M. Planck, Über irreversible Strahlungsvorgänge. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu, pp.479-480, 1899.

L. Xu, W. W. Zhang, and S. R. Nagel, Drop Splashing on a Dry Smooth Surface, Phys. Rev. Lett, vol.94, p.184505, 2005.

G. Mourou and S. Williamson, Picosecond electron diffraction, Appl. Phys. Lett, vol.41, p.44, 1982.

A. A. Ischenko, V. V. Golubkov, V. P. Spiridonov, A. V. Zgurskii, A. S. Akhmanov et al., A stroboscopical gas-electron diffraction method for the investigation of short-lived molecular species, Appl. Phys. B, vol.32, p.161, 1983.

A. H. Zewail, Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond Using Ultrafast Lasers (Nobel Lecture), Angewandte Chemie International Edition, vol.39, p.2586, 2000.

A. H. Zewail and J. M. Thomas, 4D electron microscopy, 2009.

G. Sciaini and R. J. Miller, Femtosecond electron diffraction: heralding the era of atomically resolved dynamics, Rep. Prog. Phys, vol.74, p.96101, 2011.

R. J. Miller, Femtosecond crystallography with ultrabright electrons and X-rays: capturing chemistry in action, Science, vol.343, p.1108, 2014.

M. M. Murnane, H. C. Kapteyn, M. D. Rosen, and R. W. Falcone, Ultrafast X-ray Pulses from Laser-Produced Plasmas, Science, vol.251, p.531, 1991.

C. Rischel, A. Rousse, I. Uschmann, P. A. Albouy, J. P. Geindre et al., Femtosecond time-resolved X-ray diffraction from laser-heated organic films, Nature, vol.390, p.490, 1997.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban et al., Non-thermal melting in semiconductors measured at femtosecond resolution, Nature, vol.410, p.65, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00523521

A. A. Zholents and M. S. Zolotorev, Femtosecond X-ray pulses of synchrotron radiation, Phys. Rev. Lett, vol.76, p.912, 1996.

. Bibliography,

R. W. Schoenlein, S. Chattopadhyay, H. H. Chong, T. E. Glover, C. V. Shank et al., Generation of Femtosecond Pulse of Synchrotron Radiation, Science, vol.287, p.2237, 2000.

M. Harmand, R. Coffee, M. R. Bionta, M. Chollet, D. French et al., Achieving fewfemtosecond time-sorting at hard X-ray free-electron lasers, Nat. Photonics, vol.7, p.215, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00825702

K. Sokolowski-tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich et al.,

, Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit, Nature, vol.422, p.287, 2003.

S. L. Johnson, P. Beaud, C. J. Milne, F. S. Krasniqi, E. S. Zijlstra et al., Nanoscale depth-resolved coherent femtosecond motion in laser-excited bismuth, Phys. Rev. Lett, vol.100, p.155501, 2008.

C. Rose-petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders et al., Picosecond-milliangstrom lattice dynamics measured by ultrafast X-ray diffraction, Nature, vol.398, p.310, 1999.

M. Harb, A. Jurgilaitis, H. Enquist, R. Nüske, C. V. Schmising et al., Picosecond dynamics of laser-induced strain in graphite, Phys. Rev. B, vol.84, p.45435, 2011.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi et al., Femtosecond Structural Dynamics in VO 2 during an Ultrafast Solid-Solid Phase Transition, Phys. Rev. Lett, vol.87, p.237401, 2001.

P. Baum, D. S. Yang, and A. H. Zewail, 4D visualization of transitional structures in phase transformations by electron diffraction, Science, vol.318, p.788, 2007.

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács et al., A photoinduced metal-like phase of monoclinic VO 2 revealed by ultrafast electron diffraction, Science, vol.346, p.445, 2014.

T. Huber, S. O. Mariager, A. Ferrer, H. Schäfer, J. A. Johnson et al., Coherent Structural Dynamics of a Prototypical Charge-Density-Waveto-Metal Transition, Phys. Rev. Lett, vol.113, p.26401, 2014.

M. Eichberger, H. Schäfer, M. Krumova, M. Beyer, J. Demsar et al., Snapshots of cooperative atomic motion in the optical suppression of charge density waves, Nature, vol.468, p.799, 2010.

C. Laulhé, T. Huber, G. Lantz, A. Ferrer, S. O. Mariager et al., Ultrafast Formation of a Charge Density Wave State in 1T-TaS 2 : Observation at Nanometer Scales Using Time-Resolved X-Ray Diffraction, Phys. Rev. Lett, vol.118, p.247401, 2017.

C. W. Siders, A. Cavalleri, K. Sokolowski-tinten, C. Tóth, T. Guo et al., Detection of nonthermal melting by ultrafast X-ray diffraction, Science, vol.286, p.1340, 1999.

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. Miller, An Atomic-Level View of Melting Using Femtosecond Electron Diffraction, Science, vol.302, p.1382, 2003.

R. Ernstorfer, M. Harb, C. T. Hebeisen, G. Sciaini, T. Dartigalongue et al., The formation of warm dense matter: Experimental evidence for electronic bond hardening in gold, Science, vol.323, p.1033, 2009.

G. Sciaini, M. Harb, S. G. Kruglik, T. Payer, C. T. Hebeisen et al., Electronic acceleration of atomic motions and disordering in bismuth, Nature, vol.458, p.56, 2009.

M. Harb, W. Peng, G. Sciaini, C. T. Hebeisen, R. Ernstorfer et al., Excitation of longitudinal and transverse coherent acoustic phonons in nanometer free-standing films of (001) Si, Phys. Rev. B, vol.79, p.94301, 2009.

W. S. Lee, Y. D. Chuang, R. G. Moore, Y. Zhu, L. Patthey et al., Phase fluctuations and the absence of topological defects in a photo-excited charge-ordered nickelate, Nat. Commun, vol.3, p.838, 2012.

N. Erasmus, M. Eichberger, K. Haupt, I. Boshoff, G. Kassier et al., Ultrafast Dynamics of Charge Density Waves in 4H b ?TaSe 2 Probed by Femtosecond Electron Diffraction, Phys. Rev. Lett, vol.109, p.167402, 2012.

T. R. Han, F. Zhou, C. D. Malliakas, P. M. Duxbury, S. D. Mahanti et al., Exploration of metastability and hidden phases in correlated electron crystals visualized by femtosecond optical doping and electron crystallography, Sci. Adv, vol.1, p.5, 2015.

. Bibliography,

L. Wei, S. Sun, C. Guo, Z. Li, K. Sun et al., Dynamic diffraction effects and coherent breathing oscillations in ultrafast electron diffraction in layered 1T-TaSeTe, Struct. Dyn, vol.4, p.44012, 2017.

S. Vogelgesang, G. Storeck, J. G. Horstmann, T. Diekmann, M. Sivis et al., Phase ordering of charge density waves traced by ultrafast low-energy electron diffraction, Nat. Phys, vol.14, p.184, 2017.

A. Zong, X. Shen, A. Kogar, L. Ye, C. Marks et al., Ultrafast manipulation of mirror domain walls in a charge density wave, Sci. Adv, vol.4, p.10, 2018.

A. Zong, A. Kogar, Y. Q. Bie, T. Rohwer, C. Lee et al., Evidence for topological defects in a photoinduced phase transition, Nat. Phys, vol.15, p.27, 2019.

M. Trigo, M. E. Kozina, T. Henighan, M. P. Jiang, H. Liu et al., Coherent order parameter dynamics in SmTe 3, Phys. Rev. B, vol.99, p.104111, 2019.

A. Zong, P. E. Dolgirev, A. Kogar, E. Ergeçen, M. B. Yilmaz et al., Dynamical Slowing-Down in an Ultrafast Photoinduced Phase Transition, Phys. Rev. Lett, vol.123, p.97601, 2019.

A. Kogar, A. Zong, P. E. Dolgirev, X. Shen, J. Straquadine et al., Light-Induced Charge Density Wave in LaTe 3, 2019.

F. Zhou, J. Williams, C. D. Malliakas, M. G. Kanatzidis, and A. F. Kemper, Nonequilibrium dynamics of spontaneous symmetry breaking into a hidden state of charge-density wave, 2019.

R. E. Franklin and R. G. Gosling, Molecular configuration in sodium thymonucleate, Nature, vol.171, p.740, 1953.

G. Thomson, The early history of electron diffraction, Contemp. Phys, vol.9, p.1, 1968.

C. Kittel, Introduction to Solid State Physics, 2004.

J. Als-nielsen and D. Mcmorrow, Elements of Modern X-ray Physics, 2011.

S. Ravy, Structure de la matière condensée, pp.2015-2016

L. Reimer and H. Kohl, Transmission electron microscopy, 2008.

B. Fultz and J. Howe, Transmission electron microscopy and diffractometry of materials (Springer Series in Graduate Texts in, Physics, 2013.

K. Nasu, Photoinduced Phase Transitions, 2004.

W. Bragg, X-rays and Crystals, Nature, vol.90, p.219, 1912.

W. Bragg, X-rays and Crystals, Nature, vol.90, p.360, 1912.

E. Maslen, A. Fox, and M. O'keefe, X-ray scattering, p.554, 2006.

B. Warren, X-ray Diffraction. Addison-Wesley series in metallurgy and materials, 1969.

R. M. Nicklow and R. A. Young, Lattice Vibrations in Aluminum and the Temperature Dependence of X-Ray Bragg Intensities, Phys. Rev, vol.152, p.591, 1966.

D. Delille, R. Pantel, and E. Van-cappellen, Crystal thickness and extinction distance determination using energy filtered CBED pattern intensity measurement and dynamical diffraction theory fitting, Ultramicroscopy, vol.87, p.5, 2001.

P. M. Kelly, A. Jostsons, R. G. Blake, and J. G. Napier, The determination of foil thickness by scanning transmission electron microscopy, Phys. Stat. Sol. (a), vol.31, p.771, 1975.

F. S. Allen, Foil thickness measurements from convergent-beam diffraction patters. an experimental assessment of errors, Phil. Mag. A, vol.43, p.325, 1981.

S. I. Anisimov, B. L. Kapeliovich, and T. L. , Perel'man. Electron emission from metal surfaces exposed to ultrashort laser pulses, Sov. Phys. -JETP, vol.39, p.375, 1974.

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, Femtosecond studies of nonequilibrium electronic processes in metals, Phys. Rev. Lett, vol.58, p.1680, 1987.

H. E. Elsayed-ali, T. B. Norris, M. A. Pessot, and G. A. Mourou, Time-resolved observation of electron-phonon relaxation in copper, Phys. Rev. Lett, vol.58, p.1212, 1987.

E. Beaurepaire, J. Merle, A. Daunois, and J. Bigot, Ultrafast Spin Dynamics in Ferromagnetic Nickel, Phys. Rev. Lett, vol.76, p.4250, 1996.

. Bibliography,

L. Perfetti, P. A. Loukakos, M. Lisowski, U. Bovensiepen, H. Eisaki et al., Ultrafast Electron Relaxation in Superconducting Bi 2 Sr 2 CaCu 2 O 8+? by Time-Resolved Photoelectron Spectroscopy, Phys. Rev. Lett, vol.99, p.197001, 2007.

D. Leuenberger, J. A. Sobota, S. Yang, A. F. Kemper, R. G. Moore et al., Classification of collective modes in a charge density wave by momentum-dependent modulation of the electronic band structure, Phys. Rev. B, vol.91, p.201106, 2015.

D. C. Joy, J. I. Goldstein, and A. D. Romig, Principles of Analytical Electron Microscopy, 1986.

R. Henderson, The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules, Q. Rev. Biophys, vol.28, pp.171-193, 1995.

C. Hauf, A. Salvador, M. Holtz, M. Woerner, and T. Elsaesser, Phonon driven charge dynamics in polycrystalline acetylsalicylic acid mapped by ultrafast X-ray diffraction, Struct. Dyn, vol.6, p.14503, 2019.

, FXE Instrument Parameters for Early User Operation, pp.2019-2028

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, Surface generation and detection of phonons by picosecond light pulses, Phys. Rev. B, vol.34, p.4129, 1986.

R. P. Chatelain, V. R. Morrison, B. L. Klarenaar, and B. J. Siwick, Coherent and Incoherent Electron-Phonon Coupling in Graphite Observed with Radio-Frequency Compressed Ultrafast Electron Diffraction, Phys. Rev. Lett, vol.113, p.235502, 2014.

G. Sciaini, M. Harb, S. G. Kruglik, T. Payer, C. T. Hebeisen et al., Electronic acceleration of atomic motions and disordering in bismuth, Nature, vol.458, p.458, 2009.

T. Van-oudheusden, Electron source for subrelativistic single-shot femtosecond diffraction, 2010.

D. H. Dowell and J. F. Schmerge, Quantum efficiency and thermal emittance of metal photocathodes, Phys. Rev. Spec. Top. -Accel. Beams, vol.12, p.74201, 2009.

M. Aidelsburger, F. O. Kirchner, F. Krausz, and P. Baum, Single-electron pulses for ultrafast diffraction, Proc. Natl. Acad. Sci, vol.107, p.19714, 2010.

S. B. Van-der-geer and M. J. De-loos, Pulsar Physics and the General Particle Tracer (GPT) code

T. Van-oudheusden, E. F. Jong, S. B. Van-der, W. P. Geer, O. J. Op-'t-root et al., Electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range, J. Appl. Phys, vol.102, p.93501, 2007.

S. Humphreis, , 1990.

C. Gerbig, A. Senftleben, S. Morgenstern, C. Sarpe, and T. Baumert, Spatio-temporal resolution studies on a highly compact ultrafast electron diffractometer, New J. Phys, vol.17, p.43050, 2015.

A. Gahlmann, S. Park, and A. H. Zewail, Ultrashort electron pulses for diffraction, crystallography and microscopy: Theoretical and experimental resolutions, Phys. Chem. Chem. Phys, vol.10, p.2894, 2008.

J. L. Wiza, Michrochannel plate detectors, Nucl. Instrum. Meth, vol.162, p.587, 1979.

J. G. Timothy, Photon-Counting Detector Arrays Based on Microchannel Array Plates, 1975.

H. Park, Z. Hao, X. Wang, S. Nie, R. Clinite et al., Synchronization of femtosecond laser and electron pulses with subpicosecond precision, Rev. Sci. Instrum, vol.76, p.83905, 2005.

J. R. Dwyer, C. T. Hebeisen, R. Ernstorfer, M. Harb, V. B. Deyirmenjian et al., Femtosecond electron diffraction: 'Making the molecular movie, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci, vol.364, p.741, 2006.

M. Gao, C. Lu, H. Jean-ruel, L. C. Liu, A. Marx et al., Mapping molecular motions leading to charge delocalization with ultrabright electrons, Nature, vol.496, p.343, 2013.

M. Harb, R. Ernstorfer, T. Dartigalongue, C. T. Hebeisen, R. E. Jordan et al., Carrier relaxation and lattice heating dynamics in silicon revealed by femtosecond electron diffraction, J. Phys. Chem. B, vol.110, p.25308, 2006.

S. Lahme, C. Kealhofer, F. Krausz, and P. Baum, Femtosecond single-electron diffraction, Struc. Dynam, vol.1, p.34303, 2014.

S. Schäfer, W. Liang, and A. H. Zewail, Structural dynamics of surfaces by ultrafast electron crystallography: Experimental and multiple scattering theory, J. Chem. Phys, vol.135, p.214201, 2011.

, Silicon electronic structure

S. Jeong, H. Zacharias, and J. Bokor, Ultrafast carrier dynamics on the Si(100)2×1 surface, Phys. Rev. B, vol.54, p.17300, 1996.

C. V. Shank, R. Yen, and C. Hirlimann, Time resolved reflectivity measurements of femtosecond-optical-pulse-induced phase transitions in silicon, Phys. Rev. Lett, vol.50, p.454, 1983.

K. G. Svantesson and N. G. Nilsson, The temperature dependence of the Auger recombination coefficient of undoped silicon, J. Phys. C Solid State Phys, vol.12, p.5111, 1979.

X. Gonze, B. Amadon, P. Anglade, J. Beuken, F. Bottin et al., Abinit: First-principles approach to material and nanosystem properties, Comp. Phys. Commu, vol.180, p.2582, 2009.

B. Arnaud, S. Lebègue, and M. Alouani, Excitonic and quasiparticle lifetime effects on silicon electron energy loss spectra from first principles, Phys. Rev. B, vol.71, p.35308, 2005.

J. Dziewior and W. Schmid, Auger coefficients for highly doped and highly excited silicon, Appl. Phys. Lett, vol.31, p.346, 1977.

M. Harb, Investigating Photoinduced Structural Changes in Si using Femtosecond Electron Diffraction, 2009.

Y. Okada and Y. Tokumaru, Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K, J. Appl. Phys, vol.56, p.314, 1984.

J. Morniroli, M. Nó, P. Rodríguez, J. S. Juan, E. Jezierska et al., CBED and LACBED: characterization of antiphase boundaries, Ultramicroscopy, vol.98, p.9, 2003.

A. Howie and M. J. Whelan, Diffraction contrast of electron microscope images of crystal lattice defects -II. The development of a dynamical theory, Proc. R. Soc. Lond. A, vol.263, p.217, 1961.

P. A. Stadelmann, JEMS-EMS java version, 2004.

A. Howie and U. Valdrè, Temperature dependence of the extinction distance in electron diffraction, Philos. Mag, vol.15, p.777, 1967.

S. Takagi, On the Temperature Diffuse Scattering of Electrons I. Derivation of General Formulae, J. Phys. Soc. Japan, vol.13, p.278, 1958.

J. P. Morniroli, Large-Angle Convergent-Beam Electron Diffraction Applications to Crystal Defects (Société Française des Microscopies, 2002.

A. Feist, N. Rubiano-da-silva, W. Liang, C. Ropers, and S. Schäfer, Nanoscale diffractive probing of strain dynamics in ultrafast transmission electron microscopy, Struct. Dyn, vol.5, p.14302, 2018.

R. E. Peierls, Quantum Theory of Solids (Oxford classic texts in the physical sciences, 1955.

K. , On the origin of charge-density waves in select layered transition-metal dichalcogenides, J. Phys.: Cond. Matt, vol.23, p.213001, 2011.

N. Ru and I. R. Fisher, Thermodynamic and transport properties of YTe 3 , LaTe 3 , and CeTe 3, Phys. Rev. B, vol.73, p.3, 2006.

V. Brouet, W. L. Yang, X. J. Zhou, Z. Hussain, N. Ru et al., Fermi Surface Reconstruction in the CDW State of CeTe 3 Observed by Photoemission, Phys. Rev. Lett, vol.93, p.126405, 2004.

R. G. Moore, W. S. Lee, P. S. Kirchman, Y. D. Chuang, A. F. Kemper et al., Ultrafast resonant soft X-ray diffraction dynamics of the charge density wave in TbTe 3, Phys. Rev. B, vol.93, p.24304, 2016.

N. Ru, C. L. Condron, G. Y. Margulis, K. Y. Shin, J. Laverock et al., Effect of chemical pressure on the charge density wave transition in rare-earth tritellurides RTe 3, Phys. Rev. B, vol.77, p.35114, 2008.

G. Grüner, The dynamics of charge-density waves, Rev. Mod. Phys, vol.60, p.1129, 1988.

S. Van-smaalen, The Peierls transition in low-dimensional electronic crystals, Acta Crystallogr. Sect. A Found. Crystallogr, vol.61, p.51, 2005.

. Bibliography,

P. Monceau, Electronic crystals: an experimental overview, Adv. Phys, vol.61, p.325, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00966465

G. Grüner, Density waves in solids, 1994.

L. Gor'kov and G. Grüner, Charge density waves in solids, 1989.

S. Kagoshima, H. Nagasawa, and T. Sambongi, One-Dimensional Conductors, 1982.

V. Jacques, Application de la diffraction coherente des rayons X a l'etude de defauts topologiques dans les structures atomiques et electroniques, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00463496

M. D. Johannes and I. I. Mazin, Fermi surface nesting and the origin of charge density waves in metals, Phys. Rev. B, vol.77, p.165135, 2008.

S. Chan and V. Heine, Spin density wave and soft phonon mode from nesting Fermi surfaces, J. Phys. F: Met. Phys, vol.3, p.795, 1973.

W. Kohn, Image of the Fermi Surface in the Vibration Spectrum of a Metal, Phys. Rev. Lett, vol.2, p.393, 1959.

G. F. Giuliani and A. W. Overhauser, Structure factor of a charge-density wave, Phys. Rev. B, vol.23, p.3737, 1971.

A. W. Overhauser, Observability of Charge-Density Waves by Neutron Diffraction, Phys. Rev. B, vol.3, p.3173, 1971.

N. Ru, Charge density wave formation in rare-earth tritellurides, 2008.

C. Malliakas, S. J. Billinge, H. J. Kim, and M. G. Kanatzidis, Square Nets of Tellurium: Rare-Earth Dependent Variation in the Charge-Density Wave of RETe 3 (RE = Rare-Earth Element), J. Am. Chem. Soc, vol.127, p.6510, 2005.

K. Momma and F. Izumi, Vesta: a three-dimensional visualization system for electronic and structural analysis, J. Appl. Crystallogr, vol.41, p.653, 2008.

C. D. Malliakas and M. G. Kanatzidis, Divergence in the Behavior of the Charge Density Wave in RETe 3 (RE = Rare-Earth Element) with Temperature and RE Element, J. Am. Chem. Soc, vol.128, p.12612, 2006.

V. Brouet, W. L. Yang, X. J. Zhou, Z. Hussain, R. G. Moore et al., Angle-resolved photoemission study of the evolution of band structure and charge density wave properties in RTe 3, Phys. Rev. B, vol.77, p.235104, 2008.

G. Gweon, J. D. Denlinger, J. A. Clack, J. W. Allen, C. G. Olson et al., Direct Observation of Complete Fermi Surface, Imperfect Nesting, and Gap Anisotropy in the High-Temperature Incommensurate Charge-Density-Wave Compound SmTe 3, Phys. Rev. Lett, vol.81, p.886, 1998.

J. Laverock, S. B. Dugdale, Z. Major, M. A. Alam, N. Ru et al., Fermi surface nesting and charge-density wave formation in rare-earth tritellurides, Phys. Rev. B, vol.71, p.85114, 2005.

F. Schmitt, P. S. Kirchmann, U. Bovensiepen, R. G. Moore, M. K. Rettig et al., Transient Electronic Structure and Melting of a Charge Density Wave in TbTe 3, Science, vol.321, p.1649, 2008.

E. Dimasi, M. C. Aronson, J. F. Mansfield, B. Foran, and S. Lee, Chemical pressure and charge-density waves in rare-earth tritellurides, Phys. Rev. B, vol.52, p.14516, 1995.

F. Schmitt, P. S. Kirchmann, U. Bovensiepen, R. G. Moore, J. H. Chu et al., Ultrafast electron dynamics in the charge density wave material TbTe 3, New J. Phys, vol.13, p.63022, 2011.

L. Rettig, R. Cortés, J. H. Chu, I. R. Fisher, F. Schmitt et al., Persistent order due to transiently enhanced nesting in an electronically excited charge density wave, Nat. Commun, vol.7, p.10459, 2016.

R. Y. Chen, B. F. Hu, T. Dong, and N. L. Wang, Revealing multiple charge-density-wave orders in TbTe 3 by optical conductivity and ultrafast pump-probe experiments, Phys. Rev. B, vol.89, p.75114, 2014.

R. V. Yusupov, T. Mertelj, J. Chu, I. R. Fisher, and D. Mihailovic, Single-Particle and Collective Mode Couplings Associated with 1-and 2-Directional Electronic Ordering in Metallic RTe 3 (R = Ho, Dy, Tb), Phys. Rev. Lett, vol.101, p.246402, 2008.

R. Yusupov, T. Mertelj, V. V. Kabanov, S. Brazovskii, P. Kusar et al., Coherent dynamics of macroscopic electronic order through a symmetry breaking transition, Nat. Phys, vol.6, p.681, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00767862

M. Scheffer, J. Bascompte, W. A. Brock, V. Brovkin, S. R. Carpenter et al., Early-warning signals for critical transitions, Nature, vol.461, p.53, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02195562

. Bibliography,

C. Diks, C. Hommes, and J. Wang, Critical slowing down as an early warning signal for financial crises?, Empir. Econ, vol.57, p.1201, 2018.

V. Dakos, M. Scheffer, E. H. Van-nes, V. Brovkin, V. Petoukhov et al., Slowing down as an early warning signal for abrupt climate change, Proc. Natl. Acad. Sci, vol.105, p.14308, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02195167

A. J. Veraart, E. J. Faassen, V. Dakos, E. H. Van-nes, M. Lürling et al., Recovery rates reflect distance to a tipping point in a living system, Nature, vol.481, p.357, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02195171

I. A. Van-de-leemput, M. Wichers, A. O. Cramer, D. Borsboom, F. Tuerlinckx et al., Critical slowing down as early warning for the onset and termination of depression, Proc. Natl. Acad. Sci, vol.111, p.87, 2014.

T. T. Han, Z. Tao, S. D. Mahanti, K. Chang, C. Ruan et al., Structural dynamics of two-dimensional charge-density waves in CeTe 3 investigated by ultrafast electron crystallography, Phys. Rev. B, vol.86, p.75145, 2012.

A. A. Sinchenko, P. Lejay, and P. Monceau, Sliding charge-density wave in twodimensional rare-earth tellurides, Phys. Rev. B, vol.85, p.241104, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00966370

, Diamond trim knifes, pp.2019-2028

, Diatome knifes, pp.2019-2028

A. Sacchetti, L. Degiorgi, T. Giamarchi, N. Ru, and I. R. Fisher, Chemical pressure and hidden one-dimensional behavior in rare-earth tri-telluride charge-density wave compounds, Phys. Rev. B, vol.74, p.125115, 2006.

V. Tinnemann, C. Streubühr, B. Hafke, A. Kalus, A. Hanisch-blicharski et al., Ultrafast electron diffraction from a Bi(111) surface: Impulsive lattice excitation and Debye-Waller analysis at large momentum transfer, Struct. Dyn, vol.6, p.35101, 2019.

R. D. Horning and J. Staudenmann, The Debye-Waller factor for polyatomic solids. Relationships between X-ray and specific-heat Debye temperatures. The Debye-Einstein model, Acta Cryst. A, vol.44, p.136, 1988.

A. Banerjee, Y. Feng, D. M. Silevitch, J. Wang, J. C. Lang et al., Charge transfer and multiple density waves in the rare earth tellurides, Phys. Rev. B, vol.87, p.155131, 2013.

D. J. Hilton, Ultrafast pump-probe spectroscopy, Optical Techniques for Solid-State Materials Characterization, 2011.

V. V. Kabanov, J. Demsar, B. Podobnik, and D. Mihailovic, Quasiparticle relaxation dynamics in superconductors with different gap structures: Theory and experiments on YBa 2 Cu 3 O 7??, Phys. Rev. B, vol.59, p.1497, 1999.

J. Demsar, K. Biljakovi?, and D. Mihailovic, Single Particle and Collective Excitations in the One-Dimensional Charge Density Wave Solid K 0.3 MoO 3 Probed in Real Time by Femtosecond Spectroscopy, Phys. Rev. Lett, vol.83, p.800, 1999.

H. Fukuyama and P. A. Lee, Dynamics of the charge-density wave. I. Impurity pinning in a single chain, Phys. Rev. B, vol.17, p.535, 1978.

P. A. Lee and T. M. Rice, Electric field depinning of charge density waves, Phys. Rev. B, vol.19, p.3970, 1979.

D. Dicarlo, R. E. Thorne, E. Sweetland, M. Sutton, and J. D. Brock, Charge-density-wave structure in NbSe 3, Phys. Rev. B, vol.50, p.8288, 1994.

M. Lavagnini, H. Eiter, L. Tassini, B. Muschler, R. Hackl et al., Raman scattering evidence for a cascade evolution of the charge-density-wave collective amplitude mode, Phys. Rev. B, vol.81, p.81101, 2010.

T. Mertelj, P. Kusar, V. V. Kabanov, P. Giraldo-gallo, I. R. Fisher et al., Incoherent topological defect recombination dynamics in TbTe 3, Phys. Rev. Lett, vol.110, p.156401, 2013.

D. Dew-hughes, Superconducting a-15 compounds: A review, Cryogenics, vol.15, p.435, 1975.

L. R. Testardi, Structural instability an superconductivity in A-15 compounds, Rev. Mod. Phys, vol.47, p.637, 1975.

G. R. Stewart, Superconductivity in the A15 structure, Physica C Supercond, vol.514, p.28, 2015.

G. Bilbro and W. L. Mcmillan, Theoretical model of superconductivity and the martensitic transformation in A15 compounds, Phys. Rev. B, vol.14, p.1887, 1976.

. Bibliography,

R. N. Bhatt and W. L. Mcmillan, Landau theory of the martensitic transition in A-15 compounds, Phys. Rev. B, vol.14, p.1007, 1976.

X. Yang, C. Vaswani, C. Sundahl, M. Mootz, P. Gagel et al., Terahertz-light quantum tuning of a metastable emergent phase hidden by superconductivity, Nat. Mater, vol.17, p.586, 2018.

X. Yang, X. Zhao, C. Vaswani, C. Sundahl, B. Song et al., Ultrafast nonthermal terahertz electrodynamics and possible quantum energy transfer in the Nb 3 Sn superconductor, Phys. Rev. B, vol.99, p.94504, 2019.

R. Mailfert, B. W. Batterman, and J. J. Hanak, Observations Related to the Order of the Low Temperature Structural Transformation in V 3 Si and Nb 3 Sn, Phys. Stat. Sol. (b), vol.32, p.67, 1969.

G. Shirane and D. J. Axe, Neutron Scattering Study of the Lattice-Dynamical Phase Transition in Nb 3 Sn, Physcial Rev. B, vol.4, p.2957, 1971.

L. J. Vieland, R. W. Cohen, and W. Rehwald, Evidence for a First-Order Structural Transformation in Nb 3 Sn, Phys. Rev. Lett, vol.26, p.373, 1971.

J. Labbe and J. Friedel, Instabilite electronique et changement de phase cristalline des composes du type V 3 Si a basse temperature, J. Phys. France, vol.27, p.153, 1966.
URL : https://hal.archives-ouvertes.fr/jpa-00206382

H. Tütüncü, H. Uzunok, G. Srivastava, V. Özdemir, and G. U?ur, The effect of martensitic phase transition from cubic to tetragonal on the physical properties of V 3 Si superconductor, Intermetallics, vol.96, p.25, 2018.

M. Newville, T. Stensitzki, D. B. Allen, and A. Ingargiola, LMFIT: Non-Linear Least-Square Minimization and Curve-Fitting for Python, 2014.

, Right: Optic microscope image of a GdTe 3 section with an area of a ? 500 µm × 500 µm and 50 nm thickness, Sketch of the Perfect loop tool containing the water drop and the sample sections, ready to be deposited on the TEM grid, vol.144

, satellites are marked by red arrows in the diffraction pattern, p.90

, Red arrows point to the positions of the satellites with Q CDW = (±1,0,±?) where ? ? 2/7. Left: Line profile of the (1, 0, 0) Bragg peak and the neighbouring satellites (blue dots). The blue dashed lines are Lorentzian fits of each peak and the solid red line represents the complete fit

, Line profile of the unblocked direct beam along the (0,0,l) direction. The inset shows a zoom of the highlighted region

, Left: Diffraction pattern after pump arrival at t = 5 ps with an incident fluence of 3.5 mJ/cm 2 . Right: Corresponding line profile of the (1, 0, 0) Bragg peak, the intensity of the satellites is suppressed to the background level, p.92

, Diffraction pattern after pump arrival at t = 5 ps with an incident fluence of 3.5 mJ/cm 2

, Relative intensity changes of the Bragg peaks, averaged over 30 Bragg peaks, as a function of the delay time between pump and probe at four different fluences. The initial sample temperature is T i = 155 K. The solid lines are resulting from a single exponential decay fit

, with incident fluences of a) F = 0.8 mJ/cm 2 and b) F = 3.5 mJ/cm 2 , and initial temperature T i = 155 K, Comparison between the intensity changes of orthogonal Bragg peaks: (± 400) and (00-4)

, Intensity changes ratio I/I 0 where I is the intensity after full decay. The sample initial temperature is T i = 155 K

, 25 Logarithm of the intensity ratio after the quasi-equilibrium is reached I(t = 75 ps) and before photoexcitation (I 0 ) as a function of the squared of the wavevector. As expected from Debye-Waller theory, log(I/I 0 ) vs. sin 2 ?/? 2 follows a linear trend (dashed lines)

;. .. T-q.e.-=-t-i-+?t, =155 K) from the Debye-Waller effect (red dots) and from heat absorption (gray line) at the quasi-equilibrium state. The black dashed line marks the transition temperature of GdTe 3 [122]

, Phonon intensity map as a function of the sample temperature in TbTe 3 . The color map, circles and triangles are the experimentally retrieved frequencies while black lines result from calculations. Mode mixing is evident between the amplitude mode

, THz mode at intermediate temperatures and with the 2.6 THz phonon at low temperatures. Figure from [134]

. .. , Schematic of the temporal energy changes at the lattice and CDW levels with ? denoting the amplitude of the CDW and phi the phase, p.112

, Unit cell of Nb 3 Sn in the cubic phase

, Electronic d bands from the Nb atoms in the linear chains in a) the cubic phase and b) the tetragonal phase

, Schematic of the experimental grazing geometry

, Equilibrium rocking curves of the (210) Bragg reflection measured at grazing incidence and at different temperatures. Curves are vertically shifted for clarity. Below T = 35 K, a second reflection emerges with constant FWHM and its position evolves towards higher azimuthal angles

. .. , Fit parameters of the rocking scans at equilibrium temperatures: a) FWHM, b) maximum intensity (height parameter) and c) center, p.120

, Detector images (linear scale) corresponding to the peak located at ? 1 in the rocking curve. The white cross marks the position of the high temperature Bragg reflection, used as the origin to retrieve the vertical and horizontal positions, p.121

. .. , Detector images corresponding to the peak located at ? 2 in the rocking curve. In this case the color map scale is the same for all images, p.122

. .. , Calculated lattice parameters from the images on the detector. The error bars correspond to the spatial resolution given by the pixel size, p.122

K. .. , Relative intensity changes as a function of the time delay at constant ? angle (? = ? 1 ) and at a sample temperature of T = 20, p.123

, Rocking curves at T = 25 K as a function of the time delay between pump and probe for incident fluences a) F = 0.16 mJ/cm 2 and b) F = 0.7 mJ/cm 2, p.124

. .. , at a sample temperature of T = 25 K and an incident fluence of F = 0.16 mJ/cm 2 with their corresponding fits (lines), b) width peak values resulting from the fits and c) center position of both reflections

, Experimental time resolved rocking curves (dots) collected at a sample temperature of T=16 K and an incident fluence of F = 0.7 mJ/cm 2 with their corresponding fits (lines), b) width peak values resulting from the fits and c) center position of both reflections

, Rocking curves at different time delays at T = 10 K and F = 0.63mJ/cm 2, p.130

, The sample temperature was T = 10 K and the incident fluence F = 0.63 mJ/cm 2 . Every image is a result after subtracting the image at negative time delays with t = -1 ns, Detector images of the integrated rocking curve at different times delays

, Changes of the center of mass along the vertical (??) and horizontal (??) of the detector images

, Changes on the vertical center of mass retrieved from the detector images at different sample temperatures and at two incident fluences: a) F = 0.63 mJ/cm 2 and b) F = 0.9 mJ/cm 2

A. , Image recorded on the camera of the focused electron beam and its corresponding vertical and horizontal line profiles fitted with a Voigt function, p.138

, Note that the deviation in the number of counts increases as the current of the bunch is incremented

, Number of measured electrons with the Faraday cup and the corresponding averaged height from the Voigt fit as a function of the waveplate angle, p.139

, Number of electrons as a function of the FWHM (given in pixels) of the focused direct beam

, diffracted electron beam on a polycrystalline aluminium sample (center) and of the third harmonic laser spot (right, in log scale) as a function of the distance between the telescope lenses. The upper row corresponds to a third harmonic beam size of ? 73 µm whereas the lower row correspond to ? 53 µm

, Section of the silicon nanomenbrane deposited on a TEM grid for CBED measurements

, Excess (400) and deficiency (000) lines of the silicon at 300 keV, measured (left) and simulated by JEMS (right)

E. , 1 a) Grazing incidence geometry with the Nb 3 Sn sample orientation. The rotation around the ? angle is used in order to intersect the (201) reflection on the Ewald sphere. b) Angular configuration with the section of the reciprocal lattice defined by the detector. c) The three possible variants observable in Nb3Sn at low temperature

. .. , Parameters used in the particle tracer (GPT) simulations, p.37

, Note: values given for the absorption coefficient and the penetration depth correspond to a wavelength of ? = 400 nm, p.53