of detection lying in the interval
[θrevisit]. This can be expressed in robot position:

Xrevisit = {(x, y) ∈ R2|atan2(y −mi(2), x−mi(1)) ∈ [θrevisit]} (3.26)

where mi is the location of the landmark considered. These notions will be more detailed in
the Chapter dealing with registration maps.

Now the samples x = (x, y, θ) can be generated in the field of influence of a landmark as
in [103] known as localization aware sampling in [257][258] or information sampling in [127].
Figure 3.15 depicts the environment where the landmarks are marked by blue dots, the initial
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Figure 3.15: Environment with punctual landmarks.

pose is represented by a big green AUV and the samples by little green AUVs. The initial
location (x, y) of the AUV is perfectly known but not the heading θ that belongs to an interval.
The target is depicted by a red dot. Notice that the points of view have been represented by
pies where the constraint of the limited range of detection has been added.

The samples are firstly connected based on the Dubins paths connecting them and the
K-nearest (here K = 10) neighbours strategy. This graph is depicted in Figure 3.16(a). It
gives only the potential neighbours for each samples but this path are not yet guaranteed
to provide a localization procedure. The modified A* algorithm tries to find a path in the
precomputed graph by extending the state with the uncertainty. Contrary to the concept of
tower of uncertainty, that can be implemented too, the algorithm proposed here is only looking
for a feasible path and not for the optimal one. Even if it uses a cost function based on the
Dubins distance between the samples, it only looks for possibilities, meaning that a visited node
cannot be revisited. During the expansion, an edge is valid only if the uncertainty propagated
from the state xk given by a box Xk (uncertain state) to the state xk+1 (given by Xk+1) enables
the detection of the landmark considered at the state xk+1 = (x, y, θ) despite the uncertainty
accumulated. The following tests are checked to guarantee the detection of the landmark i
located at (mi(1),mi(2)) at this expanded state:

∀p ∈ Xk+1


(mi(1)− p(1))2 + (mi(2)− p(2))2 ∈ [Rmin, Rmax]
atan2(mi(2)− p(2),mi(1)− p(1))− p(3) ∈ [−β, β]
atan2(p(2)−mi(2),p(1)−mi(1)) ∈ [θrevisit]

(3.27)

Set-membership tools can check this test quickly as it will be presented in the next Chapter.
If all these tests are successful, an edge is then created as shown in Figure 3.16(b) where the
tree expansion is depicted. The uncertainty at this state (node) is then reset to a fixed value
as in [186] or in the Gonzalez planner. In this problem it will be null. Once a sample lies in
the relocation area of the target which enables its detection despite the uncertainty, the A*
expansion stops and the path is reconstructed as shown in Figure 3.17. The uncertainty along
the path is represented by yellow boxes. The algorithm provides a path that guarantees the
detection of the different landmark along the path but suffers from the relocation around the
mean state which corresponds to samples generated during the first step of the Probabilistic
Path Planner.

106



CHAPTER 3. MOTION PLANNING

(a) Potential edges of the graph before the
modified A* search.

(b) Modified A* search that
guarantees the detection of the

landmarks.

Figure 3.16: Edges of the graph and modified A* graph search by propagating the uncertainty.

Figure 3.17: Path found with uncertainty propagation along the path.

Considering the uncertain state xk belonging to the box Xk, an engineering solution would
be to expand the 8 states corresponding to the 8 corners of the box, as the state is represented
by 3 variables (x, y, θ), to the new samples xk+1. This process is known as differential command
[245]. It consists in giving a different command to the robot when it is at the state xk ∈ Xk

depending on the position of the robot inside the box Xk. When a state xk−1 is expanded to the
state xk, it guarantees the detection of the landmark despite the uncertainty along the path,
but the robot may be anywhere in the box Xk. Due to the localization process, the state of the
robot is finally known. Consequently, a different motion command can be applied to join the
next state (sample) in the graph. The idea proposed in [245] would be to divide the state in
many boxes and to prove that all lies in a reduced final box after applying a particular motion
command to all of them.

The engineering solution would be to expand the 8 corners of the state Xk to reach the
samples xk+1 and then take the union of the resulting boxes to give the global enclosure of the
uncertainty Xk. The result of such concept is presented in Figure 3.18 where a monte carlo
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simulation guarantees at 100% the revisit of the target in red dot according to the different
points of view. The landmark painted in green are the landmark revisited before reaching the
target.

Figure 3.18: Engineering solution by expanding the 8 corners of a state.

Conclusion

In this second planner, the planning method takes into account the underactuation constraint
of the vehicle, expressed as minimum turning radius, to propose a plan that reaches the target.
Only punctual landmarks were considered again and the notion of point of view has been
introduced. In the context of this thesis, the advantage of such planner is the possibility to
sample in the information space where a relocation process is possible. Indeed, contrary to
grid planners, the time outside landmark field of influence is avoided. However, the strategies
are limited and require to follow a predefined path. The differential command may be an
alternative to relax this constraint of following a nominal path.

3.6 Conclusion
In this Chapter, most of the state-of-the-art algorithms in motion planning are presented.
Methods dealing without uncertainty are firstly introduced to understand the concept and the
basis of the motion planning. Due to the lack of absolute positioning system in underwater
environment, a low cost robot that cannot rely on expensive inertial system has to deal with
uncertainty. Consequently a plan that does not consider the propagation of the uncertainty will
likely fail. The main motion planning methods dealing with uncertainty are then introduced
to present the complexity and the difficulty to find a reliable and robust path. The notion
of localization when dealing with motion planning is handled mainly around the mean state
estimate of the robot and the plan generated is only possible if the controller is able to drive
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the robot back to the desired path. Two planners based on a grid and the Probabilistic Path
Planner are proposed in the context of the revisit of a target with a Forward Looking Sonar. In
both cases, an extended (augmented) state space is considered, i.e. considering the uncertainty
as a state variable, where the optimality of the path can be obtained. Due to the reduced ability
of detection of the exteroceptive sensor in a low cost robot, i.e. lower resolution image, and the
sparsity of landmarks present in most of underwater environment, a more complex strategy has
to be investigated. Indeed, the main methods dealing with uncertainty and landmark relocation
are based on the fact that a plan going to a landmark region will be detected if the uncertain
robot state belongs to the field of influence of the landmark. However, due the weak density of
landmarks, considering a set of closed landmarks may be interesting to extend the guaranteed
area of exploration of the robot. Indeed, when considering a set of closed landmarks, the
plan may not guarantee the revisit of a single landmark considered alone but can provide the
guarantee to revisit one of them if considered together. In this case, the position of the robot
will remain unknown when it enables to reach longer ranges. A disambiguation strategy has
then to be realized to determine the position relatively to the set of landmarks. This solution
has been adopted in this thesis and will be presented in Chapter 6. Due to the necessity of
guarantee for operational customers, a set-membership approach has been prioritized. The next
Chapter will introduce the basic knowledge of set-membership tools based on interval analysis
to understand the planner proposed.
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Chapter 4

Interval analysis

4.1 Introduction
In this thesis, a motion plan based on set-membership methods has been preferred to classical
bayesian planners to provide a guaranteed strategy if the errors remain in their bounds. These
methods are highly used in localization problems where the position of the robot is determined
by a set defined by non-linear constraints [138][142]. In the context of the set-membership
approach, an approximation of this set needs to be determined to be handled by computers.
Several approximations can be found in the litterature where some of them are presented in
Figure 4.1 such as zonotopes or polyhedral enclosures [59], ellipsoids [169][276], intervals or
subpavings [144]. These approximations corresponds to over-approximations. Interval analysis
will be the focus in this thesis.

Interval analysis enables to compute a set of Rn defined by constraints. For example the set
could be the parameters that are consistent with some intervals measurements [106], parameters
vector of a controller in order to have a closed loop system stable [76], calibration parameters
[264] or even attractors of dynamical systems [314].

Generally, a mathematical problem can be expressed with a Constraint Network (CN) where
a set of variables belonging to some domains have to satisfy simulteneously a number of ele-
mentary rules called constraints [205].

A Constraint Network is defined as a triple 〈X,D,L〉 where X = {x1, ..., xn} is a set of
variables, D = {X1, ...,Xn} is a set of domains and L = {L1, ...,Lm} is as set of constraints.

The problem consists in finding the smallest sub-domains of the Xi for the variables xi con-
sistent will all constraints. The variables are real numbers, vectors of Rn or even shapes, and
the domains are intervals, boxes, sets or shape intervals in case of shape variable.
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X

x1

x2

(a) Polytope approximation.

X

x1

x2

(b) Ellipsoid approximation.

X

x1

x2

(c) Subpavings approximation.

Figure 4.1: Examples of the approximation of the set X

4.2 Set theory
According to the definition given by Georg Cantor, one of the founders of the set theory, in
[38]:

"A set is a gathering together into a whole of definite, distinct objects of our per-
ception or of our thought, which are called elements of the set."

The objects may be numbers, people, graphs, letters of the alphabet, etc... The set of real
numbers is denoted as R.

4.2.1 Operations
The set theory is based on a binary relation that determines if an element x belongs or not to
a set X, denoted by x ∈ X. When considering real numbers, the set of positive real numbers
for example, noted R+, is defined according to:

R+ = {x ∈ R|x ≥ 0} (4.1)

The empty set, denoted as ∅, contains no element and the universe Ω contains all elements.
Some basic operations on sets can be defined.

The complement of a set X, denoted as X̄ is:

X = {x ∈ Ω|x /∈ X} (4.2)

The inclusion between two sets X and Y is defined as follows:

X ⊂ Y⇔ ∀x ∈ X, x ∈ Y (4.3)
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The equality between two sets X and Y is given as follows:

X = Y⇔ (X ⊂ Y ∧ X ⊂ Y) (4.4)

where the operator ∧ is the logical and operator. ∨ denotes the or operator.

The intersection is defined as follows:

X ∩ Y = {x|x ∈ X ∧ x ∈ Y} (4.5)

and represented in Figure 4.2(a).

The union is defined as follows:

X ∪ Y = {x|x ∈ X ∨ x ∈ Y} (4.6)

and represented in Figure 4.2(b).

The difference is defined as follows:

X \ Y = {x|x ∈ X ∨ x /∈ Y} = X ∩ Y (4.7)

and represented in Figure 4.2(c).

X Y

(a) X ∩ Y.

X Y

(b) X ∪ Y.

X Y

(c) X \ Y.

Figure 4.2: Main operators on sets.

The Cartesian product is defined as follows:

X× Y = {(x, y)|x ∈ X ∧ y ∈ Y} (4.8)

Two laws have been stated by De Morgan:

(X ∪ Y) = X ∩ Y (4.9)
(X ∩ Y) = X ∪ Y (4.10)

The q-relaxed-intersection has been defined in [136] where it enables solving inconsistent
Constraint Network by relaxing a small number q of constraints. In the context of localization
or parameters estimation, it enables to be robust to a given number of outliers (erroneous
measurements). For N sets X, ...,XN of Rn, the q-relaxed-intersection, denoted by

{q}
∩Xi, is the

set of all x ∈ RN which belong to all Xi’s except q at most. The relaxed intersection can be
expressed as unions of intersection. Considering three sets X1, X2, X3, the 1-relaxed-intersection
is defined as follows:

{q}
∩ Xi = (X1 ∩ X2) ∪ (X1 ∩ X3) ∪ (X2 ∩ X3) (4.11)
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4.2.2 Set image
If a function f : X→ Y and X1 ⊂ X, the direct image by f of X1 is:

f(X1) = {f(x) ⊂ Y|x ∈ X1} (4.12)

The reciprocal image f of Y1 ⊂ Y is:

f−1(Y1) = {x ∈ X|f(x) ∈ Y1} (4.13)

Interval analysis has been proved to be efficient in the Set Inversion Problem. Given a
function f from Rn to Rm that may be non-linear, and Y a subset of Rm, the Set Inversion
Problem aims at computing the reciprocal image of Y by f :

X = {x ∈ Rn|f(x) ∈ Y} = f−1(Y) (4.14)

The sets can be defined by constraints and combined according to some operators to build
more complex ones. The next subsection introduces the interval analysis which is an efficient
manner to deal with such sets defined by constraints.

4.3 Interval analysis
At the early stage, Interval Analysis was developed to quantify the error on numerical compu-
tations [225]. Indeed, real numbers are represented by float numbers with a limited number of
digits. This limitation can lead to a small error that can be propagated and increased after
several operations. Generally it refers to 32-bits floating point precision and others...

Intervals are bounds to represent a value of interest for computers where the limits are
floating point numbers with finite precision ensuring a guaranteed numerical representation of
a real number such as π. However, it introduces pessimism due to the fact it handles a range
of possiblites instead of a unique value. Interval methods can then be extended to physical
uncertainties highly present in robotics applications where errors exist on measurements for
example. In this thesis, the focus will not be on the low level uncertainty of numbers but
the concept of intervals will be used to manipulate the uncertainty on input parameters. For
instance, a range sensor provides a distance with an error that can be represented as an interval.
This subsection provides the basic knownledge of interval arithmetics. The reader may refer to
[141] for more detailed information.

4.3.1 Interval arithmetics

4.3.1.1 Intervals

An interval, denoted by [x], is a closed and connected subset of R defined by a lower bound x−
and an upper bound x+:

[x] = [x−, x+] = {x ∈ R|x− ≤ x ≤ x+} (4.15)

An interval can be infinite.

An interval containing only one element is called degenerate or singleton, it is noted {x}. The
width w of an interval is computed by w([x]) = x+−x−. The mid is given by mid([x]) = x−+x+

2 .
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Considering two intervals [x] and [y] of Rn and an operator � ∈ {+,−, ·, /} , [x] � [y]
corresponds to the smallest interval containing all feasible values for x � y when x ∈ [x] and
y ∈ [y]:

[x] � [y] = [{x � y|x ∈ [x], y ∈ [y]}] (4.16)

where [.] is the convex hull.

The intersection of two intervals is an interval:

[x] ∩ [y] = {a ∈ R|a ∈ [x] and a ∈ [y]} (4.17)

However, the union of intervals may not be an interval:

[x] ∪ [y] = {a ∈ R|a ∈ [x] or a ∈ [y]} (4.18)

The interval union corresponds to the interval hull of [x] ∪ [y] in order to have a connected
subset of R. This union is usually denoted [x] t [y] and is defined as:

[x] t [y] = [[x] ∪ [y]] (4.19)

Examples

[−1, 2] + [3, 4] = [2, 6] (4.20)
[−1, 2]− [3, 4] = [−5,−1] (4.21)

[−1, 2] ∩ [3, 4] = ∅ (4.22)
[−1, 4] ∩ [2, 5] = [2, 4] (4.23)

[−1, 3] t [4, 8] = [−1, 8] (4.24)
1/[1, 2] = [0.5, 1] (4.25)

1/[−1, 2] = [−∞,∞] (4.26)
1/[0, 2] = [0.5,∞] (4.27)

w([−1, 2]) = 3 (4.28)
mid([4, 8]) = 6 (4.29)

The notion of intervals can be extended to functions, shapes [75], booleans, graphs [138] or
trajectories [274] for example.

4.3.1.2 Boxes

A box is an interval vector [x] of Rn which corresponds to a Cartesian product of n intervals.
The set of all boxes of Rn is denoted by IRn.

[x] = [x1]× [x2]× ...× [xn] (4.30)

The ith component [xi] is the projection of [x] onto the ith axis.
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x = [1, 3]× [4, 5]

x1

x2

1

2

3

4

5

1 2 3
(a) Box a: w∞([x]) = 2 and w([x]) =

√
5.

x = [1, 3]× [3, 5]

x1

x2

1

2

3

4

5

1 2 3
(b) Box b: w∞([x]) = 2 and w([x]) =

√
8.

Figure 4.3: Boxes representation and comparison. The two boxes have the same width w∞
although the area is different.

Some boxes are represented in Figure 4.3 where two different metrics are used to compute
the width of a box [x] ∈ IRn.

The classical definition of the width w∞ corresponds to the width of the largest interval
along all dimensions:

w∞([x]) = max
1≤i≤n

w([xi]) (4.31)

The second definition is given by:

w([x]) =
√√√√ n∑
i=1

w([xi])2 (4.32)

Some basic operations on real numbers and vectors can still be computed on interval vectors
by considering each component and to vector such as dot or cross product.

Examples

Considering [x] = [1, 3]× [4, 5] and [y] = [−1, 1]× [0, 3]:

[x] + [y] = [0, 4]× [4, 8] (4.33)
[x] · [y] = [−1, 45] (4.34)

w([x]) =
√

5 (4.35)
w∞([x]) = 2 (4.36)

where · is the dot product.

4.3.1.3 Inclusion function

Definition

By considering f : Rn → Rm and a subset X ⊂ Rn, the image set of f is defined as follows:

f(X) = {y ∈ Rm|∃x ∈ X,y = f(x)} (4.37)
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Considering a n-dimensional box [x] as input of a function f : Rn → Rm it may result in
a set that can have any shape, be non convex, composed of holes and even disconnected as
depicted in Figure 4.4.

x = [x1]× [x2]

x1

x2

[x1]

[x2]

y1

y2

f(x)
[f]([x])

[f]∗([x])

f([x])

Figure 4.4: The image of a box [x] by a function f is depicted by the gray area. It may not be
a box. The dotted area shows the pessimism introduced by the inclusion function [f] compared
to the minimal inclusion function [f]∗.

Computing an accurate representation of the image set can be complicated with a high com-
putational burden. The notion of inclusion is then introduced.

An inclusion function [f] : IRn → IRm of f : Rn → Rm is a function that satisfies:

∀[x] ∈ IRn, f([x]) ⊂ [f([x])] (4.38)

The inclusion function [f] of f enables to compute a box [f]([x]) that guarantees to contain
f([x]).

Properties

An inclusion function [f] is said to be inclusion monotonic if:

[x] ⊂ [y]⇒ f([x]) ⊂ f([y]) (4.39)

An infinity of inclusion functions exist for a given f but only one will be minimal, it is de-
noted [f]∗. An inclusion function is minimal if for any [x], [f]([x]) is the smallest box containing
f([x]). An inclusion function that is not minimal is said pessimistic.

Pessimism can come from the multiple occurrences of variables in the expression of f and
the wrapping effect. This latter comes from the fact that intervals and boxes are axis-aligned.
Therefore any set which is not a box made of boundaries aligned with axes will suffer from
a pessimistic enclosure. Some methods are used to reduce this effect but will require longer
computation times and more memory space.

An inclusion function [f] is said to be thin if the image for any degenerate interval vector
[x] = {x} is also punctual: [f]([x]) = {f([x])} meaning that the image of a singleton is a single-
ton. This is not always the case when thick functions are used [75].
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Natural inclusion function

A natural inclusion function can be built for any function that is obtained from the compo-
sition of elementary operators such as +,−, ·, /, cos, sin, exp,... by replacing these operators by
their interval counterpart [cos], [sin],etc.

If f is continuous, the natural inclusion function is monotonic, convergent and thin but is
generally not minimal due to the causes of pessimism presented earlier.

Examples

The natural inclusion function [f] of f(x1, x2) = x1 · sin(x2) is:

[f]([x1], [x2]) = [x1] · [sin]([x2]) (4.40)

Considering [x] = [x1]× [x2] = [−3, 1]× [π3 ,
π
2 ], it gives:

[f]([−3, 1], [π4 ,
π

3 ]) = [−3, 1] · [sin]([π4 ,
π

3 ])

= [−3, 1] · [
√

2
2 ,

√
3

2 ] (4.41)

= [−3
√

3
2 ,

√
3

2 ]

4.4 Contractors and separators
In interval analysis, operators called contractors and separators have been created to charac-
terize more efficiently and more rapidly the domain of the variables in a Constraint Network.
They enable to remove parts of a box, i.e. interval vector, that do no satisfy the constraints.
These operators are always associated to one or several constraints. This subsection introduces
these operators.

4.4.1 Contractors
This operator reduces, or contracts, an initial box by removing parts that do not satisfy the
constraint.

4.4.1.1 Definition

A contractor C is an operator IRn 7→ Rn[47] such that:

C([x]) ⊂ [x] (contractance) (4.42)
[x] ⊂ [y]⇒ C([x]) ⊂ C([y]) (monotonicity) (4.43)

A set X is consistent with the contractor C, it is written X ∼ C if for all [x]:

C([x]) ∩ X = [x] ∩ X (4.44)

A contractor C associated to a set X contracts a box of Rn without loosing a single point of
the subset X of Rn. This concept is illustrated in Figure 4.5.

118



CHAPTER 4. INTERVAL ANALYSIS

X

C([x])

[x]

C∗([x])

¬C([x])

[x] ∩ X

Figure 4.5: Contractor consistent with the set X. The dashed area is removed by the contractor.
The minimal contractor C∗ returns the smallest box enclosing the solution set of [x]∩X in red.

The inclusion between two contractors C1 and C2 is defined as follows:

C1 ⊂ C2 ⇔ ∀[x] ∈ IRn, C1([x]) ⊂ C2([x]) (4.45)

Two contractors C1 and C2 are equivalent (C1 ∼ C2) if:

X ∼ C1 ⇔ X ∼ C2 (4.46)

A contractor C is minimal if for any other contractor C1, the following implication is true:

C ∼ C1 ⇒ C ⊂ C1 (4.47)

If C is a minimal contractor consistent with X, then C([x]) corresponds exactly to the smallest
box that can be obtained after the contraction of [x] without loosing any point of X. Therefore
a unique minimal contractor exists and is denoted as C∗.

The negation of a contractor C, denoted as ¬C, corresponds to:

¬C([x]) = {x ∈ [x]|x /∈ C([x])} (4.48)

Figure 4.5 shows the contractions of a contractor C and the minimal contractor C∗ for the box
[x] considered. The negation of the contractor C is not a box in general but an union of boxes
represented by the dashed area. Therefore the negation of a contractor is not a contractor.
This has been the motivation for the creation of the separators.

4.4.1.2 How to build a contractor?

When constraints are defined by equations or inequalities, such that f(x) ∈ [y], then a contractor
based on the inclusion function [f] of f can be built. For a given box [x] it is defined as follows:

C([x]) =

∅ if [f]([x]) ∩ [y] = ∅
[x] otherwise

(4.49)

This has been improved with a forward/backward contractor called HC4-revise [22]. It con-
sists in evaluating f(x) using interval arithmetic (forward step) and instead of only considering
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the result of the intersection with [y], it retro-propagates the information to the initial domains
(backward step). The following examples show this forward-backward concept.

Examples

Considering three variables x ∈ [x], y ∈ [y] and z ∈ [z], the contractor for the constraint
z = x− y is given as follows:

C− :

[z]
[x]
[y]

 =

[z] ∩ ([x]− [y])
[x] ∩ ([z] + [y])
[y] ∩ ([x]− [z])

 (4.50)

The first equation corresponds to the forward step and the last two equations are the back-
ward steps.

For example, C−([1, 4], [2, 5], [0, 3]) = ([2, 4], [2, 3], [0, 2]).

4.4.1.3 Contractors algebra

It is possible to combine contractors to solve systems of constraints. Considering two contractors
C1 and C2, the following operations are defined [47]:

(C1 ∩ C2)([x]) = C1([x]) ∩ C2([x]) (4.51)
(C1 t C2)([x]) = C1([x]) t C2([x]) (4.52)

(C1 ◦ C2)([x]) = C1(C2([x])) (4.53)
C∞1 ([x]) = C1 ◦ C1 ◦ ... ◦ C1([x]) (4.54)

where t is the union hull defined as follows:

[x] t [y] = J[x] ∪ [y]K (4.55)

Consequently, complex contractors can be built based on primitive contractors.

Example

Consider the range-only localization problem, where a robot described by its position x =
(x1, x2) measures with an exteroceptive sensor some distances to a set of three landmarks (or
beacons) Mi with i ∈ {1, 2, 3} defined by their position mi = (mi

x,m
i
y). Figure 4.6(a) depicts

the situation where the position of the robot is drawn by a yellow AUV. The landmarks are
represented by red dots. This leads to the following observation function on the landmark i:

di =
√

(x1 −mi
x)2 + (x2 −mi

y)2 (4.56)
where di is the distance measured. This latter is not known accurately and lies in an interval:
di ∈ [di]. The errors on the measurements is 30cm. Table 4.1 indicates the position of the
landmarks, the true distances d∗i and the bounded measurements (distances).

mi d∗i [di]
M1 (15, 4) 10.05 [9.75, 10.35]
M2 (0, 6) 5.1 [4.8, 5.4]
M3 (8, 9) 5 [4.7, 5.3]
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Table 4.1: Landmark’s positions and measurements.

The set of feasible positions of the robot according to the measurement on the ith landmark
is defined by:

Xi = {x ∈ R2|∃di ∈ [di], (x1 −mi
x)2 + (x2 −mi

y)2 = d2
i } (4.57)

These sets for each landmark measurements correspond to rings around the position of the
landmarks as it can be seen in Figure 4.6(a).

A contractor can be built based on this observation function considering the contractors
C−, C+, C(.)2 and C√. which are elementary constraints. Using a forward/backward propagation
algorithm, a contractor Cdi consistent with Xi is then built by combining these primitive con-
tractors for each landmark. Therefore, three contractors are built.

The position of the robot is given by the intersection of the three sets Xi and then is given
by:

X = X1 ∩ X2 ∩ X3 (4.58)

The contractor CX consistent with the solution set X is given by:

CX = Cd3 ◦ Cd2 ◦ Cd1 (4.59)

the composition of the three contractors.

When using contractors, the idea is to get the smallest box enclosing the solution set. The
contractor CX is then iteratively composed, denoted as C∞ = CX◦CX◦...◦CX until a fixed point is
reached. Due to the monotonicity of the contractors, it can be proved that the iterated C∞ will
always converge to the smallest box, regardless the order of the contractors in the composition
[222].

The initial position of the robot is assumed unknown [x]0 = [−∞,∞]2.

Figure depicts 4.6, step by step, the propagation process. Firstly, the position of the robot
is unknown as no measurements are given. Any box can enclose the position as shown in Fig-
ure 4.6(a). The first contraction Cd1([x]0) based on the bounded range measurement coming
from M1 gives a box that encloses the ring around M1 and is shown by a red box in Figure
4.6(b). Based on the second measurement, the second contraction Cd2 on the box obtained
(from the first contraction), represented in blue in Figure 4.6(c), gives a new red box, that is
consistent with the constraint on the second measurement associated to the second landmark.
Finally, similarly, the third measurement coming from the third landmark reduces the box size
in Figure 4.6(d). Until now, one iteration step CX has been proposed. This process is iterated
until no more contraction is possible as depicted in Figure 4.6(e) after 10 iterations. A zoom
is provided in Figure 4.6(f). The result gives an over-approximation (outer-approximation) of
the solution. To get a better approximation of the solution and to reduce the pessimism of the
solution, the idea is to bisect (split into two parts) the final box obtained after the 10 iterations
and then apply again the contractor CX on each part. This process can be recursively applied
until the width of the resulting subboxes is smaller than a given threshold. This concept will
be presented by the SIVIA algorithm.
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(a) Initial situation: the position of the
robot is unknown.
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(b) Contraction from M1’s measurement.
The red box depicts the contraction.
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(c) Contraction from M2’s measurement.
The blue box represents the box before the

contraction.
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(d) Contraction from M3’s measurement.
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(e) Fixed point result after 10 iterations.
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(f) Zoom on the fixed point result.

Figure 4.6: Localization with contractors based on range-only measurements. The landmarks
are depicted by red dots and the true position of the robot is drawn by a yellow AUV. It shows
the successive contractions coming from the range bounded measurements.
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4.4.2 Separators
The contractor consistent with a given set X only provides an outer approximation of the
solution set. If the set X has not an empty volume (points exist in X that do not are on the
border), it can be interesting to prove that a part of the initial space belongs to this solution
set. This can be done by considering the complementary contractor consistent with X. An
inner and an outer approximation of the solution can be characterized with a separator [140].

4.4.2.1 Definition

A separator S associated to a set X is defined as follows:

S : IRn → IRn × IRn

[x] 7→ ([xin], [xout]) (4.60)

with the properties:

[x] = [xin] ∪ [xout]
[xout] ∩ X = [x] ∩ X (4.61)
[xin] ∩ X = [x] ∩ X

A separator can be seen as a pair of contractors {S in,Sout} and so for all [x] ∈ IRn:

S in([x]) ∪ Sout([x]) = [x] (4.62)

A set X is consistent with the separator S (X ∼ S) if:

X ∼ Sout and X ∼ S in (4.63)

where X = {x|x /∈ X}. The separator can then be rewritten as the pair of contractors {C, C}
where C is consistent with X and C is consistent with X (C ∼ Sout and C ∼ S in). The concept
is depicted in Figure 4.7.

S in([x])
X

Sout([x])

[x]

[x]

Figure 4.7: Separator applied on two boxes. The outer contractor removes the blue dashed
area and the inner contractor the red dashed area.
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The inclusion between two separators S1 and S2 can be defined as follows:
S1 ⊂ S2 ⇔ S in1 ⊂ S in2 and Sout1 ⊂ Sout2 (4.64)

A separator S is minimal if:
S1 ⊂ S ⇒ S1 = S (4.65)

If S is minimal, then the two contractors S in and Sout are both minimal.

4.4.2.2 Separators algebra

The separator algebra is an extension of the contractor algebra [47].

Considering a separator S = {S in,Sout}, the complement is defined as:
S = {Sout,S in} (4.66)

Considering two separators S1 = {S in1 ,Sout1 } and S2 = {S in2 ,Sout2 }, some operations can be
defined:

S1 ∩ S2 = {S in1 ∪ S in2 ,Sout1 ∩ Sout2 } (4.67)
S1 ∪ S2 = {S in1 ∩ S in2 ,Sout1 ∪ Sout2 } (4.68)
S1 \ S2 = S1 ∩ S2 (4.69)

(4.70)
For more details about separators, the reader may refer to [140].
Some examples will be provided in the next subsection when paver will be introduced.

4.4.3 Paver
The pessimism of some solution sets is highly important when the solution is made of holes
or non-connected subsets for example. The previous example on the range only localization
problem shows that the result was enclosed by a box at the intersection of the rings which was
an over approximation. The enclosure will only provide a solution with a strong pessimism. As
mentioned earlier, a solution to overcome this issue would be to divide the resulting box and
continue the contraction. This is the concept of the pavers. It results finally in a subpaving
which is the union of non-overlapping boxes [x]i included in [x]. A subpaving that completely
covers [x] is called a paving of [x]. A thinner approximation of a set X can be done by
characterizing two subpavings X− and X+ such that:

X− ⊂ X ⊂ X+ (4.71)
X− corresponds to the inner approximation of the set X and X+ to the outer approximation

as presented in Figure 4.8.

Figure 4.8: Inner and outer approximation of the set X. X− and X+ are two subpavings
enclosing the solution set. The boundary of the set belongs to the outer approximation and
not the inner one. Picture extracted from [274].
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Initially, the paver, called SIVIA1 [144], was developed to compute the reciprocal image
X ⊂ Rn such that X = f−1(Y) where Y ⊂ Rm is the image of the set X by a possibly non-linear
function f : Rn → Rm, known as the set inversion problem, formalized as follows:

X = {x ∈ Rn|f(x) ∈ Y} = f−1(Y) (4.72)

By considering the inclusion function [f] : IRn → IRm of the function f, this algorithm is able
to provide the approximation of the set X between the two subpavings X− and X+. A recursive
version of the SIVIA algorithm is proposed in Algorithm 7. The parameter ε is the precision
required.

Algorithm 7 SIVIA(in : [f],[x],Y,ε inout: X−,X+)
1: if [f]([x]) ∩ Y 6= ∅ then
2: if [f]([x]) ⊂ Y then
3: X+ ← X+ ∪ [x] . outer set
4: X− ← X− ∪ [x] . inner set
5: else if w∞([x]) < ε then
6: X+ ← X+ ∪ [x] . outer set only ([x] on the border)
7: else
8: bisect([x]) into [x]1 and [x]2
9: SIVIA([f],[x]1,Y,ε,X−,X+)
10: SIVIA([f],[x]2,Y,ε,X−,X+)

Starting from an initial defined box [x]0 ∈ IRn, it consists in deciding if the box belongs to
X+, both X+ and X− or none with some inclusion tests. If it cannot decide, as mentioned earlier,
it bisects the box and apply again the algorithm to test the two resulting boxes. Different tests
are checked in Algorithm 7:

• [f]([x]) ∩ Y = ∅: [x] does not belong to X (line 1).

• [f]([x]) ⊂ Y: any vector in [x] is solution ([x] ⊂ X), therefore [x] is stored in both X− and
X+ (lines 2, 3, 4).

• [f]([x]) has a non empty intersection with Y but it is not a subset of Y. This case is said
to be undetermined.

In that last case, two options are possible:

• if the width of the box [x] is smaller than the criterion ε (line 5), then the box is considered
too small with respect to the precision. This box is stored in X+ (line 6). It probably
contains the border of the set as depicted in Figure 4.8.

• otherwise (line 7), the box is bisected along the largest dimension (line 8) for example,
and the algorithm is applied again on these resulting subboxes (lines 9 and 10).

In this SIVIA algorithm, it only tests boxes with the inclusion function and it does not deal
with contractors and separators. The precision of the approximation is handled by the precision
parameter ε that defines the width of the interval [X−,X+]. The thinner the parameter is, the
better the approximation is.

The contractors and the separators have been developed to characterize more efficiently and
more rapidly the domain of the variables in a constraint network. This SIVIA algorithm has

1Set-Inversion via Interval Analysis (SIVIA)
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then been adapted to deal with contractors and separators. It results in a reduced number
of bisections needed to get the approximation. Algorithm 8 proposes the version adapted to
the separator as it can provide an inner (X−) and an outer approximation (X+) of a set X,
contrary to the contractors that can only provide an outer approximation. A separator S is
built according to a constraint network defining the set that is aimed to be characterized.

Firstly the algorithm initializes a list L (line 1) containing all the initial boxes. A single
box [x]0 is usually stored in the list, but it is possible to partition the space in non-overlapping
boxes before. Secondly it pulls a box [x] from the list (line 3) and uses the separator S to
contract the box into two boxes [xin] and [xout] (line 4). Then it stores the part (¬S in([x]))
proved to be inside X into X+ and X−. Then it computes the border ∂S([x]) by intersecting
the two resulting boxes [xin] and [xout]. If this box is too small compared to the precision ε, it
is stored inside X+. Otherwise it is bisected along its largest dimension and the two resulting
boxes are stored in the list L. The algorithm stops when no more box is inside the list. The
final result is the enclosure X− ⊂ X ⊂ X+ with the two subpavings X− and X+.

Algorithm 8 Separator paver(in: [x],S,ε out: X−,X+)
1: L : = {[x]} . initialize the list
2: while L 6= ∅ do
3: Pull [x] from the list L
4: {[xin], [xout]} = S([x])
5: Store [x] \ [xin] into X− and into X+

6: [x] = [xin] ∩ [xout]
7: if w∞([x]) < ε then
8: Store [x] into X+

9: else
10: Bisect [x] and push the two resulting boxes into L

Example 1

Consider the set:
X = {x ∈ R2, (x1 − 1)2 + (x2 − 2)2 ∈ [1, 2]} (4.73)

which is a ring centered at (1, 2) with a thickness of 1. The minimal contractor CX consistent
with X is built using the classical forward/backward propagation. A paver adapted to the con-
tractor (not given here) provides an outer approximation of the solution set depicted in Figure
4.9(a). It only removes the part of the space outside X (drawn in blue). Due to the consistency
(Equation 4.44), the contractor CX cannot contract boxes already included in X. Consequently
it bisects the boxes until it reaches the threshold value ε.
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(a) Paving from the contractor CX. Blue
boxes are outside the solution set and no
conclusion can be made for yellow boxes.
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(b) Paving from the separator SX. Blue
boxes are outside the solution set, red

ones are inside and no conclusion can be
made for yellow boxes.

Figure 4.9: Approximations of the set X.

By considering the complementary X:

X = {x ∈ R2, (x1 − 1)2 + (x2 − 2)2 /∈ [1, 2]} (4.74)

the separator SX consistent with X can be built based on the pair of the contractors {CX, CX}.
Using the paver given in Algorithm 8, the result of the separator is depicted in Figure 4.9(b).
Now it is possible to get an inner approximation X− painted in red. The blue boxes are outside
X. The yellow boxes are on the frontier and belong, as mentioned, to the outer approximation
X+ with the red ones. The parameter ε handles the precision of the paving (ε = 0.01 here).

Example 2

Come back to the previous example of the range only localization problem. The contractors
were built for the three measurements on the three landmarks based on the bounded distances.
The global contractor consistent with the set X that corresponds to the position of the robot
based on the three bounded measurements and the position of the landmarks can be built as
follows:

CX = Cd1 ∩ Cd2 ∩ Cd3 (4.75)

Similarly the separator SX can be built by considering the complementary sets of the three
constraints.

The results using the contractor and the separator are depicted in Figure 4.10 where the
box outside the set X are not represented for ease of interpretation. The box obtained by the
iterative contractions at the fixed point is represented in red (enclosing box). Different values
of ε are used to show the accuracy of the solution set. The figures on the left have a precision
value of 0.1 and the figures on the right 0.01. The figures on the top are the pavings obtained
with the contractor. When the precision is high (smallest ε) there are too many boxes such
that only black contours are visible. Similarly it comes from the consistency property. At the
bottom, the figures show the results of the separator. It is possible to characterize the inner
solution of the problem. Notice that the results obtained from both are better approximations
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of the solution set than the enclosing box from the iterative contractions (red box). This comes
from the bisections in the paver.
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(a) Paving obtained using the contractor
with ε = 0.1.
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(b) Paving obtained using the contractor
with ε = 0.01. The boxes are too small, the

contour of the boxes in black is
predominant.
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(c) Paving obtained using the separator
with ε = 0.1.
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(d) Paving obtained using the separator
with ε = 0.01.

Figure 4.10: Approximations of the solution set for the range only localization problems. Boxes
outside (generally blue) of the set X are not represented for ease of interpretation. A zoom on
the solution set is depicted. The true position of the AUV is shown in green. The big red box
was the box obtained after the successive contractions at the fixed point.

4.4.4 Inversion of separators
A set can be represented by a separator. The inversion of a separator [140] enable to get the
inverse image of a set by a function as in the set inversion problem defined in the Equation
4.72 and remind here.

The inverse of a set Y ⊂ Rm by a function f : Rn → Rm is expressed as follows:

X = {x ∈ Rn|f(x) ∈ Y} = f−1(Y) (4.76)
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If a contractor CY consistent with Y is available, a contractor CX for X can be defined as
shown in [46]. The contractor CX is called the inverse of CY by f. Similarly the inverse of a
separator [140] SY associated to a set Y can be defined:

f−1(SY) = {f−1(S inY ), f−1(SoutY )} (4.77)
Theorem 4.4.1 The separator f−1(SY) is a separator consistent with the set X = f−1(Y):

f−1(Y) ∼ f−1(SY) (4.78)

Proof

Y ∼ {S inY ,SoutY }
⇔ Y ∼ SoutY ,Y ∼ S inY
⇒ f−1(Y) ∼ f−1(SoutY ), f−1(Y) ∼ f−1(S inY ) (4.79)
⇔ f−1(Y) ∼ f−1(SoutY ), f−1(Y) ∼ f−1(S inY )
⇔ f−1(Y) ∼ {f−1(S inY ), f−1(SoutY )}
⇔ f−1(Y) ∼ f−1(SY)

Definition

If f : Rn 7→ Rn is a bijective function, then the image by f of a separator SX is defined as
follows:

f(SX) = f ◦ SX ◦ f−1 (4.80)
Example

Consider the set defined by:
Y = {y ∈ R2|y1 ∈ [3, 5] and y2 ∈ [1, 2]} (4.81)

and the rotation of angle π
4 as function f denoted Rπ

4
. This is a bijective function meaning

that the inverse function can be computed f−1 which corresponds to R−π4 . A separator SY is
built for Y and the result of the rotation Rπ

4
using the definition and the theorem is depicted

in Figure 4.11.
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Figure 4.11: Inversion of a separator by a rotation of angle π
4 .
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4.5 Specific contrators and separators
In the previous subsections, interval analysis tools have been presented such as contractors and
separators. Coupled with a paver, they enable to compute an inner and an outer approximation
of a set defined by constraints. In this subsection some contractors and separators will be
introduced that deal with the problem of observation. Indeed an exteroceptive sensor provides
information that can be described by an equation, an inequality, a shape, an image, etc...
Contractors and separators can describe these sets by means of constraints. Some operators on
these sets have to be handled before any processing. It will be assumed a 2D environment.

4.5.1 Separators on images
In the context of imagery, such as the underwater sonar imagery, the object manipulated is a
color or grayscale image for example and not a set. To create sets, it is necessary to extract
information from the image and create a binary image of the specific object. Generally some
image processing techniques are used to binarize the images, that were discussed in Chapter 2
in sonar imagery. It will be assumed that a technique provides a binary image that represents
an unstructured dataset X. This binary image is an occupancy grid where the pixels at 1
correspond to the set X and the pixels at 0 to the complementary. In Chapter 2, a detector
based on the integral image was introduced. This integral image will be used again to propose
an image contractor.

4.5.1.1 Image contractor

The image contractor was proposed in [295] where it used the integral image introduced in the
subsection 2.4.2 (Chapter 2).

Based on the computation of the integral image, called I, and according to Equation 2.15,
it is quite easy to compute the number of 1-valued pixels of the binary image in any rectangle.
Denote as φ the function that gives the number of occupied cells in a given box [x] = [x−1 , x+

1 ]×
[x−2 , x+

2 ] of IR2 overlaid on the image (grid). The four corners of this box are A = (x−1 , x−2 ),
B = (x+

1 , x
−
2 ), C = (x−1 , x+

2 ) and D = (x+
1 , x

+
2 ) according to the convention in Figure 2.18. The

function φ gives then according to Equation 2.15:

IR2 → N
φ([x]) 7→ I(A) + I(D)− I(B)− I(C) (4.82)

From an initial box [x0], the image contractor consists in finding the smallest box [x] in-
cluded in [x0] which contains exactly the same number of 1-pixels (φ([x0]) = φ([x])).

World coordinates have to be taken into account to build a contractor on a georeferenced
image. If p0 are the coordinate of the top-left corner and ε = (εx, εy) the horizontal and vertical
pixel sizes, the change between the image coordinate [x] to the workspace coordinates [xworld]
is:

[xworld] = p0 + [x] · ({0} ∪ {ε}) (4.83)
Due to the image convention where the vertical axis is oriented downward, the value of εy is

negative and ({0} ∪ {ε}) is equal to [0, εx]× [εy, 0].

When a set X is represented by a binary image, this latter has to be enlarged by one pixel
to describe an over approximation of the set X to keep the consistency of the contractor. It
will then be minimal according to the image and to the set.
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4.5.1.2 Image separator

A separator, as previously introduced, can be built by using two complementary contractors.
Considering two images representing an upper and lower approximations of a set X, a separator
can be built with contractors on each approximated images [71].

x1

x2

X+

X−

X

(a) Black pixels are inside the set X (lower
approximation X−), the white ones outside

and the gray ones are on the border.

x1

x2

(b) Image used by the outer contractor
(CX ∼ SoutX ). Gray pixels are at 1 and white

ones are null.

x1

x2

(c) Image used by the inner contractor
(CX ∼ S

in
X ). Gray pixels are at 1 and white

ones are null.

Figure 4.12: Image separator for the set X depicted by the black dashed area.

Example

A binary image is randomly drawn by hand in Figure 4.13(a). The paving for this separator
associated to this shape is represented in Figure 4.13(b) where the contour of the shape is
depicted by the red line.
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(a) Random shape. White pixels represent the lower
approximation.
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(b) Separator for the associated image.
White boxes are outside, cyan pixels are

inside and yellow ones no conclusion can be
made. The contour of the shape is

represented in red.

Figure 4.13: Image separator. The scale is not the same in the two images.

4.5.2 Polar separator
Many sensors in robotics applications provide distance (range) and goniometric (bearing) mea-
surements such as the Forward Looking Sonar (FLS). It is then important to handle correctly
the change between the polar coordinates system to the Cartesian ones when bounded dis-
tance and bearing are provided. The polar equations refer generally to the system where the
continuity on θ has to be handled:

x = ρ cos θ (4.84)
y = ρ sin θ (4.85)

ρ =
√
x2 + y2 (4.86)

θ = atan2(y, x) (4.87)

The conversion from polar coordinates to Cartesian is defined as the polar set:

Xpolar = {(x, y) ∈ R2|(x, y) = fpolar(ρ, θ)} (4.88)

On the domains (x, y) ∈ R+ × R+ and (ρ, θ) ∈ R+ × [0, π4 ] the polar function fpolar is:

fpolar
(
ρ
θ

)
=
(
ρ cos θ
ρ sin θ

)
(4.89)

The inverse of the polar function is:(
ρ
θ

)
= f−1

polar

(
x
y

)
=
(√

x2 + y2

atan( y
x
)

)
(4.90)

By using the symmetries and composing transformation functions, the initial domains for
(x, y) ∈ R+ × R+ and for (ρ, θ) ∈ R+ × [0, π4 ] can be extended to R2 and R2 according to
[27][289][71].
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Given a bounded range [ρ] and bearing [θ] measurement, the polar set can be rewritten as:

Xpolar = {(x, y) ∈ R2|∃ρ ∈ [ρ],∃θ ∈ [θ],
√
x2 + y2 = ρ and atan2(y, x) = θ} (4.91)

= {(x, y) ∈ R2|∃ρ ∈ [ρ],∃θ ∈ [θ], (x, y) = fpolar(ρ, θ)} (4.92)
= {(x, y) ∈ R2|(x, y) = fpolar([ρ], [θ])} (4.93)

A minimal polar separator has been proposed for Equation 4.93 in [72] using the concept of
projections. This function is called SepPolarXY in pyIbex. Given a measurement [y] = [ρ]× [θ],
the minimal separator for the polar set will be denoted as: S [y]

f−1
polar

.

A separator for the polar constraint can be built considering two manners:

• Using a classical forward-backward propagation in Equation 4.91.

• Using the minimal polar separator S [y]
f−1
polar

that has been defined.

Based on the measurement [y] = [ρ]× [θ] (range and bearing measurements), the separator
for the polar constraint using one of the two approaches will be denoted S [y]

pol in the following
of this thesis.

Example 1

Consider a robot located at x = (x1, x2) and a punctual landmark at a known position
m = (m1,m2) = (5, 6). The robot measures the distance d and the direction θ in the local
reference frame with a bounded error, leading to two intervals [d] and [θ] respectively. In this
example, [y] = [d] × [θ] = [3, 4] × [π4 ,

π
3 ]. The set X of feasible robot location is defined as

follows:

X = {x ∈ R2|∃d ∈ [d],∃θ ∈ [θ],x +
(
d cos θ
d sin θ

)
= m} (4.94)

= {x ∈ R2|∃d ∈ [d],∃θ ∈ [θ],m− x =
(
d cos θ
d sin θ

)
} (4.95)

It gives for the set X:

X = {x ∈ R2|∃y ∈ [y],m− x = fpolar(y)} (4.96)
= {x ∈ R2|m− x = fpolar([y])} (4.97)
= gm ◦ fpolar([y]) (4.98)

where the function fpolar has been defined in Equation 4.89 and the function gm is:

gm(x) = m− x (4.99)

This latter function corresponding to a translation is box-conservative.

Firstly, a separator for the polar constraint has to be built according one of the two manners.

Secondly, the final separator consistent with X is given by:

SX = gm ◦ S
[y]
pol (4.100)
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Finally by using the concept of inversion of separators and due to the fact that gm is bijec-
tive, the set X can be obtained.

The results from the two methods are depicted in Figure 4.14 where the set X using the
classical forward-backward separator is illustrated in Figure 4.14(a) and using the minimal sep-
arator is proposed in 4.14(b). The difference can be seen in the manner it contracts on the set
X. More bisections are needed for the classical forward-backward separator.
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(a) Classical forward-backward
separator.
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(b) Minimal polar separator.

Figure 4.14: Approximation of X where the initial domain is X0 = [0, 8]2. The landmark
position is drawn by a green disk, one position of the AUV is drawn by a green AUV with the
associated distance and bearing measurements depicted by a red pie.

Example 2

Come back again on the problem of the range only localization but consider now that bearing
is also measured. Assume that bearing is measured with a bounded uncertainty of 5◦, meaning
that the true bearing remains in an interval of ±5◦ around this angle. Table 4.2 sums up the
different positions and measurements.

mi d∗i (m) [di] (m) θ∗i (deg) [θi](deg)
M1 (15, 4) 10.05 [9.75, 10.35] −5.7 [−10.7,−0.7]
M2 (0, 6) 5.1 [4.8, 5.4] 168.7 [163.7, 173.7]
M3 (8, 9) 5 [4.7, 5.3] 53.1 [48.1, 58.1]

Table 4.2: Landmark’s positions and measurements.

The feasible robot position X is given by:

X = ∩
i
gmi
◦ fpolar([yi]) (4.101)

Using the polar separator S [yi]
pol introduced where [yi] = [di] × [θi], the associated separator

SX is then:
SX = ∩

i
gmi
◦ S [yi]

pol (4.102)
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The result is given in Figure 4.15 where black pies are projected on the landmark position
based on the uncertain measurements according to the true robot location in Figure 4.15(a). A
zoom is provided in Figure4.15(b) where the green pies represent the projection of the uncertain
measurements on the robot location according to the landmark position.
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(a) Approximation of the set with black
pies representing the uncertain
measurements projected on the
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of the robot.
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(b) Zoom of the solution with green pies
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location, represented by the yellow AUV,
of the uncertain measurements according

to the landmark’s positions.

Figure 4.15: Approximation of the X.

Example 3

Another example of the range-bearing localization with values given in Table 4.3 considering
three landmarks or beacons.

mi [di] (m) [θi](deg)
M1 (8, 0) [10.5, 12] [−45, 0]
M2 (−2,−5) [8, 10] [−130,−70]
M3 (−3, 10) [5, 7] [63, 150]

Table 4.3: Landmark’s positions and measurements.

Consider now that outliers are present among the measurements (false detection for ex-
ample). The solution of the set X is now given by the q-relaxed intersection [145][41]. The
associated separator is then:

SX =
{q}⋂

i∈{1,2,3}
gmi
◦ S [yi]

pol (4.103)

The 0 -relaxed intersection is the classical intersection where the result is depicted in Figure
4.16(a). The 1 -relaxed intersection corresponds to the set considering one false measurement
shown in Figure 4.16(b). It is given by the union of each pair of intersection (considering two
measurements each time). Finally the 2 -relaxed intersection considers that two outliers are
among the measurements and then the robot’s position could be anywhere in the union of the
corresponding set for each landmark as shown in Figure 4.16(c).
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(b) 1 -relaxed intersection.
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(c) 2 -relaxed intersection.

Figure 4.16: Approximation of the X considering the q-relaxed intersection. Green pies depict
the projection of the range and bearing measurements according to the landmark’s positions
onto the robot location.

4.5.3 Projection of separators
The notion of projection associated to separators [74] is now introduced as it will be the main
operator to solve some problems in this thesis.

Definition 1

Given two sets X ⊂ Rn and Y ⊂ Rp. Considering the set Z = X × Y, the projection of a
subset Z1 of Z onto X (with respect to Y) is defined as follows:

projX(Z1) = {x ∈ X|∃y ∈ Y, (x,y) ∈ Z1} (4.104)

Figure 4.17 depicts the projection in red of the Z1 ⊂ Z drawn in blue onto the set X (here
the bottom plane).
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Z1

Y

X

projX(Z1)

Figure 4.17: Set projection.

If a separator is available for Z1, a separator consistent with projX(Z1) can be built.

Definition 2

Considering the box [x] × [y] and a contractor C. The contractor C([x], [y]) describes the
contraction on this box. The partial contractor with respect to x is defined as the projection
of the box after the contraction C([x], [y]) onto x:

∂xC([x], [y]) = [a] and ∂yC([x], [y]) = [b] (4.105)

where ([a], [b]) = C([x], [y]) the contraction of the box [x]× [y] according to C.

Definition 3

Now, consider the separator S([x], [y]) = {S in([x], [y]),Sout([x], [y])} on the box [x] × [y].
The projection of S is defined as follows:

projx(S)([x]) =

 ⋂
y∈[y]

∂xS in([x], [y]),
⋃

y∈[y]
∂xSout([x], [y])

 (4.106)

where ∂xS in and ∂xSout denote the partial contractors for the inner and the outer contractor
respectively, introduced in Definition 2.

Theorem 4.5.1 If a separator S is consistent with the set Z then:

projx(Z) ∼ projx(S) (4.107)

Proof: It is sufficient to prove that the outer contractor is consistent with projx(Z) and the
inner contractor is consistent with the complementary projx(Z).

137



CHAPTER 4. INTERVAL ANALYSIS

Firstly:

projx(Z) = {x|∃y ∈ [y], (x,y) ∈ Z} (4.108)
=

⋃
y∈[y]
{x, (x,y) ∈ Z} (4.109)

∼
⋃

y∈[y]
∂xSout (4.110)

Secondly, since Z ∼ S in:

projx(Z) = {x|∃y ∈ [y], (x,y) ∈ Z} (4.111)
= {x|∀y ∈ [y], (x,y) /∈ Z} (4.112)
= {x|∀y ∈ [y], (x,y) ∈ Z} (4.113)
=

⋂
y∈[y]
{x, (x,y) ∈ Z} (4.114)

∼
⋂

y∈[y]
∂xS in (4.115)

In pyIbex library, the implementation of the projection of separators is based on Proj-Union
and Proj-intersection described in [47]. It consists in splitting the initial domain [y] into a list
of small intervals [yi]. The outer contraction is realized on each sub-subdomain [x]× [yi] and
the hull of the results is returned. Points yi are sampled in [yi] and the inner contraction is
applied on each [x]× {yi}. The intersection is then returned. A parameter ε has to be defined
as the size of the split. The projection assumes that the set Z does not have an empty volume
to define an inner contractor.

Example

Consider the sets A ⊂ R, B ⊂ R, T ⊂ R and define the set X = A × B. The set Z ⊂ X is
defined as follows:

Z = {(a, b) ∈ A× B|∃t ∈ T, at2 + bt+ 1 ≤ 0} (4.116)

This set Z corresponds to the values (a, b) ∈ A × B such that the equation at2 + bt + 1 is
lower than 0 at a time t. This latter may be different depending on the box [a]× [b]. This set
corresponds to the projection of the set X× T onto X with respect to the time T. A separator
S is firstly built according to the constraint at2 + bt + 1 ≤ 0 expressed in Equation 4.116.
Three parameters define the constraint. A separator SZ ∼ projX(S) can then be built for the
projection according to Theorem 4.5.1.

With A = [−5, 5], B = [−5, 5] and T = [0, 20], the paving obtained for the set Z ⊂ A× B is
depicted in Figure 4.18.

138



CHAPTER 4. INTERVAL ANALYSIS

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

y (m)

x (m)

Figure 4.18: Inner and outer approximation of the set Z. Blue boxes are outside the set, red
ones are inside and yellow ones no conclusion can be made.

The temporal curves according to the equation y = at2 + bt+ 1 are depicted in Figure 4.19
for some points (a, b) shown in the result in Figure 4.18 for the set Z. Cyan points in Figure
4.18 are temporally represented in blue in Figure 4.19(a). It is proved that at a certain time t
the value y = at2 + bt+ 1 is lower than 0. If a is below 0, the inequality expressed in Equation
4.116 is always true for t ≥ 0. The green dots depicted in Figure 4.18 do not cross the x-axis,
it is always upper than 0 for t ≥ 0 as represented in Figure 4.19(b).

(a) Blue curves cross the x-axis at a certain
time contrary to the green curve that is always

upper than 0.

(b) Zoom for the two green curves associated to
the two green dots.

Figure 4.19: Some temporal curves according to points depicted in Figure 4.18. Cyan dots
correspond to blue curves and green dots to green curves. The red curve depicts the x-axis.

4.6 Conclusion
In this Chapter, the interval analysis theory has been introduced with some operators on sets
such as unions, intersections, projections, inversions, etc... When dealing with sets defined by
constraints, contractors have been developed to characterize more efficiently and more rapidly
the sets based on a forward-backward propagation algorithm. However this propagation can
only provide an over approximation of the sets. Coupled with a paver, a contractor overcomes
this issue by providing a better approximation of the sets, called an outer approximation, with
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only one parameter to set up: ε. However, when dealing with sets where the volume is not empty,
the paver with the contractor only provides an outer approximation of the sets leading to many
bisections for boxes that are actually inside the sets. An inner approximation is not available.
By considering the complementary set, a separator overcomes this problem by providing at
the same time the inner and the outer approximations of the sets coupled with a paver again.
Set-membership methods have proven to be well-suited to solve engineering problems when
equations are non-linear and non-convex due to their efficiency to handle and propagate the
uncertainties, and to manipulate sets that are defined by constraints. However, the performance
of paving methods rely on the accuracy of the contractors, meaning the minimality of the
contractors. Some operators such the image separator and the polar separator have been
introduced that can deal with images and measurements that are frequently provided by sonar
sensors such as the Forward Looking Sonar (FLS). The notion of projections of separators
shows many interests to deal with many variables and will be at the heart of the resolution of
many problems in the next Chapters. In many robotics applications, the notion of registration
is important to relocate the robot and to reduce its uncertainty. The registration will be the
topic of the next Chapter in this set-membership context.
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Chapter 5

Registration maps

5.1 Introduction
In Chapter 2, many detectors are presented to extract landmarks from an underwater envi-
ronment using sonars. Indeed acoustics is able to provide information in dark environment
compared to cameras that require some lights. Many landmarks may be detected in this chal-
lenging environment such as rocks, man-made objects, textures of seabed, etc... All these
landmarks can be detected based on the parameters of the sonar and the characteristics of
the vehicle that is carrying the sensors. These landmarks are usually well geolocalized thanks
to a reliable navigation of the platform, i.e. surface vehicle or Unmanned Underwater Vehicle
(UUV), and performant exteroceptive sensors such as sidescan sonars or Synthetic Aperture
Sonar (SAS). From these landmarks, when a revisit mission is required, a registration map can
be computed based on the exteroceptive abilities of the revisit vehicle. Indeed, in the context
of Mine Counter Measure (MCM) missions, revisiting a previously suspicious mapped object is
important to identify and/or neutralize it. This registration map indicates locations where the
robot could reduce its uncertainty by detecting again the landmarks. The concept of registra-
tion maps is not new. In Chapter 3, the Sensory Uncertainty Field (SUF) [304] was introduced
that indicates at different poses of the robot in a geometrical a priori known world the ability
to relocate at these poses with laser measurements. Based on the Field Of View (FOV) of the
sensor, a localization space is computed according to the placement of landmark.

In the previous Chapter, the set-membership tools have been introduced where sets are de-
fined by constraints. Separators, coupled with a paver, enable to provide an inner and an outer
approximation of a set when its volume is not empty. These tools are particularly well-suited
when dealing with observations such as shapes from images or range-bearing measurements.

In this Chapter, it will be assumed a patch exploration revisit sensor with limited abilities.
It means that the sensor is able to detect in a restricted FOV between some ranges and/or aper-
ture angle. These sensors refer to cameras or Forward Looking Sonar (FLS). This restricted
visibility of the sensor can be defined by constraints. It will be assumed that the map M is
composed of any shaped landmarks and the visibility of the sensor (measurements) are subsets
of Rq where q is the dimension of the map (2 or 3 generally). For simplicity reasons, only the
2D case will be developed but the method could obviously be extended to 3D. The map and
the visibility of the sensor are called shapes.
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5.2 Registration map
The concept of registration map will be firstly presented under the assumption that the sensor
measurements and the map are perfect. No uncertainty is present.

5.2.1 Visibility area
As mentionned in the introduction, it will be assumed in this Chapter an exteroceptive sensor
with limited sensing abilities. Dealing with ranging and imaging sensors, known as patch explo-
ration [73], it will be assumed that the robot can observe the environment between a minimal
(could be 0) and a maximal range, and potentially with a limited aperture angle. These refer
to a limited FOV of the sensor. These limited sensing abilities can be defined as constraints
as introduced in the previous Chapter. These sensors may refer to cameras, FLS or 3D FLS
for example. A sensor that can sense with a 360◦ aperture angle is said to detect isotropically.
Assuming a 2D environment for ease of proving the concept, the visibility area V ⊂ R2 corre-
sponds to the area on the seabed that is visible by the sensor depending on the robot pose x.
The visibility area is also called the sensor field of view in [260].

The problem of the visibility area aims at finding the set V(x) such that:

V(x) = {z ∈ R2|f(x, z) ∈ [y]} (5.1)

where f denotes the range and bearing equations according to the pose of the robot x and [y]
the intervals of sensing abilities. For example, [y] = [0, 10] × [0, 360](m × deg) corresponds to
a sensor that can detect up to 10m with a 360◦ aperture angle (isotropically). The visibility
area V(x) is a subset of R2.

The two different sensors will be developed in the following subsections.

5.2.1.1 Limited range with 360◦ aperture angle

The sensor can detect between a minimal Rmin and a maximal Rmax range. This sensor is then
able to detect in an interval [Rmin, Rmax]. As it can detect isotropically, this will be the single
constraint on the visibility area which is defined as follows:

V(x) = {z ∈ R2|
√

(z1 − x1)2 + (z2 − x2)2 ∈ [Rmin, Rmax]} (5.2)

Due to the isotropic ability of sensing, the robot pose x can only be described by its location
(x1, x2) = (x, y) where x and y are the coordinates of the robot. It is not dependant on the
heading θ. This constraint can be defined as presented by an associated separator SX.

This set corresponds finally to a ring as depicted in Figure 5.1(b) or a disk, as shown in
Figure 5.1(a), if Rmin equals to 0 around the robot position x = (8, 9).
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(a) Range of detection in the interval
[0, 10]m.
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(b) Range of detection in the interval
[3, 10]m.

Figure 5.1: Visibility area for an isotropic sensor with limited ranges. The position of the robot
is represented by the yellow AUV. The heading is not significant. The green line shows the
contour.

5.2.1.2 Limited range and aperture angle

Generally, cameras or FLS can detect between a minimal Rmin and a maximal Rmax range and
have a limited aperture angle. This is defined as an additional constraint to the previous range-
only sensor. The robot can then detect in a cone with an opening angle 2θ3, referring to the
aperture angle of a sonar. The heading of the robot has to be considered now. Depending on
how the sensor is mounted on the AUV, it may be side-looking or forward-looking, the visibility
area may be different. Assuming for example a forward looking sensor where the main direction
of sensing coincides with the heading of the robot, the visibility area is defined as follows:

V(x) = {z ∈ R2|
√

(z1 − x1)2 + (z2 − x2)2 ∈ [Rmin, Rmax]
and atan2(z2 − x2, z1 − x1)− x3 ∈ [−θ3, θ3]} (5.3)

where x = (x1, x2, x3) = (x, y, θ) and θ3 corresponds to the half aperture angle.

This set corresponds to a similar set expressed in Equation 4.95. It can be rewritten as:

V(x) = {z ∈ R2|∃r ∈ [Rmin, Rmax],∃β ∈ [−θ3, θ3], z−
(
x1
x2

)
=
(
r · cos(x3 + β)
r · sin(x3 + β)

)
} (5.4)

It corresponds to the composition of a translation gx(z) = z−
(
x1
x2

)
and a polar constraint

as presented in the previous Chapter. Using the separator S [y]
pol for the polar constraint, a sep-

arator can be obtained for the set V(x) based on the same concept as in Equation 4.100.

This set corresponds finally to a cone with a range between 0 and Rmax as depicted in Figure
5.2(a) for θ = 45◦ the heading of the vehicle located at (8, 9). It represents a pie, i.e. a cone
with cutting ranges, with a limited distance of detection between 3 and 10m in Figure 5.2(b).
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Figure 5.2: Visiblity area for a sensor with limited FOV in range and aperture angle. The pose
of the robot x = (8, 9, 45◦) is represented by the yellow AUV.

5.2.2 Definition of the problem
Given a visibility area A ⊂ R2 of a sensor, introduced in the previous section, and a landmark
described by B ⊂ R2 linked by a constraint L that depends on a parameter p ∈ Rp, the regis-
tration map problem is intended to find the set P of the parameters vector consistent with L.
This constraint is called the registration map.

The registration map problem aims at finding the set P that corresponds to the robot con-
figurations able to detect a part or entirely a landmark B based on the visibility area A of the
sensor. It consists then in finding the parameters vector p ∈ P of a possibly non linear transfor-
mation f such that f(p,A) ∩ B 6= ∅ as depicted in Figure 5.3. p1 belongs to the set P meaning
that after transformation by f, the visibility area A intersects B represented by the blue area.
On the contrary, p2 does not belong to P which leads to an empty intersection between B and
the transformed set f(p2,A). This defines the map registration constraint. The function f may
correspond to a translation, a rotation or the composition of both for example. This constraint
is justified by the fact that detecting an element of a landmark enables to relocate the robot
with respect to this landmark. The set B may be reduced to a singleton which is called a
punctual landmark.

This concept has similarities with the shape-registration problem where it is looking for the
set P such that f(p,A) ⊂ B presented in [71] and discussed in a next subsection.
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A
a1

a2

p1

p2

p1

B
P

b1

b2
f(p1,A) ∩ B 6= ∅

p2

f(p2,A) ∩ B = ∅

Figure 5.3: Example of the registration map concept associated to the constraint f(p,A)∩B 6= ∅.
The set P corresponds to the parameter of the function f such as the transformation of the shape
A intersects B. A parameter vector p2 outside the solution set does not enable the intersection
between B and the set A after transformation.

The registration map problem is formulated as a set projection. Consider a function:

f :
{

R2 × Rp → R2

(a,p) → f(a,p) (5.5)

With p ∈ RP , A ⊂ R2, B ⊂ R2 and Z ⊂ R2 × Rp, the following notations are used:

f(A,p) = {b|∃a ∈ A,b = f(a,p)} (5.6)
f−1(B) = {z = (a,p)|∃b ∈ B,b = f(a,p)} (5.7)

projp(Z) = {p|∃a, (a,p) ∈ Z} (5.8)

where the operator proj() has been introduced in the previous Chapter.

By considering the set:
P = {p ∈ Rp|f(A,p) ∩ B 6= ∅} (5.9)

The vector p is associated to a transformation f. A transformation vector p is consistent if
after the transformation of A, it intersects the set B. This leads to:

f(A,p) ∩ B 6= ∅ (5.10)
⇔ ∃a ∈ A, f(a,p) ∈ B (5.11)
⇔ ∃a ∈ A, (a,p) ∈ f−1(B) (5.12)
⇔ ∃a, (a,p) ∈ R2 × Rp ∧ (a,p) ∈ f−1(B) (5.13)

According to the notation in Equation 5.8, it results then:

P = projp((A× Rp) ∩ f−1(B)) (5.14)

If separators SA for A and SB for B are available, then a separator SP for P can be computed
using the separator algebra presented. The separator SP consistent with P is then given by:

SP = projp((SA × SRp) ∩ f−1(SB)) (5.15)

Coupled with a paver, this separator enables to provide an inner and an outer approximation
of the set P.

As defined, the registration map corresponds to the robot configurations able to detect the
landmark considered B according to the visibility area A. If the visibility area is computed
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at the particular location (0, 0, 0◦) for the robot pose, then the set P will correspond to the
robot configurations able to detect the landmark considering a function f that may be either a
translation, or a rotation or a composition of both. The function f depends on the FOV of the
sensor. For each of these transformations, the function f is bijective and the inverse function
f−1 can be computed.

Considering the general case where the function f corresponds to the composition of a ro-
tation and a translation, the parameter vector p is then p = (p1, p2, p3) ∈ R3 with (p1, p2) the
parameters of the 2D translation and p3 the angle of the rotation in the 2D plane. The final
function can be written as follows:

f :


R2 × R3 → R2

(x,p) → R(p3)
(
x1
x2

)
+
(
p1
p2

)
(5.16)

where R corresponds to the 2D rotation of angle p3:

R(p3) =
(

cos(p3) − sin(p3)
sin(p3) cos(p3)

)
(5.17)

This general case enables to handle the sensors with a limited aperture angle that depends
on the way it’s mounted in the vehicle. If the visibility area is a disk or a ring, i.e. only range
limited sensor, the parameter p3 does not need to be found. The set P may then be a subset of
R2 or R3. In both case, an inner and an outer approximation of the set P can be computed ac-
cording to Equation 5.15 if separators for the visibility area A and the landmark B are available.

Due to the bijection property of such transformations, the problem could be solved consid-
ering the inverse function f−1. Indeed, looking for the set P expressed in Equation 5.9, the
problem may be rewritten directly as:

SP = projp(f(SA) ∩ (SB × SRp)) (5.18)

with the inverse function f−1 defined as follows:

f−1 :


R3 × R2 → R2

(y,p) → RT (p3)
(
y1 − p1
y2 − p2

)
(5.19)

where RT is the transpose of R. It consists in finding the set P by moving the visibility area
A in order to intersect the landmark B.

In the following examples, only the case of a sensor with a limited range and aperture angle
is presented. Indeed, with this kind of sensor, the heading of the robot influences the visibility
area and so the registration map will be a 3D set.

Example 1

Consider an ellipse as a landmark where the set of points inside the ellipse are generated as
follows:

E = {x ∈ R2|(x1

a
)2 + (x2

b
)2 ≤ 1} (5.20)

where a and b are the semi-axis of the ellipse aligned with the reference system. This ellipse is
centered at (0, 0). A separator SE can be built consistent with the set E. A translation (tx, ty)
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and rotation of angle α can be applied to the separator SE to move and orientate the ellipse by
the function:

g :


R3 × R2 → R2

((tx, ty, α),x) → R(α)
(
x1
x2

)
+
(
tx
ty

)
(5.21)

The separator SB is then given by:
SB = g ◦ SE (5.22)

As the function g is invertible, to compute the set B, the inverse function g−1 has to be
considered which corresponds to:

g−1 :


R3 × R2 → R2

((tx, ty, α),x) → RT (α)
(
x1 − tx
x2 − ty

)
(5.23)

According to Theorem 4.4.1 or the definition 4.80 it is then possible to compute the set B.

With a = 10, b = 3, α = 30◦, tx = 20m and ty = 30m, it gives SB as depicted in Figure
5.4(a). Assume that the robot is equipped with a Forward Looking Sonar (FLS) that can only
perceive the area forward the AUV. A separator is then built at the particular location (0, 0, 0◦)
with a range of detection between 4 and 20m and a whole aperture angle of 60◦ as depicted
in Figure 5.4(b) using the polar separator. The set of robot configurations that can detect a
part of the landmark is computed according to Equation 5.15. The set P corresponds to a 3D
shape that indicates the robot locations (x, y) and the heading θ that allow the detection of the
landmark, i.e. p = (x, y, θ). For ease of interpretation, only slices of this 3D set are provided
to get a 2D representation.

Firstly, some slices at different heading values are provided in Figure 5.4(c)(d)(e) where some
AUV poses are presented in yellow with their visibility area shown by a blue pie. The contour
of the ellipse is represented by a red contour.

Secondly, some slices of the 3D set P at different x or y values fixed to get a (y−θ) or (x−θ)
representation of the solution sets are provided in Figure 5.5. For the different solution sets,
some AUV poses are chosen, depicted by a red dot in the solution sets and the fixed value,
and are represented in the 2D world ((x− y) coordinates) in the joint subfigure. In this latter,
the union of all the intersections between the visibility area at these different poses and the
landmark (ellipse) is provided.

Notice that in each case, the solution sets provide the solution of the problem even in 3D.
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(a) Landmark set B.
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(b) Visibility of the sensor at the
particular pose (0, 0, 0◦) drawn by the

AUV.
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(c) Registration map for a heading of the
AUV at 0◦.
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(d) Registration map for a heading of the
AUV at 45◦.
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Figure 5.4: Registration map for different headings of the AUV considering an ellipse as a
landmark and a forward looking sensor with limited range and aperture angle. Gray boxes are
inside the set, white ones are outside and dark gray ones no conclusion can be made. Some
poses of the AUV are depicted in yellow with the visible area drawn by blue pies.
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(a) Registration map with y = 20m fixed.
The representation is in the plane (x− θ).
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(b) Representation in the (x− y) plane
of the AUV poses depicted by red dots in

the figure (a).
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(c) Registration map with x = 5m fixed.
The representation is in the (y − θ) plane.
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(d) Representation in the (x− y) plane
of the AUV poses depicted by red dots in

the figure (c).

Figure 5.5: Registration map for x or y values fixed. Gray boxes are inside the set, white ones
are outside and dark gray ones no conclusion can be made. Some poses of the AUV are depicted
on the solution sets by red dots which are then represented in the (x− y) plane in yellow with
the visible area drawn by blue pies.

Example 2

Consider now a random shaped landmark B from an image separator as depicted in Figure
5.6(a). Using the same sensor as previously, the registration map can still be computed. Due
to the 3D shape of the solution sets, the results assuming a fixed heading are firstly provided
in Figure 5.6(b)(c)(d).

The results assuming a fixed x or y value to have the (y−θ) or (x−θ) solution are represented
in Figure 5.7 where some AUV poses depicted as red dots in the solution sets according to the
fixed value are represented in a joint subfigure for a representation in the 2D world ((x − y)
coordinates). Again the union of the intersection between the visibility area at these different
poses and the landmark is provided.
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(a) Random shape landmark set B built
with image separator.
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(b) Registration map for a heading of the
AUV at 0◦.
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(c) Registration map for a heading of the
AUV at 45◦.

25 30 35 40 45 50 55 60 65 70 75 80 85

5

10

15

20

25

30

35

40

45

50

55

60

65

y (m)

x (m)

(d) Registration map for a heading of the
AUV at 90◦.

Figure 5.6: Registration map for different headings of the AUV considering a random shape as
a landmark and a forward looking sensor with limited range and aperture angle. Gray boxes
are inside the set, white ones are outside and dark gray ones no conclusion can be made. Some
poses of the AUV are depicted in yellow with the visible area drawn by blue pies.
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(a) Registration map with y = 75m fixed.
The representation is in the plane (x− θ).
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(b) Representation in the (x− y) plane
of the AUV poses depicted by red dots in

the figure (a).
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(c) Registration map with x = 40m fixed.
The representation is in the plane (y − θ).
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Figure 5.7: Registration map for x or y values fixed. Gray boxes are inside the set, white ones
are outside and dark gray ones no conclusion can be made. Some poses of the AUV are depicted
on the solution sets by red dots which are then represented in the (x− y) plane in yellow with
the visible area drawn by blue pies.

Punctual landmark

As mentioned in Chapter 2, sometimes the landmarks are considered as punctual due to their
small size or for ease of interpretation. In this case, the set B is reduced to a singleton B = {b}.
The registration map is still computable. Considering the landmark position b = (b1, b2) where
(b1, b2) are the coordinates of the landmark, and the same transformation function f expressed
in Equation 5.16, it leads then the following equation:

f(x,p) = b (5.24)

By considering the inverse function, the registration map for a punctual landmark is then
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defined by:

f−1
b :


R3 → R2

p → RT (p3)
(
b1 − p1
b2 − p2

)
(5.25)

where b are the coordinates of the punctual landmark.

Given a visibility area A ⊂ R2 (at the particular pose (0, 0, 0◦)) and the associated separator
SA, the registration map for the punctual landmark is defined as follows:

f−1
b (P) = A (5.26)

which is a set inversion problem.

A separator for P can then be given by:

SP = fb(SA) (5.27)

where SA is the separator of the visibility area defined at the particular pose (0, 0, 0◦).

Example

Consider again the same visibility area generated at the particular pose (0, 0, 0◦) and a punc-
tual landmark located at b = (20, 25). The resulting sets P for different heading values are
represented in Figure 5.8. The resulting sets for different x or y values are represented in Fig-
ure 5.9. Contrary to the other landmarks, the intersection of the visibility areas is depicted for
the different AUV poses represented by red dots in the solution set considering a x or y value
fixed. The punctual landmark has to be visible for all the AUV poses that are solution, it results
in a non empty intersection of the visibility areas as depicted in the joint subfigure in Figure 5.9.
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(a) Registration map for a heading of the
AUV at 0◦.
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(b) Registration map for a heading of the
AUV at 45◦.

Figure 5.8: Registration map for different headings of the AUV considering a punctual landmark
drawn by a red dot and assuming a forward looking sensor with limited range and aperture
angle. Gray boxes are inside the set, white ones are outside and dark gray ones no conclusion
can be made. Some poses of the AUV are depicted in yellow with the visible area drawn by
blue pies.
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(a) Registration map with y = 30m fixed.
The representation is in the plane (x− θ).
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(b) Representation in the (x− y) plane
of the AUV poses depicted by red dots in

the solution set associated.
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(c) Registration map with x = 20m fixed.
The representation is in the plane (y − θ).
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(d) Representation in the (x− y) plane
of the AUV poses depicted by red dots in

the solution set associated.

Figure 5.9: Registration map for x or y values fixed. Gray boxes are inside the set, white ones
are outside and dark gray ones no conclusion can be made. Some poses of the AUV are depicted
on the solution sets by red dots which are then represented in the (x− y) plane in yellow with
the visible area drawn by blue pies.

Registration map with heading defined

Note that if the heading p3 of the AUV is defined (fixed) as depicted in the corresponding
figures, the registration map is now a subset of R2 in the (x− y) plane and only the translation
parameters have to be found to compute the registration map according to the landmark.
Indeed the angle of the rotation is defined, and therefore the initial visibility area at the
particular pose (0, 0, 0◦) can be rotated of that angle p3. The initial visibility area A is then
a rotated set of angle p3, it will be called Ap3 . It comes from the fact that the order of the
composition between the translation and the rotation does not matter. The visibility area can
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then be rewritten as:

V(p) = {z ∈ R2|∃r ∈ [Rmin, Rmax],∃β ∈ [−θ3, θ3], z−
(
p1
p2

)
=
(
rcos(p3 + β)
rsin(p3 + β)

)
} (5.28)

= {z ∈ R2|∃r ∈ [Rmin, Rmax],∃γ ∈ [p3 − θ3, p3 + θ3], z−
(
p1
p2

)
=
(
rcos(γ)
rsin(γ)

)
}(5.29)

where p3 corresponding to the heading of the AUV is defined. This set represents a polar
constraint.

Minimal separator for a punctual landmark

In the case of a punctual landmark m, the registration map is then given by the set P:

P = {p ∈ R2|∃r ∈ [Rmin, Rmax],∃γ ∈ [p3 − θ3, p3 + θ3],m−
(
p1
p2

)
=
(
rcos(γ)
rsin(γ)

)
} (5.30)

where m corresponds to the landmark coordinates.
Using the polar separator, the registration map for the punctual landmark can then be found

easily as in Equation 4.100 and the previous examples with punctual landmarks.

What about the other landmarks?

When the heading p3 of the vehicle is defined, the registration map is computed only based
on the translation parameters. The function f in Equation 5.9 becomes:

f :
{

R2 × R2 → R2

(p, a) → a + p (5.31)

Therefore, the set P becomes according to Equation 5.9:

P = {p ∈ R2|(Ap3 + p) ∩ B 6= ∅} (5.32)

where the set Ap3 can be both the rotated initial visibility area of angle p3 or the polar
separator at the particular pose (0, 0, p3) of the AUV expressed by the set:

V(0, 0, p3) = {z ∈ R2|∃r ∈ [Rmin, Rmax],∃β ∈ [−θ3, θ3], z =
(
rcos(p3 + β)
rsin(p3 + β)

)
} (5.33)

= {z ∈ R2|∃r ∈ [Rmin, Rmax],∃γ ∈ [p3 − θ3, p3 + θ3], z =
(
rcos(γ)
rsin(γ)

)
} (5.34)

which corresponds to a polar constraint.

Equation 5.32 leads to:

P = {p ∈ R2|(Ap3 + p) ∩ B 6= ∅} (5.35)
= {p ∈ R2|(Ap3 + p) ∩ B = ∅} (5.36)
= {p ∈ R2|(Ap3 + p) ⊂ B} (5.37)

The set P corresponds then to:

P = {p ∈ R2|(Ap3 + p) ⊂ B} (5.38)
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By defining B = C and replacing Ap3 by A (just for ease of reading), the set P is then given by:

P = {p ∈ R2|(A + p) ⊂ C} (5.39)

which corresponds to the Minkowski difference. When dealing with translation between sets,
the Minkowski sum and difference are interesting tools and will be detailed in a next subsection.
As presented in [74], the Minkowski operators can be seen as a shape registration where the
set P corresponds to:

P = {p|f(A,p) ⊂ B} (5.40)

This problem has been presented in [71] and a brief overview is given in the next subsection
before introducing the Minkowski operators.

5.2.3 Shape registration
The problem of registration has been widely discussed in the image processing community [348]
for example, where points between two overlapping images are tried to be matched. Surface,
lines, etc... may be tried to be matched. In a bathymetric survey, when using a MultiBeam
EchoSounder (MBES) for high coverage, the points given an (x, y, z) information are post-
processed to match all the surfaces of the seabed from the different straight line paths of the
platform. A famous technique is the registration of points cloud with Iterative Closest Points
[25].

According to the same notations as in the definition of the registration map problem (Equa-
tions (5.5)(5.6)(5.7)(5.8)), the shape registration problem corresponds to the set:

P = {p|f(A,p) ⊂ B} (5.41)

A

a1

a2

p1

p2

p

B

b1

b2
f(p,A) ⊂ B

P

Figure 5.10: Example of the shape registration concept associated to the constraint f(p,A) ⊂ B.
The set P corresponds to the parameters of the function f such as the transformation of the
shape A is included in B.

A transformation vector p is consistent if after transformation of A it is included in B as
depicted in Figure 5.10. This leads to:

f(A,p) ⊂ B (5.42)
⇔ ∀a ∈ A, f(a,p) ∈ B (5.43)
⇔ ¬∃a ∈ A, f(a,p) ∈ B (5.44)
⇔ ¬∃a ∈ A, (a,p) ∈ f−1(B) (5.45)
⇔ ¬∃a, (a,p) ∈ A× Rp ∧ (a,p) ∈ f−1(B) (5.46)
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Similarly as in the previous subsection,

P = projp((A× Rp) ∩ f−1(B)) (5.47)

If separators SA for A and SB for B are available, then a separator SP for P can be computed
using the separator algebra presented. The separator SP consistent with P is then given by:

SP = projp((SA × SRp) ∩ f−1(SB)) (5.48)

Note that the registration map can be seen as a shape registration problem where the
following separators were built in [71]:

P= = {p ∈ Rp|f(A,p) ∩ B = ∅} (5.49)
= {p ∈ Rp|f(A,p) ⊂ B} (5.50)

and

P 6= = {p ∈ Rp, f(A,p) ∩ B 6= ∅} (5.51)
= P= (5.52)

The registration map would correspond to P 6=.

Since the shape registration problem has been introduced, now focus on the Minkowski op-
erators.

5.2.4 Minkowski Sum and Difference
When the heading p3 of the AUV is defined and if the registration map is constituted by a
composition of translation and rotation, the problem corresponds to a Minkowski operation
between the set representing the landmark B and the visibility area V of the sensor at the
particular pose (0, 0, p3).
Minkowski operations are widely used in morphological mathematics to perform dilation or
erosion of sets. The Minkowski operations have already been performed with subpavings in
[292]. The Minkowski operators can also be seen as a shape registration problem as proposed
in [74] and will be detailed here.

5.2.4.1 Minkowski Difference

Definition

Given two sets A ⊂ Rn and B ⊂ Rn, the Minkowski difference [230], denoted as 	 , is defined
as follows:

B	 A = {p ∈ Rn|A + p ⊂ B} (5.53)

Proposition

If separators SA for A and SB for B are available then the Minkowski difference [74] is defined
as follows:

SB 	 SA = projp((SA × SRp) ∩ f−1(SB)) (5.54)
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where f(p, a) = p + a.

Proof

The Minkowski difference corresponds to a shape registration where f(p, a) = p + a, which
is a translation of vector p.

Example

Consider a triangle as the initial set B that is defined by 3 inequalities:

B = {x ∈ R2|x2 + x1 − 2 ≤ 0 and x2 − x1 − 2 ≤ 0 and x2 + 1 ≥ 0} (5.55)

which is represented in Figure 5.11(b).
Consider a circle of radius 0.5 as the set A depicted in Figure 5.11(a). In image processing,

it is called the structuring element.
The Minkowski difference is shown in Figure 5.11(c). The green triangle shows the initial

triangle and the green circle corresponds to the structuring element on the border of the initial
triangle. Notice how the dilation is given by the Minkowski difference.

5.2.4.2 Minkowski Sum

Definition

Given two sets A ⊂ Rn and B ⊂ Rn, the Minkowski sum [230], denoted as ⊕ , is defined as
follows:

A⊕ B = {a + b, a ∈ A,b ∈ B} (5.56)
Proposition

If separators SA for A and SB for B are available then the Minkowski sum [74] is defined as
follows:

SA ⊕ SB = SB 	−SA (5.57)
Proof

A⊕ B = {p|∃a ∈ A,∃b ∈ B,p = a + b} (5.58)
= {p|∃a ∈ A,∃b ∈ B,p− a = b} (5.59)
= {p|(p− A) ∩ B 6= ∅} (5.60)
= {p|(p− A) ∩ B = ∅} (5.61)
= {p|(p + (−A)) ⊂ B} (5.62)
= B	−A (5.63)

Therefore the separator for A⊕ B is given by SB 	−SA.

Example
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Consider the same sets as for the difference. The result of the Minkowski sum is given in
Figure 5.11(d). Notice how the triangle is eroded by the disk.
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(c) Minkowsky difference B	 A.
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(d) Minkowsky sum A⊕ B.

Figure 5.11: Minkowski operations. The green lines depict the initial triangle and a circle on
the contour of the initial triangle with the radius of the set A.

5.2.4.3 Minkowski operators for the registration map

As mentioned earlier, the registration map corresponds almost to a Minkowski difference when
the heading p3 of the AUV is fixed. Considering only the translation with a given rotated
visibility area Ap3 according to the desired heading p3 (or given by the polar separator) at the
location (0, 0), the registration map is given for a landmark B by the set in Equation 5.37 which
leads to:

P = {p ∈ R2|(Ap3 + p) ⊂ B} (5.64)
= B 	 Ap3 (5.65)

Considering a separator SB for B and a separator SA for Ap3 , the set consistent with P at
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the desired heading p3 is given by:

SP = SB 	 SA (5.66)

= projp((SA × SRp) ∩ f−1(SB)) (5.67)
= projp((SA × SRp) ∩ f−1(SB)) (5.68)

which corresponds finally to the definition of the registration map based on projection in Equa-
tion 5.15 as expected. It finally corresponds to the definition of the registration map in Equation
5.14 which here is explained as a Minkowsky difference between a landmark set B and a visi-
bility area A (at a given heading p3).

The resulting sets for the different examples on the landmarks are the same due to the fact
that the computation is based on projections. It slightly differs in the number of bisections if
the minimal polar separator is used at a given heading.

5.2.5 Point of view of a landmark
In Chapter 2, the notion of point of view was introduced in the underwater environment.
Indeed, seeing a landmark at a specific point of view may not be detectable at a different point
of view. For example, at another point of view, the landmarks may be covered by sand or do not
have the same backscattered property due to the geometric aspect of the landmark. Moreover
the sand ripples for instance, as explained, are not detectable at every aspects. During a survey
mission, the landmarks are detected at specific angles of view. In Equation 2.21, an angular
flexibility was introduced as it is quite impossible to revisit (to see again) a landmark at the
exact same point of view. Denoting as θsurvey the angle of detection of a landmark during the
survey mission, this landmark is then detectable in a interval:

[θdetection] = θsurvey + [−α, α] (5.69)

where α is the angular flexibility (≈ 10 − 15◦). For example, if the orientation of the sand
ripples is known, the parameter α can be adapted according to the orientation and the angular
abilities to detect them. The concept of point of view is illustrated in Figure 5.12 where a
punctual landmark is considered. The point of view with the angular flexibility indicates a set
of robot position (x, y) that may enable the sensor to detect it. In Figure 5.12(b) this constraint
is illustrated with two AUV positions where the green measurement is not compatible with the
point of view contrary to the blue one. Moreover, the point of view reduces the set of possible
AUV headings according to the aperture angle (θ3 which is the half aperture angle) of the
sensor as depicted in Figure 5.12(c) where the interval of headings θAUV can be guessed:

θAUVmax = θsurvey + α + θ3 (5.70)
θAUVmin = θsurvey − α− θ3 (5.71)

159



CHAPTER 5. REGISTRATION MAPS
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θsurvey

α

(a) Point of view at an angle
θsurvey with an angular flexibility

α.

x1

x2

β1

β2

(b) Constraint on the AUV
position where two AUV

positions are drawn. The green
measurement (direction) cannot
detect the landmark according to
the point of view contrary to the

blue one.

x1

x2

α

θ3

θsurvey

(c) Constraint on the AUV
heading. In the figure, the

heading is aligned with the angle
θsurvey.

Figure 5.12: Principle of the point of view with the constraints.

The point of view is then an additional constraint on the pose of the robot that can be
decomposed in two constraints:

A first constraint, depicted in Figure 5.12(c), on the heading of the AUV according to the
aperture angle of the sensor:

Pθ3
view([θdetection]) = {p ∈ R3|∃γ ∈ [−θ3, θ3], p3 + γ ∈ [θdetection]} (5.72)

= {p ∈ R3|p3 ∈ [θdetection]− [−θ3, θ3]} (5.73)

where θ3 corresponds to the half aperture angle of the sensor.

A second constraint, depicted in Figure 5.12(b), on the position of the AUV according to
the landmark B:

PB
view([θdetection]) = {p ∈ R3|∃b ∈ B, atan2(b2 − p2, b1 − p1) ∈ [θdetection]} (5.74)

These constraints are separated for ease of reading.

The second constraint can be reformulated as follows:

PB
view([θdetection]) = {p ∈ R3|∃b ∈ B, ∃θ ∈ [θdetection],∃r ∈ R+,

(
b1 − p1
b2 − p2

)
=
(
r · cos θ
r · sin θ

)
}(5.75)

= {p ∈ R3|∃b ∈ B,∃θ ∈ [θdetection],∃r ∈ R+,

(
p1
p2

)
= −

(
r · cos θ
r · sin θ

)
+
(
b1
b2

)
}

This second constraint is independent of the heading p3. The first term on the right hand
side of the set is the polar constraint defined by the set:

Xpolar = {x ∈ R2|∃r ∈ R+,∃θ ∈ [θdetection],x =
(
r · cos θ
r · sin θ

)
} (5.76)

Finally, this second constraint corresponds to a 2D Minkowski sum of the polar constraint
(with the sign −) and the landmark B expressed as follows:

PB
view([θdetection]) = (−Xpolar)⊕ B (5.77)
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The Minkowski sum is only realized on the 2D plane as it only contracts the (x, y) position of
the vehicle according to the landmark B and the point of view [θdetection].

The detection of a landmark at a desired point of view has to consider the aperture angle
of the sensor to be sure the visible points belonging to the landmark are viewed with an angle
corresponding to the angle of detection [θdetection]. This concept is illustrated in the following
example.

Example

Consider the shaped landmark B (where a separator SB is built) previously presented and the
same forward looking sensor, i.e. same range and aperture angle. The robot pose is defined at
x = (58, 25, 60◦). The visibility area V(x) of the sensor at this pose can be computed considering
the set in Equation 5.4 by using a composition of translation and the polar constraint. The set
of points visible X from the landmark considering this sensor and this robot pose x is given by:

Xx = B ∩ V(x) (5.78)

The result is depicted in Figure 5.13(a). However the point of view of these points depend on
their locations and the position of the robot. Now consider that the landmark is only visible
at a particular point of view as defined in Equation 5.69. The set of points from the landmark
that are visible by the sensor at this pose at the particular point of view [θdetection] is given by:

Xx([θdetection]) = {z ∈ B ∩ V(x)| atan2(z2 − x2, z1 − x1) ∈ [θdetection]} (5.79)

where the point of view is an additional constraint on the visible point defined by the set:

Pview([θdetection]) = {z ∈ R2| atan2(z2 − x2, z1 − x1) ∈ [θdetection]} (5.80)

The result is finally given by:

Xx([θdetection]) = B ∩ V(x) ∩ Pview([θdetection]) (5.81)

Consider an angle of detection at 90◦ and an angular flexibility at 10◦ leading to [θdetection] =
[80, 100](deg), this set is depicted in Figure 5.13(b). Notice that the set is smaller than the pre-
vious one and only a part of the landmark is actually visible despite a relatively high coverage
area.

161



CHAPTER 5. REGISTRATION MAPS

30 35 40 45 50 55 60 65 70 75 80
15

20

25

30

35

40

45

50

55

60

65

y (m)

x (m)

(a) Set of visible points from the
landmark by the sensor at the robot pose

(58, 25, 60◦).
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(b) Set of visible points from the
landmark by the sensor at the robot pose
(58, 25, 60◦) and respecting the point of

view [θdetection].

Figure 5.13: Difference between visible points from a landmark when considering or not the
point of view of the landmark.

The set in Equation 5.73 can be simplified by using the interval arithmetics for computing the
difference [θdetection]− [−θ3, θ3]. Considering the registration map PB for a landmark B (remind
that PB ⊂ R3), the set of robot configurations able to detect the landmark at a particular point
of view [θdetection] is given by:

PB([θdetection]) = PB ∩ Pθ3
view([θdetection]) ∩ PB

view([θdetection]) (5.82)

where Pθ3
view([θdetection]) and PB

view([θdetection]) are computed according to Equation 5.73 and Equa-
tion 5.74 or 5.77 respectively. Due to the fact that the constraint on the point of view from the
aperture angle is only along the θ = p3 dimension and the constraint according to the landmark
is on the (x, y) = (p1, p2) plane, the resulting separator giving the set in Equation 5.82 can be
defined as follows:

SPB([θdetection]) = SPB ∩ (SR2 × SPθ3
view([θdetection])) ∩ (SPB

view([θdetection]) × SR) (5.83)

where SR2 and SR are used to adapt the dimension.

Example 1

Consider again the same shaped landmark B, the same sensor with an half aperture angle
θ3 defined at 30◦ and the same point of view [θdetection] = [80, 100](deg). Due to the 3D aspect
of the resulting set, some slices at different headings will be shown. The first constraint on the
point of view according to the aperture angle can be checked directly when headings are cho-
sen. Indeed the possible headings belong to the interval [θdetection]− [−θ3, θ3] = [50, 130](deg).
Using the polar separator, the set corresponding to −Xpolar expressed in Equation 5.76 (by
making the transformation for the sign −) is represented in Figure 5.14(a). The Minkowski
sum defined in Equation 5.77 is depicted in Figure 5.14(b) to represent the set PB

view([θdetection]).
The initial registration map PB taken at heading θ = 60◦ is represented in Figure 5.14(c). This
heading θ = 60◦ ∈ [θdetection] belongs to the possible heading values, so the last constraint
Pθ3
view([θdetection]) is satisfied. Finally the registration map PB([θdetection]) at that given heading

is proposed in Figure 5.14(d) where some AUV poses are presented with their visibility area
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drawn by blue pies. Notice how the set of (x, y) positions is reduced to satisfy the constraint
PB
view([θdetection]). Consider now the registration map at the heading θ = 0◦. The computation

of the set PB∩PB
view([θdetection]) corresponding to the intersection of the registration map at that

heading and the constraint of the point of view according to the landmark (Minkowski sum)
is represented in Figure 5.14(e). Notice that the intersection is not empty. However if the last
constraint of the point of view according to the aperture angle is taken into account, the result
is presented in Figure 5.14(f) which is empty. Indeed the heading θ = 0◦ does not belong to
the possible headings according the aperture angle. The visible points of the landmark seen
by the sensor at the two AUV poses (considering a heading at θ = 60◦) in Figure 5.14(d) that
respect the constraint on the point of view are represented in Figure 5.15.
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(a) Polar constraint on (x, y) robot
position for the point of view. It
represents the set −Xpolar. The
angle of detection is 90◦ and the

angular flexibility is 10◦.
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(b) Minkowski sum to compute the
(x, y) robot position consistent with

the point of view on the shape
landmark corresponding to the set

PB
view([θdetection]).
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(c) Registration map PB at heading
θ = 60◦.
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(d) Registration map at heading
θ = 60◦ taking into account the
constraint on the point of view at

90◦. It represents the slice of
PB([θdetection]) at 60◦.
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(e) Intersection of the registration
map at heading θ = 0◦ and the polar

constraint at 90◦.
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(f) Real registration map at heading
θ = 0◦ taking into account the

constraint on the point of view at
90◦ and the test on the intersection.

Figure 5.14: Registration map with a point of view at 90◦ on a shape landmark represented
by the red contour and an angular flexibility of 10◦. Gray boxes are inside the set, white ones
outside and dark gray ones no conclusion can be made.
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Figure 5.15: Set of visible points from the landmark by the sensor respecting the point of view
at the two robots poses in Figure 5.14(d).

Example 2

Consider now again the punctual landmark represented by a red dot in Figure 5.16 and a
point of view at 0◦ with an angular flexibility of 15◦.

The slice at heading θ = 0◦ of the registration map PB is represented in Figure 5.16(a). Two
AUV poses are depicted with their viability area represented by a blue pie. The landmark set
B is reduced to a singleton B = {b}. The constraint of the point of view according to the
landmark can be rewritten as:

PB
view([θdetection]) = Pb

view([θdetection]) = {p ∈ R3|∃θ ∈ [θdetection],∃r ∈ R+,b− p =
(
r · cos θ
r · sin θ

)
}

(5.84)
which corresponds to the same constraint as in Equation 4.95 where m = b. The examples
were provided in the previous Chapter. Figure 5.16(b) shows this constraint on (x, y) position
according the point of view and the landmark. Green lines are represented to highlight the
direction according to the point of view. Finally the registration map PB([θdetection]) at heading
θ = 0◦ is given in Figure 5.16(c) where two AUV poses are represented with their associated
visibility area (same colors). The blue AUV pose is able to detect the landmark since all the
constraints are satisfied contrary to the red one that does not satisfy PB

view([θdetection]) even if
it satisfies Pθ3

view([θdetection]). The registration map at heading θ = 35◦ is represented in Figure
5.16(d) where only a reduced set of (x, y) position are able to detect the landmark at that
heading.
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(a) Registration map PB at heading
p3 = θ = 0◦.
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(b) Constraint on (x, y) robot position
for the point of view on the landmark

corresponding to the set
PB
view([θdetection]). The angle of detection
is 0◦ and the angular flexibility 15◦.

-4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24
10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

y (m)

x (m)

(c) Registration map PB([θdetection]) at
heading θ = 0◦ taking into account the
constraint on the point of view at 0◦.
Blue AUV can detect the landmark

contrary to the red one.

-4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24
10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

y (m)

x (m)

(d) Registration map PB([θdetection]) at
heading θ = 35◦ taking into account the
constraint on the point of view at 0◦.
Blue AUV can detect the landmark

contrary to the red one.

Figure 5.16: Registration map with a point of view at 0◦ on a punctual landmark represented
by a red dot and an angular flexibility of 15◦. The green lines depict the point of view and the
yellow pies show the set corresponding to the registration map at the defined heading. Gray
boxes are inside the set, white ones outside and dark gray ones no conclusion can be made.

In the context of the thesis, it will be assumed that the angle of detection and the angular
flexibility is constant, however a landmark may seen at different angles of detection. It would
be possible to compute an angular flexibility that depends on the angle of detection of the
landmark .

5.2.6 Conclusion
In this subsection, the problem of the registration map is handled with the notion of projection.
From any shaped landmark where a separator is available, a separator consistent with the
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set of robot configurations able to detect the landmark considering a patch visibility sensor
and a transformation function f can be computed. The transformation function proposed is
the composition of a rotation and a translation. This set is a subset of R3 corresponding to
the position (x, y) and heading θ values of the AUV in a 2D environment. If the heading
value is defined, the problem of determining the translation parameters may be seen as a
Minkowski difference. Due to the notion of aspects or point of view in underwater environment,
an additional constraint composed of two constraints is proposed to detect the landmark at a
given angle of detection considering an angular flexibility. In this section, the position and/or
the shape of the landmark were known accurately. Moreover, the abilities of the sensor were
also perfect. In the next section, the uncertainties will be taken into account.

5.3 Registration map with uncertainties
In the previous subsection, the registration map was built assuming no uncertainty on the sens-
ing and on the map. This was illustrated by Thin Sets for the map (landmark) and the sensor.
In this subsection, the uncertainty on the map and the sensor will be treated as interval of sets,
called Thick Set or Interval Shape [75]. Indeed, an uncertainty on the contour of a landmark
is highly possible when using a segmentation algorithm to separate two textures for example.
Moreover, if the data are collected by an AUV, the position of these textures may be uncertain
due to uncertainty accumulated by the robot.

Firstly, the notion of thick set will be introduced. Then the representation of the uncer-
tainty on the sensing (visibility area) and on the map (landmark) will be presented. Finally
the computation of the registration map taking both uncertainties will be provided.

5.3.1 Thick Set
The Thick Set [X] of Rn is an extension of the interval analysis [75] such that there exists two
subsets [342] of Rn called the lower bound X− and the upper bound X+ and defined as follows:

[X] = [X−,X+] (5.85)
= {X ∈ P(Rn)|X− ⊂ X ⊂ X+} (5.86)

where P(Rn) is a complete lattice with respect to ⊂ [75]. (P(Rn),⊂) denotes the powerset
of Rn with the inclusion ⊂ as an order of relation. Intervals are now represented in the space
of shapes.

A thick set [X] is represented in Figure 5.17 where Rn is partitioned into three zones: a clear
zone X− (red), the penumbra X+ \ X− (orange) and the dark zone Rn \ X+ (white).

167



CHAPTER 5. REGISTRATION MAPS

X+

X

X−

Figure 5.17: Thick set representation.

A thick set [X] is a sub-lattice of P(Rn,⊂) meaning that if A ∈ [X] and B ∈ [X] then
A ∩ B ∈ [X] and A ∪ B ∈ [X]. As for classical intervals, a set of thick sets of Rn is denoted
IP(Rn). If for a given thick set [X] = [X−,X+], X− = X+ then the thick set [X] is said to be
thin and it corresponds to the classical subset of Rn presented earlier and a singleton in P(Rn).

5.3.1.1 Some operators

Extension of classical set operations on the elements of a thick set and operations on intervals
of sets can be defined [137] such as:

[A] ∩ [B] = [A− ∩ B−,A+ ∩ B+] (5.87)
[A] u [B] = [A− ∪ B−,A+ ∩ B+] (5.88)
[A] ∪ [B] = [A− ∪ B−,A+ ∪ B+] (5.89)
[A] t [B] = [A− ∩ B−,A+ ∪ B+] (5.90)
[A]× [B] = [A− × B−,A+ × B+] (5.91)
[A] \ [B] = [A− \ B+,A+ \ B−] (5.92)

[A]⊕ [B] = [A− ⊕ B−,A+ ⊕ B+] (5.93)

where [A] = [A−,A+] and [B] = [B−,B+].

If f is a function from Rn to Rm, the image of a thick set A by f is:

f([A]) =
[
f(A−), f(A+)

]
(5.94)

Some examples will be provided when thick separators will be introduced.

5.3.1.2 Thick separator

Previously separators were associated to a paver to characterize a thin set. Now, the sets are
uncertainly defined showing the presence of a penumbra which has a non-empty volume. To
avoid many bisections in the penumbra, a thick separator has been developed inspired by the
construction of a separator based on a pair of two complementary contractors.
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Definition

A thick separator [S] for a thick set [X] is now a 3−uple of contractors {S in,S?,Sout}, as
depicted in Figure 5.18 such that for all [x] ∈ IRn:

S in([x]) ∩ Xin = [x] ∩ Xin (5.95)
S?([x]) ∩ X? = [x] ∩ X? (5.96)

Sout([x]) ∩ Xout = [x] ∩ Xout (5.97)

Separators were built from a pair of two complementary contractors {C, C}, thick separators
are built from a pair of separators. Considering a separator S− = {S−in,S−out} consistent with
X− and S+ = {S+

in,S+
out} consistent with X+, the thick separator [S] consistent with [X] is

defined as follows:
[S] = {S−out,S−in ∩ S+

out,S+
in} (5.98)

Proof

This comes directly from the definition of S− and S+:

S−out ∼ X− = Xin (5.99)
S+
in ∼ X+ = Xout (5.100)

S−in ∩ S+
out ∼ X− ∩ X+ = X? (5.101)

X+

X−

S?([x])S in([x])

Sout([x])

Figure 5.18: Thick separator. Contractions for three boxes [x].

Algebra for thick separators [75] can be defined similarly as for contractors [47] and separa-
tors [140].

Moreover, an image thick separator can be defined by a ternary image using the image sep-
arator introduced and presented in subsection 5.3.3 which deals with map uncertainties.

Example

Consider a thick set [A] defined by A− and A+ such that:

A− = {(x, y) ∈ R2|y − 2x− 1 ≤ 0, y − 0.5x+ 1 ≥ 0, y + 0.5x− 1 ≤ 0} (5.102)
A+ = {(x, y) ∈ R2|y − 2x− 4 ≤ 0, y − 0.5x+ 2 ≥ 0, y + 0.5x− 2 ≤ 0} (5.103)
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where separators are built for each sets. The result of the thick separator using a paving is
depicted in Figure 5.19(a). Similarly consider a second thick set [B] defined by B− and B+ such
that:

B− = {(x, y) ∈ R2|
√
x2 + y2 − 1 ≤ 0} (5.104)

and an ellipse set corresponding to:

E = {(x, y) ∈ R2|(x4 )2 + (y2)2 − 1 ≤ 0} (5.105)

The set B+ corresponds to the rotation of 30◦ of the set E. The result of this thick set [B] is
depicted in Figure 5.19(b). The different unions and intersections are shown in the following
subfigures where the contours of the initial sets are painted in magenta for the thick set [A]
and in green for [B].
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(a) Thick set [A].
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(b) Thick set [B].
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(c) [A] ∩ [B].
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(d) [A] u [B].
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(e) [A] ∪ [B].
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(f) [A] t [B].

Figure 5.19: Both intersection and union on thick sets. Blue boxes are outside, orange boxes
are in the penumbra, red ones are inside and yellow ones no conclusion can be made. Magenta
and green lines depict the contours of [A] and [B] respectively.
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5.3.1.3 Uncertain set inversion

For a given function f : Rn → Rm and a set Y ⊂ Rm, the classical set inversion aims to bracket
from inside and outside the set X such that:

X = f−1(Y) (5.106)

It was presented in Chapter 4.

However, when the function f and the set Y are uncertain, the problem cannot be solved
directly. The set inversion problem can be written as [71]

X = f−1(Y) with f ∈ F and Y ∈ [Y] (5.107)

where [Y] is a thick set and F is a set of functions.

A set X is said to be a feasible solution if:

∃f ∈ F,∃Y ∈ [Y],X = f−1(X) (5.108)

However the set of all feasible solutions is not generally a thick set.

Set inversion theorem

The theorem is given in [71] and is reminded here:

Theorem 5.3.1 Given a set of function F ⊂ F(Rn,Rm) and a thick set [Y] = [Y−,Y+], the
smallest thick set that encloses all sets X such that:

∃f ∈ F,∃Y ∈ [Y],X = f−1(Y) (5.109)

is the thick set [X] = [X−,X+] with:

X− = ∩
f∈F

f−1(Y−) (5.110)

X+ = ∪
f∈F

f−1(Y+) (5.111)

The proof can be found in [71].

This theorem provides the exact formulation of the thick set inversion problem by enclosing
the set X between X− and X+. However, the difficulty is to get an inner approximation of the
penumbra and existing interval methods accumulate inside the penumbra and spend most of
the computation time to test small box that are actually inside this penumbra.

When the set of functions F is composed of a single one function f, the smallest thick set
according to Equation 5.94 is:

[X] =
[
f−1(Y−), f−1(Y+)

]
(5.112)

where classical set inversion algorithms can be applied for X− and X+. Some examples are
provided in the following subsections dealing with the registration maps.
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When the set of functions F depends on a parameter, the projection algorithm presented in
Chapter 4 can be used to remove the quantified parameters. However, bissections are needed
in the parameter space which can be costly when the dimension of the parameters is high. If
the set of functions can be described by an interval of functions, a Thick Function can be used.
The reader may refer to [75][71] for more details on the thick functions.

Set inversion with parametric function

The function f depends now on a parameter p ∈ [p] ⊂ Rp and is written f(x,p). It will be
denoted as fp(x) for simplicity. The set inversion problem is formulated as follows:

[X] = f−1
[p]([Y]) (5.113)

From Theorem 5.3.1, the smallest thick set [X] = [X−,X+] is defined by [71]:

X− =
⋂

p∈[p]
f−1
p (Y−) = {x|∀p ∈ [p], fp(x) ∈ Y−} (5.114)

X+ =
⋃

p∈[p]
f−1
p (Y+) = {x|∃p ∈ [p], fp(x) ∈ Y+} (5.115)

Using the projection algorithm presented in Chapter 4, it is possible to give an expression
of X− and X+ as a projection. Indeed, according to the definition of the projection in Chapter
4, the set X+ is given by:

X+ = projDX
(f−1

p (Y+)) (5.116)

where DX denotes the domain of X. It will written for ease of reading X directly that gives:

X+ = projX(f−1
p (Y+)) (5.117)

The definition of X− is given by:

X− = {x|∀p ∈ [p], fp(x) ∈ Y−} (5.118)
= {x|∃p ∈ [p], fp(x) /∈ Y−} (5.119)
= {x|∃p ∈ [p], fp(x) ∈ Y−} (5.120)
= projX(f−1

p (Y−)) (5.121)

If separators for Y− and Y+ are available, then a separator S− consistent with X− and a
separator S+ consistent with X+ can be built to get a thick representation of the solution set
using these projections. This will be particularly used in the next Chapter for the motion
planning.

Example inspired by [71]

Consider the set Y defined by Y− = Y+ = [y] = [−1, 1]× [2, 4] depicted by the green square
in Figure 5.20 and the parametric function as the rotation of an angle θ ∈ [π4 ,

π
3 ]. The inversion

problem is expressed as follows:
[X] = f[θ]([y]) (5.122)

The results are depicted in Figure 5.20. The classical set inversion 5.20(a) accumulates in the
penumbra with small yellow boxes since the algorithm cannot determine if after the uncertain
rotation it will inside the green square. The set inversion with the projection algorithm giving
X− and X+ according to Equation 5.114 and Equation 5.115 respectively provides the thick set
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represented in Figure 5.20(b). The red boxes are proved to be in the green square after the
uncertain rotation. Notice that it does not accumulate in the penumbra (orange).
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(a) Classical set inversion. Blue boxes
are outside, red ones are inside and

yellow ones no conclusion can be made.
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(b) Set inversion with projection. Blue
boxes are outside, orange ones are in the
penumbra, red ones are inside and yellow

ones no conclusion can be made.

Figure 5.20: Set inversion to determine the set X of points that ends in the green square after
an uncertain rotation of angle θ ∈ [θ] = [π4 ,

π
3 ].

5.3.2 Visibility area with uncertainties
The parameters of the sensor are not known accurately such as the minimal and the maximal
range. As presented in section 5.2, the visibility of the sensor is assumed to be a patch with
a limited FOV. The visibility area defined in Equation 5.1 is now ill-defined and depends on
a thick interval vector [y] [48]. In the general case where the sensor has a limited range and
aperture angle, assuming an uncertainty δR on the range and δθ3 on the bearing, the thick set
is expressed as follows:

[y] = [R−, R+]× [θ−3 , θ+
3 ] (5.123)

where R− = [Rmin− δR,Rmin + δR], R+ = [Rmax− δR,Rmax + δR], θ−3 = [−θ3− δθ3,−θ3 + δθ3]
and θ+

3 = [θ3− δθ3, θ3 + δθ3] are intervals containing respectively the lower bound of the range,
the upper bound of the range, the lower bound of the aperture angle and the upper bound of
the aperture angle.

The visibility area V(x) at the pose x is now a thick set [V(x)] which will be denoted V(x).
It can be defined by two sets V−(x) and V+(x) such that V−(x) ⊂ V(x) ⊂ V+(x) with:

V−(x) = {z ∈ R2|∃r ∈ [ub(R−), lb(R+)],∃β ∈ [ub(θ−3 ), lb(θ+
3 )], z−

(
x1
x2

)
=
(
r · cos(x3 + β)
r · sin(x3 + β)

)
}

(5.124)
and

V+(x) = {z ∈ R2|∃r ∈ [lb(R−), ub(R+)],∃β ∈ [lb(θ−3 ), ub(θ+
3 )], z−

(
x1
x2

)
=
(
r · cos(x3 + β)
r · sin(x3 + β)

)
}

(5.125)
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where lb() and ub() are the lower and upper bounds of the corresponding intervals. In the
proposed sets, it is assumed that Rmin + δR < Rmax − δR and −θ3 + δθ3 < θ3 − δθ3. In other
terms, it is assumed that 2δR < (Rmax −Rmin) and δθ3 < θ3.

Example

Consider again the forward looking sensor with Rmin = 4m, Rmax = 20m and θ3 = 30◦ and
assume that δR = 1m and δθ3 = 3◦. Values are overrated on purpose to see the penumbra.
Building separators for V−(x) and V+(x), a thick separator can provide the set V(x) with a
paver. The visibility area is represented in Figure 5.21 at the particular pose (0, 0, 0◦).
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(a) Color representation. Blue boxes are
outside, orange ones are in the

penumbra, red ones are inside and yellow
ones no conclusion can be made.
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(b) Grayscale representation. White
boxes are outside, dark gray ones are in
the penumbra, soft gray ones are inside
and black ones no conclusion can be

made (they are very little).

Figure 5.21: Thick set representation of the visibility area taking into account the uncertainties
in range and bearing at the particular pose x = (0, 0, 0◦). Different color representations.

5.3.3 Map with uncertainties
Uncertainties on the map refer to an ill-defined map [168] coming from the uncertainties of the
survey platform, i.e. AUV, from the sensing measurements and/or from the detection process
(automatically or manually). The contour of a region landmark may be difficult to determine or
the position of a punctual landmark may be uncertain and contained in a box or an uncertain
ellipse [309].

Example

Consider again the shape landmark presented in Figure 4.13(a) and used for the registration
map in Figures 5.6 and 5.7. This corresponds to the true landmark. Due to uncertainties in
navigation, processing, etc... the contour of this landmark is not known accurately. This land-
mark is then a thick set [X] = [X−,X+]. Consider a disk of radius 3m as structuring element for
the computation of the erosion and dilation of the initial image. The dilation provides the set
X+ depicted by the green contour in Figure 5.22(a) and the erosion the set X− depicted by the
blue contour in Figure 5.22(a). Using the thick separator associated to a paver, the enclosure
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of X is provided in Figure 5.22(b) where the grayscale convention is used. The dark gray region
corresponds to the penumbra (thick contour). The true contour of the landmark lays in the
penumbra. Due to the uncertain position of AUV when capturing images underwater, the thick
set representation enables to provide an uncertain representation of the shape observed such
as sand ripples region.

(a) Grayscale image where the white part corresponds to
X− and the (white+gray) part corresponds to X+. Red
lines depicts the contour of the shape presented in Figure
4.13(a). Green lines is the contour of the dilation with a

disk of radius 3m and the blue lines is the erosion with the
same element.
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(b) Thick set representation in grayscale
convention. Contours are drawn.

Figure 5.22: Thick set [X] from a grayscale image.

5.3.4 Registration map with uncertainties
The constraint for the registration map was defined in Equation 5.9 and is reminded here:

P = {p ∈ Rp|f(A,p) ∩ B 6= ∅} (5.126)

where A and B correspond respectively to the visibility area V and the landmark. Earlier
these sets were clearly defined and represented by thin sets. Now these sets are uncertain (thick
set) and the idea is to develop a thick separator to characterize the set of feasible parameters
p associated to this constraint. A thick set A which was initially written as [A] is denoted A
for simplicity reasons.

Proposition

Given a function f : Rn × Rp → Rm, A ∈ [A] and B ∈ [B], the set P corresponding to the
parameters p can be enclosed between two sets P− and P+ such that P ∈ [P−,P+] with:

P− = {p ∈ Rp, f(A−,p) ∩ B− 6= ∅} (5.127)
P+ = {p ∈ Rp, f(A+,p) ∩ B+ 6= ∅} (5.128)

Proof :
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{p ∈ Rp, f(A,p) ∩ B 6= ∅} = {p,∃a ∈ A, f(a,p) ∈ B} (5.129)
B⊂B+

⊂ {p,∃a ∈ A, f(a,p) ∈ B+} (5.130)
A⊂A+

⊂ {p,∃a ∈ A+, f(a,p) ∈ B+} (5.131)

and

{p ∈ Rp, f(A,p) ∩ B 6= ∅} = {p,∃a ∈ A, f(a,p) ∈ B} (5.132)
B−⊂B
⊃ {p,∃a ∈ A, f(a,p) ∈ B−} (5.133)

A−⊂A
⊃ {p,∃a ∈ A−, f(a,p) ∈ B−} (5.134)

Therefore the enclosure of P is:

P− = {p,∃a ∈ A−, f(a,p) ∈ B−} = {p ∈ Rp, f(A−,p) ∩ B− 6= ∅} (5.135)
P+ = {p,∃a ∈ A+, f(a,p) ∈ B+} = {p ∈ Rp, f(A+,p) ∩ B+ 6= ∅} (5.136)

According to the definition of the registration map in Equation 5.14, this leads to the enclo-
sure:

P− = projp((A− × Rp) ∩ f−1(B−)) (5.137)
P+ = projp((A+ × Rp) ∩ f−1(B+)) (5.138)

which corresponds to two registration map problems using classical set inversion algorithms
in order to have a thick set representation.

Example

Consider the thick set defined by a circle and an ellipse in the Example of the subsection
5.3.1.2 presenting some operators on thick set. This thick set will be the landmark B = [B−,B+]
and is presented in Figure 5.19(b). Consider again the sensor presented in the example of the
subsection 5.3.2 dealing with sensor uncertainties on the visibility area depicted in Figure
5.21(a). Some slices of the registration map according to the definition in Equations 5.127 and
5.128 are depicted in Figure 5.23. The thick landmark is represented by a circle for B− in green
and an ellipse for B+ in magenta. Some slices at defined heading, x or y values are proposed
with the 2D corresponding representation. The colored AUVs or dots depicted in the solution
set on the left corresponding to some AUV poses are represented on the right in the (x, y)
plane with the associated color. Moreover the thick visibility area defined by V− and V+ are
represented by pies with the same color of the AUV pose. Blue corresponds to poses that can
detect the landmark, red corresponds to poses that may detect the landmark and green refers
to poses that are not able to detect the landmark.

Firstly, the slice of the solution set is presented in 5.23(a) with the heading of the AUV
defined at 45◦. Notice that the green poses that are outside the solution set are indeed never
intersecting the thick landmark B. The red AUVs inside the penumbra of the solution set cor-
respond to poses that guarantee V+ intersects B+ but do not guarantee that V− will intersect
B− and therefore detect the landmark. The landmark may be detected at these poses. On
the contrary, the blue AUVs correspond to robot poses that can detect for sure the landmark
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despite the uncertainty on the landmark and on the visibility area due to the fact that V−
intersects B−. This reasoning is the same for all the slices and 2D representation. The contours
of the boxes are kept in this first solution set, however in the two following representation, the
contours have been removed for ease of visualization.

Secondly, the slice in the (y − θ) plane with x = −10m is presented in Figure 5.23(c) with
the associated 2D representation in Figure 5.23(d).

Finally, the slice in the (x− θ) plane with y = −15m is presented in Figure 5.23(e) with the
associated 2D representation in Figure 5.23(f).

Notice that the dimension of the axis are not the same in the solution set.
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(a) Registration map at heading
45◦. The contours of the thick

landmark are represented in green
for B− and in magenta for B+.

Some AUV poses are chosen for a
2D representation.
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(b) 2D representation for the
associated colored poses in the

figure (a).
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(c) Registration map in the (y − θ)
plane with x = −10m. Some poses

are defined by dots.
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(d) 2D representation of the
selected poses with the color
associated in the figure (c).
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(e) Registration map in the (x− θ)
plane with y = −15m.
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(f) Same definition for the 2D
representation as in (d) where it
corresponds to poses in the figure

(e).

Figure 5.23: Registration maps at different slices and 2D associated representation. Grayscale
convention for the solution set. The contours of the boxes are very thin for ease of interpretation
in (c) and (e).
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Registration map for an ill-geolocalized punctual landmark

When dealing with an uncertain position of a punctual landmark located in a circle, an
ellipse or any shape, it is still possible to compute the registration map. The landmark B
is defined by B− = {b} (a singleton) and B+ that may correspond to the circle, the ellipse
or the shape containing for sure the punctual landmark (or at a certain level such as 90%)
where b corresponds to the most likely position of the landmark. The registration map is
then computable as before according to Equations 5.127 and 5.128 where B− = {b}. The
first equation giving P− can be computed according to the method presented for the punctual
landmark in the subsection 5.2.2. The set P+ can still be computed according to B+. However
the true position of the landmark may be anywhere in the shape containing it. The Proposition
defining the enclosure of the set P has to be modified. Indeed the position of the punctual
landmark {b} = b may be anywhere in B+, this leads to a new definition of P−:

P− = {p ∈ Rp|∀b ∈ B+,b ∈ f(A,p)} (5.139)

which can be rewritten as:

P− = {p ∈ Rp, f(A,p) ⊃ B+} (5.140)

The set P− could be represented as a thick set where the two set P−m and P−M are defined as
follows:

P−m = {p ∈ Rp, f(A−,p) ⊃ B+} (5.141)
P−M = {p ∈ Rp, f(A+,p) ⊃ B+} (5.142)

with P− ∈ [P−m,P−M ]. This comes from the fact that A− ⊂ A ⊂ A+ and a similar proof can be
made as earlier. However if you consider P−M it is possible that the true landmark position lays
in the penumbra of the visibility area for some particular poses p and then the sensor won’t
guarantee the detection. Therefore the set P− is defined as follows:

P− = P−m = {p ∈ Rp, f(A−,p) ⊃ B+} (5.143)

which is a thin set. Finally the set P can be enclosed by P− given by Equation 5.143 and by
P+ given by Equation 5.128. The set P− can be interpreted as the robot poses where the whole
uncertain position of the landmark defined by B = [B−,B+] will be in the certainly visible FOV
A− = V− of the sensor. It is possible that P− is reduced to an empty set when the uncertain
position of the landmark is too big compared to the visibility area of the sensor.

The set P− can be rewritten as:

P− = {p ∈ Rp, f(A−,p) ⊃ B+} (5.144)
= {p ∈ Rp|B+ ⊂ f(A−,p)} (5.145)
= {p ∈ Rp|∀b ∈ B+,∃a ∈ A−,b = f(a,p)} (5.146)
= {p ∈ Rp|∀b ∈ B+,∃a ∈ A−, f−1(b) = (a,p)} (5.147)

Considering the function f as a composition of a translation and a rotation where f : R2 ×
R3 → R2, given in Equation 5.16 and reminded here:

f :


R2 × R3 → R2

(a,p) → R(p3)
(
x1
x2

)
+
(
p1
p2

)
(5.148)
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the reciprocal function already expressed in Equation 5.19 is given by:

g = f−1 :


R2 × R3 → R2

(x,p) → RT (p3)
(
x1 − p1
x2 − p2

)
(5.149)

Consequently Equation 5.147 can be rewritten as:

P− = {p ∈ Rp|∀b ∈ B+,∃a ∈ A−, f−1(b) = (a,p)} (5.150)
= {p ∈ Rp|∀b ∈ B+,∃a ∈ A−,g(b,p) = a} (5.151)
= {p ∈ Rp|∀b ∈ B+,∃a ∈ A−, f−1(b,p) = a} (5.152)
= {p ∈ Rp, f−1(B+,p) ⊂ A−} (5.153)

which corresponds to a registration problem as in Equation 5.41. According to Equation 5.47,
the set P− is given by:

P− = projp((B+ × Rp) ∩ f(A+)) (5.154)
Computing the set P− in Equation 5.154 needs the reciprocal function of f given in Equation
5.19.

Example with uncertain punctual landmark

Consider an uncertain punctual landmark located in a circle B+ centered at (0, 0) with a
radius equal to 4m. This circle is depicted in green in Figure 5.24(a) and in black in Figures
5.24(b)(c)(e)(f). The set P is computed according to the definitions of P− and P+. Some slices
are again given at defined heading and x values of the thick registration map. Similarly the
colored AUVs or dots in the solution sets (Figures on the left) are represented in the (x, y)
plane (Figures on the right) to better understand the different poses with the associated color.
Moreover the thick visibility is also represented with the same color as the poses.

Firstly the slice at 45◦ of the thick registration map is given in Figure 5.24(a). It can be
noticed that the green (thick) visibility area at the green poses never intersect the black circle.
The whole black circle will be detected at the blue poses where this disk is totally included in
the set V− for each blue poses. The red AUVs correspond to robot poses that may detect a
part of the black circle but do not guarantee the detection of the punctual landmark that lays
somewhere in the black circle.

Secondly, the slice at x = −10m in the (y− θ) plane is represented where the major part of
the solution set is the penumbra (dark gray).

In each 2D representation, the blue poses are able to detect the whole disk B+ containing
the uncertain punctual landmark guaranteeing the detection. Therefore, the disk B+ will be
always visible at any blue poses p, meaning that it is included in the certainly visible area
V−(p). Consequently it is completely included in the lower bound of the classical thick set
intersection (defined in Equation 5.87) of the thick visibility areas at the blue poses defined as:⋂

p∈P−
V(p) = [

⋂
p∈P−

V−(p),
⋂

p∈P−
V+(p)] (5.155)

where V(p) is the thick visibility area defined at the pose p. Consequently:

B+ ⊂
⋂

p∈P−
V−(p) (5.156)
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This is illustrated in Figures 5.24(c) and 5.24(f) where the thick intersection of the visibility
areas at the three blue poses is depicted. It can be noticed that the black circle is inside the
soft gray region corresponding to the lower bound of the thick intersection.
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(a) Registration map at heading
45◦. B+ is depicted by a green
circle with a radius equal to 4m.
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(b) 2D representation for the
associated colored poses in the
figure (a). B+ is depicted by the

black circle.
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(c) Thick intersection of the
thick visibility areas at the 3

blue poses.
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(d) Registration map in the
(y − θ) plane with x = −10m.
Some poses are defined by dots.
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(e) 2D representation for the
associated colored poses in the

figure (d).
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Figure 5.24: Registration maps at different slices and 2D associated representation. Grayscale
convention for thick set representation.

5.4 What about other sensors ?
Until now, only sensors providing directly images such as cameras or Forward Looking Sonar
(FLS) were considered. This was called patch exploration [73] meaning that the visible set (or
visibility area) had the dimension of the space considered. In this thesis the space is assumed
2D for simplicity reasons, i.e. q = 2. In this case an inner and outer approximation of the
registration map were available, even considering uncertainty in the visibility area and/or the
landmark definition.

However, when considering a sweep exploration[73], the registration map cannot be com-
puted due to the fact that the visibility area has a dimension q − 1 = 1 (q = 2 in this thesis).
This type of exploration refers to Sidescan Sonar (SSS), SAS or MBES for example that need
a motion of the platform (AUV) to collect data even if there is a very small aperture angle in
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azimuth. When using these sensors, the motion has to be straight to gather exploitable data.
The trajectory of the robot has then to be taken into account to prove that a landmark has
been detected or not when post processing data [73][244] or at the planning phase of a mission.
Similarly when considering a pen exploration [73], the registration map cannot be computed
directly due to the fact that the dimension of the visible area is q − 2 = 0 which means that
only points are observed. This is the case when a laser range-finder or an altimeter is used that
takes only one range measurement at a given frequency. However, when using these types of
sensor it is still possible to compute the registration map under some assumptions. Indeed it
can be assumed that at each measurement a point of the landmark can be detected. Consid-
ering then a range and/or an aperture angle of detection of the sensor, the registration map is
again computable. However outliers have to be handled. Usually in underwater environment,
AUVs are equipped with a Doppler Velocity Log (DVL) that provides 4 range measurements
to estimate the velocity of the vehicle with respect to the ground. Contrary to the altimeter
that only provides one measurement, these 4 measurements can provide an information about
the local surface of the ground or it can be simply used to provide the altitude above the seabed.

5.5 Conclusion
In this Chapter, the notion of registration map has been presented in a set-membership man-
ner. Assuming a 2D environment, it indicates the robot poses that are able to detect any
shape landmark depending on the visibility area of the sensor. This latter depends on how
the sensor is mounted in the platform, it could be at the head or on the side for example. It
was assumed a sensor that provides images such as cameras or Forward Looking Sonar (FLS)
in underwater environment. The problem of the registration map has been solved using the
projection introduced in Chapter 4. Considering the transformation function f as a composition
of translation and rotation, an inner and an outer approximation of the solution set is available.
Some examples considering punctual, ellipse or random shape landmark are provided. Due to
the 3D dimension of the solution set (x, y, θ) referring to the position (x, y) and the heading θ
of the AUV, some slices at different x, y or θ values are provided to give an idea of the solution
set and for ease of interpretation based on interval analysis. When the registration map at a
given heading θ is required, the problem consists in estimating the translation parameters to
detect a part of the landmark. This problem can almost be seen as a Minkowski difference.
The Minkowski operations, referring to erosion or dilation in image processing, are presented
as a shape registration based again on the projection.

The notion of point of view of a landmark, introduced in Chapter 2, has been seen as an
additional constraint on the registration map. This is particularly interesting in the underwater
environment when using sonars because a landmark that has been detected at a specific point
of view during a previous survey mission may not be detectable at other points of view. Indeed
it is possible that the landmark may be covered by sand, the backscattered signal may not be
strong enough compared to noise or the geometry of the landmark may reflect the sound waves
in other directions for example.

In a first part, the landmark and the visibility area of the sensor were considered as thin sets
assuming no uncertainty. The landmark is reduced to a singleton when dealing with a punctual
landmark. Then in a second part some uncertainties in the landmark and in the visibility area
have been introduced leading to an ill-defined contour of the landmark and the visibility area.
This problem was handled with thick sets that are an extension of intervals. A thick set [X] can
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Figure 5.25: Diagram of the adaptation to the revisit system

be enclosed between two sets X− and X+ such that [X] ∈ [X−,X+]. It introduces a penumbra.
If the classical approach was used, the computation of the registration map will spend most
of the time in this penumbra to determine if some robot poses can detect the landmark. The
computation of the registration map dealing with both uncertainties (in map and in sensing)
leads to a thick representation with some examples provided at defined x, y or θ values for a
2D representation. The penumbra has been rigorously handled to avoid spending time in this
penumbra and focus on real robot poses that are able to detect the landmark.

Based on a a priori known environment, possibly with ill-defined location, the registration
map is computed based on the landmark and the visibility area as depicted in Figure 1.19
which is drawn again here in Figure 5.25. These registration maps are the inputs of the motion
planner as it indicates the robot poses where the uncertainty accumulated by the robot can
be reduced. The next Chapter proposes a planner based on the registration maps to navigate
certainly despite the uncertainties in motion between these regions where the uncertainty can
be reset as in [186].

184



Chapter 6

Motion planner

6.1 Introduction
In Chapter 2, some algorithms enabling the detection of underwater landmarks were presented.
The detections depend on the landmark obviously and on the sensor. Due to the poor visibility
in underwater environment and the performance of acoustics, the focus was on sonar imagery.
A simple adaptation based on the sonar resolution was proposed to keep only a set of landmarks
initially detected by an high resolution sonar during a survey mission. An object was classified
as a Mine Like Contact (MILCO) and a revisit was required. Some state-of-the-art motion
planners were proposed in Chapter 3 that take into account the pose uncertainty due to low
cost design of revisit vehicles that may self detonate to remove the object if it is identified as a
mine. In Chapter 5, the registration map was presented based on theoretical tools introduced
in Chapter 4 on interval analysis. These registration maps were built according to any shape
landmark and based on the visibility area of the sensor. These maps indicate robot poses that
are able to detect the landmark considered. The proposed approach in this Chapter is to provide
a high level strategy for the robot based on the registration maps as depicted in Figure 1.20 in
Chapter 1 and reminded here in Figure 6.1. Based on the parameters of the revisit vehicle, i.e.
sensor used, the registration maps in the red box were computed. Similarly the registration map
concerning the target in the green box was computed. Based on all these registration maps,
the algorithm proposed here provides a high level strategy taking into account the uncertainty
in the motion and the constraint on the manoeuvrability of the vehicle. The algorithm is based
on set-membership theoretical tools presented in Chapter 4 and 5 and on graph search strategy
presented in Chapter 3. However some assumptions have to be made to solve the problem and
will be presented along this Chapter.

In a first section, the problem of the motion planning is explicited. Then the robot motion
models used to solve the motion planning problem are presented. It proposes the use of Dubins
paths [83] to find strategy for vehicle with non-holonomic constraints and linear path based on
uncertain heading direction for vehicle that can move in any direction. In a third section, the
problem of the preimage of a set is introduced as a backward reach set. Moreover, the notion
of forward reach set is also presented. In a fourth section, the motion planner is proposed for a
simplified environment. Then the motion planner based on the registration maps is proposed.
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6.2 Problem statement
The problem of the motion planning proposed in this thesis consists in finding a sequence π of
open-loop strategies µi to join a goal region. The aim of the planner is the revisit of an object
identified as potentially dangerous where the absolute or approximate coordinates are provided
by a survey mission. This object was designated as suspicious according to an operator or
an automatic algorithm. This goal region is consequently defined as the registration map of
the target developped in the last Chapter based on the visibility area of the sensor embedded
in the revisit vehicle. This motion planning problem is inspired by the concept of preimage
backchaining [203] introduced in Chapter 3 where a landmark based planner was proposed in
[186][187]. This first algorithm relied on circular relocation areas, known as islands of perfec-
tion or landmark areas, where the control and position sensing were assumed perfect. A feature
such as a corner may be existing in these relocation areas. As many motion planners, it also
assumed the presence of obstacles designed as circular areas too. All these disks could have
different radius. The planning problem provides a set of motion commands which guarantee
that the robot will move into the goal and stop in it. Starting from the goal region, it solves
the problem by iteratively building a growing set of landmark areas from where the robot can
reliably reach the goal. A new landmark area is added to the set when it can reach from this
one a landmark area already in the set by executing a single move defined as a motion com-
mand. The algorithm terminates when the robot can reach this growing set from the initial
region, otherwise the planner returns failure. The single moves are computed based on omni-
directional backprojections defined as the disjoint union of directional backprojections over all
possible directions of motion. As the uncertainty is assumed on the direction d, which could
come from an embedded compass, it results in a cone propagation around d of the motion of
the robot outside the relocation areas as depicted in Figure 3.6(a) in Chapter 3. This cone
propagation defines one directional backprojection in the direction d. The planner is complete
and its complexity is polynomial in the number of landmark areas and obstacles. Finally, the
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planner computed a guaranteed plan under given uncertainty bounds by backchaining omni-
directional backprojections of the goal (the goal is successively extended with some relocation
areas) until a backprojection fully contains the initial set of robot positions. When the motion
was guaranteed to reach a relocation area, the uncertainty on the position of the robot was
reset to 0 (or an ε value is possible too). Only a discrete set of directional backprojections were
needed to compute the omnidirectional backprojection at specific directions defined as critical
directions. An illustration of such plan was proposed in Chapter 3 in Figure 3.6(c).

The formalization of the motion planner problem in [186] is solved in this thesis in a set-
membership manner using the concept of preimage as backward reach set where the landmark
areas represent the registration maps computed according to the previous Chapter. It extends
then the work to unstructured shape environment and takes into account the sensing abilities
of the sensor by using the visibility area.

The high-level open-loop plan π can be expressed as follows:

π = (µ1, µ2, ..., µk) (6.1)

which is a sequence of k motion commands. These motion commands µi may refer for example
to different high-level strategies:

• Go to the North,...

• Follow the wall.

• Follow the contour of the shape defining sand ripples.

• Move the robot to a certain area using vision sensor in a relocation area.

These high-level commands depend on measurements based on exteroceptive sensors such
as sonars or compass. In this thesis, it is assumed that a compass is embedded in the vehicle
providing the heading information. However, this latter is not accurate and it will be assumed
that it lays in an bounded interval. It will then be assumed that the robot is able to follow
an uncertain heading as in [186]. Moreover, the commands "Follow the contour of the shape"
or "Move the robot to a certain area" rely on the detection of a landmark and a registration
to relocalize the robot. It will be assumed in this thesis that a low-level controller exists and
is able to perform the visually guided motion. This open-loop plan is actually composed of
closed-loop motion commands.

Contrary to a predefined path as in many motion planning algorithms, it deals here with a
high level strategy to follow involving relocation process. Following a predefined path for an
AUV is not an easy task when the dynamic model is non linear and requires the development
of robust controller [176][175].

The generation of these motion commands depend on the preimage of a set defined in this
thesis by a registration map and a motion function. This latter will be discussed in Section
6.3. Based on the motion function, the preimage will then be computed as a backward reach
set. This will be discussed in Section 6.4. Finally, the preimage backchaining will be discussed
in Section 6.5 to provide the high level graph for the strategy that is optimized under a graph
search with a Dijkstra or an A* algorithm. Then the planner will be applied to the registration
maps in Section 6.6. Finally, a spiral exploration will be proposed to disambiguate the true
robot position when the robot has to revisit a cluster of indistinguishable landmarks.
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6.3 Robot motion model
A robot is described by an evolution equation:

ẋ(t) = f(x(t),u(t)) (6.2)

where x ∈ Rn is the state of the robot, u ∈ Rm is the control applied on the state x of the
robot and f : Rn × Rm → Rn is the evolution function.

In this thesis, the environment is assumed 2D then x = (x, y, θ) ∈ R3. It will be assumed a
simple dynamics model known as the Dubins car [83] which is described by:

ẋ = v cos θ
ẏ = v sin θ
θ̇ = w

(6.3)

with u = (v, w) the command of the system. v corresponds to the linear speed and w to the
angular rate (turn rate).

6.3.1 Dubins paths
Considering a constant linear speed and a constant turning rate, the so-called Dubins paths,
known as curves, can connect [83] any two configurations xA and xB in the plane by the
composition of turns and straight motions as depicted in Figure 6.2 where xA and xB are
drawn respectively by the blue and the red AUV. The four paths, represented in green, are
called: LSL, LSR, RSL and RSR with L describing a "left turn", R is a "right turn" and S
corresponds to the command driving or going "straight". For example, the path LSR indicates
the following steps:

• firstly "turn left".

• secondly "go straight".

• finally "turn right".

The paths provided are optimal in term of distance travelled, or in other words it corresponds to
the shortest Dubins path between the two configurations since the angular rate w is bounded.
Indeed, considering a bounded turning rate w leads to a maximum turning rate and finally to
the so-called minimum turning radius. Considering the minimum turning radius will enhance
the shortest path between any two configurations. The link between the angular rate and the
turning radius will be highlighted juts below. The Dubins paths are an interesting way for
motion planning under non-holonomic constraints for a vehicle.

In Figure 6.2, the linear speed is fixed at 1m/s and the angular rate at 0.3rad/s which lead
approximately to a turning radius at 3m. The method to compute such paths is not provided
here.
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(a) LSL (Left-Straight-Left) path.
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(b) LSR (Left-Straight-Right) path.
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(c) RSL (Right-Straight-Left) path.
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(d) RSR (Right-Straight-Right) path.

Figure 6.2: Shortest Dubins paths between the initial configuration in blue and the final con-
figuration in red.

6.3.2 Parametric Dubins paths
These paths are described by the composition of turns and straight motions which can be
described by a parametric equation taking into the duration t. Indeed, turning can be described
temporally by integrating Equation 6.3 with a constant linear speed v and a constant angular
rate w 6= 0:

fc :


R3 × R × R2 → R3

(x0, t, v, w) →

x0 + v
w

(sin(wt+ θ0)− sin(θ0)
y0 + v

w
(cos(θ0)− cos(wt+ θ0)

θ0 + wt

 (6.4)

where x0 = x(t = 0) = (x0, y0, θ0). The function is called fc with "c" for circular and gives the
pose of the robot at any time t. If w > 0, it corresponds to a turn on the left in the time and
if w < 0 it is a turn on the right. It can be directly seen that if w > 0, θ will increase with
time t and turning left. Notice that the term v

w
appears when integrating, it corresponds to

the so-called turning radius. For example, in Figure 6.2, with v = 1m/s and w = 0.3rad/s, the
turning radius is almost 3m.
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Similarly, the straight motion is given by the integration of Equation 6.3 with an angular
rate w = 0:

fs :


R3 × R × R2 → R3

(x0, t, v, w) →

x0
y0
θ0

+

v cos(θ0)t
v sin(θ0)t

0

 (6.5)

This function is called fs with "s" for straight.

The Dubins paths considered are the four possible combinations expressed before. It would
have been obviously possible to consider the two last combinations RLR and LRL for optimality.
More combinations are possible but it wouldn’t be optimal. They are consequently described
firstly by a turn with a duration called tc1 , a straight motion with a duration ts and finally a
last turn with a duration tc2 . These paths can then be described by the composition of the
functions defined in Equation 6.4 for the turning motion and in Equation 6.5 for the straight
motion which leads to the following function:

fDubins :
{

R3 × R3 × R × R2 → R3

(x0, t, v,w) → fc(fs(fc(x0, tc1 , v, wc1), ts, v, 0), tc2 , v, wc2) (6.6)

with t = (tc1 , ts, tc2) and w = (wc1 , wc2). In this model, it is assumed that the linear speed v
is the same in the three portions of the motion. wc1 and wc2 correspond to the angular rates of
the first turn and the second turn respectively. The angular rate w is assumed to be the same
in the two turns which means that wc1 = ±w and wc2 = ±w. The sign depends on the chosen
direction for turning.

The function expressed in Equation 6.6 gives the pose of the robot x = (x, y, θ) at time
t = (tc1 , ts, tc2) which is expressed as follows:

x(t) = fDubins(x0, t, v,w) (6.7)

Finally, the pose of the robot can be given at any time t ∈ R+ according to a Dubins path
defined by tpath = (tc1 , ts, tc2) by considering the following t in Equation 6.7:

t = (t, 0, 0) if t ∈ [0, tc1 ]
t = (tc1 , t, 0) if t ∈ [tc1 , tc1 + ts]
t = (tc1 , ts, t) if t ∈ [tc1 + ts, tc2 ]

(6.8)

This function provides a parametric description of the Dubins paths.

6.3.3 Uncertain parametric Dubins paths
It is assumed that errors exist in robot control, that means the robot does not execute perfectly
the motion commands required. These errors will enhance the robot to drift from the desired
trajectory. Compared to probabilistic method [308], it will be assumed bounded errors to re-
main in a set-membership context. It will be assumed that the uncertainties are on the initial
heading θ0 due to the presence of a compass and on the linear speed v. δθ is introduced to
model the error on θ0 and to reflect the error on the compass for example. As it is assumed that
the robot is equipped with a compass that provides the heading information with a bounded
error in the interval [−αθ, αθ], this enables the robot to follow the proposed trajectories with a
perfect angular rate w but an uncertain initial heading θ0. The true heading at the initial pose
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is then inside an interval [θ0 − αθ, θ0 + αθ] with θ0 provided by the compass. In general, the
error on the compass αθ is few degrees (≈ 2−3◦). An error rate αv (usually between 3%−10%)
is introduced for the linear speed. That means the linear speed v ∈ vd + vd · [−αv, αv] with vd
the desired speed. The linear speed is constant but uncertain on this interval.

Considering these uncertain parameters, a slight change on the function expressed in Equa-
tions 6.4, 6.5, 6.6 and 6.7. As the angular rate is a fixed parameter and certainly defined, it
does not need to be included in the definition of the function. However, the value of w has to
be defined according to desired turn (left or right).

The definition of the circular trajectory becomes:

gwc :


R3 × R × R × R → R3

(x0, t, v, δθ) →

x0 + v
w

(sin(wt+ θ0 + δθ)− sin(θ0 + δθ)
y0 + v

w
(cos(θ0 + δθ)− cos(wt+ θ0 + δθ)

θ0 + δθ + wt

 (6.9)

with δθ the parameter for the initial heading error. Notice that the angular rate w is added to
the function to distinguish the right and the left turn.

The definition of the straight motion becomes:

gs :


R3 × R × R × R → R3

(x0, t, v, δθ) →

x0
y0
θ0

+

v cos(θ0 + δθ)t
v sin(θ0 + δθ)t

δθ

 (6.10)

Considering as p = (v, δθ) the uncertain parameters vector in the motion, the global function
giving the Dubins paths is defined as follows:

gDubins :
{

R3 × R3 × R2 → R3

(x0, t,p) → gwc2
c (gs(g

wc1
c (x0, tc1 , v, δθ), ts, v, 0), tc2 , v, 0) (6.11)

Notice that the error δθ on the initial heading θ0 is only applied on the first motion (the turn
with angular rate wc1). This error will be propagated in two last portions of the motion. The
values of wc1 and wc2 are defined according to the desired Dubins paths.

The function expressed in Equation 6.7 can be modified as follows:

x(t) = gDubins(x0, t,p) (6.12)

with p = (v, δθ) the uncertain parameters vector to model the drift.

Similarly, the pose of the robot can be given at any time t ∈ R+ according to the different
cases in Equation 6.8.

The uncertain parameters were defined as follows: v ∈ vd + vd · [−αv, αv] and δθ ∈ [−αθ, αθ]
which leads to [p] = [vd(1− αv), vd(1 + αv)]× [−αθ, αθ].

Some uncertain trajectories are depicted in Figure 6.3 where the motion commands generated
are the same as in Figure 6.2. These motion commands correspond to the vector t = (tc1 , ts, tc2)
according to the defined linear speed and angular rate. It can be seen by the red trajectory.
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The uncertain parameters used for the different figures are αv = 10% and αθ = 3◦. The linear
speed was fixed at 1m/s and the angular rate at 0.3rad/s. It results then in the uncertain
parameters vector [p] = [0.9, 1.1]× [−3, 3](m

s
× deg). Random samples have been chosen in the

two intervals to compute the green trajectories. It could have been possible to compute the set
of trajectories using tubes defined in [274].
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(a) LSL (Left-Straight-Left) path.
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(b) LSR (Left-Straight-Right) path.
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(c) RSL (Right-Straight-Left) path.
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(d) RSR (Right-Straight-Right) path.

Figure 6.3: Uncertain Dubins paths in green generated by the command for the shortest Du-
bins path in red between the initial configuration in blue and the final configuration in red.
Uncertainties: 3◦ error on initial heading and 10% error on the linear speed.

6.3.4 Two motion models
From this uncertain Dubins path model, two motion models will be considered in this thesis.
To follow the robotics convention about the transition function, the function g will be denoted
f instead. The name g was given only to make the difference with paths that do not consider
uncertain parameters.

Firstly, when considering an AUV with an underactuation constraint and the presence of
a minimum turning radius, the model used will be the one in Equation 6.12. The evolution
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function will be called fNH and is defined as follows:

fNH :
{

R3 × R3 × R2 → R3

(x0, t,p) → fwc2
c (fs(fwc1

c (x0, tc1 , v, δθ), ts, v, 0), tc2 , v, 0) (6.13)

with p = (v, δθ) where p ∈ [p] = [vd(1 − αv), vd(1 + αv)] × [−αθ, αθ]. vd is the desired speed
along the complete motion.

Secondly, when considering an holonomic AUV, it will be assumed that the AUV is able to
move in any direction by rotating on itself and following straight trajectories with uncertain
initial heading and speed. The model used is then expressed in Equation 6.10 and is expressed
as follows:

fH :


R3 × R × R2 → R3

(x0, t,p) →

x0
y0
θ0

+

v cos(θ0 + δθ)t
v sin(θ0 + δθ)t

δθ

 (6.14)

with p defined as previously. v is the desired speed defined at vd along the straight motion.

As many goal sets in the different examples will be only in R2, the 2D version is defined as
follows:

fH2 :


R3 × R × R2 → R2

(x0, t,p) →
(
x0
y0

)
+
(
v cos(θ0 + δθ)t
v sin(θ0 + δθ)t

)
(6.15)

When dealing with 2D goal sets, in the (x − y) plane, the model for the holonomic robot is
named fH2. It is the same model as in Equation 6.14 but the third dimension that provides the
heading is removed.

In both models, it will be assumed that the vehicle can reach rapidly the desired speed vd
to remain in the interval of uncertainty according to the linear speed. This assumption is valid
when navigating at low speed (few meters/second) such as AUVs.

A general description giving the pose x at any time t for both models can be described as
follows:

x(t) = f(x0, t,p) (6.16)

where t is defined according to Equation 6.8 to give the position at any time t ∈ R+ when the
first model is used, and t = t when the second model is used.

6.4 Reachability problem
The robot motion model has been defined as a parametric function with uncertain parameters
to model the drift of the robot. The open-loop strategies µi of the motion plan are based on this
motion model. The robot has to follow these strategies to navigate between relocation areas
defined as registration maps in this thesis. To guarantee that the robot will safely navigate
between two areas without being lost, the notion of preimage is introduced and was used to
solve the motion planning problem in [186]. Before building a graph and providing the high
level strategy, this notion has to be clearly defined.
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A strategy µi is defined by a particular motion command mi and a termination condition
denoted as TCi in [186]. When the robot executes the motion command mi, it follows the
defined motion and stops when the termination condition TCi is true. This termination con-
dition could be the contact with a wall, the detection of the landmark or a defined time for
example. A strategy µi could be to follow a Dubins path command or to follow a particular
direction for instance.

Definition

A preimage of a goal region for a given strategy corresponds to the set of robot configura-
tions such that if the robot starts the strategy from this set, it is guaranteed to reach the goal
region and stop in it according to the termination condition.

The set of robot configurations corresponds to a backward reach set or a backprojection
[183] associated to a termination condition. The robot has to reach the goal (goal reachabil-
ity) despite the motion uncertainty and stop in it (goal recognizability) despite the sensing
uncertainty. In [89], Erdmann suggested that the goal reachability and the goal recognizability
should be treated separately. In this thesis, it will be generally assumed that the goal recog-
nizability (termination condition) is based on the detection of the landmark revisited and then
depends on an automatic or manual detection algorithm in sonar images. However, the goal
reachability and recognizability will be computed at the same time when dealing with point
of view of a landmark assuming the holonomic robot motion model. Therefore, in this the-
sis, the main work is focused on the goal reachability and so on the registration map reachability.

6.4.1 Backward reach set
It is important to guarantee that the goal is reached despite the uncertainty on the motion. It
refers to the strong backprojection (SB) in [183] compared to the weak backprojection (WB)
for a given strategy µ.

Consider now an evolution function f as defined in Equation 6.16 and reminded here:

x(t) = f(x0, t,p) (6.17)

with p the uncertain parameters leading to a drift from the desired trajectory. The pose of the
robot x belongs to R3. A strategy µ is defined according to a particular motion and is attached
to f. It will be denoted as fµ.

Definition 1

The backward reach set (strong backprojection) of a set A ⊂ R3 under a strategy µ corre-
sponds to:

BACK(A, µ) = {x ∈ R3|∀p ∈ [p], ∃t ∈ R+, fµ(x, t,p) ∈ A} (6.18)

The set A may not be restricted to a connected set and it will proved in the following of
the document the computation of the backward reach set of the union of disconnected or con-
nected sets. The backward reach set BACK(A, µ) is also denoted as PRE(A, µ) to use the
name preimage. An example is given in Figure 6.4 where the soft pink area corresponds to the
preimage of the set A under the strategy µ. As the pose of the AUV, represented by the yellow
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AUV, is inside this preimage, then it will reach for sure the set A despite the uncertainty on
the motion. A blue link is then created between this robot pose and the set A.

A

starting pose

PRE(A, µ)

(a) Preimage with strategy µ

A

starting pose µ

(b) Link created.

Figure 6.4: Preimage as a backprojection under strategy µ.

The backward reach set can be seen as the inversion of a parametric function as in Equation
5.114 where Y− = A:

BACK(A, µ) =
⋂

p∈[p]
{x ∈ R3|∃t ∈ R+, fµ(x, t,p) ∈ A} (6.19)

=
⋂

p∈[p]

⋃
t∈R+

{x ∈ R3|fµ(x, t,p) ∈ A} (6.20)

=
⋂

p∈[p]

⋃
t∈R+

f−1
µ (A) (6.21)

(6.22)

which can be rewritten with projection as:

BACK(A, µ) = proj[p]
X (projTX×P(f−1

µ (A))) (6.23)
according to Equations 5.117 and 5.121 where P is the domain of p, X is the domain of X and
T = R+ is the domain of t. The definition of projection was given in Equation 4.104 in Chapter
4. However, a notation is added to the projection to indicate the domain with respect to the
projection is executed. The new notation is then given as follows:

New notation

Given two sets X ⊂ Rn and Y ⊂ Rp. Considering the set Z = X × Y, the projection of a
subset Z1 of Z onto X, with respect to Y, is defined as follows:

projYX(Z1) = {x ∈ X|∃y ∈ Y, (x,y) ∈ Z1} (6.24)

It leads to the notation in Equation 6.23.

The backward reach set defined in Equation 6.18 can be formulated as follows: it indicates
the robot poses such that for all uncertain (bounded) parameters p, a time t exists such that
the motion of the robot crosses the set A under the strategy µ. The robot may not cross the
set A at the same time t depending on the uncertain parameter p.

From the definition of the back reach set, the following proposition can be defined when
considering several connected or disconnected goal sets.
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Proposition

Consider two sets A ⊂ R3 and B ⊂ R3 that may be disconnected then:

BACK(A, µ) ∪BACK(B, µ) ⊂ BACK(A ∪ B, µ) (6.25)

Proof

Choose x ∈ R3 such that:

x ∈ BACK(A, µ) ∪BACK(B, µ) (6.26)
⇔ (∀p ∈ [p],∃t ∈ R+, fµ(x, t,p) ∈ A) ∨ (∀p ∈ [p], ∃t ∈ R+, fµ(x, t,p, ) ∈ B) (6.27)
⇔ ∀p ∈ [p], (∃t ∈ R+, fµ(x, t,p) ∈ A) ∨ (∃t ∈ R+, fµ(x, t,p) ∈ B) (6.28)
⇒ ∀p ∈ [p],∃t ∈ R+, (fµ(x, t,p) ∈ A) ∨ (fµ(x, t,p) ∈ B) (6.29)
⇔ ∀p ∈ [p],∃t ∈ R+, fµ(x, t,p) ∈ A ∪ B (6.30)
⇔ x ∈ BACK(A ∪ B, µ) (6.31)

that ends the proof.

Definition 2

The weak backward reach set (weak backprojection) of a set A ⊂ R3 under strategy µ cor-
responds to:

WBACK(A, µ) = {x ∈ R3|∃p ∈ [p], ∃t ∈ R+, fµ(x, t,p) ∈ A} (6.32)

The difference with the previous definition of the backward reach set is the quantifier ∃p instead
of ∀p. That means some trajectories may reach the set A but not necessary all the trajectories
according to the uncertain parameter p. This notion will be used when dealing with obstacles
in particular.

It can also be rewritten as projection:

WBACK(A, µ) = proj[p]×T
X (f−1

µ (A)) (6.33)

Some illustrations will be given in the following of the document considering the proposed
motion models.

From the two motion models defined in Equations 6.13 and 6.14 in the last subsection, some
strategies can be defined. Firstly the directional backprojection as proposed in[186] is developed
where the propagation of the uncertainty on the robot position is along a cone assuming direc-
tions with bounded uncertainty. The holonomic robot motion model will be used. Secondly,
the backprojection dealing with the parametric Dubins paths will be considered to propose the
reachability of the set A for robots with a minimum turning radius. The nonholonomic motion
model will be used in this case.

6.4.2 Directional and omnidirectional backprojection
A directional backprojection corresponds to a backprojection of goal set at a defined direction.
The strategy µ consists then to follow this direction despite the uncertainties to reach the goal
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set, i.e. µ = θd where θd is the desired direction. This strategy can be applied in the case of
the holonomic motion model where the robot turns on itself to be in the direction θd before
executing the motion for example. The motion model will be fH .

The directional backprojection of a set A ⊂ R3 at a defined direction µ = θd is defined as
follows:

BACK(A, θd) = {x ∈ R3|∀p ∈ [p],∃t ∈ R+, x3 = θd and fH(x, t,p) ∈ A} (6.34)

Notice that the backward reach set is actually a subset of R2 as the direction (heading=x3) is
imposed at θd. The directional backprojection consists in finding the set:

BACK(A, θd) = {(x1, x2) ∈ R2|∀p ∈ [p], ∃t ∈ R+, x3 = θd and fH(x, t,p) ∈ A} (6.35)
The omnidirectional backprojection corresponds to the 3D set:

BACKod(A) = {x ∈ R3|∀p ∈ [p],∃t ∈ R+, fH(x, t,p) ∈ A} (6.36)

where ’od’ means omnidirectional.

It is defined as the disjoint union of all directional backprojection for all possible values of θd
in [187]. A directional backprojection is then a slice as in [186] at a given direction (heading).
According to this representation it can be rewritten as follows:

BACKod(A) = {(θd, BACK(A, θd)) ∈ R × R2} (6.37)
The nondirectional backprojection [187][80] corresponds to the classical union of all back-

projections for all direction θd:

BACKnd(A) =
⋃
θd

BACK(A, θd) (6.38)

where ’nd’ means nondirectional. Notice that the nondirectional backprojection is a subset of
R2. It can be rewritten as:

BACKnd(A) =
⋃
θd

BACK(A, θd) (6.39)

= {(x1, x2) ∈ X1 × X2|∃x3 ∈ X3, (x1, x2) ∈ BACK(A, x3)} (6.40)
= projX3

X1×X2(BACKod(A)) (6.41)

where X1, X2 and X3 denotes the domains for x1, x2 and x3.

Similarly, the directional weak backprojection can be defined according to Equation 6.32:

WBACK(A, θd) = {(x1, x2) ∈ R2|∃p ∈ [p],∃t ∈ R+, x3 = θd and fH(x, t,p) ∈ A} (6.42)

and the omnidirectional weak backprojection:

WBACKod(A) = {x ∈ R3|∃p ∈ [p], ∃t ∈ R+, fH(x, t,p) ∈ A} (6.43)

Firstly, the backprojection of a single connected set will be developed where the projection
on the uncertain parameter can be removed by considering the bounds of the error on the direc-
tion to save time computation. A simple intersection between two sets is performed. Secondly
the backprojection of several sets connected or not will be explained where again the second
projection can be removed.
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6.4.2.1 Backprojection of a single connected set

The uncertain parameter p is defined as:

p ∈ [p] = [vd(1− αv), vd(1 + αv)]× [−αθ, αθ] (6.44)

where vd is the desired speed, αv (expressed in %) corresponds to the rate of error on the speed
and αθ is the uncertainty on the direction that can come from the compass.

The motion model fH corresponds to a translated polar parametric equation where:

ρ = vt (6.45)

Since the backward reach set is defined when the existence of a time t is proved, the speed only
influences when the goal can be reached but not on its reachability. It can then only have an
impact on the goal recognizability and the termination condition.

Therefore, an uncertainty on the speed is not needed for the reachability of the goal set.
The uncertain parameter vector p will then be defined by:

p = (v, δθ) ∈ [p] = {vd} × [−αθ, αθ] (6.46)

where δθ is the single uncertain parameter.

The set consistent with the omnidirectional backprojection of a closed and connected set A
can be computed according to Equation 6.36 and Equation 6.23 with the use of double projec-
tion. The result of a slice at θd = 45◦ is given in Figure 6.5(a) for the reachability of a disk
defined in the following example. It corresponds to BACK(A, 45◦).

However, since the set A is a connected and closed set, the projection with respect to the
uncertain parameter p on the domain [p] may be avoided by considering only the bounds of
the single uncertain parameter δθ and finding the following set:

BACKod(A) = {x ∈ R3|∀δθ ∈ {−αθ, αθ},∃t ∈ R+, fH(x, t,p) ∈ A} (6.47)
=

⋂
δθ∈{−αθ,αθ}

{x ∈ R3|∃t ∈ R+, fH(x, t,p) ∈ A} (6.48)

=
⋂

δθ∈{−αθ,αθ}
projTX(f−1

H (A)) (6.49)

where X = X1×X2×X3 is the domain of (x, y, θ) and T is the domain of t. Indeed, all the pos-
sible trajectories are inside the ones defined at the bounds θd−αθ and θd +αθ of the uncertain
direction θd = x3. The backward reach set is then simply obtained by taking the intersection
between the two sets defined at the bounds of αθ.

When the direction θd is defined, the 2D backward reach set in the (x − y) plane is then
expressed as follows:

BACK(A, θd) = {x ∈ R2|∀δθ ∈ {−αθ, αθ},∃t ∈ R+, fH(x, t,p) ∈ A} (6.50)
=

⋂
δθ∈{−αθ,αθ}

{x ∈ R2|∃t ∈ R+, fH(x, t,p) ∈ A} (6.51)

=
⋂

δθ∈{−αθ,αθ}
projTX(f−1

H (A)) (6.52)
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where X = X1×X2 is the domain of (x−y), T is the domain of t and the direction θd is defined
in the function fH .

Avoiding the projection with respect to the uncertain parameter δθ means avoiding slicing
in the parameter space and saving computation time as presented in Figure 6.5(b) at the same
slice θd = 45◦. Notice how the number of unclassified boxes is reduced by working on the
bounds. This figure is obtained by taking the intersection of the sets defined at the bounds of
the direction error and depicted in Figure 6.5(c) for αθ = −5◦ and in Figure 6.5 for αθ = 5◦.
The time computation is reduced by not slicing in the uncertain parameter and not loosing
time to test small intervals along the uncertain parameter space. Any poses in the soft gray
solution with a heading x3 = θd = 45◦ will reach for sure the red disk despite the uncertainty
on the direction. A sensor for example will indicate that it has reached this disk since the time
t it reached may be different depending on the true error in the interval.
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(a) Projection on δθ and on t (double
projection).
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(b) Simple intersection of the sets
defined at the bounds of δθ. Single

projection on t.
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(c) Backward reach set at θd = 45◦ and
δθ = −αθ (lower bound).
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(d) Backward reach set at θd = 45◦ and
δθ = αθ (upper bound).

Figure 6.5: Comparison between double projection and single projection by working on the
bounds of δθ. Grayscale convention for classical thin sets. The direction is depicted by a blue
AUV.
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Example 1

Consider only an uncertainty on the compass αθ = 5◦ and no uncertainty on the speed
αv = 0%. The desired speed vd is fixed at 1m/s. Therefore [p] = {1}× [−5, 5](m

s
× deg) Define

a set A as follows:
A = {x ∈ R2|

√
(x1 − 25)2 + (x2 − 30)2 ≤ 5} (6.53)

which corresponds to a disk centered at (25, 30) with a radius at 5m. As the set A is a subset
of R2, the second model fH2 of the holonomic robot will be used. The angle of arrival in the
relocation area A has no influence on the backward reach set in this case. Due to the 3D
representation of the backward reach set, some slices are represented at different fixed values in
Figure 6.6. The slice at y = 0m is presented in Figure 6.6(a) where a blue line depicts the slice
given in Figure 6.6(b) at x3 = θd = 45◦. This latter is the representation of BACK(A, 45◦)
The red AUV corresponds to the red dot on the blue line in Figure 6.6(a). Similarly the result
is present in Figure 6.6(c) and (d) with the slice at x = 10m and the slice at θd = −40◦ giving
BACK(A,−40◦).
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(a) (x, θd) representation for the slice at
y = 0m.
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(b) (x, y) (2D) representation for the
slice at θd = 75◦ depicted by the blue line
in the figure (a). A red AUV indicates
the pose at the red dot in the figure (a).
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(c) (y, θd) representation for the slice at
x = 10m.
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(d) (x, y) (2D) representation for the
slice at θd = −40◦ depicted by the blue

line in the figure (c). A red AUV
indicates the pose at the red dot in the

figure (c).

Figure 6.6: Backward reach set of the set A defined by a 2D disk (in red).

Example 2

Consider again the shape landmark presented in the document (the thin set and not the
thick set). The omnidirectional backward reach set can obviously be computed according to
this unstructured relocation area since any equations needs to be computed to describe the
shape. Some slices of the omnidirectional backward reach set are presented in Figure 6.7.
Firstly, the slice at x = 0m is presented where the blue line and the red dot depict respectively
the slice and the red AUV poses given in Figure 6.7(b). This solution set looks similar to
the previous ones. In Figure 6.7(c), the slice at y = 50m is provided and it can be noticed a
continuity in the heading at some x coordinates and the fact that the landmark is reachable at
any heading. Indeed, the slice at y = 50m crosses the relocation area defined by the shape and
this particularity corresponds to the poses that are actually inside the shape. Obviously when
the position of the AUV is already inside the landmark, any heading (x3 = θd) is possible since
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the shape defines only a constraint on (x, y).
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(a) (y, θd) representation for the slice at
x = 0m.
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(b) (x, y) (2D) representation for the
slice at θd = 15◦ depicted by the blue line
in the figure (a). A red AUV indicates
the pose at the red dot in the figure (a).
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(c) (x, θd) representation for the slice at
y = 50m.
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(d) (x, y) (2D) representation for the
slice at θd = 0◦ depicted by the blue line
in the figure (c). A red AUV indicates
the pose at the red dot in the figure (c).

Figure 6.7: Backward reach set of the shape A defined by a red contour.

Remark

In the previous work [187][186], the exact backprojection is computed based on disk goal
sets. In this thesis, the work is extended to any shape goal sets based on the backward reach
set using interval analysis.

6.4.2.2 Backprojection of several sets

Consider now that the goal set is defined by two sets A ⊂ R3 and B ⊂ R3. They can be only
subsets of R2 as in the previous example, then consider the model fH2 instead of fH . The theory
is the same in both case. Indeed if the set A is a subset of R2 then consider A× R instead of
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just A, then use again the model fH . For ease of notation, fH2 was introduced. The angle of
arrival in this case has no influence on the backprojection. Each set is connected but the union
may not be connected. The backprojection can be given by Equation 6.23 using the double
projection even if the two sets are not connected, i.e. the intersection A∩B is empty. However,
due to the reasons explained before, computing this double projection can be time consuming.
Therefore considering again the bounds of the error on the direction could improve the compu-
tation of the backprojection, but it has to be handled carefully. This will be discussed just below.

Consider now only the backprojection using the bounds as shown before.

If the two sets are connected, i.e. the intersection A∩B is not empty, then the backprojection
of the two sets is simply given by taking the backprojection of the union of the two sets. That
means A in Equation 6.49 becomes here A ∪ B which leads to:

BACKod(A ∪ B) =
⋂

δθ∈{−αθ,αθ}
projTX(f−1

H (A ∪ B)) (6.54)

An example is provided in Example 1.

If the two sets are not connected, i.e. the intersection A∩B is empty, the problem is a little
bit more complicated.

Consider the following set:

XA→B = {x ∈ R3|BACKod(B) ∩ A 6= ∅} (6.55)

It indicates the set of robot poses from where it is possible to leave A and reach B for sure
by following a particular direction. The definition of this set will be highly used in the next
section. It can be rewritten as follows:

XA→B = {x ∈ A|∀p ∈ [p],∃t ∈ R+, fH(x, t,p) ∈ B} (6.56)

Similarly consider:
XB→A = {x ∈ R3|BACKod(A) ∩ B 6= ∅} (6.57)

Finally consider the global set that links A and B:

XA↔B = XB→A ∪ XB→A (6.58)
= {x ∈ R3|BACKod(B) ∩ A 6= ∅ ∨BACKod(A) ∩ B 6= ∅} (6.59)

Considering this motion model, the backprojection of A ∪ B can be computed according to
two cases:
Firstly if XA↔B 6= ∅:

BACKod(A ∪ B) =
⋂

δθ∈{−αθ,αθ}
projTX(f−1

H (A ∪ B)) (6.60)

where X ⊂ R3 corresponds to the domain of (x, y, θ) = (x1, x2, x3) and T to the temporal
domain.
Secondly if XA↔B = ∅:

BACKod(A ∪ B) = (
⋂

δθ∈{−αθ,αθ}
projTX(f−1

H (A)))
⋃

(
⋂

δθ∈{−αθ,αθ}
projTX(f−1

H (B))) (6.61)

=
⋃

Y∈{A,B}
projTX(f−1

H (Y)) (6.62)

= BACKod(A) ∪BACKod(B) (6.63)
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This second case means that no link exists between A and B, and it corresponds simply to the
union of the backprojection. In the first case, due to the existence of some directions between
A and B, the backprojection can be computed directly as previously.

Proving that ΘA↔B ⊂ R3 (ΘA↔B or ΘB↔A) is empty may be time consuming, and it is hard
to have an idea of the 2D backward reach set in the (x− y) plane according to the set of direc-
tions. Due to the 3D representation, a simpler version is proposed now, again on two different
cases.

Denotes as ΘA→B the set of directions such that it is possible to leave A and reach B. This
set is defined as follows:

ΘA→B = {θd ∈ R|BACK(B, θd) ∩ A 6= ∅} (6.64)

where BACK(B, θd) was defined in Equation 6.52. This is similar to Equation 6.54 where it
only deals with the directions.

This equation corresponds to:

ΘA→B = {x3|∃(x1, x2) ∈ X1 × X2, ∀δθ ∈ {−αθ, αθ}, ∃t ∈ R+,

fH(x, t,p) ∈ B and x ∈ A} (6.65)
= projX1×X2

X3

(
(

⋂
δθ∈{−αθ,αθ}

projTX(f−1
H (B))) ∩ A

)
(6.66)

= projX1×X2
X3

( ⋂
δθ∈{−αθ,αθ}

projTX(f−1
H (B)) ∩ A

)
(6.67)

where X1, X2 and X3 represent respectively the domains of x1, x2 and x3 = θd. This comes from
the definition given in Equation 6.49. Notice that it has to handle again a double projection,
but it is necessary to compute 1D or 2D sets to have visual results and better understand the
approach since 3D sets are manipulated. Moreover the 2D backward reach set (in the (x− y)
plane) defined on bounds depends on the set of directions that links the two sets.

According to Equation 6.49, the set defined in Equation 6.67 refers also to:

ΘA→B = projX1×X2
X3

(
BACKod(B) ∩ A

)
(6.68)

= projX1×X2
X3

(
XA→B

)
(6.69)

Similarly, it can be defined the following set:

ΘB→A = {θd|BACK(A, θd) ∩ B 6= ∅} (6.70)

where a computation is possible as in Equation 6.67 by inverting A and B.

Finally, the global set of directions to transit between A and B is given as follows:

ΘA↔B = ΘB→A ∪ΘB→A (6.71)
= {θd|BACK(B, θd) ∩ A 6= ∅ ∨BACK(A, θd) ∩ B 6= ∅} (6.72)

This is similar to Equation 6.59, but it only handles the direction to transit between A and B.
It also corresponds to:

ΘA↔B = projX1×X2
X3 (XA↔B) (6.73)
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The backprojection of A ∪ B in the (x, y) plane (2D backprojection) can be computed ac-
cording to two cases:
Firstly if ΘA↔B = ∅, the backprojection in the (x− y) plane is given as follows:

BACK(A ∪ B, θd) = BACK(A, θd) ∪BACK(B, θd) (6.74)

No link exists between A and B.

Secondly, if ΘA↔B 6= ∅, the backprojection in the (x, y) plane can be computed according to
two subcases.

If θd ∈ ΘA↔B:

BACK(A ∪ B, θd) =
⋂

δθ∈{−αθ,αθ}
projTX1×X2(f−1

H (A ∪ B)) (6.75)

with x3 defined at θd, X1 the domain of x1 and X2 the domain of x2. Since the existence of some
directions between A and B, the computation is similar to Equation 6.54 with the difference
that X is only along (x, y) dimension now as the direction is defined.

If θd /∈ ΘA↔B:
BACK(A ∪ B, θd) = BACK(A, θd) ∪BACK(B, θd) (6.76)

The second subcase of the second case can be grouped with the first case because if ΘA↔B
is empty then for all θd it does not belong to the set ΘA↔B. Finally, the two cases are:

If θd ∈ ΘA↔B:

BACK(A ∪ B, θd) =
⋂

δθ∈{−αθ,αθ}
projTX1×X2(f−1

H (A ∪ B)) (6.77)

If θd /∈ ΘA↔B:
BACK(A ∪ B, θd) = BACK(A, θd) ∪BACK(B, θd) (6.78)

This second case includes the fact that ΘA↔B may be empty.

As it can be noticed, the computation of ΘA→B (or ΘB→A ) in Equation 6.67 requires a second
projection to get the set of directions with respect to the (x− y) plane. The dimension of the
3D backward reach set is then reduced to a single dimension along the space of directions. If
the 3D backward reach set was computed with the bisections in the parameter space, then a
triple projection would have been needed to get the set of directions and to prove that some
links exist between A and B. Working on the bounds even with this second projection with
respect to the (x − y) plane enables to compute the set of directions and to prove that there
exists some links between A and B.

Example 1

Consider again an uncertainty on the compass αθ = 5◦ and no uncertainty on the speed.
The desired speed is fixed at 1m/s. Consider again the set A defined by the disk:

A = {x ∈ R2|
√

(x1 − 25)2 + (x2 − 30)2 ≤ 5} (6.79)

and now consider another disk as a set B:

B = {x ∈ R2|
√

(x1 − 33)2 + (x2 − 30)2 ≤ 5} (6.80)
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As the sets A and B are subsets of R2, the model used will be fH2. The intersection of the
two disks A and B is not empty, so they are connected as shown in Figure 6.8(b) by the two
red circles. The backprojection of the union of the sets is therefore given by Equation 6.54 as
depicted in Figure 6.8
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(a) (y, θd) representation for the slice at
x = 10m.
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(b) (x, y) (2D) representation for the
slice at θd = 45◦ depicted by the blue line
in the figure (a). A red AUV indicates
the pose at the red dot in the figure (a).

Figure 6.8: Backward reach set of connected sets A and B defined by red contours. Grayscale
convention for thin sets.

Example 2

Consider the same example, but modify the set B as follows:

B = {x ∈ R2|
√

(x1 − 40)2 + (x2 − 40)2 ≤ 5} (6.81)

The two sets are depicted in Figure 6.9(a) where it can be noticed that now the intersection
between the two disks is empty, so they are not connected. Firstly the set of directions linking A
to B expressed in Equation 6.64 and computed according to Equation 6.67 is shown in Figure
6.9(b) in a 2D representation. It can be noticed that ΘA→B is not empty. Due to the 1D
dimension of the set of directions, a 2D representation is proposed to have a visual aspect of
the solution set meaning that the values along the y−axis do not matter, only the x−values of
the boxes are important. The soft gray boxes are inside the solution set, or in other words, for
this set of directions there exists some locations in the set A that enable to go for sure in B with
a direction inside this set. For example, one direction is selected at x3 = θd = 55◦ depicted by
the blue line in Figure 6.9(b). The backward reach set in the (x− y) plane at this direction is
proposed in Figure 6.9(c). Since θd ∈ ΘA→B ⊂ ΘA↔B 6= ∅, then the 2D backward reach set is
computed according to Equation 6.77.

If the two sets were considered separately, the union of the backward reach set at this di-
rection would have given the set in Figure 6.9(d). The set is smaller than the previous one.
Notice that the blue AUV in Figure 6.9(d) at this specified direction (θd = 55◦) does not seem
to be able to join the two disks for sure at it lays outside the solution set. However, according
to the result in Figure 6.9(c) for the same pose it is proved that it will reach at a certain time
one of the two disks according to the theory developed above. Indeed considering the two goal
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sets as a global goal set enables to travel further. One direction outside the set of directions is
depicted by a red line in Figure 6.9(e) where the 2D representation is proposed in Figure 6.9(f).
Since θd = 2◦ /∈ ΘA→B 6= ∅, the 2D backward reach set is computed according to Equation 6.78.
Indeed, at some locations, it is possible that some directions to follow may go between the two
disks and miss the goal set.
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Figure 6.9: Backward reach set of disconnected sets A and B defined by red contours. Grayscale
convention for thin sets.
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Remark 1

As explained before, considering the double projection with bisections in the parameter
space, the 2D backward reach set in this example would have lead the result depicted in Figure
6.10(a) for a direction defined at 90◦. At this direction, it can be guessed that the backward
reach set corresponds to the union of the backward reach set since the disks are slightly sep-
arated along the x−axis. The projection with the bisections in the parameter space seems to
have difficulties to determine this 2D backward reach set. Considering the goal set as the union
of the disks and computing directly the backward reach set as proposed in Equation 6.54 by
working only on the bounds gives the result in Figure 6.10(b). Notice that a wrong set is added
below the backward reach set. This comes from the fact that the goal set was defined by the
two disks and due to the computation only at the bounds of the error on the directions will
lead to this artefact. This latter was not present when using the double projection. However,
when looking at the set of directions linking A to B (same solution set as in the example), this
direction θd = 90◦, depicted by the red line in Figure 6.10(c), is indeed outside the solution
(90◦ /∈ ΘA↔B 6= ∅) proving that the backward reach set of this goal set (defined by the two
disks) is actually the union of the two backward reach sets depicted in Figure 6.10(d). No-
tice that the result of the 2D backward reach set is well defined since the direction is valid.
Working on the bounds improves the speed of the computation of the 2D backward reach set
but it requires firstly to compute the set of directions, which depends on a double projection too.
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θd /∈ ΘA→B.

Figure 6.10: Backward reach set of disconnected sets A and B defined by red contours at the
direction defined at 90◦. Grayscale convention for thin sets.

Remark 2

The set of directions linking A and B can be interesting to have an idea about the directions
to impose to the robot to navigate safely between these two relocation areas. As the set
computation is based on separators, it provides an inner and outer approximation. Taking the
inner approximation guarantees the inter-reachability as shown in Figure 6.11. Figure 6.11(a)
depicts the set of directions ΘA→B such that it is possible to leave A and reach B for sure. It
can be enclosed in several intervals called [ΘA→B]i. Here only a single interval is sufficient to
enclose the solution that comes from the inner approximation as shown by the blue enclosure.
This latter depends on the ε (epsilon) parameter that is used for the SIVIA computation. The
initial interval for [ΘA→B] was [0, 360](deg). Similarly the set ΘB→A in Figure 6.11(b) indicates
the directions to leave B and reach A. Finally the set of directions ΘA↔B that links A and B
according to Equation 6.71 is proposed in Figure 6.11(c) where the solution is decomposed into
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two intervals represented in blue. Notice that both sets of directions, i.e. ΘA→B and ΘB→A are
not empty.

The set of directions to leave A and reach B is enclosed in the interval [ΘA→B] = [ΘA↔B]1 =
[5.03, 62.26](deg). The set of directions to leave B and reach A is enclosed in the interval
[ΘB→A] = [ΘA↔B]2 = [185.02, 241.74](deg). Both are only described by a single interval. Fi-
nally the directions linking A and B for sure belongs to one of the two intervals [ΘA↔B]1 or
[ΘA↔B]2. The directions linking A and B are then enclosed in [ΘA↔B]i ∈ {[ΘA↔B]1, [ΘA↔B]2}. It
was initially only defined by a single one [0, 360](deg). Whatever the direction inside these two
intervals, the computation of the 2D backward reach set (in the (x, y) plane) can be computed
according to Equation 6.77. Outside these intervals, Equation 6.78 would provide the backward
reach set which corresponds in this case to the union of the backward reach set.
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(a) Solution of ΘA→B.
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(b) Solution of ΘB→A.
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(c) Solution of ΘA↔B = ΘA→B ∪ΘB→A.

Figure 6.11: Different sets of direction linking A and B. Only the values on the x−axis are
relevant. The blue intervals indicate the inner approximation. Grayscale convention for thin
sets.

What about more sets ?

The goal set was firstly defined by a single connected set, then it has been extended to two
sets that may be not connected. When dealing with two sets, the computation of the backward
reach set when the sets were connected was straightforward by considering the union of the
sets as the new set. However when the sets are not connected, the problem was a little bit
more difficult. Working on the bounds of the uncertain parameter (error on the direction), the
set of directions linking two sets A and B has been computed based on the intersection of the
backward reach set of A on the set B and vice versa. These sets could be seen as intervals on
which it is guaranteed to navigate between A and B, as depicted by blue intervals in Figure 6.11
where it indicates the inner approximation. Outside these intervals, the backward reach set
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is defined as the union of the backward reach set (it includes the case when the set ΘAB is empty).

Consider now a third set C.

If the union of the sets A, B and C is connected then the backward reach set is straightfor-
ward and can be computed by considering the union of the sets.

If the union of the sets A and B is connected but C is not connected to it then the backward
reach set is similar to the previous case where it manipulated only two sets.

If the sets A and B are not connected, but the set C is connected either to A or B then the
problem is straightforward by considering a global set with the one that intersects the set C.
In other words, if the intersection C ∩ A is not empty, then consider A ∪ C instead of A.

If all the sets are disconnected to each other, the problem is again a little bit more compli-
cated as before.

Consider the previous sets A and B defined by the two disks and a new set C defined as
follows:

C = {x ∈ R2|
√

(x1 − (−10))2 + (x2 − (−30))2 ≤ 5} (6.82)

This environment is represented in Figure 6.12(a). Notice that it is indeed disconnected. Since
the set of directions linking A and B was already computed ΘA↔B and enclosed in [ΘA↔B]i ∈
{[ΘA→B], [ΘB→A]}, the problem consists now to determine if it is possible to connect directly
the three sets A, B and C by working on these intervals that link A and B. In other words, is
it possible to determine a bigger backward reach set such that if the robot starts from these
locations at some defined directions it will for sure end in either A, B or C? Is it possible to
leave C and reach A or B for sure?

It can be guessed that at the direction θd = 55◦ (θd ∈ ΘA↔B), it is possible to reach A or B
starting from some locations inside C as depicted in Figure 6.12(c). However, if the goal set
composed of A and B is considered separately, meaning that A and B are considered separately,
then the backward reach set, corresponding to the union of the backward reach set, does not
enable to start from C and reach A or B as shown in Figure 6.12(b). Considering the goal set
as the union of some sets on some intervals of direction that are proved to have some links can
extend the set of initial robot locations.
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(b) Union of the backward reach set of A
and B at the direction 55◦.
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(c) Backward reach set of A ∪ B at this
same direction since 55◦ ∈ ΘA↔B.

Figure 6.12: Comparison of the backward reach of A and B onto C. Grayscale convention for
thin sets.

If θd ∈ [ΘA↔B]i, the 2D backward reach set of A ∪ B is defined according to Equation 6.77.

The set of directions to transit from C to a goal set defined by A and B is determined
similarly as in Equation 6.64:

ΘC→A∪B = {θd ∈ R|BACK(A ∪ B, θd) ∩ C 6= ∅} (6.83)

From the potential link between A and B this set can be decomposed as follows:

ΘC→A∪B = {θd ∈ ΘA↔B|BACK(A ∪ B, θd) ∩ C 6= ∅}
∪ {θd /∈ ΘA↔B|BACK(A ∪ B, θd) ∩ C 6= ∅} (6.84)
= {θd ∈ ΘA↔B|BACK(A ∪ B, θd) ∩ C 6= ∅}
∪ {θd ∈ ΘA↔B|BACK(A ∪ B, θd) ∩ C 6= ∅} (6.85)

= ΘΘA↔B
C→A∪B ∪ΘΘA↔B

C→A∪B (6.86)

From the second case explained above, according to Equation 6.78 and the definition in
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Equation 6.52, the second term ΘΘA↔B
C→A∪B in Equation 6.86 can be decomposed as follows:

ΘΘA↔B
C→A∪B = {θd ∈ ΘA↔B|BACK(A ∪ B, θd) ∩ C 6= ∅} (6.87)

= {θd ∈ ΘA↔B|(BACK(A, θd) ∪BACK(B, θd)) ∩ C 6= ∅} (6.88)
= {θd ∈ ΘA↔B|(BACK(A, θd) ∩ C 6= ∅) ∨ (BACK(B, θd)) ∩ C 6= ∅)} (6.89)
= {θd ∈ ΘA↔B|BACK(A, θd) ∩ C 6= ∅}
∪ {θd ∈ ΘA↔B|BACK(B, θd)) ∩ C 6= ∅} (6.90)
= (ΘC→A ∩ΘA↔B) ∪ (ΘC→B ∩ΘA↔B) (6.91)
= (ΘC→A ∪ΘC→B) ∩ΘA↔B (6.92)

Considering the set of directions that does not link A to B, finding the set of directions to leave
C and reach A or B consists indeed to find separately the set of directions to leave C and reach
A (ΘC→A) and the set of directions to leave C and reach B (ΘC→B). In others terms, it looks
for connection with the other sets in the goal set. The sets ΘC→A and ΘC→B can be computed
according to Equation 6.67.

The first term ΘΘA↔B
C→A∪B in Equation 6.86 is defined as follows:

ΘΘA↔B
C→A∪B = {θd ∈ ΘA↔B|BACK(A ∪ B, θd) ∩ C 6= ∅} (6.93)

=
⋃

Θ∈{ΘA→B,ΘB→A}
{θd ∈ Θ|BACK(A ∪ B, θd) ∩ C 6= ∅} (6.94)

= ΘC→(A→B) ∪ΘC→(B→A) (6.95)
where BACK(A ∪ B, θd) can be computed according to Equation 6.77 since θd ∈ ΘA↔B.

Moreover the set ΘC→(A→B) is defined as follows:
ΘC→(A→B) = {θd ∈ ΘA→B|BACK(A ∪ B, θd) ∩ C 6= ∅} (6.96)

As ΘA→B was defined according to Equation 6.64, it finally gives:
ΘC→(A→B) = {θd ∈ R|BACK(A ∪ B, θd) ∩ C 6= ∅ ∧BACK(B, θd) ∩ A 6= ∅} (6.97)

Similarly ΘC→(B→A) can be defined by inverting A and B.

The set of directions to leave C and reach A or B when θd ∈ ΘA↔B according to Equation
6.95 and Equation 6.97 is then given as follows:

ΘΘA↔B
C→A∪B = ΘC→(A→B) ∪ΘC→(B→A) (6.98)

= {θd ∈ R|BACK(A ∪ B, θd) ∩ C 6= ∅ ∧BACK(B, θd) ∩ A 6= ∅}
∪ {θd ∈ R|BACK(A ∪ B, θd) ∩ C 6= ∅ ∧BACK(A, θd) ∩ B 6= ∅} (6.99)
= {θd ∈ R|(BACK(A ∪ B, θd) ∩ C 6= ∅ ∧BACK(B, θd) ∩ A 6= ∅)
∨ (BACK(A ∪ B, θd) ∩ C 6= ∅ ∧BACK(A, θd) ∩ B 6= ∅)} (6.100)
= {θd ∈ R|BACK(A ∪ B, θd) ∩ C 6= ∅
∧ (BACK(B, θd) ∩ A 6= ∅ ∨BACK(A, θd) ∩ B 6= ∅)} (6.101)
= {θd ∈ R|BACK(A ∪ B, θd) ∩ C 6= ∅}
∩ {θd ∈ R|BACK(B, θd) ∩ A 6= ∅ ∨BACK(A, θd) ∩ B 6= ∅} (6.102)
= {θd ∈ R|BACK(A ∪ B, θd) ∩ C 6= ∅}
∩
(
{θd ∈ R|BACK(B, θd) ∩ A 6= ∅} ∪ {θd ∈ R|BACK(A, θd) ∩ B 6= ∅}

)
(6.103)

= {θd ∈ R|BACK(A ∪ B, θd) ∩ C 6= ∅} ∩ (ΘA→B ∪ΘB→A) (6.104)
= {θd ∈ R|BACK(A ∪ B, θd) ∩ C 6= ∅} ∩ΘA↔B (6.105)
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Notice that Equation 6.105 corresponds indeed to:

ΘΘA↔B
C→A∪B = {θd ∈ R|BACK(A ∪ B, θd) ∩ C 6= ∅} ∩ΘA↔B (6.106)

= ΘC→A∪B ∩ΘA↔B (6.107)

However the set BACK(A ∪ B, θd) is computed here according to Equation 6.77 which gives:

ΘΘA↔B
C→A∪B = {θd ∈ R|

⋂
δθ∈{−αθ,αθ}

projTX1×X2(f−1
H (A ∪ B)) ∩ C} ∩ΘA↔B (6.108)

where again X1, X2, and T are the domains to x, y and t respectively.

Finally the global set of directions to leave C and reach A or B is given as follows:

ΘC→A∪B = ΘΘA↔B
C→A∪B ∪ΘΘA↔B

C→A∪B (6.109)
=
(
{θd ∈ R|

⋂
δθ∈{−αθ,αθ}

projTX1×X2(f−1
H (A ∪ B)) ∩ C} ∩ΘA↔B

)
∪
(
(ΘC→A ∪ΘC→B) ∩ΘA↔B

)
(6.110)

From this equation, several particular cases can be established:

• If the intersection A ∩ B is not empty, then ΘA↔B = R since some points in A are at
the same time in the backward reach set of B and in B, and vice versa. Consequently,
ΘA↔B = ∅ and finally it leads to:

ΘC→A∪B = {θd ∈ R|
⋂

δθ∈{−αθ,αθ}
projTX1×X2(f−1

H (A ∪ B)) ∩ C} (6.111)

which corresponds to Equation 6.67 where B is now A ∪ B and A is C. It confirms what
was stated before.

• If no links exist between A and B, i.e. ΘA↔B = ∅ or equivalently ΘA↔B = R , then it
simply looks for direct connection with A and B separately:

ΘC→A∪B = ΘC→A ∪ΘC→B (6.112)

The explanation of the different cases for the computation of the 2D backward reach set that
depends on the values of θd according to the different sets computed is straightforward. The
explanation was provided when two sets A and B were considered. Some cases will be presented
in the following examples. The computation of the global set ΘC↔A∪B needs to consider the
different backward reachability of C onto A and B.

Important note

According to Equation 6.92, when no link exists between A and B, considering a third set C
in the goal set, it looks for connection between C and A or C and B (separately). The problem
can be seen as a graph building where the first set A is tried to be connected to other sets such as
B or C. When a link exists between A and B for example, it extends the space of the backward
reach set according to Equation 6.105 where a possible third set C can be connected. This graph
creation will be the topic of the next section and is at the heart of the motion planning problem.
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Example

Consider the example with the three sets A, B and C provided in this subsection where an
illustration is depicted in Figure 6.12(a). Consider the same robot with the same uncertainties.
The set of directions linking A and B was already computed and the results can be found in
Figure 6.11 where the inner approximation was defined by blue intervals. Some results between
the three sets is provided in Figure 6.13. Adding this third set C, the computation of the set
ΘΘA↔B

C→A∪B is provided in Figure 6.13(a). Since ΘC→(B→A) is empty, and according to Equation
6.95, the set ΘΘA↔B

C→A∪B is then described only by ΘC→(A→B). The inner approximation of the set
ΘA→B is depicted by the red interval. The new inner approximation of the set considering C
is depicted by the blue interval. Notice that indeed ΘΘA↔B

C→A∪B is a subset of ΘA→B. A direction
shown by the green line is selected at θd = 60◦ in the solution set. Since θd belongs to ΘΘA↔B

C→A∪B,
meaning that it also belongs ΘA→B, then the 2D backward reach set is given as follows:

BACK(A ∪ B ∪ C) =
⋂

δθ∈{−αθ,αθ}
projTX1×X2(f−1

H (A ∪ B ∪ C)) (6.113)

which is similar to Equation 6.77 with the set C added to the goal set.
The backward reach set in the (x− y) for this direction is shown in Figure 6.13(b). Starting

from any of these soft gray boxes and having a direction defined at θd = 60◦ will lead the robot
to one of the three sets despite the uncertainty on the direction in single motion commands.

If a direction θd = 10◦ is selected outside ΘΘA↔B
C→A∪B but inside ΘA→B as depicted by the green

line in Figure 6.13(c), the corresponding 2D backward reach set is provided in Figure 6.13(d).
Indeed, since θd does not belong to ΘΘA↔B

C→A∪B, the backward reach set of C cannot be considered
with A and B but separately as in the case in Equation 6.78. Moreover, θd belongs to ΘA→B
then the backward reach of A and B can be computed as in Equation 6.77. The global backward
reach is then defined as follows:

BACK(A ∪ B ∪ C, θd) = BACK(A ∪ B, θd) ∪BACK(C, θd) (6.114)

where BACK(A∪B, θd) is computed according to Equation 6.77 and BACK(C, θd) according
to Equation 6.52.

The selected direction provides the robot location able to reach A or B (together) and C
separately since the three sets are not connected directly as in Figure 6.13(a) and (b).
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(a) Solution of ΘC→(A→B). Red
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(d) 2D backward reach set at θd = 10◦.

Figure 6.13: Different sets of direction linking A, B and C. The blue intervals indicate the
inner approximation of ΘΘA↔B

C→A∪B and the red brackets are the intervals (set of directions) that
link A to B. Grayscale convention for thin sets.

In the following of the document, A→ B will be denoted as AB and B→ A as BA for ease
of reading. The place of the sets indicates the direction. AB means that it starts from A and
reach B.

6.4.2.3 What about the departure positions ?

Until now, the algorithm looked for some directions that could link in a guaranteed manner
different sets, A and B for example. It is based on a projection on θ with respect to the (x− y)
plane by checking if some points in a backward reach set of a set B are inside a set A. This was
defined in Equation 6.64 where the computation based on projection was provided in Equation
6.67. Therefore, the set of directions corresponded to the projection of the intersection of the
set A and the omnidirectional backprojection of the set B onto the space of directions θ with
respect to the (x − y) plane as mentioned in Equation 6.69. The computation of the starting
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point in A to reach B is then the projection of the intersection of A and the omnidirectional
backprojection of B onto the (x− y) plane with respect to the space of directions:

PA→B = {(x1, x2) ∈ X1 × X2|∃x3 ∈ X3,x ∈ BACKod(B) and x ∈ A} (6.115)
= {(x1, x2) ∈ X1 × X2|∃x3 ∈ X3,x ∈ BACKod(B) ∩ A 6= ∅} (6.116)
= projX3

X1×X2

( ⋂
δθ∈{−αθ,αθ}

projTX(f−1
H (B)) ∩ A

)
(6.117)

= projX3
X1×X2

(
XA→B

)
(6.118)

where X1, X2 and X3 represent respectively the domains of x1, x2 and x3 = θd.

Example

Consider the sets depicted in Figure 6.14(b) where the upper set is A and the lower set
is B. The set of directions ΘA→B = ΘAB that links A to B is represented in Figure 6.14(a)
where again only the values along the x−dimension are important. Notice that now the set of
directions could be approximately separated in two blue intervals due to the shape of the A.
Indeed, the 2D backward reach set of B at the direction θd = 280◦ (green line) enables to leave
A and reach B as depicted in Figure 6.14(c). However, at the direction θd = 266◦, as it can be
seen in the 2D backward reach in Figure 6.14(d) it is not possible to start from A and reach
B with this motion command. A zoom is provided in Figure 6.14(e) to illustrate more precisely.

What are then the possible locations in A such that a motion command (a direction) exists
to leave A and reach B. The solution, corresponding to Equation 6.118, is provided in Figure
6.15. A zoom is provided in Figure 6.15(b). It indicates the (x − y) positions the robot has
to be in, such that there exists at least one direction that leads the robot in B for sure. No-
tice that many little unclassified boxes are present when it is far from the set B. Indeed, the
further the position is, the more difficult it is to guarantee the reachability and the smaller
the solution boxes will be. Moreover the resolution of the initial image was large. The idea
beyond this computation is just to prove that there exists some location inside A to reach B for
sure. The results are complementary to the computation of ΘAB. For example, at the position
(70, 130) represented by a blue dot in Figure 6.15(a), the set ΘAB from this initial location is
given in Figure 6.15(c). At this location, with a direction inside the set ΘAB, it guarantees
the reachability of B despite the uncertainty on the direction. For example, at the direction
θd = 285◦, indicates by the green line in Figure 6.15(c), some trajectories from this initial pose
(70, 130, 285)(m,m, deg) are depicted in Figure 6.15(d) in blue with the error on the direction
selected uniformly in the interval [−5, 5](deg). Notice that all trajectories cross at a certain
time the set B, guaranteeing the reachability of B.
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Figure 6.15: Computation of PA→B. Many little boxes due to the resolution of the initial image
and the size of the boxes that are getting smaller with the distance to B.

6.4.2.4 Backprojection with forbidden areas

It was assumed that no obstacle was present in the underwater environment but the method
can obviously incorporate obstacles or forbidden areas. These areas can be defined by sets from
an image or from inequalities. By considering N connected forbidden areas Oi ⊂ R3 , the set
of forbidden areas is given as follows:

O =
⋃

i∈{0,..,N}
Oi (6.119)

Usually the forbidden areas as obstacles are only subsets of R2 but it can be extended to R3

to restrict the heading. A forbidden area can be a region where no landmarks are available or
too many which can lead to wrong data association.
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The omnidirectional backward reachability of a set A ⊂ R3 considering forbidden areas is
given as follows:

BACKO
od(A) = {x ∈ R3|∀δθ ∈ [−αθ, αθ], ∃t ∈ R+, fH(x, t,p) ∈ A and

∀δθ ∈ [αθ, αθ],∀t ∈ R+, fH(x, t,p) /∈ O} (6.120)
= BACKod(A) ∩ {x ∈ R3|∀δθ ∈ [−αθ, αθ],∀t ∈ R+,

fH(x, t,p) /∈ O} (6.121)
= BACKod(A) ∩ {x ∈ R3|∃δθ, ∃t, fH(x, t,p) ∈ O} (6.122)
= BACKod(A) ∩WBACKod(O) (6.123)

where WBACK refers to the weak backprojection introduced in Equation 6.32 and defined
according to the directional/omnidirectional backprojection in Equation 6.42 and in Equation
6.43.

The backward reach set can also be decomposed in two parts, one related to the goal set A
and one related to the forbidden areas O. The classic backward reach set BACKod provides the
set of robot configurations guaranteeing to reach the goal set A contrary to the weak backward
reach set WBACKod that provides the robot configurations that may cross at a certain time
an obstacle O according to the uncertain parameter p which is here only δθ.

Any trajectories that could cross a forbidden area may lead to the destruction of the robot
if they are actually obstacles.

The weak directional backprojection can be computed with projection as follows:

WBACKod(O) = proj[−αθ,αθ]×R+

X (f−1
H (O)) (6.124)

where [−αθ, αθ] is the error on the direction and R+ is the domain of t.

Finally the omnidirectional backward reachability can be computed as follows:

BACKO
od(A) = BACKod(A) ∩WBACKod(O) (6.125)

If the direction θd is defined, the direction backprojection including obstacles can be defined
as follows:

BACKO(A, θd) = BACK(A, θd) ∩WBACK(O, θd) (6.126)
Notice that if the direction θd is defined, the 2D weak direction backprojection (in the

(x − y) plane) of a set B (B is preferred to O for notation) can be expressed as a Minkowski
sum. Consider a set B ⊂ R2 and then the function fH = fH2.

WBACK(B, θd) = {x ∈ R2|∃δθ ∈ [αθ, αθ],∃t ∈ R+, fH(x, t,p) ∈ B}

= {x ∈ R2|∃δθ ∈ [αθ, αθ],∃t ∈ R+,x + v · t ·
(

cos(θd + δθ)
sin(θd + δθ)

)
∈ B}

= {x ∈ R2|∃δθ ∈ [αθ, αθ],∃t ∈ R+,∃b ∈ B,x + v · t ·
(

cos(θd + δθ)
sin(θd + δθ)

)
= b}

= {x ∈ R2|∃δθ ∈ [αθ, αθ],∃t ∈ R+,∃b ∈ B,x = b− v · t ·
(

cos(θd + δθ)
sin(θd + δθ)

)
}

The second term corresponds to a polar set defined as follows:

Xpolar(θd) = {x ∈ R2|∃δθ ∈ [−αθ, αθ], ∃t ∈ R+,x = v · t ·
(

cos(θd + δθ)
sin(θd + δθ)

)
} (6.127)
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where ρ = v · t and θ = θd + δθ.

Finally, the weak backprojection is given as follows:

WBACK(B, θd) = B⊕ (−Xpolar(θd)) (6.128)

It could have been noticed that:

− v · t ·
(

cos(θd + δθ)
sin(θd + δθ)

)
= v · t ·

(
cos(θd + π + δθ)
sin(θd + π + δθ)

)
(6.129)

The proposition given in Equation 6.126 is not always true and in particular is false when
the obstacle is behind the relocation area. This will be explained in Example 2.

Example 1

Consider an uncertainty on the compass αθ = 5◦ and no uncertainty on the speed αv = 0%.
The desired speed vd is fixed at 1m/s. Therefore [p] = {1}× [−5, 5](m

s
× deg) Define the same

goal set A as in Figure 6.6 which was described as follows:

A = {x ∈ R2|
√

(x1 − 25)2 + (x2 − 30)2 ≤ 5} (6.130)

Define two forbidden areas O1 and O2 as follows:

O1 = {x ∈ R2|
√

(x1 − 10)2 + (x2 − 10)2 ≤ 2} (6.131)

and
O2 = {x ∈ R2|

√
(x1 − 15)2 + (x2 − 25)2 ≤ 2} (6.132)

such that O = O1 ∪O2. This environment is depicted in Figure 6.16(b) and (c) where the goal
set is in red and the forbidden areas are in green. The slice at y = 0m of the backward reach
set of A is given in Figure 6.16(a) with a (x, θd) representation. The 2D backward reach set
at the slice θd = 60◦ corresponding to the blue line is depicted in Figure 6.16(b) where the red
AUV pose corresponds to the red dot in the figure (a). Similarly the slice at x = 10m and the
associated 2D backward reach set the blue line are given in Figure 6.16(c) and (d). The red
AUV pose corresponds again to the red dot on the associated solution set. The 2D backward
reach set passes between the two forbidden areas. Notice the difference at the slice y = 0m
of the solution set without the forbidden areas in Figure 6.6(a) and with the forbidden areas
in Figure 6.16(a). A comparison can also be made between the solution at the slice x = 10m
between Figure 6.6(c) and 6.16(c). Some parts of the solution set without forbidden areas are
removed.

Notice how the 2D backward reach takes into account the forbidden areas to provide a safe
backward reach set.
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Figure 6.16: Backward reach set of the set A defined by a 2D disk (in red) in presence of
forbidden areas (in green).

Example 2

Consider the same example as in Example 1 where a third obstacle O3 defined as follows
is added:

O3 = {x ∈ R2|
√

(x1 − 35)2 + (x2 − 40)2 ≤ 5} (6.133)
The environment is depicted in Figure 6.17 where the obstacles are represented in green and
the goal area in red. The direction defined at θd = 45◦ is indicated by the red AUV. If only
O1 and O2 are considered as obstacles, the 2D weak backprojection WBACK(O1 ∪O2, 45◦) is
represented in Figure 6.17(a). If O3 is added to the set of obstacles, the 2D weak backprojection
WBACK(O1∪O2∪O3, 45◦) is given in Figure 6.17(b) where as it can be noticed the goal area
A is hidden by the 2D weak backprojection of O3 at θd = 45◦. When computing the backward
reach set of A according to Equation 6.125 considering these three obstacles, it would return no
solution at θd = 45◦ or it has been shown in Figure 6.16(d) at almost the same direction that

223



CHAPTER 6. MOTION PLANNER

the 2D backward reach set actually exists. Therefore O3 must not be considered as an obstacle
when computing the 2D backward reach set of A at this direction, only O1 and O2 may be
considered at this direction. This is explained by the fact that θd = 45◦ /∈ ΘO3A contrary to
θd = 45◦ ∈ ΘO1A and θd = 45◦ ∈ ΘO2A.

Consequently, Equation 6.125 is true under some conditions. This will be particularly im-
portant when dealing with indistinguishable relocation areas to avoid any ambiguity at the
moment of the graph building.
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(a) 2D weak backprojection
WBACK(O1 ∪O2, 45◦).
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(b) 2D weak backprojection
WBACK(O1 ∪O2 ∪O3, 45◦).

Figure 6.17: Weak backprojection of obstacles at the defined direction θd = 45◦.

Considering several sets in the goal set, it is still possible to compute the safe backward reach
set according to Equation 6.125 and the theory developed above on several sets with directions.
It will not be discussed more.

6.4.2.5 Goal recognizability

Until now it was assumed that a sensor was able to indicate that the robot has reached a goal
set that may be defined by several sets. The termination condition [183][88] was then based on
this available exteroceptive information. Only the uncertainty on the direction was taken into
account since the speed would only influences when the robot will reach the goal set. Consider
now that the uncertainty on the speed is not null anymore, i.e. αv > 0%. The time t has
then to be considered. The reachability was defined as the ability to reach the goal and the
recognizability was the ability to stop in it. Contrary to what stated in [89] about the separated
computation of the reachability and the recognizability, it is possible to compute both at the
same time when dealing with directional backprojection.

The omnidirectional backprojection providing the reachability and the recognizability of a
set A ⊂ R3:

BACKrec
od (A) = {x ∈ R3|∃t ∈ R+, ∀p ∈ [p], fH(x, t,p) ∈ A} (6.134)

where "rec" is added to indicate the reachability and the recognizability at the same time. No-
tice the place difference of ∃t with Equation 6.36.
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In general, ∃ and ∀ do not commute. The set defined in Equation 6.134 looks for the initial
poses such that at a certain time all the poses of the robot are inside the goal set A. This
is different from Equation 6.36 where it looks for the initial poses such that whatever the
uncertainties are the robot will reach the goal set A at a certain time.

The set defined in Equation 6.134 is more restrictive and it can be noticed that:

BACKrec
od (A) ⊂ BACKod(A) (6.135)

Contrary to the theory developed on the reachability with the work on the bounds, in this
case it is not possible to consider the bounds since it has to be proved that all the poses are
inside the goal set whatever the uncertainties are. Considering only the bounds would lead to
an over approximation of the solution set.

The set expressed in Equation 6.134 can be computed with projection:

BACKrec
od (A) = projTX

(
proj[p]

X×P(f−1
H (A))

)
(6.136)

where P is the domain of the uncertain parameter p (P = [p]) and X is domain of x = (x, y, θ)
which can be R3.

At a defined initial robot location q0 = (x0, y0), since the robot can move in any direction,
it is possible to compute the set of motion commands (θd, t) such that it guarantees the robot
has reached the goal set depending on the direction to follow θd and end in it depending on the
time t. It is called the termination condition (TC ).

The set of motion commands, or termination condition (TC ), at the defined initial robot
location q0 = (x0, y0) is expressed as follows:

TC(q0) = {(θd, t) ∈ R2|∀p ∈ [p], fH(x0, t,p) ∈ A} (6.137)

where x0 = (q0, θd) = (q0(1), q0(2), θd) = (x0, y0, θd).

This set can be expressed with projection:

TC(q0) = proj[p]
X3×T(f−1

H (A)) (6.138)

where X3 is the domain of θd = x3.

The set expressed in Equation 6.137 can be rewritten as follows:

TC(q0) = {(θd, t) ∈ R2|∀p ∈ [p], fH(x0, t,p) ∈ A} (6.139)
=

⋂
p∈P
{(θd, t) ∈ R2|fH(x0, t,p) ∈ A} (6.140)

where P = [p] = [v]× [δθ] = [vd(1− αv), vd(1 + αv)]× [−αθ, αθ].

As the set P corresponds to an interval vector, it can be discretized in grid for example
(uniformly along each dimension). The set P then corresponds to:

Pdiscret = {p1,p2, ...,pN} (6.141)

Finally the termination condition according to this discretization is then given as follows:

TC(q0) =
⋂

p∈Pdiscret
{(θd, t) ∈ R2|fH(x0, t,p) ∈ A} (6.142)

=
⋂

p∈Pdiscret
f−1
H (A) (6.143)
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This discretization enables to avoid the projection but the result does not provide the complete
guarantee. If the number of samples approaches infinity, then the result approaches to the
complete guarantee. As in motion planning, it is probabilistically complete.

Similarly, this approximation can be made for the computation of the backward reach set in
Equation 6.137 to save computation time.

Goal recognizability as a shape registration

The problem expressed here can be seen as a shape registration introduced in Chapter 5 in
section 5.2.3. Indeed the propagation of the robot positions from an initial pose is presented
in Figure 6.19 which corresponds to a polar set. The problem consists then in checking after a
motion command (θd, t) that this set is inside the goal set as it is defined in the shape registra-
tion problem. The proof is provided just below.

It will be considered a goal set A ⊂ R2 for ease of writing and as it is the most spread case.
Due to this 2D goal set, the 2D motion model in Equation 6.15 will be used for holonomic robot
as assumed in this subsection. According to the definition of the function fH2, the uncertain
parameter vector is p = (v, δθ) and the initial pose x0 = (x0, y0, θ0) where θ0 = θd when the
robot has to follow the direction θd. The 2D motion model in Equation 6.15 can be rewritten
as follows:

fH2(x0, t,p) =
(
x0
y0

)
+ vt

(
cos(θ0 + δθ)
sin(θ0 + δθ)

)
(6.144)

=
(
x0
y0

)
+ vt

(
cos(θ0) cos(δθ)− sin(θ0) sin(δθ)
sin(θ0) cos(δθ) + cos(θ0) sin(δθ)

)
(6.145)

=
(
x0
y0

)
+ vt

(
cos(θ0) − sin(θ0)
sin(θ0) cos(θ0)

)(
cos(δθ)
sin(δθ)

)
(6.146)

=
(
x0
y0

)
+ vt · R(θ0)

(
cos(δθ)
sin(δθ)

)
(6.147)

where R(θ0) corresponds to the 2D rotation matrix.

The set of termination condition according to a defined initial location q0 in Equation 6.137
and since θd = θ0 can then be rewritten as follows:

TC(q0) = {(θ0, t) ∈ R2|∀p ∈ [p], fH2(x0, t,p) ∈ A} (6.148)
= {(θ0, t) ∈ R2|∀p ∈ [p],∃a ∈ A, fH2(x0, t,p) = a} (6.149)

= {(θ0, t) ∈ R2|∀p ∈ [p],∃a ∈ A,q0 + vt · R(θ0)
(

cos(δθ)
sin(δθ)

)
= a} (6.150)

= {(θ0, t) ∈ R2|∀p ∈ [p],∃a ∈ A, vt · R(θ0)
(

cos(δθ)
sin(δθ)

)
= a− q0} (6.151)

(6.152)

where x0 = (x0, y0, θ0).

Let’s define the translated set B from the set A according to the function:

fq0(x) = x− q0 (6.153)
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The set B is then given by: B = fq0(A).

Now define the polar set D given by:

D = {x ∈ R2|∃p ∈ [p],x =
(
v cos(δθ)
v sin(δθ)

)
} (6.154)

= {x ∈ R2|∃p ∈ [p],x =
(
p1 cos(p2)
p1 sin(p2)

)
} (6.155)

Finally define the scaled rotation function fsr : R4 → R2 as follows:

fsr :


R2 × R2 → R2

(x,m) → m2 · R(m1) ·
(
x1
x2

)
(6.156)

where R is the 2D rotation matrix.

By defining m = (θ0, t), the set of termination condition TC(q0) in Equation 6.152 is then
given as follows:

TC(q0) = {m ∈ R2|∀p ∈ [p],∃a ∈ A, vt · R(θ0)
(

cos(δθ)
sin(δθ)

)
= a− q0} (6.157)

= {m ∈ R2|∀d ∈ D,∃a ∈ A, fsr(d,m) = fq0(a)} (6.158)
= {m ∈ R2|fsr(D,m) ⊂ B} (6.159)

which is indeed a shape registration problem as defined in Equation 5.41 where A = D and
p = m defined in Chapter 5 in section 5.2.3.

Similarly it could be proved that the set giving the backprojection in Equation 6.134 can
almost be seen as a shape registration.

Example

Consider again an uncertainty on the compass αθ = 5◦ and now an uncertainty on the
speed αv = 10%. The desired speed is fixed at 1m/s. The uncertain parameter vector is
[p] = [0.9, 1.1] × [−5, 5](m

s
× deg). Define again the same goal set A as in Figure 6.6 which

is depicted by a red circle on the right in Figure 6.18. Consider an initial robot location at
q0 = (x0, y0) = (15, 15). The sets of motion commands that provides the reachability and
the recognizability according to Equation 6.137 from this initial location are given in Figure
6.18 with associated sampled trajectories. In Figure 6.18(a), the set of motion commands is
computed with projection according to Equation 6.138. Notice that many boxes are unclassified
due to the projection and the difficulty to prove that it is actually inside the set A. A motion
command is selected at (θd, t) = (56◦, 18s) shown by the red disk. According to this motion
command, randomly sampled trajectories are represented in blue in Figure 6.18(b) where the
last position (at time t = 18s) is represented by a yellow AUV. The last poses of the robot at
the bounds of the uncertain parameter vector p are shown by red AUVs.

Using the discretization strategy, the set of motion commands is represented in Figure 6.18(c)
where each interval of the interval vector p was split in 5, which leads to a 5 × 5 polar grid
as depicted in Figure 6.18(d). The trajectories were generated according to the same motion
command as earlier with this splitting way. Considering a split with 30 samples, the set of mo-
tion commands is represented in Figure 6.18(e) where the polar grid can be viewed in Figure
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6.18(f). Notice that it does not really improve the result in terms of set computation. However,
in this case, the goal set was simple but when dealing with shapes and holes for example, more
samples will be needed or the method with projection.

The set of motion commands computed from the shape registration in Equation 6.159 gives
a similar result as in Figure 6.18(a) as it relies on projection.

The set of positions from the initial location (15, 15) after the motion command (θd, t) =
(56◦, 18s) is given in Figure 6.19. Notice that this corresponds to a polar set. A red pie enclosed
the solution set. At any time and at any direction, it is possible to represent the set of positions
with a pie since it corresponds to a polar set.
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(a) TC((15, 15)) computed with
projection.
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(b) 100 trajectories in blue from the
initial location at the motion command
represented by the red dot in the figure

(a).
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(c) TC((15, 15)) computed with sampling
defined at 5 along each dimension of p.
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(e) TC((15, 15)) computed with sampling
defined at 30 along each dimension of p.
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(f) Trajectories associated to the
sampling (30× 30) and to the same

motion command.

Figure 6.18: Set of motion commands (θd, t) (termination condition) to reach and stop in A
from the initial location (15, 15) and simulated trajectories.
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Figure 6.19: Set of positions after a motion command (θd, t) = (56◦, 18s) starting from the
initial pose (15, 15, 56◦) represented by the red AUV.

What if the initial position is uncertainly known?

If the initial position q0 is uncertainly known but it belongs to an initial set Q0, it is still
possible to provide the set of motion commands. Moreover according to the uncertain initial
location, a thick set representation is also possible.

Consider that the initial location q0 ∈ Q0 ⊂ R2, the set of motion commands whatever the
initial location q0 is then expressed as follows:

TC(Q0)− = {(θd, t) ∈ R2|∀q0 ∈ Q0,∀p ∈ [p], fH(x, t,p) ∈ A} (6.160)

where x = (q0, θd).

Consider now the set:

TC(Q0)+ = {(θd, t) ∈ R2|∃q0 ∈ Q0,∀p ∈ [p], fH(x, t,p) ∈ A} (6.161)

The set of motion commands TC(q0) with q0 ∈ Q0 is enclosed between TC(Q0)− (strong
termination condition) and TC(Q0)+ (weak termination condition). This gives finally:

TC(q0) ∈ [TC(Q0)−, TC(Q0)+] (6.162)

Example

Consider the same example as in Figure 6.18. The initial position of the robot is assumed
to belong to a box:

q0 ∈ Q0 = [14, 16]2 (6.163)
This corresponds to the previous certain position with an inflation of 1m (uncertainty defined
at 1m). The results are presented in Figure 6.20 where the initial red box can be seen in
Figure 6.20(b),(c) or (d). The solution set TC(q0) ∈ [TC(Q0)−, TC(Q0)+] is depicted by a
thick representation in Figure 6.20 where the discretization strategy was used. Notice how the
penumbra (dark gray) is large compared to the inner approximation due to the large initial
location. Some motion commands represented by dots are selected according to the different
parts of the thick set. In Figure 6.20(b)(c) and (d), blue AUVs correspond to correct initial
location which guarantee that after the selected motion command all the robot positions, rep-
resented then by blue pies, end in the goal set (red circle). Green AUVs do not provide this
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guarantee as some positions are outside the goal set. A random sampling has been performed
to select 10 initial robot locations in the red box. In Figure 6.20(a), it presents the result for
the motion command (56◦, 18s) depicted by the blue dot which is inside the solution set. As it
can be noticed this motion command guarantees indeed that all the robot positions end in the
goal set. The goal set is then reached and recognized. In Figure 6.20(c), the motion command
(48◦, 21s) (green dot) is selected outside the solution set. All the robot positions after this
motion command for each initial positions are not totally in the goal set but only partially (in
green). The goal has been reached but not recognized temporally. Finally in Figure 6.20(d),
the motion command (48◦, 18s) is selected inside the penumbra (red dot). All the poses from
some initial poses are inside the goal set, represented in blue, and some are only partially,
represented in green. Indeed, this motion command only guarantees that some initial robot lo-
cations in the red box will lead all the robot positions after executing this motion in the goal set.
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(a) Thick solution of the set TC(q0).
Grayscale convention for thick sets.
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(b) Motion command (56◦, 18s)
corresponding to the blue dot inside the

solution set in the figure (a). All the robot
poses end in the goal set after this motion

command.
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(c) Motion command (48◦, 21s)
corresponding to the green dot outside the
solution set in the figure (a). All the robot
poses do not end in the goal set after this

motion command.
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(d) Motion command (48◦, 18s)
corresponding to the red dot in the

penumbra in the figure (a). Some of the
robot poses (blue) end in the goal set and
some (green) do not after this motion

command (only partially).

Figure 6.20: Thick representation of the motion command due to uncertain initial location of
the robot in the red box. The propagation of the robot positions is represented by pie as in
Figure 6.19. Blue AUVs correspond to correct initial poses with the associated blue pies that
are inside the goal set (red circle). Green ones are wrong.

Motion commands with uncertain initial position and Minkowski operators

Finding the motion commands has been solved previously considering the projection (shape
registration or directly) or the discretization even when the position was uncertainly known.

Consider an initial position q ∈ Q0 ⊂ R2 and a goal set A ⊂ R2 as in the previous proof
about the goal recognizability as a shape registration.

Introduce again m = (θd, t) = (θ0, t).
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The strong termination condition given in Equation 6.160 can be rewritten as follows:

TC(Q0)− = {m ∈ R2|∀q0 ∈ Q0,∀p ∈ [p], fH2(x, t,p) ∈ A} (6.164)

= {m ∈ R2|∀q0 ∈ Q0,∀p ∈ [p],q0 + v ·m2 ·
(

cos(m1 + δθ)
sin(m1 + δθ)

)
∈ A} (6.165)

= {m ∈ R2|∀p ∈ [p],Q0 + v ·m2 ·
(

cos(m1 + δθ)
sin(m1 + δθ)

)
⊂ A} (6.166)

which corresponds almost to a Minkowski difference defined in Equation 5.53 where the param-

eter vector p corresponds here to v ·m2 ·
(

cos(m1 + δθ)
sin(m1 + δθ)

)
.

Define then as H(Q0)− the set corresponding to:

H(Q0)− = {h ∈ R2|Q0 + h ⊂ A} (6.167)
= A	Q0 (6.168)

Finally,

TC(Q0)− = {m ∈ R2|∀p ∈ [p], v ·m2 ·
(

cos(m1 + δθ)
sin(m1 + δθ)

)
∈ H(Q0)−} (6.169)

= {m ∈ R2|∀p ∈ [p], v ·m2 ·
(

cos(m1 + δθ)
sin(m1 + δθ)

)
∈ A	Q0} (6.170)

The weak termination condition TC(Q0)+ Equation 6.161 can be rewritten as follows:

TC(Q0)+ = {m ∈ R2|∃q0 ∈ Q0,∀p ∈ [p], fH2(x, t,p) ∈ A} (6.171)
= {m ∈ R2|∃q0 ∈ Q0,∀p ∈ [p],∃a ∈ A,

fH2(x, t,p) = a} (6.172)
= {m ∈ R2|∃q0 ∈ Q0, ∀p ∈ [p],∃a ∈ A,

q0 + v ·m2 ·
(

cos(m1 + δθ)
sin(m1 + δθ)

)
= a} (6.173)

= {m ∈ R2|∃q0 ∈ Q0,∀p ∈ [p],∃a ∈ A,

a + (−q0) = v ·m2 ·
(

cos(m1 + δθ)
sin(m1 + δθ)

)
} (6.174)

which corresponds almost to a Minkowski sum.

Define then as H(Q0)+ the set corresponding to:

H(Q0)+ = {h ∈ R2|∃q0 ∈ Q0,∃a ∈ A,h = a + (−q0)} (6.175)
= A⊕ (−Q0) (6.176)

Finally,

TC(Q0)+ = {m ∈ R2|∀p ∈ [p], v ·m2 ·
(

cos(m1 + δθ)
sin(m1 + δθ)

)
∈ H(Q0)+} (6.177)

= {m ∈ R2|∀p ∈ [p], v ·m2 ·
(

cos(m1 + δθ)
sin(m1 + δθ)

)
∈ A⊕ (−Q0)} (6.178)
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Since usually Q0 is represented by a box, a circle or an ellipse which are simple sets, and the
set A may be very complex (random shape), it will be preferred to take −(Q0 ⊕ (−A)) which
is equal to A⊕ (−Q0).

The names H(Q0)− and H(Q0)+ do not correspond to any thick set representation and dot
have any link, they were simply given as intermediate variables.

Finally the thick set representation of the set of motion commands TC(q0) with q0 ∈ Q0
can be computed according to a Minkowski difference and a Minkowski sum to provide the
enclosure given in Equation 6.162 and reminded here:

TC(q0) ∈ [TC(Q0)−, TC(Q0)+] (6.179)

Example

Consider the same example to be able to compare the results. The set A is represented by
a red circle and the uncertain initial pose Q0 by a red box in Figure 6.21(a) and (c).

Firstly the computation of the Minkowski difference A	Q0 from Equation 6.168 giving the
intermediate set H(Q0)− is provided in Figure 6.21(a) where the blue circle, corresponding to
a translation of the red circle, has been drawn to highlight the Minkowski difference known
also as erosion in image processing. Finally the set of motion commands TC(Q0)−, defined as
strong motion commands, is represented in Figure 6.21(b). Notice that this set is the same as
in the lower bound of the thick representation represented by the soft gray region in Figure
6.20(a) (the scales of the figure are the same).

Secondly, the Minkowski sum A ⊕ (−Q0) from Equation 6.176 giving the intermediate set
H(Q0)− is provided in Figure 6.21(c) where the blue circle has also been added to highlight the
Minkowski sum known as dilation in image processing. Finally the set of motion commands
TC(Q0)+, defined as weak motion commands, is represented in Figure 6.21(d). Notice again
that the set corresponds to the upper bound of the thick set in Figure 6.20(a).

Finally the thick set representation [TC(Q0)−, TC(Q0)+] given by Equation 6.162 based on
the two sets is provided in Figure 6.21(e) which is the same thick solution as in Figure 6.20(a).
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(a) Minkowski difference
A	Q0 = H(Q0)−. A is represented by the
red circle and Q0 by the red box. The blue

circle is the translated circle of A to
highlight the erosion.
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(b) Strong termination condition
TC(Q0)−.
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(c) Minkowski sum A⊕ (−Q0) = H(Q0)+.
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(d) Weak termination condition
TC(Q0)+.
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(e) Thick representation of
TC(q0) = [TC(Q0)−, TC(Q0)+] with

q0 ∈ Q0.

Figure 6.21: Computation of the motion command with an uncertain initial location q0 of the
robot in the red box Q0 using Minkowski operators.
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6.4.3 Dubins path backprojection
When dealing with nonholonomic robot, the Dubins paths were considered to take into account
a potential non null minimum turning radius. The model of the motion fNH was proposed in
Equation 6.13 in the previous section that provides a parametric Dubins paths with uncertain
parameters. Since the motion is composed of several elementary motions such as circular or
linear displacements, a time vector t (or duration) was introduced to describe all these portions.
This vector corresponded to t = {tc1 , ts, tc2} where tc1 , ts and tc2 were respectively the duration
of the first circular motion, then the linear portion and finally the circular portion. Several
Dubins paths were considered: RSL, LSL, RSR and LSR. A strategy µ corresponding to one of
these Dubins paths is defined as follows: µ ∈ {RSL,LSL,RSR,LSR}. If only the RSR motion
is considered, then µ = RSR. It will be considered in the following that the final portion of
the motion, i.e. a circular portion, has to enter in the goal set for each of the possible Dubins
motions. According to Equation 6.18 based on the general motion model in Equation 6.16, the
Dubins backward reach set of a set A ⊂ R3 is then defined as follows:

BACK(A, µ) = {x ∈ R3|∃(tc1 , ts) ∈ Tc1 × Ts,∀p ∈ [p], ∃tc2 ∈ Tc2 , fµ(x, t,p) ∈ A} (6.180)

where µ ∈ {RSR,RSL,LSL,LSR}, t = (tc1 , ts, tc2) ∈ Tc1 × Ts × Tc2 and p the uncertain
parameter vector. Tc1 , Ts and Tc2 are intervals and p ∈ [p] (interval vector). The notation fµ
will be kept but it refers to the function fNH with the right angular velocities defined according
to the desired motion.

Notice that indeed, only in the last portion at time tc2 , the pose of the robot has to belong
to the goal set A. The reachability of the Dubins paths is the modelled according to the first
two portions of the motion, i.e. according to tc1 and ts. This can be noticed by the place of the
quantifiers which appear before the uncertain parameters. Indeed, the reachability has to be
guaranteed on the last portion of the motion despite the uncertainties, therefore it needs the
existence of durations for the first two portions.

Since the angular speed w is assumed fixed, the domain of the duration Tc1 and Tc2 can be
reduced to:

Tc1 = Tc2 = [0, 2π
w

] (6.181)

Indeed, according to w and due to the fact that the motion is circular, it will be assumed only
a single round.

Considering all the possible Dubins paths, the general backward reach set is then defined as
follows:

BACK(A) =
⋃

µ∈{RSR,RSL,LSL,LSR}
BACK(A, µ) (6.182)

which gives the whole backward reach set according to the four possible paths. It will then
indicates that at least one Dubins paths is possible.

According to Equation 6.180 and similarly to Equation 6.23, the backward reach set for
a strategy µ ∈ {RSR,RSL,LSL,LSR} of Dubins path can be defined with projections as
follows:

BACK(A, µ) = projTc1×Ts
X (proj[p]

X×Tc1×Ts
(projTc2

X×Tc1×Ts×P
(f−1
µ (A)))) (6.183)

where P corresponds to the domain of the uncertain parameter vector.
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Contrary to the main work on directional backprojection, now the uncertainty on the speed
is considered which means that p ∈ [p] = [vd(1−αv), vd(1 +αv)]× [−αθ, αθ] where αv ≥ 0 and
αθ ≥ 0.

Notice that the set defined in Equation 6.183 is composed of three levels of projection.
Consider now only the trajectories at the bounds of the uncertain parameter vector p, i.e.
v ∈ {vd(1− αv), vd(1 + αv)} = {vmin, vmax} and δθ ∈ {−αθ, αθ}. According to a defined time
vector t = (tc1 , ts, tc2), it will be assumed that all the trajectories are enclosed between these
trajectories on the bounds as depicted in Figure 6.22(a). The time command t between an
initial configuration in blue and a final configuration in red is computed and the corresponding
path without uncertainty is represented in green. Uniformly sampled trajectories in the interval
errors are shown in yellow and the trajectories on the bounds are represented in red. However
this enclosure is under approximative as it can be seen on the second turn where some trajecto-
ries as depicted in Figure 6.22(b) at the top go outside this enclosure. This will be considered
insignificant since these trajectories come back in the enclosure and could reach the goal set.
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Figure 6.22: Uncertain Dubins path according to the motion command linking the initial blue
pose and the final red pose represented by the green nominal trajectory.

Under this approximation, the backward reach set firstly defined in Equation 6.180 can be
reformulated as follows:

BACK(A, µ) = {x ∈ R3|∃(tc1 , ts) ∈ Tc1 × Ts,∀v ∈ {vmin, vmax},∀δθ ∈ {−αθ, αθ}, ∃tc2 ∈ Tc2

fµ(x, t,p) ∈ A} (6.184)
= projTc1×Ts

X

( ⋂
v∈{vmin,vmax}

⋂
δθ∈{−αθ,αθ}

projTc2
X×Tc1×Ts

(f−1
µ (A))

)
(6.185)

where vmin = vd(1 − αv), vmax = vd(1 + αv) with vd the desired speed. X ⊂ R3 is the domain
of x = (x, y, θ). As it can be noticed, only two levels of projection are needed. Therefore
the computation time is reduced. This set indicates the initial robot poses such that all the
trajectories despite the uncertain parameter p it enters a set A according to a Dubins path
defined by the strategy µ.
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If the initial pose of the robot is known x(0) = x0, the time parameter (tc1 , ts), defined as
the time reachability, to guarantee the existence of a time tc2 such that all trajectories cross
the set A can be determined as follows:

Treach(x0) = {(tc1 , ts) ∈ Tc1 × Ts|∀p ∈ [p], ∃tc2 ∈ Tc2 , fµ(x0, t,p) ∈ A} (6.186)

which can be reformulated with projection according to the trajectories on the bounds:

Treach(x0) =
⋂

v∈{vmin,vmax}

⋂
δθ∈{−αθ,αθ}

projTc2
Tc1×Ts

(f−1
µ (A)) (6.187)

where x = x0 is imposed in the function fµ.

When the initial position (x − y) is uncertain (there is already an uncertain parameter for
the heading δθ), i.e. x0 belongs to an interval vector x0 ∈ [x0] or to set x0 ∈ X0, a similar
computation as in the previous subsection can be performed by using directly the projection
or with Minkowski operators.

Example

Consider the following errors: αv = 10% and αθ = 5◦.

Consider the goal set defined by a translated ellipse as follows:

A = {x ∈ R3|(x1 − 50
5 )2 + (x2 − 50

1 )2 − 1 ≤ 0} (6.188)

Notice that the third dimension has no influence meaning that any directions of the robot is
valid. This set is illustrated in Figure 6.23(a).

Consider a departure set B defined as follows:

B = {x ∈ R3|
√

(x1 − 35)2 + (x2 − 35)2 ≤ 8 and x3 = 0◦} (6.189)

This corresponds to a disk at θd = 0◦.

Considering the strategy µ = LSL, i.e. wc1 = wc2 = w with w defined at 0.3rad/s, the set
of robot position coming from B and reaching A is given by:

PLSL = {x ∈ R3|BACK(A, LSL) ∩ B 6= ∅} (6.190)

where BACK(A, LSL) is given by Equation 6.185 with µ = LSL.

Consider now the initial pose x0 = (40, 40, 0◦), the time reachability given in Equation 6.187
is represented in Figure 6.23(b) where two time commands (tc1 , ts) are shown by dots. The blue
dot corresponds to a time command that guarantees the reachability of the ellipse as depicted
in Figure 6.23(c) where the yellow trajectories are the last portions of the motion (left turn)
and the blue trajectories correspond to the two first portions. The black AUVs are the positions
when they enter the set A in this last portion. The trajectories corresponding to the red dot
are depicted in Figure 6.23(d). Notice that some last portions of some trajectories begin after
the ellipse or even pass by the ellipse.
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Figure 6.23: Time reachability of the ellipse a the initial pose (40, 40, 0◦) with a LSL motion.
It has to reach the ellipse only in the last left turn.

As you may imagine, since the angle of arrival has no influence on the backward reachability,
it is possible to consider only a LS motion instead of LSL (or RS). This can be given with
tc2 = 0s. The backward reachability consists now in proving that there exists some time ts such
that it reaches A, it is given as follows:

BACK(A, µ) = {x ∈ R3|∃tc1 ∈ Tc1 ,∀p ∈ [p], ∃ts ∈ Ts, fµ(x, t,p) ∈ A} (6.191)

where t = (tc1 , ts, 0).

Similarly the backward reach set by working on the bounds can be given with projection:

BACK(A, µ) = projTc1
X

( ⋂
v∈{vmin,vmax}

⋂
δθ∈{−αθ,αθ}

projTsX×Tc1
(f−1
µ (A))

)
(6.192)
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and finally the time reachability at a given pose x0 is given by:

Treach(x0) = {tc1 ∈ Tc1|∀p ∈ [p], ∃ts ∈ Ts, fµ(x0, t,p) ∈ A} (6.193)
=

⋂
v∈{vmin,vmax}

⋂
δθ∈{−αθ,αθ}

projTsTc1
(f−1
µ (A)) (6.194)

At the same initial pose, the time reachability is given in Figure 6.24(a) where the blue
interval shows the inner approximation. Only the values along the x−axis are relevant. The
trajectories at the motion command tc1 indicates by the green are represented in Figure 6.24(b)
where the blue trajectories are the first portion of the motion and the yellow trajectories the
second and last portion of the motion. The black AUV indicate when the AUV enter the ellipse.
In this example, only a motion LS is sufficient to reach this 2D ellipse. However, if the angle of
arrival was defined, it would perhaps have led to an empty solution and therefore the complete
Dubins path would be necessary.
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the second (last) portion of the motion
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Figure 6.24: Reachability of the ellipse at the initial pose (40, 40, 0◦) with a LS motion.

6.5 Graph building
In the previous section, the main tools to compute preimages as backprojection under a strategy
µ from a goal set that may be defined by random shapes have been presented according to the
two motion models used to describe the behaviour of the robot. The motion of the robot is
subject to drift which has been introduced with uncertain parameters defined between bounds
to remain in a set membership context. The backprojection has been computed using separators
and projection introduced in Chapter 4. This backprojection under a strategy µ such as "follow
a direction" enables to indicate all the robot poses from there if it follows this strategy, the
robot will for sure reach the desired set. It will recognize the desired set based on exteroceptive
measurements for example or by computing the motion command (θd, t) which proves that all
the robot poses from an initial location will reach the desired goal set at a defined direction and
after a particular duration of motion when the robot is considered holonomic. As presented in
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the Important note in the previous section, the problem of the backprojection of sets can be
seen as a graph construction.

6.5.1 Definition
The initial problem of the motion planning was introduced in Section 6.2 where it consists
in finding a sequence of open loop strategies µi to join a goal set based on backprojection of
sets. These sets, defined as relocation area, correspond to robot poses where an exteroceptive
information is available such as a GPS measurement or the detection of geolocalized landmark
for example. Starting from the goal set and taking the successive backprojection, it is possible
to find a motion plan when the initial position is totally included in a backprojection. Figure
6.25 shows a guaranteed motion plan strategy, defined as a high level strategy, to reach a goal
set B by passing through an intermediate set A. Since A ⊂ BACK(B, µ2) meaning that all the
poses in A are able to reach under a defined strategy µ2 despite the uncertainty on the motion
the goal set B. A blue is then created between A and B as shown in Figure 6.25(b). Then taking
the backprojection of the intermediate set A under another defined strategy µ1 terminates the
graph construction since the initial pose X0 (starting pose) of the AUV is totally included in
this backprojection (X0 ⊂ BACK(A, µ1)). A link is again created between the initial pose and
the set A. The final graph is depicted in Figure 6.25(b). This graph provides the high level plan
that could be described as follows. From the initial pose of the robot, follow the strategy µ1
until it detects through exteroceptive measurements or other means that the AUV has reached
the set A. When it is inside A, follow the strategy µ2 to reach the goal set B which will be
detected again based on exteroceptive measurements or other means. The detection may be
based on optical images, sonar images, GPS availability, etc...

A B

starting pose PRE(B, µ2)

PRE(A, µ1)

(a) Preimage of B under strategy µ2 and preimage of A under strategy µ1

A B

starting pose
µ1

µ2

(b) Links creation.

Figure 6.25: Graph construction with preimages.

In most of the cases, the intermediate set A is not totally included in the backward reach
set, or the backprojection, of the set B. This is illustrated in Figure 6.26. Only a reduced set,
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defined as A0 ⊂ A, of robot poses inside the intermediate set A are able to reach for sure the
goal set B. This reduced set is defined as follows:

A0 = A ∩BACK(B, µ2) (6.195)

where a strategy µ2 has been defined. A blue link is then created between A0 and B.

Since an exteroceptive information is available in A, the robot is able to localize itself inside
A. Under the assumption that the robot can join the set A0 from anywhere in A, A0 is then
linked directly to A. This process can be called auto-relocation. It could be defined as follows:

∀a ∈ A,∃µA, fµA(a) ∈ A0 (6.196)

where fµA is a motion function depending on a strategy µA. This strategy µA may depend on the
pose a in A. It can be said that there exists some strategies µa such that A = BACK(A0, µA).
This relocation process may be visually guided motion as in [287] where the automatic landing
of an unmanned aerial vehicle (UAV) is based on the detection of the platform where it should
land and adapt its behaviour to land correctly. It is then based on the estimated pose of the
robot relatively to the landmark according to the exteroceptive measurements. It is called vi-
sually guided navigation or visual servoing as in [165]. In [284], it finds the shortest path under
non-holonomic constraints for a vehicle while maintaining an object in sight of camera with a
limited Field Of View (FOV). The visual guided motion is more and more used nowadays in
autonomous driving by detecting obstacles and the lines of the road for example to adapt its
motion relatively to these elements. If the landmark is geolocalized, it can be located in the
reference frame.

If the initial pose belongs to the backprojection of the set A under strategy µ1 as depicted
by the blue link in Figure 6.26(a), then the complete graph can be built in Figure 6.26(c) where
A is linked directly to B since it is possible to join A0 from A anywhere in A. The high level
strategy can be described as follows:

• Follow the strategy µ1 from the initial pose until it reaches A.

• If the pose is already in A0, wait for the next motion command, otherwise execute the
auto-relocation to join A0.

• Follow the strategy µ2 to reach the goal set B.

The execution of this strategy is illustrated in Figure 6.26(b). From the initial pose of the
AUV, the robot follows the strategy µ1 to reach for sure the set A. Many trajectories depicted
in magenta are possible due to the drift from the nominal trajectory. Some AUV poses end
directly in A0 represented in green. But others poses need an auto-relocation to join A0, this
is represented by blue trajectories using a visually guided motion for example. The motion
constraints of the vehicle have to be handled carefully. When the pose of the AUV is in A0,
then the robot follows the strategy µ2 to reach the goal set B. Again many trajectories are
possible, but it has been proved that all the possible trajectories will reach at a certain time
the goal set B by starting from A0.
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A B

starting pose A0 = PRE(B, µ2) ∩ A
µ1

µ2

(a) Graph with links and associated strategies.

A B

starting pose A0 = PRE(B, µ2) ∩ A

µ2

µ1

(b) Path execution. Magenta paths depict the potential paths due to the
drift of the robot at different poses. Some paths already end in A0 and two

others need a relocation represented by the blue paths.

A B

starting pose
µ1

µ2

(c) Simplified graph.

Figure 6.26: Relocation inside the set A to reach A0 = PRE(B, µ2) ∩ A. It is assumed the
existence of µA such that A = PRE(A0, µA). µA may depend on the pose in A.

It is possible that µ2 is composed of several strategies that depend on the pose of the AUV in
A0. But it is proved that at least one strategy exists according to the pose (possibly uncertain)
that guarantees the reachability of B.

The name A0 was given as the first level of relocation process in A. Due to possibly strong
non-holonomic constraints, the AUV needs several levels of relocation before having a larger
set AN (AN ⊆ A) that is reachable from another C for example by taking the backprojection
of AN onto C.

Based on the existence of some strategies µi that links the different sets, a complete graph
can be built where a simplified version is provided in Figure 6.27(a) to join a goal set defined
by G. Based on auto-relocation or direct reachability, the sets are connected as shown by blue
links. It is called an hyper-graph. The different sets are the nodes of the graph and the links
correspond to the edges.

In Figure 6.27 the green link is not possible, meaning that it is not possible to leave A and
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reach G for sure. Different weights linking the sets can be computed based on the distance
between the landmarks for example (or the centroids). A graph search such as the Dijkstra
or the A* algorithm presented in Chapter 3 will finally provide the high level strategy that
optimizes a cost function.

The complete graph is not necessary to find a path. The strategy in this thesis as in [186] is
to start from the goal set, and then to perform backprojections until the initial pose is totally
included in a backprojection (or preimage). The graph is therefore built in a backward manner
and it is possible that no solution exists. It will return failure in this case. It can then be said
that it is a complete motion planner, however the computation of the backprojection based on
interval analysis depends on an epsilon (ε) parameter (precision). It is consequently almost
a complete planner. At the beginning, only the nodes (sets) are present and no link exist
between the nodes. The links are built iteratively based on different backprojection. An opti-
mized path can be obtained by using a Dijkstra or an A* algorithm according to a cost function.
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A G

starting pose

B C
(a) Graph with links. Blue arrows depict the different reachabilities. The green link is

not possible.

A G
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wC→A

wA→C wC→G

(b) Graph with weighted links.

Figure 6.27: Graph search based on weights.

The definition of the different steps of the motion planner proposed in this thesis has been
provided. This concept will be applied using the tools developed in the different Chapters.
Firstly, the graph building and search will be performed on defined shapes as shown in the last
section using the motion model presented. The sets that constitute the nodes of the graph will
be directly defined to understand the graph creation. Secondly, the problem will be applied
to the registration maps in Section 6.6 to get back to the context of this thesis and the use of
sensors with limited Field Of View (FOV).

6.5.2 Graph building with directional backprojection
The concept of the motion planning will be presented using the directional (omnidirectional)
backprojections and the motion model in Equation 6.14 or the 2D model in Equation 6.15
when the heading has no influence for the reachability. This is similarly as the concept on the
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preimages presented in [186][187] where the problem is solved here with interval analysis and
enables to propose random shape relocation areas and/or obstacles contrary to the work in
[186] which was reduced only to disks.

The theory developed in Section 6.4.2 will be applied here to build the graph, so the reader
may refer to it to understand the tools that will be used.

Assumptions

• The problem will be solved in the 2D plane.

• Similarly as in [186], it is assumed that the robot is able to navigate certainly in a
relocation area and does not have any constraint on its motion meaning that it has an
holonomic behaviour. The motion control is then accurate.

• It is assumed that the robot is equipped with a compass that provides the heading in-
formation. However this information is not certainly known but lies within a bounded
uncertainty interval that is defined by αθ.

• Moreover, it will be assumed that the AUV moves at a speed vd = 1m/s which is close to
the speed of most AUVs nowadays. However an uncertainty on the speed is present and
is handled by αv and is also represented by a bounded uncertainty interval.

• It is assumed that the robot is equipped with some exteroceptive sensors indicating it is
inside a relocation area (detect a landmark for example). However it is necessarily able
to indicate in which relocation area it is.

Since the uncertain parameters lie in bounded intervals, the set membership context is well
suited to solve the problem.

The uncertain parameter vector p of the motion model in Equation 6.14 is then described
by (v, δθ) where p ∈ [p] = [vd(1− αv), vd(1 + αv)]× [−αθ, αθ] as presented in Section 6.4.2 on
the work of the directional backprojection with sets.

It will be assumed only relocation areas in R2 meaning that the heading of arrival has no in-
fluence. The 2D motion model fH2 given in Equation 6.15 will then be used but will be denoted
as fH . This model is proposed to illustrate simply the graph building and the computation of
the backprojection as proposed in the previous section.

Consider a map M composed by a set of relocation areas Ai in R2 such that:

M = {A1,A2, ...,An} (6.197)

If the intersection between some relocation areas Ai is not empty, a cluster is created. The
biggest cluster is obtained iteratively by adding to an actual cluster any relocation areas Ai

that intersects this actual cluster. Several clusters can be present in the map M.

Finally the map M is composed of a set of relocation areas and clusters of relocation areas.
The map M is therefore firstly filtered to find and create clusters before applying any backpro-
jection. This comes from the fact that the backprojection can be computed directly when the
intersection between sets is not empty. For ease of understanding, the clusters will be called
relocation areas too.
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Based on these relocation areas, two different motion planner algorithms will be proposed.
Firstly, it will be assumed that the different relocation areas (sets) are distinguishable. Secondly,
the problem will be solved under the assumption that the relocation areas are indistinguishable.
The motion planners will be illustrated through examples. The difference is depicted in Figure
6.28 and will be more explained in the following of the document.

The main difference can be expressed as follows. The 2D backward reachability of two dis-
connected relocation areas A and B shown by green circles at the direction θd = 60◦ is depicted
in Figure 6.28. It has been computed according to Equation 6.77 since θd ∈ ΘAB. From the
initial robot pose represented by the red AUV, belonging to the 2D backward reach set with
the heading oriented at 60◦, some trajectories are depicted in blue with random values in the
interval of the direction error [δθ] = [−5, 5](deg). As it can be noticed some trajectories ended
in the relocation area A and some in B. Revisiting a cluster of disconnected sets as proposed
by this strategy is possible for the motion planner considering distinguishable relocation areas
since a sensor will indicate in which relocation area it is and/or depending on the nature of
the landmark. However this strategy wouldn’t be possible when considering indistinguishable
relocation areas due to the ambiguity of the robot location when reaching the relocation areas.
Strategies combining disconnected relocation areas will then be possible only for the first mo-
tion planner.
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Figure 6.28: Difference between motion planners considering distinguishable or not relocation
areas.

6.5.2.1 Distinguishable relocation areas

If the robot has reached a relocation area, it is able to indicate in which relocation area it is
among all the relocation areas. This is particularly the case when the strategy is to reach a
cluster of disconnected relocation areas as introduced in Figure 6.28 and presented in Figure
6.30(d). This assumption could be true in reality if all the landmarks are different from each
other and no ambiguity is present.

The uncertain parameters are defined at αθ = 5◦ and αv = 10%.
Remind that the uncertainty on the speed had no influence in the backward reach set but was
used to compute the goal recognizability.

Certainly located in relocation areas
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Consider the robot is certainly located in a relocation area, meaning that the true position is
available. As assumed, the AUV can move anywhere in a relocation area without any constraint.
The robot starts from an initial configuration x0. This initial configuration may be uncertain
and then located inside a set x0 ∈ X0. The environment M is composed by a set of disconnected
relocation areas as explained before. A preprocessing step may have created clusters if some
were connected. A goal set G is defined. If a relocation area is connected to the goal set G,
then this relocation area is added to the goal set, and the set G is replaced by the union of the
sets. The motion planner is proposed in Algorithm 9 where "PP" corresponds to "Path Planner".

Algorithm 9 Distinguish-PP (in : X0, G, M, out : path)
1: OPEN ← {G}
2: CLOSED ← ∅
3: end← 0
4: pathFound← 0
5: graph.init()
6: graph.createV ertex(G)
7: while end 6= 1 do
8: U← selectNode(OPEN)
9: OPEN ← OPEN\{U}
10: CLOSED ← CLOSED ∪ {U}
11: if connect(X0,U) then
12: graph.createV ertex(X0)
13: graph.createEdge(X0,U)
14: end← 1
15: pathFound← 1
16: else
17: for all V ∈ neighbourhood(U) in M and V 6= U do
18: if V ∈ CLOSED then
19: continue
20: if XV→U 6= ∅ then
21: if V /∈ OPEN then
22: OPEN ← OPEN ∪ {V}
23: graph.createV ertex(V)
24: graph.createEdge(V,U)
25: if {V,U} /∈ OPEN and {V,U} /∈ CLOSED then
26: OPEN ← OPEN ∪ {V,U}
27: graph.createV ertex({V,U})
28: graph.createEdge({V,U},U)
29: if OPEN = ∅ then
30: end← 1
31: if pathFound = 1 then
32: path← reconstructPath(graph,X0,G)
33: else
34: path← ∅

The explanation of the motion planner will be proposed through an example.

Consider a simple environment composed of disks as depicted in Figure 6.29(a) where names
are given to the different relocation areas. The blue AUV, denoted as I in the bottom left corner,
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indicates the initial pose and the red circle is the goal area G. At the beginning, the graph is
only composed by a single node G. Moreover only the goal set G is in the OPEN list, then
the set U = G. It firstly looks (line 11) if a connection can be made with the initial pose based
on the termination condition:

TC(q0) = {θd ∈ R|∀p ∈ [p],∃t, fH(x0, t,p) ∈ U} (6.198)

where x0 = (q0, θd) = (x0, y0, θd) when the initial pose is certainly known. If the position is
uncertainly known, the termination condition corresponds to:

TC(Q0)− = {θd ∈ R|∀q0 ∈ Q0, ∀p ∈ [p],∃t, fH(x0, t,p) ∈ U} (6.199)

where a method based on the Minkowsky difference was proposed in the previous section.

If TC(q0) (in the certain initial position case) or TC(Q0)−(in the uncertain initial position
case) is not empty then a connection can be made and the algorithm terminates. The compu-
tation is based on the SIVIA algorithm as used all along this thesis.

If the termination condition is empty, it looks for connection with the other relocation areas
in the map M (line 17 and 18). These connections are computed based on Equation 6.55. For
example, consider the set C. If XC→G = XCG is not empty (line 18) then a vertex C (node)
is created (line 21) in the graph and an edge between C and G is also created (line 22) if the
considered set C is neither in the OPEN nor in the CLOSED list. Moreover it is added to
the OPEN list. Since complex strategies involving disconnected sets as explained in Figure
6.28 on the distinguishable property, the global set C → G = CG is also added to the graph
(line 25) with a connection to G (line 26), and added to the OPEN list. If the OPEN list is
empty, the algorithm terminates informing that no path exists.

The selection of the tested node (line 8) in the OPEN list can be made according to some
strategies such as the closest one to the initial configuration for example, or by considering only
single node at first.

If the tested node U is for example CG and the possible neighbour B, then it has to be
proved that XB→(CG) 6= ∅ to create a connection between B and C or G. This will be more
explained in the following when describing the strategy found by the algorithm.

When a path is found, a simple graph search in the created graph can rebuild the path.

The complete graph built is proposed in Figure 6.29(b) where the blue links are direct links
between two disconnected relocation areas and the green links are high level links that connect
at least three relocation areas. In this latter case, the centroid of the involved relocation areas
is used as reference and the green lines are drawn from the centroid to each center (centroid)
of the different relocation areas.

The path found in a backward manner is depicted in red. As it can be noticed (a little
bit difficult to see), the path is composed of high level strategies. Due to the difficulty to
understand this graph, the different strategies are detailed just below.
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(a) Environment with disk relocation areas
in green and goal area in red. The initial
pose is represented by the blue AUV.
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(b) Graph built with the path found in red.
Blue links are direct links between two

relocation areas, and green links are high
level links between a set of disconnected

relocation areas (at least 3).

Figure 6.29: Environment and high level strategy found in a backward manner.

The first strategy µ1, as it can be seen in the graph created in Figure 6.29(b), is to join the
relocation area A. From the certainly initial pose I of the robot at the location q0 = (x0, y0),
the set of directions ΘI→A = ΘIA is computed according to Equation 6.198 where U = I. Since
it corresponds to the termination condition according to the set A, it could be denoted as
TCA(q0). If the initial location was uncertainly known, the set of direction is computed ac-
cording to Equation 6.199.

Computing the set of directions ΘIA = TCA(q0) is similar to Equation 6.137 that was pro-
vided in the goal recognizability subsection, but here only the set of directions is important
and not the time, since it is assumed that the robot is able to indicate that it has reached the
relocation area with some exteroceptive sensors.

Due to the assumption of a connected set A, the problem was reduced to a simple intersection
at the bounds of the error on the direction. The set can be computed as follows:

ΘIA = {θd|∀δθ ∈ {−αθ, αθ},∃t ∈ R+, fH(x, t,p) ∈ A} (6.200)
=

⋂
δθ∈{−αθ,αθ}

{θd|∃t ∈ R+, fH(x, t,p) ∈ A} (6.201)

=
⋂

δθ∈{−αθ,αθ}
projTX3(f−1

H (A)) (6.202)

where x = (x0, y0, θd) in the function fH and X3 is the initial domain of θd.

The set of directions to join A is given in Figure 6.30(a) where the initial domain was
X3 = [−180, 180](deg). Since disks are regular shapes and due to the conic shape of the
backprojection, the set of directions can be enclosed by a blue interval that depicts the inner
approximation. One direction θd = 0◦ has been selected in green in the solution and the corre-
sponding 2D backward reach set has been provided in Figure 6.30(b). Notice that the initial
location is indeed in the 2D backward reach set at this defined direction. Therefore, the robot
can reach for sure the relocation area A from this initial location by following for example
the direction θd = 0◦. At the beginning of the mission, it requires the robot to turn on itself
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and to orient in this direction with the measured direction provided by the compass, which is
uncertain. This ends the first strategy µ1 to reach A from the initial position.
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Figure 6.30: Strategy µ1 to reach the first relocation area A.

The second strategy µ2 as depicted in Figure 6.29(b) consists in a high level link, meaning
that at least three disconnected relocation areas are involved. The idea is to reach in a guar-
anteed manner a set of disconnected relocation areas. As it can be noticed the goal area is
included in this set. The steps describing this high level link will be described just below.

When the graph was built backwardly from the goal area G, it firstly looks for a link with
other sets based on Equation 6.55 and in particular with the set C:

XCG = {x ∈ R3|BACKod(G) ∩ C 6= ∅} (6.203)

The problem was proposed only along the dimension of directions due to the 3D representation
which can be written as:

ΘCG = {θd|BACK(G, θd) ∩ C 6= ∅} (6.204)

since ΘCG is linked to XCG according to Equation 6.69, proving that XCG is not empty is equiv-
alent to prove that ΘCG is not empty.

This set is represented in Figure 6.31(a) which is not empty. The two relocation areas C and
G are then linked. It is possible to leave C and reach G for sure with the direction indicated at
the green line θd = 40◦ for example. The 2D backward reach set (BACK(G, 40◦)) is presented
in Figure 6.31(b). If the AUV is located at the position shown the blue AUV in C it can reach
for sure G with this direction.

According to the graph building, the two sets C and G are then expanded where the com-
putation considering the two sets at the same time, in terms of union, as in Equation 6.77
can be performed. This computation is true only if θd ∈ ΘCG. The graph expansion then
tried to connect the set B by proving that the set expressed in Equation 6.96 and reformulated
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equivalently in Equation 6.97 is not empty. This is reminded here with the right notation:

ΘB→(CG) = ΘBCG (6.205)
= {θd ∈ ΘCG|BACK(C ∪G, θd) ∩ B 6= ∅} (6.206)
= {θd ∈ R|BACK(C ∪G, θd) ∩ B 6= ∅} ∩ΘCG (6.207)

This set is presented in Figure 6.31(c) and is not empty. For example, the 2D backward reach set
at the direction θd = 60◦ indicated by the green line is provided in Figure 6.31(d). If the robot
is located at the blue AUV position in B, by following this direction it will reach for sure C or G.

As previously, the three sets B, C and G can then be expanded in terms of union. Consider
now the relocation area A and the set ΘA→(BCG) that could link A to B, C and G expressed as
follows:

ΘA→(BCG) = ΘABCG (6.208)
= {θd ∈ ΘBCG|BACK(B ∪ C ∪G, θd) ∩ A 6= ∅} (6.209)
= {θd ∈ R|BACK(B ∪ C ∪G, θd) ∩ A 6= ∅} ∩ΘBCG (6.210)

where ΘBCG was computed in the previous equation.

As it can be noticed, each time a set is tried to be connected to a cluster of disconnected
relocation areas, it propagates the links (set of directions) that connected the cluster of discon-
nected relocation areas.

The result of the set ΘABCG is provided in Figure 6.31(e) where only few directions can link
the four relocation areas. This set is again not empty. The precision of the computation was
0.1◦ so it explains the presence of unclassified solution (dark gray). The 2D backward reach at
the direction defined at θd = 55.7◦ (inside the solution set) shown by the green line is depicted
in Figure 6.31(f). The same interpretation can be made as before. Since the AUV can move
anywhere in A and is certainly located, it can go to the area of departure and orient its direc-
tion at θd = 55.7◦ to reach B, C or G. As it can be noticed, considering at the same time the
three sets enables to start from A. Considering them separately would not lead to a solution
and would have returned no solution. This ends the second strategy µ2 to reach G from A by
passing possibly by intermediate relocation areas B or C.

Finally the global solution with the two strategies µ1 and µ2 is represented in Figure 6.32
where the 2D backward reach set is proposed at the two defined direction θd = 0◦ for µ1 and
θd = 55.7◦ for µ2. Obviously other directions in the different solution sets could have been
chosen.
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(f) 2D backward reach set at the direction
θd = 55.7◦ defined at the green line in the

figure (e).

Figure 6.31: Decomposition of the solution of the high level link for the strategy µ2.
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Figure 6.32: Global solution represented by the 2D backward reach set with θd = 0◦ for µ1 and
θd = 55.7◦ for µ2.

The complete path execution is presented in Figure 6.33 where the green AUVs are the
departure poses (inside the departure areas) of the different relocation areas. The magenta
lines are the relocation process to join the departure poses that were chosen according to the
backward reachability of the different sets. Blue lines correspond to the navigation outside
the relocation areas. It is supposed that a controller is able to stabilize perfectly the direction
defined which explains the representation with straight lines. The different cases of the high
level strategy is described below.

When the robot executes this high level strategy π = {µ1, µ2}, it will firstly go to the
relocation area A by following one direction, for example θd = 0◦ as shown in Figure 6.33.
The set of directions to reach A from the initial position was presented in Figure 6.30. An
exteroceptive sensor indicates that the robot has reached A. The robot then goes to the
departure area in A to reach B, C or directly G as it has been proved and shown by the
magenta lines. One departure pose is represented by a green AUV in Figure 6.33 in A. Again
it follows one direction, θd = 55.7◦ for example in Figure 6.33, that is proved to reach perhaps
directly the goal area G. However due to the uncertainty on the direction, the robot may reach
B. Since the position is accurately known, it joins the departure pose in B, represented by the
magenta lines, to go to C or G as was explained in Figure 6.31(c) and (d) with the direction
θd = 60◦ (for example). No direct link exists between B and G. The robot may have reached
C, then again it joins the departure pose to go directly to G with the direction θd = 40◦ (for
example) since they are connected as depicted in Figure 6.31(a) and (b). This ends the strategy
execution. The complete path execution was presented in Figure 6.33 with the different cases
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of reachability and all the trajectories end in the goal area despite the uncertainty on the
direction if the error remains in its bounds. The union of all the 2D backward reach sets, called
P, presented in Figure 6.31(b)(d)(f) and in Figure 6.30(b) according to the different selected
direction is proposed in Figure 6.33 which can be described as follows:

P = BACK(G, 40◦)∪BACK(C∪G, 60◦)∪BACK(B∪C∪G, 55.7◦)∪BACK(A, 0◦) (6.211)
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Figure 6.33: Path execution with relocation process in magenta to join the departure point
in the different relocation areas. The different backward reach set according to the defined
direction is also presented. Random samples are generated in the error intervals.

Conclusion

Assuming distinguishable relocation areas, the graph building is able to find a complex
strategy that may connect several disconnected relocation areas to extend the possibility of ex-
ploration. The problem has been presented with a set-membership description of the relocation
areas enabling the graph building with complex shapes as presented earlier. The example based
on simple shapes such as disks was provided to ease the understanding. However, this method
requires a real distinction between the different relocation areas defined as the uniqueness. In
reality, these relocation areas may be areas between buildings by taking into account obstacles
as presented in the previous section. In the underwater context, this assumption could even be
possible since some landmarks may be very different such as ropes, rocks or wrecks. Uncertainty
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in the relocation areas was not presented here, but will be presented in the next subsection
when dealing with indistinguishable relocation areas that are more adapted to the underwater
context since the difference between rocks may be difficult.

6.5.2.2 Indistinguishable relocation areas

When the robot has to reach a cluster of relocation areas, it is not able anymore to say in which
it is as shown in Figure 6.28 where the robot could have joined A or B. Therefore the strategy
of joining a cluster of disconnected relocation areas as presented in the previous example is not
anymore possible. The graph building can then expand only isolated relocation areas as shown
from line 19 to 22 in Algorithm 9. The global expansion from line 23 to 26 are prohibited. Re-
mind that relocation areas could have been formed by the connected union of some relocation
areas, defined as clusters. When the robot has to reach a cluster of relocation areas (connected
union), a strategy has to be established in order to remove the ambiguity. Therefore, reaching a
cluster of connected relocation areas is still possible and particularly interesting to travel longer
distance. Moreover when the AUV starts from a relocation area A to reach another relocation
area B where the link has been proved, if some trajectories due to the uncertain direction may
intersect another relocation area C, it can lead to a wrong data association and then a wrong
relocation process. The robot would think it has reached B but actually it is inside C. Con-
sequently, Algorithm 9 could then be used by removing the lines from 23 to 26 but it requires
some changes to take into account the possible wrong data association with another relocation
areas.

In this part, it will be explained how to connect the initial position of the robot that may
be uncertain, and how to connect two relocation areas to avoid possible ambiguities when the
robot is certainly and uncertainly located in the departure relocation area. It will be notified
when the different cases are explained. Obstacles are also added to the environment as O and
have to be avoided also.

If the robot is certainly located in a relocation area, considering the environment in Figure
6.29(a), the new algorithm that will be presented in Algorithm 10 returns failure since it is not
possible to start from B and reach C.

Consider the same uncertain parameters αθ = 5◦ and αv = 10%.

Consider the simple environment in Figure 6.34(a) where a goal area G has to be reached.
Two relocation areas A and B are present in the map M. The initial position of the robot is
presented by a blue AUV on the left. Using Algorithm 9 by removing the lines 23 to 26 (global
expansion) leads to the graph built in Figure 6.34(b). A path has been found and is presented
in red. The global 2D backward reach set of the possible direction solution is presented Figure
6.34(c). As it can be noticed, the 2D backward reach passes through the relocation area B since
it ignored it when it built the graph. Due to the indistinguishability property of the relocation
areas, when executing this strategy, the robot would think it has reached G but it is actually
in B. This is unacceptable. The set B has then to be taken into account when testing a con-
nection between A and G. Moreover, even if the set B was considered as an obstacle, it would
be impossible to leave A and reach G without going through B at a certain time. Algorithm
9 has then to be modified to take into account other relocation areas to avoid any wrong data
association as represented in the graph built in Figure 6.34(d) where the 2D backward reach set
of the path found is depicted in Figure 6.34(e). Notice that the new solution is now to pass by
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B before reaching G. The new algorithm is proposed in Algorithm 10 where "PP" corresponds
to "Path Planner".
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(a) Simple environment with a disk goal
area G.
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(b) Graph built with Algorithm 9 and the
removed lines.
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(c) 2D backward reach set of the path
found. The direction are defined according
to the different reachabilities. The solution
goes through B leading to a wrong data

association with G.
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(d) New graph built taken into account
other relocation areas.
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(e) 2D backward reach set of the path
found. No wrong data association.

Figure 6.34: Difference with Algorithm 9 and the new algorithm taking into account the other
relocation areas.
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Algorithm 10 has been named "Indistinguish-PP" for motion planning with relocation areas
that are indistinguishable and possible obstacles mentionned by the set O which to the union
of the possible obstacles Oi. Algorithm 10 is similar to Algorithm 9 but now a cost function has
been added to find an optimal path with an A* search [124] or Dijkstra search [77] when the
heuristic h is null. At the beginning of the algorithm, only the goal relocation area is present
and is added to the OPEN list (line 1). Since no complex strategies involving disconnected
relocation areas in M are possible now due to the indistiguishability property, all the relocation
areas in M are nodes of the hyper-graph which is then initialized in line 5. Only the edges are
not present at the beginning. The nodes U are selected according to a function f (line 12) that
takes into account a possible heuristic to find an optimal path by finding here the minimum
path according to the cost function. When a node U is selected, a variable AmbiguousArea
is created which stores all the obstacles and the relocation areas in the map M excepted the
selected relocation area U. It has been added to avoid the problem presented before. Firstly, it
tries to connect the initial node X0 that may be certainly defined X0 = {x0} or uncertainly de-
fined by a set X0 by taking into account these ambiguous relocation areas (line 16). This initial
connection despite the ambiguous relocation areas present will be detailed after the explanation
of the complete algorithm. If it succeeds to connect to the initial node without ambiguity, the
algorithm terminates and the path is provided, otherwise it will test other relocation areas in
the neighbourhood of U in the map M (line 22). The neighbourhood of U may be for example
the K-nearest neighbour (K −NN) where K is defined by the user to reduce the complexity
of the graph and not to test all the relocation areas. If a connection between a neighbour node
V and the selected node U is possible, it has to check if no ambiguity is present between these
two relocation areas. The tested relocation area V is removed from the list AmbiguousArea
and only the local ambiguous relocation areas between U and V are selected for some reasons
that will be explained. If it succeeds, a testScore is evaluated with the cost between V and U
and the similar principle as the A* or the Dijkstra algorithm is executed.

Connection between the initial set X0 and a relocation area

In this part, the explanation about the connect function at line 17 of Algorithm 10 between
the initial set and a relocation area from the map M is provided even if the initial position is
uncertain.

In reality only the position q0 is defined since the robot can change its orientation to be in
the right direction θd.

When the initial position Q0 = {q0} is certainly defined, the set of direction linking this
position to a node A for example was defined in Equation 6.198 and computed according to
Equation 6.202 where a simple intersection of projections was used.

However, as depicted in Figure 6.35, the presence of other relocation areas between q0 =
(18, 18) (red AUV) and the goal set A may lead to wrong data association. Indeed the AUV
may reach the relocation area B by following the direction θd = 45◦ that guarantees to reach
the desired relocation area A shown in Figure 6.35(a). Fortunately from this location, it is still
possible to follow some directions to reach A without being bored by B.

The two sets are defined as follows:

A = {x ∈ R2|
√

(x1 − 40)2 + (x2 − 40)2 ≤ 5} (6.212)
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Algorithm 10 Indistinguish-PP (in : X0, G, M, O, out : path)
1: OPEN ← {G}
2: CLOSED ← ∅
3: end← 0
4: pathFound← 0
5: graph.init()
6: prev ← empty map
7: g ← map with ∞ value
8: f ← map with ∞ value
9: g[G]← 0
10: f [G]← h(G,X0)
11: while end 6= 1 do
12: U← argminf{OPEN}
13: OPEN ← OPEN\{U}
14: CLOSED ← CLOSED ∪ {U}
15: AmbiguousArea← O ∪ (M\{U})
16: localAmbiguousArea← select(AmbiguousArea,V,U)
17: if connect(X0,U, localAmbiguousArea) then
18: graph.createEdge(X0,U)
19: prev[X0] = U
20: end← 1
21: pathFound← 1
22: else
23: for all V ∈ neighbourhood(U) in M and V 6= U do
24: if V ∈ CLOSED then
25: continue
26: if XV→U 6= ∅ then
27: AmbiguousAreaReloc← AmbiguousArea\{V}
28: localAmbiguousArea← select(AmbiguousAreaReloc,V,U)
29: if connect(V,U, localAmbiguousArea) then
30: testScore = g[U] + cost(V,U)
31: if testScore < g[V] then
32: graph.createEdge(V,U)
33: g[V] = testScore
34: f [V] = testScore+ h(V,X0)
35: prev[V] = U
36: if V /∈ OPEN then
37: OPEN ← OPEN ∪ {V}
38: if OPEN = ∅ then
39: end← 1
40: if pathFound = 1 then
41: path← reconstructPath(prev,X0)
42: else
43: path← ∅
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and
B = {x ∈ R2|

√
(x1 − 30)2 + (x2 − 34)2 ≤ 2} (6.213)

Consider now the following set:

WΘIB = {θd|∃δθ ∈ [−αθ, αθ],∃t ∈ R+, fH(x, t,p) ∈ B} (6.214)

where x = (q0, θd) = (x0, y0, θd) and I refers to the initial location.

This set can be computed using projection as follows:

WΘIB = proj[p]×T
X3 (f−1

H (B)) (6.215)

where the initial position q0 is directly added in the function fH , X3 is the domain of θd,
[p] = [−αθ, αθ] × {vd} and T is the domain of t. Remind that the speed vd is defined and is
not considered here for the reachability.

This set corresponds to the weak backprojection (WBACK) of B where the initial position
q0 is defined. W has been added before to make the difference between the notation ΘIB that
guarantees to reach B. Here B is considered as an obstacle and no trajectories have to cross B,
as mentioned in the last section about the weak backprojection. It indicates the set of directions
to follow that may reach B but not guarantee to reach B for sure.

Finally the set of directions to reach A and avoid B is given by:

ΘB
IA = {θd|∀δθ ∈ [−αθ, αθ],∃t ∈ R+, fH(x, t,p) ∈ A

and ∀t ∈ R+, fH(x, t,p) /∈ B} (6.216)
= {θd|∀δθ ∈ {−αθ, αθ}, ∃t ∈ R+, fH(x, t,p) ∈ A}
∩{θd|∀δθ ∈ [−αθ, αθ],∀t ∈ R+, fH(x, t,p) /∈ B} (6.217)

= ΘIA ∩ {θd|∃δθ ∈ {−αθ, αθ}, ∃t ∈ R+, fH(x, t,p) ∈ B} (6.218)
= ΘIA ∩WΘIB (6.219)

where x = (q0, θd) = (x0, y0, θd).

It corresponds also to what was named a termination condition TC where the set to reach
is A by avoiding B. It could be written TCB

A(q0).

The result of this set is given in Figure 6.35(d) where it can be noticed that the direction
θd = 45◦ (red line) cannot reach A without maybe passing through B. However, if θd = 42◦
(green line), the robot can execute its mission without being bored by B as depicted in Figure
6.35(b) where random sampled trajectories are generated according to the uncertain parameter
δθ on the direction.

By considering B as an obstacle, the 2D backward reach set BACKB(A, 45◦) according to
Equation 6.126 is given in Figure 6.35(c) where it can indeed be noticed that the initial location
does not belong to the backward reach set.
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Figure 6.35: Reachability of a set A from the initial location despite the presence of another
relocation area B.

When the initial position is uncertainly defined, q0 ∈ Q0 a method based on Minkowski
operators was proposed in the subsection 6.4.2.5 about the goal recognizability to reach a set
A in direction θd and in time t. Now the robot has to avoid relocation areas or obstacles. The
set of directions to guarantee the reachability of A despite the presence of B is also a termi-
nation condition, and can be denoted as TCB

A(Q0). A thick set representation was provided in
the subsection 6.4.2.5 and can still be defined here according to the uncertain initial positionQ0.

The strong termination condition is defined as follows:

TCB
A(Q0)− = {θd|∀q0 ∈ Q0,∀δθ ∈ [−αθ, αθ],∃t ∈ R+, fH(x, t,p) ∈ A

and ∀t ∈ R+, fH(x, t,p) /∈ B} (6.220)
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and the weak termination condition:

TCB
A(Q0)+ = {θd|∃q0 ∈ Q0, ∀δθ ∈ [−αθ, αθ],∃t ∈ R+, fH(x, t,p) ∈ A

and ∀t ∈ R+, fH(x, t,p) /∈ B} (6.221)

where x = (q0, θd) = (x0, y0, θd).

Only the strong termination condition is important in this thesis since it guarantees for all
initial position in Q0 that by following a particular direction θd, all the robot position won’t
cross B and reach A.

A similar proof as in subsection 6.4.2.5 about the thick set representation using Minkowski
operators can be made and is proposed below. The reader may refer to the previous proof to
understand some steps.

Firstly, the strong termination condition was defined in Equation 6.220 and can be split as
in the certain initial position in Equation 6.219. Remind that x = (q0, θd) and it is assumed
here that fH is fH2 where A and B are subsets or R2. Only the position is important.

TCB
A(Q0)− = {θd|∀q0 ∈ Q0,∀δθ ∈ [−αθ, αθ],∃t ∈ R+, fH(x, t,p) ∈ A}⋂

{θd|∀q0 ∈ Q0,∀δθ ∈ [−αθ, αθ], ∀t ∈ R+, fH(x, t,p) /∈ B}
= {θd|∀q0 ∈ Q0,∀δθ ∈ [−αθ, αθ],∃t ∈ R+, fH(x, t,p) ∈ A}⋂

{θd|∃q0 ∈ Q0,∃δθ ∈ [−αθ, αθ],∃t ∈ R+, fH(x, t,p) ∈ B}

= {θd|∀q0 ∈ Q0,∀δθ ∈ [−αθ, αθ],∃t ∈ R+,q0 + v · t ·
(

cos(θd + δθ)
sin(θd + δθ)

)
∈ A}

⋂
{θd|∃q0 ∈ Q0,∃δθ ∈ [−αθ, αθ],∃t ∈ R+,q0 + v · t ·

(
cos(θd + δθ)
sin(θd + δθ)

)
∈ B}

= {θd|∀δθ ∈ [−αθ, αθ],∃t ∈ R+,Q0 + v · t ·
(

cos(θd + δθ)
sin(θd + δθ)

)
⊂ A}

⋂
{θd|∃δθ ∈ [−αθ, αθ],∃t ∈ R+, v · t ·

(
cos(θd + δθ)
sin(θd + δθ)

)
∈ B⊕ (−Q0)}

= {θd|∀δθ ∈ [−αθ, αθ],∃t ∈ R+, v · t ·
(

cos(θd + δθ)
sin(θd + δθ)

)
∈ A	Q0}

⋂
{θd|∃δθ ∈ [−αθ, αθ],∃t ∈ R+, v · t ·

(
cos(θd + δθ)
sin(θd + δθ)

)
∈ B⊕ (−Q0)}

The reader may refer to Equation 6.176 to understand why a Minkowski sum appears.

Since A and Q0 are connected sets, then A 	 Q0 is also connected. Consequently, it leads
to:

TCB
A(Q0)− = {θd|∀δθ ∈ {−αθ, αθ},∃t ∈ R+, v · t ·

(
cos(θd + δθ)
sin(θd + δθ)

)
∈ A	Q0}

⋂
{θd|∃δθ ∈ [−αθ, αθ],∃t ∈ R+, v · t ·

(
cos(θd + δθ)
sin(θd + δθ)

)
∈ B⊕ (−Q0)}

(6.222)
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Define the following function h:

h :


R × [−αθ, αθ]× T → R2

(θd, δθ, t) → v · t ·
(

cos(θd + δθ)
sin(θd + δθ)

)
(6.223)

where v = vd the defined speed.

Finally, the strong termination condition can be computed with projection as follows:

TCB
A(Q0)− =

( ⋂
δθ∈{αθ,αθ}

projTX3(h−1(A	Q0))
)⋂

proj[δθ]×T
X3 (h−1(B⊕ (−Q0))) (6.224)

where [δθ] = [−αθ, αθ] and X3 is the domain of θd.

Secondly and similarly it can be proved that the weak termination condition is given by:

TCB
A(Q0)+ = {θd|∀δθ ∈ {−αθ, αθ},∃t ∈ R+, v · t ·

(
cos(θd + δθ)
sin(θd + δθ)

)
∈ A⊕ (−Q0)}

⋂
{θd|∃δθ ∈ [−αθ, αθ], ∃t ∈ R+, v · t ·

(
cos(θd + δθ)
sin(θd + δθ)

)
∈ B	Q0}

(6.225)

Using the same function h, it can be rewritten with projection:

TCB
A(Q0)+ =

( ⋂
δθ∈{αθ,αθ}

projTX3(h−1(A⊕ (−Q0)))
)⋂

proj[δθ]×T
X3 (h−1(B	Q0)) (6.226)

where [δθ] = [−αθ, αθ] and X3 is the domain of θd.

The thick set about the termination condition considering an obstacle is then given by:

TCB
A(Q0) = [TCB

A(Q0)−, TCB
A(Q0)+] (6.227)

which indicates the set of direction for the reachability of A despite the presence of another
relocation area or obstacle B between Q0 and A.

Generally, an uncertain position is defined by a most likely position q0 which corresponds
to the middle of a box, the center of a circle, or even the center of an ellipse. This center is
defined by q0. Then the set of position is defined as follows:

Q0 = {x ∈ R2|∀εxy ∈ P0,x = q0 + εxy} (6.228)

where P0 corresponds to the uncertain set of position centered at (0, 0). The set Q0 is then
simply a translation of P0 at the most likely position q0.
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According to this definition with the most likely position in Equation 6.228, the strong
termination condition TC(Q0)− expressed in Equation 6.220 can be reformulated as follows:

TCB
A(Q0)− = {θd|∀q0 ∈ Q0,∀δθ ∈ [−αθ, αθ],∃t ∈ R+, fH(x, t,p) ∈ A

and ∀t ∈ R+, fH(x, t,p) /∈ B} (6.229)
= {θd|∀εxy ∈ P0, ∀δθ ∈ [−αθ, αθ],∃t ∈ R+, fH(x + εxy, t,p) ∈ A

and ∀t ∈ R+, fH(x + εxy, t,p) /∈ B} (6.230)

= {θd|∀εxy ∈ P0, ∀δθ ∈ [−αθ, αθ],∃t ∈ R+,q0 + εxy + v · t ·
(

cos(θd + δθ)
sin(θd + δθ)

)
∈ A}

⋂
{θd|∃εxy ∈ P0, ∃δθ ∈ [−αθ, αθ],∃t ∈ R+,q0 + εxy + v · t ·

(
cos(θd + δθ)
sin(θd + δθ)

)
∈ B}

= {θd|∀δθ ∈ [−αθ, αθ],∃t ∈ R+, fH(x, t,p) + P0 ⊂ A}⋂
{θd|∃δθ ∈ [−αθ, αθ],∃t ∈ R+, fH(x, t,p) ∈ B⊕ (−P0)}

= {θd|∀δθ ∈ [−αθ, αθ], ∃t ∈ R+, fH(x, t,p) ∈ A	 P0}⋂
{θd|∃δθ ∈ [−αθ, αθ],∃t ∈ R+, fH(x, t,p) ∈ B⊕ (−P0)} (6.231)

where x = (q0, θd) = (x0, y0, θd), p = (δθ, v) and P0 is the set of uncertain position centered at
(0, 0). The reader may refer to the previous demonstration to understand the different steps.

And the weak termination condition can be defined as follows:

TCB
A(Q0)+ = {θd|∀δθ ∈ {−αθ, αθ}, ∃t ∈ R+, fH(x, t,p) ∈ A⊕ (−P0)}⋂

{θd|∃δθ ∈ [−αθ, αθ],∃t ∈ R+, fH(x, t,p) ∈ B	 P0} (6.232)

Similarly, these sets can be defined with projection.

Consider the same sets A and B, but now the initial location is defined as follows:

Q0 = {x ∈ R2|
√

(x1 − 28)2 + (x2 − 27)2 ≤ 0.5} (6.233)

where the initial position q0 belongs a disk centered in (28, 27) with a radius of 0.5m.

This disk refers to the set P0 defined then as follows:

P0 = {x ∈ R2|
√
x2

1 + x2
2 ≤ 0.5} (6.234)

where the most likely position q0 = (28, 27).

The results are presented in Figure 6.36 where the environment is depicted in Figure 6.36
(a). The erosion and the dilation according to P0 are shown in magenta and in yellow respec-
tively for both sets A and B. Due to the definition of a disk centered in (0, 0) for P0, P0 = −P0.
The uncertain initial position Q0 is represented by the blue circle. The thick solution set is
depicted in Figure 6.36(e) in a grayscale convention for thick set. Three directions are selected.
Firstly, with θd = 45◦ inside the solution set, all the initial position (shown by blue AUVs)
in Figure 6.36(a) reach A without any ambiguity with B as it can be noticed that any yellow
trajectories cross B. Secondly, with θd = 56◦ inside the penumbra, only one sampled position
(in blue AUV) in Figure 6.36(c) guarantees the reachability (blue trajectories) of A despite the
presence of B. For one sampled position (green AUV), which does not provide the guarantee,
the trajectories are represented in yellow and it can be obviously noticed that it crosses at some

265



CHAPTER 6. MOTION PLANNER

time the set B. Finally, at the direction θd = 60◦ outside the solution set, any initial position
guarantees the reachability of A without the ambiguity of B or simply not all the reachabil-
ity of A for all the possible trajectories according to the uncertain parameter δθ on the direction.
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Figure 6.36: Reachability of a disk A with another relocation area B and uncertain initial
position Q0.

As mentioned in the section 6.4.2.4 about including forbidden areas, a local function will be
provided to remove the relocation areas that may lie behind the desired relocation areas since
the computation relies on the weak backprojection of the obstacles or ambiguous relocation
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areas.

Connection between relocation areas

In this part, it will be explained how to connect two relocation areas mentioned in the
connect function at line 29 in Algorithm 10 when the robot is certainly and uncertainly located
in the departure relocation area.

Firstly, it will be explained when the robot is certainly located in the departure relocation
area.

The connection between two relocation areas could be performed according to Equation 6.55
by proving that the set was not empty. Due to the presence of another relocation areas that
may lead to ambiguities, a method was provided in the section 6.4.2.4 about the forbidden
areas under the condition that any another relocation areas lie behind the desired relocation
area. Consequently, leaving a relocation A and reaching a relocation B with the presence of
another relocation C between A and B can be defined according to Equation 6.125:

XC
AB = {x ∈ R3|BACKC

od(B) ∩ A 6= ∅} (6.235)

which was decomposed into:

XC
AB = {x ∈ R3|BACKod(B) ∩WBACKod(C) ∩ A 6= ∅} (6.236)

where A can be defined as A = A× R to have a 3D set if A was initially defined in 2D.

As it may be noticed, it is similar to the previous set giving the connection between two
sets in Equation 6.55 where an additional constraint has been added about the ambiguity with
other relocation areas.

Due to the 3D aspect of the set, it was reduced to a single dimension along the set of
directions using projection.

ΘC
AB = {θd ∈ R|BACKC(B, θd) ∩ A 6= ∅} (6.237)

which can be also decomposed into:

ΘC
AB = {θd ∈ R|BACK(B, θd) ∩WBACK(C, θd) ∩ A 6= ∅} (6.238)

Coming back to the true definition in Equation 6.237 leads to:

ΘC
AB = {θd ∈ R|BACKC(B, θd) ∩ A 6= ∅} (6.239)

= {θd ∈ R|BACK(B, θd) ∩WBACK(C, θd) ∩ A 6= ∅} (6.240)
= {θd ∈ R|∃a ∈ A,∀δθ ∈ [−αθ, αθ],∃t ∈ R+, fH(x, t,p) ∈ B

and ∀t ∈ R+, fH(x, t,p) /∈ C} (6.241)

where x = (a, θd).

It may be noticed that finding the set of direction linking A to B by avoiding C is the same
as TCB

A(Q0)+ defined in Equation 6.221 where Q0 is A, A is B and B is C in the new equation.
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Consequently, it results the following proposition:

ΘC
AB = TCC

B (A)+ (6.242)

with the same system of notation.

It leads then to the following proposition with the right notation associated to the problem:

ΘC
AB = {θd|∀δθ ∈ {−αθ, αθ},∃t ∈ R+, v · t ·

(
cos(θd + δθ)
sin(θd + δθ)

)
∈ B⊕ (−A)}

⋂
{θd|∃δθ ∈ [−αθ, αθ],∃t ∈ R+, v · t ·

(
cos(θd + δθ)
sin(θd + δθ)

)
∈ C	 A}

(6.243)

However, it may be possible that C	 A becomes empty.

The set of directions linking A to B by avoiding C will be computed according to Equa-
tion 6.237 or as the decomposition in Equation 6.238 which can be computed with projection
according to Equation 6.67 as follows:

ΘC
AB = projX1×X2

X3

(
(

⋂
δθ∈{−αθ,αθ}

projTX(f−1
H (B)))

⋂
proj[−αθ,αθ]×T

X (f−1
H (C))

⋂
A
)

(6.244)

where X3 is the domain of θd (direction), X1 corresponds to the domain of x and X2 is the
domain of y, and finally X = X1×X2×X3. The set A = A2D ×R since A is usually defined in
the (x− y) plane.

Notice that BACKod(B) corresponds indeed to Equation 6.49 and WBACKod(C) to Equa-
tion 6.124.

Remind that the set of directions corresponds to:

ΘC
AB = projX1×X2

X3 (XC
AB) (6.245)

but the solution was only provided along the dimension of the directions to have a visual aspect.

Consider the three following sets as example and represented in Figure 6.37:

A = {x ∈ R2|
√

(x1 − 15)2 + (x2 − 15)2 ≤ 5} (6.246)

B = {x ∈ R2|
√

(x1 − 40)2 + (x2 − 40)2 ≤ 5} (6.247)
and

C = {x ∈ R2|
√

(x1 − 30)2 + (x2 − 34)2 ≤ 2} (6.248)
where A is the departure set (in blue), B is the goal area (in red) and C is another relocation
area or an obstacle (in green) that has to be avoided for all possible trajectories. The set
of directions ΘC

AB according to Equation 6.237 and computed according to Equation 6.244 is
represented in Figure 6.37(e). The 2d backward reach set at the defined direction θd = 45◦
(represented by a green line in Figure 6.37(e)) is shown in Figure 6.37(b). An initial location
of a possible position of the AUV inside A is represented by a red AUV. Random trajectories
due to the uncertain parameter on the direction αθ = 5◦ are drawn in yellow. The same repre-
sentation is provided in Figure 6.37(c) at the direction θd = 39◦. Notice that in both situation,
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which are proved to reach B from A without any ambiguity (green line in the solution set), all
the yellow trajectories do not cross C at any time. The 2D backward reach set at the direction
θd = 36◦ selected outside the solution at the red line in Figure 6.37(e) is represented in Figure
6.37(d). Indeed, it is not possible to leave A and reach B with the presence of C at this direction
since the 2D backward reach set does not intersect A.
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Figure 6.37: Reachability of a disk B from a relocation area A with another relocation area C
between them.

Secondly, if the robot is uncertainly located in the departure relocation area, it can be de-
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scribed by the most likely position q0 (the heading is provided by the compass) and an error
on this position by a set P0 that may be an ellipse, a box or a disk for example. This is simi-
lar to the problem of the connection between the initial uncertain position and a relocation area.

For example, consider an uncertainty defined by a disk P0 as follows:

P0 = {x ∈ R2|
√
x2

1 + x2
2 ≤ 0.5} (6.249)

which means that the position lies in a circle with a radius 0.5m around q0.

The set of directions is then given, inspired by Equation 6.237, by the following set:

ΘC
AB(P0) = {θd ∈ R|∃a ∈ A,∀εxy ∈ P0, ∀δθ ∈ [−αθ, αθ],∃t ∈ R+, fH(x, t,p) ∈ B

and ∀t ∈ R+, fH(x, t,p) /∈ C and a + εxy ∈ A} (6.250)

where x = (a, θd) = (a1, a2, θd).

Since the departure position a is uncertainly located inside A, it has to be checked for all
possible positions in the uncertain set P0 centered in a that one direction θd exists such that
all the possible positions will reach B without being bored by C.

This can be reformulated as follows:

ΘC
AB(P0) = {θd ∈ R|∃a ∈ A,∀εxy ∈ P0,∀δθ ∈ [−αθ, αθ],∃t ∈ R+, fH(x, t,p) ∈ B

and ∀t ∈ R+, fH(x, t,p) /∈ C and a + εxy ∈ A} (6.251)
= {θd ∈ R|∃a ∈ A,∀δθ ∈ [−αθ, αθ],∃t ∈ R+, fH(x, t,p) ∈ B

and ∀t ∈ R+, fH(x, t,p) /∈ C and a ∈ A	 P0} (6.252)

which can be given by:

ΘC
AB(P0) = {θd ∈ R|BACKC(B, θd) ∩ (A	 P0) 6= ∅} (6.253)

which can be also decomposed into:

ΘC
AB(P0) = {θd ∈ R|BACK(B, θd) ∩WBACK(C, θd) ∩ (A	 P0) 6= ∅} (6.254)

When the robot is uncertainly located in the departure relocation area A in a set P0 around
the most likely position, then consider the erosion of A by P0 instead of A in Equation 6.237.

Consider the three previous sets A, B and C. Consider an uncertain location in A defined
by the disk P0 (disk with a radius equal to 0.5m).
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Figure 6.38: Reachability of a disk B with another relocation area C from a relocation area A
with an initial uncertain position.

The set of directions ΘC
AB(P0) is depicted in Figure 6.38(e) and looks reduced compared to

the previous set ΘC
AB depicted in Figure 6.37 without uncertainty in A. The 2D backward reach

set at θd = 45◦ is shown in Figure 6.38(a) where the magenta circle shows the erosion of A
by P0. From the initial uncertain location at the red AUV, it is possible to reach for sure B
without ambiguity. The 2D backward reach has to intersect the magenta disk to conclude the
existence of a position guaranteeing the reachability despite the uncertain location. A zoom is
provided in Figure 6.38(b) where the red disk indicates the uncertain location centered at the
red AUV. Notice that this disk is included in the 2D backward reach set at θd = 45◦. Some
positions, represented by blue AUV, are sampled in this uncertain position, where it concluded
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that all the trajectories reach B without crossing C. A zoom is given in Figure 6.38(d) where
sampled trajectories are represented in yellow from two initial locations.

Similarly when linking the initial position to a relocation area, connecting two relocation
areas without any ambiguity needs a selection step to remove the sets that are behind the
desired relocation area. This will be proposed in the following.

Selecting local ambiguous area

As pointed out in the two previous parts about the connection, a select function is present
in Algorithm 10 at line 16 and 28 to remove the relocation areas or obstacles that may be lie
behind the desired relocation area to reach since the weak projection of these sets may hide the
backward reach set of the desired relocation areas. This was explained in section 6.4.2.4 about
the forbidden areas in Example 2.

In Algorithm 10, at line 15, a variable AmbiguousArea stores all the obstacles in O and all
the relocation areas excepted the one that is tested. According to the initial position, some of
them are removed since they could hide the backward reach set of the tested relocation area
U. This is realized by the select function. Similarly at line 28, the select function removes
the relocation area behind the desired one U on a reduced set AmbiguousAreaReloc which
corresponds to the previous AmbiguousArea where the tested node V has been removed too.

Consider two relocation areas A and B, where A corresponds to V and B to U in Algorithm
10 when the connection with the initial location has not been proved. B is then the relocation
area to reach and A is the departure area. The set of directions ΘAB to leave A and reach B was
given in Equation 6.64. Consider now a third set C to test if it may lie behind the desired re-
location area B to avoid any ambiguity when computing the reachability as previously presented.

The set of directions ΘCB linking C to B is also given by Equation 6.64. Since the set of
directions linking A to B is given by ΘAB, then consider the following set:

Θamb
AB (C) = {θd ∈ R|ΘAB ∩ΘCB} (6.255)

This set indicates the set of directions that are common between A and C to reach B.

For the considered relocation area or obstacle C, if the set Θamb
AB (C) is empty, then the tested

relocation area will not be considered as ambiguous since it is possible to travel easily from
A to B. However, if it is not empty, C is added to the localAmbiguousArea variable as some
directions may lead the robot to cross the relocation area C due to the uncertain direction
instead of B by leaving A. The reachability of an undesired relocation area will lead to a wrong
data association and then a wrong strategy following.

The select function consists then in testing all the relocation areas or obstacles, or at least
in the local environment of A and B as depicted for example by the red box in Figure 6.39(c), if
one is present between A and B. An environment composed of a goal area B in red, a starting
area A and another possible ambiguous relocation areas Ci in green are represented in Figure
6.39(a). For all Ci, Θamb

AB (Ci) is computed according to Equation 6.255. If Θamb
AB (Ci) 6= ∅, the set

Ci is added to the localAmbiguousArea as for the set C1 and C3 highlighted by a blue disk at
their center as shown in Figure 6.39(b). All the other areas Ci are not taken into account. As
it may be noticed, the set C1 does not lie between A and B, it could be removed by considering
the 2D forward reach set of A defined at the possible directions ΘAB between A and B as shown
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in Figure 6.39(c) at the direction θd = 45◦. The forward reach set will be explained just below.
It could also have been removed since it does not belong to the local area represented by the red
box in Figure 6.39(c). The red box englobing the sets A and B may be used as a preprocessing
step to keep only the possible relocation areas or obstacles that intersect this box to improve
the speed of the algorithm. Then the test based on the direction in Equation 6.255 could be
used to remove any possible relocation areas or obstacles that could lie behind the goal area B
when B is a complex shape or are outside the possible direction. Finally the 2D forward reach
set of A on the set of directions linking A to B could remove the sets that are before A.
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(a) Environment with a goal area B in red,
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(d) 2D forward reach set of A at the
direction θd = 45◦ to remove the area
outside the transit between A and B.

Figure 6.39: Ambiguous relocation areas selection.

Removing C1 is not necessary since the computation of the set of directions ΘC
AB linking A

to B despite the presence of some relocation areas or obstacles C according to Equation 6.237
would not change the result. Indeed, the weak backprojection of C1 in this case according to the
set of directions between A and B would be oriented toward the bottom left corner and wouldn’t
even cross A. Therefore the relocation areas that are placed before A do not influence the result.
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In some cases, the shapes A and B may be very complex and C cannot be removed by the
red box as depicted in Figure 6.40. The set C will be considered in the local area (preprocessing
step) and the method based on the forward reach set would easily remove C by considering the
set of directions ΘAB.

A

C

B

Figure 6.40: Complex situation for area removal.

The forward reach set of a set A ⊂ R2 is defined as follows:

FORW (A) = {(x1, x2, θd)|∃a ∈ A,∃p ∈ [p], ∃t ∈ R+,

(
x1
x2

)
= fH2(x0, t,p)} (6.256)

where x0 = (a, θd) = (a1, a2, θd) only the function fH2 in the 2D space is used. If A is a subset
of R3, then consider the projection in the (x− y) plane.

The 2D forward reach set can then be defined as follows:

FORW (A, θd) = {(x1, x2)|∃a ∈ A,∃p ∈ [p], ∃t ∈ R+,

(
x1
x2

)
= fH2(x0, t,p)} (6.257)

where x0 = (a, θd) = (a1, a2, θd).

In this part, the uncertain parameter p is only described by an uncertainty δθ on the direc-
tion. The 2D forward reach set may reformulated as follows:

FORW (A, θd) = {(x1, x2) ∈ R2|∃a ∈ A,∃δθ ∈ [−αθ, αθ],∃t ∈ R+,

(
x1
x2

)
= fH2(x0, t,p)}

= {(x1, x2) ∈ R2|∃a ∈ A,∃δθ ∈ [−αθ, αθ],∃t ∈ R+, (6.258)(
x1
x2

)
=
(
a1
a2

)
+ v · t ·

(
cos(θd + δθ)
sin(θd + δθ)

)
}

= A⊕ Xpolar(θd) (6.259)

where Xpolar(θd) was defined in Equation 6.127 when the weak backprojection was explained to
take into account forbidden areas in the section 6.4.2.4.
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In the provided example in Figure 6.39, and considering the set C1 which is actually not
between A and B can be removed by finding the following set:

PambAB (C) = {x ∈ R2|
⋂

θd∈ΘAB

(FORW (A, θd) ∩ C)} (6.260)

where C is C1. C is assumed to be a subset of R2. If it is not the case, then consider the
projection in the (x− y) plane of C.

If PambAB (C) 6= ∅, the set C intersects at least one forward reach set of A defined at a direction
in the set of directions linking A to B, and then may be ambiguous. It can be potentially used
at the end as it is not necessary to remove the sets that are before A and not between A and B.
The final result is given in Figure 6.41 where the set C1 has been removed from the ambiguous
areas. Finally, the variable localAmbiguousArea would only contain C3.
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Figure 6.41: Final selection of ambiguous area with the forward reach set.

Example of graph building

Consider the environment depicted in Figure 6.42(a) where the goal area is represented by
a red circle and the initial position of the AUV by the blue AUV in the top right corner. 20
relocation areas are present in green and represented by disks with a radius varying between 6
and 8m. The motion planning is proposed with disks since it is quite easy to generate random
environment. As it may be noticed, some relocation areas intersect another relocation areas:
cluster are then formed. 3 clusters of 2 relocation areas are represented where a link between
the relocation areas is shown. Since clusters are seen as relocation areas, consequently only 17
relocation areas are present including 3 clusters. To reduce the complexity of the graph, only
the 5 nearest neighbours in terms of distance between the centers or the centroids are consid-
ered. Therefore, the set of possible nodes V connected to U is only composed of 5 relocation
areas.

The graph expansion is represented in Figure 6.42(b) where blue arrows are guaranteed links
despite the presence of other relocation areas, the origin of an arrow indicates the departure
relocation area. A blue arrow confirms then the possibility to navigate without ambiguity be-
tween two relocation areas. The path found by Algorirthm 10 is represented by the red path

276



CHAPTER 6. MOTION PLANNER

composed of arrows that is optimized in distance. A number has been given for each part of
the motion and some of them will be more detailed in Figure 6.43.
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(a) Environment with a goal area in red, a starting position
shown by the blue AUV and some relocation areas in green.
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Figure 6.42: Environment and the path found with Algorithm 10.
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The proof of the path 1 is provided in Figure 6.43(a) where ΘIU is computed since any
another relocation areas are present between them. The 2D backward reach at θd = −48◦,
indicated by the green line, is given in Figure 6.43(b). Indeed the initial position of the AUV
belongs to the 2D backward reach set at this direction.

The proof of the path 2 is given in Figure 6.43(c) where the set of directions between the
departure relocation area A in blue and the intermediate goal area B in blue is computed by
taking into account the two local relocation areas C1 and C2 between them. Please see Figure
6.43(d) for the names. The corresponding 2D backward reach set taking into these other reloca-
tion areas at the direction θd = 0◦ (at the green line) is given in Figure 6.43(d) where a possible
departure position is represented by the red AUV. Notice that indeed the weak backprojection
of an obstacle reduces the departure area at this direction.

The proof of the path 4 is given in Figure 6.43(e) where the robot has to reach a cluster B in
magenta despite the presence of one another relocation area C in black. Please see Figure 6.43(f)
for the names. The corresponding 2D backward reach set at the direction θd = −72◦ is given
in Figure 6.43(f). From the possible departure position represented by the red AUV, it could
reach one of the two relocation areas in the cluster. Since the AUV cannot distinguish between
the two relocation areas, a local strategy to disambiguate the true location of the robot has
to be performed before going to the departure area of the last portion of the high-level strategy.

The union of the 2D backward reach sets taking into account possible another relocation
areas of the strategy found is proposed in Figure 6.44(a). It includes the three parts of the
strategy proposed in Figure 6.43. One direction has then been selected for each part of the
strategy according to the computed sets to propose this complete 2D backward reach set. A
possible path execution is proposed in Figure 6.44(b) where the yellow lines correspond to the
uncertain trajectories according to the uncertain parameter δθ ∈ [−αθ, αθ] on the direction
selected. The different red AUVs corresponds to possible departure positions according to the
different directions selected in the strategy. Magenta paths are the relocation process inside a
relocation area since the robot is able to relocate and move perfectly. As it can be noticed the
AUV can reach the goal area in red in a guaranteed manner.

278



CHAPTER 6. MOTION PLANNER

-56 -54 -52 -50 -48 -46 -44 -42

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Th (deg)

(a) Set of direction ΘIA (see figure
(b)).

30 40 50 60 70 80 90 100 110 120

165

170

175

180

185

190

195

200

205

210

215

220

225

230

235

240

245

250

y (m)

x (m)

I

A

(b) 2D corresponding backward reach set
at θd = −48◦.

-8 -6 -4 -2 0 2 4 6

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Th (deg)

(c) Set of direction ΘC1∪C2
AB (see figure

(d)).

70 80 90 100 110 120 130 140 150
145

150

155

160

165

170

175

180

185

190

195

200

205

210

215

220

225

230

235

y (m)

x (m)

A B

C2

C1

(d) 2D corresponding backward reach set
at θd = 0◦ taking into account C1 and C2.

280 282 284 286 288 290 292 294

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Th (deg)

(e) Set of direction ΘC
AB (see figure (f)).
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Figure 6.43: Intermediate reachability between the blue departure area and the intermediate
goal area in magenta taking into account potential another relocation areas in black.
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Figure 6.44: Environment and the path found with Algorithm 10.

Simplified version for fast computation

Since it may be time consuming to prove the existence of at least one direction using the
SIVIA algorithm with projection between two relocation areas despite the presence of other
possible relocation areas, a simplified version based on a discrete set of possible directions taking
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into account obviously the possible other relocation areas to avoid any ambiguity is proposed
briefly.

The connect function at line 29 in Algorithm 10 between a departure relocation area A and
an intermediate goal area B does not consist anymore to prove that ΘC

AB is not empty despite
the presence of local obstacles or another relocation areas. A discrete set of possible directions
denoted as {ΘAB} between A and B are computed. Consider the following set at a possible
direction θi inside {ΘAB}:

PC
AB(θi) = {x ∈ R2|BACK(B, θi) ∩WBACK(C, θi) ∩ A} (6.261)

where A is a subset of R2. If it is not the case, then consider the projection in the (x−y) plane.
C is the local ambiguous relocation areas or obstacles according to the method proposed above
in the paragraph Selecting local ambiguous area.

Then consider the global set:

PC
AB({ΘAB}) =

⋃
θi∈{ΘAB}

PC
AB(θi) (6.262)

If PC
AB({ΘAB}) is not empty, then a least one direction exists such that it is possible to leave

A and reach B without ambiguity.

The connection between two relocation areas depends then on the discretization of the pos-
sible directions. The advantage is the fast computation of a potential graph. However it is not
anymore a complete planner.

The planner proposed based on the SIVIA computation depends on a epsilon ε parameter
then cannot be considered as a complete planner but as almost a complete planner. Moreover,
it relies on projection where a parameter has to be defined too. However it proves the guarantee
of the solution.

6.6 Planning with registration maps
The motion planning problem was until now proposed only on disks or shapes that are subsets
of R2 but the method can be extended to 3D. Two motion planners were proposed to deal with
distinguishable and indistinguishable relocation areas. In this part, the strategy finding is pro-
posed with the registration maps developed in Chapter 5. The planners are then proposed only
for the holonomic vehicle using directional/omnidirectional backprojection. It will be assumed
that the robot is perfectly located in a relocation area and can move anywhere without con-
straints on motion in a relocation area. It has been shown how to deal with uncertain location
in relocation.

6.6.1 Planning without point of view
In this first subsection, it is assumed that the landmarks are detectable at any point of view.
Remind that the uncertain parameters were αθ = 5◦ and αv = 10%. Illustrations will be based
mainly on punctual landmarks.
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Backward reach set with a single landmark

Consider a forward looking sensor as depicted in Figure 6.45(a) with a range of detection
between 4 and 20m and a whole aperture angle of 40◦ (θ3 = 20◦). Consider a punctual land-
mark located at (50, 0) where the registration map at the heading 0◦ is shown in Figure 6.45(b)
computed according to Equation 5.14 (see section Punctual landmark). Magenta pie en-
closes the solution set (polar set). The 3D registration map (x, y, θ) is called A ⊂ R3. Using
the motion model fH in Equation 6.14 for a directional robot including the direction and not
fH2, the 2D backward reach set at the direction θd = 0◦ (BACK(A, 0◦)) is given in Figure
6.45(c). Notice that the 2D backward reach set at θd = 0◦ does not correspond to the 2D
backward reach set of the 2D registration map at the heading 0◦ since the direction of the AUV
is uncertain (θAUV ∈ [θd − αθ, θd + αθ] = [−5, 5](deg)). The magenta pie is larger than the 2D
backward reach set in the field of detection of the landmark. Some trajectories from an initial
location at (0, 0) at the command direction θd = 0◦ are drawn in yellow and stop when it detects
the punctual landmark at the blue AUV pose with the associated visibility area. Notice that
indeed all the trajectories are able to detect with this sensor the landmark from this initial pose.
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Figure 6.45: Reachability of a punctual landmark with a forward looking sensor.

When registration maps are considered as connected sets ?

In the motion planners proposed, the notion of connected sets was mainly proposed when
2D shape intersects. Now it has to be adapted to the registration maps which are subsets of
R3. For ease of simplication and understanding, only punctual landmarks will be considered.
The idea is to prove when two registration maps can be considered as connected.

Consider a first punctual landmark "a", called reference landmark, located at a = (50, 0) and
a second punctual landmark "b" located at b = (50, yb) which is at the vertical of the reference
landmark. A parameter yb is defined to move this second landmark according to the reference
landmark. By considering the sensor with the visibility area presented in Figure 6.45(a), the two
registration maps A and B are computed according respectively to the two landmark positions
a and b (a value for yb is then defined). The reader may refer to Chapter 5 how to compute
the registration map for a punctual landmark. They are subsets of R3 since the (x, y) location
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and the heading of the AUV θ is important due to the limited aperture angle and limited range.

Consider again the intersection of the registration maps A and B which is given by the set:

PAB = {x ∈ R3|A ∩ B} (6.263)

Since it is a subset of R3, a 2D representation (in the (x, y) plane) can be given as follows:

P2D
AB = projX3

X1×X2(PAB) (6.264)

where X1 is the domain of x, X2 is the domain of y and X3 is the domain of θ (heading).

Considering the two registration maps A and B, Figure 6.46 shows the results of Equation
6.264 where X3 is defined by the interval [−180, 180](deg). The position of the landmarks are
drawn for the two values of yb by red dots. The green circles are the minimal and maximal
ranges of detection according to the landmark positions. Some poses are represented in red
AUVs with the associated visibility area of the sensor. In Figure 6.46(a), yb is defined at 15m
and it can be noticed that the AUV is not able to detect at every poses around the two land-
marks at the same time. In Figure 6.46(b) where yb = 10m, the robot is able to all around the
cluster of landmarks according to its visibility area to detect both at the same time.
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Figure 6.46: Intersection of the registration maps projected on the ground according to Equation
6.264. Some poses are represented by red AUV poses whit the associated visibility area in blue,
the punctual landmarks are shown by red dots, the minimum and maximum ranges for each
landmark are represented by green circles.

In the first case (yb = 15m), the two registration maps cannot be considered as connected
sets contrary to the second case (yb = 10m) where it exists at least one heading all around the
cluster to detect both at the same time. This is illustrated in Figure 6.47 where the reachability
of both landmarks is tested from an initial pose of the robot defined at the worst case consid-
ering the two landmarks. This worst case is defined as follows: the direction of the motion is
perpendicularly to the line between the two landmarks, i.e. θd = 0◦ (in reality θd = kπ with
k ∈ Z) and y0 is defined at the middle of the two punctual landmarks (yb2 ). It corresponds then
to the line between the two landmarks where the initial x0 was defined on this line at 0m for ex-
ample to have the heading θd = 0◦ of the motion.Consequently the initial pose is x0 = (0, 7.5, 0◦)
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and the direction to follow is θd = 0◦. In Figure 6.47(a) with yb = 15m, trajectories from the
initial pose are drawn in yellow according to the uncertain direction (δθ ∈ [−αθ, αθ]). When
the pose of a robot is able to detect one of the two landmark, i.e. the pose is in the union of
the registration maps, an AUV is drawn is blue with the associated visibility area in blue, and
the path stops as a landmark is detected. As it may be noticed some trajectories go through
the field of influence of the two landmarks without detecting any of them (drawn by the long
yellow line). On the contrary, considering yb = 10m in Figure 6.47(b) and then x0 = (0, 5, 0◦)
with the same direction θd = 0◦ (worst case), all the trajectories in yellow are able to detect at
least one landmark.
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(a) Reachability with yb = 15m. Some trajectories
cannot detect any landmark.
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(b) Reachability with yb = 10m. All the trajectories
can detect at least one landmark.

Figure 6.47: Reachability of a two registration maps associated to the two punctual landmarks
with different yb. Yellow lines are trajectories, the red AUV is the initial pose, the motion
direction is θd = 0◦, little blue AUVs with their associated visibility area (blue pie) are the
poses that can detect at least one landmark.

It is possible to determine yb, i.e the set of distances between the landmarks, to prove that
the registration maps are connected or not. This is illustrated in Figure 6.48 where "a" is the
reference landmark and "b" can move according to the parameter d.
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Figure 6.48: Distance determination to consider connected registration maps. d is the parameter
to determine, "a" is the reference landmark and "b" the moving landmark.

Since the critical direction of the motion in this situation is θd = 0◦, consider then the two
registration maps at the defined heading θ = θd = 0◦.

Consider the following function (please refer to Chapter 5):

fb :


R2 × x → R2

(p1, p2) → RT (p3)
(
b1 − p1
b2 − p2

)
(6.265)

where p corresponds to the registration map for the punctual landmark b. This function was
denoted as f−1

b in Chapter 5. p3 is defined at the heading θ = 0◦ and b is the position of the
second landmark. The visibility area V is defined at the particular pose (0, 0, 0◦) which leads
to the registration map:

P2D
b = f−1

b (V) (6.266)

Since it depends on the reference landmark, then consider the function:

fa :


R × R2 → R2

(d, p1, p2) → RT (p3)
(

a1 − p1
a2 − p2 + d

)
(6.267)

where d is actually yb since a2 = 0.

Considering the visibility area V defined at the particular pose (0, 0, 0◦) where the heading
is defined (p3 = 0◦), the set of robot position that can detect the landmark including the
parameter d is given by:

P(d) = f−1
a (V) (6.268)

Finally the set of distances is given by:

D = {d ∈ R|P(d) ∩ (R × A(0◦))} (6.269)

where A(0◦) is the registration map of the reference landmark "a" at the defined heading θ = 0◦.
R has been added since the dimension of P(d) is 3 and A(0◦) is only 2.
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The solution of this set is given in Figure 6.49 where it can indeed be noticed that the
distance d = yb = 15m is outside (red line) and then the two registration map cannot be con-
sidered as connected contrary the distance d = yb = 10m (green line). These distances were
used in Figure 6.47 but now the set of distances is valid. By taking the inner approximation,
it can be concluded according to the parameters of the projection that two registration maps
involving punctual landmarks are connected if the distance d is below than 13.67m (approxi-
mately), otherwise some trajectories may be "lost". dmax is then defined at 13.67m.

0 2 4 6 8 10 12 14 16

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

distance (m)

Figure 6.49: Set of distance D between the two landmarks to consider the registration maps
as connected. The green line corresponds to situation in Figure 6.47(b) and the red line to the
situation in Figure 6.47(a).

The problem could be solved if the position of the punctual landmarks was uncertain too.
Since it is assumed now that the environment is certainly located, if two punctual landmarks
are closer than 13.67m then the associated registration maps are considered as connected sets.

The value of dmax can be analytically obtained considering the sensor and the parameters
that define this sensor as depicted in Figure 6.50. The maximum distance can then be obtained
as follows:

dmax = 2 ·Rmax · sin(θ3) (6.270)
which gives with the defined parameters dmax = 13.68m which is the same value as obtained
before.

D

θ3

Rmax

Rmin

Figure 6.50: Simplified determination of an under approximation of dmax.

This method can be extended to any landmark by dilating one landmark by dmax and looking
for intersection with another landmark. If the intersection is not empty, then the registration
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maps of the two considered landmarks (the one dilated and the classic one) can be considered
connected since it is impossible for the robot to navigate between them without detecting at
least one of them. If the point of view was included, this proposition may not be true.

Connection between registration maps

It is assumed no uncertainty in position in a relocation area when detecting the landmark.
See the previous section to take into account possible uncertainty which is the same every where
in the landmark area. This is discussed in the section 7.2(Perspectives).

Proving a connection is still provided by Equation 6.55 where B is now the registration map
to reach and A is the registration map from where the robot starts its motion.

Two methods can be envisaged and will be explained through an example.

Consider for example a punctual landmark to reach located at (60, 70) (red dot) and a
landmark from where the robot starts its motion located at (25, 35) (green dot) as depicted in
Figure 6.51. Consider for a example the direction θd = 50◦. The 2D backward reachability of
the goal registration map is given in Figure 6.51(a) where some trajectories are plotted from
an initial position that is able to detect the departure landmark (green). All the trajectories
are able to detect the goal landmark.

The first method is to start from a position that is able to detect the departure landmark.
The registration map at this direction θ = 50◦ is given in Figure 6.51(b) and finally the depar-
ture area at this direction is given in Figure 6.51(c) to redetect for sure the goal landmark. This
departure area indicates the set of robot positions such that it is able to detect the departure
landmark for the desired direction θd = 50◦ and that is able to prove the detection of the goal
landmark after the uncertain motion, i.e. after leaving the detection of the departure landmark.
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(a) 2D backward reachability of the
registration map associated to the goal
landmark (red) at the defined direction

θd = 50◦.
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(b) Registration map of the departure
landmark at the direction θ = 50◦.
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(c) Intersection between the 2D backward
reachability and the registration map of the

departure landmark at the direction
θ = 50◦. Departure area to guarantee the

reachability at θd = 50◦.

Figure 6.51: First method of the reachability between two registration maps. Punctual land-
marks are considered in this example. The green landmark is the departure landmark and the
red one is the goal landmark.

Due to the motion ability of the robot to turn on itself or having a little turning radius,
the second method consists simply by starting from a position that is in the field of influence
of the departure landmark and is able to reach the desired landmark at the defined direction
(θd = 50◦ in this case). This set of position is simply given by the following equation:

PAB(θd) = {(x1, x2) ∈ R2|BACK(B, θd) ∩ projX3
X1×X2(A)} (6.271)

where θd is the desired direction for the reachability of B, A is the registration map of the
departure landmark and B is the registration map of the goal landmark.

According to the sensor proposed here, the term projX3
X1×X2(A) corresponds simply to the set

of robot positions by removing the constraint on the heading. Therefore, only the constraint on
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the range is used to compute the proposed and find the departure area at a desired direction.
The registration map of the departure landmark is then simply a subset of R2.

Define then:
A2D = projX3

X1×X2(A) (6.272)

which can be computed by considering the visibility area defined in the subsection 5.2.1.1 about
the isotropic sensor with limited ranges and by considering a transformation function f only
composed of a translation. Considering the same sensor, this set is provided in Figure 6.52(a).

Equation 6.271 can be rewritten as follows:

PAB(θd) = {(x1, x2) ∈ R2|BACK(B, θd) ∩ A2D} (6.273)

The second method consists then by simply going in the area of the departure landmark given
by Equation 6.273, depicted in Figure 6.52(b), detecting the landmark, as represented in Figure
6.52(c) and then orienting the head at the defined direction θd that guarantees the reachability
of the goal landmark (θd = 50◦) as shown in Figure 6.52(d). The departure landmark might not
be in the field of view of the sensor when it will start its motion, as shown in Figure 6.52(d),
under the assumption that the rotation on itself does not change its position. An uncertainty
on the position after the rotation can be added by using the theory developed before with
uncertain initial position.
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(a) 2D registration map A2D.
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(b) Set of departure positions PAB(θd) with
θd = 50◦.
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(c) Position before the rotation on itself,
the landmark is detected.
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(d) Position after the rotation at the
desired direction θd = 50◦. Some

trajectories are plotted in the figure (b).

Figure 6.52: Second method of the reachability between two registration maps based on the
rotation ability of the robot on itself. The green landmark is the departure landmark and the
red one is the goal landmark.

For both methods, it is possible to compute the set of directions ΘAB, presented in Equation
6.64, that links the two registration maps A and B by using the projection as presented earlier.
The results are given in Figure 6.53 where the set of directions using the first method is shown
in Figure 6.53(a) and the one using the second method is represented in Figure 6.53(b). Notice
that in the first case, the set of directions is hard to determine due to the projection in the set
of directions with respect to the (x, y) dimension. Moreover, the set of directions in the second
case is obviously larger than in the first case, since the robot can start from anywhere in the
2D registration A2D shown in Figure 6.52(a).
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(a) Starting pose in A, meaning the
robot detects the departure landmark
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Figure 6.53: ΘAB using both methods for the departure area. The selected direction (θd = 50◦)
is the one that was used for the previous figures (green line).

Example

A simple environment is depicted in Figure 6.54 where many punctuals landmarks are rep-
resented by green dots and a shape landmark by a blue shape. A punctual target in red is at
the bottom of the environment. The initial position of the AUV is at the top. It is assumed
a forward-looking sensor that can detect between Rmin = 2m and Rmax = 15m and has an
aperture angle θ3 = 20◦. The whole aperture angle is then 2θ3 = 40◦. The error on the compass
is fixed at 5◦. The green and red circles are the visibility of the punctual landmarks and the as-
sumed punctual targets at the minimal Rmin and maximal Rmax range of the sensor. The green
shaped contour represents the visibility of the shape at Rmax. The 2D areas correspond to the
projection on the ground of the different registration maps. 6.54 shows the graph built for the
two different methods of departure positions taking into account local ambiguous landmarks.
It is assumed indistinguishable landmarks. The first method, i.e. starting from a position that
can detect the departure landmark to reach another landmark, gives the graph and path in
red in Figure 6.54(a) where blue links are other links built by the backward search. The result
with the second method is provided in Figure 6.54(b). Notice that the path is shorter with the
second method since the robot is able to turn on itself before starting an uncertain motion to
reach another landmark. It is assumed that the turn on itself does not increase the uncertainty
on the robot position, i.e. the robot starts from a certain position. Uncertainty can be obviously
added as shown before. The first method requires closer landmark positions since it starts from
a further position to detect the departure landmark and to have a reliable starting position.
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(a) Graph built with the first method by
starting from a pose that is inside the

registration map of a landmark.
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(b) Graph built with the second method by
starting from a position and then turn at

the selected direction.

Figure 6.54: Environment composed of punctual landmarks represented by green dots, a shape
landmark shown by the blue shape and a target considered as punctual landmark in red. The
circles or the contour of the shape in green are the visibility at Rmin and Rmax of the landmarks.
The graph built is represented by blue links and the path found in red.

The strategy for the first method of departure positions is detailed in Figure 6.55 where
directions are selected taking into account the local ambiguous landmarks. The set of departure
positions according to the selected directions in each registration maps are depicted in Figure
6.55(a) where a zoom is provided in Figure 6.55(b). Some red AUVs positions are selected in
the different departure sets as departure positions. The red pies corresponds to the visibility
area before starting the motion between the registration maps. Magenta lines correspond to
relocation process to place the robot at the departure AUV positions. The path execution is
depicted in Figure 6.55(c) where again a zoom is provided in Figure 6.55(d). 50 trajectories
are generated for each subpath by selecting a random error in the interval [−5, 5](deg) for the
error on the direction. Yellow lines are then the uncertain trajectories between the registration
maps and magenta lines are the relocation processes. Blue pies correspond to the visibility area
when the robot detects the the landmark, i.e. the intersection between the visibility area and
the landmark is not empty.
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(a) Set of departure positions according to
the different selected directions with some

departure AUVs positions defined.
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(b) Zoom on a part of the figure (a).
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(c) Path execution with the departure red
AUVs positions. Yellow trajectories are

uncertain motions between relocation maps
and magenta trajectories are relocation

process. Blue and red pies are the visibility
area of the sensor.
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(d) Zoom on a part of the figure (c).

Figure 6.55: Strategy found with the first method of departure poses. One direction is selected
for each subpath taking into account the possible local ambiguous landmarks.

Similarly the strategy for the second method of departure positions is detailed in Figure 6.56
where the strategy is more straight-forward since the robot can turn on itself before leaving a
landmark region of influence.
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(a) Set of departure positions according to
the different selected directions with some

departure AUVs positions defined.
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(b) Zoom on a part of the figure (a).
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(c) Path execution with the departure red
AUVs positions. Yellow trajectories are

uncertain motions between relocation maps
and magenta trajectories are relocation

process. Blue pies are the visibility area of
the sensor.
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(d) Zoom on a part of the figure (c).

Figure 6.56: Strategy found with the second method of departure poses. One direction is
selected for each subpath taking into account the possible local ambiguous landmarks.

6.6.2 Planning with point of view
The notion of point of view of the landmark is now taken into account to revisit the different
landmark at an approximate same angle of view as in the survey mission. As depicted in Fig-
ure 2.27, an angular flexibility around the angle of detection was introduced since it is quite
impossible to revisit a landmark at the exact same angle of view. This angular flexibility is
defined at 15◦. The motion planning problem will be illustrated through an example that in-
volves only punctual landmarks again that are certainly located. The registration maps taking
into account an angle of view was presented in Chapter 5 in section 5.2.5. The point of view
was defined as a constraint in Equation 5.84 and depicted in Figure 5.16 for the point of view
at 0◦. Finally the registration map with the point of view is given by Equation 5.82 and was
named PB([θdetection]) (with B = {b}) for a punctual landmark located at b = (b1, b2). With an
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angular flexibility of 15◦, it gives [θdetection] = θsurvey + [−15, 15](deg). It will then be named
Pb([θdetection]). It is obviously a subset of R3. Consider a sensor that can detect between 4
and 20m with an aperture angle of 2θ3 = 60◦. However the aperture angle of the sensor does
not matter anymore since it is assumed that the vehicle is able to turn on itself to detect the
landmark. Only the ranges are important then even if the registration map in Figure 5.16 was
computed based on this aperture angle.

The set of robot poses that can detect the landmark is given Pb([θdetection]) and then the
position of the robot taking into account the point of view is given by the following set:

Pb
2D([θdetection]) = projX3

X1×X2(Pb([θdetection])) (6.274)

An environment is depicted in Figure 6.57(a) where many punctual landmarks including the
target in red were detected at a specific angle of view. Only one punctual landmark could have
benefit from multiview and is detectable at any point of view. Using the motion model fH in
Equation 6.14 is not possible, a Dubins path would be more adapted since the vehicle can only
see forward. However it is still possible to build but now the goal recognizability presented in
the subsection 6.4.2.5 will be used. It is assumed then only 2D relocation areas as presented in
Figure 6.57(a) and the reachability and the recognizability will be computed at the same time
by determining the existence of direction and time command. The motion command is now
(θd, t) as presented in subsection 6.4.2.5, meaning that the robot is able to reach the relocation
area by following the direction θd despite the uncertain on the direction αθ and stops in the
relocation area to turn on itself after a certain time t based on the cruise speed (1m/s) and
the uncertainty on the speed αv = 10%. The second motion model of linear trajectories fH2 in
Equation 6.15 will consequently be used.

Starting from the two possible goal areas, the graph construction is provided in Figure
6.57(b) where blue arrows indicate the departure area and the reachable area, and the red path
is the strategy found.

The execution of this strategy is proposed in Figure 6.57(c) where the uncertain trajectories
outside relocation areas are painted in yellow and the relocation process is drawn in magenta to
join a possible departure position to execute the motion command associated to this departure
position and the intermediate or final relocation areas to reach. The AUV may have to turn
on itself to relocate before executing the motion to be sure it is at the right position since it
can only see forward. The set of departure positions in each departure area according to the
strategy found has been computed in Figure 6.57(d) that indicates the position of the robot
from where a motion command (θd, t) exists to reach the intermediate or goal area.
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(b) Graph building with the path found in
red. Blue arrows show the reachability.
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Figure 6.57: Graph construction, strategy finding and path execution.

Several zooms of the path execution is provided in Figure 6.58. As it may be noticed in Fig-
ure 6.58(c) joining the isotropic detectable landmark was reduced to reach the disk defined by
the maximum range. Indeed it guarantees to it will be in the field of influence of the landmark.
Then the robot has just to turn on itself to detect the landmark. If it is not detected, the
robot is likely in the blind zone in the middle due to the minimum range of detection. It has to
perform then a little motion to try to escape from this blind zone and detect by turning on itself.

A focus on the path (or sub-strategy) 3 is given in Figure 6.58(b) where the set of motion
commands (θd, t) has been computed in Figure 6.58(d) from this initial location. The motion
commands choiced is represented by the blue dot. For each path, the set of motion commands
has been generated according to the defined initial location and a single motion command is
taken from the inner approximation. It has been proved that from this initial location at least
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one motion command exists as shown in Figure 6.57(d).
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Figure 6.58: Graph construction, strategy finding and path execution.

6.6.3 Spiral exploration
When the robot has to reach a set of indistinguishable landmarks, a "local" strategy to dis-
ambiguate the true position has to be developed to continue the high level strategy that relies
on a well-defined position (or uncertainly defined) of the AUV. Different hypotheses of the
localization of the robot are removed by maximizing the information gain in [206], or in other
words by going in places where the sensor measurements can help in the disambiguation among
the hypotheses. In this subsection, a simple model such as a spiral exploration is proposed.
For simplicity reasons, only a 2D motion model will be proposed.

A spiral can be simply described by a parametric equation as follows:

fspi :


R3 × R × R → R2

(x0, a, t) →
(
x0
y0

)
+ a · t

(
cos(t+ θ0)
sin(t+ θ0)

)
(6.275)
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where x0 = (x0, y0, θ0) is the initial pose, t is the time and a is the parameter that handles the
shape of the ellipse.

(a) Without uncertainty. (b) With an uncertainty
αa ∈ [−0.1, 0.1].

Figure 6.59: Spiral motion with a = 0.4m/s from the initial pose (5, 6, 0◦).

Consider now that a is uncertainly defined to take into account a drift in position by following
the spiral motion. The function is now defined as follows:

fspi :


R3 × R × R × R → R2

(x0, a, αa, t) →
(
x0
y0

)
+ a · (1 + αa) · t

(
cos(t+ θ0)
sin(t+ θ0)

)
(6.276)

where αa is a parameter to model an uncertainty on a. In the set-membership context, αa
belongs to an interval. In the following, this interval is defined by [−0.1, 0.1] which corresponds
to an error at 10% on the value of a.

By fixing the initial angle θ0 at 0◦ for example, the spiral trajectory from the initial location
(5, 6) is drawn until t = 30s with a defined at 0.4m/s in Figure 6.59 considering or not an
uncertainty. An uncertainty leads to an undefined trajectory.

Consider a simple sensor with an isotropic field of view and a limited maximum range de-
fined at 2m for example. The visibility area can be defined according to subsection 5.2.1.1.
The robot can then detect any landmark at a distance up to 2m around it.

For simplicity reasons, consider a punctual landmark located at (0, 0). The associated reg-
istration map A is then only a subset of R2.

Considering the motion model with uncertainty, the backward reach set can again be com-
puted from this defined registration map. By fixing the initial angle at θ0 = 0◦, Figure 6.61
shows the 2D backward reach set with a defined at 0.7 and αa ∈ [−0.1, 0.1].
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Figure 6.60: 2D backward reach set of the registration map represented by the red circle using
the spiral motion with a = 0.7 and αa ∈ [−0.1, 0.1]. Cyan boxes are inside, white ones outside
and yellow ones no conclusion can be made.

Based on the 2D backward reach set of the defined registration map it is possible to compute
the set of uncertain initial location around the landmark location that guarantees the detection
of the landmark. Define for example the initial possible location of the robot by a circle around
the position of the landmark as follows:

P(r) = {x ∈ R2|
√

(x1 −m1)2 + (x2 −m2)2 ≤ r} (6.277)

where r is the radius of the circle and m = (m1,m2) is the position of the punctual landmark.

Consider now the following set:

M = {(a, r) ∈ R2|P(r) ⊂ BACK(A, a)} (6.278)

where A is the registration map of the punctual landmark and BACK(A, a) is the backward
reach set of A defined by the uncertain spiral motion shaped by the parameter a where αa
belongs to [−0.1, 0.1]. This is a shape registration problem.

According to the provided values, this set M is represented in Figure 6.61. Obviously, it
can be noticed a step when the radius of the initial set of robot position is above the radius of
visibility of the sensor (2m).
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Figure 6.61: Set M giving the parameter a in function of the radius r of the initial set of robot
position. Cyan boxes are inside, white ones outside and yellow ones no conclusion can be made.

The results with some values (a, r) are presented in Figure 6.62. In Figure 6.62(a), a point
inside the inner approximation is chosen (a = 0.4 and r = 4m) and all the initial locations
inside the disk of radius r = 4m enable to revisit the punctual landmark, otherwise some points
would be red. The uncertain trajectory from one initial location is provided in Figure 6.62(b)
where indeed all the possible trajectories from this initial location cross the registration map
(blue trajectories). However, by choosing a point inside the outer approximation (a = 0.7 and
r = 4m), all the initial points are not able to provide the guarantee of the detection of the
landmark as shown in Figure 6.62(c) by the red initial points. The uncertain trajectory is
represented from one initial non valid position in Figure 6.62(d) where it can be noticed that
some trajectories in red never cross the registration map and then do not enable the detection
of the landmark.
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(a) Valid initial location in blue for a = 0.4 and
r = 4m.

(b) All the trajectories (blue) cross the
registration map for the defined initial location

(0, 5) for example.

(c) Valid (blue) and non valid (red) initial
location for a = 0.7 and r = 4m. Red points do
not guarantee the revisit of the landmark due

to the uncertain parameter.

(d) Uncertain spiral trajectories from a non
valid initial location (1, 3.2). Red trajectories

do not cross the registration map.

Figure 6.62: Examples of valid initial location and reachability. The landmark is drawn by a
green dot and the registration map by a green circle.

When the initial set of position is inside a disk with a radius r = 4, the initial certainly
visible area [73] is empty since the robot can detect only at a distance up to 2m. Despite the
fact that the robot cannot detect the landmark at the initial location, with a spiral parameter
a defined at 0.4 for example, it guarantees it will detect the landmark at a certain time even
with an uncertainty on the motion. The radius of the initial location may be defined by a
percentage of the distance travelled (for example 10%).

Consequently, even if a landmark is not detected after a dead-reckoning motion, it may be
detected after a spiral motion for example. Moreover, this spiral motion, despite the uncer-
tainty, can extend the certainly visible area to detect possible other landmarks to disambiguate
the true position of the robot.

However, this spiral motion may be constrained by the dynamics of the vehicle.
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Chapter 7

Conclusion and perspectives

7.1 Conclusion
The underwater environment is a challenging environment where optical systems suffer from a
weak visibility contrary to acoustics systems which enable to provide a lot of information about
the environment thanks to SOund Navigation And Rangings (SONARs). Underwater robotics
is highlighted in Chapter 1 with many types of applications that are nowadays performed by
Remotely Operated Vehicles (ROVs) or Autonomous Underwater Vehicles (AUVs). Military
applications are the main contributor to the development of unmanned robots to perform redun-
dant, difficult or even dangerous tasks for Humans. Among them, the Mine Counter Measure
(MCM) mission shows many interests to secure a naval trafic for commercially trade or to avoid
the destruction of expensive ships or submarines. An MCM mission is generally composed of
two main tasks. The first one is to survey an area with an highly resoluted sonar such as a sides-
can sonar (SSS) or a Synthetic Aperture Sonar (SAS) in order to detect potentially dangerous
objects such as mines. This task is performed since the beginning by heavy surface vessels that
dispose of an absolute positioning through a Global Positioning System (GPS) measurement.
AUVs are replacing more and more surface vessels but they cannot have access to an absolute
positioning system since the electromagnetic waves do not penetrate underwater. Generally,
the survey AUVs are equipped with an expensive Inertial Navigation System (INS) coupled
with a Doppler Velocity Log (DVL) to have a good estimate of the position through a Kalman
filter. These suspicious objects are then pretty well geolocalized and need a revisit to identify
and neutralize them if necessary. This re-acquisition/identification is the second main task of a
MCM mission where human divers performed initially this dangerous task. Due to the increas-
ing abilities of unmanned underwater robots, this dangerous task can be replaced by robots.
However, actual technologies show many difficulties to revisit a particular geolocalized object
in underwater environment when the robot is not equipped with an high grade navigation solu-
tion. Indeed, due to time, economic and safety reasons, the mine killer robot is intended to self
detonate to destroy a mine which may not necessary lay on the seabed. Therefore, the design
of such robots is said "low cost". Moreover, due to commercially reasons, the future dictates to
produce more and more low cost solutions to be competitive. An alternative solution would be
to reuse the information gathered by the exteroceptive sensors during the survey missions or
previous missions. Navigating directly on this a priori known environment does not mean the
robot will be able to revisit the suspicious object. Indeed, it firstly needs to relocate the robot
on the a priori map by matching features of interest known as landmarks detected during the
revisit mission before being located relatively to the suspicious object. Heavy data association
algorithms could retrieve the trajectory of the robot but it demands to navigate in features
field environment to make the associations between the observed landmarks and the ones that
are in the a priori map.
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The solution proposed in this thesis is to provide an high level strategy to guarantee the
revisit of the suspicious object based on the a priori map and on the exteroceptive abilities of
the sensors embedded in the revisit vehicle. The problem to solved can be seen as a motion
planning problem.

Chapter 3 presents firstly the state-of-the-art on the classical motion planning problem with-
out considering uncertainty. However, due to the presence of uncertainties in sensing, in motion
and possibly in the map, planning under uncertainty is important for "low cost" robot and even
vital in underwater environment. The state-of-the-art on the motion planning under uncer-
tainty has then been developed to finally propose at the end of Chapter 3 two motion planners.
The first one consists in planning in an extended state space (pose+uncertainty) and assumes
a growing error in position proportional to the distance travelled. The second planner is based
on the famous Probabilistic Path Planner (PPP) where the Dubins paths are used to take
into account possible non-holonomic constraint of the AUV. The drift in position was modelled
based on errors on the inputs. However, due to the unstructured aspect of the underwater
environment and sometimes to the weak presence of landmarks to relocate the position of the
robot, a more elaborated motion planning algorithm has to envisaged. Moreover the extero-
ceptive sensors, such as sonars, have a limited Field Of View (FOV) and therefore it has to be
taken into account at the planning phase.

Chapter 4 introduces the basic tools necessary to understand and manipulate sets with in-
terval analysis. Coupled with a paver, separators are able to provide an inner and an outer
approximation of sets that are defined by constraints. Due to the presence of textured areas
on the seabed in sonar images, the image separator is introduced where it defines as a set
the binarized (or segmented) sonar image. The notion of projection is finally introduced, as
it will be the main operator all along this thesis, where it can reduce the dimensionality of a
problem by proving the existence of solution on a certain domain. It is a powerful tool when
the dimension of the sets is greater than 2.

Under the assumption of a 2D environment and based on the a priori map where any shaped
landmarks are present (may be punctual or bidimensional for example), the registration maps
are introduced in Chapter 5 due to the limited FOV of the exteroceptive sensors. It indicates
rigorously the set (thin) of robot configurations (x, y, θ) that are able to detect the landmark
considered based on the assumed 2D visibility area of the sensors. By determining the 2D
translation and rotation parameters, it simply provides the robot poses that can detect a part
of a landmark which is sufficient to relocate the robot. The notion of uncertainty on the
visibility area and on the map is then introduced as thick sets which are defined as intervals
of sets. The notion of penumbra appears when manipulating thick sets and avoid to spend a
lot of time to prove that an element is actually neither in the inner approximation nor in the
outer approximation but in the penumbra (uncertain region).

The environment is then composed of a set of landmarks where a registration map can be
computed for each of them. It corresponds to poses that can reduce the uncertainty on the
robot position.

Under the assumption that the robot is equipped with a compass that provides the head-
ing information with a bounded uncertainty, the motion planning problem is proposed in a
set-membership manner in Chapter 6. The idea is to navigate between the registration maps
to reduce each times the growing uncertainty on the robot position. This idea was initially
proposed in the work in [186] where only disks were considered as relocation areas. The uncer-
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tainties are modelled as uncertain parameters on two motion models. The first one corresponds
to a parametric linear trajectory with an uncertain heading and speed, leading to a conic propa-
gation of the position, and a second model based on the parametric Dubins paths with the same
uncertain parameters. The reachability between two registration maps, defined as relocation
areas, is computed based on the backward reach set of one registration map onto the another.
Considering the parametric linear motion model with an uncertain but bounded heading, the
directional and omnidirectional backprojections initially proposed in [186] is introduced as a
backward reach set. The problem consists then in finding the set of position and direction in a
relocation area to reach despite the uncertainties the another relocation area. The problem was
reduced to find the set of directions thanks to the projections (1D representation). It is assumed
that the vehicle can turn on itself and orient its head to be in the desired direction based on the
compass measurements providing the heading (with an uncertainty). Starting from a goal area,
a graph can be built backwardly by proving these guaranteed links between the relocation areas
(registration maps) assuming the robot is able to move perfectly or imperfectly in a relocation
area. It is then assumed some visual guided motion based to join a departure area. If the
initial pose is included in a backward reach set of a relocation area, then a strategy has been
found. Two motion planners are proposed making the difference between indistinguishable and
distinguishable relocation areas. If all the relocation areas are distinguishable, i.e. the robot
is able to say in which it is, complex strategies can be envisaged such as reaching a set of
disconnected relocation areas. However, in the underwater environment, this assumption may
be true for some landmarks but a second planner is proposed to avoid the ambiguity between
the relocation areas. This second planner proposes then a strategy to follow without ambiguity
of wrong data association. This reasoning may be useful when planning with obstacles. The
directional and omnidirectional backprojection are then applied to the registration maps to
take into account the visibility area of the sensor. The notion of points of view of landmarks
introduced in Chapter 2 is taken into account to propose a strategy to see again the interme-
diate landmarks at approximately the same point of view based on the fact that the robot is
able to turn on itself. Finally, when dealing with indistinguishable landmarks, reaching a set
of landmarks, that is proved, still requires to disambiguate the true position of the robot. It
corresponds to the problem of the initial position recovery. Many pattern algorithms could be
imagined. A spiral strategy has then been proposed to show that it could cover a large area
without knowing the initial position, and guaranteeing the revisit of the landmarks in the set
of landmarks.

The motion planners based on directional/omnidirectional backprojection assumed that a
low level controller is able to orient the robot in the desired direction according to the heading
measurements. This can be realized when considering an holonomic robot. If the robot has a
minimum turning radius non null, it is still possible to consider the planners proposed but the
autorelocation has to be proved which is also dependent on the detection of the landmark and
then the visual guided motion.

The planner proposed in this thesis is inspired by the landmark based navigation proposed
in [186]. However, in this previous work, the environment was only composed of disks as relo-
cation areas (and obstacles) and the problem was solved analytically. In this thesis, the planner
is extended to unstructured relocation areas since it only requires sets as inputs that can come
from a binary image, a constraint network,... Moreover, the work is extended to take into ac-
count the limited visibility area of the sensor by proposing the registration maps. The planner
proposes finally a guaranteed strategy to redetect intermediate landmarks before redetecting
the target and is optimized through a graph expansion and search. Only few parameters have
to be defined to compute the graph. The plan provided by the planners is a high level strategy
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which requires some local planning algorithms based on visual guided motion for example or
local strategy to disambiguate the position when reaching a set of landmarks.

Real experiments still have to be conducted. A project has been proposed to third-year
robotics students at ENSTA Bretagne with a sail boat. A parallel of the strategy proposed in
thesis can be made with the old navigation system based on a compass. By following directions
with an uncertainty, the sail boat had to detect geolocalized orange buoys with a GoPro that
was mounted at the front and could detect forward, to relocate the robot and continue its
strategy that was provided to students. The navigation of a sail boat is different from AUVs
since it relies on the wind. However, some results have been obtained and the project should
be reconduct next year due to the time to set up the autonomous sail boat.

7.2 Perspectives
Many algorithms were cited in Chapter 2 to extract information from sonar images, and espe-
cially sidesan sonar images. Algorithms to detect automatically textures and objects in Forward
Looking Sonar (FLS) have not been treated but some of the proposed algorithms in sidescan
sonar images may be applicable to FLS imagery. At the end of Chapter 2, it is assumed a
simple filter function to remove all the landmarks that may not be detectable by the revisit
system according to its payload. An adaptation between the two systems based on the possible
resolutions was proposed to keep only the possibly detectable landmarks. This filter function
needs to be more elaborated according to the sensors used and the landmarks that were previ-
ously detected.

The motion planners proposed assume that the robot was certainly or uncertainly located in
a relocation area (registration map) whatever the shape of the landmark. When dealing with
uncertain location, the uncertainty was the same everywhere in the associated registration map
defined by a box, an ellipse or a circle. The link between two registration maps A and B was
simply based on the backward reachability of B onto A considering or not the uncertain location
in A. In reality, this is not true as depicted in Figure 7.1 where a square landmark in blue is
presented. The light red area corresponds to the projection in the (x−y) plane of the associated
registration map according to the visibility area of the sensor shown by a black pie at an AUV
poses. As it may be guessed, a measurement of the landmark at the poses B will not provide a
good estimate of the AUV poses contrary to the measurement in A. Indeed, detecting a corner
and based on the heading measurement coming from the compass, the position of the AUV is
pretty well defined contrary to the measurement in B which could be anywhere along the left
side. Therefore, the motion planners should consider the four red disks as exit regions from
this landmark and not the whole landmark as it was defined.
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A

B

Figure 7.1: A landmark region represented by a blue square, the visibility area according to
the sensor in light red and low error in positioning in red circles. A measurement in B would
return an high uncertain position contrary to a measurement in A.

Due to the unstructured aspect of the underwater environment, a map could be computed
in a 2D grid for example that indicates the relocation abilities at every positions. Orientations
could be added to feed a 3D grid. It would provide for each poses, if it takes a measurement
of a landmark at these poses, the error on the robot poses according to the errors in the map
and in sensing. Regions where a relocation is reliable should then be considered as exit regions
(departure poses) in the test of connection between two registration maps. This corresponds to
the concept of SUF (Sensory Uncertainty Field) initially proposed in [304] where a polygonal
environment and range-laser measurements were used to compute the uncertainty on the robot
poses after a measurement at every poses in a 3D grid. This could be adapted here by using
the shape registration problem developed in Chapter 5 to match the part measured of a shape
and the shape itself, presented in [71] and well suited for image registration in instructured en-
vironment when 2D landmarks are considered. w∞ could be used to characterize the relocation
abilities. If the landmark is punctual, the problem is a simple inversion problem.

Due to the presence of various elements in the underwater environment that may be very
distinct from each other such as the difference between wrecks and sand ripples regions, the two
motion planners considering distinguishable and indistinguishable landmarks should be merged
to have a complete motion planner adapted to the elements contained in the map. Indeed,
if two landmarks are very distinct from each other, if it is proved that a connection exists
between them and if the registration maps are not connected, then they could be considered
together to extend the range of exploration as in the distinguishable case. However, if another
landmarks may lie between the actual location and the two particular landmarks, it has to be
proved that a wrong data association cannot be made due to different acoustics backscatterer.
If it is ambiguous, such complex strategies cannot be realized. Moreover the notion of point
of view, which is important in underwater environment, could be added to have a complete
planner when some landmarks are not detectable isotropically.

The notion of currents, which is nevertheless inherent in oceans, has not been taken into
account in the planners proposed. However, it is possible to inflate the uncertainty on the
parameters to propose a strategy that requires more intermediate relocation areas in the plan.
Another strategy would be to penalize directions that are perpendicularly to the direction of
the current as depicted in Figure 7.2 where the direction is represented by a red arrow. Indeed,
as it can be seen the minimum path length for example is provided in Figure 7.2(a) where
some individual landmarks are revisited before reaching the target represented by the red cross
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without taking into account the current. However, the two lasts portions of the motion have a
direction perpendicular to the direction of the current that may lead to crabbing effect even if
the distance to travel is small. The crabbing effect would displace the robot without changing
its direction and the reachability is not guaranteed anymore. Moreover only individuals land-
marks were considered in this strategy. When the robot has to navigate perpendicularly to the
current, a solution would be to reach a large texture area or a cluster of punctual landmarks
as proposed in Figure 7.2(b) where the strategy is to join the three landmarks that are more
likely detectable despite the crabbing effect. A strategy has to be envisaged to disambiguate
the true position of the robot if necessary. The idea is to manipulate the weights of the links
between the relocation areas according to the situation.

current

current

(a) Minimum path length strategy returned by the
algorithm.

current

current

(b) Strategy taking into account the current.

Figure 7.2: Strategy with currents. The target is represented by the red cross and the direction
of the current by red arrows. Different poses during the paths are represented by AUVs with
their visibility area.

When a step of the high-level strategy is to join a cluster of landmarks, another local strat-
egy can be envisaged to disambiguate the true position of the robot such as boustrophédon
pattern for example. Spirals were proposed in this thesis since a parametric equation is directly
available but any patterns could be imagined to optimize the recovery of the true location of
the robot according to the position of the landmarks.

In this thesis, the path optimization was only based on the distance between the cen-
ters/centroids of the landmarks that leads to a minimum path length, but different cost func-
tions may be imagined. Indeed, a landmark that is very different from the others locally may
have a higher score or a landmark that has a strong acoustics backscatterer may be prioritized
in the path finding. Moreover, taking into account the probability of detection may be im-
portant, especially when the intermediate landmark to search lies in a complex features field
environment that could lead false alarms or even wrong data association.

An important point has still to be investigated and was roughly mentionned through this
thesis. When executing the strategy, if the robot is not able to detect the considered landmark
or target for any reasons, a solution has to be developed. It may simply resurface but this
solution is prohibited in enemy area or in deep water. Having an estimate of the error in the
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position when joining a landmark may be interesting to make some replanning techniques D* as
in [110][109]. Based also on this position estimate, at the moment of the determination of a link
between two registration maps, if another landmark can be reached despite the uncertainty in
position due to the nondetection, a higher score could be attributed when building the graph.
An alternative solution would be to explore locally and build a new map while localizing in
this new map (SLAM). When the new map can be matched to the a priori map, leading to a
position estimation of the robot in the a priori map, the motion planner can again be executed
to find the strategy to join the target. Another solution would be to prioritize landmark that
are close to other landmarks and to avoid isolated landmarks that are difficult to reach. The
weighting in the graph would then be based on the density of the landmarks around the consid-
ered landmark. This solution could be merged with the previous alternative solution based on
SLAM to reacquire a new map rapidly. If a particular landmark in this environment is detected,
such as a wreck for example, the robot is directly relocated if this landmark was present in the
a priori map. An association based only on the image (echo+shadow) could then be envisaged
as in optical systems that are able to differentiate with machine learning techniques a cat from
a dog thanks to a data base and some features. Recent techniques about deep learning may
envisaged to make the associations only based on the sonar image and the information about
the landmark.

The proposed high-level strategy through this thesis could be used by coupling different
sensors and then different maps. For example consider the a priori known bathymetric map
in Figure 7.3 where the different values correspond to the isobaths, the target is represented
by the red cross and some landmarks are drawn by black crosses. The robot is equipped with
an altimeter or a DVL and a camera or a sonar to detect/identify the target. The strategy
proposed is to reach the isobath at 10m, then follow to the North East this isobath before
detecting for sure the landmark to provide a good position of the robot. The strategy consists
then in reaching the cluster of landmarks, with a strategy of disambiguation for example, and
finally to reach the desired target to identify the suspicious object. Using only the vision sensor
would not provide any strategy from this initial location due to the far position but using the
altitute could extend the reachability possibilities.

8

10 12
14

Figure 7.3: Strategy with bathymetry and landmarks detectable by a sonar or camera. The
target is represented by the red cross. Different poses during the path are represented by AUVs
with the visibility area of the camera or the sonar. Values indicate the isobaths.

It still has to be proved that the robot is able to follow the isobath and to localize the
robot in this bathymetric map only based on the altimeter position and the proprioceptive
measurements. Two PhD theses, supervised by Luc Jaulin, are conducted at ENSTA Bretagne
to prove that the AUV is able to follow an isobath based only on an altimeter measurement
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(Julien Damers) and to localize the robot on a bathymetric map only based on a altimeter
measurement again (Joris Tillet).

The planner proposed in this thesis could obviously be adapted when the robot is building
the map in a SLAM problem to guarantee the reachability of previously detected landmarks
and therefore creating the so-called loop closure event.

Finally, I am highly convinced that this "simple" concept presented through this thesis to
navigate between relocation areas could increase the autonomy ability of low cost and high
grade robots in every GPS-denied environment. The principle is highly inspired of the humans
sense of direction when they partially know their environment and move inside to reach a
desired location. Moreover, this sense of direction has been the starting point of the world
exploration when navigators followed the coasts to relocate themself or tried some directions
based on the compass measurements to discover new lands.
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Titre :  Etude et développement de solutions de relocalisation d’objets sous-marins par des véhicules sous-
marins hétérogènes. 

Mots clés :  Sous-marin, robotique, planification, incertitudes, graphe sonar, détection 

Résumé :  Dans le contexte de guerre des mines 
(MCM), il est important de revisiter les objets 
potentiellement dangereux afin de les identifier et les 
neutraliser s’il s’agit effectivement de mines. Cette 
dangereuse tâche était habituellement réalisée par 
des plongeurs démineurs qui sont petit à petit 
remplacés par des drones sous-marins. Le design 
« low cost » des robots de revisite/destruction de 
mines ne permet en général pas de garantir la revisite 
d’une cible géolocalisée en allant droit dessus. De 
plus, le robot pourrait commencer sa mission sous-
marine à une distance éloignée et l’absence de 
positionnement GPS en environnement sous-marin 
imposent l’élaboration d’une stratégie afin de garantir 
la revisite de la cible. En se basant sur des 
informations a priori de l’environnement et notamment 
la présence de points de repère (amers), le problème 
est résolu par la planification d’une stratégie à suivre 
en prenant en compte les incertitudes de 
déplacement inhérentes en milieu sous-marin. 

     Dans un contexte d’erreurs bornées, une 
approche ensembliste est proposée. 
Premièrement, en se basant sur la position et la 
forme des amers, ainsi que la zone visible du 
capteur embarqué, les cartes de recalages sont 
construites afin de définir les poses du robot qui 
permettent de détecter les differents amers afin de 
réduire l’incertitude de position du robot. 
Deuxièmement, en se basant sur un modèle 
paramétrique de déplacement avec des paramètres 
incertains, une stratégie haut-niveau est proposée à 
travers l’optimisation d’un graphe. La stratégie 
consiste à naviguer entre les cartes de recalage afin 
de réduire l’incertitude de position du robot et 
finallement garantir la revisite de la cible souhaitée. 
 

 

 

Title:  Study and development of relocation solutions of underwater objects by underwater heterogeneous 
underwater 

Keywords:  Underwater, robotics, motion planning, uncertainty, graph, sonar, detection 

Abstract: In the Mine Counter Measure (MCM) 
context in the underwater environment, it is vital to 
revisit some potentially dangerous objects to identify 
and neutralize them if they are actually mines. This 
dangerous task was usually performed by human 
divers but more and more it is conducted by 
unmanned underwater robots. Due to the low cost 
design of the revisit/mine-killer robot, going 
straightforward to the geolocalized suspicious object 
does not guarantee that the robot will redetect it. 
Moreover the robot may dive at a far position from the 
target and the lack of absolute positioning system in 
underwater environment demands a strategy to follow 
to guarantee the revisit of this target. Based on a 
priori information in the working area and especially 
the presence of geolocalized landmarks, the problem 
is solved as a motion planning problem considering 
uncertainties due to the increasing error when 
navigating underwater.  
 

     In the context of bounded errors, the problem is 
solved in a set-membership manner. 
Firstly, based on the location and the shape of the 
landmarks, and on the visibility area of the sensor 
embedded, the registration maps are computed 
indicating the sets of robot poses to detect the 
different landmarks considered in order to reduce the 
uncertainty on the robot position. Secondly, based 
on a parametric motion model with uncertain 
parameters, an high level strategy is provided  
through a graph optimization. The strategy consists 
in navigating between the registration maps to 
reduce each times the uncertainty in position of the 
robot and finally to guarantee the reachability of a 
goal area corresponding to the redetection of the 
target. 
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