J. Klostergaard, K. Parga, and R. G. Raptis, Current and future applications of magnetic resonance imaging (MRI) to breast and ovarian cancer patient management, Puerto Rico health sciences journal, vol.29, issue.3, p.20, 2010.

H. Degani, V. Gusis, D. Weinstein, S. Fields, and S. Strano, Mapping pathophysiological features of breast tumors by MRI at high spatial resolution, Nature medicine, vol.3, issue.7, p.19, 1997.

S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki et al., Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features, Scientific data, vol.4, p.19, 2017.

P. A. Brex, O. Ciccarelli, J. I. O'riordan, M. Sailer, A. J. Thompson et al., A longitudinal study of abnormalities on MRI and disability from multiple sclerosis, New England Journal of Medicine, vol.346, issue.3, p.21, 2002.

C. Rickers, N. M. Wilke, M. Jerosch-herold, S. A. Casey, P. Panse et al., Utility of cardiac magnetic resonance imaging in the diagnosis of hypertrophic cardiomyopathy, Circulation, vol.112, issue.6, p.19, 2005.

J. N. Giedd, J. Blumenthal, N. O. Jeffries, F. X. Castellanos, H. Liu et al., Brain development during childhood and adolescence: a longitudinal MRI study, Nature neuroscience, vol.2, issue.10, p.19, 1999.

J. Kaufmann, W. Studer, J. Link, and K. Schenker, Study of water suction of concrete with magnetic resonance imaging methods, Magazine of concrete research, vol.49, issue.180, p.19, 1997.

M. Wagner, S. Quellec, G. Trystram, and T. Lucas, MRI evaluation of local expansion in bread crumb during baking, Journal of Cereal Science, vol.48, issue.1, p.19, 2008.

M. Musse, S. Quellec, M. Cambert, M. Devaux, M. Lahaye et al., Monitoring the postharvest ripening of tomato fruit using quantitative MRI and NMR relaxometry, Postharvest Biology and Technology, vol.53, issue.1-2, p.39, 2009.

S. D. Evans, K. P. Nott, A. A. Kshirsagar, and L. D. Hall, The effect of freezing and thawing on the magnetic resonance imaging parameters of water in beef, lamb and pork meat, International journal of food science & technology, vol.33, issue.3, p.20, 1998.

H. Adriaensen, M. Musse, S. Quellec, A. Vignaud, M. Cambert et al., MSE-MRI sequence optimisation for measurement of bi-and tri-exponential T 2 relaxation in a phantom and fruit, Magnetic resonance imaging, vol.31, issue.10, p.41, 1920.

H. Gudbjartsson and S. Patz, The Rician distribution of noisy MRI data, Magnetic Resonance in Medicine, vol.34, issue.6, p.51, 1920.

R. Bai, C. Koay, E. Hutchinson, and P. Basser, A framework for accurate determination of the T 2 distribution from multiple echo magnitude MRI images, Journal of Magnetic Resonance, vol.244, p.73, 1921.

M. Bouhrara, D. Reiter, H. Celik, J. Bonny, V. Lukas et al., Incorporation of Rician noise in the analysis of biexponential transverse relaxation in cartilage using a multiple gradient echo sequence at 3 and 7 Tesla, Magnetic Resonance in Medicine, vol.73, issue.1, p.73, 2015.

S. Chatterjee, O. Commowick, O. Afacan, B. Combès, A. Kerbrat et al., A 3-year follow-up study of enhancing and non-enhancing multiple sclerosis (ms) lesions in ms patients demonstrating clinically isolated syndrome (cis) using a multi-compartment T 2 relaxometry (mct2) model
URL : https://hal.archives-ouvertes.fr/hal-01821694

A. Lebois, Brain microstructure mapping using quantitative and diffsusion MRI, vol.11, 1921.
URL : https://hal.archives-ouvertes.fr/tel-01063198

D. A. Reiter, P. Lin, K. W. Fishbein, and R. G. Spencer, Multicomponent T 2 relaxation analysis in cartilage, Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol.61, issue.4, p.40, 2009.

G. Saab, R. T. Thompson, and G. D. Marsh, Multicomponent T 2 relaxation of in vivo skeletal muscle, Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol.42, issue.1, p.40, 1999.

E. M. Purcell, H. C. Torrey, and R. V. Pound, Resonance absorption by nuclear magnetic moments in a solid, Physical review, vol.69, issue.1-2, p.29, 1946.

F. Bloch, Nuclear induction, Physical review, vol.70, issue.7-8, p.29, 1946.

G. S. Pell, R. S. Briellmann, A. B. Waites, D. F. Abbott, and G. D. Jackson, Voxelbased relaxometry: a new approach for analysis of T 2 relaxometry changes in epilepsy, Neuroimage, vol.21, issue.2, p.37, 2004.

E. Alexopoulou, F. Stripeli, P. Baras, I. Seimenis, A. Kattamis et al., R2 relaxometry with MRI for the quantification of tissue iron overload in ?-thalassemic patients, Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol.23, issue.2, p.37, 2006.

P. Chen, M. Mccarthy, S. Kim, and B. Zion, Development of a high-speed nmr technique for sensing maturity of avocados, Transactions of the ASAE, vol.39, issue.6, p.37, 1996.

C. Clark, P. Hockings, D. Joyce, and R. Mazucco, Application of magnetic resonance imaging to pre-and post-harvest studies of fruits and vegetables, Postharvest biology and technology, vol.11, issue.1, p.37, 1997.

A. Raj, S. Pandya, X. Shen, E. Locastro, T. Nguyen et al., Multicompartment T 2 relaxometry using a spatially constrained multi-Gaussian model, PLoS One, vol.9, issue.6, p.73, 2014.

K. Layton, L. Johnston, P. Farrell, B. Moran, and M. Morelande, Estimation of relaxation time distributions in magnetic resonance imaging, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol.38, p.73, 2012.

S. Chatterjee, O. Commowick, O. Afacan, S. K. Warfield, and C. Barillot, Multicompartment model of brain tissues from T 2 relaxometry MRI using gamma distribution, 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), p.38, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01744852

A. Akhondi-asl, O. Afacan, M. Balasubramanian, R. Mulkern, and S. Warfield, Fast myelin water fraction estimation using 2D multislice CPMG, Magnetic Resonance in Medicine, vol.76, issue.4, p.73, 2016.

D. Kumar, T. Nguyen, S. Gauthier, and A. Raj, Bayesian algorithm using spatial priors for multiexponential T 2 relaxometry from multiecho spin echo MRI, Magnetic Resonance in Medicine, vol.68, issue.5, p.73, 2012.

M. Björk, D. Zachariah, J. Kullberg, and P. Stoica, A multicomponent T 2 relaxometry algorithm for myelin water imaging of the brain, Magnetic Resonance in Medicine, vol.75, issue.1, p.39, 2016.

T. A. Bjarnason, C. R. Mccreary, J. F. Dunn, and J. R. Mitchell, Quantitative T 2 analysis: the effects of noise, regularization, and multivoxel approaches, Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol.63, issue.1, p.39, 2010.

Y. Yoo and R. Tam, Non-local spatial regularization of MRI T 2 relaxation images for myelin water quantification, International Conference on Medical Image Computing and Computer-Assisted Intervention, vol.39, p.73, 2013.

E. Chouzenoux, S. Moussaoui, J. Idier, and F. Mariette, Efficient maximum entropy reconstruction of nuclear magnetic resonance T 1 -T 2 spectra, IEEE Transactions on Signal Processing, vol.58, issue.12, p.39, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00455477

L. Zhang and M. Mccarthy, Black heart characterization and detection in pomegranate using NMR relaxometry and MR imaging, Postharvest Biology and Technology, vol.67, p.39, 2012.

D. Hwang and Y. Du, Improved myelin water quantification using spatially regularized non-negative least squares algorithm, Journal of Magnetic Resonance Imaging, vol.30, issue.1, p.73, 2009.

H. Chung, Y. Nam, D. Kim, and D. Hwang, Three-pool model vs. nonnegative least squares algorithm for myelin water quantification, 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS), vol.40, p.73, 2011.

O. Kwon, E. Woo, Y. Du, and D. Hwang, A tissue-relaxation-dependent neighboring method for robust mapping of the myelin water fraction, NeuroImage, vol.74, p.40, 2013.

M. Ambrosanio, F. Baselice, G. Ferraioli, F. Lenti, and V. Pascazio, Intra voxel analysis in magnetic resonance imaging, Magnetic Resonance Imaging, vol.37, p.73, 2017.

L. Soustelle, Myelin imaging in MRI using ultra-short echo time sequences, p.40, 2018.
URL : https://hal.archives-ouvertes.fr/tel-01829953

Z. Ababneh, H. Beloeil, C. B. Berde, G. Gambarota, S. E. Maier et al., Biexponential parameterization of diffusion and T 2 relaxation decay curves in a rat muscle edema model: decay curve components and water compartments, Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol.54, issue.3, p.40, 2005.

J. Libove and J. Singer, Resolution and signal-to-noise relationships in nmr imaging in the human body, Journal of physics E: Scientific instruments, vol.13, issue.1, p.41, 1980.

D. B. Rowe, Modeling both the magnitude and phase of complex-valued fMRI data, Neuroimage, vol.25, issue.4, p.41, 2005.

S. Aja-fernández and G. Vegas-sánchez-ferrero, Statistical analysis of noise in MRI, p.42, 2016.

A. Dekker and J. Sijbers, Data distributions in magnetic resonance images: A review, Physica Medica, vol.30, p.42, 2014.

J. Idier and G. Collewet, Properties of Fisher information for Rician distributions and consequences in MRI
URL : https://hal.archives-ouvertes.fr/hal-01072813

O. T. Karlsen, R. Verhagen, and W. Bovée, Parameter estimation from Riciandistributed data sets using a maximum likelihood estimator: application to T 1 and perfusion measurements, Magnetic Resonance in Medicine, vol.41, issue.3, p.73, 1999.

R. Nowak, Wavelet-based Rician noise removal for magnetic resonance imaging, IEEE Transactions on Image Processing, vol.8, issue.10, p.45, 1999.

K. Whittall and A. Mackay, Quantitative interpretation of NMR relaxation data, Journal of Magnetic Resonance, vol.84, issue.1, p.50, 1989.

J. Bonny, M. Zanca, J. Boire, and A. Veyre, T 2 maximum likelihood estimation from multiple spin-echo magnitude images, Magnetic resonance in medicine, vol.36, issue.2, p.50, 1996.

J. C. Wood, C. Enriquez, N. Ghugre, J. M. Tyzka, S. Carson et al., MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients, Blood, vol.106, issue.4, p.51, 2005.

S. S. Vasanawala, H. Yu, A. Shimakawa, M. Jeng, and J. H. Brittain, Estimation of liver t* 2 in transfusion-related iron overload in patients with weighted least squares t* 2 ideal, Magnetic resonance in medicine, vol.67, issue.1, p.52, 2012.

G. Mcgibney and M. Smith, An unbiased signal-to-noise ratio measure for magnetic resonance images, Medical physics, vol.20, issue.4, p.52, 1993.

A. Miller and P. Joseph, The use of power images to perform quantitative analysis on low SNR MR images, Magnetic Resonance Imaging, vol.11, issue.7, p.52, 1993.

J. Raya, O. Dietrich, A. Horng, J. Weber, M. Reiser et al., T 2 measurement in articular cartilage: impact of the fitting method on accuracy and precision at low SNR, Magnetic Resonance in Medicine, vol.63, issue.1, p.73, 2010.

L. Kenneth, A method for the solution of certain non-linear problems in least squares, Quarterly of Applied Mathematics, vol.2, issue.2, p.54, 1944.

D. W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, Journal of the society for Industrial and Applied Mathematics, vol.11, issue.2, p.54, 1963.

J. Nocedal and S. J. Wright, Numerical Optimization, p.55, 1999.

D. Hunter and K. Lange, A tutorial on MM algorithms, The American Statistician, vol.58, issue.1, p.56, 2004.

D. Varadarajan and J. Haldar, A majorize-minimize framework for Rician and non-central chi MR images, IEEE Transactions on Medical Imaging, vol.34, issue.10, p.57, 2015.

M. W. Jacobson and J. A. Fessler, An expanded theoretical treatment of iterationdependent majorize-minimize algorithms, IEEE Transactions on Image Processing, vol.16, pp.2411-2422, 1958.

M. Allain, J. Idier, and Y. Goussard, On global and local convergence of halfquadratic algorithms, IEEE Transactions on Image Processing, vol.15, pp.1130-1142, 1958.
URL : https://hal.archives-ouvertes.fr/hal-00400663

E. Chouzenoux, M. Legendre, S. Moussaoui, and J. Idier, Fast constrained least squares spectral unmixing using primal-dual interior-point optimization, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.7, pp.59-69, 1970.
URL : https://hal.archives-ouvertes.fr/hal-00828013

D. Kumar, S. Siemonsen, C. Heesen, J. Fiehler, and J. Sedlacik, Noise robust spatially regularized myelin water fraction mapping with the intrinsic b1-error correction based on the linearized version of the extended phase graph model, Journal of Magnetic Resonance Imaging, vol.43, issue.4, p.73, 2016.

X. Shen, T. Nguyen, S. Gauthier, and A. Raj, Robust myelin quantitative imaging from multi-echo T 2 MRI using edge preserving spatial priors, International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.622-630, 2013.

T. Yokoo, Q. Yuan, J. Sénégas, A. Wiethoff, and I. Pedrosa, Quantitative R2* MRI of the liver with Rician noise models for evaluation of hepatic iron overload: Simulation, phantom, and early clinical experience, Journal of Magnetic Resonance Imaging, vol.42, issue.6, p.73, 2015.

H. Erdogan and J. Fessler, Ordered subsets algorithms for transmission tomography, Physics in Medicine & Biology, vol.44, issue.11, p.74, 1999.

J. Idier, Convex half-quadratic criteria and interacting auxiliary variables for image restoration, IEEE Transactions on Image Processing, vol.10, pp.1001-1009, 1974.

N. S. Altman, An introduction to kernel and nearest-neighbor nonparametric regression, The American Statistician, vol.46, issue.3, p.90, 1992.

J. Macqueen, Some methods for classification and analysis of multivariate observations, Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol.1, p.90, 1967.

C. E. Rasmussen, The infinite gaussian mixture model, Advances in neural information processing systems, vol.89, p.90, 2000.

S. C. Johnson, Hierarchical clustering schemes, Psychometrika, vol.32, issue.3, p.90, 1967.

M. Bora, D. Jyoti, D. Gupta, and A. Kumar, Effect of different distance measures on the performance of k-means algorithm: an experimental study in matlab, p.91, 2014.

P. Fränti and S. Sieranoja, How much can k-means be improved by using better initialization and repeats?, Pattern Recognition, vol.93, p.91, 2019.

T. M. Kodinariya and P. R. Makwana, Review on determining number of cluster in k-means clustering, International Journal, vol.1, issue.6, p.95, 2013.

D. R. Jones, M. Schonlau, and W. J. Welch, Efficient global optimization of expensive black-box functions, Journal of Global optimization, vol.13, issue.4, p.108, 1998.