. Ligo-scientic, B. P. Virgo, and . Abbott, Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett, vol.116, issue.6, p.61102, 2016.

G. Ponzano and T. Regge, Semiclassical limit of Racah coecients

, Spectroscopic and group theoretical methods in physics, E. F. Bloch, p.158, 1968.

D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys, vol.12, p.498501, 1971.

M. Crisostomi, K. Noui, C. Charmousis, and D. Langlois, Beyond Lovelock gravity: Higher derivative metric theories, Phys. Rev, vol.97, issue.4, p.44034, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01719912

D. Langlois, Dark energy and modied gravity in degenerate higher-order scalartensor (DHOST) theories: A review, Int. J. Mod. Phys, vol.28, issue.05, 2019.

L. Heisenberg, A systematic approach to generalisations of General Relativity and their cosmological implications, Phys. Rept, vol.796, p.1113, 2019.

S. Weinberg, The Quantum theory of elds, vol.1, 2005.

S. Carlip, Quantum gravity: A Progress report, Rept. Prog. Phys, vol.64, p.885, 2001.

G. Esposito, An Introduction to quantum gravity, Section 6.7.17 of the EOLSS Encyclopedia by UNESCO, 2011.

J. Polchinski, An introduction to the bosonic string, vol.1

, Cambridge Monographs on Mathematical Physics, 2007.

J. Polchinski, String theory, Superstring theory and beyond. Cambridge Monographs on Mathematical Physics, vol.2, 2007.

D. Tong, String Theory

M. P. Reisenberger and C. Rovelli, Sum over surfaces' form of loop quantum gravity, Phys. Rev, vol.56, p.34903508, 1997.

J. C. Baez, Spin foam models, Class. Quant. Grav, vol.15, p.18271858, 1998.

A. Ashtekar and J. Lewandowski, Background independent quantum gravity: A Status report, Class. Quant. Grav, vol.21, p.53, 2004.

P. Dona and S. Speziale, Introductory lectures to loop quantum gravity
URL : https://hal.archives-ouvertes.fr/hal-00499552

, Gravitation Théorie et Expérience.Proceedings, Troisième école de physique théorique de Jijel: Jijel, p.89140, 2009.

C. Rovelli, Zakopane lectures on loop gravity, PoS, vol.2011, p.3, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00593877

L. Freidel and K. Krasnov, Spin foam models and the classical action principle, Adv. Theor. Math. Phys, vol.2, p.11831247, 1999.

D. Oriti, Spin foam models of quantum space-time, 2003.

A. Perez, Spin foam models for quantum gravity, Class. Quant. Grav, vol.20, p.43, 2003.

E. R. Livine, The Spinfoam Framework for Quantum Gravity, 2010.

A. Perez, The Spin Foam Approach to Quantum Gravity, Living Rev. Rel, vol.16, p.3, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00957636

A. Staruszkiewicz, Gravitation Theory in Three-Dimensional Space, Acta Phys. Polon, vol.24, p.735740, 1963.

S. Deser and R. Jackiw, Three-Dimensional Cosmological Gravity: Dynamics of Constant Curvature, Annals Phys, vol.153, p.405416, 1984.

S. Deser, R. Jackiw, and G. Hooft, Three-Dimensional Einstein Gravity: Dynamics of Flat Space, vol.152, p.220, 1984.

A. Achucarro, P. K. Townsend, and . Chern,

, Three-Dimensional anti-De Sitter Supergravity Theories, Phys. Lett, vol.180, p.732, 1986.

E. Witten, 2+1)-Dimensional Gravity as an Exactly Soluble System, Nucl. Phys, vol.311, p.46, 1988.

E. Witten, Topology Changing Amplitudes in (2+1)-Dimensional Gravity, Nucl. Phys, vol.323, p.113140, 1989.

M. Atiyah, Topological quantum eld theories, Inst. Hautes Etudes Sci. Publ. Math, vol.68, p.175186, 1989.

N. Reshetikhin and V. G. Turaev, Invariants of three manifolds via link polynomials and quantum groups, Invent. Math, vol.103, p.547597, 1991.

V. G. Turaev and O. Y. Viro, State sum invariants of 3 manifolds and quantum 6j symbols, Topology, vol.31, p.865902, 1992.

G. T. Horowitz, Exactly Soluble Dieomorphism Invariant Theories, Commun. Math. Phys, vol.125, p.417, 1989.

M. Blau and G. Thompson, Topological gauge theories of antisymmetric tensor elds, Annals of Physics, vol.205, issue.1, p.172, 1991.

L. Crane, Topological eld theory as the key to quantum gravity, Knots and Quantum, p.121132, 1993.

J. W. Barrett, Quantum gravity as topological quantum eld theory, J. Math. Phys, vol.36, p.61616179, 1995.

J. W. Barrett and L. Crane, Relativistic spin networks and quantum gravity, J. Math. Phys, vol.39, p.32963302, 1998.

G. Hooft, Dimensional reduction in quantum gravity, Conf. Proc, vol.930308, p.284296, 1993.

L. Susskind, The World as a hologram, J. Math. Phys, vol.36, p.63776396, 1995.

S. W. Hawking, Black hole explosions, Nature, vol.248, p.3031, 1974.

S. W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys, vol.43, p.167, 1975.

J. M. Maldacena, The Large N limit of superconformal eld theories and supergravity, Adv. Theor. Math. Phys, vol.38, p.231, 1998.

E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys, vol.2, p.253291, 1998.

O. Coussaert, M. Henneaux, and P. Van-driel, The Asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant, Class. Quant. Grav, vol.12, p.29612966, 1995.

S. Carlip, Conformal eld theory, (2+1)-dimensional gravity, and the BTZ black hole, Class. Quant. Grav, vol.22, pp.85-124, 2005.

H. Bondi, M. G. Van-der-burg, and A. W. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond, vol.269, p.2152, 1962.

R. K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically at space-times, Proc. Roy. Soc. Lond, vol.270, p.103126, 1962.

G. Barnich and C. Troessaert, Symmetries of asymptotically at 4 dimensional spacetimes at null innity revisited, Phys. Rev. Lett, vol.105, p.111103, 2010.

B. Oblak, Characters of the BMS Group in Three Dimensions, Commun. Math. Phys, vol.340, issue.1, p.413432, 2015.

G. Barnich and B. Oblak, Notes on the BMS group in three dimensions: I. Induced representations, JHEP, issue.06, p.129, 2014.

G. Barnich and B. Oblak, Notes on the BMS group in three dimensions: II. Coadjoint representation, p.33, 2015.

B. Oblak, BMS Particles in Three Dimensions, 2016.

G. Barnich, H. A. Gonzalez, A. Maloney, and B. Oblak, One-loop partition function of three-dimensional at gravity, JHEP, issue.04, p.178, 2015.

J. D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys, vol.104, p.207226, 1986.

S. Giombi, A. Maloney, and X. Yin, One-loop Partition Functions of 3D

. Gravity, JHEP, issue.08, p.7, 2008.

G. Compère, W. Song, and A. Strominger, New Boundary Conditions for AdS3, JHEP, issue.05, p.152, 2013.

G. Compère and A. Fiorucci, Advanced Lectures on General Relativity, Lect. Notes Phys, vol.952, 2019.

A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory

A. P. Balachandran, G. Bimonte, K. S. Gupta, and A. Stern, Conformal edge currents in Chern-Simons theories, Int. J. Mod. Phys, vol.7, p.46554670, 1992.

M. Banados, Global charges in Chern-Simons eld theory and the (2+1) black hole, Phys. Rev, vol.52, p.58165825, 1996.

M. Geiller, Edge modes and corner ambiguities in 3d ChernSimons theory and gravity, Nucl. Phys, vol.924, p.312365, 2017.

V. Husain and S. Major, Gravity and BF theory dened in bounded regions, Nucl. Phys, vol.500, p.381401, 1997.

L. Freidel and A. Perez, Quantum gravity at the corner, Universe, vol.4, issue.10, p.107, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01258904

W. Donnelly and L. Freidel, Local subsystems in gauge theory and gravity, JHEP, issue.09, p.102, 2016.

L. Freidel, A. Perez, and D. Pranzetti, Loop gravity string, Phys. Rev, vol.95, issue.10, p.106002, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01436653

A. J. Speranza, Local phase space and edge modes for dieomorphism-invariant theories, JHEP, issue.02, p.21, 2018.

L. Freidel, E. R. Livine, and D. Pranzetti, Gravitational edge modes: From Kac-Moody charges to Poincaré networks

T. Regge, G. Relativity, and . Coordinates, Nuovo Cim, vol.19, p.558571, 1961.

J. B. Hartle and R. Sorkin, Boundary terms in the action for the Regge calculus, General Relativity and Gravitation, vol.13, p.541549, 1981.

C. Rovelli, The Basis of the Ponzano-Regge-Turaev-Viro-Ooguri quantum gravity model in the loop representation basis, Phys. Rev, vol.48, p.27022707, 1993.

K. Noui and A. Perez, Three-dimensional loop quantum gravity: Physical scalar product and spin foam models, Class. Quant. Grav, vol.22, p.17391762, 2005.

L. Freidel and D. Louapre, Ponzano-Regge model revisited II: Equivalence with Chern-Simons

L. Freidel and D. Louapre, Ponzano-Regge model revisited I: Gauge xing, observables and interacting spinning particles, Class. Quant. Grav, vol.21, p.56855726, 2004.

K. Noui and A. Perez, Three-dimensional loop quantum gravity: Coupling to point particles, Class. Quant. Grav, vol.22, p.44894514, 2005.

K. Noui, Three Dimensional Loop Quantum Gravity: Particles and the Quantum Double, J. Math. Phys, vol.47, p.102501, 2006.

C. Meusburger and K. Noui, The Hilbert space of 3d gravity: quantum group symmetries and observables, Adv. Theor. Math. Phys, vol.14, issue.6, p.16511715, 2010.

V. Bonzom and B. Dittrich, 3D holography: from discretum to continuum, p.208, 2016.

B. Dittrich, C. Goeller, E. Livine, and A. Riello, Quasi-local holographic dualities in non-perturbative 3d quantum gravity I Convergence of multiple approaches and examples of PonzanoRegge statistical duals, Nucl. Phys, vol.938, p.807877, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01974753

B. Dittrich, C. Goeller, E. R. Livine, and A. Riello, Quasi-local holographic dualities in non-perturbative 3d quantum gravity II From coherent quantum boundaries to BMS 3 characters, Nucl. Phys, vol.938, p.878934, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01974760

M. Blau, Lecture Notes on General Relativity

S. M. Carroll, Lecture notes on general relativity

G. W. Gibbons and S. W. Hawking, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev, vol.15, p.27522756, 1977.

J. York, Boundary terms in the action principles of general relativity, Found. Phys, vol.16, p.249257, 1986.

S. Carlip, Dynamics of asymptotic dieomorphisms in (2+1)-dimensional gravity, Class. Quant. Grav, vol.22, p.30553060, 2005.

S. Carlip, Quantum Gravity in 2 1 Dimensions. Cambridge Monographs on Mathematical Physics, 1998.

A. S. Schwarz, The Partition Function of Degenerate Quadratic Functional and Ray-Singer Invariants, Lett. Math. Phys, vol.2, p.247252, 1978.

J. C. Baez, Four-Dimensional BF theory with cosmological term as a topological quantum eld theory, Lett. Math. Phys, vol.38, p.129143, 1996.

M. Celada, D. González, and M. Montesinos, Class. Quant. Grav, vol.33, issue.21, p.213001, 2016.

L. Freidel and D. Louapre, Dieomorphisms and spin foam models, Nucl. Phys, vol.662, p.279298, 2003.

E. Buenoir, M. Henneaux, K. Noui, and P. Roche, Hamiltonian analysis of Plebanski theory, Class. Quant. Grav, vol.21, p.52035220, 2004.

S. W. Hawking, Space-Time Foam, Nucl. Phys, vol.144, p.349362, 1978.

G. T. Horowitz, Topology change in classical and quantum gravity, Class. Quant. Grav, vol.8, p.587602, 1991.

R. K. Kaul and S. Sengupta, Degenerate spacetimes in rst order gravity, Phys. Rev, vol.93, issue.8, p.84026, 2016.

L. Freidel and K. Krasnov, Discrete space-time volume for three-dimensional BF theory and quantum gravity, Class. Quant. Grav, vol.16, p.351362, 1999.

A. Zee, Quantum eld theory in a nutshell, 2003.

M. Banados, C. Teitelboim, and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett, vol.69, p.18491851, 1992.

M. Banados, M. Henneaux, C. Teitelboim, and J. Zanelli, Geometry of the (2+1) black hole, Phys. Rev, vol.48, p.15061525, 1993.

S. Carlip and C. Teitelboim, Aspects of black hole quantum mechanics and thermodynamics in (2+1)-dimensions, Phys. Rev, vol.51, p.622631, 1995.

J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett, vol.37, p.9597, 1971.

E. Witten, Global Aspects of Current Algebra, Nucl. Phys, vol.223, p.422432, 1983.

V. G. Knizhnik and A. B. Zamolodchikov, Current Algebra and Wess-Zumino Model in Two-Dimensions, Nucl. Phys, vol.247, p.83103, 1984.

K. Gawedzki, Conformal eld theory: A Case study

G. Barnich, A. Gombero, and H. A. González, Three-dimensional Bondi-Metzner-Sachs invariant two-dimensional eld theories as the at limit of Liouville theory, Phys. Rev, vol.87, issue.12, p.124032, 2013.

G. Barnich and H. A. Gonzalez, Dual dynamics of three dimensional asymptotically at Einstein gravity at null innity, JHEP, issue.05, p.16, 2013.

S. Carlip, The dynamics of supertranslations and superrotations in 2 + 1 dimensions, Class. Quant. Grav, vol.35, issue.1, p.14001, 2018.

D. V. Vassilevich, Heat kernel expansion: User's manual, Phys. Rept, vol.388, p.279360, 2003.

A. Maloney and E. Witten, Quantum Gravity Partition Functions in Three Dimensions, JHEP, issue.02, p.29, 2010.

A. Ashtekar, J. Bicak, and B. G. Schmidt, Asymptotic structure of symmetry reduced general relativity, Phys. Rev, vol.55, p.669686, 1997.

G. Barnich, A. Gombero, and H. A. Gonzalez, The Flat limit of three dimensional asymptotically anti-de Sitter spacetimes, Phys. Rev, vol.86, p.24020, 2012.

G. Barnich, Entropy of three-dimensional asymptotically at cosmological solutions, JHEP, issue.10, p.95, 2012.

E. Witten, Three-Dimensional Gravity Revisited

K. Schulten and R. G. Gordon, Exact Recursive Evaluation of 3J and 6J Coecients for Quantum Mechanical Coupling of Angular Momenta, J. Math. Phys, vol.16, 1975.

J. Roberts, Classical 6j-symbols and the tetrahedron, Geom. Topol, vol.3, p.2166, 1999.

L. Freidel and D. Louapre, Asymptotics of 6j and 10j symbols, Class. Quant. Grav, vol.20, 2003.

S. Mizoguchi and T. Tada, Three-dimensional gravity from the Turaev-Viro invariant, Phys. Rev. Lett, vol.68, p.17951798, 1992.

B. Bahr and B. Dittrich, Regge calculus from a new angle, New J. Phys, vol.12, p.33010, 2010.

Y. U. Taylor and C. T. Woodward, 6j symbols for U_q(sl_2) and non-Euclidean tetrahedra, 2003.

K. Noui, A. Perez, and D. Pranzetti, Canonical quantization of non-commutative holonomies in 2+1 loop quantum gravity, JHEP, issue.10, p.36, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00618577

D. Pranzetti, Turaev-Viro amplitudes from 2+1 Loop Quantum Gravity, Phys. Rev, vol.89, issue.8, p.84058, 2014.

M. Dupuis and F. Girelli, Observables in Loop Quantum Gravity with a cosmological constant, vol.90, issue.10, p.104037, 2014.

V. Bonzom, M. Dupuis, F. Girelli, and E. R. Livine, Deformed phase space for 3d loop gravity and hyperbolic discrete geometries

V. Bonzom, M. Dupuis, and F. Girelli, Towards the Turaev-Viro amplitudes from a Hamiltonian constraint, Phys. Rev, vol.90, issue.10, 2014.

E. R. Livine, 3d Quantum Gravity: Coarse-Graining and q-Deformation, vol.18, p.14651491, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01554519

B. Dittrich and M. Geiller, Quantum gravity kinematics from extended TQFTs, New J. Phys, vol.19, issue.1, p.13003, 2017.

M. Rocek, R. M. Williams, and Q. Regge-calculus, Phys. Lett, vol.104, p.31, 1981.

M. Rocek and R. M. Williams, The Quantization of Regge Calculus, Z. Phys, vol.21, p.371, 1984.

B. Dittrich, Dieomorphism symmetry in quantum gravity models, Adv. Sci. Lett, vol.2, p.151, 2008.

B. Bahr and B. Dittrich, Broken) Gauge Symmetries and Constraints in Regge Calculus, Class. Quant. Grav, vol.26, p.225011, 2009.

B. Bahr and B. Dittrich, Breaking and restoring of dieomorphism symmetry in discrete gravity, AIP Conf. Proc, vol.1196, issue.1, p.10, 2009.

A. Hedeman, H. M. Haggard, E. Kur, and R. G. Littlejohn, Symplectic and semiclassical aspects of the Schläi identity, J. Phys, vol.48, issue.10, p.105203, 2015.

H. M. Haggard, M. Han, W. Kaminski, and A. Riello, Simons Theory, Flat Connections, and Four-dimensional Quantum Geometry

H. W. Hamber, R. M. Williams, N. Simplicial, and . Gravity, Phys. Lett, vol.157, p.368374, 1985.

T. Regge and R. M. Williams, Discrete structures in gravity, J. Math. Phys, vol.41, p.39643984, 2000.

B. Dittrich and S. Steinhaus, Path integral measure and triangulation independence in discrete gravity, Phys. Rev, vol.85, p.44032, 2012.

J. W. Barrett and I. Naish-guzman, The Ponzano-Regge model, Class. Quant. Grav, vol.26, p.155014, 2009.

J. W. Barrett and T. J. Foxon, Semiclassical limits of simplicial quantum gravity, Class. Quant. Grav, vol.11, p.543556, 1994.

B. Dittrich, W. Kami«ski, and S. Steinhaus, Discretization independence implies non-locality in 4D discrete quantum gravity, Class. Quant. Grav, vol.31, issue.24, p.245009, 2014.

B. Dittrich, How to construct dieomorphism symmetry on the lattice, PoS, vol.2011, p.12, 2011.

J. W. Barrett and L. Crane, An Algebraic interpretation of the Wheeler-DeWitt equation, Class. Quant. Grav, vol.14, p.21132121, 1997.

R. Oeckl, The General boundary approach to quantum gravity, 1st International Conference on Physics, p.257265, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00137211

R. Oeckl, A local and operational framework for the foundations of physics

J. B. Hartle and S. W. Hawking, Wave Function of the Universe, Adv. Ser. Astrophys. Cosmol, vol.28, p.29602975, 1983.

T. Thiemann, Modern canonical quantum general relativity

B. Dittrich and M. Geiller, A new vacuum for Loop Quantum Gravity, vol.32, p.112001, 2015.

B. Bahr, B. Dittrich, and M. Geiller, A new realization of quantum geometry

B. Dittrich, From the discrete to the continuous: Towards a cylindrically consistent dynamics, New J. Phys, vol.14, p.123004, 2012.

B. Dittrich and S. Steinhaus, Time evolution as rening, coarse graining and entangling, New J. Phys, vol.16, p.123041, 2014.

B. Dittrich, The continuum limit of loop quantum gravity -a framework for solving the theory, in Loop Quantum Gravity: The First 30 Years, p.153179, 2017.

L. Freidel and E. R. Livine, Ponzano-Regge model revisited III: Feynman diagrams and eective eld theory, Class. Quant. Grav, vol.23, p.20212062, 2006.

W. S. Massey, A Basic Course in Algebraic Topology, Graduate Texts in Mathematics, vol.127, 1991.

A. Hatcher, Algebraic topology, 2000.

A. Perez and C. Rovelli, A Spin foam model without bubble divergences, Nucl. Phys, vol.599, p.255282, 2001.

J. Dubois, Non Abelian Twisted Reidemeister Torsion for Fibered Knots, Canad. Math. Bull, vol.49, issue.1, p.4, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00001327

V. Bonzom and M. Smerlak, Bubble divergences from cellular cohomology, Lett. Math. Phys, vol.93, p.295305, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00477177

V. Bonzom and M. Smerlak, Gauge symmetries in spinfoam gravity: the case for 'cellular quantization, Phys. Rev. Lett, vol.108, p.241303, 2012.

D. V. Boulatov, A Model of three-dimensional lattice gravity, Mod. Phys. Lett, vol.7, p.16291646, 1992.

H. Ooguri, Topological lattice models in four-dimensions, Mod. Phys. Lett, vol.7, p.27992810, 1992.

L. Freidel, Group eld theory: An Overview, Int. J. Theor. Phys, vol.44, p.17691783, 2005.

F. Girelli, R. Oeckl, and A. Perez, Spin foam diagrammatics and topological invariance, vol.19, p.10931108, 2002.

E. R. Livine and J. P. Ryan, A Note on B-observables in Ponzano-Regge 3d
URL : https://hal.archives-ouvertes.fr/hal-00517418

Q. Gravity, Class. Quant. Grav, vol.26, p.35013, 2009.

M. Dupuis, F. Girelli, and E. R. Livine, Spinors and Voros star-product for Group Field Theory: First Contact, Phys. Rev, vol.86, p.105034, 2012.

V. Bonzom and M. Smerlak, Bubble divergences from twisted cohomology, Commun. Math. Phys, vol.312, p.399426, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00518001

V. Bonzom, E. R. Livine, and S. Speziale, Recurrence relations for spin foam vertices, Class. Quant. Grav, vol.27, p.125002, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00601895

M. Christodoulou, M. Langvik, A. Riello, C. Roken, and C. Rovelli, Divergences and Orientation in Spinfoams, Class. Quant. Grav, vol.30, p.55009, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00845528

B. Bahr, B. Dittrich, and S. Steinhaus, Perfect discretization of reparametrization invariant path integrals, Phys. Rev, vol.83, p.105026, 2011.

H. Ooguri, Partition functions and topology changing amplitudes in the 3-D lattice gravity of Ponzano and Regge, Nucl. Phys, vol.382, p.276304, 1992.

J. C. Baez, Generalized measures in gauge theory, Lett. Math. Phys, vol.31, p.213224, 1994.

A. Ashtekar and J. Lewandowski, Projective techniques and functional integration for gauge theories, J. Math. Phys, vol.36, p.21702191, 1995.

A. Ashtekar and J. Lewandowski, Dierential geometry on the space of connections via graphs and projective limits, J. Geom. Phys, vol.17, p.191230, 1995.

D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonsky, Quantum Theory of Angular Momentum: Irreducible Tensors, Spherical Harmonics, Vector Coupling Coecients, 3nj Symbols, 1988.

B. Dittrich and J. Hnybida, Ising Model from Intertwiners

V. Bonzom, F. Costantino, and E. R. Livine, Duality between Spin networks and the 2D Ising model, Commun. Math. Phys, vol.344, issue.2, p.531579, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01940010

B. Westbury, A generating function for spin network evaluations, Banach Center Publications, vol.42, issue.1, p.447456, 1998.

S. Speziale, Towards the graviton from spinfoams: The 3-D toy model, JHEP, issue.05, p.39, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00284892

E. R. Livine, S. Speziale, and J. L. Willis, Towards the graviton from spinfoams: Higher order corrections in the 3-D toy model, Phys. Rev, vol.75, p.24038, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00517437

V. Bonzom, E. R. Livine, M. Smerlak, and S. Speziale, Towards the graviton from spinfoams: The Complete perturbative expansion of the 3d toy model, Nucl. Phys, vol.804, p.507526, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00284892

L. Modesto and C. Rovelli, Particle scattering in loop quantum gravity, Phys. Rev. Lett, vol.95, p.191301, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00004785

C. Rovelli and L. Smolin, Spin networks and quantum gravity, Phys. Rev, vol.52, p.57435759, 1995.

R. Penrose, Angular momentum: an approach to combinatorial space-time, Quantum theory and beyond, p.151180, 1971.

A. Barbieri, Quantum tetrahedra and simplicial spin networks, Nucl. Phys, vol.518, p.714728, 1998.

L. Freidel and E. R. Livine, The Fine Structure of SU(2) Intertwiners from U(N) Representations, J. Math. Phys, vol.51, p.82502, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00517404

L. Freidel, K. Krasnov, and E. R. Livine, Holomorphic Factorization for a Quantum Tetrahedron, Commun. Math. Phys, vol.297, p.4593, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00517413

E. Bianchi, P. Dona, and S. Speziale, Polyhedra in loop quantum gravity, Phys. Rev, vol.83, p.44035, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00522213

L. Freidel and E. R. Livine, U(N) Coherent States for Loop Quantum Gravity, J. Math. Phys, vol.52, p.52502, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00517398

E. R. Livine, Deformations of Polyhedra and Polygons by the Unitary Group, J. Math. Phys, vol.54, p.123504, 2013.

H. M. Haggard, M. Han, and A. Riello, Encoding Curved Tetrahedra in Face Holonomies: Phase Space of Shapes from Group-Valued Moment Maps, Annales Henri Poincare, vol.17, issue.8, 2016.

M. Kapovich and J. Millson, On the moduli space of polygons in the Euclidean plane, J. Dierential Geom, vol.42, issue.1, p.133164, 1995.

M. Kapovich and J. J. Millson, The symplectic geometry of polygons in Euclidean space, J. Dierential Geom, vol.44, issue.3, p.479513, 1996.

F. Conrady and L. Freidel, Quantum geometry from phase space reduction, J. Math. Phys, vol.50, p.123510, 2009.

L. Freidel and E. R. Livine, 3D Quantum Gravity and Eective Noncommutative Quantum Field Theory, vol.96, p.221301, 2006.

A. Baratin, B. Dittrich, D. Oriti, and J. Tambornino, Non-commutative ux representation for loop quantum gravity, Class. Quant. Grav, vol.28, p.175011, 2011.

E. R. Livine and S. Speziale, A New spinfoam vertex for quantum gravity, Phys. Rev, vol.76, p.84028, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00517428

C. Charles and E. R. Livine, The closure constraint for the hyperbolic tetrahedron as a Bianchi identity, Gen. Rel. Grav, vol.49, issue.7, p.92, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01554242

M. Dupuis and E. R. Livine, Holomorphic Simplicity Constraints for 4d Spinfoam Models, Class. Quant. Grav, vol.28, p.215022, 2011.

F. Conrady and L. Freidel, On the semiclassical limit of 4d spin foam models, Phys. Rev, vol.78, p.104023, 2008.

J. W. Barrett, R. J. Dowdall, W. J. Fairbairn, H. Gomes, and F. Hellmann, Asymptotic analysis of the EPRL four-simplex amplitude, J. Math. Phys, vol.50, p.112504, 2009.

R. J. Dowdall, H. Gomes, and F. Hellmann, Asymptotic analysis of the Ponzano-Regge model for handlebodies, J. Phys, vol.43, p.115203, 2010.

M. Han and M. Zhang, Asymptotics of Spinfoam Amplitude on Simplicial Manifold: Lorentzian Theory, vol.30, p.165012, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00964104

M. Han and M. Zhang, Asymptotics of Spinfoam Amplitude on Simplicial Manifold: Euclidean Theory, vol.29, p.165004, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00964087

H. M. Haggard, M. Han, W. Kami«ski, and A. Riello, SL(2,C) ChernSimons theory, a non-planar graph operator, and 4D quantum gravity with a cosmological constant: Semiclassical geometry, Nucl. Phys, vol.900, p.179, 2015.

E. R. Livine and D. R. Terno, Quantum black holes: Entropy and entanglement on the horizon, Nucl. Phys, vol.741, p.131161, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00517446

E. R. Livine and D. R. Terno, Entropy in the Classical and Quantum Polymer Black Hole Models, vol.29, p.224012, 2012.

R. K. Kaul, Entropy of quantum black holes, vol.8, p.5, 2012.

H. Duminil-copin, M. Gagnebin, M. Harel, I. Manolescu, and V. Tassion, The Bethe ansatz for the six-vertex and XXZ models: an exposition, 2016.

B. Dittrich, C. Goeller, E. R. Livine, and A. Riello, Quasi-local holographic dualities in non-perturbative 3d quantum gravity, Class. Quant. Grav, vol.35, issue.13, pp.13-14, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01757970

C. Rovelli, Discretizing parametrized systems: The M agic of Ditt-invariance

L. Freidel and J. Hnybida, On the exact evaluation of spin networks, J. Math. Phys, vol.54, p.112301, 2013.

V. Bonzom and E. R. Livine, Generating Functions for Coherent Intertwiners, Class. Quant. Grav, vol.30, p.55018, 2013.

V. Bonzom and E. R. Livine, Self-duality of the 6j-symbol and Fisher zeros for the Tetrahedron
URL : https://hal.archives-ouvertes.fr/hal-02144138

L. Freidel and J. Hnybida, A Discrete and Coherent Basis of Intertwiners, Class. Quant. Grav, vol.31, p.15019, 2014.

A. Feller and E. R. Livine, Ising Spin Network States for Loop Quantum Gravity: a Toy Model for Phase Transitions, Class. Quant. Grav, vol.33, issue.6, p.65005, 2016.

J. W. Swanepoel, On a generalization of a theorem by Euler, Journal of Number Theory, vol.149, p.56, 2015.

L. Freidel and S. Majid, Noncommutative harmonic analysis, sampling theory and the Duo map in 2+1 quantum gravity, Class. Quant. Grav, vol.25, p.45006, 2008.