M. A. Anderson, J. E. Burda, Y. Ren, Y. Ao, O. Shea et al., Astrocyte scar formation aids central nervous system axon regeneration, Nature, vol.532, issue.7598, pp.195-200, 2016.

M. Arrasate and S. Finkbeiner, Protein aggregates in Huntington's disease, Exp Neurol, vol.238, issue.1, pp.1-11, 2012.

M. Arrasate, S. Mitra, E. S. Schweitzer, M. R. Segal, and S. Finkbeiner, Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death, Proc Natl Acad Sci, vol.431, issue.7010, pp.5427-5460, 2004.

M. Bason, M. Meister-broekema, N. Alberts, P. Dijkers, S. Bergink et al., Astrocytic expression of the chaperone DNAJB6 results in non-cell autonomous protection in Huntington's disease, Neurobiol Dis, vol.124, pp.108-125, 2019.

G. P. Bates, R. Dorsey, J. F. Gusella, M. R. Hayden, C. Kay et al., Huntington disease, Nature reviews Disease primers, vol.1, p.15005, 2015.

B. Haim, L. Carrillo-de-sauvage, M. A. Ceyzeriat, K. Escartin, C. Ben-haim et al., The JAK/STAT3 Pathway Is a Common Inducer of Astrocyte Reactivity in Alzheimer's and Huntington's Diseases, Frontiers in cellular neuroscience, vol.9, issue.6, pp.2817-2846, 2015.

C. R. Berkers, F. W. Van-leeuwen, T. A. Groothuis, V. Peperzak, E. W. Van-tilburg et al., Profiling proteasome activity in tissue with fluorescent probes, Mol Pharm, vol.4, issue.5, pp.739-787, 2007.

M. Brehme, C. Voisine, T. Rolland, S. Wachi, J. H. Soper et al., A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease, Nature reviews Molecular cell biology, vol.9, issue.3, pp.301-308, 2010.

K. Ceyzériat, L. Abjean, M. A. Carrillo-de-sauvage, B. Haim, L. Escartin et al., The complex STATes of astrocyte reactivity: How are they controlled by the JAK-STAT3 pathway?, Neuroscience, vol.330, pp.205-223, 2016.

K. Ceyzériat, B. Haim, L. Denizot, A. Pommier, D. Matos et al., Modulation of astrocyte reactivity improves functional deficits in mouse models of Alzheimer's disease, Acta neuropathologica communications, vol.6, issue.1, pp.667-79, 2009.

C. J. Cortes, L. Spada, and A. R. , The many faces of autophagy dysfunction in Huntington's disease: from mechanism to therapy, Drug discovery today, vol.19, issue.7, pp.963-71, 2014.

M. Costanzo, S. Abounit, L. Marzo, A. Danckaert, Z. Chamoun et al., Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes, J Cell Sci, vol.126, pp.3678-85, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00874692

D. M. Cummings, C. Cepeda, M. Levine, L. P. De-almeida, C. A. Ross et al., Lentiviral-mediated delivery of mutant huntingtin in the striatum of rats induces a selective neuropathology modulated by polyglutamine repeat size, huntingtin expression levels, and protein length, J Neurosci, vol.2, issue.3, pp.3473-83, 2002.

A. De-maio and D. Vazquez, Extracellular heat shock proteins: a new location, a new function, Shock, vol.40, issue.4, pp.239-285, 2013.

L. Diaz-hidalgo, S. Altuntas, F. Rossin, D. 'eletto, M. Marsella et al.,

, Transglutaminase type 2-dependent selective recruitment of proteins into exosomes under stressful cellular conditions, Biochim Biophys Acta, vol.1863, issue.8, pp.2084-92, 2016.

M. Difiglia, E. Sapp, K. O. Chase, S. W. Davies, G. P. Bates et al., Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain, Science, vol.277, issue.5334, pp.1990-1993, 1997.

I. Dikic, M. Faideau, J. Kim, K. Cormier, R. Gilmore et al., Time-lapse analysis of aggregate formation in an inducible PC12 cell model of Huntington's disease reveals time-dependent aggregate formation that transiently delays cell death, Brain research bulletin, vol.86, issue.15, pp.2522-2556, 1999.

R. J. Harding and Y. F. Tong, Proteostasis in Huntington's disease: disease mechanisms and therapeutic opportunities, Acta pharmacologica Sinica, vol.39, issue.5, pp.754-69, 2018.

F. U. Hartl, A. Bracher, and M. Hayer-hartl, Molecular chaperones in protein folding and proteostasis, Nature, vol.475, issue.7356, pp.324-356, 2011.

D. G. Hay, K. Sathasivam, S. Tobaben, B. Stahl, M. Marber et al., Progressive decrease in chaperone protein levels in a mouse model of Huntington's disease and induction of stress proteins as a therapeutic approach, Hum Mol Genet, vol.13, issue.13, pp.1389-405, 2004.

M. A. Hickey, A. Kosmalska, J. Enayati, R. Cohen, S. Zeitlin et al., Extensive early motor and non-motor behavioral deficits are followed by striatal neuronal loss in knock-in Huntington's disease mice, Neuroscience, vol.157, issue.1, pp.280-95, 2008.

Y. Hong, T. Zhao, X. J. Li, and S. Li, Mutant Huntingtin Impairs BDNF Release from Astrocytes by Disrupting Conversion of Rab3a-GTP into Rab3a-GDP, J Neurosci, vol.36, issue.34, pp.8790-801, 2016.

Y. Hong, T. Zhao, X. J. Li, and S. Li, Mutant Huntingtin Inhibits alphaB-Crystallin Expression and Impairs Exosome Secretion from Astrocytes, J Neurosci, vol.37, issue.39, pp.9550-63, 2017.

F. Hosp, S. Gutierrez-angel, M. H. Schaefer, J. Cox, F. Meissner et al., Spatiotemporal Proteomic Profiling of Huntington's Disease Inclusions Reveals Widespread Loss of Protein Function, Cell reports, vol.21, issue.8, pp.2291-303, 2017.

H. Y. Hsiao, Y. C. Chen, C. H. Huang, C. C. Chen, Y. H. Hsu et al., Aberrant astrocytes impair vascular reactivity in Huntington disease, Ann Neurol, vol.78, issue.2, pp.178-92, 2015.

W. Huang-da, B. T. Sherman, and R. A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nature protocols, vol.4, issue.1, pp.44-57, 2009.

A. H. Jansen, E. A. Reits, and E. M. Hol, The ubiquitin proteasome system in glia and its role in neurodegenerative diseases, Frontiers in molecular neuroscience, vol.7, p.73, 2014.

A. H. Jansen, M. Van-hal, . Op-den-kelder, . Ic, R. T. Meier et al., Frequency of nuclear mutant huntingtin inclusion formation in neurons and glia is cell-type-specific, Glia, vol.65, issue.1, pp.50-61, 2017.

I. Jeon, F. Cicchetti, G. Cisbani, S. Lee, E. Li et al., Human-to-mouse prion-like propagation of mutant huntingtin protein, Acta Neuropathol, vol.132, issue.4, pp.577-92, 2016.

M. Kabani and R. Melki, Sup35p in Its Soluble and Prion States Is Packaged inside Extracellular Vesicles, mBio, vol.6, issue.4, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01239954

H. H. Kampinga, E. A. Craig, B. S. Khakh, V. Beaumont, R. Cachope et al., The HSP70 chaperone machinery: J proteins as drivers of functional specificity, Nature reviews Molecular cell biology, vol.11, issue.8, pp.422-459, 2010.

S. Koyuncu, A. Fatima, R. Gutierrez-garcia, and D. Vilchez, Proteostasis of Huntingtin in Health and Disease, International journal of molecular sciences, vol.18, issue.7, 2017.

Y. Lee, A. Messing, M. Su, and M. Brenner, GFAP promoter elements required for region-specific and astrocyte-specific expression, Glia, vol.56, issue.5, pp.481-93, 2008.

J. C. Lievens, B. Woodman, A. Mahal, O. Spasic-boscovic, D. Samuel et al., Impaired glutamate uptake in the R6 Huntington's disease transgenic mice, Neurobiol Dis, vol.8, issue.5, pp.807-828, 2001.

S. Lindquist, The heat-shock response, Annual review of biochemistry, vol.55, pp.1151-91, 1986.

A. Lunkes, K. S. Lindenberg, L. Ben-haiem, C. Weber, D. Devys et al., Proteases acting on mutant huntingtin generate cleaved products that differentially build up cytoplasmic and nuclear inclusions, Molecular cell, vol.10, issue.2, pp.259-69, 2002.

P. Mccolgan and S. J. Tabrizi, Huntington's disease: a clinical review, European journal of neurology, vol.25, issue.1, pp.24-34, 2018.

L. B. Menalled, J. D. Sison, I. Dragatsis, S. Zeitlin, and M. F. Chesselet, Time course of early motor and neuropathological anomalies in a knock-in mouse model of Huntington's disease with 140 CAG repeats, J Comp Neurol, vol.465, issue.1, pp.11-26, 2003.

A. A. Michels, B. Kanon, O. Bensaude, and H. H. Kampinga, Heat shock protein (Hsp) 40 mutants inhibit Hsp70 in mammalian cells, J Biol Chem, vol.274, issue.51, pp.36757-63, 1999.

P. J. Muchowski, G. Schaffar, A. Sittler, E. E. Wanker, M. K. Hayer-hartl et al., Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils, Proc Natl Acad Sci, vol.97, issue.14, pp.7841-7847, 2000.

L. Naldini, U. Blomer, F. H. Gage, D. Trono, and I. M. Verma, Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector, Proc Natl Acad Sci, vol.93, issue.21, pp.11382-11390, 1996.

A. Neueder, T. A. Gipson, S. Batterton, H. J. Lazell, P. P. Farshim et al., HSF1-dependent and -independent regulation of the mammalian in vivo heat shock response and its impairment in Huntington's disease mouse models, Frontiers in molecular neuroscience, vol.7, issue.1, p.77, 2014.

M. M. Pearce, E. J. Spartz, W. Hong, L. Luo, R. R. Kopito et al., Transneuronal propagation of mutant huntingtin contributes to non-cell autonomous pathology in neurons, Nature communications, vol.6, issue.8, pp.1064-72, 2014.

K. Pircs, R. Petri, S. Madsen, P. L. Brattas, R. Vuono et al., Huntingtin Aggregation Impairs Autophagy, Leading to Argonaute-2 Accumulation and Global MicroRNA Dysregulation, Cell reports, vol.24, issue.6, pp.1397-406, 2018.

H. A. Popiel, T. Takeuchi, H. Fujita, K. Yamamoto, C. Ito et al., Hsp40 gene therapy exerts therapeutic effects on polyglutamine disease mice via a non-cell autonomous mechanism, Cell reports, vol.7, issue.11, pp.919-946, 2012.

G. V. Rebec, S. J. Barton, M. Ennis, N. Reichenbach, A. Delekate et al., Dysregulation of ascorbate release in the striatum of behaving mice expressing the Huntington's disease gene, EMBO molecular medicine, vol.22, issue.2, 2002.

D. C. Rubinsztein, The roles of intracellular protein-degradation pathways in neurodegeneration, Nature, vol.443, issue.7113, pp.780-786, 2006.

S. Gil, R. Ooi, L. Yerbury, J. J. Ecroyd, and H. , The heat shock response in neurons and astroglia and its role in neurodegenerative diseases, 65. Saudou F, Humbert S. The Biology of Huntingtin, vol.12, pp.910-936, 2016.

A. Adamsky, A. Kol, T. Kreisel, A. Doron, N. Ozeri-engelhard et al., Astrocytic activation generates De novo neuronal potentiation and memory enhancement, Cell, vol.174, pp.59-71, 2018.

I. Allaman, M. Gavillet, M. Belanger, T. Laroche, D. Viertl et al., Amyloid-beta aggregates cause alterations of astrocytic metabolic phenotype: impact on neuronal viability, J Neurosci, vol.30, pp.3326-3338, 2010.

M. A. Anderson, Y. Ao, and M. V. Sofroniew, Heterogeneity of reactive astrocytes, Neurosci Lett, vol.565, pp.23-29, 2014.

M. A. Anderson, J. E. Burda, Y. Ren, Y. Ao, O. Shea et al., Astrocyte scar formation aids central nervous system axon regeneration, Nature, vol.532, pp.195-200, 2016.

A. Araque, G. Carmignoto, P. G. Haydon, S. H. Oliet, R. Robitaille et al., Gliotransmitters travel in time and space, Neuron, vol.81, pp.728-739, 2014.

J. J. Babon, N. J. Kershaw, J. M. Murphy, L. N. Varghese, A. Laktyushin et al., Suppression of cytokine signaling by SOCS3: characterization of the mode of inhibition and the basis of its specificity, Immunity, vol.36, pp.239-250, 2012.

B. Haim, L. Carrillo-de-sauvage, M. A. Ceyzeriat, K. Escartin, and C. , Elusive roles for reactive astrocytes in neurodegenerative diseases, Front Cell Neurosci, vol.9, p.278, 2015.
URL : https://hal.archives-ouvertes.fr/cea-02142599

B. Haim, L. Ceyzeriat, K. Carrillo-de-sauvage, M. A. , A. F. Auregan et al., The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer's and Huntington's diseases, J Neurosci, vol.35, pp.2817-2829, 2015.

J. E. Burda and M. V. Sofroniew, Reactive gliosis and the multicellular response to CNS damage and disease, Neuron, vol.81, pp.229-248, 2014.

J. D. Cahoy, B. Emery, A. Kaushal, L. C. Foo, J. L. Zamanian et al., A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function, J Neurosci, vol.28, pp.264-278, 2008.

G. Cantarella, D. Benedetto, G. Puzzo, D. Privitera, L. Loreto et al., Neutralization of TNFSF10 ameliorates functional outcome in a murine model of Alzheimer's disease, Brain, vol.138, pp.203-216, 2015.

K. Ceyzeriat, L. Abjean, M. A. Carrillo-de-sauvage, B. Haim, L. Escartin et al., The complex STATes of astrocyte reactivity: how are they controlled by the JAK-STAT3 pathway?, Neuroscience, vol.330, pp.205-218, 2016.
URL : https://hal.archives-ouvertes.fr/cea-02142559

H. Chun and C. J. Lee, Reactive astrocytes in Alzheimer's disease: a double-edged sword, Neurosci Res, vol.126, pp.44-52, 2018.

L. E. Clarke, S. A. Liddelow, C. Chakraborty, A. E. Munch, M. Heiman et al., Normal aging induces A1-like astrocyte reactivity, Proc Natl Acad Sci U S A, vol.115, pp.1896-1905, 2018.

A. Delekate, M. Fuchtemeier, T. Schumacher, C. Ulbrich, M. Foddis et al., Metabotropic P2Y1 receptor signalling mediates astrocytic hyperactivity in vivo in an Alzheimer's disease mouse model, Nat Commun, vol.5, p.5422, 2014.

Y. Ding, A. Qiao, Z. Wang, J. S. Goodwin, E. S. Lee et al., Retinoic acid attenuates beta-amyloid deposition and rescues memory deficits in an Alzheimer's disease transgenic mouse model, J Neurosci, vol.28, pp.11622-11634, 2008.

A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski et al., STAR: ultrafast universal RNA-seq aligner, Bioinformatics, vol.29, pp.15-21, 2013.

C. Escartin, E. Brouillet, P. Gubellini, Y. Trioulier, C. Jacquard et al., Ciliary neurotrophic factor activates astrocytes, redistributes their glutamate transporters GLAST and GLT-1 to raft microdomains, and improves glutamate handling in vivo, J Neurosci, vol.26, pp.5978-5989, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00088896

A. M. Fernandez, S. Jimenez, M. Mecha, D. Davila, C. Guaza et al., Regulation of the phosphatase calcineurin by insulin-like growth factor I unveils a key role of astrocytes in Alzheimer's pathology, Mol Psychiatry, vol.17, pp.705-718, 2012.

T. A. Ferreira, A. V. Blackman, J. Oyrer, S. Jayabal, A. J. Chung et al., Neuronal morphometry directly from bitmap images, Nat Methods, vol.11, pp.982-984, 2014.

R. Fol, J. Braudeau, S. Ludewig, T. Abel, S. W. Weyer et al., Viral gene transfer of APPsalpha rescues synaptic failure in an Alzheimer's disease mouse model, Acta Neuropathol, vol.131, pp.247-266, 2016.

J. L. Furman, D. M. Sama, J. C. Gant, T. L. Beckett, M. P. Murphy et al., Targeting astrocytes ameliorates neurologic changes in a mouse model of Alzheimer's disease, J Neurosci, vol.32, pp.16129-16140, 2012.

S. Haan, S. Wuller, J. Kaczor, C. Rolvering, T. Nocker et al., SOCS-mediated downregulation of mutant Jak2 (V617F, T875N and K539L) counteracts cytokine-independent signaling, Oncogene, vol.28, pp.3069-3080, 2009.

J. A. Hardy and G. A. Higgins, Alzheimer's disease: the amyloid cascade hypothesis, Science, vol.256, pp.184-185, 1992.

M. T. Heneka, M. J. Carson, E. Khoury, J. Landreth, G. E. Brosseron et al., Neuroinflammation in Alzheimer's disease, Lancet Neurol, vol.14, pp.388-405, 2015.

J. E. Herrmann, T. Imura, B. Song, J. Qi, Y. Ao et al., STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury, J Neurosci, vol.28, pp.7231-7243, 2008.

E. M. Hol and M. Pekny, Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system, Curr Opin Cell Biol, vol.32, pp.121-130, 2015.

W. Huang-da, B. T. Sherman, and R. A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat Protoc, vol.4, pp.44-57, 2009.

J. J. Iliff, M. Wang, Y. Liao, B. A. Plogg, W. Peng et al., A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta, Sci Transl Med, vol.4, pp.147-111, 2012.

J. L. Jankowsky, D. J. Fadale, J. Anderson, G. M. Xu, V. Gonzales et al., Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase, Hum Mol Genet, vol.13, pp.159-170, 2004.

S. Jo, O. Yarishkin, Y. J. Hwang, Y. E. Chun, M. Park et al., GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease, Nat Med, 2014.

W. Kamphuis, L. Kooijman, M. Orre, O. Stassen, M. Pekny et al., GFAP and vimentin deficiency alters gene expression in astrocytes and microglia in wild-type mice and changes the transcriptional response of reactive glia in mouse model for Alzheimer's disease, 2015.

W. Kang and J. M. Hebert, Signaling pathways in reactive astrocytes, a genetic perspective, Mol Neurobiol, vol.43, pp.147-154, 2011.

H. Keren-shaul, A. Spinrad, A. Weiner, O. Matcovitch-natan, R. Dvir-szternfeld et al., A unique microglia type associated with restricting development of Alzheimer's disease, Cell, vol.169, pp.1276-1290, 2017.

N. J. Kershaw, J. M. Murphy, N. P. Liau, L. N. Varghese, A. Laktyushin et al., SOCS3 binds specific receptor-JAK complexes to control cytokine signaling by direct kinase inhibition, Nat Struct Mol Biol, vol.20, pp.469-476, 2013.

D. Kim, S. H. Kim, S. H. Cho, K. Shin, and S. Kim, SOCS3 suppresses the expression of IL-4 cytokine by inhibiting the phosphorylation of c-Jun through the ERK signaling pathway in rat mast cell line RBL-2H3, Mol Immunol, vol.48, pp.776-781, 2011.

M. Koistinaho, S. Lin, X. Wu, M. Esterman, D. Koger et al., Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides, Nat Med, vol.10, pp.719-726, 2004.

A. W. Kraft, X. Hu, H. Yoon, P. Yan, Q. Xiao et al., Attenuating astrocyte activation accelerates plaque pathogenesis in APP/PS1 mice, FASEB J, vol.27, pp.187-198, 2013.

M. Krauthausen, M. P. Kummer, J. Zimmermann, E. Reyes-irisarri, D. Terwel et al., CXCR3 promotes plaque formation and behavioral deficits in an Alzheimer's disease model, J Clin Invest, vol.125, pp.365-378, 2015.

P. Langfelder and S. Horvath, WGCNA: an R package for weighted correlation network analysis, BMC Bioinform, vol.9, p.559, 2008.

M. D. Lecomte, I. S. Shimada, C. Sherwin, and J. L. Spees, Notch1-STAT3-ETBR signaling axis controls reactive astrocyte proliferation after brain injury, Proc Natl Acad Sci U S A, vol.112, pp.8726-8731, 2015.

C. Y. Lee and G. E. Landreth, The role of microglia in amyloid clearance from the AD brain, J Neural Transm, vol.117, pp.949-960, 2010.

Y. Lee, A. Messing, M. Su, and M. Brenner, GFAP promoter elements required for region-specific and astrocyte-specific expression, Glia, vol.56, pp.481-493, 2008.

H. Lian, A. Litvinchuk, A. C. Chiang, N. Aithmitti, J. L. Jankowsky et al., Astrocyte-microglia cross talk through complement activation modulates amyloid pathology in mouse models of Alzheimer's disease, J Neurosci, vol.36, pp.577-589, 2016.

H. Lian, L. Yang, A. Cole, L. Sun, A. C. Chiang et al., NFkappaBactivated Astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer's disease, Neuron, vol.85, pp.101-115, 2015.

M. C. Liao, C. R. Muratore, T. M. Gierahn, S. E. Sullivan, P. Srikanth et al., Single-cell detection of secreted Abeta and sAPPalpha from human IPSC-derived neurons and astrocytes, J Neurosci, vol.36, pp.1730-1746, 2016.

S. A. Liddelow and B. A. Barres, Reactive astrocytes: production, function, and therapeutic potential, Immunity, vol.46, pp.957-967, 2017.

S. A. Liddelow, K. A. Guttenplan, L. E. Clarke, F. C. Bennett, C. J. Bohlen et al., Neurotoxic reactive astrocytes are induced by activated microglia, Nature, vol.541, pp.481-487, 2017.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, p.550, 2014.

C. Marchetti and H. Marie, Hippocampal synaptic plasticity in Alzheimer's disease: what have we learned so far from transgenic models?, Rev Neurosci, vol.22, pp.373-402, 2011.

E. Masliah, M. Alford, R. Deteresa, M. Mallory, and L. Hansen, Deficient glutamate transport is associated with neurodegeneration in Alzheimer's disease, Ann Neurol, vol.40, pp.759-766, 1996.

T. Maviel, T. P. Durkin, F. Menzaghi, and B. Bontempi, Sites of neocortical reorganization critical for remote spatial memory, Science, vol.305, pp.96-99, 2004.

M. J. Mcmanus, M. P. Murphy, and J. L. Franklin, The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer's disease, J Neurosci, vol.31, pp.15703-15715, 2011.

C. Mertens and J. E. Darnell, SnapShot: JAK-STAT signaling, Cell, vol.131, p.612, 2007.

Y. M. Morizawa, Y. Hirayama, N. Ohno, S. Shibata, E. Shigetomi et al., Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway, Nat Commun, vol.8, p.28, 2017.

R. G. Morris, P. Garrud, J. N. Rawlins, and J. O'keefe, Place navigation impaired in rats with hippocampal lesions, Nature, vol.297, pp.681-683, 1982.

L. Noli, A. Capalbo, C. Ogilvie, Y. Khalaf, and D. Ilic, Discordant growth of monozygotic twins starts at the blastocyst stage: a case study, Stem Cell Reports, vol.5, pp.946-953, 2015.

J. P. O'callaghan, K. A. Kelly, R. L. Vangilder, M. V. Sofroniew, and D. B. Miller, Early activation of STAT3 regulates reactive astrogliosis induced by diverse forms of neurotoxicity, PLoS One, vol.9, 2014.

S. Oddo, A. Caccamo, J. D. Shepherd, M. P. Murphy, T. E. Golde et al., Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Abeta and synaptic dysfunction, Neuron, vol.39, p.0896627303004343, 2003.

P. Oeckl, M. Lattke, T. Wirth, B. Baumann, and B. Ferger, Astrocyte-specific IKK2 activation in mice is sufficient to induce neuroinflammation but does not increase susceptibility to MPTP, Neurobiol Dis, vol.48, pp.481-487, 2012.

S. Okada, M. Nakamura, H. Katoh, T. Miyao, T. Shimazaki et al., Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury, Nat Med, vol.12, pp.829-834, 2006.

M. Orre, W. Kamphuis, L. M. Osborn, A. H. Jansen, L. Kooijman et al., Isolation of glia from Alzheimer's mice reveals inflammation and dysfunction, Neurobiol Aging, vol.35, pp.2746-2760, 2014.

L. M. Osborn, W. Kamphuis, W. J. Wadman, and E. M. Hol, Astrogliosis: an integral player in the pathogenesis of Alzheimer's disease, Prog Neurobiol, vol.144, pp.121-141, 2016.

A. Panatier, D. T. Theodosis, J. P. Mothet, B. Touquet, L. Pollegioni et al., Glia-derived D-serine controls NMDA receptor activity and synaptic memory, Cell, vol.125, pp.775-784, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00078312

A. Panatier, J. Vallee, M. Haber, K. K. Murai, J. C. Lacaille et al., Astrocytes are endogenous regulators of basal transmission at central synapses, Cell, vol.146, issue.11, pp.820-828, 2011.

T. Papouin, J. M. Dunphy, M. Tolman, K. T. Dineley, and P. G. Haydon, Septal cholinergic Neuromodulation tunes the astrocyte-dependent gating of hippocampal NMDA receptors to wakefulness, Neuron, vol.94, pp.840-854, 2017.

M. Pekny, M. Pekna, A. Messing, C. Steinhauser, J. M. Lee et al., Astrocytes: a central element in neurological diseases, Acta Neuropathol, 2015.

N. Priego, L. Zhu, C. Monteiro, M. Mulders, D. Wasilewski et al., STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis, Nat Med, 2018.

L. M. Robin, J. F. Oliveira-da-cruz, V. C. Langlais, M. Martin-fernandez, M. Metna-laurent et al., Astroglial CB1 receptors determine synaptic D-serine availability to enable recognition memory, Neuron, vol.98, pp.935-944, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01930790

V. Rothhammer, D. M. Borucki, E. C. Tjon, M. C. Takenaka, C. C. Chao et al., Microglial control of astrocytes in response to microbial metabolites, Nature, vol.557, pp.724-728, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01881130

V. Rothhammer, I. D. Mascanfroni, L. Bunse, M. C. Takenaka, J. E. Kenison et al., Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor, Nat Med, vol.22, pp.586-597, 2016.

H. Sancheti, I. Patil, K. Kanamori, R. Diaz-brinton, W. Zhang et al., Hypermetabolic state in the 7-month-old triple transgenic mouse model of Alzheimer's disease and the effect of lipoic acid: a 13C-NMR study, J Cereb Blood Flow Metab, vol.34, pp.1749-1760, 2014.

S. Sekar, J. Mcdonald, L. Cuyugan, J. Aldrich, A. Kurdoglu et al., Alzheimer's disease is associated with altered expression of genes involved in immune response and mitochondrial processes in astrocytes, Neurobiol Aging, vol.36, pp.583-591, 2015.

D. J. Selkoe, Alzheimer's disease is a synaptic failure, Science, vol.298, pp.789-791, 2002.

K. Sharma, S. Schmitt, C. G. Bergner, S. Tyanova, N. Kannaiyan et al., Cell type-and brain region-resolved mouse brain proteome, Nat Neurosci, vol.18, pp.1819-1831, 2015.

Y. Shi, K. Yamada, S. A. Liddelow, S. T. Smith, L. Zhao et al., ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy, Nature, vol.549, pp.523-527, 2017.

P. Sompol, J. L. Furman, M. M. Pleiss, S. D. Kraner, I. A. Artiushin et al., Calcineurin/NFAT signaling in activated astrocytes drives network Hyperexcitability in Abeta-bearing mice, J Neurosci, vol.37, pp.6132-6148, 2017.

A. H. Stephan, B. A. Barres, and B. Stevens, The complement system: an unexpected role in synaptic pruning during development and disease, 2012.

, Annu Rev Neurosci, vol.35, pp.369-389

D. R. Thal, W. Hartig, and R. Schober, Diffuse plaques in the molecular layer show intracellular a beta(8-17)-immunoreactive deposits in subpial astrocytes, Clin Neuropathol, vol.18, pp.226-231, 1999.

G. E. Tyzack, C. E. Hall, C. R. Sibley, T. Cymes, S. Forostyak et al., A neuroprotective astrocyte state is induced by neuronal signal EphB1 but fails in ALS models, Nat Commun, vol.8, p.1164, 2017.

J. Wan, A. K. Fu, F. C. Ip, H. K. Ng, J. Hugon et al., Tyk2/STAT3 signaling mediates beta-amyloid-induced neuronal cell death: implications in Alzheimer's disease, J Neurosci, vol.30, pp.6873-6881, 2010.

T. Wyss-coray, J. D. Loike, T. C. Brionne, E. Lu, R. Anankov et al., Adult mouse astrocytes degrade amyloid-beta in vitro and in situ, Nat Med, vol.9, pp.453-457, 2003.

B. Ye, H. Shen, J. Zhang, Y. G. Zhu, B. R. Ransom et al., Dual pathways mediate beta-amyloid stimulated glutathione release from astrocytes, Glia, vol.63, pp.2208-2219, 2015.

S. P. Yun, T. I. Kam, N. Panicker, S. Kim, Y. Oh et al., Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson's disease, Nat Med, 2018.

J. L. Zamanian, L. Xu, L. C. Foo, N. Nouri, L. Zhou et al., Genomic analysis of reactive astrogliosis, J Neurosci, vol.32, pp.6391-6410, 2012.

, References 214

,

. *-correspondence-to:-c.-escartin, . Umr9199, B. Mircen, and . 61, E-mail addresses, vol.18, 92260.

, amyotrophic lateral sclerosis; CNS, central nervous system, ALS

, CNTF, ciliary neurotrophic factor; Cx43

, DN, dominant negative; EGF, epidermal growth factor; ETC, electron transport chain

, GFAP

H. &. Hd and . Disease,

H. Hdac and . Deacetylase,

. Il, J. Jak, and . Kinase,

K. Ko and . Out, , vol.2

L. Lps,

, MAPK, mitogen-activated protein kinase

, MCAO, middle cerebral artery occlusion

. Mmp,

, MPTP, 1-methyl-4-phenyl-1,2,3, p.6

, MS, multiple sclerosis; mSTAT3, mitochondrial STAT3

. Mnsod,

N. Nd and . Diseases, NF-jB, nuclear factor kappa-lightchain-enhancer of activated B cells

P. Pd, 's disease; PIAS, protein inhibitor of activated STAT

. Pkr,

, PTM, posttranslational modifications

, ROS, reactive oxygen species; SCI, spinal cord injury

. Ser, S. Shh, and . Hedgehog,

, SOCS, suppressor of cytokine signaling

, SRE, STAT3-responsive element; STAT, signal transducer and activator of transcription

, TBI, traumatic brain injury

, TSP1, p.1

. Tyr and . Ucp, Neuroscience, vol.330, pp.205-218, 2016.

L. Acarin, B. Gonzalez, and B. Castellano, STAT3 and NFkappaB activation precedes glial reactivity in the excitotoxically injured young cortex but not in the corresponding distal thalamic nuclei, J Neuropathol Exp Neurol, vol.59, pp.151-163, 2000.

S. Akira, Y. Nishio, M. Inoue, X. J. Wang, S. Wei et al., Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway, Cell, vol.77, pp.63-71, 1994.

M. A. Anderson, J. E. Burda, Y. Ren, Y. Ao, O. Shea et al., Astrocyte scar formation aids central nervous system axon regeneration, Nature, 2016.

J. J. Babon, L. N. Varghese, and N. A. Nicola, Inhibition of IL-6 family cytokines by SOCS3, Semin Immunol, vol.26, pp.13-19, 2014.

S. Bardehle, M. Kruger, F. Buggenthin, J. Schwausch, J. Ninkovic et al., Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation, Nat Neurosci, vol.16, pp.580-586, 2013.

B. Haim, L. Carrillo-de-sauvage, M. A. Ceyzeriat, K. Escartin, and C. , Elusive roles for reactive astrocytes in neurodegenerative diseases, Front Cell Neurosci, vol.9, p.278, 2015.
URL : https://hal.archives-ouvertes.fr/cea-02142599

B. Haim, L. Ceyzeriat, K. Carrillo-de-sauvage, M. A. , A. F. Auregan et al., The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer's and Huntington's diseases, J Neurosci, vol.35, pp.2817-2829, 2015.

K. Boengler, D. Hilfiker-kleiner, G. Heusch, and R. Schulz, Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion, Basic Res Cardiol, vol.105, pp.771-785, 2010.

A. Bonni, Y. Sun, M. Nadal-vicens, A. Bhatt, D. A. Frank et al., Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway, Science, vol.278, pp.477-483, 1997.

D. A. Braun, M. Fribourg, and S. C. Sealfon, Cytokine response is determined by duration of receptor and signal transducers and activators of transcription 3 (STAT3) activation, J Biol Chem, vol.288, pp.2986-2993, 2013.

J. F. Bromberg, M. H. Wrzeszczynska, G. Devgan, Y. Zhao, R. G. Pestell et al., Stat3 as an oncogene, vol.98, pp.295-303, 1999.

A. J. Brooks, W. Dai, M. L. O'mara, D. Abankwa, Y. Chhabra et al., Mechanism of activation of protein kinase JAK2 by the growth hormone receptor, Science, vol.344, p.1249783, 2014.

A. Buffo, C. Rolando, and S. Ceruti, Astrocytes in the damaged brain: molecular and cellular insights into their reactive response and healing potential, Biochem Pharmacol, vol.79, pp.77-89, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00535828

J. E. Burda and M. V. Sofroniew, Reactive gliosis and the multicellular response to CNS damage and disease, Neuron, vol.81, pp.229-248, 2014.

Y. Chen, R. Wu, H. Z. Chen, X. Q. Wang, W. J. He et al., Enhancement of hypothalamic STAT3 acetylation by nuclear receptor Nur77 dictates leptin sensitivity, Diabetes, vol.64, pp.2069-2081, 2015.

T. Chiba, M. Yamada, J. Sasabe, K. Terashita, M. Shimoda et al., Amyloid-beta causes memory impairment by disturbing the JAK2/STAT3 axis in hippocampal neurons, Mol Psychiatry, vol.14, pp.206-222, 2009.

A. M. Choi, S. W. Ryter, and B. Levine, Autophagy in human health and disease, N Engl J Med, vol.368, pp.1845-1846, 2013.

J. S. Choi, S. Y. Kim, J. H. Cha, Y. S. Choi, K. W. Sung et al., Upregulation of gp130 and STAT3 activation in the rat hippocampus following transient forebrain ischemia, Glia, vol.41, pp.237-246, 2003.

J. S. Choi, S. Y. Kim, H. J. Park, J. H. Cha, Y. S. Choi et al., Upregulation of gp130 and differential activation of STAT and p42/44 MAPK in the rat hippocampus following kainic acid-induced seizures, Brain Res Mol Brain Res, vol.119, pp.10-18, 2003.

C. D. Chung, J. Liao, B. Liu, X. Rao, P. Jay et al., Specific inhibition of Stat3 signal transduction by PIAS3, Science, vol.278, pp.1803-1805, 1997.

K. J. Colodner and M. B. Feany, Glial fibrillary tangles and JAK/STATmediated glial and neuronal cell death in a Drosophila model of glial tauopathy, J Neurosci, vol.30, pp.16102-16113, 2010.

D. Cruz, S. Cleveland, and D. W. , Disrupted nuclear import-export in neurodegeneration, Cell Biology, vol.351, pp.125-126, 2016.

D. Jr and J. E. , STATs and gene regulation, Science, vol.277, pp.1630-1635, 1997.

D. Jr, J. E. Kerr, I. M. Stark, and G. R. , Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins, Science, vol.264, pp.1415-1421, 1994.

M. Dasgupta, J. K. Dermawan, B. Willard, and G. R. Stark, STAT3-driven transcription depends upon the dimethylation of K49 by EZH2, Proc Natl Acad Sci, vol.112, pp.3985-3990, 2015.

N. De-la-iglesia, S. V. Puram, and A. Bonni, STAT3 regulation of glioblastoma pathogenesis, Curr Mol Med, vol.9, pp.580-590, 2009.

T. Decker and P. Kovarik, Serine phosphorylation of STATs, Oncogene, vol.19, pp.2628-2637, 2000.

M. Demaria, C. Giorgi, M. Lebiedzinska, G. Esposito, D. 'angeli et al., A STAT3-mediated metabolic switch is involved in tumour transformation and STAT3 addiction, Aging, vol.2, pp.823-842, 2010.

L. Dimou and M. Gotz, Glial cells as progenitors and stem cells: new roles in the healthy and diseased brain, Physiol Rev, vol.94, pp.709-737, 2014.

J. Doherty, A. E. Sheehan, R. Bradshaw, A. N. Fox, T. Y. Lu et al., signaling and Stat92E converge to modulate glial responsiveness to axonal injury, PLoS Biol, vol.12, p.1001985, 2014.

R. J. Duhe, Redox regulation of Janus kinase: the elephant in the room, Jak-Stat, vol.2, p.26141, 2013.

M. Ernst and B. J. Jenkins, Acquiring signalling specificity from the cytokine receptor gp130, Trends Genet, vol.20, pp.23-32, 2004.

C. Escartin, E. Brouillet, P. Gubellini, Y. Trioulier, C. Jacquard et al., Ciliary neurotrophic factor activates astrocytes, redistributes their glutamate transporters GLAST and GLT-1 to raft microdomains, and improves glutamate handling in vivo, J Neurosci, vol.26, pp.5978-5989, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00088896

M. Eufemi, R. Cocchiola, D. Romaniello, V. Correani, D. Francesco et al., Acetylation and phosphorylation of STAT3 are involved in the responsiveness of microglia to beta amyloid, Neurochem Int, vol.81, pp.48-56, 2015.

R. Eulenfeld, A. Dittrich, C. Khouri, P. J. Muller, B. Mutze et al., Interleukin-6 signalling: more than Jaks and STATs, Eur J Cell Biol, vol.91, pp.486-495, 2012.

K. Gabel, N. L. Bednorz, P. Klemmt, V. Vafaizadeh, C. Borghouts et al., Visualization of Stat3 and Stat5 transactivation activity with specific response element dependent reporter constructs integrated into lentiviral gene transfer vectors, Horm Mol Biol Clin Investig, vol.1, pp.127-137, 2010.

S. P. Gao and J. F. Bromberg, Touched and moved by STAT3. Science's STKE, 2006.

L. Gautron, P. Lafon, M. Chaigniau, G. Tramu, and S. Laye, Spatiotemporal analysis of signal transducer and activator of transcription 3 activation in rat brain astrocytes and pituitary following peripheral immune challenge, Neuroscience, vol.112, pp.717-729, 2002.

C. Giaume, A. Koulakoff, L. Roux, D. Holcman, and N. Rouach, Astroglial networks: a step further in neuroglial and gliovascular interactions, Nat Rev Neurosci, vol.11, pp.87-99, 2010.

Y. Gu, M. He, X. Zhou, J. Liu, N. Hou et al., Endogenous IL-6 of mesenchymal stem cell improves behavioral outcome of hypoxic-ischemic brain damage neonatal rats by supressing apoptosis in astrocyte, Sci Rep, vol.6, p.18587, 2016.

Z. Guo, H. Jiang, X. Xu, W. Duan, and M. P. Mattson, Leptin-mediated cell survival signaling in hippocampal neurons mediated by JAK STAT3 and mitochondrial stabilization, J Biol Chem, vol.283, pp.1754-1763, 2008.

F. He, W. Ge, K. Martinowich, S. Becker-catania, V. Coskun et al., A positive autoregulatory loop of Jak-STAT signaling controls the onset of astrogliogenesis, Nat Neurosci, vol.8, pp.616-625, 2005.

P. C. Heinrich, I. Behrmann, S. Haan, H. M. Hermanns, G. Muller-newen et al., Principles of interleukin (IL)-6-type cytokine signalling and its regulation, Biochem J, vol.374, pp.1-20, 2003.

J. E. Herrmann, T. Imura, B. Song, J. Qi, Y. Ao et al., STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury, J Neurosci, vol.28, pp.7231-7243, 2008.

E. M. Hol and M. Pekny, Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system, Curr Opin Cell Biol, vol.32, pp.121-130, 2015.

M. Hristova, E. Rocha-ferreira, X. Fontana, L. Thei, R. Buckle et al., Inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) reduces neonatal hypoxic-ischaemic brain damage, J Neurochem, vol.136, pp.981-994, 2016.

C. C. Hung, C. H. Lin, H. Chang, C. Y. Wang, S. H. Lin et al., Astrocytic GAP43 Induced by the TLR4/NF-kappaB/STAT3 Axis Attenuates Astrogliosis-Mediated Microglial Activation and Neurotoxicity, J Neurosci, vol.36, pp.2027-2043, 2016.

A. P. Hutchins, D. Diez, Y. Takahashi, S. Ahmad, R. Jauch et al., Distinct transcriptional regulatory modules underlie STAT3's cell type-independent and cell typespecific functions, Nucleic Acids Res, vol.41, pp.2155-2170, 2013.

L. Icardi, R. Mori, V. Gesellchen, S. Eyckerman, D. Cauwer et al., The Sin3a repressor complex is a master regulator of STAT transcriptional activity, Proc Natl Acad Sci, vol.109, pp.12058-12063, 2012.

R. S. Ignarro, A. S. Vieira, C. R. Sartori, F. Langone, F. Rogerio et al., JAK2 inhibition is neuroprotective and reduces astrogliosis after quinolinic acid striatal lesion in adult mice, J Chem Neuroanat, vol.48, pp.14-22, 2013.

M. K. Jha, S. Lee, D. H. Park, H. Kook, K. G. Park et al., Diverse functional roles of lipocalin-2 in the central nervous system, Neurosci Biobehav Rev, vol.49, pp.135-156, 2015.

J. E. Jung, G. S. Kim, P. Narasimhan, Y. S. Song, and P. H. Chan, Regulation of Mn-superoxide dismutase activity and neuroprotection by STAT3 in mice after cerebral ischemia, J Neurosci, vol.29, pp.7003-7014, 2009.

C. Justicia, C. Gabriel, and A. M. Planas, Activation of the JAK/STAT pathway following transient focal cerebral ischemia: signaling through Jak1 and Stat3 in astrocytes, Glia, vol.30, pp.253-270, 2000.

S. Kamakura, K. Oishi, T. Yoshimatsu, M. Nakafuku, N. Masuyama et al., Hes binding to STAT3 mediates crosstalk between Notch and JAK-STAT signalling, Nat Cell Biol, vol.6, pp.547-554, 2004.

W. Kang and J. M. Hebert, Signaling pathways in reactive astrocytes, a genetic perspective, Mol Neurobiol, vol.43, pp.147-154, 2011.

R. Kanski, M. E. Van-strien, P. Van-tijn, and E. M. Hol, A star is born: new insights into the mechanism of astrogenesis, Cell Mol Life Sci, vol.71, pp.433-447, 2014.

N. J. Kershaw, J. M. Murphy, N. P. Liau, L. N. Varghese, A. Laktyushin et al., SOCS3 binds specific receptor-JAK complexes to control cytokine signaling by direct kinase inhibition, Nat Struct Mol Biol, vol.20, pp.469-476, 2013.

E. Kim, M. Kim, D. H. Woo, Y. Shin, J. Shin et al., Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells, Cancer Cell, vol.23, pp.839-852, 2013.

Y. H. Kim, J. I. Chung, H. G. Woo, Y. S. Jung, S. H. Lee et al., Differential regulation of proliferation and differentiation in neural precursor cells by the Jak pathway, Stem Cells, vol.28, pp.1816-1828, 2010.

Y. Kohro, E. Sakaguchi, R. Tashima, H. Tozaki-saitoh, H. Okano et al., A new minimally-invasive method for microinjection into the mouse spinal dorsal horn, Sci Rep, vol.5, p.14306, 2015.

A. K. Kretzschmar, M. C. Dinger, C. Henze, K. Brocke-heidrich, and F. Horn, Analysis of Stat3 (signal transducer and activator of transcription 3) dimerization by fluorescence resonance energy transfer in living cells, Biochem J, vol.377, pp.289-297, 2004.

D. W. Lapp, S. S. Zhang, and C. J. Barnstable, Stat3 mediates LIFinduced protection of astrocytes against toxic ROS by upregulating the UPC2 mRNA pool, Glia, vol.62, pp.159-170, 2014.

M. D. Lecomte, I. S. Shimada, C. Sherwin, and J. L. Spees, Notch1-STAT3-ETBR signaling axis controls reactive astrocyte proliferation after brain injury, Proc Natl Acad Sci, vol.112, pp.8726-8731, 2015.

M. A. Lemmon, D. M. Freed, J. Schlessinger, and A. Kiyatkin, The dark side of cell signaling: positive roles for negative regulators, Cell, vol.164, pp.1172-1184, 2016.

J. Levine, E. Kwon, P. Paez, W. Yan, G. Czerwieniec et al., Traumatically injured astrocytes release a proteomic signature modulated by STAT3-dependent cell survival, Glia, 2015.

L. Li and P. E. Shaw, Elevated activity of STAT3C due to higher DNA binding affinity of phosphotyrosine dimer rather than covalent dimer formation, J Biol Chem, vol.281, pp.33172-33181, 2006.

W. X. Li, Canonical and non-canonical JAK-STAT signaling, Trends Cell Biol, vol.18, pp.545-551, 2008.

C. P. Lim and X. Cao, Structure, function, and regulation of STAT proteins, Mol BioSyst, vol.2, pp.536-550, 2006.

M. T. Lin and M. F. Beal, Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases, Nature, vol.443, pp.787-795, 2006.

E. M. Linossi and S. E. Nicholson, Kinase inhibition, competitive binding and proteasomal degradation: resolving the molecular function of the suppressor of cytokine signaling (SOCS) proteins, Immunol Rev, vol.266, pp.123-133, 2015.

X. Liu, Y. Tian, N. Lu, T. Gin, C. H. Cheng et al., Stat3 inhibition attenuates mechanical allodynia through transcriptional regulation of chemokine expression in spinal astrocytes, PLoS One, vol.8, p.75804, 2013.

J. Q. Lu, C. Power, G. Blevins, F. Giuliani, and V. W. Yong, The regulation of reactive changes around multiple sclerosis lesions by phosphorylated signal transducer and activator of transcription, J Neuropathol Exp Neurol, vol.72, pp.1135-1144, 2013.

T. Matsuda, R. Muromoto, Y. Sekine, S. Togi, Y. Kitai et al., Signal transducer and activator of transcription 3 regulation by novel binding partners, World J Biol Chem, vol.6, pp.324-332, 2015.

C. Mertens, D. Jr, and J. E. , SnapShot: JAK-STAT signaling, Cell, vol.131, p.612, 2007.

N. Meydan, T. Grunberger, H. Dadi, M. Shahar, E. Arpaia et al., Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor, Nature, vol.379, pp.645-648, 1996.

A. Mohr, N. Chatain, T. Domoszlai, N. Rinis, M. Sommerauer et al., Dynamics and non-canonical aspects of JAK/STAT signalling, Eur J Cell Biol, vol.91, pp.524-532, 2012.

G. Monteiro-de-castro, N. A. Deja, D. Ma, C. Zhao, and R. J. Franklin, Astrocyte activation via Stat3 signaling determines the balance of oligodendrocyte versus schwann cell remyelination, Am J Pathol, vol.185, pp.2431-2440, 2015.

D. L. Moore and J. L. Goldberg, Multiple transcription factor families regulate axon growth and regeneration, Dev Neurobiol, vol.71, pp.1186-1211, 2011.

S. Moravcova, K. Cervena, D. Pacesova, and Z. Bendova, Identification of STAT3 and STAT5 proteins in the rat suprachiasmatic nucleus and the day/night difference in astrocytic STAT3 phosphorylation in response to lipopolysaccharide, J Neurosci Res, vol.94, pp.99-108, 2016.

Y. J. Na, J. K. Jin, J. I. Kim, E. K. Choi, R. I. Carp et al., JAK-STAT signaling pathway mediates astrogliosis in brains of scrapieinfected mice, J Neurochem, vol.103, pp.637-649, 2007.

K. Nakajima, Y. Yamanaka, K. Nakae, H. Kojima, M. Ichiba et al., , 1996.

, Stat3 in IL-6-induced regulation of growth and differentiation in M1 leukemia cells, EMBO J, vol.15, pp.3651-3658

K. Nakashima, M. Yanagisawa, H. Arakawa, N. Kimura, T. Hisatsune et al., Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300, Science, vol.284, pp.479-482, 1999.

A. Negre-salvayre, C. Hirtz, G. Carrera, R. Cazenave, M. Troly et al., A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation, FASEB J, vol.11, pp.809-815, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00393579

D. C. Ng, B. H. Lin, C. P. Lim, G. Huang, T. Zhang et al., Stat3 Biol, vol.172, pp.245-257, 2006.

C. S. Nicolas, S. Peineau, M. Amici, Z. Csaba, A. Fafouri et al., The Jak/STAT pathway is involved in synaptic plasticity, Neuron, vol.73, pp.374-390, 2012.

H. Nobuta, C. A. Ghiani, P. M. Paez, V. Spreuer, H. Dong et al., STAT3-mediated astrogliosis protects myelin development in neonatal brain injury, Ann Neurol, vol.72, pp.750-765, 2012.

J. P. O'callaghan, K. A. Kelly, R. L. Vangilder, M. V. Sofroniew, and D. B. Miller, Early activation of STAT3 regulates reactive astrogliosis induced by diverse forms of neurotoxicity, PLoS One, vol.9, p.102003, 2014.

J. P. O'callaghan and K. Sriram, Focused microwave irradiation of the brain preserves in vivo protein phosphorylation: comparison with other methods of sacrifice and analysis of multiple phosphoproteins, J Neurosci Methods, vol.135, pp.159-168, 2004.

J. J. O'shea, S. M. Holland, and L. M. Staudt, JAKs and STATs in immunity, immunodeficiency, and cancer, N Engl J Med, vol.368, pp.161-170, 2013.

A. Oeckinghaus, M. S. Hayden, and S. Ghosh, Crosstalk in NF-kappaB signaling pathways, Nat Immunol, vol.12, pp.695-708, 2011.

S. Okada, M. Nakamura, H. Katoh, T. Miyao, T. Shimazaki et al., Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury, Nat Med, vol.12, pp.829-834, 2006.

A. A. Oliva, Y. Kang, J. Sanchez-molano, C. Furones, and C. M. Atkins, STAT3 signaling after traumatic brain injury, J Neurochem, vol.120, pp.710-720, 2012.

M. A. Ozog, S. M. Bernier, D. C. Bates, B. Chatterjee, C. W. Lo et al., The complex of ciliary neurotrophic factor-ciliary neurotrophic factor receptor alpha up-regulates connexin43 and intercellular coupling in astrocytes via the Janus tyrosine kinase/ signal transducer and activator of transcription pathway, Mol Biol Cell, vol.15, pp.4761-4774, 2004.

V. Parpura, M. T. Heneka, V. Montana, S. H. Oliet, A. Schousboe et al., Glial cells in (patho)physiology, J Neurochem, vol.121, pp.4-27, 2012.

M. Pekny and M. Pekna, Astrocyte reactivity and reactive astrogliosis: costs and benefits, Physiol Rev, vol.94, pp.1077-1098, 2014.

M. Pekny, M. Pekna, A. Messing, C. Steinhauser, J. M. Lee et al., Astrocytes: a central element in neurological diseases, Acta Neuropathol, vol.131, pp.323-345, 2016.

F. W. Pfrieger and M. Slezak, Genetic approaches to study glial cells in the rodent brain, Glia, vol.60, pp.681-701, 2012.

M. Raymond, P. Li, J. M. Mangin, M. Huntsman, and V. Gallo, Chronic perinatal hypoxia reduces glutamate-aspartate transporter function in astrocytes through the Janus kinase/signal transducer and activator of transcription pathway, J Neurosci, vol.31, pp.17864-17871, 2011.

N. C. Reich and L. Liu, Tracking STAT nuclear traffic, Nat Rev Immunol, vol.6, pp.602-612, 2006.

T. A. Sarafian, C. Montes, T. Imura, J. Qi, G. Coppola et al., Disruption of astrocyte STAT3 signaling decreases mitochondrial function and increases oxidative stress in vitro, PLoS One, vol.5, p.9532, 2010.

K. O. Schubert, T. Naumann, O. Schnell, Q. Zhi, A. Steup et al., Activation of STAT3 signaling in axotomized neurons and reactive astrocytes after fimbria-fornix transection, Exp Brain Res, vol.165, pp.520-531, 2005.

J. Schust, B. Sperl, A. Hollis, T. U. Mayer, and T. Berg, Stattic: a smallmolecule inhibitor of STAT3 activation and dimerization, Chem Biol, vol.13, pp.1235-1242, 2006.

B. T. Selvaraj, N. Frank, F. L. Bender, E. Asan, and M. Sendtner, Local axonal function of STAT3 rescues axon degeneration in the pmn model of motoneuron disease, J Cell Biol, vol.199, pp.437-451, 2012.

S. Shen, M. Niso-santano, S. Adjemian, T. Takehara, S. A. Malik et al., Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity, vol.48, pp.667-680, 2012.

N. Shibata, A. Kakita, H. Takahashi, Y. Ihara, K. Nobukuni et al., Activation of signal transducer and activator of transcription-3 in the spinal cord of sporadic amyotrophic lateral sclerosis patients, Neuro-degenerat Dis, vol.6, pp.118-126, 2009.

N. Shibata, T. Yamamoto, A. Hiroi, Y. Omi, Y. Kato et al., Activation of STAT3 and inhibitory effects of pioglitazone on STAT3 activity in a mouse model of SOD1-mutated amyotrophic lateral sclerosis, Neuropathology: official journal of the Japanese Society of. Neuropathology, vol.30, pp.353-360, 2010.

M. Shiratori-hayashi, K. Koga, H. Tozaki-saitoh, Y. Kohro, H. Toyonaga et al., STAT3-dependent reactive astrogliosis in the spinal dorsal horn underlies chronic itch, Nat Med, vol.21, pp.927-931, 2015.

K. Shuai, A. Ziemiecki, A. F. Wilks, A. G. Harpur, H. B. Sadowski et al., Polypeptide signalling to the nucleus through tyrosine phosphorylation of Jak and Stat proteins, Nature, vol.366, pp.580-583, 1993.

S. Sirko, G. Behrendt, P. A. Johansson, P. Tripathi, M. Costa et al., Reactive glia in the injured brain acquire stem cell properties in response to sonic hedgehog, 2013.

, Cell Stem Cell, vol.12, pp.426-439

M. V. Sofroniew, Molecular dissection of reactive astrogliosis and glial scar formation, Trends Neurosci, vol.32, pp.638-647, 2009.

M. R. Song and A. Ghosh, FGF2-induced chromatin remodeling regulates CNTF-mediated gene expression and astrocyte differentiation, Nat Neurosci, vol.7, pp.229-235, 2004.

K. Sriram, S. A. Benkovic, M. A. Hebert, D. B. Miller, O. 'callaghan et al., Induction of gp130-related cytokines and activation of JAK2/ STAT3 pathway in astrocytes precedes up-regulation of glial fibrillary acidic protein in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of neurodegeneration: key signaling pathway for astrogliosis in vivo, J Biol Chem, vol.279, pp.19936-19947, 2004.

G. R. Stark, D. Jr, and J. E. , The JAK-STAT pathway at twenty, Immunity, vol.36, pp.503-514, 2012.

K. Szczepanek, E. J. Lesnefsky, and A. C. Larner, Multi-tasking: nuclear transcription factors with novel roles in the mitochondria, Trends Cell Biol, vol.22, pp.429-437, 2012.

T. Takizawa, K. Nakashima, M. Namihira, W. Ochiai, A. Uemura et al., DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain, Dev. Cell, vol.1, pp.749-758, 2001.

M. Tsuda, Y. Kohro, T. Yano, T. Tsujikawa, J. Kitano et al., JAK-STAT3 pathway regulates spinal astrocyte proliferation and neuropathic pain maintenance in rats, Brain, vol.134, pp.1127-1139, 2011.

G. E. Tyzack, S. Sitnikov, D. Barson, K. L. Adams-carr, N. K. Lau et al., Astrocyte response to motor neuron injury promotes structural synaptic plasticity via STAT3-regulated TSP-1 expression, Nat Commun, vol.5, p.4294, 2014.

A. Verkhratsky, L. Steardo, V. Parpura, and V. Montana, Translational potential of astrocytes in brain disorders, Progr Neurobiol, 2015.

J. Wang, G. Li, Z. Wang, X. Zhang, L. Yao et al., High glucose-induced expression of inflammatory cytokines and reactive oxygen species in cultured astrocytes, Neuroscience, vol.202, pp.58-68, 2012.

R. Wang, P. Cherukuri, and J. Luo, Activation of Stat3 sequencespecific DNA binding and transcription by p300/CREB-binding protein-mediated acetylation, J Biol Chem, vol.280, pp.11528-11534, 2005.

I. B. Wanner, M. A. Anderson, B. Song, J. Levine, A. Fernandez et al., Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury, J Neurosci, vol.33, pp.12870-12886, 2013.

K. B. Washburn and J. T. Neary, P2 purinergic receptors signal to STAT3 in astrocytes: Difference in STAT3 responses to P2Y and P2X receptor activation, Neuroscience, vol.142, pp.411-423, 2006.

J. Wegrzyn, R. Potla, Y. J. Chwae, N. B. Sepuri, Q. Zhang et al., Function of mitochondrial Stat3 in cellular respiration, Science, vol.323, pp.793-797, 2009.

Z. Wen, Z. Zhong, D. Jr, and J. E. , Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation, Cell, vol.82, pp.241-250, 1995.

X. G. Xia, H. D. Hofmann, T. Deller, and M. Kirsch, Induction of STAT3 signaling in activated astrocytes and sprouting septal neurons following entorhinal cortex lesion in adult rats, Mol Cell Neurosci, vol.21, pp.379-392, 2002.

Z. Xu, T. Xue, Z. Zhang, X. Wang, P. Xu et al., Role of signal transducer and activator of transcription-3 in up-regulation of GFAP after epilepsy, Neurochem Res, vol.36, pp.2208-2215, 2011.

J. Yang, J. Huang, M. Dasgupta, N. Sears, M. Miyagi et al., Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes, Proc Natl Acad Sci, vol.107, pp.21499-21504, 2010.

J. Yang and G. R. Stark, Roles of unphosphorylated STATs in signaling, Cell Res, vol.18, pp.443-451, 2008.

R. Yang and M. Rincon, Mitochondrial Stat3, the Need for Design Thinking, Int J Biol Sci, vol.12, pp.532-544, 2016.

S. Yeo, S. Bandyopadhyay, A. Messing, and M. Brenner, Transgenic analysis of GFAP promoter elements, Glia, vol.61, pp.1488-1499, 2013.

L. You, Z. Wang, H. Li, J. Shou, Z. Jing et al., The role of STAT3 in autophagy, vol.11, pp.729-739, 2015.

H. Yu, D. Pardoll, and R. Jove, STATs in cancer inflammation and immunity: a leading role for STAT3, Nat Rev Cancer, vol.9, pp.798-809, 2009.

Z. L. Yuan, Y. J. Guan, D. Chatterjee, and Y. E. Chin, Stat3 dimerization regulated by reversible acetylation of a single lysine residue, Science, vol.307, pp.269-273, 2005.

J. L. Zamanian, L. Xu, L. C. Foo, N. Nouri, L. Zhou et al., Genomic analysis of reactive astrogliosis, J Neurosci, vol.32, pp.6391-6410, 2012.

S. Zhang, W. Li, W. Wang, S. S. Zhang, P. Huang et al., Expression and activation of STAT3 in the astrocytes of optic nerve in a rat model of transient intraocular hypertension, PLoS One, vol.8, p.55683, 2013.

Y. Zhang, S. Ni, B. Huang, L. Wang, X. Zhang et al., Overexpression of SCLIP promotes growth and motility in glioblastoma cells, Cancer Biol Ther, vol.16, pp.97-105, 2015.

Z. Zhong, Z. Wen, D. Jr, and J. E. , Stat3 and Stat4: members of the family of signal transducers and activators of transcription, Proc Natl Acad Sci, vol.91, pp.4806-4810, 1994.

Z. Zhong, Z. Wen, D. Jr, and J. E. , Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6, Science, vol.264, pp.95-98, 1994.

S. Zhuang, Regulation of STAT signaling by acetylation, Cell Signal, vol.25, pp.1924-1931, 2013.

N. J. Abbott, L. Ronnback, and E. Hansson, Astrocyte-endothelial interactions at the bloodbrain barrier, Nature Reviews. Neuroscience, vol.7, pp.41-53, 2006.

S. Abounit and C. Zurzolo, Wiring through tunneling nanotubes--from electrical signals to organelle transfer, J. Cell. Sci, vol.125, pp.1089-1098, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00716392

L. Acarin, J. Paris, B. González, and B. Castellano, Glial expression of small heat shock proteins following an excitotoxic lesion in the immature rat brain, Glia, vol.38, pp.1-14, 2002.

A. I. Acuna, M. Esparza, C. Kramm, F. A. Beltran, A. V. Parra et al., A failure in energy metabolism and antioxidant uptake precede symptoms of Huntington's disease in mice, Nature Communications, vol.4, p.2917, 2013.

A. Adamsky, A. Kol, T. Kreisel, A. Doron, N. Ozeri-engelhard et al., Astrocytic Activation Generates De Novo Neuronal Potentiation and Memory Enhancement, Cell, vol.174, pp.59-71, 2018.

I. Allaman, M. Belanger, and P. J. Magistretti, Astrocyte-neuron metabolic relationships: for better and for worse, Trends in Neurosciences, vol.34, pp.76-87, 2011.

N. J. Allen, Astrocyte regulation of synaptic behavior, Annu. Rev. Cell Dev. Biol, vol.30, pp.439-463, 2014.

L. P. De-almeida, C. A. Ross, D. Zala, P. Aebischer, and N. Deglon, Lentiviral-mediated delivery of mutant huntingtin in the striatum of rats induces a selective neuropathology modulated by polyglutamine repeat size, huntingtin expression levels, and protein length, The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, vol.22, pp.3473-3483, 2002.

J. I. Alvarez, T. Katayama, and A. Prat, Glial influence on the blood brain barrier, Glia, vol.61, pp.1939-1958, 2013.

M. A. Anderson, Y. Ao, and M. V. Sofroniew, Heterogeneity of reactive astrocytes, Neuroscience Letters, vol.565, pp.23-29, 2014.

M. A. Anderson, J. E. Burda, Y. Ren, Y. Ao, T. M. O'shea et al., Astrocyte scar formation aids central nervous system axon regeneration, Nature, 2016.

S. E. Andrew, Y. P. Goldberg, B. Kremer, H. Telenius, J. Theilmann et al., The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease, Nat. Genet, vol.4, pp.398-403, 1993.

N. W. Andrews, Regulated secretion of conventional lysosomes, Trends Cell Biol, vol.10, pp.316-321, 2000.

W. L. Andriezen, The Neuroglia Elements in the Human Brain, Br Med J, vol.2, pp.227-230, 1893.

A. Araque, G. Carmignoto, P. G. Haydon, S. H. Oliet, R. Robitaille et al., Gliotransmitters travel in time and space, Neuron, vol.81, pp.728-739, 2014.

J. R. Arndt, M. Chaibva, and J. Legleiter, The emerging role of the first 17 amino acids of huntingtin in Huntington's disease, Biomol Concepts, vol.6, pp.33-46, 2015.

M. Arrasate and S. Finkbeiner, , 2012.

M. Arrasate, S. Mitra, E. S. Schweitzer, M. R. Segal, and S. Finkbeiner, Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death, Nature, vol.431, pp.805-810, 2004.

L. Arregui, J. A. Benitez, L. F. Razgado, P. Vergara, and J. Segovia, Adenoviral astrocytespecific expression of BDNF in the striata of mice transgenic for Huntington's disease delays the onset of the motor phenotype, Cellular and Molecular Neurobiology, vol.31, pp.1229-1243, 2011.

T. Arzberger, K. Krampfl, S. Leimgruber, and A. Weindl, Changes of NMDA receptor subunit (NR1, NR2B) and glutamate transporter (GLT1) mRNA expression in Huntington's disease--an in situ hybridization study, Journal of Neuropathology and Experimental Neurology, vol.56, pp.440-454, 1997.

A. Ast, A. Buntru, F. Schindler, R. Hasenkopf, A. Schulz et al., mHTT Seeding Activity: A Marker of Disease Progression and Neurotoxicity in Models of Huntington's Disease, Mol. Cell, vol.71, pp.675-688, 2018.

G. Atkin and H. Paulson, Ubiquitin pathways in neurodegenerative disease, Front. Mol. Neurosci, vol.7, 2014.

M. Azzouz, S. M. Kingsman, and N. D. Mazarakis, Lentiviral vectors for treating and modeling human CNS disorders, J Gene Med, vol.6, pp.951-962, 2004.

D. T. Babcock and B. Ganetzky, Non-cell autonomous cell death caused by transmission of Huntingtin aggregates in Drosophila, Fly (Austin), vol.9, pp.107-109, 2015.

R. M. Bachoo, R. S. Kim, K. L. Ligon, E. A. Maher, C. Brennan et al., Molecular diversity of astrocytes with implications for neurological disorders, Proc. Natl. Acad. Sci. U.S.A, vol.101, pp.8384-8389, 2004.

A. C. Bachoud-lévi, N. Déglon, J. P. Nguyen, J. Bloch, C. Bourdet et al., Neuroprotective gene therapy for Huntington's disease using a polymer encapsulated BHK cell line engineered to secrete human CNTF, Hum. Gene Ther, vol.11, pp.1723-1729, 2000.

J. J. Bajramovi?, M. Bsibsi, S. B. Geutskens, R. Hassankhan, K. C. Verhulst et al., Differential expression of stress proteins in human adult astrocytes in response to cytokines, J. Neuroimmunol, vol.106, pp.14-22, 2000.

D. J. Baker, D. J. Blackburn, M. Keatinge, D. Sokhi, P. Viskaitis et al., Lysosomal and phagocytic activity is increased in astrocytes during disease progression in the SOD1 (G93A) mouse model of amyotrophic lateral sclerosis, Front Cell Neurosci, vol.9, p.410, 2015.

D. Balchin, M. Hayer-hartl, and F. U. Hartl, In vivo aspects of protein folding and quality control, Science, vol.353, p.4354, 2016.

B. Baldo, A. Weiss, C. N. Parker, M. Bibel, P. Paganetti et al., A screen for enhancers of clearance identifies huntingtin as a heat shock protein 90 (Hsp90) client protein, J. Biol. Chem, vol.287, pp.1406-1414, 2012.

B. W. Balleine, M. Liljeholm, and S. B. Ostlund, The integrative function of the basal ganglia in instrumental conditioning, Behav. Brain Res, vol.199, pp.43-52, 2009.

C. A. Ballinger, P. Connell, Y. Wu, Z. Hu, L. J. Thompson et al., Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions, Mol. Cell. Biol, vol.19, pp.4535-4545, 1999.

U. Bandyopadhyay, S. Kaushik, L. Varticovski, and A. M. Cuervo, The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane, Mol. Cell. Biol, vol.28, pp.5747-5763, 2008.

M. Bañez-coronel, S. Porta, B. Kagerbauer, E. Mateu-huertas, L. Pantano et al., A pathogenic mechanism in Huntington's disease involves small CAGrepeated RNAs with neurotoxic activity, PLoS Genet, vol.8, p.1002481, 2012.

S. Bardehle, M. Kruger, F. Buggenthin, J. Schwausch, J. Ninkovic et al., Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation, Nature Neuroscience, vol.16, pp.580-586, 2013.

B. A. Barres, The mystery and magic of glia: a perspective on their roles in health and disease, Neuron, vol.60, pp.430-440, 2008.

A. J. Barrett and N. D. Rawlings, Species" of peptidases, Biol. Chem, vol.388, pp.1151-1157, 2007.

C. S. Von-bartheld, J. Bahney, and S. Herculano-houzel, The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting, J. Comp. Neurol, vol.524, pp.3865-3895, 2016.

M. Bason, M. Meister-broekema, N. Alberts, P. Dijkers, S. Bergink et al., Astrocytic expression of the chaperone DNAJB6 results in non-cell autonomous protection in Huntington's disease, Neurobiol. Dis, vol.124, pp.108-117, 2019.

G. P. Bates, R. Dorsey, J. F. Gusella, M. R. Hayden, C. Kay et al., Huntington disease, p.15005, 2015.

P. O. Bauer, A. Goswami, H. K. Wong, M. Okuno, M. Kurosawa et al., Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein, Nat. Biotechnol, vol.28, pp.256-263, 2010.

V. Bay and A. M. Butt, Relationship between glial potassium regulation and axon excitability: a role for glial Kir4.1 channels, vol.60, pp.651-660, 2012.

M. F. Beal, N. W. Kowall, D. W. Ellison, M. F. Mazurek, K. J. Swartz et al., , 1986.

, Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid, Nature, vol.321, pp.168-171

L. Bedford, D. Hay, A. Devoy, S. Paine, D. G. Powe et al., Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies, J. Neurosci, vol.28, pp.8189-8198, 2008.

M. P. Beenhakker and J. R. Huguenard, Astrocytes as gatekeepers of GABAB receptor function, The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, vol.30, pp.15262-15276, 2010.

P. F. Behrens, P. Franz, B. Woodman, K. S. Lindenberg, and G. B. Landwehrmeyer, Impaired glutamate transport and glutamate-glutamine cycling: downstream effects of the Huntington mutation, Brain : A Journal of Neurology, vol.125, pp.1908-1922, 2002.

M. Belanger, I. Allaman, and P. J. Magistretti, Brain energy metabolism: focus on astrocyteneuron metabolic cooperation, Cell Metabolism, vol.14, pp.724-738, 2011.

A. Bellot-saez, O. Kékesi, J. W. Morley, and Y. Buskila, Astrocytic modulation of neuronal excitability through K+ spatial buffering, Neurosci Biobehav Rev, vol.77, pp.87-97, 2017.

S. Ben-achour and O. Pascual, Astrocyte-neuron communication: functional consequences, Neurochem. Res, vol.37, pp.2464-2473, 2012.

L. Ben-haim and D. H. Rowitch, Functional diversity of astrocytes in neural circuit regulation, Nat. Rev. Neurosci, vol.18, pp.31-41, 2017.

L. Ben-haim, K. Ceyzeriat, M. A. Carrillo-de-sauvage, F. Aubry, G. Auregan et al., The JAK/STAT3 Pathway Is a Common Inducer of Astrocyte Reactivity in Alzheimer's and Huntington's Diseases, The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, vol.35, pp.2817-2829, 2015.

L. Ben-haim, M. Carrillo-de-sauvage, K. Ceyzériat, and C. Escartin, Elusive roles for reactive astrocytes in neurodegenerative diseases, Front Cell Neurosci, vol.9, p.278, 2015.
URL : https://hal.archives-ouvertes.fr/cea-02142599

E. J. Bennett, T. A. Shaler, B. Woodman, K. Y. Ryu, T. S. Zaitseva et al., Global changes to the ubiquitin system in Huntington's disease, Nature, vol.448, pp.704-708, 2007.

A. Benraiss, S. Wang, S. Herrlinger, X. Li, D. Chandler-militello et al., Human glia can both induce and rescue aspects of disease phenotype in Huntington disease, Nat Commun, vol.7, p.11758, 2016.

B. Bercovich, I. Stancovski, A. Mayer, N. Blumenfeld, A. Laszlo et al., Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70, J. Biol. Chem, vol.272, pp.9002-9010, 1997.

K. Bersuker, M. Brandeis, and R. R. Kopito, Protein misfolding specifies recruitment to cytoplasmic inclusion bodies, J. Cell Biol, vol.213, pp.229-241, 2016.

C. Beurrier, M. Faideau, K. E. Bennouar, C. Escartin, . Kerkerian-le et al., Ciliary neurotrophic factor protects striatal neurons against excitotoxicity by enhancing glial glutamate uptake, PloS One, vol.5, p.8550, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00848866

N. Bhutani, R. Piccirillo, R. Hourez, P. Venkatraman, and A. L. Goldberg, Cathepsins L and Z are critical in degrading polyglutamine-containing proteins within lysosomes, The Journal of Biological Chemistry, vol.287, pp.17471-17482, 2012.

H. Bidmon, B. Görg, N. Palomero-gallagher, F. Behne, R. Lahl et al., Heat shock protein-27 is upregulated in the temporal cortex of patients with epilepsy, Epilepsia, vol.45, pp.1549-1559, 2004.

A. Bignami and D. Dahl, The astroglial response to stabbing. Immunofluorescence studies with antibodies to astrocyte-specific protein (GFA) in mammalian and submammalian vertebrates, Neuropathol. Appl. Neuro, vol.2, pp.99-110, 1976.

I. Björkhem and S. Meaney, Brain cholesterol: long secret life behind a barrier, Arterioscler. Thromb. Vasc. Biol, vol.24, pp.806-815, 2004.

M. Bjorkqvist, E. J. Wild, J. Thiele, A. Silvestroni, R. Andre et al., A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease, The Journal of Experimental Medicine, vol.205, pp.1869-1877, 2008.

J. Bloch, A. C. Bachoud-levi, N. Deglon, J. P. Lefaucheur, L. Winkel et al., Neuroprotective gene therapy for Huntington's disease, using polymer-encapsulated cells engineered to secrete human ciliary neurotrophic factor: results of a phase I study, Human Gene Therapy, vol.15, pp.968-975, 2004.

E. F. Blommaart, U. Krause, J. P. Schellens, H. Vreeling-sindelárová, and A. J. Meijer, The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes, Eur. J. Biochem, vol.243, pp.240-246, 1997.

O. Blondel, C. Collin, W. J. Mccarran, S. Zhu, R. Zamostiano et al., A glia-derived signal regulating neuronal differentiation, J. Neurosci, vol.20, pp.8012-8020, 2000.

B. Boland, W. H. Yu, O. Corti, B. Mollereau, A. Henriques et al., Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing, Nat Rev Drug Discov, vol.17, pp.660-688, 2018.

M. Borrell-pagès, D. Zala, S. Humbert, and F. Saudou, Huntington's disease: from huntingtin function and dysfunction to therapeutic strategies, Cell. Mol. Life Sci, vol.63, pp.2642-2660, 2006.

S. Bose and J. Cho, Targeting chaperones, heat shock factor-1, and unfolded protein response: Promising therapeutic approaches for neurodegenerative disorders, Ageing Res. Rev, vol.35, pp.155-175, 2017.

S. Bose, F. L. Stratford, K. I. Broadfoot, G. G. Mason, and A. J. Rivett, Phosphorylation of 20S proteasome alpha subunit C8 (alpha7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by gamma-interferon, Biochem J, vol.378, pp.177-184, 2004.

L. Boussicault, A. Hérard, N. Calingasan, F. Petit, C. Malgorn et al., Impaired brain energy metabolism in the BACHD mouse model of Huntington's disease: critical role of astrocyte-neuron interactions, J. Cereb. Blood Flow Metab, vol.34, pp.1500-1510, 2014.

L. Boussicault, S. Alves, A. Lamazière, A. Planques, N. Heck et al., CYP46A1, the rate-limiting enzyme for cholesterol degradation, is neuroprotective in Huntington's disease, Brain, vol.139, pp.953-970, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01299208

J. Bradford, J. Y. Shin, M. Roberts, C. E. Wang, X. J. Li et al., Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms, Proceedings of the National Academy of Sciences of the United States of America, vol.106, pp.22480-22485, 2009.

J. Bradford, J. Y. Shin, M. Roberts, C. E. Wang, G. Sheng et al., Mutant huntingtin in glial cells exacerbates neurological symptoms of Huntington disease mice, The Journal of Biological Chemistry, vol.285, pp.10653-10661, 2010.

M. Brehme, C. Voisine, T. Rolland, S. Wachi, J. H. Soper et al., A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease, Cell Rep, vol.9, pp.1135-1150, 2014.

E. Brouillet, P. Hantraye, R. J. Ferrante, R. Dolan, A. Leroy-willig et al., Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates, Proceedings of the National Academy of Sciences of the United States of America, vol.92, pp.7105-7109, 1995.

E. Brouillet, F. Condé, M. F. Beal, and P. Hantraye, Replicating Huntington's disease phenotype in experimental animals, Prog. Neurobiol, vol.59, pp.427-468, 1999.

W. Brück, R. Pförtner, T. Pham, J. Zhang, L. Hayardeny et al., Reduced astrocytic NF-?B activation by laquinimod protects from cuprizone-induced demyelination, Acta Neuropathol, vol.124, pp.411-424, 2012.

C. W. Bugg, J. M. Isas, T. Fischer, P. H. Patterson, and R. Langen, Structural features and domain organization of huntingtin fibrils, J. Biol. Chem, vol.287, pp.31739-31746, 2012.

J. E. Burda, A. M. Bernstein, and M. V. Sofroniew, Astrocyte roles in traumatic brain injury, Experimental Neurology, vol.275, pp.305-315, 2016.

J. M. Van-der-burg, M. Björkqvist, and P. Brundin, Beyond the brain: widespread pathology in Huntington's disease, Lancet Neurol, vol.8, pp.765-774, 2009.

A. Busch, S. Engemann, R. Lurz, H. Okazawa, H. Lehrach et al., Mutant huntingtin promotes the fibrillogenesis of wild-type huntingtin: a potential mechanism for loss of huntingtin function in Huntington's disease, J. Biol. Chem, vol.278, pp.41452-41461, 2003.

T. G. Bush, N. Puvanachandra, C. H. Horner, A. Polito, T. Ostenfeld et al., Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice, Neuron, vol.23, pp.297-308, 1999.

E. A. Bushong, M. E. Martone, Y. Z. Jones, and M. H. Ellisman, Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains, The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, vol.22, pp.183-192, 2002.

L. M. Byrne, F. B. Rodrigues, K. Blennow, A. Durr, B. R. Leavitt et al., Neurofilament light protein in blood as a potential biomarker of neurodegeneration in Huntington's disease: a retrospective cohort analysis, Lancet Neurol, vol.16, pp.601-609, 2017.

J. D. Cahoy, B. Emery, A. Kaushal, L. C. Foo, J. L. Zamanian et al., A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function, The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, vol.28, pp.264-278, 2008.

Z. Cai, W. Zeng, K. Tao, E. , Z. Wang et al., Chaperone-mediated autophagy: roles in neuroprotection, Neurosci Bull, vol.31, pp.452-458, 2015.

S. Camandola, Astrocytes, emerging stars of energy homeostasis, Cell Stress, vol.2, pp.246-252, 2018.

K. Cambon, V. Zimmer, S. Martineau, M. Gaillard, M. Jarrige et al., Preclinical Evaluation of a Lentiviral Vector for Huntingtin Silencing, Mol Ther Methods Clin Dev, vol.5, pp.259-276, 2017.

N. S. Caron, E. R. Dorsey, and M. R. Hayden, Therapeutic approaches to Huntington disease: from the bench to the clinic, Nat Rev Drug Discov, vol.17, pp.729-750, 2018.

E. Cattaneo, C. Zuccato, and M. Tartari, Normal huntingtin function: an alternative approach to Huntington's disease, Nature Reviews. Neuroscience, vol.6, pp.919-930, 2005.

B. Caughey and P. T. Lansbury, Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders, Annu. Rev. Neurosci, vol.26, pp.267-298, 2003.

J. P. Caviston and E. L. Holzbaur, Huntingtin as an essential integrator of intracellular vesicular trafficking, Trends Cell Biol, vol.19, pp.147-155, 2009.

J. P. Caviston, J. L. Ross, S. M. Antony, M. Tokito, and E. L. Holzbaur, Huntingtin facilitates dynein/dynactin-mediated vesicle transport, Proc. Natl. Acad. Sci. U.S.A, vol.104, pp.10045-10050, 2007.

J. P. Caviston, A. L. Zajac, M. Tokito, and E. L. Holzbaur, Huntingtin coordinates the dyneinmediated dynamic positioning of endosomes and lysosomes, Mol. Biol. Cell, vol.22, pp.478-492, 2011.

C. Cepeda, M. A. Ariano, C. R. Calvert, J. Flores-hernandez, S. H. Chandler et al., NMDA receptor function in mouse models of Huntington disease, Journal of Neuroscience Research, vol.66, pp.525-539, 2001.

C. Cepeda, D. M. Cummings, V. M. Andre, S. M. Holley, and M. S. Levine, Genetic mouse models of Huntington's disease: focus on electrophysiological mechanisms, ASN Neuro, vol.2, p.33, 2010.

K. Ceyzeriat, L. Abjean, M. A. Carrillo-de-sauvage, L. Ben-haim, and C. Escartin, The complex STATes of astrocyte reactivity: How are they controlled by the JAK-STAT3 pathway?, Neuroscience, vol.330, pp.205-218, 2016.
URL : https://hal.archives-ouvertes.fr/cea-02142559

K. Ceyzériat, L. Ben-haim, A. Denizot, D. Pommier, M. Matos et al., Modulation of astrocyte reactivity improves functional deficits in mouse models of Alzheimer's disease, Acta Neuropathol Commun, vol.6, 2018.

J. J. Cha, Transcriptional signatures in Huntington's disease, Prog. Neurobiol, vol.83, pp.228-248, 2007.

H. Chai, B. Diaz-castro, E. Shigetomi, E. Monte, J. C. Octeau et al., Neural Circuit-Specialized Astrocytes: Transcriptomic, Proteomic, Morphological, and Functional Evidence, vol.95, pp.531-549, 2017.

Y. Chai, J. Shao, V. M. Miller, A. Williams, and H. L. Paulson, Live-cell imaging reveals divergent intracellular dynamics of polyglutamine disease proteins and supports a sequestration model of pathogenesis, Proc. Natl. Acad. Sci. U.S.A, vol.99, pp.9310-9315, 2002.

C. S. Chan and D. J. Surmeier, Astrocytes go awry in Huntington's disease, Nat. Neurosci, vol.17, pp.641-642, 2014.

A. C. Charles, J. E. Merrill, E. R. Dirksen, and M. J. Sanderson, Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate, Neuron, vol.6, pp.983-992, 1991.

M. E. Cheetham and A. J. Caplan, Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function, Cell Stress Chaperones, vol.3, pp.28-36, 1998.

M. Chen and P. G. Wolynes, Aggregation landscapes of Huntingtin exon 1 protein fragments and the critical repeat length for the onset of Huntington's disease, Proc. Natl. Acad. Sci. U.S.A, vol.114, pp.4406-4411, 2017.

A. M. Choi, S. W. Ryter, and B. Levine, Autophagy in human health and disease, The New England Journal of Medicine, vol.368, pp.1845-1846, 2013.

Y. S. Choo, G. V. Johnson, M. Macdonald, P. J. Detloff, and M. Lesort, Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release, Hum. Mol. Genet, vol.13, pp.1407-1420, 2004.

S. Y. Chou, J. Y. Weng, H. L. Lai, F. Liao, S. H. Sun et al., , 2008.

, Expanded-polyglutamine huntingtin protein suppresses the secretion and production of a chemokine (CCL5/RANTES) by astrocytes, The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, vol.28, pp.3277-3290

K. S. Christopherson, E. M. Ullian, C. C. Stokes, C. E. Mullowney, J. W. Hell et al., Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis, Cell, vol.120, pp.421-433, 2005.

W. S. Chung, L. E. Clarke, G. X. Wang, B. K. Stafford, A. Sher et al., Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways, Nature, vol.504, pp.394-400, 2013.

W. Chung, N. J. Allen, and C. Eroglu, Astrocytes Control Synapse Formation, Function, and Elimination, Cold Spring Harb Perspect Biol, vol.7, p.20370, 2015.

F. Cicchetti, S. Lacroix, G. Cisbani, N. Vallieres, M. Saint-pierre et al., Mutant huntingtin is present in neuronal grafts in Huntington disease patients, Annals of Neurology, vol.76, pp.31-42, 2014.

A. Ciechanover and Y. T. Kwon, Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies, Exp. Mol. Med, vol.47, p.147, 2015.

A. Ciechanover and Y. T. Kwon, Protein Quality Control by Molecular Chaperones in Neurodegeneration, Front Neurosci, vol.11, p.185, 2017.

G. Cirillo, N. Maggio, M. R. Bianco, C. Vollono, S. Sellitti et al., Discriminative behavioral assessment unveils remarkable reactive astrocytosis and early molecular correlates in basal ganglia of 3-nitropropionic acid subchronic treated rats, Neurochem. Int, vol.56, pp.152-160, 2010.

L. E. Clarke, S. A. Liddelow, C. Chakraborty, A. E. Münch, M. Heiman et al., Normal aging induces A1-like astrocyte reactivity, Proc. Natl. Acad. Sci. U.S.A, vol.115, pp.1896-1905, 2018.

A. Colin, M. Faideau, N. Dufour, G. Auregan, R. Hassig et al., Engineered lentiviral vector targeting astrocytes in vivo, Glia, vol.57, pp.667-679, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00348988

E. Colin, D. Zala, G. Liot, H. Rangone, M. Borrell-pagès et al., , 2008.

, Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons, EMBO J, vol.27, pp.2124-2134

P. Connell, C. A. Ballinger, J. Jiang, Y. Wu, L. J. Thompson et al., The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins, Nat. Cell Biol, vol.3, pp.93-96, 2001.

E. M. Coppen and R. A. Roos, Current Pharmacological Approaches to Reduce Chorea in Huntington's Disease, Drugs, vol.77, pp.29-46, 2017.

C. J. Cortes, L. Spada, and A. R. , The many faces of autophagy dysfunction in Huntington's disease: from mechanism to therapy, Drug Discovery Today, vol.19, pp.963-971, 2014.

V. Costa and L. Scorrano, Shaping the role of mitochondria in the pathogenesis of Huntington's disease, EMBO J, vol.31, pp.1853-1864, 2012.

M. Costanzo, S. Abounit, L. Marzo, A. Danckaert, Z. Chamoun et al., Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes, J. Cell. Sci, vol.126, pp.3678-3685, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00874692

C. M. Cowan, R. , and L. A. , Selective neuronal degeneration in Huntington's disease, Curr. Top. Dev. Biol, vol.75, pp.25-71, 2006.

D. Cox, C. Raeburn, X. Sui, and D. M. Hatters, Protein aggregation in cell biology: An aggregomics perspective of health and disease, Semin. Cell Dev. Biol, 2018.

J. T. Coyle and R. Schwarcz, Lesion of striatal neurones with kainic acid provides a model for Huntington's chorea, Nature, vol.263, pp.244-246, 1976.

D. Craufurd, J. C. Thompson, and J. S. Snowden, Behavioral changes in Huntington Disease, Neuropsychiatry Neuropsychol Behav Neurol, vol.14, pp.219-226, 2001.

A. Crotti and C. K. Glass, The choreography of neuroinflammation in Huntington's disease, Trends Immunol, vol.36, pp.364-373, 2015.

A. Crotti, C. Benner, B. E. Kerman, D. Gosselin, C. Lagier-tourenne et al., Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors, Nature Neuroscience, vol.17, pp.513-521, 2014.

A. M. Cuervo, Autophagy: many paths to the same end, Mol. Cell. Biochem, vol.263, pp.55-72, 2004.

A. M. Cuervo and J. F. Dice, A receptor for the selective uptake and degradation of proteins by lysosomes, Science, vol.273, pp.501-503, 1996.

A. M. Cuervo and J. F. Dice, When lysosomes get old, Exp. Gerontol, vol.35, pp.119-131, 2000.

A. M. Cuervo and J. F. Dice, Age-related decline in chaperone-mediated autophagy, J. Biol. Chem, vol.275, pp.31505-31513, 2000.

A. M. Cuervo and E. Wong, Chaperone-mediated autophagy: roles in disease and aging, Cell Res, vol.24, pp.92-104, 2014.

L. Cui, H. Jeong, F. Borovecki, C. N. Parkhurst, N. Tanese et al., Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration, Cell, vol.127, pp.59-69, 2006.

B. P. Culver, J. N. Savas, S. K. Park, J. H. Choi, S. Zheng et al., , 2012.

, Proteomic analysis of wild-type and mutant huntingtin-associated proteins in mouse brains identifies unique interactions and involvement in protein synthesis, J. Biol. Chem, vol.287, pp.21599-21614

D. M. Cummings, C. Cepeda, and M. S. Levine, Alterations in striatal synaptic transmission are consistent across genetic mouse models of Huntington's disease, ASN Neuro, vol.2, p.36, 2010.

C. Cunningham, A. Dunne, and A. B. Lopez-rodriguez, Astrocytes: Heterogeneous and Dynamic Phenotypes in Neurodegeneration and Innate Immunity, Neuroscientist, 2018.

D. V. Dabir, J. Q. Trojanowski, C. Richter-landsberg, V. M. Lee, .. Forman et al., Expression of the small heat-shock protein alphaB-crystallin in tauopathies with glial pathology, Am. J. Pathol, vol.164, pp.155-166, 2004.

M. Damiano, L. Galvan, N. Déglon, and E. Brouillet, Mitochondria in Huntington's disease, Biochim. Biophys. Acta, vol.1802, pp.52-61, 2010.

M. Damiano, E. Diguet, C. Malgorn, M. D'aurelio, L. Galvan et al., A role of mitochondrial complex II defects in genetic models of Huntington's disease expressing N-terminal fragments of mutant huntingtin, Hum. Mol. Genet, vol.22, pp.3869-3882, 2013.

N. C. Danbolt, Glutamate uptake, Progress in Neurobiology, vol.65, pp.1-105, 2001.

R. Daneman and A. Prat, The blood-brain barrier, Cold Spring Harb Perspect Biol, vol.7, p.20412, 2015.

S. W. Davies, M. Turmaine, B. A. Cozens, M. Difiglia, A. H. Sharp et al., Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation, Cell, vol.90, pp.537-548, 1997.

M. B. Davis, D. Bateman, N. P. Quinn, C. D. Marsden, and A. E. Harding, Mutation analysis in patients with possible but apparently sporadic Huntington's disease, Lancet, vol.344, pp.714-717, 1994.

N. Déglon and P. Hantraye, Viral vectors as tools to model and treat neurodegenerative disorders, J Gene Med, vol.7, pp.530-539, 2005.

P. A. Desplats, K. E. Kass, T. Gilmartin, G. D. Stanwood, E. L. Woodward et al., Selective deficits in the expression of striatal-enriched mRNAs in Huntington's disease, J. Neurochem, vol.96, pp.743-757, 2006.

D. Pardo, A. Amico, E. Scalabrì, F. Pepe, G. Castaldo et al., Impairment of blood-brain barrier is an early event in R6/2 mouse model of Huntington Disease, Sci Rep, vol.7, p.41316, 2017.

M. Díaz-hernández, F. Hernández, E. Martín-aparicio, P. Gómez-ramos, M. A. Morán et al., Neuronal Induction of the Immunoproteasome in Huntington's Disease, J. Neurosci, vol.23, pp.11653-11661, 2003.

M. Diaz-hernandez, F. Hernandez, E. Martin-aparicio, P. Gomez-ramos, M. A. Moran et al., Neuronal induction of the immunoproteasome in Huntington's disease, The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, vol.23, pp.11653-11661, 2003.

M. Díaz-hernández, A. G. Valera, M. A. Morán, P. Gómez-ramos, B. Alvarez-castelao et al., Inhibition of 26S proteasome activity by huntingtin filaments but not inclusion bodies isolated from mouse and human brain, Journal of Neurochemistry, vol.98, pp.1585-1596, 2006.

M. Difiglia, E. Sapp, K. Chase, C. Schwarz, A. Meloni et al., Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons, Neuron, vol.14, pp.1075-1081, 1995.

M. Difiglia, E. Sapp, K. O. Chase, S. W. Davies, G. P. Bates et al., , 1997.

, Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain, Science, vol.277, pp.1990-1993

M. Difiglia, M. Sena-esteves, K. Chase, E. Sapp, E. Pfister et al., Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits, Proc. Natl. Acad. Sci. U.S.A, vol.104, pp.17204-17209, 2007.

I. Dikic, Proteasomal and Autophagic Degradation Systems, Annu. Rev. Biochem, vol.86, pp.193-224, 2017.

W. Ding and X. Yin, Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome, Autophagy, vol.4, pp.141-150, 2008.

C. M. Dobson, Protein folding and misfolding, Nature, vol.426, pp.884-890, 2003.

J. D. Douglass, M. D. Dorfman, and J. P. Thaler, Glia: silent partners in energy homeostasis and obesity pathogenesis, Diabetologia, vol.60, pp.226-236, 2017.

M. J. Dowie, H. B. Bradshaw, M. L. Howard, L. F. Nicholson, R. L. Faull et al., Altered CB1 receptor and endocannabinoid levels precede motor symptom onset in a transgenic mouse model of Huntington's disease, Neuroscience, vol.163, pp.456-465, 2009.

I. Dragatsis, M. S. Levine, and S. Zeitlin, Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice, Nature Genetics, vol.26, pp.300-306, 2000.

V. Drouet, V. Perrin, R. Hassig, N. Dufour, G. Auregan et al., Sustained effects of nonallele-specific Huntingtin silencing, Ann. Neurol, vol.65, pp.276-285, 2009.

J. Drouin-ouellet, S. J. Sawiak, G. Cisbani, M. Lagacé, W. Kuan et al., Cerebrovascular and blood-brain barrier impairments in Huntington's disease: Potential implications for its pathophysiology, Ann. Neurol, vol.78, pp.160-177, 2015.

A. W. Dunah, H. Jeong, A. Griffin, Y. Kim, D. G. Standaert et al., Sp1 and TAFII130 transcriptional activity disrupted in early Huntington's disease, vol.296, pp.2238-2243, 2002.

P. F. Durrenberger, M. D. Filiou, L. B. Moran, G. J. Michael, S. Novoselov et al., DnaJB6 is present in the core of Lewy bodies and is highly up-regulated in parkinsonian astrocytes, J. Neurosci. Res, vol.87, pp.238-245, 2009.

A. Dvorzhak, M. Semtner, D. S. Faber, and R. Grantyn, Tonic mGluR5/CB1-dependent suppression of inhibition as a pathophysiological hallmark in the striatum of mice carrying a mutant form of huntingtin, J. Physiol, vol.591, pp.1145-1166, 2013.

A. Dvorzhak, T. Vagner, K. Kirmse, and R. Grantyn, Functional Indicators of Glutamate Transport in Single Striatal Astrocytes and the Influence of Kir4.1 in Normal and Huntington Mice, J. Neurosci, vol.36, pp.4959-4975, 2016.

M. E. Ehrlich, Huntington's disease and the striatal medium spiny neuron: cell-autonomous and non-cell-autonomous mechanisms of disease, Neurotherapeutics, vol.9, pp.270-284, 2012.

D. Eidelberg and D. J. Surmeier, Brain networks in Huntington disease, J. Clin. Invest, vol.121, pp.484-492, 2011.

M. El-daher, E. Hangen, J. Bruyère, G. Poizat, I. Al-ramahi et al., Huntingtin proteolysis releases non-polyQ fragments that cause toxicity through dynamin 1 dysregulation, EMBO J, vol.34, pp.2255-2271, 2015.

J. Elkharaz, A. Ugun-klusek, D. Constantin-teodosiu, K. Lawler, R. J. Mayer et al., Implications for oxidative stress and astrocytes following 26S proteasomal depletion in mouse forebrain neurones, Biochim. Biophys. Acta, vol.1832, pp.1930-1938, 2013.

J. G. Emsley and J. D. Macklis, Astroglial heterogeneity closely reflects the neuronal-defined anatomy of the adult murine CNS, Neuron Glia Biology, vol.2, pp.175-186, 2006.

L. F. Eng, J. J. Vanderhaeghen, A. Bignami, and B. Gerstl, An acidic protein isolated from fibrous astrocytes, Brain Research, vol.28, pp.351-354, 1971.

S. Engelender, A. H. Sharp, V. Colomer, M. K. Tokito, A. Lanahan et al., Huntingtin-associated protein 1 (HAP1) interacts with the p150Glued subunit of dynactin, Hum. Mol. Genet, vol.6, pp.2205-2212, 1997.

C. Eroglu and B. A. Barres, Regulation of synaptic connectivity by glia, Nature, vol.468, pp.223-231, 2010.

C. Escartin and N. Rouach, Astroglial networking contributes to neurometabolic coupling, Frontiers in Neuroenergetics, vol.5, p.4, 2013.
URL : https://hal.archives-ouvertes.fr/cea-02142608

C. Escartin, E. Brouillet, P. Gubellini, Y. Trioulier, C. Jacquard et al., Ciliary neurotrophic factor activates astrocytes, redistributes their glutamate transporters GLAST and GLT-1 to raft microdomains, and improves glutamate handling in vivo, The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, vol.26, pp.5978-5989, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00088896

C. Escartin, K. Pierre, A. Colin, E. Brouillet, T. Delzescaux et al., Activation of astrocytes by CNTF induces metabolic plasticity and increases resistance to metabolic insults, The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, vol.27, pp.7094-7104, 2007.
URL : https://hal.archives-ouvertes.fr/cea-02290623

A. M. Estrada-sánchez, T. Montiel, J. Segovia, and L. Massieu, Glutamate toxicity in the striatum of the R6/2 Huntington's disease transgenic mice is age-dependent and correlates with decreased levels of glutamate transporters, Neurobiol. Dis, vol.34, pp.78-86, 2009.

M. Faideau, J. Kim, K. Cormier, R. Gilmore, M. Welch et al., In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington's disease subjects, Human Molecular Genetics, vol.19, pp.3053-3067, 2010.

M. M. Fan, H. B. Fernandes, L. Y. Zhang, M. R. Hayden, R. et al., Altered NMDA receptor trafficking in a yeast artificial chromosome transgenic mouse model of Huntington's disease, J. Neurosci, vol.27, pp.3768-3779, 2007.

J. R. Faulkner, J. E. Herrmann, M. J. Woo, K. E. Tansey, N. B. Doan et al., , 2004.

, Reactive astrocytes protect tissue and preserve function after spinal cord injury, The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, vol.24, pp.2143-2155

R. J. Ferrante, Mouse models of Huntington's disease and methodological considerations for therapeutic trials, Biochim. Biophys. Acta, vol.1792, pp.506-520, 2009.

D. Finley, Recognition and Processing of Ubiquitin-Protein Conjugates by the Proteasome, Annu Rev Biochem, vol.78, pp.477-513, 2009.

D. Forsberg and E. Herlenius, Astrocyte networks modulate respiration -sniffing glue, Respir Physiol Neurobiol, 2018.

J. L. Furman and C. M. Norris, Calcineurin and glial signaling: neuroinflammation and beyond, Journal of Neuroinflammation, vol.11, p.158, 2014.

J. Gafni and L. M. Ellerby, Calpain activation in Huntington's disease, J. Neurosci, vol.22, pp.4842-4849, 2002.

J. Gafni, E. Hermel, J. E. Young, C. L. Wellington, M. R. Hayden et al., Inhibition of calpain cleavage of huntingtin reduces toxicity: accumulation of calpain/caspase fragments in the nucleus, J. Biol. Chem, vol.279, pp.20211-20220, 2004.

L. Galvan, V. M. André, E. A. Wang, C. Cepeda, and M. S. Levine, Functional Differences Between Direct and Indirect Striatal Output Pathways in Huntington's Disease, J Huntingtons Dis, vol.1, pp.17-25, 2012.

M. Gamerdinger, S. Carra, and C. Behl, Emerging roles of molecular chaperones and cochaperones in selective autophagy: focus on BAG proteins, J. Mol. Med, vol.89, pp.1175-1182, 2011.

Q. Gao, M. J. Wolfgang, S. Neschen, K. Morino, T. L. Horvath et al., Disruption of neural signal transducer and activator of transcription 3 causes obesity, diabetes, infertility, and thermal dysregulation, Proceedings of the National Academy of Sciences of the United States of America, vol.101, pp.4661-4666, 2004.

C. García-cáceres, C. Quarta, L. Varela, Y. Gao, T. Gruber et al., Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability, Cell, vol.166, pp.867-880, 2016.

V. Garcia-marin, P. Garcia-lopez, and M. Freire, Cajal's contributions to glia research, Trends in Neurosciences, vol.30, pp.479-487, 2007.

M. Garcia-miralles, X. Hong, L. J. Tan, N. S. Caron, Y. Huang et al., Laquinimod rescues striatal, cortical and white matter pathology and results in modest behavioural improvements in the YAC128 model of Huntington disease, p.31652, 2016.

L. M. Garcia-segura and R. C. Melcangi, Steroids and glial cell function, Glia, vol.54, pp.485-498, 2006.

C. J. Garwood, L. E. Ratcliffe, J. E. Simpson, P. R. Heath, P. G. Ince et al., Review: Astrocytes in Alzheimer's disease and other age-associated dementias: a supporting player with a central role, Neuropathol. Appl. Neurobiol, vol.43, pp.281-298, 2017.

L. R. Gauthier, B. C. Charrin, M. Borrell-pages, J. P. Dompierre, H. Rangone et al., Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules, Cell, vol.118, pp.127-138, 2004.

R. S. Geary, D. Norris, R. Yu, and C. F. Bennett, Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides, Adv. Drug Deliv. Rev, vol.87, pp.46-51, 2015.

K. Gharami, Y. Xie, J. J. An, S. Tonegawa, and B. Xu, Brain-derived neurotrophic factor overexpression in the forebrain ameliorates Huntington's disease phenotypes in mice, J. Neurochem, vol.105, pp.369-379, 2008.

M. Giacomello, R. Hudec, and R. Lopreiato, Huntington's disease, calcium, and mitochondria, Biofactors, vol.37, pp.206-218, 2011.

C. Giaume, A. Koulakoff, L. Roux, D. Holcman, and N. Rouach, Astroglial networks: a step further in neuroglial and gliovascular interactions, Nature Reviews. Neuroscience, vol.11, pp.87-99, 2010.

M. E. Gibbs, D. Hutchinson, and L. Hertz, Astrocytic involvement in learning and memory consolidation, Neurosci Biobehav Rev, vol.32, pp.927-944, 2008.

J. Gillis, S. Schipper-krom, K. Juenemann, A. Gruber, S. Coolen et al., The DNAJB6 and DNAJB8 protein chaperones prevent intracellular aggregation of polyglutamine peptides, J. Biol. Chem, vol.288, pp.17225-17237, 2013.

S. Ginés, M. Bosch, S. Marco, N. Gavaldà, M. Díaz-hernández et al., Reduced expression of the TrkB receptor in Huntington's disease mouse models and in human brain, Eur. J. Neurosci, vol.23, pp.649-658, 2006.

A. Giralt, H. C. Friedman, B. Caneda-ferron, N. Urban, E. Moreno et al., BDNF regulation under GFAP promoter provides engineered astrocytes as a new approach for long-term protection in Huntington's disease, Gene Therapy, vol.17, pp.1294-1308, 2010.

M. Glass, M. Dragunow, and R. L. Faull, The pattern of neurodegeneration in Huntington's disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington's disease, Neuroscience, vol.97, pp.505-519, 2000.

D. Glick, S. Barth, and K. F. Macleod, Autophagy: cellular and molecular mechanisms, J. Pathol, vol.221, pp.3-12, 2010.

M. H. Glickman and A. Ciechanover, The Ubiquitin-Proteasome Proteolytic Pathway: Destruction for the Sake of Construction, Physiological Reviews, vol.82, pp.373-428, 2002.

M. Goedert, B. Falcon, F. Clavaguera, and M. Tolnay, Prion-like mechanisms in the pathogenesis of tauopathies and synucleinopathies, Curr Neurol Neurosci Rep, vol.14, p.495, 2014.

Y. P. Goldberg, B. Kremer, S. E. Andrew, J. Theilmann, R. K. Graham et al., Molecular analysis of new mutations for Huntington's disease: intermediate alleles and sex of origin effects, Nat. Genet, vol.5, pp.174-179, 1993.

B. Gong, M. C. Lim, J. Wanderer, A. Wyttenbach, and A. J. Morton, Time-lapse analysis of aggregate formation in an inducible PC12 cell model of Huntington's disease reveals time-dependent aggregate formation that transiently delays cell death, Brain Research Bulletin, vol.75, pp.146-157, 2008.

B. Gong, C. Kielar, and A. J. Morton, Temporal separation of aggregation and ubiquitination during early inclusion formation in transgenic mice carrying the Huntington's disease mutation, PLoS ONE, vol.7, p.41450, 2012.

G. R. Gordon, S. J. Mulligan, and B. A. Macvicar, Astrocyte control of the cerebrovasculature, Glia, vol.55, pp.1214-1221, 2007.

K. Gorshkov, F. Aguisanda, N. Thorne, and W. Zheng, Astrocytes as targets for drug discovery, Drug Discov. Today, vol.23, pp.673-680, 2018.

A. V. Gourine, V. Kasymov, N. Marina, F. Tang, M. F. Figueiredo et al., Astrocytes control breathing through pHdependent release of ATP, Science, vol.329, pp.571-575, 2010.

S. T. Grafton, J. C. Mazziotta, J. J. Pahl, P. St-george-hyslop, J. L. Haines et al., Serial changes of cerebral glucose metabolism and caudate size in persons at risk for Huntington's disease, Archives of Neurology, vol.49, pp.1161-1167, 1992.

R. K. Graham, Y. Deng, E. J. Slow, B. Haigh, N. Bissada et al., Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin, Cell, vol.125, pp.1179-1191, 2006.

M. Gray, D. I. Shirasaki, C. Cepeda, V. M. André, B. Wilburn et al., Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice, J. Neurosci, vol.28, pp.6182-6195, 2008.

T. A. Griffin, D. Nandi, M. Cruz, H. J. Fehling, L. V. Kaer et al., , 1998.

, Immunoproteasome Assembly: Cooperative Incorporation of Interferon ? (IFN-?)-inducible Subunits, The Journal of Experimental Medicine, vol.187, pp.97-104

M. Groll, L. Ditzel, J. Löwe, D. Stock, M. Bochtler et al., Structure of 20S proteasome from yeast at 2.4Å resolution, Nature, vol.386, pp.463-471, 1997.

M. Groll, M. Bajorek, A. Köhler, L. Moroder, D. M. Rubin et al., A gated channel into the proteasome core particle, Nature Structural & Molecular Biology, vol.7, pp.1062-1067, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01607781

K. Guitart, G. Loers, F. Buck, U. Bork, M. Schachner et al., Improvement of neuronal cell survival by astrocyte-derived exosomes under hypoxic and ischemic conditions depends on prion protein, Glia, vol.64, pp.896-910, 2016.

S. Gunawardena, L. Her, R. G. Brusch, R. A. Laymon, I. R. Niesman et al., Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila, Neuron, vol.40, pp.25-40, 2003.

F. Guo, X. Liu, H. Cai, L. , and W. , Autophagy in neurodegenerative diseases: pathogenesis and therapy, Brain Pathol, vol.28, pp.3-13, 2018.

Q. Guo, . Bin, . Huang, J. Cheng, M. Seefelder et al., The cryo-electron microscopy structure of huntingtin, Nature, vol.555, pp.117-120, 2018.

C. A. Gutekunst, A. I. Levey, C. J. Heilman, W. L. Whaley, H. Yi et al., Identification and localization of huntingtin in brain and human lymphoblastoid cell lines with anti-fusion protein antibodies, Proc. Natl. Acad. Sci. U.S.A, vol.92, pp.8710-8714, 1995.

C. A. Gutekunst, S. H. Li, H. Yi, J. S. Mulroy, S. Kuemmerle et al., Nuclear and neuropil aggregates in Huntington's disease: relationship to neuropathology, The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, vol.19, pp.2522-2534, 1999.

K. A. Guttenplan and S. A. Liddelow, Astrocytes and microglia: Models and tools, J. Exp. Med, vol.216, pp.71-83, 2019.

M. M. Halassa, T. Fellin, H. Takano, J. Dong, and P. G. Haydon, Synaptic islands defined by the territory of a single astrocyte, J. Neurosci, vol.27, pp.6473-6477, 2007.

M. M. Halassa, C. Florian, T. Fellin, J. R. Munoz, S. Y. Lee et al., Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss, Neuron, vol.61, pp.213-219, 2009.

J. Hamilton, J. J. Pellman, T. Brustovetsky, R. A. Harris, and N. Brustovetsky, Oxidative metabolism in YAC128 mouse model of Huntington's disease, Hum. Mol. Genet, vol.24, pp.4862-4878, 2015.

U. Hanisch and H. Kettenmann, Microglia: active sensor and versatile effector cells in the normal and pathologic brain, Nat. Neurosci, vol.10, pp.1387-1394, 2007.

T. Hara, K. Nakamura, M. Matsui, A. Yamamoto, Y. Nakahara et al., Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice, Nature, vol.441, pp.885-889, 2006.

R. J. Harding and Y. Tong, Proteostasis in Huntington's disease: disease mechanisms and therapeutic opportunities, Acta Pharmacol. Sin, vol.39, pp.754-769, 2018.

G. E. Hardingham and H. Bading, Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders, Nat. Rev. Neurosci, vol.11, pp.682-696, 2010.

P. Harjes and E. E. Wanker, The hunt for huntingtin function: interaction partners tell many different stories, Trends Biochem. Sci, vol.28, pp.425-433, 2003.

F. U. Hartl and M. Hayer-hartl, Converging concepts of protein folding in vitro and in vivo, Nat. Struct. Mol. Biol, vol.16, pp.574-581, 2009.

F. U. Hartl, A. Bracher, and M. Hayer-hartl, Molecular chaperones in protein folding and proteostasis, Nature, vol.475, pp.324-332, 2011.

B. Hassel, S. Tessler, R. L. Faull, and P. C. Emson, Glutamate uptake is reduced in prefrontal cortex in Huntington's disease, Neurochemical Research, vol.33, pp.232-237, 2008.

D. G. Hay, K. Sathasivam, S. Tobaben, B. Stahl, M. Marber et al., Progressive decrease in chaperone protein levels in a mouse model of Huntington's disease and induction of stress proteins as a therapeutic approach, Hum. Mol. Genet, vol.13, pp.1389-1405, 2004.

M. Hayashi-nishino, N. Fujita, T. Noda, A. Yamaguchi, T. Yoshimori et al., A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation, Nat. Cell Biol, vol.11, pp.1433-1437, 2009.

P. G. Haydon, GLIA: listening and talking to the synapse, Nat. Rev. Neurosci, vol.2, pp.185-193, 2001.

P. G. Haydon, Astrocytes and the modulation of sleep, Curr. Opin. Neurobiol, vol.44, pp.28-33, 2017.

M. O. Hebb, E. M. Denovan-wright, and H. A. Robertson, Expression of the Huntington's disease gene is regulated in astrocytes in the arcuate nucleus of the hypothalamus of postpartum rats, FASEB J, vol.13, pp.1099-1106, 1999.

J. C. Hedreen, C. E. Peyser, S. E. Folstein, and C. A. Ross, Neuronal loss in layers V and VI of cerebral cortex in Huntington's disease, Neurosci. Lett, vol.133, pp.257-261, 1991.

H. Heinsen, U. Rüb, M. Bauer, G. Ulmar, B. Bethke et al., Nerve cell loss in the thalamic mediodorsal nucleus in Huntington's disease, Acta Neuropathol, vol.97, pp.613-622, 1999.

M. T. Heneka, M. P. Kummer, and E. Latz, Innate immune activation in neurodegenerative disease, Nature Reviews. Immunology, vol.14, pp.463-477, 2014.

M. Y. Heng, P. J. Detloff, A. , and R. L. , Rodent genetic models of Huntington disease, Neurobiol. Dis, vol.32, pp.1-9, 2008.

S. M. Hersch, G. Schifitto, D. Oakes, A. Bredlau, C. M. Meyers et al., The CREST-E study of creatine for Huntington disease: A randomized controlled trial, Study Group CREST-E Investigators and Coordinators, vol.89, pp.594-601, 2017.

D. S. Hewings, J. A. Flygare, M. Bogyo, and I. E. Wertz, Activity-based probes for the ubiquitin conjugation-deconjugation machinery: new chemistries, new tools, and new insights, FEBS J, vol.284, pp.1555-1576, 2017.

M. A. Hickey, A. Kosmalska, J. Enayati, R. Cohen, S. Zeitlin et al., Extensive early motor and non-motor behavioral deficits are followed by striatal neuronal loss in knock-in Huntington's disease mice, Neuroscience, vol.157, pp.280-295, 2008.

K. Higashi, A. Fujita, A. Inanobe, M. Tanemoto, K. Doi et al., An inwardly rectifying K(+) channel, Kir4.1, expressed in astrocytes surrounds synapses and blood vessels in brain, Am. J. Physiol, vol.281, pp.922-931, 2001.

M. S. Hipp, C. N. Patel, K. Bersuker, B. E. Riley, S. E. Kaiser et al., Indirect inhibition of 26S proteasome activity in a cellular model of Huntington's disease, J Cell Biol, vol.196, pp.573-587, 2012.

W. E. Hochfeld, S. Lee, and D. C. Rubinsztein, Therapeutic induction of autophagy to modulate neurodegenerative disease progression, Acta Pharmacol. Sin, vol.34, pp.600-604, 2013.

J. G. Hodgson, N. Agopyan, C. A. Gutekunst, B. R. Leavitt, F. Lepiane et al., A YAC mouse model for Huntington's disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration, Neuron, vol.23, pp.181-192, 1999.

P. A. Holmans, T. H. Massey, and L. Jones, Genetic modifiers of Mendelian disease: Huntington's disease and the trinucleotide repeat disorders, Hum. Mol. Genet, vol.26, pp.83-90, 2017.

C. I. Holmberg, K. E. Staniszewski, K. N. Mensah, A. Matouschek, and R. I. Morimoto, Inefficient degradation of truncated polyglutamine proteins by the proteasome, The EMBO Journal, vol.23, pp.4307-4318, 2004.

Y. Hong, T. Zhao, X. Li, L. , and S. , Mutant Huntingtin Impairs BDNF Release from Astrocytes by Disrupting Conversion of Rab3a-GTP into Rab3a-GDP, J. Neurosci, vol.36, pp.8790-8801, 2016.

Y. Hong, T. Zhao, X. Li, L. , and S. , Mutant Huntingtin Inhibits ?B-Crystallin Expression and Impairs Exosome Secretion from Astrocytes, J. Neurosci, vol.37, pp.9550-9563, 2017.

A. T. Hoogeveen, R. Willemsen, N. Meyer, K. E. De-rooij, R. A. Roos et al., Characterization and localization of the Huntington disease gene product, Hum. Mol. Genet, vol.2, pp.2069-2073, 1993.

F. Hosp, S. Gutiérrez-Ángel, M. H. Schaefer, J. Cox, F. Meissner et al., Spatiotemporal Proteomic Profiling of Huntington's Disease Inclusions Reveals Widespread Loss of Protein Function, Cell Rep, vol.21, pp.2291-2303, 2017.

H. Y. Hsiao, Y. C. Chen, H. M. Chen, P. H. Tu, and Y. Chern, A critical role of astrocytemediated nuclear factor-kappaB-dependent inflammation in Huntington's disease, Human Molecular Genetics, vol.22, pp.1826-1842, 2013.

H. Hsiao, F. Chiu, C. Chen, Y. Wu, H. Chen et al., Inhibition of soluble tumor necrosis factor is therapeutic in Huntington's disease, Hum. Mol. Genet, vol.23, pp.4328-4344, 2014.

H. Hsiao, Y. Chen, C. Huang, C. Chen, Y. Hsu et al., Aberrant astrocytes impair vascular reactivity in Huntington disease, Ann. Neurol, vol.78, pp.178-192, 2015.

B. Huang, W. Wei, G. Wang, M. A. Gaertig, Y. Feng et al., Mutant Huntingtin Downregulates Myelin Regulatory Factor-Mediated Myelin Gene Expression and Affects Mature Oligodendrocytes, Neuron, vol.85, pp.1212-1226, 2015.

A. C. Hughes, M. Mort, L. Elliston, R. M. Thomas, S. P. Brooks et al., Identification of novel alternative splicing events in the huntingtin gene and assessment of the functional consequences using structural protein homology modelling, J. Mol. Biol, vol.426, pp.1428-1438, 2014.

J. M. Hunter, M. Lesort, J. , and G. V. , Ubiquitin-proteasome system alterations in a striatal cell model of Huntington's disease, Journal of Neuroscience Research, vol.85, pp.1774-1788, 2007.

, Unified Huntington's Disease Rating Scale: reliability and consistency. Huntington Study Group, Mov. Disord, vol.11, pp.136-142, 1996.

C. Iadecola and M. Nedergaard, Glial regulation of the cerebral microvasculature, Nat. Neurosci, vol.10, pp.1369-1376, 2007.

R. S. Ignarro, A. S. Vieira, C. R. Sartori, F. Langone, F. Rogerio et al., JAK2 inhibition is neuroprotective and reduces astrogliosis after quinolinic acid striatal lesion in adult mice, Journal of Chemical Neuroanatomy, pp.14-22, 2013.

J. J. Iliff, M. Wang, Y. Liao, B. A. Plogg, W. Peng et al., A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid ?, Sci Transl Med, vol.4, pp.147-111, 2012.

K. Ishidoh and E. Kominami, Processing and activation of lysosomal proteinases, Biol. Chem, vol.383, pp.1827-1831, 2002.

N. R. Jana and N. Nukina, BAG-1 associates with the polyglutamine-expanded huntingtin aggregates, Neurosci. Lett, vol.378, pp.171-175, 2005.

N. R. Jana, M. Tanaka, G. Wang, and N. Nukina, Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity, Hum. Mol. Genet, vol.9, 2000.

N. R. Jana, P. Dikshit, A. Goswami, S. Kotliarova, S. Murata et al., Cochaperone CHIP Associates with Expanded Polyglutamine Protein and Promotes Their Degradation by Proteasomes, J. Biol. Chem, vol.280, pp.11635-11640, 2005.

S. B. Jänen, H. Chaachouay, and C. Richter-landsberg, Autophagy is activated by proteasomal inhibition and involved in aggresome clearance in cultured astrocytes, Glia, vol.58, pp.1766-1774, 2010.

M. Jang, S. E. Lee, and I. Cho, Adeno-Associated Viral Vector Serotype DJ-Mediated Overexpression of N171-82Q-Mutant Huntingtin in the Striatum of Juvenile Mice Is a New Model for Huntington's Disease, Front Cell Neurosci, vol.12, p.157, 2018.

A. H. Jansen, E. A. Reits, and E. M. Hol, The ubiquitin proteasome system in glia and its role in neurodegenerative diseases, Frontiers in Molecular Neuroscience, vol.7, p.73, 2014.

A. H. Jansen, M. Van-hal, I. C. Op-den-kelder, R. T. Meier, A. De-ruiter et al., Frequency of nuclear mutant huntingtin inclusion formation in neurons and glia is cell-type-specific, Glia, vol.65, pp.50-61, 2017.

B. G. Jenkins, W. J. Koroshetz, M. F. Beal, and B. R. Rosen, Evidence for impairment of energy metabolism in vivo in Huntington's disease using localized 1H NMR spectroscopy, Neurology, vol.43, pp.2689-2695, 1993.

I. Jeon, F. Cicchetti, G. Cisbani, S. Lee, E. Li et al., , 2016.

, Human-to-mouse prion-like propagation of mutant huntingtin protein, Acta Neuropathol, vol.132, pp.577-592

N. A. Jessen, A. S. Munk, I. Lundgaard, and M. Nedergaard, The Glymphatic System: A Beginner's Guide, Neurochem. Res, vol.40, pp.2583-2599, 2015.

J. Jiang, C. A. Ballinger, Y. Wu, Q. Dai, D. M. Cyr et al., CHIP is a Ubox-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation, J. Biol. Chem, vol.276, pp.42938-42944, 2001.

R. Jiang, B. Diaz-castro, L. L. Looger, and B. S. Khakh, Dysfunctional Calcium and Glutamate Signaling in Striatal Astrocytes from Huntington's Disease Model Mice, J. Neurosci, vol.36, pp.3453-3470, 2016.

M. Jimenez-sanchez, F. Licitra, B. R. Underwood, and D. C. Rubinsztein, Huntington's Disease: Mechanisms of Pathogenesis and Therapeutic Strategies, Cold Spring Harb Perspect Med, vol.7, 2017.

E. L. Jocoy, V. M. André, D. M. Cummings, S. P. Rao, N. Wu et al., Dissecting the contribution of individual receptor subunits to the enhancement of N-methyl-d-aspartate currents by dopamine D1 receptor activation in striatum, Front Syst Neurosci, vol.5, p.28, 2011.

J. Lin, C. C. Yu, K. Hatcher, A. Huang, T. W. Lee et al., Identification of diverse astrocyte populations and their malignant analogs, Nature Neuroscience, 2017.

B. E. Jones, Glia, adenosine, and sleep, Neuron, vol.61, pp.156-157, 2009.

K. Juenemann, C. Weisse, D. Reichmann, C. Kaether, C. F. Calkhoven et al., Modulation of mutant huntingtin N-terminal cleavage and its effect on aggregation and cell death, Neurotox Res, vol.20, pp.120-133, 2011.

K. Juenemann, S. Schipper-krom, A. Wiemhoefer, A. Kloss, A. Sanz-sanz et al., Expanded polyglutamine-containing N-terminal huntingtin fragments are entirely degraded by mammalian proteasomes, The Journal of Biological Chemistry, vol.288, pp.27068-27084, 2013.

K. Juenemann, A. Wiemhoefer, and E. A. Reits, Detection of ubiquitinated huntingtin species in intracellular aggregates, Front Mol Neurosci, vol.8, p.1, 2015.

K. Juenemann, A. H. Jansen, L. Van-riel, R. Merkx, M. P. Mulder et al., Dynamic recruitment of ubiquitin to mutant huntingtin inclusion bodies, p.1405, 2018.

Y. Jung, C. , and W. , Phagocytic Roles of Glial Cells in Healthy and Diseased Brains, Biomol Ther (Seoul), vol.26, pp.350-357, 2018.

Y. Kabeya, N. Mizushima, T. Ueno, A. Yamamoto, T. Kirisako et al., LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing, EMBO J, vol.19, pp.5720-5728, 2000.

K. Kacem, P. Lacombe, J. Seylaz, and G. Bonvento, Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: a confocal microscopy study, Glia, vol.23, pp.1-10, 1998.

V. Kakkar, C. Månsson, E. P. De-mattos, S. Bergink, M. Van-der-zwaag et al., The S/T-Rich Motif in the DNAJB6 Chaperone Delays Polyglutamine Aggregation and the Onset of Disease in a Mouse Model, Mol. Cell, vol.62, pp.272-283, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01345760

M. A. Kalchman, R. K. Graham, G. Xia, H. B. Koide, J. G. Hodgson et al., Huntingtin Is Ubiquitinated and Interacts with a Specific Ubiquitin-conjugating Enzyme, J. Biol. Chem, vol.271, pp.19385-19394, 1996.

L. S. Kaltenbach, E. Romero, R. R. Becklin, R. Chettier, R. Bell et al., Huntingtin interacting proteins are genetic modifiers of neurodegeneration, PLoS Genet, vol.3, p.82, 2007.

B. Kaltschmidt, D. Widera, and C. Kaltschmidt, Signaling via NF-kappaB in the nervous system, Biochimica et Biophysica Acta, vol.1745, pp.287-299, 2005.

V. Kaminskyy and B. Zhivotovsky, Proteases in autophagy, Biochim. Biophys. Acta, vol.1824, pp.44-50, 2012.

H. H. Kampinga and E. A. Craig, The HSP70 chaperone machinery: J proteins as drivers of functional specificity, Nat. Rev. Mol. Cell Biol, vol.11, pp.579-592, 2010.

W. Kang and J. M. Hebert, Signaling pathways in reactive astrocytes, a genetic perspective, Molecular Neurobiology, vol.43, pp.147-154, 2011.

J. Kassubek, F. D. Juengling, D. Ecker, and G. B. Landwehrmeyer, Thalamic atrophy in Huntington's disease co-varies with cognitive performance: a morphometric MRI analysis, Cereb. Cortex, vol.15, pp.846-853, 2005.

S. Kaushik and A. M. Cuervo, The coming of age of chaperone-mediated autophagy, Nat. Rev. Mol. Cell Biol, vol.19, pp.365-381, 2018.

S. Kaushik, A. C. Massey, N. Mizushima, and A. M. Cuervo, Constitutive activation of chaperone-mediated autophagy in cells with impaired macroautophagy, Mol. Biol. Cell, vol.19, pp.2179-2192, 2008.

R. Kayed, E. Head, J. L. Thompson, T. M. Mcintire, S. C. Milton et al., Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis, Science, vol.300, pp.486-489, 2003.

K. B. Kegel, A. R. Meloni, Y. Yi, Y. J. Kim, E. Doyle et al., Huntingtin is present in the nucleus, interacts with the transcriptional corepressor C-terminal binding protein, and represses transcription, J. Biol. Chem, vol.277, pp.7466-7476, 2002.

K. B. Kegel, E. Sapp, J. Yoder, B. Cuiffo, L. Sobin et al., Huntingtin associates with acidic phospholipids at the plasma membrane, J. Biol. Chem, vol.280, pp.36464-36473, 2005.

K. B. Kegel, E. Sapp, J. Alexander, P. Reeves, D. Bleckmann et al., Huntingtin cleavage product A forms in neurons and is reduced by gamma-secretase inhibitors, Mol Neurodegener, vol.5, p.58, 2010.

N. J. Kershaw, J. M. Murphy, N. P. Liau, L. N. Varghese, A. Laktyushin et al., SOCS3 binds specific receptor-JAK complexes to control cytokine signaling by direct kinase inhibition, Nature Structural & Molecular Biology, vol.20, pp.469-476, 2013.

H. Kettenmann and B. R. Ransom, The Concept of Neuroglia: A Historical Perspective, 2004.

N. Kettern, M. Dreiseidler, R. Tawo, and J. Höhfeld, Chaperone-assisted degradation: multiple paths to destruction, Biol. Chem, vol.391, pp.481-489, 2010.

B. S. Khakh and M. V. Sofroniew, Diversity of astrocyte functions and phenotypes in neural circuits, Nature Neuroscience, vol.18, pp.942-952, 2015.

B. S. Khakh, V. Beaumont, R. Cachope, I. Munoz-sanjuan, S. A. Goldman et al., Unravelling and Exploiting Astrocyte Dysfunction in Huntington's Disease, Trends Neurosci, vol.40, pp.422-437, 2017.

A. Khoshnan, J. Ko, E. E. Watkin, L. A. Paige, P. H. Reinhart et al., Activation of the IkappaB kinase complex and nuclear factor-kappaB contributes to mutant huntingtin neurotoxicity, The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, vol.24, pp.7999-8008, 2004.

R. Kiffin, S. Kaushik, M. Zeng, U. Bandyopadhyay, C. Zhang et al., Altered dynamics of the lysosomal receptor for chaperone-mediated autophagy with age, J. Cell. Sci, vol.120, pp.782-791, 2007.

J. Kim, H. J. Waldvogel, R. L. Faull, M. A. Curtis, and L. F. Nicholson, The RAGE receptor and its ligands are highly expressed in astrocytes in a grade-dependant manner in the striatum and subependymal layer in Huntington's disease, J. Neurochem, vol.134, pp.927-942, 2015.

S. Kim, E. A. Nollen, K. Kitagawa, V. P. Bindokas, and R. I. Morimoto, Polyglutamine protein aggregates are dynamic, Nat. Cell Biol, vol.4, pp.826-831, 2002.

Y. E. Kim, F. Hosp, F. Frottin, H. Ge, M. Mann et al., Soluble Oligomers of PolyQ-Expanded Huntingtin Target a Multiplicity of Key Cellular Factors, Mol. Cell, vol.63, pp.951-964, 2016.

Y. J. Kim, Y. Yi, E. Sapp, Y. Wang, B. Cuiffo et al., , 2001.

, Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington's disease brains, associate with membranes, and undergo calpain-dependent proteolysis, Proc. Natl. Acad. Sci. U.S.A, vol.98, pp.12784-12789

Y. J. Kim, E. Sapp, B. G. Cuiffo, L. Sobin, J. Yoder et al., Lysosomal proteases are involved in generation of N-terminal huntingtin fragments, Neurobiol. Dis, vol.22, pp.346-356, 2006.

S. Kimura, T. Noda, Y. , and T. , Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes, Cell Struct. Funct, vol.33, pp.109-122, 2008.

T. Kirkegaard, J. , and M. , Lysosomal involvement in cell death and cancer, Biochim. Biophys. Acta, vol.1793, pp.746-754, 2009.

T. P. Knowles, M. Vendruscolo, and C. M. Dobson, The amyloid state and its association with protein misfolding diseases, Nat. Rev. Mol. Cell Biol, vol.15, pp.384-396, 2014.

R. C. Koehler, R. J. Roman, and D. R. Harder, Astrocytes and the regulation of cerebral blood flow, Trends Neurosci, vol.32, pp.160-169, 2009.

H. Koga, M. Martinez-vicente, F. Macian, V. V. Verkhusha, and A. M. Cuervo, A photoconvertible fluorescent reporter to track chaperone-mediated autophagy, Nat Commun, vol.2, p.386, 2011.

H. Koga, M. Martinez-vicente, E. Arias, S. Kaushik, D. Sulzer et al., , 2011.

, Constitutive upregulation of chaperone-mediated autophagy in Huntington's disease, J. Neurosci, vol.31, pp.18492-18505

M. Koike, M. Shibata, J. Ezaki, C. Peters, P. Saftig et al., , 2013.

, Differences in expression patterns of cathepsin C/dipeptidyl peptidase I in normal, pathological and aged mouse central nervous system, Eur. J. Neurosci, vol.37, pp.816-830

N. Kolli, M. Lu, P. Maiti, J. Rossignol, and G. L. Dunbar, CRISPR-Cas9 Mediated Gene-Silencing of the Mutant Huntingtin Gene in an In Vitro Model of Huntington's Disease, Int J Mol Sci, vol.18, 2017.

M. Komatsu, S. Waguri, T. Chiba, S. Murata, J. Iwata et al., Loss of autophagy in the central nervous system causes neurodegeneration in mice, Nature, vol.441, pp.880-884, 2006.

H. B. Kordasiewicz, L. M. Stanek, E. V. Wancewicz, C. Mazur, M. M. Mcalonis et al., Sustained therapeutic reversal of Huntington's disease by transient repression of huntingtin synthesis, Neuron, vol.74, pp.1031-1044, 2012.

S. Koyuncu, A. Fatima, R. Gutierrez-garcia, and D. Vilchez, Proteostasis of Huntingtin in Health and Disease, International Journal of Molecular Sciences, vol.18, p.1568, 2017.

B. Kremer, P. Goldberg, S. E. Andrew, J. Theilmann, H. Telenius et al., A worldwide study of the Huntington's disease mutation. The sensitivity and specificity of measuring CAG repeats, N. Engl. J. Med, vol.330, pp.1401-1406, 1994.

E. Kuang, J. Qi, and Z. Ronai, Emerging roles of E3 ubiquitin ligases in autophagy, Trends Biochem. Sci, vol.38, pp.453-460, 2013.

S. Kuemmerle, C. A. Gutekunst, A. M. Klein, X. J. Li, S. H. Li et al., Huntington aggregates may not predict neuronal death in Huntington's disease, Ann. Neurol, vol.46, pp.842-849, 1999.

S. W. Kuffler, Neuroglial cells: physiological properties and a potassium mediated effect of neuronal activity on the glial membrane potential, Proc. R. Soc. Lond., B, Biol. Sci, vol.168, pp.1-21, 1967.

K. D. Küppenbender, D. G. Standaert, T. J. Feuerstein, J. B. Penney, A. B. Young et al., Expression of NMDA receptor subunit mRNAs in neurochemically identified projection and interneurons in the human striatum, J. Comp. Neurol, vol.419, pp.407-421, 2000.

W. Kwan, U. Träger, D. Davalos, A. Chou, J. Bouchard et al., Mutant huntingtin impairs immune cell migration in Huntington disease, J. Clin. Invest, vol.122, pp.4737-4747, 2012.

J. Labbadia and R. I. Morimoto, Huntington's disease: underlying molecular mechanisms and emerging concepts, Trends Biochem. Sci, vol.38, pp.378-385, 2013.

J. Labbadia, S. S. Novoselov, J. S. Bett, A. Weiss, P. Paganetti et al., Suppression of protein aggregation by chaperone modification of high molecular weight complexes, Brain, vol.135, pp.1180-1196, 2012.

R. E. Lackie, A. Maciejewski, V. G. Ostapchenko, J. Marques-lopes, W. Choy et al., The Hsp70/Hsp90 Chaperone Machinery in Neurodegenerative Diseases, Front Neurosci, vol.11, p.254, 2017.

G. C. Lander, E. Estrin, M. E. Matyskiela, C. Bashore, E. Nogales et al., Complete subunit architecture of the proteasome regulatory particle, Nature, vol.482, pp.186-191, 2012.

P. Langfelder, J. P. Cantle, D. Chatzopoulou, N. Wang, F. Gao et al., Integrated genomics and proteomics define huntingtin CAG lengthdependent networks in mice, Nat. Neurosci, vol.19, pp.623-633, 2016.

S. Lavisse, M. Guillermier, A. Hérard, F. Petit, M. Delahaye et al., Reactive astrocytes overexpress TSPO and are detected by TSPO positron emission tomography imaging, J. Neurosci, vol.32, pp.10809-10818, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02110993

M. C. Lee, E. A. Miller, J. Goldberg, L. Orci, and R. Schekman, Bi-directional protein transport between the ER and Golgi, Annu. Rev. Cell Dev. Biol, vol.20, pp.87-123, 2004.

J. Legleiter, G. P. Lotz, J. Miller, J. Ko, C. Ng et al., Monoclonal antibodies recognize distinct conformational epitopes formed by polyglutamine in a mutant huntingtin fragment, J. Biol. Chem, vol.284, pp.21647-21658, 2009.

J. Leitman, F. Ulrich-hartl, and G. Z. Lederkremer, Soluble forms of polyQ-expanded huntingtin rather than large aggregates cause endoplasmic reticulum stress, Nat Commun, vol.4, p.2753, 2013.

M. Lenhossek, Der feinere Bau des Nervensystems im Lichte neuester Forschung, p.p, 1893.

V. Leoni and C. Caccia, The impairment of cholesterol metabolism in Huntington disease, Biochim. Biophys. Acta, vol.1851, pp.1095-1105, 2015.

V. Leoni, C. Mariotti, S. J. Tabrizi, M. Valenza, E. J. Wild et al., Plasma 24S-hydroxycholesterol and caudate MRI in premanifest and early Huntington's disease, Brain, vol.131, pp.2851-2859, 2008.

V. Leoni, J. D. Long, J. A. Mills, S. Di-donato, J. S. Paulsen et al., , 2013.

, Plasma 24S-hydroxycholesterol correlation with markers of Huntington disease progression, Neurobiol. Dis, vol.55, pp.37-43

A. C. Lepore, C. Dejea, J. Carmen, B. Rauck, D. A. Kerr et al., , 2008.

, Selective ablation of proliferating astrocytes does not affect disease outcome in either acute or chronic models of motor neuron degeneration, Experimental Neurology, vol.211, pp.423-432

R. P. Lerner, C. Trejo-martinez-ldel, C. Zhu, M. F. Chesselet, and M. A. Hickey, Striatal atrophy and dendritic alterations in a knock-in mouse model of Huntington's disease, Brain Research Bulletin, vol.87, pp.571-578, 2012.

M. S. Levine, G. J. Klapstein, A. Koppel, E. Gruen, C. Cepeda et al., Enhanced sensitivity to N-methyl-D-aspartate receptor activation in transgenic and knockin mouse models of Huntington's disease, J. Neurosci. Res, vol.58, pp.515-532, 1999.

D. E. Levy, J. E. Darnell, and . Jr, Stats: transcriptional control and biological impact, Nature Reviews. Molecular Cell Biology, vol.3, pp.651-662, 2002.

S. H. Li, C. A. Gutekunst, S. M. Hersch, and X. J. Li, Interaction of huntingtin-associated protein with dynactin P150Glued, J. Neurosci, vol.18, pp.1261-1269, 1998.

Y. Li, D. Yui, B. W. Luikart, R. M. Mckay, Y. Li et al., Conditional ablation of brain-derived neurotrophic factor-TrkB signaling impairs striatal neuron development, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.15491-15496, 2012.

C. M. Liberto, P. J. Albrecht, L. M. Herx, V. W. Yong, and S. W. Levison, Pro-regenerative properties of cytokine-activated astrocytes, J. Neurochem, vol.89, pp.1092-1100, 2004.

S. A. Liddelow and B. A. Barres, Reactive Astrocytes: Production, Function, and Therapeutic Potential, Immunity, vol.46, pp.957-967, 2017.

S. A. Liddelow, K. A. Guttenplan, L. E. Clarke, F. C. Bennett, C. J. Bohlen et al., Neurotoxic reactive astrocytes are induced by activated microglia, Nature, vol.541, pp.481-487, 2017.

J. C. Lievens, B. Woodman, A. Mahal, O. Spasic-boscovic, D. Samuel et al., Impaired glutamate uptake in the R6 Huntington's disease transgenic mice, Neurobiology of Disease, vol.8, pp.807-821, 2001.

J. C. Lievens, T. Rival, M. Iche, H. Chneiweiss, and S. Birman, Expanded polyglutamine peptides disrupt EGF receptor signaling and glutamate transporter expression in Drosophila, Human Molecular Genetics, vol.14, pp.713-724, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00118469

A. Lilienbaum, Relationship between the proteasomal system and autophagy, Int J Biochem Mol Biol, vol.4, pp.1-26, 2013.

C. H. Lin, S. Tallaksen-greene, W. M. Chien, J. A. Cearley, W. S. Jackson et al., Neurological abnormalities in a knock-in mouse model of Huntington's disease, Hum. Mol. Genet, vol.10, pp.137-144, 2001.

F. Lin, J. Wu, Y. Wang, and Z. Qin, Huntingtin cleavage induced by thrombin in vitro, Acta Biochim. Biophys. Sin. (Shanghai), vol.39, pp.15-18, 2007.

L. Lin, Z. Jin, H. Tan, Q. Xu, T. Peng et al., Atypical ubiquitination by E3 ligase WWP1 inhibits the proteasome-mediated degradation of mutant huntingtin, Brain Res, vol.1643, pp.103-112, 2016.

Z. Lin, D. Zhao, Y. , and L. , Interaction between misfolded PrP and the ubiquitinproteasome system in prion-mediated neurodegeneration, Acta Biochim Biophys Sin (Shanghai), vol.45, pp.477-484, 2013.

G. Liot, D. Zala, P. Pla, G. Mottet, M. Piel et al., Mutant Huntingtin alters retrograde transport of TrkB receptors in striatal dendrites, J. Neurosci, vol.33, pp.6298-6309, 2013.

G. Liot, J. Valette, J. Pépin, J. Flament, and E. Brouillet, Energy defects in Huntington's disease: Why "in vivo" evidence matters, Biochem. Biophys. Res. Commun, vol.483, pp.1084-1095, 2017.

C. Liu, Y. Lin, Y. Chen, C. Chen, L. Pang et al., Cul3-KLHL20 Ubiquitin Ligase Governs the Turnover of ULK1 and VPS34 Complexes to Control Autophagy Termination, Mol. Cell, vol.61, pp.84-97, 2016.

Y. Liu, T. P. Wong, M. Aarts, A. Rooyakkers, L. Liu et al., NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo, J. Neurosci, vol.27, pp.2846-2857, 2007.

J. P. Liuzzo, S. S. Petanceska, D. , and L. A. , Neurotrophic factors regulate cathepsin S in macrophages and microglia: A role in the degradation of myelin basic protein and amyloid beta peptide, Mol. Med, vol.5, pp.334-343, 1999.

C. S. Lobsiger, C. , and D. W. , Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease, Nature Neuroscience, vol.10, pp.1355-1360, 2007.

D. Lovatt, U. Sonnewald, H. S. Waagepetersen, A. Schousboe, W. He et al., The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex, The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, vol.27, pp.12255-12266, 2007.

A. Lunkes, K. S. Lindenberg, L. Ben-haïem, C. Weber, D. Devys et al., Proteases acting on mutant huntingtin generate cleaved products that differentially build up cytoplasmic and nuclear inclusions, Mol. Cell, vol.10, pp.259-269, 2002.

M. A. Lynch-day and D. J. Klionsky, The Cvt pathway as a model for selective autophagy, FEBS Lett, vol.584, pp.1359-1366, 2010.

P. Maiti, J. Manna, S. Veleri, and S. Frautschy, Molecular chaperone dysfunction in neurodegenerative diseases and effects of curcumin, Biomed Res Int, p.495091, 2014.

H. Malkki, Huntington disease: Selective deactivation of Huntington disease mutant allele by CRISPR-Cas9 gene editing, Nat Rev Neurol, vol.12, pp.614-615, 2016.

M. Mandal, J. Wei, P. Zhong, J. Cheng, L. J. Duffney et al., Impaired alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking and function by mutant huntingtin, J. Biol. Chem, vol.286, pp.33719-33728, 2011.

L. Mangiarini, K. Sathasivam, M. Seller, B. Cozens, A. Harper et al., Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice, Cell, vol.87, pp.493-506, 1996.

L. Mangiarini, K. Sathasivam, A. Mahal, R. Mott, M. Seller et al., Instability of highly expanded CAG repeats in mice transgenic for the Huntington's disease mutation, Nature Genetics, vol.15, pp.197-200, 1997.

C. Månsson, V. Kakkar, E. Monsellier, Y. Sourigues, J. Härmark et al., DNAJB6 is a peptide-binding chaperone which can suppress amyloid fibrillation of polyglutamine peptides at substoichiometric molar ratios, Cell Stress Chaperones, vol.19, pp.227-239, 2014.

D. Marcellin, D. Abramowski, D. Young, J. Richter, A. Weiss et al., Fragments of HdhQ150 mutant huntingtin form a soluble oligomer pool that declines with aggregate deposition upon aging, PLoS ONE, vol.7, p.44457, 2012.

M. Sousa, C. , H. , and S. , Huntingtin: here, there, everywhere!, J Huntingtons Dis, vol.2, pp.395-403, 2013.

D. D. Martin, S. Ladha, D. E. Ehrnhoefer, and M. R. Hayden, Autophagy in Huntington disease and huntingtin in autophagy, Trends in Neurosciences, vol.38, pp.26-35, 2015.

E. Martín-aparicio, A. Yamamoto, F. Hernández, R. Hen, J. Avila et al., , 2001.

, Proteasomal-dependent aggregate reversal and absence of cell death in a conditional mouse model of Huntington's disease, J. Neurosci, vol.21, pp.8772-8781

M. Martinez-vicente, Z. Talloczy, E. Wong, G. Tang, H. Koga et al., Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease, Nature Neuroscience, vol.13, pp.567-576, 2010.

A. C. Massey, S. Kaushik, G. Sovak, R. Kiffin, and A. M. Cuervo, Consequences of the selective blockage of chaperone-mediated autophagy, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.5805-5810, 2006.

A. C. Massey, A. Follenzi, R. Kiffin, C. Zhang, and A. M. Cuervo, Early cellular changes after blockage of chaperone-mediated autophagy, Autophagy, vol.4, pp.442-456, 2008.

M. P. Mattson and S. Camandola, NF-kappaB in neuronal plasticity and neurodegenerative disorders, The Journal of Clinical Investigation, vol.107, pp.247-254, 2001.

M. P. Mattson and M. K. Meffert, Roles for NF-kappaB in nerve cell survival, plasticity, and disease, Cell Death Differ, vol.13, pp.852-860, 2006.

V. Matyash and H. Kettenmann, Heterogeneity in astrocyte morphology and physiology, Brain Research Reviews, vol.63, pp.2-10, 2010.

D. H. Mauch, K. Nagler, S. Schumacher, C. Goritz, E. C. Muller et al., CNS synaptogenesis promoted by glia-derived cholesterol, Science, vol.294, pp.1354-1357, 2001.

M. P. Mayer and B. Bukau, Hsp70 chaperones: cellular functions and molecular mechanism, Cell. Mol. Life Sci, vol.62, pp.670-684, 2005.

G. Mazarei, S. J. Neal, K. Becanovic, R. Luthi-carter, E. M. Simpson et al., Expression analysis of novel striatal-enriched genes in Huntington disease, Hum. Mol. Genet, vol.19, pp.609-622, 2010.

P. Mccolgan and S. J. Tabrizi, Huntington's disease: a clinical review, Eur. J. Neurol, vol.25, pp.24-34, 2018.

A. Mcgarry, M. Mcdermott, K. Kieburtz, E. A. De-blieck, F. Beal et al., A randomized, double-blind, placebo-controlled trial of coenzyme Q10 in Huntington disease, Neurology, vol.88, pp.152-159, 2017.

J. R. Mcguire, J. Rong, S. Li, and X. Li, Interaction of Huntingtin-associated protein-1 with kinesin light chain: implications in intracellular trafficking in neurons, J. Biol. Chem, vol.281, pp.3552-3559, 2006.

S. U. Mckinstry, Y. B. Karadeniz, A. K. Worthington, V. Y. Hayrapetyan, M. I. Ozlu et al., Huntingtin is required for normal excitatory synapse development in cortical and striatal circuits, The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, vol.34, pp.9455-9472, 2014.

L. B. Menalled, Knock-in mouse models of Huntington's disease, NeuroRx, vol.2, pp.465-470, 2005.

L. B. Menalled and M. Chesselet, Mouse models of Huntington's disease, Trends Pharmacol. Sci, vol.23, pp.32-39, 2002.

L. B. Menalled, J. D. Sison, I. Dragatsis, S. Zeitlin, and M. F. Chesselet, Time course of early motor and neuropathological anomalies in a knock-in mouse model of Huntington's disease with 140 CAG repeats, The Journal of Comparative Neurology, vol.465, pp.11-26, 2003.

L. B. Menalled, A. E. Kudwa, S. Miller, J. Fitzpatrick, J. Watson-johnson et al., Comprehensive behavioral and molecular characterization of a new knock-in mouse model of Huntington's disease: zQ175, PloS One, vol.7, p.49838, 2012.

L. M. Mende-mueller, T. Toneff, S. R. Hwang, M. F. Chesselet, and V. Y. Hook, Tissue-specific proteolysis of Huntingtin (htt) in human brain: evidence of enhanced levels of N-and C-terminal htt fragments in Huntington's disease striatum, J. Neurosci, vol.21, pp.1830-1837, 2001.

V. Menet, M. Gimenez-y-ribotta, N. Chauvet, M. J. Drian, J. Lannoy et al., Inactivation of the glial fibrillary acidic protein gene, but not that of vimentin, improves neuronal survival and neurite growth by modifying adhesion molecule expression, The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, vol.21, pp.6147-6158, 2001.

T. A. Mestre, Recent advances in the therapeutic development for Huntington disease, Parkinsonism Relat. Disord, 2018.

C. Meunier, N. Merienne, C. Jollé, N. Déglon, and L. Pellerin, Astrocytes are key but indirect contributors to the development of the symptomatology and pathophysiology of Huntington's disease, Glia, vol.64, pp.1841-1856, 2016.

A. A. Michels, B. Kanon, O. Bensaude, and H. H. Kampinga, Heat shock protein (Hsp) 40 mutants inhibit Hsp70 in mammalian cells, J. Biol. Chem, vol.274, pp.36757-36763, 1999.

J. Middeldorp and E. M. Hol, GFAP in health and disease, Prog. Neurobiol, vol.93, pp.421-443, 2011.

M. Mielcarek, C. Landles, A. Weiss, A. Bradaia, T. Seredenina et al., HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration, PLoS Biol, vol.11, p.1001717, 2013.

D. Mijaljica, M. Prescott, and R. J. Devenish, Microautophagy in mammalian cells: revisiting a 40-year-old conundrum, Autophagy, vol.7, pp.673-682, 2011.

J. P. Miller, J. Holcomb, I. Al-ramahi, M. De-haro, J. Gafni et al., Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington's disease, Neuron, vol.67, pp.199-212, 2010.

A. J. Milnerwood, R. , and L. A. , Early synaptic pathophysiology in neurodegeneration: insights from Huntington's disease, Trends Neurosci, vol.33, pp.513-523, 2010.

T. Mishima and H. Hirase, In vivo intracellular recording suggests that gray matter astrocytes in mature cerebral cortex and hippocampus are electrophysiologically homogeneous, J. Neurosci, vol.30, pp.3093-3100, 2010.

M. K. Mishra, J. Wang, M. B. Keough, Y. Fan, C. Silva et al., Laquinimod reduces neuroaxonal injury through inhibiting microglial activation, Ann Clin Transl Neurol, vol.1, pp.409-422, 2014.

N. Miyamoto, T. Maki, A. Shindo, A. C. Liang, M. Maeda et al., Astrocytes Promote Oligodendrogenesis after White Matter Damage via Brain-Derived Neurotrophic Factor, J. Neurosci, vol.35, pp.14002-14008, 2015.

C. Mo, A. J. Hannan, and T. Renoir, Environmental factors as modulators of neurodegeneration: insights from gene-environment interactions in Huntington's disease, Neurosci Biobehav Rev, vol.52, pp.178-192, 2015.

F. Mochel and R. G. Haller, Energy deficit in Huntington disease: why it matters, J. Clin. Invest, vol.121, pp.493-499, 2011.

F. Mochel, P. Charles, F. Seguin, J. Barritault, C. Coussieu et al., Early energy deficit in Huntington disease: identification of a plasma biomarker traceable during disease progression, PLoS ONE, vol.2, p.647, 2007.

A. M. Monteys, S. A. Ebanks, M. S. Keiser, and B. L. Davidson, CRISPR/Cas9 Editing of the Mutant Huntingtin Allele In Vitro and In Vivo, Mol. Ther, vol.25, pp.12-23, 2017.

G. A. Morfini, Y. You, S. L. Pollema, A. Kaminska, K. Liu et al., Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin, Nat. Neurosci, vol.12, pp.864-871, 2009.

R. Morigaki and S. Goto, Striatal Vulnerability in Huntington's Disease: Neuroprotection Versus Neurotoxicity, Brain Sci, vol.7, 2017.

R. I. Morimoto, The heat shock response: systems biology of proteotoxic stress in aging and disease, Cold Spring Harb. Symp. Quant. Biol, vol.76, pp.91-99, 2011.

P. J. Muchowski and J. L. Wacker, Modulation of neurodegeneration by molecular chaperones, Nat. Rev. Neurosci, vol.6, pp.11-22, 2005.

P. J. Muchowski, G. Schaffar, A. Sittler, E. E. Wanker, M. K. Hayer-hartl et al., , 2000.

, Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils, Proc. Natl. Acad. Sci. U.S.A, vol.97, pp.7841-7846

M. P. Mulder, K. Witting, I. Berlin, J. N. Pruneda, K. Wu et al., A cascading activity-based probe sequentially targets E1-E2-E3 ubiquitin enzymes, Nat. Chem. Biol, vol.12, pp.523-530, 2016.

R. H. Myers, Huntington's disease genetics, NeuroRx, vol.1, pp.255-262, 2004.

F. Nafar, J. B. Williams, and K. M. Mearow, Astrocytes release HspB1 in response to amyloid-? exposure in vitro, J. Alzheimers Dis, vol.49, pp.251-263, 2016.

Y. Nagai, N. Fujikake, K. Ohno, H. Higashiyama, H. A. Popiel et al., Prevention of polyglutamine oligomerization and neurodegeneration by the peptide inhibitor QBP1 in Drosophila, Hum. Mol. Genet, vol.12, pp.1253-1259, 2003.

M. A. Nance, Genetic counseling and testing for Huntington's disease: A historical review, Am. J. Med. Genet. B Neuropsychiatr. Genet, vol.174, pp.75-92, 2017.

J. Nasir, S. B. Floresco, J. R. O'kusky, V. M. Diewert, J. M. Richman et al., Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes, Cell, vol.81, pp.811-823, 1995.

M. Nedergaard, T. Takano, and A. J. Hansen, Beyond the role of glutamate as a neurotransmitter, Nature Reviews. Neuroscience, vol.3, pp.748-755, 2002.

M. Nedergaard, B. Ransom, and S. A. Goldman, New roles for astrocytes: redefining the functional architecture of the brain, Trends Neurosci, vol.26, pp.523-530, 2003.

G. D. Nguyen, S. Gokhan, A. E. Molero, and M. F. Mehler, Selective roles of normal and mutant huntingtin in neural induction and early neurogenesis, PLoS ONE, vol.8, p.64368, 2013.

F. Niccolini, S. Haider, T. Reis-marques, N. Muhlert, A. C. Tziortzi et al., Altered PDE10A expression detectable early before symptomatic onset in Huntington's disease, Brain, vol.138, pp.3016-3029, 2015.

V. Niemelä, J. Burman, K. Blennow, H. Zetterberg, A. Larsson et al., Cerebrospinal fluid sCD27 levels indicate active T cell-mediated inflammation in premanifest Huntington's disease, PLoS ONE, vol.13, p.193492, 2018.

A. Nimmerjahn, F. Kirchhoff, and F. Helmchen, Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo, Science, vol.308, pp.1314-1318, 2005.

P. C. Nopoulos, Huntington disease: a single-gene degenerative disorder of the striatum, Dialogues Clin Neurosci, vol.18, pp.91-98, 2016.

F. C. Nucifora, M. Sasaki, M. F. Peters, H. Huang, J. K. Cooper et al., Interference by huntingtin and atrophin-1 with cbpmediated transcription leading to cellular toxicity, Science, vol.291, pp.2423-2428, 2001.

S. E. Nwaobi, V. A. Cuddapah, K. C. Patterson, A. C. Randolph, and M. L. Olsen, The role of glial-specific Kir4.1 in normal and pathological states of the CNS, Acta Neuropathol, vol.132, pp.1-21, 2016.

N. A. Oberheim, G. F. Tian, X. Han, W. Peng, T. Takano et al., Loss of astrocytic domain organization in the epileptic brain, The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, vol.28, pp.3264-3276, 2008.

N. A. Oberheim, T. Takano, X. Han, W. He, J. H. Lin et al., Uniquely hominid features of adult human astrocytes, J. Neurosci, vol.29, pp.3276-3287, 2009.

N. A. Oberheim, S. A. Goldman, and M. Nedergaard, Heterogeneity of astrocytic form and function, Methods in Molecular Biology, vol.814, pp.23-45, 2012.

J. Ochaba, T. Lukacsovich, G. Csikos, S. Zheng, J. Margulis et al., Potential function for the Huntingtin protein as a scaffold for selective autophagy, Proc. Natl. Acad. Sci. U.S.A, vol.111, pp.16889-16894, 2014.

S. Okamoto, M. A. Pouladi, M. Talantova, D. Yao, P. Xia et al., Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin, Nature Medicine, vol.15, pp.1407-1413, 2009.

J. R. O'kusky, J. Nasir, F. Cicchetti, A. Parent, and M. R. Hayden, Neuronal degeneration in the basal ganglia and loss of pallido-subthalamic synapses in mice with targeted disruption of the Huntington's disease gene, Brain Res, vol.818, pp.468-479, 1999.

A. O. Oliveira, A. Osmand, T. F. Outeiro, P. J. Muchowski, and S. Finkbeiner, ?B-Crystallin overexpression in astrocytes modulates the phenotype of the BACHD mouse model of Huntington's disease, Hum. Mol. Genet, vol.25, pp.1677-1689, 2016.

J. G. O'rourke, J. R. Gareau, J. Ochaba, W. Song, T. Raskó et al., SUMO-2 and PIAS1 modulate insoluble mutant huntingtin protein accumulation, Cell Rep, vol.4, pp.362-375, 2013.

A. L. Orr, S. Li, C. Wang, H. Li, J. Wang et al., N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking, J. Neurosci, vol.28, pp.2783-2792, 2008.

A. L. Orr, S. Li, C. Wang, H. Li, J. Wang et al., N-Terminal Mutant Huntingtin Associates with Mitochondria and Impairs Mitochondrial Trafficking, J. Neurosci, vol.28, pp.2783-2792, 2008.

M. Orre, W. Kamphuis, S. Dooves, L. Kooijman, E. T. Chan et al., Reactive glia show increased immunoproteasome activity in Alzheimer's disease, Brain : A Journal of Neurology, vol.136, pp.1415-1431, 2013.

M. Orre, W. Kamphuis, L. M. Osborn, A. H. Jansen, L. Kooijman et al., Isolation of glia from Alzheimer's mice reveals inflammation and dysfunction, Neurobiology of Aging, 2014.

Z. Ortega and J. J. Lucas, Ubiquitin-proteasome system involvement in Huntington's disease, Frontiers in Molecular Neuroscience, vol.7, p.77, 2014.

Z. Ortega, M. Diaz-hernandez, and J. J. Lucas, Is the ubiquitin-proteasome system impaired in Huntington's disease? Cellular and Molecular Life Sciences : CMLS 64, pp.2245-2257, 2007.

S. Palfi, E. Brouillet, B. Jarraya, J. Bloch, C. Jan et al., Expression of mutated huntingtin fragment in the putamen is sufficient to produce abnormal movement in non-human primates, Molecular Therapy : The Journal of the American Society of Gene Therapy, vol.15, pp.1444-1451, 2007.

A. Panatier, D. T. Theodosis, J. P. Mothet, B. Touquet, L. Pollegioni et al.,

, Glia-derived D-serine controls NMDA receptor activity and synaptic memory, Cell, vol.125, pp.775-784

S. Pankiv, T. H. Clausen, T. Lamark, A. Brech, J. Bruun et al., p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy, J. Biol. Chem, vol.282, pp.24131-24145, 2007.

A. V. Panov, C. Gutekunst, B. R. Leavitt, M. R. Hayden, J. R. Burke et al., Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines, Nat. Neurosci, vol.5, pp.731-736, 2002.

M. Papoutsi, I. Labuschagne, S. J. Tabrizi, and J. C. Stout, The cognitive burden in Huntington's disease: pathology, phenotype, and mechanisms of compensation, Mov. Disord, vol.29, pp.673-683, 2014.

C. Park and A. M. Cuervo, Selective autophagy: talking with the UPS, Cell Biochem. Biophys, vol.67, pp.3-13, 2013.

M. P. Parsons, M. P. Vanni, C. L. Woodard, R. Kang, T. H. Murphy et al., Realtime imaging of glutamate clearance reveals normal striatal uptake in Huntington disease mouse models, Nat Commun, vol.7, p.11251, 2016.

S. Patassini, P. Begley, J. Xu, S. J. Church, S. J. Reid et al., Metabolite mapping reveals severe widespread perturbation of multiple metabolic processes in Huntington's disease human brain, Biochim. Biophys. Acta, vol.1862, pp.1650-1662, 2016.

J. S. Paulsen, J. D. Long, H. J. Johnson, E. H. Aylward, C. A. Ross et al., Clinical and Biomarker Changes in Premanifest Huntington Disease Show Trial Feasibility: A Decade of the PREDICT-HD Study, Front Aging Neurosci, vol.6, p.78, 2014.

N. Pavese, A. Gerhard, Y. F. Tai, A. K. Ho, F. Turkheimer et al., Microglial activation correlates with severity in Huntington disease: a clinical and PET study, Neurology, vol.66, pp.1638-1643, 2006.

M. M. Pearce, E. J. Spartz, W. Hong, L. Luo, and R. R. Kopito, Prion-like transmission of neuronal huntingtin aggregates to phagocytic glia in the Drosophila brain, Nature Communications, vol.6, p.6768, 2015.

E. Pecho-vrieseling, C. Rieker, S. Fuchs, D. Bleckmann, M. S. Esposito et al., Transneuronal propagation of mutant huntingtin contributes to non-cell autonomous pathology in neurons, Nature Neuroscience, vol.17, pp.1064-1072, 2014.

L. Pellerin, A. Bouzier-sore, A. Aubert, S. Serres, M. Merle et al., Activity-dependent regulation of energy metabolism by astrocytes: an update, Glia, vol.55, pp.1251-1262, 2007.

J. Pépin, L. Francelle, M. Carrillo-de-sauvage, L. De-longprez, P. Gipchtein et al., In vivo imaging of brain glutamate defects in a knock-in mouse model of Huntington's disease, Neuroimage, vol.139, pp.53-64, 2016.

M. Perluigi, H. F. Poon, W. Maragos, W. M. Pierce, J. B. Klein et al., Proteomic analysis of protein expression and oxidative modification in r6/2 transgenic mice: a model of Huntington disease, Mol. Cell Proteomics, vol.4, pp.1849-1861, 2005.

V. Perrin, E. Régulier, T. Abbas-terki, R. Hassig, E. Brouillet et al., Neuroprotection by Hsp104 and Hsp27 in lentiviral-based rat models of Huntington's disease, Mol. Ther, vol.15, pp.903-911, 2007.

A. Petersén and M. Björkqvist, Hypothalamic-endocrine aspects in Huntington's disease, Eur. J. Neurosci, vol.24, pp.961-967, 2006.

C. Peters-libeu, Y. Newhouse, P. Krishnan, K. Cheung, E. Brooks et al., Crystallization and diffraction properties of the Fab fragment of 3B5H10, an antibody specific for disease-causing polyglutamine stretches, Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, vol.61, pp.1065-1068, 2005.

F. Petrelli and P. Bezzi, Novel insights into gliotransmitters, Curr Opin Pharmacol, vol.26, pp.138-145, 2016.

F. W. Pfrieger, Role of glial cells in the formation and maintenance of synapses, Brain Research Reviews, vol.63, pp.39-46, 2010.

F. W. Pfrieger and N. Ungerer, Cholesterol metabolism in neurons and astrocytes, Prog. Lipid Res, vol.50, pp.357-371, 2011.

C. M. Pickart, Mechanisms Underlying Ubiquitination, Annual Review of Biochemistry, vol.70, pp.503-533, 2001.

K. Pierzynowska, L. Gaffke, Z. Cyske, M. Puchalski, E. Rintz et al., Autophagy stimulation as a promising approach in treatment of neurodegenerative diseases, 2018.

A. Pi?lar and J. Kos, Cysteine cathepsins in neurological disorders, Mol. Neurobiol, vol.49, pp.1017-1030, 2014.

A. Plaza-zabala, V. Sierra-torre, and A. Sierra, Autophagy and Microglia: Novel Partners in Neurodegeneration and Aging, Int J Mol Sci, vol.18, 2017.

B. A. Plog and M. Nedergaard, The Glymphatic System in Central Nervous System Health and Disease: Past, Present, and Future, Annu Rev Pathol, vol.13, pp.379-394, 2018.

M. A. Poirier, H. Li, J. Macosko, S. Cai, M. Amzel et al., Huntingtin spheroids and protofibrils as precursors in polyglutamine fibrilization, J. Biol. Chem, vol.277, pp.41032-41037, 2002.

M. Politis, N. Lahiri, F. Niccolini, P. Su, K. Wu et al., Increased central microglial activation associated with peripheral cytokine levels in premanifest Huntington's disease gene carriers, Neurobiol. Dis, vol.83, pp.115-121, 2015.

M. Ponpuak, M. A. Mandell, T. Kimura, S. Chauhan, C. Cleyrat et al., Secretory autophagy. Curr. Opin. Cell Biol, vol.35, pp.106-116, 2015.

H. A. Popiel, T. Takeuchi, H. Fujita, K. Yamamoto, C. Ito et al., Hsp40 gene therapy exerts therapeutic effects on polyglutamine disease mice via a non-cell autonomous mechanism, PLoS ONE, vol.7, p.51069, 2012.

M. A. Pouladi, A. J. Morton, and M. R. Hayden, Choosing an animal model for the study of Huntington's disease, Nat. Rev. Neurosci, vol.14, pp.708-721, 2013.

W. J. Powers, T. O. Videen, J. Markham, L. Mcgee-minnich, J. V. Antenor-dorsey et al., Selective defect of in vivo glycolysis in early Huntington's disease striatum, Proc. Natl. Acad. Sci. U.S.A, vol.104, pp.2945-2949, 2007.

X. S. Puente, L. M. Sánchez, C. M. Overall, and C. López-otín, Human and mouse proteases: a comparative genomic approach, Nat. Rev. Genet, vol.4, pp.544-558, 2003.

L. Qi, X. Zhang, J. Wu, F. Lin, J. Wang et al., The role of chaperone-mediated autophagy in huntingtin degradation, PLoS ONE, vol.7, p.46834, 2012.

Z. Qin and Z. Gu, Huntingtin processing in pathogenesis of Huntington disease, Acta Pharmacol. Sin, vol.25, pp.1243-1249, 2004.

O. W. Quarrell, M. A. Nance, P. Nopoulos, J. S. Paulsen, J. A. Smith et al., Managing juvenile Huntington's disease, Neurodegener Dis Manag, vol.3, 2013.

S. K. Radhakrishnan, C. S. Lee, P. Young, A. Beskow, J. Y. Chan et al., Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells, Mol Cell, vol.38, pp.17-28, 2010.

Y. M. Ramdzan, R. M. Nisbet, J. Miller, S. Finkbeiner, A. F. Hill et al., , 2010.

, Conformation sensors that distinguish monomeric proteins from oligomers in live cells, Chem. Biol, vol.17, pp.371-379

Y. M. Ramdzan, M. M. Trubetskov, A. R. Ormsby, E. A. Newcombe, X. Sui et al., Huntingtin Inclusions Trigger Cellular Quiescence, Deactivate Apoptosis, and Lead to Delayed Necrosis, Cell Rep, vol.19, pp.919-927, 2017.

T. Ratovitski, M. Gucek, H. Jiang, E. Chighladze, E. Waldron et al., Mutant huntingtin N-terminal fragments of specific size mediate aggregation and toxicity in neuronal cells, J. Biol. Chem, vol.284, pp.10855-10867, 2009.

B. Ravikumar, R. Duden, and D. C. Rubinsztein, Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy, Hum. Mol. Genet, vol.11, pp.1107-1117, 2002.

B. Ravikumar, C. Vacher, Z. Berger, J. E. Davies, S. Luo et al., Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease, Nat. Genet, vol.36, pp.585-595, 2004.

B. Ravikumar, A. Acevedo-arozena, S. Imarisio, Z. Berger, C. Vacher et al., Dynein mutations impair autophagic clearance of aggregate-prone proteins, Nat. Genet, vol.37, pp.771-776, 2005.

B. Ravikumar, S. Sarkar, J. E. Davies, M. Futter, M. Garcia-arencibia et al., Regulation of mammalian autophagy in physiology and pathophysiology, Physiol. Rev, vol.90, pp.1383-1435, 2010.

G. V. Rebec, Dysregulation of corticostriatal ascorbate release and glutamate uptake in transgenic models of Huntington's disease, Antioxid. Redox Signal, vol.19, pp.2115-2128, 2013.

G. V. Rebec, Corticostriatal network dysfunction in Huntington's disease: Deficits in neural processing, glutamate transport, and ascorbate release, CNS Neurosci Ther, vol.24, pp.281-291, 2018.

G. V. Rebec, S. J. Barton, and M. D. Ennis, Dysregulation of ascorbate release in the striatum of behaving mice expressing the Huntington's disease gene, J. Neurosci, vol.22, p.202, 2002.

P. H. Reddy and U. P. Shirendeb, Mutant huntingtin, abnormal mitochondrial dynamics, defective axonal transport of mitochondria, and selective synaptic degeneration in Huntington's disease, Biochim. Biophys. Acta, vol.1822, pp.101-110, 2012.

N. Reichenbach, A. Delekate, M. Plescher, F. Schmitt, S. Krauss et al., Inhibition of Stat3-mediated astrogliosis ameliorates pathology in an Alzheimer's disease model, EMBO Mol Med, 2019.

S. D. Reis, B. R. Pinho, and J. M. Oliveira, Modulation of Molecular Chaperones in Huntington's Disease and Other Polyglutamine Disorders, Mol. Neurobiol, vol.54, pp.5829-5854, 2017.

P. Ren, J. E. Lauckner, I. Kachirskaia, J. E. Heuser, R. Melki et al., Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates, Nat. Cell Biol, vol.11, pp.219-225, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01183798

U. Repnik, V. Stoka, V. Turk, and B. Turk, Lysosomes and lysosomal cathepsins in cell death, Biochim. Biophys. Acta, vol.1824, pp.22-33, 2012.

D. Rigamonti, D. Bolognini, C. Mutti, C. Zuccato, M. Tartari et al., Loss of huntingtin function complemented by small molecules acting as repressor element 1/neuron restrictive silencer element silencer modulators, J. Biol. Chem, vol.282, pp.24554-24562, 2007.

A. C. Rising, J. Xu, A. Carlson, V. V. Napoli, E. M. Denovan-wright et al., Longitudinal behavioral, cross-sectional transcriptional and histopathological characterization of a knock-in mouse model of Huntington's disease with 140 CAG repeats, Experimental Neurology, vol.228, pp.173-182, 2011.

J. M. Robertson, The Gliocentric Brain, Int J Mol Sci, vol.19, 2018.

F. B. Rodrigues, L. M. Byrne, P. Mccolgan, N. Robertson, S. J. Tabrizi et al., Cerebrospinal Fluid Inflammatory Biomarkers Reflect Clinical Severity in Huntington's Disease, vol.11, 2016.

F. B. Rodrigues, L. Byrne, P. Mccolgan, N. Robertson, S. J. Tabrizi et al., Cerebrospinal fluid total tau concentration predicts clinical phenotype in Huntington's disease, J. Neurochem, vol.139, pp.22-25, 2016.

R. A. Roos, Huntington's disease: a clinical review, Orphanet Journal of Rare Diseases, vol.5, p.40, 2010.

H. D. Rosas, D. S. Tuch, N. D. Hevelone, A. K. Zaleta, M. Vangel et al., , 2006.

, Diffusion tensor imaging in presymptomatic and early Huntington's disease: Selective white matter pathology and its relationship to clinical measures, Mov. Disord, vol.21, pp.1317-1325

H. D. Rosas, D. H. Salat, S. Y. Lee, A. K. Zaleta, V. Pappu et al., Cerebral cortex and the clinical expression of Huntington's disease: complexity and heterogeneity, Brain, vol.131, pp.1057-1068, 2008.

A. Rosenblatt, K. Liang, H. Zhou, M. H. Abbott, L. M. Gourley et al., The association of CAG repeat length with clinical progression in Huntington disease, Neurology, vol.66, pp.1016-1020, 2006.

C. A. Ross and M. A. Poirier, Opinion: What is the role of protein aggregation in neurodegeneration?, Nature Reviews. Molecular Cell Biology, vol.6, pp.891-898, 2005.

C. A. Ross and M. A. Poirier, Opinion: What is the role of protein aggregation in neurodegeneration?, Nature Reviews. Molecular Cell Biology, vol.6, pp.891-898, 2005.

C. A. Ross and S. J. Tabrizi, Huntington's disease: from molecular pathogenesis to clinical treatment, The Lancet. Neurology, vol.10, pp.83-98, 2011.

C. A. Ross, E. H. Aylward, E. J. Wild, D. R. Langbehn, J. D. Long et al., Huntington disease: natural history, biomarkers and prospects for therapeutics, Nature Reviews. Neurology, vol.10, pp.204-216, 2014.

N. Rouach, E. Avignone, W. Même, A. Koulakoff, L. Venance et al., Gap junctions and connexin expression in the normal and pathological central nervous system, Biol. Cell, vol.94, pp.457-475, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02149139

U. Rüb, F. Hoche, E. R. Brunt, H. Heinsen, K. Seidel et al., Degeneration of the cerebellum in Huntington's disease (HD): possible relevance for the clinical picture and potential gateway to pathological mechanisms of the disease process, Brain Pathol, vol.23, pp.165-177, 2013.

D. C. Rubinsztein, Autophagy induction rescues toxicity mediated by proteasome inhibition, Neuron, vol.54, pp.854-856, 2007.

S. Rüdiger, A. Buchberger, and B. Bukau, Interaction of Hsp70 chaperones with substrates, Nat. Struct. Biol, vol.4, pp.342-349, 1997.

Y. Rui, Z. Xu, B. Patel, A. M. Cuervo, and S. Zhang, HTT/Huntingtin in selective autophagy and Huntington disease: A foe or a friend within, Autophagy, vol.11, pp.858-860, 2015.

M. Ruiz and N. Déglon, Viral-mediated overexpression of mutant huntingtin to model HD in various species, Neurobiol. Dis, vol.48, pp.202-211, 2012.

M. A. Rujano, H. H. Kampinga, and F. A. Salomons, Modulation of polyglutamine inclusion formation by the Hsp70 chaperone machine, Exp. Cell Res, vol.313, pp.3568-3578, 2007.

A. Ruzo, I. Ismailoglu, M. Popowski, T. Haremaki, G. F. Croft et al., Discovery of novel isoforms of huntingtin reveals a new hominid-specific exon, PLoS ONE, vol.10, 2015.

B. Sahoo, K. W. Drombosky, and R. Wetzel, Fluorescence Correlation Spectroscopy: A Tool to Study Protein Oligomerization and Aggregation In Vitro and In Vivo, Methods Mol. Biol, vol.1345, pp.67-87, 2016.

H. Saibil, Chaperone machines for protein folding, unfolding and disaggregation, Nat. Rev. Mol. Cell Biol, vol.14, pp.630-642, 2013.

N. Salvador, C. Aguado, M. Horst, and E. Knecht, Import of a cytosolic protein into lysosomes by chaperone-mediated autophagy depends on its folding state, J. Biol. Chem, vol.275, pp.27447-27456, 2000.

S. Gil, R. Ooi, L. Yerbury, J. J. Ecroyd, and H. , The heat shock response in neurons and astroglia and its role in neurodegenerative diseases, Mol Neurodegener, vol.12, p.65, 2017.

I. Sánchez, C. Mahlke, and J. Yuan, Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders, Nature, vol.421, pp.373-379, 2003.

E. Sapp, C. Schwarz, K. Chase, P. G. Bhide, A. B. Young et al., Huntingtin localization in brains of normal and Huntington's disease patients, Ann. Neurol, vol.42, pp.604-612, 1997.

K. Sathasivam, A. Lane, J. Legleiter, A. Warley, B. Woodman et al., Identical oligomeric and fibrillar structures captured from the brains of R6/2 and knock-in mouse models of Huntington's disease, Hum. Mol. Genet, vol.19, pp.65-78, 2010.

F. Saudou, H. , and S. , The Biology of Huntingtin, Neuron, vol.89, pp.910-926, 2016.

F. Saudou, S. Finkbeiner, D. Devys, and M. E. Greenberg, Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions, Cell, vol.95, pp.55-66, 1998.

K. M. Scaglione, V. Basrur, N. S. Ashraf, J. R. Konen, K. S. Elenitoba-johnson et al., The ubiquitin-conjugating enzyme (E2) Ube2w ubiquitinates the N terminus of substrates, J. Biol. Chem, vol.288, pp.18784-18788, 2013.

M. H. Schaefer, J. Fontaine, A. Vinayagam, P. Porras, E. E. Wanker et al., HIPPIE: Integrating protein interaction networks with experiment based quality scores, PLoS ONE, vol.7, 2012.

G. Schaffar, P. Breuer, R. Boteva, C. Behrends, N. Tzvetkov et al., Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation, Mol. Cell, vol.15, pp.95-105, 2004.

E. Scherzinger, R. Lurz, M. Turmaine, L. Mangiarini, B. Hollenbach et al., Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo, Cell, vol.90, pp.549-558, 1997.

G. Schilling, M. W. Becher, A. H. Sharp, H. A. Jinnah, K. Duan et al., Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin, Human Molecular Genetics, vol.8, pp.397-407, 1999.

G. Schilling, A. Klevytska, A. T. Tebbenkamp, K. Juenemann, J. Cooper et al., Characterization of huntingtin pathologic fragments in human Huntington disease, transgenic mice, and cell models, J. Neuropathol. Exp. Neurol, vol.66, pp.313-320, 2007.

S. Schipper-krom, K. Juenemann, A. H. Jansen, A. Wiemhoefer, R. Van-den-nieuwendijk et al., Dynamic recruitment of active proteasomes into polyglutamine initiated inclusion bodies, FEBS Letters, vol.588, pp.151-159, 2014.

M. Schmidt, F. , and D. , Regulation of proteasome activity in health and disease, Biochimica et Biophysica Acta (BBA) -Molecular Cell Research, vol.1843, pp.13-25, 2014.

A. Schousboe, Role of astrocytes in the maintenance and modulation of glutamatergic and GABAergic neurotransmission, Neurochemical Research, vol.28, pp.347-352, 2003.

E. K. Schrader, K. G. Harstad, and A. Matouschek, Targeting proteins for degradation, Nat. Chem. Biol, vol.5, pp.815-822, 2009.

R. Schwarcz, A. C. Foster, E. D. French, W. O. Whetsell, and C. Köhler, Excitotoxic models for neurodegenerative disorders, Life Sci, vol.35, pp.19-32, 1984.

L. Schwarz, O. Goldbaum, M. Bergmann, S. Probst-cousin, and C. Richter-landsberg, Involvement of macroautophagy in multiple system atrophy and protein aggregate formation in oligodendrocytes, J. Mol. Neurosci, vol.47, pp.256-266, 2012.

L. J. Scott, Tetrabenazine: for chorea associated with Huntington's disease, CNS Drugs, vol.25, pp.1073-1085, 2011.

P. O. Seglen, G. , and P. B. , 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes, Proc. Natl. Acad. Sci. U.S.A, vol.79, pp.1889-1892, 1982.

D. J. Selkoe, F. J. Salazar, C. Abraham, and K. S. Kosik, Huntington's disease: changes in striatal proteins reflect astrocytic gliosis, Brain Res, vol.245, pp.117-125, 1982.

M. C. Senut, S. T. Suhr, B. Kaspar, and F. H. Gage, Intraneuronal aggregate formation and cell death after viral expression of expanded polyglutamine tracts in the adult rat brain, J. Neurosci, vol.20, pp.219-229, 2000.

H. Seo, K. C. Sonntag, and O. Isacson, Generalized brain and skin proteasome inhibition in Huntington's disease, Annals of Neurology, vol.56, pp.319-328, 2004.

H. Seo, K. Sonntag, W. Kim, E. Cattaneo, and O. Isacson, Proteasome Activator Enhances Survival of Huntington's Disease Neuronal Model Cells, PLOS ONE, vol.2, p.238, 2007.

I. S. Seong, J. M. Woda, J. Song, A. Lloret, P. D. Abeyrathne et al., Huntingtin facilitates polycomb repressive complex 2, Hum. Mol. Genet, vol.19, pp.573-583, 2010.

M. D. Sepers, R. , and L. A. , Mechanisms of synaptic dysfunction and excitotoxicity in Huntington's disease, Drug Discovery Today, vol.19, pp.990-996, 2014.

T. Seredenina and R. Carter, What have we learned from gene expression profiles in Huntington's disease?, Neurobiol. Dis, vol.45, pp.83-98, 2012.

C. Serguera and A. Bemelmans, Gene therapy of the central nervous system: general considerations on viral vectors for gene transfer into the brain, Rev. Neurol, vol.170, pp.727-738, 2014.

S. Sheikh, . Safia, E. Haque, and S. S. Mir, Neurodegenerative Diseases: Multifactorial Conformational Diseases and Their Therapeutic Interventions, J Neurodegener Dis, p.563481, 2013.

K. Shen, B. Calamini, J. A. Fauerbach, B. Ma, S. H. Shahmoradian et al., Control of the structural landscape and neuronal proteotoxicity of mutant Huntingtin by domains flanking the polyQ tract, 2016.

M. Shibata, T. Lu, T. Furuya, A. Degterev, N. Mizushima et al., Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1, J. Biol. Chem, vol.281, pp.14474-14485, 2006.

K. Shibuki, H. Gomi, L. Chen, S. Bao, J. J. Kim et al., Deficient cerebellar long-term depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice, Neuron, vol.16, pp.587-599, 1996.

J. W. Shin, K. Kim, M. J. Chao, R. S. Atwal, T. Gillis et al., Permanent inactivation of Huntington's disease mutation by personalized allele-specific CRISPR/Cas9, Hum. Mol. Genet, vol.25, pp.4566-4576, 2016.

J. Y. Shin, Z. H. Fang, Z. X. Yu, C. E. Wang, S. H. Li et al., Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity, The Journal of Cell Biology, vol.171, pp.1001-1012, 2005.

A. Sierra, F. De-castro, J. Del-río-hortega, J. Rafael-iglesias-rozas, M. Garrosa et al., The "Big-Bang" for modern glial biology: Translation and comments on Pío del Río-Hortega 1919 series of papers on microglia, Glia, vol.64, pp.1801-1840, 2016.

A. Silvestroni, R. L. Faull, A. D. Strand, and T. Moller, Distinct neuroinflammatory profile in post-mortem human Huntington's disease, Neuroreport, vol.20, pp.1098-1103, 2009.

C. Sinadinos, T. Burbidge-king, D. Soh, L. M. Thompson, J. L. Marsh et al., Live axonal transport disruption by mutant huntingtin fragments in Drosophila motor neuron axons, Neurobiol. Dis, vol.34, pp.389-395, 2009.

S. K. Singhrao, P. Thomas, J. D. Wood, J. C. Macmillan, J. W. Neal et al., Huntingtin protein colocalizes with lesions of neurodegenerative diseases: An investigation in Huntington's, Alzheimer's, and Pick's diseases, Exp. Neurol, vol.150, pp.213-222, 1998.

A. Sittler, R. Lurz, G. Lueder, J. Priller, H. Lehrach et al., Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington's disease, Hum. Mol. Genet, vol.10, pp.1307-1315, 2001.

G. A. Skibinski and L. Boyd, Ubiquitination is involved in secondary growth, not initial formation of polyglutamine protein aggregates in C. elegans, BMC Cell Biol, vol.13, p.10, 2012.

N. H. Skotte, J. V. Andersen, A. Santos, B. I. Aldana, C. W. Willert et al., Integrative Characterization of the R6/2 Mouse Model of Huntington's Disease Reveals Dysfunctional Astrocyte Metabolism, Cell Rep, vol.23, pp.2211-2224, 2018.

M. Slezak and F. W. Pfrieger, New roles for astrocytes: regulation of CNS synaptogenesis, Trends Neurosci, vol.26, pp.531-535, 2003.

E. J. Slow, J. Van-raamsdonk, D. Rogers, S. H. Coleman, R. K. Graham et al., Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease, Hum. Mol. Genet, vol.12, pp.1555-1567, 2003.

C. M. Smith, J. A. Mayer, and I. D. Duncan, Autophagy promotes oligodendrocyte survival and function following dysmyelination in a long-lived myelin mutant, J. Neurosci, vol.33, pp.8088-8100, 2013.

D. M. Smith, S. Chang, S. Park, D. Finley, Y. Cheng et al., Docking of the Proteasomal ATPases' C-termini in the 20S Proteasomes alpha Ring Opens the Gate for Substrate Entry, Mol Cell, vol.27, pp.731-744, 2007.

T. R. Soares, S. D. Reis, B. R. Pinho, M. R. Duchen, and J. M. Oliveira, Targeting the proteostasis network in Huntington's disease, Ageing Res. Rev, vol.49, pp.92-103, 2018.

M. V. Sofroniew and H. V. Vinters, Astrocytes: biology and pathology, Acta Neuropathologica, vol.119, pp.7-35, 2010.

G. G. Somjen, Nervenkitt: notes on the history of the concept of neuroglia, Glia, vol.1, pp.2-9, 1988.

J. W. Song, T. Misgeld, H. Kang, S. Knecht, J. Lu et al., Lysosomal activity associated with developmental axon pruning, J. Neurosci, vol.28, pp.8993-9001, 2008.

W. Song, J. Chen, A. Petrilli, G. Liot, E. Klinglmayr et al., Mutant huntingtin binds the mitochondrial fission GTPase dynaminrelated protein-1 and increases its enzymatic activity, Nat. Med, vol.17, pp.377-382, 2011.

E. M. Sontag, G. P. Lotz, G. Yang, C. J. Sontag, B. J. Cummings et al., Detection of Mutant Huntingtin Aggregation Conformers and Modulation of SDS-Soluble Fibrillar Oligomers by Small Molecules, J Huntingtons Dis, vol.1, pp.119-132, 2012.

M. A. Sorolla, G. Reverter-branchat, J. Tamarit, I. Ferrer, J. Ros et al., Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radic, Biol. Med, vol.45, pp.667-678, 2008.

D. Soulet and F. Cicchetti, The role of immunity in Huntington's disease, Mol. Psychiatry, vol.16, pp.889-902, 2011.

A. L. Southwell, S. E. Smith, T. R. Davis, N. S. Caron, E. B. Villanueva et al., Ultrasensitive measurement of huntingtin protein in cerebrospinal fluid demonstrates increase with Huntington disease stage and decrease following brain huntingtin suppression, p.12166, 2015.

A. L. Southwell, S. Franciosi, E. B. Villanueva, Y. Xie, L. A. Winter et al., Anti-semaphorin 4D immunotherapy ameliorates neuropathology and some cognitive impairment in the YAC128 mouse model of Huntington disease, Neurobiol. Dis, vol.76, pp.46-56, 2015.

E. G. Spokes, N. J. Garrett, M. N. Rossor, and L. L. Iversen, Distribution of GABA in postmortem brain tissue from control, psychotic and Huntington's chorea subjects, J. Neurol. Sci, vol.48, pp.303-313, 1980.

K. Sroka, A. Voigt, S. Deeg, J. C. Reed, J. B. Schulz et al., BAG1 modulates huntingtin toxicity, aggregation, degradation, and subcellular distribution, J. Neurochem, vol.111, pp.801-807, 2009.

L. M. Stanek, S. P. Sardi, B. Mastis, A. R. Richards, C. M. Treleaven et al., Silencing mutant huntingtin by adeno-associated virus-mediated RNA interference ameliorates disease manifestations in the YAC128 mouse model of Huntington's disease. Hum, Gene Ther, vol.25, pp.461-474, 2014.

M. Stefani and S. Rigacci, Protein folding and aggregation into amyloid: the interference by natural phenolic compounds, Int J Mol Sci, vol.14, pp.12411-12457, 2013.

J. S. Steffan, A. Kazantsev, O. Spasic-boskovic, M. Greenwald, Y. Z. Zhu et al., The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription, Proc. Natl. Acad. Sci. U.S.A, vol.97, pp.6763-6768, 2000.

J. S. Steffan, L. Bodai, J. Pallos, M. Poelman, A. Mccampbell et al., Histone deacetylase inhibitors arrest polyglutaminedependent neurodegeneration in Drosophila, Nature, vol.413, pp.739-743, 2001.

F. Steigerwald, T. W. Schulz, L. T. Schenker, M. B. Kennedy, P. H. Seeburg et al., C-Terminal truncation of NR2A subunits impairs synaptic but not extrasynaptic localization of NMDA receptors, J. Neurosci, vol.20, pp.4573-4581, 2000.

J. Stephenson, E. Nutma, P. Van-der-valk, A. , and S. , Inflammation in CNS neurodegenerative diseases, Immunology, vol.154, pp.204-219, 2018.

V. Stoka, B. Turk, and V. Turk, Lysosomal cysteine proteases: structural features and their role in apoptosis, IUBMB Life, vol.57, pp.347-353, 2005.

N. Stoy, G. M. Mackay, C. M. Forrest, J. Christofides, M. Egerton et al., Tryptophan metabolism and oxidative stress in patients with Huntington's disease, J. Neurochem, vol.93, pp.611-623, 2005.

A. Sturrock, C. Laule, K. Wyper, R. A. Milner, J. Decolongon et al., A longitudinal study of magnetic resonance spectroscopy Huntington's disease biomarkers, Movement Disorders : Official Journal of the Movement Disorder Society, 2015.

P. Su, J. Zhang, D. Wang, F. Zhao, Z. Cao et al., The role of autophagy in modulation of neuroinflammation in microglia, Neuroscience, vol.319, pp.155-167, 2016.

K. L. Sugars, R. Brown, L. J. Cook, J. Swartz, and D. C. Rubinsztein, Decreased cAMP response element-mediated transcription: an early event in exon 1 and full-length cell models of Huntington's disease that contributes to polyglutamine pathogenesis, J. Biol. Chem, vol.279, pp.4988-4999, 2004.

Y. Sun and T. H. Macrae, The small heat shock proteins and their role in human disease, FEBS J, vol.272, pp.2613-2627, 2005.

S. J. Tabrizi, D. R. Langbehn, B. R. Leavitt, R. A. Roos, A. Durr et al., Biological and clinical manifestations of Huntington's disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data, The Lancet. Neurology, vol.8, pp.791-801, 2009.

S. J. Tabrizi, R. I. Scahill, G. Owen, A. Durr, B. R. Leavitt et al., Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington's disease in the TRACK-HD study: analysis of 36-month observational data, The Lancet. Neurology, vol.12, pp.637-649, 2013.

H. Tai and E. M. Schuman, Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction, Nature Reviews Neuroscience, vol.9, pp.826-838, 2008.

Y. F. Tai, N. Pavese, A. Gerhard, S. J. Tabrizi, R. A. Barker et al., , 2007.

, Microglial activation in presymptomatic Huntington's disease gene carriers, Brain, vol.130, pp.1759-1766

Y. F. Tai, N. Pavese, A. Gerhard, S. J. Tabrizi, R. A. Barker et al., , 2007.

, Microglial activation in presymptomatic Huntington's disease gene carriers, Brain, vol.130, pp.1759-1766

T. Takahashi, S. Kikuchi, S. Katada, Y. Nagai, M. Nishizawa et al., Soluble polyglutamine oligomers formed prior to inclusion body formation are cytotoxic, Hum. Mol. Genet, vol.17, pp.345-356, 2008.

M. Takalo, A. Salminen, H. Soininen, M. Hiltunen, and A. Haapasalo, Protein aggregation and degradation mechanisms in neurodegenerative diseases, Am J Neurodegener Dis, vol.2, pp.1-14, 2013.

H. Takano, G. , and J. F. , The predominantly HEAT-like motif structure of huntingtin and its association and coincident nuclear entry with dorsal, an NF-kB/Rel/dorsal family transcription factor, BMC Neurosci, vol.3, p.15, 2002.

T. Takeuchi, Non-cell Autonomous Maintenance of Proteostasis by Molecular Chaperones and Its Molecular Mechanism, Biol. Pharm. Bull, vol.41, pp.843-849, 2018.

T. Takeuchi and Y. Nagai, Protein Misfolding and Aggregation as a Therapeutic Target for Polyglutamine Diseases, Brain Sci, vol.7, 2017.

T. Takeuchi, M. Suzuki, N. Fujikake, H. A. Popiel, H. Kikuchi et al., Intercellular chaperone transmission via exosomes contributes to maintenance of protein homeostasis at the organismal level, Proc. Natl. Acad. Sci. U.S.A, vol.112, pp.2497-2506, 2015.

S. Tam, C. Spiess, W. Auyeung, L. Joachimiak, B. Chen et al., The chaperonin TRiC blocks a huntingtin sequence element that promotes the conformational switch to aggregation, Nat. Struct. Mol. Biol, vol.16, pp.1279-1285, 2009.

Z. Tan, W. Dai, T. G. Van-erp, J. Overman, A. Demuro et al., Huntington's disease cerebrospinal fluid seeds aggregation of mutant huntingtin, Mol. Psychiatry, vol.20, pp.1286-1293, 2015.

B. L. Tang, Unconventional Secretion and Intercellular Transfer of Mutant Huntingtin, Cells, vol.7, 2018.

Y. Tashiro, M. Urushitani, H. Inoue, M. Koike, Y. Uchiyama et al., Motor Neuron-specific Disruption of Proteasomes, but Not Autophagy, Replicates Amyotrophic Lateral Sclerosis, J. Biol. Chem, vol.287, pp.42984-42994, 2012.

M. H. Tatham, A. Plechanovová, E. G. Jaffray, H. Salmen, and R. T. Hay, Ube2W conjugates ubiquitin to ?-amino groups of protein N-termini, Biochem. J, vol.453, pp.137-145, 2013.

A. R. Taylor, M. B. Robinson, D. J. Gifondorwa, M. Tytell, and C. E. Milligan, Regulation of heat shock protein 70 release in astrocytes: role of signaling kinases, Dev Neurobiol, vol.67, pp.1815-1829, 2007.

, A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group, The Huntington's Disease Collaborative Research group, vol.72, pp.971-983, 1993.

D. T. Theodosis, Oxytocin-secreting neurons: A physiological model of morphological neuronal and glial plasticity in the adult hypothalamus, Front Neuroendocrinol, vol.23, pp.101-135, 2002.

T. A. Thibaudeau, R. T. Anderson, and D. M. Smith, A common mechanism of proteasome impairment by neurodegenerative disease-associated oligomers, Nature Communications, vol.9, p.1097, 2018.

L. M. Thompson, C. T. Aiken, L. S. Kaltenbach, N. Agrawal, K. Illes et al., IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome, The Journal of Cell Biology, vol.187, pp.1083-1099, 2009.

I. Tkac, J. M. Dubinsky, C. D. Keene, R. Gruetter, and W. C. Low, Neurochemical changes in Huntington R6/2 mouse striatum detected by in vivo 1H NMR spectroscopy, J. Neurochem, vol.100, pp.1397-1406, 2007.

X. Tong, Y. Ao, G. C. Faas, S. E. Nwaobi, J. Xu et al., Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington's disease model mice, Nature Neuroscience, vol.17, pp.694-703, 2014.

A. Tonoki, E. Kuranaga, T. Tomioka, J. Hamazaki, S. Murata et al., , 2009.

, Genetic Evidence Linking Age-Dependent Attenuation of the 26S Proteasome with the Aging Process, Mol Cell Biol, vol.29, pp.1095-1106

U. Trager, R. Andre, N. Lahiri, A. Magnusson-lind, A. Weiss et al., HTT-lowering reverses Huntington's disease immune dysfunction caused by NFkappaB pathway dysregulation, Brain : A Journal of Neurology, vol.137, pp.819-833, 2014.

K. Trajkovic, H. Jeong, and D. Krainc, Mutant Huntingtin Is Secreted via a Late Endosomal/Lysosomal Unconventional Secretory Pathway, J. Neurosci, vol.37, pp.9000-9012, 2017.

A. M. Travessa, F. B. Rodrigues, T. A. Mestre, and J. J. Ferreira, Fifteen Years of Clinical Trials in Huntington's Disease: A Very Low Clinical Drug Development Success Rate, J Huntingtons Dis, vol.6, pp.157-163, 2017.

P. Tripathi, N. Rodriguez-muela, J. R. Klim, A. S. De-boer, S. Agrawal et al., Reactive Astrocytes Promote ALS-like Degeneration and Intracellular Protein Aggregation in Human Motor Neurons by Disrupting Autophagy through TGF-?1, Stem Cell Reports, vol.9, pp.667-680, 2017.

Y. Trottier, V. Biancalana, and J. L. Mandel, Instability of CAG repeats in Huntington's disease: relation to parental transmission and age of onset, J. Med. Genet, vol.31, pp.377-382, 1994.

Y. Trottier, D. Devys, G. Imbert, F. Saudou, I. An et al., Cellular localization of the Huntington's disease protein and discrimination of the normal and mutated form, Nat. Genet, vol.10, pp.104-110, 1995.

E. Trushina, R. B. Dyer, J. D. Badger, D. Ure, L. Eide et al., Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro, Mol. Cell. Biol, vol.24, pp.8195-8209, 2004.

Y. C. Tsai, P. S. Fishman, N. V. Thakor, and G. A. Oyler, Parkin Facilitates the Elimination of Expanded Polyglutamine Proteins and Leads to Preservation of Proteasome Function, J. Biol. Chem, vol.278, pp.22044-22055, 2003.

T. M. Tsang, B. Woodman, G. A. Mcloughlin, J. L. Griffin, S. J. Tabrizi et al., Metabolic characterization of the R6/2 transgenic mouse model of Huntington's disease by high-resolution MAS 1H NMR spectroscopy, J. Proteome Res, vol.5, pp.483-492, 2006.

A. S. Tsvetkov, M. Arrasate, S. Barmada, D. M. Ando, P. Sharma et al., Proteostasis of polyglutamine varies among neurons and predicts neurodegeneration, Nat. Chem. Biol, vol.9, pp.586-592, 2013.

B. Turk, D. Turk, and V. Turk, Lysosomal cysteine proteases: more than scavengers, Biochim. Biophys. Acta, vol.1477, pp.98-111, 2000.

V. Turk, B. Turk, and D. Turk, Lysosomal cysteine proteases: facts and opportunities, EMBO J, vol.20, pp.4629-4633, 2001.

A. E. Twelvetrees, E. Y. Yuen, I. L. Arancibia-carcamo, A. F. Macaskill, P. Rostaing et al., Delivery of GABAARs to synapses is mediated by HAP1-KIF5 and disrupted by mutant huntingtin, Neuron, vol.65, pp.53-65, 2010.

S. Tydlacka, C. E. Wang, X. Wang, S. Li, and X. J. Li, Differential activities of the ubiquitinproteasome system in neurons versus glia may account for the preferential accumulation of misfolded proteins in neurons, The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, vol.28, pp.13285-13295, 2008.

J. Tyedmers, A. Mogk, and B. Bukau, Cellular strategies for controlling protein aggregation, Nat. Rev. Mol. Cell Biol, vol.11, pp.777-788, 2010.

B. R. Underwood, Z. W. Green-thompson, P. J. Pugh, S. E. Lazic, S. L. Mason et al., An open-label study to assess the feasibility and tolerability of rilmenidine for the treatment of Huntington's disease, J. Neurol, vol.264, pp.2457-2463, 2017.

G. Vachey and N. Déglon, CRISPR/Cas9-Mediated Genome Editing for Huntington's Disease, Methods Mol. Biol, vol.1780, pp.463-481, 2018.

M. Valenza and E. Cattaneo, Emerging roles for cholesterol in Huntington's disease, Trends Neurosci, vol.34, pp.474-486, 2011.

M. Valenza, V. Leoni, J. M. Karasinska, L. Petricca, J. Fan et al., Cholesterol defect is marked across multiple rodent models of Huntington's disease and is manifest in astrocytes, J. Neurosci, vol.30, pp.10844-10850, 2010.

K. Van-laere, C. Casteels, I. Dhollander, K. Goffin, I. Grachev et al., Widespread decrease of type 1 cannabinoid receptor availability in Huntington disease in vivo, J. Nucl. Med, vol.51, pp.1413-1417, 2010.

P. Venkatraman, R. Wetzel, M. Tanaka, N. Nukina, and A. L. Goldberg, Eukaryotic Proteasomes Cannot Digest Polyglutamine Sequences and Release Them during Degradation of Polyglutamine-Containing Proteins, Molecular Cell, vol.14, pp.95-104, 2004.

M. Verdoes, K. Bender, E. Segal, W. A. Van-der-linden, S. Syed et al., Improved quenched fluorescent probe for imaging of cysteine cathepsin activity, J. Am. Chem. Soc, vol.135, pp.14726-14730, 2013.

A. Verkhratsky and M. Nedergaard, Physiology of Astroglia, Physiol. Rev, vol.98, pp.239-389, 2018.

A. Verkhratsky, M. Nedergaard, and L. Hertz, Why are astrocytes important?, Neurochem. Res, vol.40, pp.389-401, 2015.

D. Vilchez, I. Morantte, Z. Liu, P. M. Douglas, C. Merkwirth et al., RPN-6 determines C. elegans longevity under proteotoxic stress conditions, Nature, vol.489, pp.263-268, 2012.

D. Vilchez, I. Saez, and A. Dillin, The role of protein clearance mechanisms in organismal ageing and age-related diseases, Nature Communications, vol.5, p.5659, 2014.

R. Virchow, Gesammelte Abhandlungen zur wissenschaftlichen Medizin, 1856.

V. Vittal, L. Shi, D. M. Wenzel, K. M. Scaglione, E. D. Duncan et al., Intrinsic disorder drives N-terminal ubiquitination by Ube2w, Nat. Chem. Biol, vol.11, pp.83-89, 2015.

A. Volterra and J. Meldolesi, Astrocytes, from brain glue to communication elements: the revolution continues, Nature Reviews. Neuroscience, vol.6, pp.626-640, 2005.

J. P. Vonsattel and M. Difiglia, Huntington disease, J. Neuropathol. Exp. Neurol, vol.57, pp.369-384, 1998.
URL : https://hal.archives-ouvertes.fr/hal-01787886

J. P. Vonsattel, R. H. Myers, T. J. Stevens, R. J. Ferrante, E. D. Bird et al., Neuropathological classification of Huntington's disease, Journal of Neuropathology and Experimental Neurology, vol.44, pp.559-577, 1985.

J. P. Vonsattel, R. H. Myers, T. J. Stevens, R. J. Ferrante, E. D. Bird et al., , 1985.

, Neuropathological classification of Huntington's disease, J. Neuropathol. Exp. Neurol, vol.44, pp.559-577

J. L. Wacker, M. H. Zareie, H. Fong, M. Sarikaya, and P. J. Muchowski, Hsp70 and Hsp40 attenuate formation of spherical and annular polyglutamine oligomers by partitioning monomer, Nat. Struct. Mol. Biol, vol.11, pp.1215-1222, 2004.

L. C. Walker and H. Levine, Corruption and spread of pathogenic proteins in neurodegenerative diseases, J. Biol. Chem, vol.287, pp.33109-33115, 2012.

D. J. Van-wamelen, N. A. Aziz, R. A. Roos, and D. F. Swaab, Hypothalamic alterations in Huntington's disease patients: comparison with genetic rodent models, J. Neuroendocrinol, vol.26, pp.761-775, 2014.

B. Wang, L. Zeng, S. A. Merillat, S. Fischer, J. Ochaba et al., The ubiquitin conjugating enzyme Ube2W regulates solubility of the Huntington's disease protein, huntingtin, Neurobiol. Dis, vol.109, pp.127-136, 2018.

L. Wang, F. Lin, J. Wang, J. Wu, R. Han et al., Expression of mutant N-terminal huntingtin fragment (htt552-100Q) in astrocytes suppresses the secretion of BDNF, Brain Research, vol.1449, pp.69-82, 2012.

M. Wegrzynowicz, T. J. Bichell, B. D. Soares, M. K. Loth, J. S. Mcglothan et al., Novel BAC Mouse Model of Huntington's Disease with 225 CAG Repeats Exhibits an Early Widespread and Stable Degenerative Phenotype, J Huntingtons Dis, vol.4, pp.17-36, 2015.

C. L. Wellington, B. R. Leavitt, and M. R. Hayden, Huntington disease: new insights on the role of huntingtin cleavage, J. Neural Transm, 2000.

W. Wendt, X. Zhu, H. Lübbert, and C. C. Stichel, Differential expression of cathepsin X in aging and pathological central nervous system of mice, Exp. Neurol, vol.204, pp.525-540, 2007.

W. Wendt, H. Lübbert, and C. C. Stichel, Upregulation of cathepsin S in the aging and pathological nervous system of mice, Brain Res, vol.1232, pp.7-20, 2008.

A. Wexler, E. J. Wild, and S. J. Tabrizi, George Huntington: a legacy of inquiry, empathy and hope, Brain, vol.139, pp.2326-2333, 2016.

P. Weydt, V. V. Pineda, A. E. Torrence, R. T. Libby, T. F. Satterfield et al., Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1alpha in Huntington's disease neurodegeneration, Cell Metab, vol.4, pp.349-362, 2006.

J. K. White, W. Auerbach, M. P. Duyao, J. P. Vonsattel, J. F. Gusella et al., Huntingtin is required for neurogenesis and is not impaired by the Huntington's disease CAG expansion, Nat. Genet, vol.17, pp.404-410, 1997.

E. J. Wild and S. J. Tabrizi, Therapies targeting DNA and RNA in Huntington's disease, Lancet Neurol, vol.16, pp.837-847, 2017.

E. J. Wild, R. Boggio, D. Langbehn, N. Robertson, S. Haider et al., Quantification of mutant huntingtin protein in cerebrospinal fluid from Huntington's disease patients, J. Clin. Invest, vol.125, pp.1979-1986, 2015.

U. Wilhelmsson, E. A. Bushong, D. L. Price, B. L. Smarr, V. Phung et al., Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury, Proceedings of the National Academy of Sciences of the United States of America, vol.103, pp.17513-17518, 2006.

J. X. Wilson, Antioxidant defense of the brain: a role for astrocytes, Canadian Journal of Physiology and Pharmacology, vol.75, pp.1149-1163, 1997.

A. M. Wojtowicz, A. Dvorzhak, M. Semtner, and R. Grantyn, Reduced tonic inhibition in striatal output neurons from Huntington mice due to loss of astrocytic GABA release through GAT-3, Frontiers in Neural Circuits, vol.7, p.188, 2013.

E. Wong and A. M. Cuervo, Integration of clearance mechanisms: the proteasome and autophagy, Cold Spring Harb Perspect Biol, vol.2, p.6734, 2010.

Y. C. Wong and E. L. Holzbaur, The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation, J. Neurosci, vol.34, pp.1293-1305, 2014.

T. E. Wood, J. Barry, Z. Yang, C. Cepeda, M. S. Levine et al., Mutant huntingtin reduction in astrocytes slows disease progression in the bachd conditional huntington's disease mouse model, Hum. Mol. Genet, 2018.

M. W. Wooten, X. Hu, J. R. Babu, M. L. Seibenhener, T. Geetha et al.,

, Signaling, polyubiquitination, trafficking, and inclusions: sequestosome 1/p62's role in neurodegenerative disease, J. Biomed. Biotechnol, p.62079, 2006.

A. Wyttenbach, O. Sauvageot, J. Carmichael, C. Diaz-latoud, A. Arrigo et al., Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin, Hum. Mol. Genet, vol.11, pp.1137-1151, 2002.

Y. Xie, M. R. Hayden, and B. Xu, BDNF overexpression in the forebrain rescues Huntington's disease phenotypes in YAC128 mice, J. Neurosci, vol.30, pp.14708-14718, 2010.

X. Xu, Y. Tay, B. Sim, S. Yoon, Y. Huang et al., Reversal of Phenotypic Abnormalities by CRISPR/Cas9-Mediated Gene Correction in Huntington Disease Patient-Derived Induced Pluripotent Stem Cells, Stem Cell Reports, vol.8, pp.619-633, 2017.

J. H. Xuereb, J. C. Macmillan, R. Snell, P. Davies, and P. S. Harper, Neuropathological diagnosis and CAG repeat expansion in Huntington's disease, J. Neurol. Neurosurg. Psychiatry, vol.60, pp.78-81, 1996.

A. Yamamoto, Y. Tagawa, T. Yoshimori, Y. Moriyama, R. Masaki et al., , 1998.

, Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells, Cell Struct. Funct, vol.23, pp.33-42

A. Yamamoto, J. J. Lucas, and R. Hen, Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease, Cell, vol.101, pp.57-66, 2000.

A. Yamamoto, M. L. Cremona, and J. E. Rothman, Autophagy-mediated clearance of huntingtin aggregates triggered by the insulin-signaling pathway, J. Cell Biol, vol.172, pp.719-731, 2006.

T. Yamanaka, H. Miyazaki, F. Oyama, M. Kurosawa, C. Washizu et al., , 2008.

, Mutant Huntingtin reduces HSP70 expression through the sequestration of NF-Y transcription factor, EMBO J, vol.27, pp.827-839

H. Yang, X. Zhong, P. Ballar, S. Luo, Y. Shen et al., , 2007.

, Ubiquitin ligase Hrd1 enhances the degradation and suppresses the toxicity of polyglutamineexpanded huntingtin, Experimental Cell Research, vol.313, pp.538-550

S. Yang, R. Chang, H. Yang, T. Zhao, Y. Hong et al., , 2017.

, CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington's disease, J. Clin. Invest, vol.127, pp.2719-2724

Z. X. Yu, S. H. Li, J. Evans, A. Pillarisetti, H. Li et al., Mutant huntingtin causes contextdependent neurodegeneration in mice with Huntington's disease, The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, vol.23, pp.2193-2202, 2003.

E. Y. Yuen, J. Wei, P. Zhong, Y. , and Z. , Disrupted GABAAR trafficking and synaptic inhibition in a mouse model of Huntington's disease, Neurobiol. Dis, vol.46, pp.497-502, 2012.

L. Zacharoff, I. Tkac, Q. Song, C. Tang, P. J. Bolan et al.,

, Cortical metabolites as biomarkers in the R6/2 model of Huntington's disease, J. Cereb. Blood Flow Metab, vol.32, pp.502-514

G. Zaffagnini and S. Martens, Mechanisms of Selective Autophagy, J. Mol. Biol, vol.428, pp.1714-1724, 2016.

D. Zala, J. Bensadoun, L. Pereira-de-almeida, B. R. Leavitt, C. Gutekunst et al., Long-term lentiviral-mediated expression of ciliary neurotrophic factor in the striatum of Huntington's disease transgenic mice, Exp. Neurol, vol.185, pp.26-35, 2004.

J. L. Zamanian, L. Xu, L. C. Foo, N. Nouri, L. Zhou et al., Genomic analysis of reactive astrogliosis, The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, vol.32, pp.6391-6410, 2012.

S. Zeitlin, J. P. Liu, D. L. Chapman, V. E. Papaioannou, and A. Efstratiadis, Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue, Nat. Genet, vol.11, pp.155-163, 1995.

M. M. Zeron, O. Hansson, N. Chen, C. L. Wellington, B. R. Leavitt et al., Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington's disease, Neuron, vol.33, pp.849-860, 2002.

W. Zhai, H. Jeong, L. Cui, D. Krainc, and R. Tjian, In vitro analysis of huntingtin-mediated transcriptional repression reveals multiple transcription factor targets, Cell, vol.123, pp.1241-1253, 2005.

J. Zhang, S. Gregory, R. I. Scahill, A. Durr, D. L. Thomas et al., In vivo characterization of white matter pathology in premanifest huntington's disease, Ann. Neurol, vol.84, pp.497-504, 2018.

X. Zhang, D. L. Smith, A. B. Meriin, S. Engemann, D. E. Russel et al., A potent small molecule inhibits polyglutamine aggregation in Huntington's disease neurons and suppresses neurodegeneration in vivo, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.892-897, 2005.

X. Zhang, E. R. Abels, J. S. Redzic, J. Margulis, S. Finkbeiner et al., Potential Transfer of Polyglutamine and CAG-Repeat RNA in Extracellular Vesicles in Huntington's Disease: Background and Evaluation in Cell Culture, Cell. Mol. Neurobiol, vol.36, pp.459-470, 2016.

X. Zhang, J. Wan, and X. Tong, Potassium channel dysfunction in neurons and astrocytes in Huntington's disease, CNS Neurosci Ther, vol.24, pp.311-318, 2018.

Y. Zhang, K. Chen, S. A. Sloan, M. L. Bennett, A. R. Scholze et al., An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex, J. Neurosci, vol.34, pp.11929-11947, 2014.

T. Zhao, Y. Hong, S. Li, and X. Li, Compartment-Dependent Degradation of Mutant Huntingtin Accounts for Its Preferential Accumulation in Neuronal Processes, J. Neurosci, vol.36, pp.8317-8328, 2016.

T. Zhao, Y. Hong, P. Yin, S. Li, and X. Li, Differential HspBP1 expression accounts for the greater vulnerability of neurons than astrocytes to misfolded proteins, Proc. Natl. Acad. Sci. U.S.A, vol.114, pp.7803-7811, 2017.

Y. Zhou and N. C. Danbolt, GABA and Glutamate Transporters in Brain, Front Endocrinol (Lausanne), vol.4, p.165, 2013.

H. Zhou, S. H. Li, and X. J. Li, Chaperone suppression of cellular toxicity of huntingtin is independent of polyglutamine aggregation, J. Biol. Chem, vol.276, pp.48417-48424, 2001.

C. Zuccato, A. Ciammola, D. Rigamonti, B. R. Leavitt, D. Goffredo et al., Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease, Science, vol.293, pp.493-498, 2001.

C. Zuccato, M. Tartari, A. Crotti, D. Goffredo, M. Valenza et al., Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes, Nature Genetics, vol.35, pp.76-83, 2003.

C. Zuccato, N. Belyaev, P. Conforti, L. Ooi, M. Tartari et al., Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in Huntington's disease, J. Neurosci, vol.27, pp.6972-6983, 2007.

C. Zuccato, M. Valenza, and E. Cattaneo, Molecular mechanisms and potential therapeutical targets in Huntington's disease, Physiological Reviews, vol.90, pp.905-981, 2010.