, numerical data using this formalism. The numerical extrapolation for the critical exponents, as function of Q

A. Belavin, A. Polyakov, and A. Zamolodchikov, Infinite conformal symmetry in twodimensional quantum field theory, Nuclear Physics B, vol.241, issue.2, pp.333-380, 1984.

D. Friedan, Z. Qiu, and S. Shenker, Conformal invariance, unitarity, and critical exponents in two dimensions, Phys. Rev. Lett, vol.52, pp.1575-1578, 1984.

J. L. Cardy, Operator content of two-dimensional conformally invariant theories, Nuclear Physics B, vol.270, pp.186-204, 1986.

K. G. Wilson, Renormalization Group and critical phenomena. I. Renormalization Group and the Kadanoff scaling picture, Phys. Rev. B, vol.4, pp.3174-3183, 1971.

K. G. Wilson, Renormalization group and critical phenomena. II. Phase-space cell analysis of critical behavior, Phys. Rev. B, vol.4, pp.3184-3205, 1971.

K. V. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett, vol.45, pp.494-497, 1980.

J. K. Jain, Composite Fermions, 2007.

B. Huckestein, Scaling theory of the integer quantum Hall effect, Rev. Mod. Phys, vol.67, pp.357-396, 1995.

W. Li, G. A. Csáthy, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Scaling and universality of integer quantum Hall plateau-to-plateau transitions, Phys. Rev. Lett, vol.94, p.206807, 2005.

W. Li, C. L. Vicente, J. S. Xia, W. Pan, D. C. Tsui et al., Scaling in plateau-to-plateau transition: A direct connection of quantum hall systems with the Anderson localization model, Phys. Rev. Lett, vol.102, p.216801, 2009.

J. T. Chalker and P. D. Coddington, Percolation quantum tunnelling and the integer Hall effect, J. Phys. C, vol.21, p.2665, 1988.

K. Slevin and T. Ohtsuki, Critical exponent for the quantum Hall transition, Phys. Rev. B, vol.80, issue.4, p.41304, 2009.

H. Obuse, A. R. Subramaniam, A. Furusaki, I. A. Gruzberg, and A. W. Ludwig, Conformal invariance, multifractality, and finite-size scaling at Anderson localization transitions in two dimensions, Phys. Rev. B, vol.82, p.35309, 2010.

J. P. Dahlhaus, J. M. Edge, J. Tworzyd?o, and C. W. Beenakker, Quantum Hall effect in a one-dimensional dynamical system, Phys. Rev. B, vol.84, p.115133, 2011.

M. Amado, A. V. Malyshev, A. Sedrakyan, and F. Domínguez-adame, Numerical study of the localization length critical index in a network model of plateau-plateau transitions in the quantum Hall effect, Phys. Rev. Lett, vol.107, p.66402, 2011.

K. Slevin and T. Ohtsuki, Finite size scaling of the Chalker-Coddington model, pp.60-69, 2011.

E. Bettelheim, I. A. Gruzberg, and A. W. Ludwig, Quantum Hall transitions: An exact theory based on conformal restriction, Phys. Rev. B, vol.86, p.165324, 2012.

M. R. Zirnbauer, Toward a theory of the integer quantum Hall transition: Continuum limit of the Chalker-Coddington model, Journal of Mathematical Physics, vol.38, issue.4, pp.2007-2036, 1997.

V. Kagalovsky, B. Horovitz, Y. Avishai, and J. T. Chalker, Quantum Hall plateau transitions in disordered superconductors, Phys. Rev. Lett, vol.82, p.3516, 1999.

V. Kagalovsky, B. Horovitz, Y. Avishai, and J. T. Chalker, Spin quantum Hall effect in unconventional superconductors, Phys. Rev. B, vol.60, p.4245, 1999.

E. J. Beamond, J. Cardy, and J. T. Chalker, Quantum and classical localization, the spin quantum Hall effect, and generalizations, Phys. Rev. B, vol.65, p.214301, 2002.

J. Cardy, Network models in class C on arbitrary graphs, Communications in Mathematical Physics, vol.258, issue.1, pp.87-102, 2005.

S. Bhardwaj, V. V. Mkhitaryan, and I. A. Gruzberg, Supersymmetry approach to delocalization transitions in a network model of the weak-field quantum Hall effect and related models, Phys. Rev. B, vol.89, p.235305, 2014.

I. A. Gruzberg, N. Read, and S. Sachdev, Scaling and crossover functions for the conductance in the directed network model of edge states, Phys. Rev. B, vol.55, pp.10593-10601, 1997.

B. Duplantier and H. Saleur, Exact surface and wedge exponents for polymers in two dimensions, Phys. Rev. Lett, vol.57, pp.3179-3182, 1986.

H. Saleur and B. Duplantier, Exact determination of the percolation hull exponent in two dimensions, Phys. Rev. Lett, vol.58, pp.2325-2328, 1987.

B. Nienhuis, Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas, Journal of Statistical Physics, vol.34, issue.5, pp.731-761, 1984.

C. M. Fortuin and P. W. Kasteleyn, On the random-cluster model: I. Introduction and relation to other models, Physica, vol.57, issue.4, pp.536-564, 1972.

P. Fendley, Loop models and their critical points, Journal of Physics A: Mathematical and General, vol.39, issue.50, pp.15445-15475, 2006.

J. L. Jacobsen, Conformal field theory applied to loop models, pp.347-424, 2009.

P. Fendley and H. Saleur, N = 2 supersymmetry, Painlevé III and exact scaling functions in 2D polymers, Nuclear Physics B, vol.388, issue.3, pp.609-626, 1992.

H. Saleur, Polymers and percolation in two dimensions and twisted n = 2 supersymmetry, Nuclear Physics B, vol.382, issue.3, pp.486-531, 1992.

P. Fendley and E. Fradkin, Realizing non-Abelian statistics in time-reversal-invariant systems, Phys. Rev. B, vol.72, p.24412, 2005.

H. E. Stanley, Dependence of critical properties on dimensionality of spins, Phys. Rev. Lett, vol.20, pp.589-592, 1968.

P. G. De-gennes, Scaling concepts in polymer physics, 1979.

Y. Ikhlef, P. Fendley, and J. Cardy, Integrable modification of the critical Chalker-Coddington network model, Phys. Rev. B, vol.84, p.144201, 2011.

S. O. Warnaar, M. T. Batchelor, and B. Nienhuis, Critical properties of the Izergin-Korepin and solvable O(n) models and their related quantum spin chains, Journal of Physics A: Mathematical and General, vol.25, issue.11, pp.3077-3095, 1992.

A. Bedini, A. L. Owczarek, and T. Prellberg, Numerical simulation of a lattice polymer model at its integrable point, Journal of Physics A: Mathematical and Theoretical, vol.46, issue.26, p.265003, 2013.

B. Duplantier and H. Saleur, Stability of the polymer ? point in two dimensions, Phys. Rev. Lett, vol.62, pp.1368-1371, 1989.

K. Osterwalder and R. Schrader, Axioms for Euclidean Green's functions, Comm. Math. Phys, vol.31, issue.2, pp.83-112, 1973.

H. N. Temperley and E. H. Lieb, Relations between the 'Percolation' and 'Colouring' problem and other graph-theoretical problems associated with regular planar lattices: Some exact results for the 'Percolation' problem, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol.322, issue.1549, pp.251-280, 1971.

V. F. Jones, Planar algebras, I

H. W. Blöte, J. L. Cardy, and M. P. Nightingale, Conformal invariance, the central charge, and universal finite-size amplitudes at criticality, Phys. Rev. Lett, vol.56, pp.742-745, 1986.

C. Itzykson, H. Saleur, and J. Zuber, Conformal invariance of nonunitary 2d-models, Europhysics Letters (EPL), vol.2, issue.2, pp.91-96, 1986.

L. Rozansky and H. Saleur, Quantum field theory for the multi-variable Alexander-Conway polynomial, Nuclear Physics B, vol.376, issue.3, pp.461-509, 1992.

V. Gurarie, Logarithmic operators in conformal field theory, Nucl. Phys. B, vol.410, issue.3, pp.535-549, 1993.

P. Pearce, J. Rasmussen, and J. Zuber, Logarithmic minimal models, J. Stat. Mech, p.11017, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00101696

P. Mathieu and D. Ridout, From percolation to logarithmic conformal field theory, Physics Letters B, vol.657, issue.1, pp.120-129, 2007.

K. Kytola and D. Ridout, On staggered indecomposable Virasoro modules, Journal of Mathematical Physics, vol.50, issue.12, p.123503, 2009.

J. Germoni, On the classification of admissible representations of the Virasoro algebra, Letters in Mathematical Physics, vol.55, issue.2, pp.169-177, 2001.

V. Gurarie and A. W. Ludwig, Conformal field theory at charge central c = 0 and two-dimensional critical systems with quenched disorder, From Fields to Strings: Circumnavigating Theoretical Physics, pp.1384-1440

A. M. Gainutdinov, J. L. Jacobsen, N. Read, H. Saleur, and R. Vasseur, Logarithmic conformal field theory: a lattice approach, J. Phys. A: Math. Theor, vol.46, p.494012, 2013.

R. Vasseur, J. L. Jacobsen, and H. Saleur, Indecomposability parameters in chiral logarithmic conformal field theory, Nucl. Phys. B, vol.851, pp.314-345, 2011.

J. Cardy, Logarithmic correlations in quenched random magnets and polymers, 1999.

J. Cardy, Logarithmic conformal field theories as limits of ordinary CFTs and some physical applications, Journal of Physics A: Mathematical and Theoretical, vol.46, issue.49, p.494001, 2013.

R. Vasseur, J. L. Jacobsen, and H. Saleur, Logarithmic observables in critical percolation, J. Stat. Mech.: Theory Exp, vol.2012, p.7001, 2012.

R. Vasseur and J. L. Jacobsen, Operator content of the critical Potts model in d dimensions and logarithmic correlations, Nucl. Phys. B, vol.880, pp.435-475, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01332504

R. Vasseur, Logarithmic correlations in quantum Hall plateau transitions, Phys. Rev. B, vol.92, p.14205, 2015.

G. Moore and N. Seiberg, Lectures on RCFT, pp.263-361, 1990.

M. R. Gaberdiel and H. G. Kausch, A rational logarithmic conformal field theory, Physics Letters B, vol.386, issue.1, pp.131-137, 1996.

G. Moore and N. Seiberg, Naturality in conformal field theory, Nuclear Physics B, vol.313, issue.1, pp.16-40, 1989.

C. Itzykson and J. Drouffe, From Brownian motion to renormalization and lattice gauge theory, vol.1

J. L. Jacobsen, N. Read, and H. Saleur, Dense loops, supersymmetry, and Goldstone phases in two dimensions, Phys. Rev. Lett, vol.90, p.90601, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00002307

Y. Ikhlef, J. Jacobsen, and H. Saleur, A staggered six-vertex model with non-compact continuum limit, Nuclear Physics B, vol.789, issue.3, pp.483-524, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00117461

É. Vernier, J. L. Jacobsen, and H. Saleur, Non compact continuum limit of two coupled Potts models, Journal of Statistical Mechanics: Theory and Experiment, vol.2014, issue.10, p.10003, 2014.
URL : https://hal.archives-ouvertes.fr/cea-01065025

É. Vernier, J. L. Jacobsen, and H. Saleur, Non compact conformal field theory and the a (2) 2 (Izergin-Korepin) model in regime III, Journal of Physics A: Mathematical and Theoretical, vol.47, issue.28, p.285202, 2014.
URL : https://hal.archives-ouvertes.fr/cea-01065510

É. Vernier, J. L. Jacobsen, and H. Saleur, The continuum limit of a
URL : https://hal.archives-ouvertes.fr/hal-01393299

, N ?1 spin chains, Nuclear Physics B, vol.911, pp.52-93, 2016.

É. Vernier, J. L. Jacobsen, and H. Saleur, A new look at the collapse of two-dimensional polymers, Journal of Statistical Mechanics: Theory and Experiment, vol.2015, issue.9, p.9001, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01229962

J. B. Marston and S. Tsai, Chalker-Coddington network model is quantum critical, Phys. Rev. Lett, vol.82, pp.4906-4909, 1999.

C. M. Bender, Making sense of non-Hermitian Hamiltonians, Reports on Progress in Physics, vol.70, issue.6, pp.947-1018, 2007.

A. Morin-duchesne, J. Rasmussen, P. Ruelle, and Y. Saint-aubin, On the reality of spectra of U q sl(2)-invariant XXZ Hamiltonians, Journal of Statistical Mechanics: Theory and Experiment, vol.2016, issue.5, p.53105, 2016.

C. Korff and R. Weston, PT symmetry on the lattice: the quantum group invariant XXZ spin chain, Journal of Physics A: Mathematical and Theoretical, vol.40, issue.30, pp.8845-8872, 2007.

A. B. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2d field theory, JETP Lett, vol.43, 1986.

O. A. Castro-alvaredo, B. Doyon, and F. Ravanini, Irreversibility of the renormalization group flow in non-unitary quantum field theory, Journal of Physics A: Mathematical and Theoretical, vol.50, issue.42, p.424002, 2017.

R. Couvreur, J. L. Jacobsen, and H. Saleur, Entanglement in nonunitary quantum critical spin chains, Phys. Rev. Lett, vol.119, p.40601, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01582439

R. Couvreur, E. Vernier, J. L. Jacobsen, and H. Saleur, On truncations of the Chalker-Coddington model, Nuclear Physics B, vol.941, pp.507-559, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01891249

R. Couvreur, J. L. Jacobsen, and R. Vasseur, Non-scalar operators for the Potts model in arbitrary dimension, J. Phys. A: Math. Theor, vol.50, issue.47, p.474001, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01569421

X. Tan, R. Couvreur, Y. Deng, and J. L. Jacobsen, Observation of nonscalar and logarithmic correlations in two-and three-dimensional percolation, Phys. Rev. E, vol.99, p.50103, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01891466

J. I. Cirac and F. Verstraete, Renormalization and tensor product states in spin chains and lattices, Journal of Physics A: Mathematical and Theoretical, vol.42, issue.50, p.504004, 2009.

F. Verstraete, V. Murg, and J. Cirac, Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems, Advances in Physics, vol.57, issue.2, pp.143-224, 2008.

M. Srednicki, Entropy and area, Phys. Rev. Lett, vol.71, pp.666-669, 1993.

N. Laflorencie, Quantum entanglement in condensed matter systems, Physics Reports, vol.646, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01384552

M. B. Plenio, J. Eisert, J. Dreißig, and M. Cramer, Entropy, entanglement, and area: Analytical results for harmonic lattice systems, Phys. Rev. Lett, vol.94, p.60503, 2005.

J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area laws for the entanglement entropy, Rev. Mod. Phys, vol.82, pp.277-306, 2010.

G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Entanglement in quantum critical phenomena, Phys. Rev. Lett, vol.90, p.227902, 2003.

P. Calabrese and J. Cardy, Entanglement entropy and quantum field theory, Journal of Statistical Mechanics: Theory and Experiment, vol.2004, issue.06, p.6002, 2004.

C. Pasquale and C. John, Entanglement entropy and quantum field theory: a nontechnical introduction, International Journal of Quantum Information, vol.04, issue.03, pp.429-438, 2006.

H. Ju, A. B. Kallin, P. Fendley, M. B. Hastings, and R. G. Melko, Entanglement scaling in two-dimensional gapless systems, Phys. Rev. B, vol.85, p.165121, 2012.

H. Casini and M. Huerta, A finite entanglement entropy and the c-theorem, Physics Letters B, vol.600, issue.1, pp.142-150, 2004.

D. Bianchini, O. Castro-alvaredo, B. Doyon, E. Levi, and F. Ravanini, Entanglement entropy of non-unitary conformal field theory, Journal of Physics A: Mathematical and Theoretical, vol.48, issue.4, pp.4-5, 2014.

D. Bianchini, O. A. Castro-alvaredo, and B. Doyon, Entanglement entropy of nonunitary integrable quantum field theory, Nuclear Physics B, vol.896, pp.835-880, 2015.

V. Pasquier and H. Saleur, Common structures between finite systems and conformal field theories through quantum groups, Nuclear Physics B, vol.330, issue.2, pp.523-556, 1990.

P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, Journal of Physics A: Mathematical and Theoretical, vol.42, issue.50, p.504005, 2009.

J. L. Cardy, O. A. Castro-alvaredo, and B. Doyon, Form factors of branch-point twist fields in quantum integrable models and entanglement entropy, Journal of Statistical Physics, vol.130, issue.1, pp.129-168, 2008.

C. N. Yang and T. D. Lee, Statistical theory of equations of state and phase transitions. I. Theory of condensation, Phys. Rev, vol.87, pp.404-409, 1952.

O. A. Castro-alvaredo and A. Fring, A spin chain model with non-Hermitian interaction: the Ising quantum spin chain in an imaginary field, Journal of Physics A: Mathematical and Theoretical, vol.42, issue.46, p.465211, 2009.

D. Bianchini and F. Ravanini, Entanglement entropy from corner transfer matrix in Forrester-Baxter non-unitary RSOS models, Journal of Physics A: Mathematical and Theoretical, vol.49, issue.15, p.154005, 2016.

Y. Deng, T. M. Garoni, and A. D. Sokal, Ferromagnetic phase transition for the spanning-forest model (q ? 0 limit of the Potts model) in three or more dimensions, Phys. Rev. Lett, vol.98, p.30602, 2007.

D. J. Amit, Renormalization of the Potts model, J. Phys. A: Math. Gen, vol.9, p.1441, 1976.

R. J. Baxter, S. B. Kelland, and F. Y. Wu, Equivalence of the Potts model of Whitney polynomial with an ice-type model, J. Phys. A: Math. Gen, vol.9, p.397, 1976.

R. J. Baxter, Potts model at the critical temperature, J. Phys. C: Solid State Phys, vol.6, p.445, 1973.

H. Saleur and J. B. Zuber, Integrable lattice models and quantum groups, 1990.

V. Chari and A. Pressley, A guide to quantum groups, 1994.

P. Di-francesco, H. Saleur, and J. B. Zuber, Relations between the Coulomb gas picture and conformal invariance of two-dimensional critical models, Journal of Statistical Physics, vol.49, issue.1, pp.57-79, 1987.

L. Dixon, D. Friedan, E. Martinec, and S. Shenker, The conformal field theory of orbifolds, Nuclear Physics B, vol.282, pp.13-73, 1987.

P. D. Francesco, H. Saleur, and J. Zuber, Modular invariance in non-minimal twodimensional conformal theories, Nuclear Physics B, vol.285, pp.454-480, 1987.

V. Pasquier, Two-dimensional critical systems labelled by Dynkin diagrams, Nuclear Physics B, vol.285, pp.162-172, 1987.

V. Pasquier, Operator content of the ADE lattice models, Journal of Physics A: Mathematical and General, vol.20, issue.16, pp.5707-5717, 1987.

H. Saleur and M. Bauer, On some relations between local height probabilities and conformal invariance, Nuclear Physics B, vol.320, issue.3, pp.591-624, 1989.

S. Fredenhagen, M. R. Gaberdiel, and C. Schmidt-colinet, Bulk flows in Virasoro minimal models with boundaries, Journal of Physics A: Mathematical and Theoretical, vol.42, issue.49, p.495403, 2009.

I. Affleck and A. W. Ludwig, Universal noninteger "ground-state degeneracy" in critical quantum systems, Phys. Rev. Lett, vol.67, pp.161-164, 1991.

N. Read and H. Saleur, Exact spectra of conformal supersymmetric nonlinear sigma models in two dimensions, Nuclear Physics B, vol.613, issue.3, pp.409-444, 2001.

I. Runkel and G. M. Watts, A non-rational CFT with c = 1 as a limit of minimal models, Journal of High Energy Physics, vol.2001, issue.09, pp.6-006, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00126709

D. Bianchini and O. A. Castro-alvaredo, Branch point twist field correlators in the massive free boson theory, Nuclear Physics B, vol.913, pp.879-911, 2016.

O. Blondeau-fournier and B. Doyon, Expectations values of twist fields and universal entanglement saturation of the free massive boson, Journal of Physics A: Mathematical and Theoretical, vol.50, issue.27, 2017.

T. Dupic, B. Estienne, and Y. Ikhlef, Entanglement entropies of minimal models from null-vectors, SciPost Phys, vol.4, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01823267

B. Kramer, T. Ohtsuki, and S. Kettemann, Random network models and quantum phase transitions in two dimensions, Physics Reports, vol.417, issue.5, pp.211-342, 2005.

A. Pruisken, On localization in the theory of the quantized Hall effect: A twodimensional realization of the ?-vacuum, Nuclear Physics B, vol.235, issue.2, pp.277-298, 1984.

P. Fendley, Critical points in two-dimensional replica sigma models, New Theoretical Approaches to Strongly Correlated Systems (A. M. Tsvelik, pp.141-161, 2001.

M. Schreiber and H. Grussbach, Multifractal wave functions at the Anderson transition, Phys. Rev. Lett, vol.67, pp.607-610, 1991.

M. Janssen, M. Metzler, and M. R. Zirnbauer, Point-contact conductances at the quantum Hall transition, Phys. Rev. B, vol.59, pp.15836-15853, 1999.

H. Obuse, S. Bera, A. W. Ludwig, I. A. Gruzberg, and F. Evers, Statistics of conductances and subleading corrections to scaling near the integer quantum H all plateau transition, Europhysics Letters), vol.104, issue.2, p.27014, 2013.

I. A. Gruzberg, A. W. Ludwig, A. D. Mirlin, and M. R. Zirnbauer, Symmetries of multifractal spectra and field theories of Anderson localization, Phys. Rev. Lett, vol.107, p.86403, 2011.

I. A. Gruzberg, A. D. Mirlin, and M. R. Zirnbauer, Classification and symmetry properties of scaling dimensions at Anderson transitions, Phys. Rev. B, vol.87, p.125144, 2013.

R. Bondesan, D. Wieczorek, and M. Zirnbauer, Gaussian free fields at the integer quantum Hall plateau transition, Nuclear Physics B, vol.918, pp.52-90, 2017.

R. Bondesan, D. Wieczorek, and M. R. Zirnbauer, Pure scaling operators at the integer quantum Hall plateau transition, Phys. Rev. Lett, vol.112, p.186803, 2014.

M. R. Zirnbauer, The integer quantum Hall plateau transition is a current algebra after all, Nuclear Physics B, vol.941, pp.458-506, 2019.

I. A. Gruzberg, A. Klümper, W. Nuding, and A. Sedrakyan, Geometrically disordered network models, quenched quantum gravity, and critical behavior at quantum Hall plateau transitions, Phys. Rev. B, vol.95, p.125414, 2017.

R. M. Gade, Universal R-matrix and graded Hopf algebra structure of U q sl(2|2), Journal of Physics A: Mathematical and General, vol.31, issue.21, pp.4909-4925, 1998.

E. Vernier, J. L. Jacobsen, and H. Saleur, Dilute oriented loop models, Journal of Physics A: Mathematical and Theoretical, vol.49, issue.6, p.64002, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01281679

I. Jensen and A. J. Guttmann, Self-avoiding walks, neighbour-avoiding walks and trails on semiregular lattices, Journal of Physics A: Mathematical and General, vol.31, issue.40, pp.8137-8145, 1998.

P. Fendley and J. L. Jacobsen, Critical points in coupled Potts models and critical phases in coupled loop models, Journal of Physics A: Mathematical and Theoretical, vol.41, issue.21, p.215001, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00264967

A. Nahum, Universality class of the two-dimensional polymer collapse transition, Phys. Rev. E, vol.93, p.52502, 2016.

B. Duplantier and H. Saleur, Exact critical properties of two-dimensional dense selfavoiding walks, Nucl. Phys. B, vol.290, pp.291-326, 1987.

B. Duplanticr and F. David, Exact partition functions and correlation functions of multiple Hamiltonian walks on the Manhattan lattice, Journal of Statistical Physics, vol.51, issue.3, pp.327-434, 1988.

G. Parisi and N. Sourlas, Self avoiding walk and supersymmetry, J. Physique Lettres, vol.41, 1980.
URL : https://hal.archives-ouvertes.fr/jpa-00231808

C. Domb, A. J. Barrett, and M. Lax, Self-avoiding walks and real polymer chains, Journal of Physics A: Mathematical, Nuclear and General, vol.6, issue.7, pp.82-87, 1973.

F. Evers and A. D. Mirlin, Anderson transitions, Rev. Mod. Phys, vol.80, p.1355, 2008.

A. Atland and M. R. Zirnbauer, Nonstandard symmetry classes in mesoscopic normalsuperconducting hybrid structures, Phys. Rev. B, vol.55, p.1142, 1997.

I. A. Gruzberg, A. W. Ludwig, and N. Read, Exact exponents for the spin quantum Hall transition, Phys. Rev. Lett, vol.82, p.4524, 1999.

J. Cardy, Linking numbers for self-avoiding loops and percolation: Application to the spin quantum Hall transition, Phys. Rev. Lett, vol.84, p.3507, 2000.

A. R. Subramaniam, I. A. Gruzberg, and A. W. Ludwig, Boundary criticality and multifractality at the two-dimensional spin quantum Hall transition, Phys. Rev. B, vol.78, p.245105, 2008.

S. Bhardwaj, I. A. Gruzberg, and V. Kagalovsky, Relevant perturbations at the spin quantum Hall transition, Phys. Rev. B, vol.91, p.35435, 2015.

S. Tsai, DMRG of super spin chains, talk at Network Models in Quantum Physics in, 2008.

H. W. Blote and B. Nienhuis, Critical behaviour and conformal anomaly of the O(n) model on the square lattice, Journal of Physics A: Mathematical and General, vol.22, issue.9, pp.1415-1438, 1989.

G. Gotz, T. Quella, and V. Schomerus, Representation theory of sl(2|1), Journal of Algebra, vol.312, issue.2, pp.829-848, 2007.

A. Mackinnon and B. Kramer, One-parameter scaling of localization length and conductance in disordered systems, Phys. Rev. Lett, vol.47, pp.1546-1549, 1981.

J. Cardy, Logarithmic correlations in quenched random magnets and polymers, 1999.

J. Cardy, J. Phys. A: Math. Theor, vol.46, p.494001, 2013.

R. Vasseur, J. L. Jacobsen, and H. Saleur, Logarithmic observables in critical percolation, J. Stat. Mech, p.7001, 2012.

J. L. Jacobsen, J. Salas, and A. D. Sokal, Spanning forests and the q-state Potts model in the limit q ? 0, J. Stat. Phys, vol.119, pp.1153-1281, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00009556

S. Caracciolo, J. L. Jacobsen, H. Saleur, A. D. Sokal, and A. Sportiello, Fermionic field theory for trees and forests, Phys. Rev. Lett, vol.93, p.80601, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00002931

J. L. Jacobsen and H. Saleur, The arboreal gas and the supersphere sigma model, Nucl. Phys. B, vol.716, pp.439-461, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00004124

S. Caracciolo, A. D. Sokal, and A. Sportiello, Spanning forests and the OSP (N |2M )-invariant ?-models, J. Phys. A: Math. Theor, vol.50, p.114001, 2017.

R. Vasseur and J. L. Jacobsen, Operator content of the critical Potts model in d dimensions and logarithmic correlations, Nucl. Phys. B, vol.880, pp.435-475, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01332504

M. Hogervorst, M. Paulos, and A. Vichi, The ABC (in any D) of logarithmic CFT, Journal of High Energy Physics, vol.2017, issue.10, p.201, 2017.

W. Tung, Group theory in physics, 1985.

J. Stembridge, On the eigenvalues of representations of reflection groups and wreath products, Pacific J. Math, vol.140, pp.353-396, 1989.

A. M. Gainutdinov, N. Read, H. Saleur, and R. Vasseur, The periodic sl(2|1) alternating spin chain and its continuum limit as a bulk logarithmic conformal field theory at c = 0, J. High Energy. Phys, vol.5, p.114, 2015.

J. Cardy, Conformal invariance and universality in finite-size scaling, J. Phys. A: Math. Gen, vol.19, 1984.

H. W. Blöte and M. P. Nightingale, Critical behaviour of the two-dimensional Potts model with a continuous number of states: A finite size scaling analysis, Physica A, vol.112, pp.405-465, 1982.

J. Cardy, Logarithmic corrections to finite-size scaling in strips, J. Phys. A: Math. Gen, vol.19, 1986.

H. Osborn and A. Petkos, Implications of conformal invariance in field theories for general dimensions, Ann. Phys, vol.231, pp.311-362, 1994.

M. S. Costa, J. Penedones, D. Poland, and V. S. Rychkov, Spinning conformal correlators, JHEP, vol.1111, p.71, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00617489

Y. Deng and H. W. Blöte, Red-bond exponents of the critical and the tricritical Ising model in three dimensions, Phys. Rev. E, vol.70, issue.5, p.56132, 2004.

A. M. Ferrenberg, J. Xu, and D. P. Landau, Pushing the limits of Monte Carlo simulations for the three-dimensional Ising model, Phys. Rev. E, vol.97, issue.4, p.43301, 2018.

N. F. Robertson, J. L. Jacobsen, and H. Saleur, Conformally invariant boundary conditions in the antiferromagnetic Potts model and SL(2, R)/U (1) sigma model, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02178536

Y. Shi, L. Duan, and G. Vidal, Classical simulation of quantum many-body systems with a tree tensor network, Phys. Rev. A, vol.74, p.22320, 2006.

M. Hauru, C. Delcamp, and S. Mizera, Renormalization of tensor networks using graph-independent local truncations, Phys. Rev. B, vol.97, p.45111, 2018.