, from the BiVO4 surface to the Ni-Mo, than from the Al overlayer to the Ni-Mo. This very important interface needs to be further examined and optimized

J. K. Hurst and . Science, , vol.328, pp.315-316, 2010.

M. Grätzel and J. Moser, , vol.5, pp.589-644, 2001.

A. Kudo, K. Ueda, H. Kato, and I. Mikami, , vol.53, pp.229-230, 1998.

Y. Ma, S. R. Pendlebury, A. Reynal, F. Le-formal, and J. R. Durrant, Chemical Science, vol.5, issue.8, p.2964, 2014.

R. S. Bonilla, B. Hoex, P. Hamer, and P. R. Wilshaw, , p.214, 2017.

, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, IPCC Fifth Assessment Report, p.151, 2014.

R. Van-de-krol and M. Grätzel, Photoelectrochemical Hydrogen Production, 2012.

B. A. Pinaud, J. D. Benck, L. C. Seitz, A. J. Forman, Z. Chen et al., Energy & Environmental Science, issue.6, pp.1983-2002, 2013.

A. Fujishima and K. Honda, Nature, vol.238, issue.5358, pp.37-38, 1972.

H. B. Gray, Nature chemistry, vol.1, issue.1, p.7, 2009.

Z. Chen, H. N. Dinh, and E. Miller, Photoelectrochemical Water Splitting, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01360210

M. G. Walter, E. L. Warren, J. R. Mckone, S. W. Boettcher, Q. Mi et al., Chemical Reviews, issue.11, pp.6446-6473, 2010.

H. Inoue, T. Shimada, Y. Kou, Y. Nabetani, D. Masui et al., ChemSusChem, vol.4, issue.2, pp.173-179, 2011.

M. Wang, V. Artero, L. Hammarstr, J. Martinez, J. Karlsson et al., , pp.353-395, 2017.

H. Kumagai, L. Hammarstr, D. R. Whang, Y. Shinohara, J. Martinez et al., , pp.481-507, 2017.

K. Sivula, F. Formal, and . Le,

M. Grätzel, , pp.432-449, 2011.

N. J. Cherepy, D. B. Liston, J. A. Lovejoy, H. Deng, and J. Z. Zhang, , vol.5647, pp.770-776, 1998.

J. H. Kennedy and K. W. Frese, , vol.125, pp.709-714, 1978.

M. P. Dare-edwards, J. B. Goodenough, A. Hamnett, and P. R. Trevellick, , pp.2027-2041, 1983.

S. P. Press and G. Britain, , vol.24, pp.1183-1196, 1963.

S. Chen and L. W. Wang, Chemistry of Materials, vol.2012, issue.18, pp.3659-3666

M. A. Butler, , p.1914, 2008.

A. Kafizas, L. Franca, C. Sotelo-vazquez, M. Ling, Y. Li et al., , p.5, 2017.

L. Steier, I. Herraiz-cardona, S. Gimenez, F. Fabregat-santiago, J. Bisquert et al., , 2014.

K. Sivula, B. Florian, L. Formal, and M. Gra, , pp.1099-1107, 2010.

F. F. Abdi, L. Han, A. H. Smets, M. Zeman, B. Dam et al., Nature Communications, vol.4, pp.1-7, 2013.

E. A. Mohamed, Z. N. Zahran, and Y. Naruta, Journal of Materials Chemistry A: Materials for energy and sustainability, vol.5, pp.6825-6831, 2017.

H. Zheng, J. Z. Ou, M. S. Strano, R. B. Kaner, and A. Mitchell, , pp.2175-2196, 2011.

A. Tacca, L. Meda, G. Marra, A. Savoini, S. Caramori et al., , pp.3025-3034, 2012.

Y. Liu, J. Li, W. Li, Y. Yang, Y. Li et al., , 2015.

Y. Liu, Q. Li, S. Gao, and J. K. Shang, , pp.7493-7501, 2014.

J. A. Seabold and K. Choi, , pp.1105-1112, 2011.

A. R. Lim, S. H. Choh, and M. S. Jang, Journal of Physics: Condensed Matter, vol.7, issue.37, pp.7309-7323, 1995.

M. Suarez, C. Hernández, S. Russo, and N. , Applied Catalysis A: General, vol.504, pp.158-170, 2015.

T. W. Kim and K. Choi, , vol.343, pp.990-995, 2014.

J. K. Cooper, S. Gul, F. M. Toma, L. Chen, P. Glans et al., Chemistry of Materials, vol.26, issue.18, pp.5365-5373, 2014.

F. F. Abdi, N. Firet, and R. Vandekrol, ChemCatChem, vol.2013, issue.2, pp.490-496

F. F. Abdi, T. J. Savenije, M. M. May, B. Dam, R. Krol et al., J. Phys. Chem. Lett, vol.4, pp.2752-2757, 2013.

A. J. Rettie, H. C. Lee, L. G. Marshall, J. Lin, C. Capan et al., Journal of the American Chemical Society, vol.2013, issue.30, pp.11389-11396

J. A. Seabold, K. Zhu, and N. R. Neale, Phys. Chem. Chem. Phys, vol.2014, issue.3, pp.1121-1131

R. Roth and J. Waring, The American Mineralogist, vol.18, pp.1348-1356, 1963.

. Bhattacharya, Materials Letters, vol.30, pp.7-13, 1997.

A. Walsh, Y. Yan, M. N. Huda, M. M. Al-jassim, and S. H. Wei, Chemistry of Materials, vol.21, issue.3, pp.547-551, 2009.

J. K. Cooper, S. Gul, F. M. Toma, L. Chen, P. Glans et al., Chemistry of Materials, vol.26, issue.18, pp.5365-5373, 2014.

D. J. Payne, M. D. Robinson, R. G. Egdell, A. Walsh, J. Mcnulty et al., J. Applied Physics Letters, vol.98, issue.21, pp.46-49, 2011.

A. Kudo, K. Omori, and H. Kato, , pp.11459-11467, 1999.

Y. Park, K. J. Mcdonald, and K. Choi, Chemical Society Reviews, pp.2321-2337, 2013.

T. W. Kim, Y. Ping, G. A. Galli, and K. Choi, Nature Communications, vol.6, p.8769, 2015.

C. X. Kronawitter, L. Vayssieres, S. Shen, L. Guo, D. Wheeler et al., Energy & Environmental Science, vol.4, issue.10, p.3889, 2011.

S. Cho, J. W. Jang, K. H. Lee, and J. S. Lee, APL Materials, vol.2, issue.1, 2014.

T. S. Sinclair, B. M. Hunter, J. R. Winkler, H. B. Gray, and M. M. Astrid, , pp.22-24, 2015.

M. Zhou, J. Bao, Y. Xu, J. Zhang, J. Xie et al., ACS Nano, vol.8, issue.7, pp.7088-7098, 2014.

V. Nair, C. L. Perkins, Q. Lin, and M. Law, Energy Environ. Sci, vol.2016, issue.4, pp.1412-1429

H. S. Han, S. Shin, D. H. Kim, I. J. Park, J. S. Kim et al., Energy & Environmental Science, pp.1299-1306, 2018.

T. W. Kim and K. Choi, Science, vol.343, issue.6174, pp.990-994, 2014.

K. J. Mcdonald and K. Choi, Energy & Environmental Science, vol.2012, issue.9, p.8553

Y. Pihosh, I. Turkevych, K. Mawatari, J. Uemura, Y. Kazoe et al., Scientific Reports, vol.5, p.11141, 2015.

A. T. Oliveira, M. Rodriguez, T. S. Andrade, H. E. De-souza, J. D. Ardisson et al., , p.1800089, 2018.

Y. Qiu, W. Liu, W. Chen, W. Chen, G. Zhou et al., Science Advances, vol.2016, issue.6, p.1501764

X. Shi, I. Y. Choi, K. Zhang, J. Kwon, D. Y. Kim et al., Nature communications, vol.5, p.4775, 2014.

E. A. Mohamed, Z. N. Zahran, and Y. Naruta, J. Mater. Chem. A, vol.2017, issue.15, pp.6825-6831

J. H. Kim, Y. Jo, J. H. Kim, J. W. Jang, H. J. Kang et al., J. S, pp.1-27

X. Shi, K. Zhang, K. Shin, M. Ma, J. Kwon et al., Nano Energy, vol.13, pp.182-191, 2015.

J. H. Kim, J. W. Jang, H. J. Kang, G. Magesh, J. Y. Kim et al., Journal of Catalysis, vol.317, pp.126-134, 2014.

D. Wang, R. Li, J. Zhu, J. Shi, J. Han et al., , 2012.

Y. Park, D. Kang, and K. Choi, Physical Chemistry Chemical Physics, vol.16, issue.3, pp.1238-1246, 2014.

M. W. Kanan, D. G. Nocera, and . Science, , pp.1072-1075, 2008.

D. A. Lutterman, Y. Surendranath, and D. G. Nocera, Journal of the American Chemical Society, vol.131, issue.11, pp.3838-3839, 2009.

D. K. Zhong, S. Choi, and D. R. Gamelin, Journal of the American Chemical Society, vol.133, pp.18370-18377, 2011.

S. K. Pilli, T. E. Furtak, L. D. Brown, T. G. Deutsch, J. A. Turner et al., Energy & Environmental Science, vol.4, issue.12, p.5028, 2011.

M. Zhong, T. Hisatomi, Y. Kuang, J. Zhao, M. Liu et al., Journal of the American Chemical Society, vol.137, issue.15, pp.5053-5060, 2015.

K. S. Joya, K. Takanabe, and H. J. De-groot, Advanced Energy Materials, vol.2014, issue.16, pp.2-7

J. H. Kim, G. Magesh, H. J. Kang, M. Banu, J. H. Kim et al., Nano Energy, vol.15, pp.153-163, 2015.

C. C. Mccrory, S. Jung, J. C. Peters, and T. F. Jaramillo, , pp.1-32

C. C. Mccrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters et al., Journal of the American Chemical Society, vol.137, issue.13, pp.4347-4357, 2015.

K. L. Pickrahn, S. W. Park, Y. Gorlin, H. Lee, T. F. Jaramillo et al., Advanced Energy Materials, vol.2012, issue.10, pp.1269-1277

Q. Jia, K. Iwashina, A. Kudo, and . Pnas, , vol.109, pp.11564-11569, 2012.

M. Ma, J. K. Kim, K. Zhang, X. Shi, S. J. Kim et al., , 2014.

S. Hernández, G. Gerardi, K. Bejtka, A. Fina, and N. Russo, Applied Catalysis B: Environmental, vol.190, pp.66-74, 2016.

S. M. Thalluri, R. M. Rojas, O. D. Rivera, S. Hernandez, N. Russo et al., Physical Chemistry Chemical Physics, vol.17, issue.27, pp.17821-17827, 2015.

S. M. Thalluri, C. Martinez-suarez, S. Hernández, S. Bensaid, G. Saracco et al., Chemical Engineering Journal, vol.245, pp.124-132, 2014.

S. Hernández, S. M. Thalluri, A. Sacco, S. Bensaid, G. Saracco et al., Applied Catalysis A: General, vol.504, pp.266-271, 2015.

S. P. Berglund, A. J. Rettie, S. Hoang, and C. B. Mullins, , pp.7065-7075, 2012.

W. Luo, Z. Li, T. Yu, and . Zou, Z. Journal of Physical Chemistry C, vol.2012, issue.8, pp.5076-5081

H. S. Park, K. E. Kweon, H. Ye, E. Paek, and G. S. Hwang, , pp.1-5, 2011.

W. J. Jo, J. W. Jang, K. J. Kong, H. J. Kang, J. Y. Kim et al., Angewandte Chemie -International Edition, vol.2012, issue.13, pp.3147-3151

K. P. Parmar, H. J. Kang, A. Bist, P. Dua, J. S. Jang et al., J. S. ChemSusChem, vol.2012, issue.10, pp.1926-1934

W. Luo, Z. Yang, Z. Li, J. Zhang, J. Liu et al., Z. Energy & Environmental Science, vol.4, issue.10, p.4046, 2011.

H. W. Jeong, T. H. Jeon, J. S. Jang, W. Choi, and H. Park, The Journal of Physical Chemistry C, issue.18, pp.9104-9112, 2013.

H. He, S. P. Berglund, A. J. Rettie, W. D. Chemelewski, P. Xiao et al., Journal of Materials Chemistry A, vol.2014, issue.24, pp.9371-9379

W. Yao, H. Iwai, and . Ye, J. Dalton transactions, issue.11, pp.1426-1430, 2003.

S. M. Thalluri, S. Hernández, S. Bensaid, G. Saracco, and N. Russo, Applied Catalysis B: Environmental, vol.180, pp.630-636, 2016.

S. M. Thalluri, C. Martinez-suarez, M. Hussain, S. Hernandez, A. Virga et al., N. Industrial & Engineering Chemistry Research, vol.52, pp.17414-17418, 2013.

B. Pattengale, J. Ludwig, and J. Huang, The Journal of Physical Chemistry C, 2016.

H. Gong, N. Freudenberg, M. Nie, R. Van-de-krol, and K. Ellmer, AIP Advances, vol.6, issue.4, 2016.

J. H. Kim, Y. Jo, J. H. Kim, J. W. Jang, H. J. Kang et al., , pp.11820-11829, 2015.

O. Monfort, L. Pop, S. Sfaelou, T. Plecenik, T. Roch et al., , vol.286, pp.91-97, 2016.

H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li et al., Chemical Society reviews, vol.43, issue.15, pp.5234-5244, 2014.

J. Su, L. Guo, N. Bao, and . Grimes, C. a. Nano letters, vol.11, issue.5, pp.1928-1933, 2011.

S. Murcia-lópez, C. Fàbrega, D. Monllor-satoca, M. D. Hernández-alonso, G. Penelas-pérez et al., ACS Applied Materials and Interfaces, vol.8, issue.6, pp.4076-4085, 2016.

L. Zhang, E. Reisner, and . Baumberg, J. J. Energy & Environmental Science, vol.7, issue.4, p.1402, 2014.

S. K. Pilli, T. G. Deutsch, T. E. Furtak, L. D. Brown, J. Turner et al., Physical Chemistry Chemical Physics, vol.15, pp.3273-3278, 2013.

X. Shi, H. Jeong, S. J. Oh, M. Ma, K. Zhang et al., Nature Communications, vol.7, p.11943, 2016.

P. M. Rao, L. Cai, C. Liu, I. S. Cho, C. H. Lee et al., Nano Letters, vol.14, issue.2, pp.1099-1105, 2014.

S. Field, , 2005.

K. Tolod, S. Hernández, and N. Russo, , vol.7, p.13, 2017.

E. O. Filatova and A. S. Konashuk, , 2015.

G. Dingemans, W. Beyer, M. C. Sanden, and W. M. Van-de;-kessels, , pp.1-4, 2010.

G. Chang, D. W. Zhang, and A. Aldalbahi, Nuclear Science and Techniques, pp.2-7, 2016.

A. Kafizas, X. Xing, S. Selim, C. A. Mesa, Y. Ma et al., Catalysis Today, 2017.

A. F. Thomson and K. R. Mcintosh, , pp.343-349, 2011.

W. J. Jo, J. Jang, K. Kong, H. J. Kang, J. Y. Kim et al., , pp.3147-3151, 2012.

J. Zhao, Y. Guo, L. Cai, H. Li, K. X. Wang et al., ACS Energy Letters, vol.1, pp.68-75, 2016.

J. Yu and A. Kudo, Advanced Functional Materials, vol.16, issue.16, pp.2163-2169, 2006.

L. Chen, F. M. Toma, J. K. Cooper, A. Lyon, Y. Lin et al., , pp.1066-1071, 2015.

E. Alarco, L. Chen, M. Hettick, N. Mashouf, Y. Lin et al., , pp.1651-1657, 2014.

G. Wang, Y. Ling, X. Lu, F. Qian, Y. Tong et al., Journal of Physical Chemistry C, vol.2013, issue.21, pp.10957-10964

Y. K. Kho, W. Y. Teoh, A. Iwase, L. Mädler, A. Kudo et al., ACS Applied Materials and Interfaces, vol.3, issue.6, pp.1997-2004, 2011.

M. V. Ganduglia-pirovano, A. Hofmann, and J. Sauer, Surface Science Reports, vol.62, issue.6, pp.219-270, 2007.

A. J. Bard and M. A. Fox, Acc. Chem. Res, vol.28, pp.141-145, 1995.

F. M. Toma, J. K. Cooper, V. Kunzelmann, M. T. Mcdowell, J. Yu et al., Nat Commun, vol.7, p.12012, 2016.

L. H. Dall'antonia, N. R. De-tacconi, W. Chanmanee, H. Timmaji, N. Myung et al., Electrochemical and Solid-State Letters, vol.13, issue.5, p.29, 2010.

M. D. Rossell, P. Agrawal, A. Borgschulte, C. Hébert, D. Passerone et al., Chemistry of Materials, vol.27, issue.10, pp.3593-3600, 2015.

S. Wang, P. Chen, Y. Bai, J. H. Yun, G. Liu et al., Advanced Materials, vol.30, issue.20, pp.1-7, 2018.

J. Wu, Y. Chen, L. Pan, P. Wang, Y. Cui et al., J. Applied Catalysis B: Environmental, vol.221, pp.187-195, 2017.

G. Silversmit, D. Depla, H. Poelman, G. B. Marin, R. Gryse et al., , 2004.

Y. Zhang, Y. Guo, H. Duan, H. Li, and C. Sun, Phys. Chem. Chem. Phys, vol.16, pp.24519-24526, 2014.

K. Sayama, A. Nomura, T. Arai, T. Sugita, R. Abe et al., The Journal of Physical Chemistry B, vol.3, pp.11352-11360, 2006.

D. Passerone and R. Erni, , 2015.

A. N. Banerjee, S. Kundoo, P. Saha, and K. K. Chattopadhyay, Journal of Sol-Gel Science and Technology, vol.28, issue.1, pp.105-110, 2003.

S. Gim and J. Bisquert, Principles, F. B.; Devices, A. Photoelectrochemical Solar Fuel Production, 2016.

C. Copéret, A. Comas-vives, M. P. Conley, D. P. Estes, A. Fedorov et al., Chemical Reviews, vol.116, pp.323-421, 2016.

F. S. Gittleson, K. P. Yao, D. G. Kwabi, S. Y. Sayed, W. H. Ryu et al., , vol.2, pp.1446-1457, 2015.

D. Hatzenbuhler, The Journal of Chemical Physics, vol.56, p.3398, 1972.

M. D. Groner, F. H. Fabreguette, J. W. Elam, and S. M. George, , pp.639-645, 2004.

Z. Zhao, Z. Li, and . Zou, Z. RSC Advances, vol.1, issue.5, pp.874-883, 2011.

R. N. Kerber, A. Kermagoret, E. Callens, P. Florian, D. Massiot et al., Journal of the American Chemical Society, vol.2012, issue.15, pp.6767-6775

C. Yin, S. Zhu, Z. Chen, W. Zhang, J. Gu et al., Journal of Materials Chemistry A, vol.2013, issue.1, pp.8367-8378

C. Zachäus, F. F. Abdi, L. M. Peter, and R. Van-de-krol, Chemical Science, vol.8, issue.5, pp.3712-3719, 2017.

J. R. Mckone, S. C. Marinescu, B. S. Brunschwig, J. R. Winkler, and H. B. Gray, Chemical Science, vol.5, issue.3, pp.865-878, 2014.

J. R. Mckone, B. F. Sadtler, C. A. Werlang, N. S. Lewis, and H. B. Gray, ACS Catalysis, vol.2013, issue.2, pp.166-169

G. Marzun, A. Levish, V. Mackert, T. Kallio, S. Barcikowski et al., Journal of Colloid and Interface Science, vol.489, pp.57-67, 2017.

, Appendix 5

, GC calculations for n-BuLi titration Given quantities: Volume of gas balloon (Vballoon): 6000 mL Volume of gas sample injected (Vgas): 0.5 mL GC peak area, pp.2098-2107

, 39 x 10 -12 Amount of BiVO4 powder sample: 1.001 g Calculation of amount of C4H10: Calculation of amount of reactive sites (maximum OH): 1. 1 st pulse: AlMe3 Given quantities: Volume of gas balloon (Vballoon): 10000 mL Volume of gas sample injected (Vgas): 0.5 mL GC peak area: 3625 Surface area of BiVO4: 3.4792 m 2 /g GC constant: 1.39 x 10 -12