B. Brossier, F. Oris, W. Finsinger, H. Asselin, Y. Bergeron et al., Using, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01232162

C. Carcaillet, Y. Bergeron, P. J. Richard, B. Fréchette, S. Gauthier et al., , 2001.

, Change of fire frequency in the eastern Canadian boreal forests during the Holocene: does vegetation composition or climate trigger the fire regime?, J. Ecol, vol.89, pp.930-946

T. Gasser and H. Müller, Kernel estimation of regression functions, Smoothing Techniques for Curve Estimation, pp.23-68, 1979.

T. Gasser and H. Müller, Estimating regression functions and their derivatives by the kernel method. Scand, J. Stat, pp.171-185, 1984.

P. E. Higuera, M. E. Peters, L. B. Brubaker, and D. G. Gavin, Understanding the origin and analysis of sediment-charcoal records with a simulation model, Quat. Sci. Rev, vol.26, pp.1790-1809, 2007.

P. E. Higuera, L. B. Brubaker, P. M. Anderson, F. S. Hu, and T. A. Brown, Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecol. Monogr, vol.79, pp.201-219, 2009.

P. E. Higuera, D. G. Gavin, P. J. Bartlein, and D. J. Hallett, Peak detection in sedimentcharcoal records: impacts of alternative data analysis methods on fire-history interpretations, 2011.

, Int. J. Wildland Fire, vol.19, pp.996-1014

Q. Hua, M. Barbetti, and A. Z. Rakowski, Atmospheric radiocarbon for the period 1950-2010, Radiocarbon, vol.55, pp.2059-2072, 2013.

M. Mudelsee, TAUEST: A computer program for estimating persistence in unevenly spaced weather/climate time series, Comput. Geosci, vol.28, pp.69-72, 2002.

M. Mudelsee, M. Börngen, G. Tetzlaff, and U. Grünewald, Extreme floods in central Europe over the past 500 years: Role of cyclone pathway "Zugstrasse Vb, J. Geophys. Res. Atmospheres, vol.109, 2004.

P. J. Reimer, E. Bard, A. Bayliss, J. W. Beck, P. G. Blackwell et al.,

H. Cheng, R. L. Edwards, F. , and M. , IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP, Radiocarbon, vol.55, pp.1869-1887, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02470111

M. Schulz and M. Mudelsee, REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series, Comput. Geosci, vol.28, pp.421-426, 2002.

S. Appendix, Winbacon age-depth model based (Blaauw, 2010) on radiocarbon ages from (a) Cherny Yar, (b) Kalya, (c) Sedkyrkeshch and (d) Syndorsky cores

, Yaksha GDGTs indexes CBT, MBT' and MBT'5Me, vol.3

, sorted by latitude classes feu pour la seconde moitié de l'Holocène. Enfin, l'influence de l'Homme sur la végétation et sur la dynamique des incendies sera discutée. Cette démarche se réalise en fonction des différentes phases de végétation établies au chapitre III (de 10000 à 3500 cal. yr BP, de 3500 à 600 cal. yr BP et de 600 à 50 cal. yr BP). Pour ceci, une fonction de densité kernel a été réalisée sur les valeurs des différents parmètres climatiques estimés à partir des six enregistrements polliniques de République de Komi (Chapitre IV), afin de comparer la dynamique de la végétation locale à Yaksha, SI 4: Yaksha GDGTs (Ia, IIa and IIIa against the MAATpeat) compared to the general database from Naafs, 2004.

. Bibliographie,

V. Abraham, V. Ou?ková, and P. Kune?, Present-day vegetation helps quantifying past land cover in selected regions of the Czech Republic, PLoS One, vol.9, 2014.

C. Adolf, S. Wunderle, D. Colombaroli, H. Weber, E. Gobet et al., The sedimentary and remote-sensing reflection of biomass burning in Europe, Glob. Ecol. Biogeogr, vol.27, pp.199-212, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01960989

A. A. Ali, H. Asselin, A. C. Larouche, Y. Bergeron, C. Carcaillet et al., Changes in fire regime explain the Holocene rise and fall of Abies balsamea in the coniferous forests of western Québec, Canada. The Holocene, vol.18, pp.693-703, 2008.

A. A. Ali, C. Carcaillet, and Y. Bergeron, Long-term fire frequency variability in the eastern Canadian boreal forest: the influences of climate vs. local factors, Glob. Change Biol, vol.15, pp.1230-1241, 2009.

A. A. Ali, P. E. Higuera, Y. Bergeron, and C. Carcaillet, Comparing fire-history interpretations based on area, number and estimated volume of macroscopic charcoal in lake sediments, Quat. Res, vol.72, pp.462-468, 2009.

A. A. Ali, O. Blarquez, M. P. Girardin, C. Hély, F. Tinquaut et al., Control of the multimillennial wildfire size in boreal North America by spring climatic conditions, Proc. Natl. Acad. Sci, vol.109, pp.20966-20970, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02108759

R. B. Alley, P. A. Mayewski, T. Sowers, M. Stuiver, K. C. Taylor et al., Holocene climatic instability: A prominent, widespread event 8200 yr ago, Geology, vol.25, pp.483-486, 1997.

B. Amiro, B. Stocks, M. Alexander, M. Flannigan, and B. Wotton, Fire, climate change, carbon and fuel management in the Canadian boreal forest, Int. J. Wildland Fire, vol.10, pp.405-413, 2001.

N. J. Anderson, H. Bugmann, J. A. Dearing, and M. Gaillard, Linking palaeoenvironmental data and models to understand the past and to predict the future, Trends Ecol. Evol, vol.21, pp.696-704, 2006.

A. Andreev and V. Klimanov, Quantitative Holocene climatic reconstruction from Arctic Russia, J. Paleolimnol, vol.24, pp.81-91, 2000.

A. A. Andreev, P. E. Tarasov, B. P. Ilyashuk, E. A. Ilyashuk, H. Cremer et al., Holocene environmental history recorded in Lake Lyadhej-To sediments, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.223, pp.181-203, 2005.

T. Antipina, N. Panova, and O. Korona, The holocene dynamics of vegetation and environmental conditions on the eastern slope of the Northern Urals, Russ. J. Ecol, vol.45, pp.351-358, 2014.

S. F. Arno and K. M. Sneck, A method for determining fire history in coniferous forests in the mountain west, Agric. For. Serv. Intermt. For, 1977.

Y. Axford, J. P. Briner, G. H. Miller, and D. R. Francis, Paleoecological evidence for abrupt cold reversals during peak Holocene warmth on Baffin Island, Arctic Canada. Quat. Res, vol.71, pp.142-149, 2009.

L. Bajolle, I. Larocque-tobler, E. Gandouin, M. Lavoie, Y. Bergeron et al., Major postglacial summer temperature changes in the central coniferous boreal forest of Quebec (Canada) inferred using chironomid assemblages, J. Quat. Sci, vol.33, pp.409-420, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01890700

D. C. Barber, A. Dyke, C. Hillaire-marcel, A. E. Jennings, J. T. Andrews et al., Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes, Nature, vol.400, pp.344-348, 1999.

C. Barhoumi, O. Peyron, S. Joannin, D. Subetto, A. Kryshen et al., The Holocene, Gradually increasing forest fire activity during the Holocene in the northern Ural region
URL : https://hal.archives-ouvertes.fr/hal-02110568

C. Barhoumi, O. Peyron, S. Joannin, D. Subetto, A. Kryshen et al., Gradually increasing forest fire activity during the Holocene in the northern Ural region, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02340878

P. J. Bartlein, S. Harrison, S. Brewer, S. Connor, B. Davis et al., Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis, Clim. Dyn, vol.37, pp.775-802, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00682984

S. Van-bellen, M. Garneau, A. A. Ali, and Y. Bergeron, Did fires drive Holocene carbon sequestration in boreal ombrotrophic peatlands of eastern Canada?, Quat. Res, vol.78, pp.50-59, 2012.

K. Bennett, PSIMPOLL: a quickBASIC program that generates PostScript page description files of pollen diagrams. INQUA Comm. Study Holocene Work. Group Data Handl, Methods Newsl, vol.8, pp.11-12, 1992.

K. Bennett, psimpoll and pscomb (Queen's University Belfast), 2008.

A. Berger and M. Loutre, Insolation values for the climate of the last 10 million years, Quat. Sci. Rev, vol.10, pp.297-317, 1991.

Y. Bergeron, Species and stand dynamics in the mixed woods of Quebec's southern boreal forest, Ecology, vol.81, pp.1500-1516, 2000.

Y. Bergeron, D. Cyr, M. P. Girardin, and C. Carcaillet, Will climate change drive 21st century burn rates in Canadian boreal forest outside of its natural variability: collating global climate model experiments with sedimentary charcoal data, Int. J. Wildland Fire, vol.19, pp.1127-1139, 2011.

H. Beug, Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Friedrich Pfeil: Dr, 2004.

E. V. Bezrukova, S. Hildebrandt, P. P. Letunova, E. V. Ivanov, L. A. Orlova et al., Vegetation dynamics around Lake Baikal since the middle Holocene reconstructed from the pollen and botanical composition analyses of peat sediments: Implications for paleoclimatic and archeological research, Quat. Int, vol.290, pp.35-45, 2013.

M. Bini, G. Zanchetta, A. Persoiu, R. Cartier, A. Català et al., , 2018.

H. H. Birks and H. Birks, The rise and fall of forests, Science, vol.305, pp.484-485, 2004.

H. J. Birks and H. Seppä, Pollen-based reconstructions of late-Quaternary climate in Europeprogress, problems, and pitfalls, Acta Palaeobot, vol.44, pp.317-334, 2004.

H. H. Birks, I. Aarnes, A. E. Bjune, S. J. Brooks, J. Bakke et al., , 2014.

, Lateglacial and early-Holocene climate variability reconstructed from multi-proxy records on Andøya, northern Norway, Quat. Sci. Rev, vol.89, pp.108-122

M. Blaauw, Methods and code for 'classical'age-modelling of radiocarbon sequences, 2010.

, Geochronol, vol.5, pp.512-518

M. Blaauw, C. , and J. A. , Flexible paleoclimate age-depth models using an autoregressive gamma process, Bayesian Anal, vol.6, pp.457-474, 2011.

O. Blarquez, A. A. Ali, M. P. Girardin, P. Grondin, B. Fréchette et al., , 2015.

, Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers, Sci. Rep, vol.5, p.13356

T. A. Blyakharchuk and L. D. Sulerzhitsky, Holocene vegetational and climatic changes in the forest zone of Western Siberia according to pollen records from the extrazonal palsa bog Bugristoye, The Holocene, vol.9, pp.621-628, 1999.

O. K. Borisova, The Holocene flora and vegetation of the northern Russian Plain (the Vychegda River basin), Acta Palaeontol. Sin, vol.41, pp.478-486, 2002.

D. B. Botkin, H. Saxe, M. B. Araujo, R. Betts, R. H. Bradshaw et al., Forecasting the effects of global warming on biodiversity, Bioscience, vol.57, pp.227-236, 2007.

C. J. Ter-braak and S. Juggins, Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages, pp.485-502, 1993.

J. Brandt, M. Flannigan, D. Maynard, I. Thompson, and W. Volney, An introduction to, 2013.

, Canada's boreal zone: ecosystem processes, health, sustainability, and environmental issues, Environ. Rev, vol.21, pp.207-226

L. Bremond, C. Carcaillet, C. Favier, A. A. Ali, C. Paitre et al., Effects of vegetation zones and climatic changes on fire-induced atmospheric carbon emissions: A model based on paleodata, Int. J. Wildland Fire, vol.19, pp.1015-1025, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01970194

B. Brossier, F. Oris, W. Finsinger, H. Asselin, Y. Bergeron et al., Using tree-ring records to calibrate peak detection in fire reconstructions based on sedimentary charcoal records, The Holocene, vol.24, pp.635-645, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01814565

A. Broström, A. B. Nielsen, M. Gaillard, K. Hjelle, F. Mazier et al., Pollen productivity estimates of key European plant taxa for quantitative reconstruction of past vegetation: a review, Veg. Hist. Archaeobotany, vol.17, pp.461-478, 2008.

M. J. Bunting and K. L. Hjelle, Effect of vegetation data collection strategies on estimates of relevant source area of pollen (RSAP) and relative pollen productivity estimates (relative PPE) for nonarboreal taxa, Veg. Hist. Archaeobotany, vol.19, pp.365-374, 2010.

P. Camill, A. Barry, E. Williams, C. Andreassi, J. Limmer et al., Climatevegetation-fire interactions and their impact on long-term carbon dynamics in a boreal peatland landscape in northern Manitoba, Canada. J. Geophys. Res. Biogeosciences, vol.114, 2009.

X. Cao, F. Tian, F. Li, M. Gaillard, N. Rudaya et al., Pollen-based quantitative land-cover reconstruction for northern Asia during the last 40\,ka, Clim. Past Discuss, pp.1-53, 2018.

C. Carcaillet, Y. Bergeron, P. J. Richard, B. Fréchette, S. Gauthier et al., Change of fire frequency in the eastern Canadian boreal forests during the Holocene: does vegetation composition or climate trigger the fire regime?, J. Ecol, vol.89, pp.930-946, 2001.

C. Carcaillet, I. Bergman, S. Delorme, G. Hornberg, and O. Zackrisson, Long-term fire frequency not linked to prehistoric occupations in northern Swedish boreal forest, Ecology, vol.88, pp.465-477, 2007.

C. Carcaillet, P. J. Richard, Y. Bergeron, B. Fréchette, A. et al., Resilience of the boreal forest in response to Holocene fire-frequency changes assessed by pollen diversity and population dynamics, Int. J. Wildland Fire, vol.19, pp.1026-1039, 2011.

A. E. Carlson, What caused the Younger Dryas cold event?, Geology, vol.38, pp.383-384, 2010.

I. A. Chernyakova, Karelian parishes and their inhabitants as an object of good intentions of the imperial government in the XIX century, CARELiCA, vol.1, pp.70-81, 2013.

H. Cheung and W. Zhou, Implications of Ural blocking for East Asian winter climate in CMIP5 GCMs. Part II: Projection and uncertainty in future climate conditions, J. Clim, vol.28, pp.2217-2233, 2015.

H. H. Cheung and W. Zhou, Implications of Ural blocking for east Asian winter climate in CMIP5 GCMs. Part I: biases in the historical scenario, J. Clim, vol.28, pp.2203-2216, 2015.

J. H. Christensen and P. Kuhry, High-resolution regional climate model validation and permafrost simulation for the East European Russian Arctic, J. Geophys. Res. Atmospheres, vol.105, pp.29647-29658, 2000.

P. U. Clark, A. S. Dyke, J. D. Shakun, A. E. Carlson, J. Clark et al., The last glacial maximum, Science, vol.325, pp.710-714, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02363231

J. L. Clear, C. Molinari, and R. H. Bradshaw, Holocene fire in Fennoscandia and Denmark, 2014.

, J. Wildland Fire, vol.23, pp.781-789

J. Cohen, K. Saito, and D. Entekhabi, The role of the Siberian high in Northern Hemisphere climate variability, Geophys. Res. Lett, vol.28, pp.299-302, 2001.

S. G. Conard and G. A. Ivanova, Wildfire in Russian boreal forests-Potential impacts of fire regime characteristics on emissions and global carbon balance estimates, Environ. Pollut, vol.98, pp.305-313, 1997.

E. Cook and L. Kariukstis, Methods of dendrochronology: applications in the environmental sciences, and International Institute for Applied Systems Analysis: Dordrecht), 1990.

C. Mustaphi, C. J. Pisaric, and M. F. , Varying influence of climate and aspect as controls of montane forest fire regimes during the late Holocene, south-eastern British Columbia, Canada. J. Biogeogr, vol.40, pp.1983-1996, 2013.

J. S. Damsté, E. C. Hopmans, R. D. Pancost, S. Schouten, and J. A. Geenevasen, Newly discovered non-isoprenoid glycerol dialkyl glycerol tetraether lipids in sediments, Chem. Commun, pp.1683-1684, 2000.

W. Dansgaard, J. White, and S. Johnsen, The abrupt termination of the Younger Dryas climate event, Nature, vol.339, p.532, 1989.

N. Davtian, E. Bard, G. Ménot, and Y. Fagault, The importance of mass accuracy in selected ion monitoring analysis of branched and isoprenoid tetraethers, Org. Geochem, vol.118, pp.58-62, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01713879

C. De-jonge, A. Stadnitskaia, E. C. Hopmans, G. Cherkashov, A. Fedotov et al., situ produced branched glycerol dialkyl glycerol tetraethers in suspended particulate matter from the, vol.125, pp.476-491, 2014.

D. Demske, G. Heumann, W. Granoszewski, M. Nita, K. Mamakowa et al., Late glacial and Holocene vegetation and regional climate variability evidenced in highresolution pollen records from Lake Baikal, Glob. Planet. Change, vol.46, pp.255-279, 2005.

I. Drobyshev, M. Niklasson, P. Angelstam, and P. Majewski, Testing for anthropogenic influence on fire regime for a 600-year period in the Jaksha area, Can. J. For. Res, vol.34, pp.2027-2036, 2004.

I. Drobyshev, M. Niklasson, A. , and P. , Contrasting tree-ring data with fire record in a pine-dominated landscape in the Komi republic (Eastern European Russia): Recovering a common climate signal, Silva Fenn, vol.38, pp.43-53, 2004.

I. Drobyshev, M. Niklasson, and H. W. Linderholm, Forest fire activity in Sweden: Climatic controls and geographical patterns in 20th century, Agric. For. Meteorol, vol.154, pp.174-186, 2012.

I. Drobyshev, Y. Bergeron, H. W. Linderholm, A. Granström, and M. Niklasson, A 700-year record of large fire years in northern Scandinavia shows large variability and increased frequency during the 1800 s, J. Quat. Sci, vol.30, pp.211-221, 2015.

I. Drobyshev, Y. Bergeron, A. De-vernal, A. Moberg, A. A. Ali et al., Atlantic SSTs control regime shifts in forest fire activity of Northern Scandinavia, Sci. Rep, vol.6, p.22532, 2016.

I. Drobyshev, Y. Bergeron, M. P. Girardin, S. Gauthier, C. Ols et al., Strong gradients in forest sensitivity to climate change revealed by dynamics of forest fire cycles in the post Little Ice Age era, J. Geophys. Res. Biogeosciences, vol.122, pp.2605-2616, 2017.

G. A. Elina, A. D. Lukashov, and T. K. Yurkovskaya, Late Glacial and Holocene palaeovegetation and palaeogeography of Eastern Fennoscandia, 2010.

A. Farjon, A Handbook of the World's Conifers (2 vols, 2010.

A. Feurdean, S. A. Bhagwat, K. J. Willis, H. J. Birks, H. Lischke et al., Tree migration-rates: narrowing the gap between inferred post-glacial rates and projected rates, PLoS One, vol.8, 2013.

N. Filatov and L. Rukhovets, Ladoga Lake and Onego Lake (Lakes Ladozhskoye and Onezhskoye). Encycl. Lakes Reserv, pp.429-432, 2012.

M. Flannigan, B. Stocks, M. Turetsky, and M. Wotton, Impacts of climate change on fire activity and fire management in the circumboreal forest, Glob. Change Biol, vol.15, pp.549-560, 2009.

T. L. Fletcher, L. Warden, J. S. Damsté, K. J. Brown, N. Rybczynski et al., Evidence for fire in the Pliocene Arctic in response to amplified temperature, Clim. Past, vol.15, pp.1063-1081, 2019.

J. A. Foley, J. E. Kutzbach, M. T. Coe, and S. Levis, Feedbacks between climate and boreal forests during the Holocene epoch, Nature, vol.371, p.52, 1994.

L. C. Foster, E. J. Pearson, S. Juggins, D. A. Hodgson, K. M. Saunders et al., Development of a regional glycerol dialkyl glycerol tetraether (GDGT)-temperature calibration for Antarctic and sub-Antarctic lakes, Earth Planet. Sci. Lett, vol.433, pp.370-379, 2016.

T. Frei, Pollen distribution at high elevation in Switzerland: Evidence for medium range transport, Grana, vol.36, pp.34-38, 1997.

V. Furyaev, R. W. Wein, and D. A. Maclean, Fire influences in Abies-dominated forests, 1983.

K. Gajewski, Quantitative reconstruction of Holocene temperatures across the Canadian Arctic and Greenland, Glob. Planet. Change, vol.128, pp.14-23, 2015.

T. Gasser and H. Müller, Kernel estimation of regression functions, Smoothing Techniques for Curve Estimation, pp.23-68, 1979.

T. Gasser and H. Müller, Estimating regression functions and their derivatives by the kernel method. Scand, J. Stat, pp.171-185, 1984.

S. Gauthier and M. Vaillancourt, Aménagement écosystémique en forêt boréale (Puq), 2008.

S. Gauthier, P. Bernier, T. Kuuluvainen, A. Shvidenko, and D. Schepaschenko, Boreal forest health and global change, Science, vol.349, pp.819-822, 2015.

D. G. Gavin, F. S. Hu, K. Lertzman, and P. Corbett, Weak climatic control of stand-scale fire history during the late Holocene, Ecology, vol.87, pp.1722-1732, 2006.

A. Genries, W. Finsinger, H. Asnong, Y. Bergeron, C. Carcaillet et al., Local versus regional processes: can soil characteristics overcome climate and fire regimes by modifying vegetation trajectories?, J. Quat. Sci, vol.27, pp.745-756, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01814517

B. R. Gervais, G. M. Macdonald, J. A. Snyder, and C. V. Kremenetski, Pinus sylvestris treeline development and movement on the Kola Peninsula of Russia: pollen and stomate evidence, J. Ecol, vol.90, pp.627-638, 2002.

T. Giesecke and K. Bennett, The Holocene spread of Picea abies (L.) Karst. in Fennoscandia and adjacent areas, J. Biogeogr, vol.31, pp.1523-1548, 2004.

M. Girardin, J. C. Tardif, M. D. Flannigan, and Y. Bergeron, Synoptic-scale atmospheric circulation and boreal Canada summer drought variability of the past three centuries, J. Clim, vol.19, pp.1922-1947, 2006.

M. P. Girardin, A. A. Ali, C. Carcaillet, M. Mudelsee, I. Drobyshev et al., Heterogeneous response of circumboreal wildfire risk to climate change since the early, 1900.

, Glob. Change Biol, vol.15, pp.2751-2769

M. P. Girardin, A. A. Ali, C. Carcaillet, O. Blarquez, C. Hély et al., Vegetation limits the impact of a warm climate on boreal wildfires, New Phytol, vol.199, pp.1001-1011, 2013.

J. G. Goldammer, Vegetation fires and global change-challenges for concerted international action: a white paper directed to the United Nations and International Organizations, Planet Risk, vol.3, 2015.

J. G. Goldammer and V. V. Furyaev, Fire in Ecosystems of Boreal Eurasia, 1996.

J. G. Goldammer, A. Sukhinin, and I. Csiszar, The current fire situation in the Russian Federation: implications for enhancing international and regional cooperation in the UN framework and the global programs on fire monitoring and assessment, Int For. Fire News, vol.32, pp.13-42, 2005.

Y. Golubeva, Climate and vegetation of the Holocene in Komi Republic, pp.124-132, 2008.

T. Gong and D. Luo, Ural blocking as an amplifier of the Arctic sea ice decline in winter, J. Clim, vol.30, pp.2639-2654, 2017.

E. Gorham, Northern peatlands: role in the carbon cycle and probable responses to climatic warming, Ecol. Appl, vol.1, pp.182-195, 1991.

A. Gromtsev, Natural disturbance dynamics in the boreal forests of European Russia: a review, 2002.

S. Fenn, , vol.36, pp.41-55

W. J. De-groot, A. S. Cantin, M. D. Flannigan, A. J. Soja, L. M. Gowman et al., A comparison of Canadian and Russian boreal forest fire regimes, For. Ecol. Manag, vol.294, pp.23-34, 2013.

J. Guiot, Methodology of the last climatic cycle reconstruction in France from pollen data, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.80, pp.49-69, 1990.
URL : https://hal.archives-ouvertes.fr/hal-01457563

Z. Han, S. Li, and M. Mu, The role of warm North Atlantic SST in the formation of positive height anomalies over the Ural Mountains during, Adv. Atmospheric Sci, vol.28, pp.246-256, 2008.

E. Hellberg, M. Niklasson, and A. Granström, Influence of landscape structure on patterns of forest fires in boreal forest landscapes in Sweden, Can. J. For. Res, vol.34, pp.332-338, 2004.

S. Hellman, M. Gaillard, A. Broström, and S. Sugita, The REVEALS model, a new tool to estimate past regional plant abundance from pollen data in large lakes: validation in southern Sweden, 2008.

, J. Quat. Sci. Publ. Quat. Res. Assoc, vol.23, pp.21-42

C. Hély, M. P. Girardin, A. A. Ali, C. Carcaillet, S. Brewer et al., Eastern boreal North American wildfire risk of the past 7000 years: A model-data comparison, Geophys. Res. Lett, vol.37, 2010.

P. E. Higuera, D. G. Sprugel, and L. B. Brubaker, Reconstructing fire regimes with charcoal from small-hollow sediments: a calibration with tree-ring records of fire, The Holocene, vol.15, pp.238-251, 2005.

P. E. Higuera, M. E. Peters, L. B. Brubaker, and D. G. Gavin, Understanding the origin and analysis of sediment-charcoal records with a simulation model, Quat. Sci. Rev, vol.26, pp.1790-1809, 2007.

P. E. Higuera, M. E. Peters, L. B. Brubaker, and D. G. Gavin, Understanding the origin and analysis of sediment-charcoal records with a simulation model, Quat. Sci. Rev, vol.26, pp.1790-1809, 2007.

P. E. Higuera, L. B. Brubaker, P. M. Anderson, T. A. Brown, A. T. Kennedy et al., , 2008.

, Frequent Fires in Ancient Shrub Tundra: Implications of Paleorecords for Arctic Environmental Change, PLOS ONE, vol.3, 1744.

P. E. Higuera, L. B. Brubaker, P. M. Anderson, F. S. Hu, and T. A. Brown, Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecol. Monogr, vol.79, pp.201-219, 2009.

P. E. Higuera, D. G. Gavin, P. J. Bartlein, and D. J. Hallett, Peak detection in sediment-charcoal records: impacts of alternative data analysis methods on fire-history interpretations, Int. J. Wildland Fire, vol.19, pp.996-1014, 2011.

M. Hille and J. Ouden, Improved recruitment and early growth of Scots pine (Pinus sylvestris L.) seedlings after fire and soil scarification, Eur. J. For. Res, vol.123, pp.213-218, 2004.

A. Hiller, T. Boettger, and C. Kremenetski, Mediaeval climatic warming recorded by radiocarbon dated alpine tree-line shift on the Kola Peninsula, Russia. The Holocene, vol.11, pp.491-497, 2001.

O. Hoegh--guldberg, D. Jacob, M. Taylor, M. Bindi, S. Brown et al., Chapter 3: Impacts of 1.5 o C global warming on natural and human systems, Global Warming of 1.5 °C an IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, 2018.

A. Hofgaard, G. Rees, H. Tømmervik, O. Tutubalina, E. Golubeva et al.,

S. R. Karlsen, L. Isaeva, and V. Kharuk, Role of disturbed vegetation in mapping the boreal zone in northern, Eurasia. Appl. Veg. Sci, vol.13, pp.460-472, 2010.

E. C. Hopmans, J. W. Weijers, E. Schefuß, L. Herfort, J. S. Damsté et al., A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids, Earth Planet. Sci. Lett, vol.224, pp.107-116, 2004.

E. C. Hopmans, S. Schouten, and J. S. Damsté, The effect of improved chromatography on GDGT-based palaeoproxies, Org. Geochem, vol.93, pp.1-6, 2016.

F. S. Hu, L. B. Brubaker, D. G. Gavin, P. E. Higuera, J. A. Lynch et al., , 2006.

, How climate and vegetation influence the fire regime of the Alaskan boreal biome: the Holocene perspective, Mitig. Adapt. Strateg. Glob. Change, vol.11, pp.829-846

Q. Hua, M. Barbetti, and A. Rakowski, Atmospheric radiocarbon for the period, pp.1950-2010, 2013.

C. Huguet, E. C. Hopmans, W. Febo-ayala, D. H. Thompson, J. S. Damsté et al., , 2006.

, An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids, Org. Geochem, vol.37, pp.1036-1041

T. Hultberg, M. Gaillard, B. Grundmann, and M. Lindbladh, Reconstruction of past landscape openness using the Landscape Reconstruction Algorithm (LRA) applied on three local pollen sites in a southern Swedish biodiversity hotspot, Veg. Hist. Archaeobotany, vol.24, pp.253-266, 2015.

E. Johnson, Fire and Vegetation Dynamics: Studies from the North American Boreal Forest, 1992.

S. Juggins, Package "rioja"-analysis of quaternary science data, Compr. R Arch. Netw, 2009.

J. O. Kaplan, M. Pfeiffer, J. C. Kolen, and B. A. Davis, Large scale anthropogenic reduction of forest cover in Last Glacial Maximum Europe, PLoS One, vol.11, 2016.

V. Karmanov, N. Zaretskaya, A. Panin, and A. Chernov, Reconstruction of local environments of ancient population in a changeable river valley landscape (The Middle Vychegda River, Geochronometria, vol.38, pp.128-137, 2011.

V. Karmanov, N. Zaretskaya, A. Panin, and A. Chernov, Reconstruction of local environments of ancient population in a changeable river valley landscape (The Middle Vychegda River, Geochronometria, vol.38, pp.128-137, 2011.

E. S. Kasischke and B. J. Stocks, Fire, climate change, and carbon cycling in the boreal forest, 2012.

J. E. Keeley, Fire intensity, fire severity and burn severity: a brief review and suggested usage, Int. J. Wildland Fire, vol.18, pp.116-126, 2009.

R. F. Kelly, P. E. Higuera, C. M. Barrett, and F. S. Hu, Short Paper: A signal-to-noise index to quantify the potential for peak detection in sediment-charcoal records, Quat. Res, vol.75, pp.11-17, 2011.

V. I. Kharuk, K. J. Ranson, S. T. Im, and M. L. Dvinskaya, Response of Pinus sibirica and Larix sibirica to climate change in southern Siberian alpine forest-tundra ecotone, Scand. J. For. Res, vol.24, pp.130-139, 2009.

R. Killick and I. Eckley, changepoint: An R package for changepoint analysis, J. Stat. Softw, vol.58, pp.1-19, 2014.

R. Killick, K. Haynes, and I. Eckley, Changepoint: an R package for changepoint analysis, 2016.

K. Klein-goldewijk, A. Beusen, G. Van-drecht, D. Vos, and M. , , 2011.

V. Klimanov, To the method of reconstruction of quantitative parameters of past climate, Vestn. MGU Ser Geogr, vol.2, pp.92-98, 1976.

B. A. Klimanov and L. D. Nikiforova, Climate change in north-eastern Europe over the past 2000 years, pp.164-167, 1982.

D. Kneeshaw, Y. Bergeron, and T. Kuuluvainen, Forest ecosystem structure and disturbance dynamics across the circumboreal forest, Sage Handb. Biogeogr. Sage Los Angel, pp.263-280, 2011.

A. Korhola, J. Weckström, and T. Blom, Relationships between lake and land-cover features along latitudinal vegetation ecotones in arctic Fennoscandia, Arch. Für Hydrobiol. Suppl. Monogr. Beitr, vol.139, pp.203-235, 2002.

D. Kulakowski and T. T. Veblen, Influences of fire history and topography on the pattern of a severe wind blowdown in a Colorado subalpine forest, J. Ecol, vol.90, pp.806-819, 2002.

L. Kullman, Late Holocene reproductional patterns of Pinus sylvestris and Picea abies at the forest limit in central Sweden, Can. J. Bot, vol.64, pp.1682-1690, 1986.

L. Kullman and L. Kjällgren, A coherent postglacial tree-limit chronology (Pinus sylvestris L.) for the Swedish Scandes: aspects of paleoclimate and "recent warming, 2000.

, Arct. Antarct. Alp. Res, vol.32, pp.419-428

S. Kultti, M. Väliranta, K. Sarmaja-korjonen, N. Solovieva, T. Virtanen et al., Palaeoecological evidence of changes in vegetation and climate during the Holocene in the pre-Polar Urals, northeast European Russia, J. Quat. Sci. Publ. Quat. Res. Assoc, vol.18, pp.503-520, 2003.

N. Kuosmanen, K. Fang, R. H. Bradshaw, J. L. Clear, and H. Seppä, Role of forest fires in Holocene stand-scale dynamics in the unmanaged taiga forest of northwestern Russia, The Holocene, vol.24, pp.1503-1514, 2014.

N. Kuosmanen, H. Seppä, T. Reitalu, T. Alenius, R. H. Bradshaw et al.,

O. Kuznetsov and N. Zaretskaya, Long-term forest composition and its drivers in taiga forest in NW Russia, Veg. Hist. Archaeobotany, vol.25, pp.221-236, 2016.

T. Kuuluvainen, K. Syrjänen, and R. Kalliola, Structure of a pristine Picea abies forest in northeastern Europe, J. Veg. Sci, vol.9, pp.563-574, 1998.

A. Lapenis, A. Shvidenko, D. Shepaschenko, S. Nilsson, and A. Aiyyer, Acclimation of Russian forests to recent changes in climate, Glob. Change Biol, vol.11, pp.2090-2102, 2005.

M. Lata?owa and W. O. Van-der-knaap, Late Quaternary expansion of Norway spruce Picea abies (L.) Karst. in Europe according to pollen data, Quat. Sci. Rev, vol.25, pp.2780-2805, 2006.

O. Lisitsyna, N. Smirnov, A. , and A. , Modern pollen data from pristine taiga forest of, 2017.

, Pechora-Ilych state nature biosphere reserve (Komi republic, Russia): first results, Ecol. Quest, vol.26, pp.53-55

E. Lopatin, Long-term trends in height growth of Picea obovata and Pinus sylvestris during the past 100 years in Komi Republic (north-western Russia), Scand. J. For. Res, vol.22, pp.310-323, 2007.

B. Luo, D. Luo, L. Wu, L. Zhong, and I. Simmonds, Atmospheric circulation patterns which promote winter Arctic sea ice decline, Environ. Res. Lett, vol.12, p.54017, 2017.

J. A. Lynch, J. S. Clark, and B. J. Stocks, Charcoal production, dispersal, and deposition from the Fort Providence experimental fire: interpreting fire regimes from charcoal records in boreal forests, Can. J. For. Res, vol.34, pp.1642-1656, 2004.

J. A. Lynch, J. L. Hollis, and F. S. Hu, Climatic and landscape controls of the boreal forest fire regime: Holocene records from, Alaska. J. Ecol, vol.92, pp.477-489, 2004.

T. I. Marchenko-vagapova and N. A. Marieva, Palynological and diatomic characteristics of environment in Holocene near middle Vychegda, Vestn. Inst. Geol, vol.10, pp.6-9, 2001.

J. Marlon, P. J. Bartlein, and C. Whitlock, Fire-fuel-climate linkages in the northwestern USA during the Holocene , Fire-fuelclimate linkages in the northwestern USA during the Holocene, The Holocene, vol.16, pp.1059-1071, 2006.

J. R. Marlon, R. Kelly, A. Daniau, B. Vannière, M. J. Power et al., Reconstructions of biomass burning from sediment charcoal records to improve data-model comparisons, Biogeosciences BG, vol.13, pp.3225-3244, 2016.

C. Martin, Reconstruction des températures continentales en Europe de l'Ouest à partir de l'étude des tétraéthers ramifiés dans les sédiments du lac de Saint-Front, 2018.

A. Mauri, B. Davis, P. Collins, and J. Kaplan, The climate of Europe during the Holocene: a gridded pollen-based reconstruction and its multi-proxy evaluation, Quat. Sci. Rev, vol.112, pp.109-127, 2015.

P. A. Mayewski, E. E. Rohling, J. C. Stager, W. Karlén, K. A. Maasch et al.,

F. Gasse, S. Van-kreveld, and K. Holmgren, Holocene climate variability, Quat. Res, vol.62, pp.243-255, 2004.

D. G. Mccullough, R. A. Werner, and D. Neumann, Fire and insects in northern and boreal forest ecosystems of North America, Annu. Rev. Entomol, vol.43, pp.107-127, 1998.

P. Moiseev, A. Bartysh, and Z. Y. Nagimov, Climate changes and tree stand dynamics at the upper limit of their growth in the North Ural Mountains, Russ. J. Ecol, vol.41, pp.486-497, 2010.

D. Mollicone, H. D. Eva, A. , and F. , Ecology: Human role in Russian wild fires, Nature, vol.440, p.436, 2006.

P. D. Moore, J. A. Webb, and M. E. Collison, , 1991.

M. Mudelsee, TAUEST: A computer program for estimating persistence in unevenly spaced weather/climate time series, Comput. Geosci, vol.28, pp.69-72, 2002.

M. Mudelsee, M. Börngen, G. Tetzlaff, and U. Grünewald, Extreme floods in central Europe over the past 500 years: Role of cyclone pathway "Zugstrasse Vb, J. Geophys. Res. Atmospheres, vol.109, 2004.

B. Naafs, G. Inglis, Y. Zheng, M. Amesbury, H. Biester et al., Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids, Geochim. Cosmochim. Acta, vol.208, pp.285-301, 2017.
URL : https://hal.archives-ouvertes.fr/insu-01474123

A. G. Naryshkin, Fire and sustainable use of northern conifer forest in Russia, IV International Conifer Conference 615), pp.361-373, 2003.

A. Nesje, S. O. Dahl, and Ø. Lie, Holocene millennial-scale summer temperature variability inferred from sediment parameters in a non-glacial mountain lake: Danntjørn, Quat. Sci. Rev, vol.23, pp.2183-2205, 2004.

L. D. Nikiforova, Changes in the natural environment in the Holocene in the northeast of the European part of the USSR (in Russian), 1979.

M. Niklasson, E. Zin, T. Zielonka, M. Feijen, A. F. Korczyk et al., A 350-year tree-ring fire record from Bia?owie?a Primeval Forest, Poland: implications for Central European lowland fire history, J. Ecol, vol.98, pp.1319-1329, 2010.

C. Nolan, J. T. Overpeck, J. R. Allen, P. M. Anderson, J. L. Betancourt et al., Past and future global transformation of terrestrial ecosystems under climate change, Science, vol.361, pp.920-923, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01870934

E. Novenko, N. Mazei, and M. Kusilman, Tree pollen representation in surface pollen assemblages from different vegetation zones of European Russia, Ecol. Quest, vol.26, pp.61-65, 2017.

M. Ohlson, K. J. Brown, H. J. Birks, J. Grytnes, G. Hörnberg et al.,

R. H. Bradshaw, Invasion of Norway spruce diversifies the fire regime in boreal European forests, J. Ecol, vol.99, pp.395-403, 2011.

F. Oris, A. A. Ali, H. Asselin, L. Paradis, Y. Bergeron et al., Charcoal dispersion and deposition in boreal lakes from 3 years of monitoring: differences between local and regional fires, Geophys. Res. Lett, vol.41, pp.6743-6752, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01814528

W. W. Oswald, P. M. Anderson, T. A. Brown, L. B. Brubaker, F. S. Hu et al.,

P. Kaltenrieder, Effects of sample mass and macrofossil type on radiocarbon dating of arctic and boreal lake sediments, The Holocene, vol.15, pp.758-767, 2005.

S. Ouarmim, H. Asselin, C. Hély, Y. Bergeron, A. et al., Long-term dynamics of fire refuges in boreal mixedwood forests, J. Quat. Sci, vol.29, pp.123-129, 2014.

Y. Pan, R. A. Birdsey, J. Fang, R. Houghton, P. E. Kauppi et al.,

S. L. Lewis and J. G. Canadell, A large and persistent carbon sink in the world's forests, Science, vol.333, pp.988-993, 2011.

N. Panova, A. , and T. , Late Glacial and Holocene environmental history on the eastern slope of the Middle Ural mountains, Quat. Int, vol.420, pp.76-89, 2016.

A. Paus, Interpretative problems and sources of error related to pollen-analytical studies of the Holocene on the Timan ridge, western Pechora Basin, northern Russia, Skr. Arkeol. Mus. Stavanger, vol.16, pp.111-126, 2000.

D. Peteet, Sensitivity and rapidity of vegetational response to abrupt climate change, Proc. Natl. Acad. Sci, vol.97, pp.1359-1361, 2000.

F. Peterse, G. W. Nicol, S. Schouten, and J. S. Damsté, Influence of soil pH on the abundance and distribution of core and intact polar lipid-derived branched GDGTs in soil, Org. Geochem, vol.41, pp.1171-1175, 2010.

F. Peterse, J. Van-der-meer, S. Schouten, J. W. Weijers, N. Fierer et al.,

J. S. Damsté, Revised calibration of the MBT-CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils, Geochim. Cosmochim. Acta, vol.96, pp.215-229, 2012.

V. Petrov, Shifting cultivation. Shifting Cultiv, 1968.

O. Peyron, A. Bordon, A. Vignot, S. Damy, N. Combourieu-nebout et al.,

D. Barboni, A modern pollen? climate database as a tool for quantitative climate and vegetation reconstructions, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00419948

O. Peyron, M. Magny, S. Goring, S. Joannin, J. De-beaulieu et al., Contrasting patterns of climatic changes during the Holocene across the Italian Peninsula reconstructed from pollen data, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00931351

D. Pflugmacher, O. N. Krankina, W. B. Cohen, M. A. Friedl, D. Sulla-menashe et al., Comparison and assessment of coarse resolution land cover maps for Northern Eurasia, Remote Sens. Environ, vol.115, pp.3539-3553, 2011.

M. F. Pisaric, Long-distance transport of terrestrial plant material by convection resulting from forest fires, J. Paleolimnol, vol.28, pp.349-354, 2002.

A. Poska and I. A. Pidek, Pollen dispersal and deposition characteristics of Abies alba, Fagus sylvatica and Pinus sylvestris, Roztocze region (SE Poland), Veg. Hist. Archaeobotany, vol.19, pp.91-101, 2010.

A. Poska, V. Meltsov, S. Sugita, and J. Vassiljev, Relative pollen productivity estimates of major anemophilous taxa and relevant source area of pollen in a cultural landscape of the hemi-boreal forest zone (Estonia), Rev. Palaeobot. Palynol, vol.167, pp.30-39, 2011.

M. J. Power, J. Marlon, N. Ortiz, P. J. Bartlein, S. P. Harrison et al., Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data, Clim. Dyn, vol.30, pp.887-907, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01845766

I. C. Prentice, Pollen representation, source area, and basin size: toward a unified theory of pollen analysis, Quat. Res, vol.23, pp.76-86, 1985.

J. T. Randerson, H. Liu, M. G. Flanner, S. D. Chambers, Y. Jin et al.,

K. Treseder and L. Welp, The impact of boreal forest fire on climate warming, Science, vol.314, pp.1130-1132, 2006.

M. Reille, Pollen et spores d'Europe et d'Afrique du nord: Laboratoire de botanique historique et palynologie, 1992.

M. Reille, Pollen et spores d'Europe et d'Afrique du nord Supplement 2, Laboratoire de botanique historique et palynologie, 1998.

P. J. Reimer, E. Bard, A. Bayliss, J. W. Beck, P. G. Blackwell et al.,

R. L. Edwards, F. , and M. , IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP, Radiocarbon, vol.55, pp.1869-1887, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02470111

F. Rinn, TSAPWin Scientific: Time Series Analysis and Presentation for Dendrochronology and, 2012.

J. C. Ritchie, S. P. Harrison, W. , and H. , Vegetation, lake levels, and climate in western Canada during the Holocene. Glob. Clim. Last Glacial Maximum Univ, pp.401-414, 1993.

D. Rius, B. Vannière, D. Galop, R. , and H. , Holocene fire regime changes from multiplesite sedimentary charcoal analyses in the Lourdes basin, Quat. Sci. Rev, vol.30, pp.1696-1709, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00649514

S. N. Rodionov, A sequential algorithm for testing climate regime shifts, Geophys. Res. Lett, p.31, 2004.

S. Rodionov and J. E. Overland, Application of a sequential regime shift detection method to the Bering Sea ecosystem, ICES J. Mar. Sci, vol.62, pp.328-332, 2005.

C. Rogers and E. Levetin, Evidence of long-distance transport of mountain cedar pollen into Tulsa, Oklahoma, Int. J. Biometeorol, vol.42, pp.65-72, 1998.

V. Rull, Biotic diversification in the Guayana Highlands: a proposal, J. Biogeogr, vol.32, pp.921-927, 2005.

J. S. Salonen, H. Seppä, M. Väliranta, V. J. Jones, A. Self et al.,

, The Holocene thermal maximum and late-Holocene cooling in the tundra of NE European Russia, Quat. Res, vol.75, pp.501-511

J. S. Salonen, L. Ilvonen, H. Seppä, L. Holmström, R. J. Telford et al., Comparing different calibration methods (WA/WA-PLS regression and Bayesian modelling) and different-sized calibration sets in pollen-based quantitative climate reconstruction, The Holocene, vol.22, pp.413-424, 2012.

S. Sannikov and J. Goldammer, Fire ecology of pine forests of northern Eurasia, Fire in Ecosystems of Boreal Eurasia, pp.151-167, 1996.

R. Sayre, J. Dangermond, C. Frye, R. Vaughan, P. Aniello et al., A new map of global ecological land units-an ecophysiographic stratification approach, Wash. DC Assoc. Am. Geogr, 2014.

M. Schulz and M. Mudelsee, REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series, Comput. Geosci, vol.28, pp.421-426, 2002.

E. Schulze, C. Wirth, D. Mollicone, and W. Ziegler, Succession after stand replacing disturbances by fire, wind throw, and insects in the dark Taiga of Central Siberia, Oecologia, vol.146, pp.77-88, 2005.

F. H. Schweingruber, Tree rings: basics and applications of dendrochronology, 2012.

F. H. Schweingruber, T. Bartholin, E. Schaur, and K. R. Briffa, Radiodensitometricdendroclimatological conifer chronologies from Lapland (Scandinavia) and the Alps, 1988.

, Boreas, vol.17, pp.559-566

H. Seppä and H. Birks, Holocene climate reconstructions from the Fennoscandian tree-line area based on pollen data from Toskaljavri, Quat. Res, vol.57, pp.191-199, 2002.

H. Seppä, H. Birks, T. Giesecke, D. Hammarlund, T. Alenius et al., Spatial structure of the 8200 cal yr BP event in northern, Europe. Clim. Past Discuss, vol.3, pp.165-195, 2007.

H. Seppä, A. E. Bjune, R. J. Telford, H. Birks, and S. Veski, Last nine-thousand years of temperature variability in Northern Europe, Clim. Past, vol.5, pp.523-535, 2009.

H. Seppä, T. Alenius, R. H. Bradshaw, T. Giesecke, M. Heikkilä et al., , 2009.

, Invasion of Norway spruce (Picea abies) and the rise of the boreal ecosystem in Fennoscandia, J. Ecol, vol.97, pp.629-640

Y. Sheng, L. C. Smith, G. M. Macdonald, K. V. Kremenetski, K. E. Frey et al., A high-resolution GIS-based inventory of the west Siberian peat carbon pool, Glob. Biogeochem. Cycles, vol.18, 2004.

E. Shorohova, T. Kuuluvainen, A. Kangur, J. , and K. , Natural stand structures, disturbance regimes and successional dynamics in the Eurasian boreal forests: a review with special reference to Russian studies, Ann. For. Sci, vol.66, pp.1-20, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00883494

J. K. Shuman, A. C. Foster, H. H. Shugart, A. Hoffman-hall, A. Krylov et al.,

E. Sochilova, Fire disturbance and climate change: implications for Russian forests, Environ. Res. Lett, vol.12, p.35003, 2017.

A. Z. Shvidenko and S. Nilsson, Extent, distribution, and ecological role of fire in Russian forests. In Fire, Climate Change, and Carbon Cycling in the Boreal Forest, pp.132-150, 2000.

A. Sidorchuk, O. Borisova, and A. Panin, Fluvial response to the Late Valdai/Holocene environmental change on the East European Plain, Glob. Planet. Change, vol.28, pp.303-318, 2001.

P. Siljamo, M. Sofiev, E. Severova, H. Ranta, J. Kukkonen et al., Sources, impact and exchange of early-spring birch pollen in the Moscow region and Finland, Aerobiologia, vol.24, p.211, 2008.

M. Smith, C. A. Skjøth, D. Myszkowska, A. Uruska, M. Puc et al., Long-range transport of Ambrosia pollen to Poland, Agric. For. Meteorol, vol.148, pp.1402-1411, 2008.

J. A. Snyder, G. M. Macdonald, S. L. Forman, G. A. Tarasov, and W. N. Mode, Postglacial climate and vegetation history, north-central Kola Peninsula, Russia: pollen and diatom records from Lake Yarnyshnoe-3, Boreas, vol.29, pp.261-271, 2000.

A. J. Soja, N. M. Tchebakova, N. H. French, M. D. Flannigan, H. H. Shugart et al., Climate-induced boreal forest change: predictions versus current observations, Glob. Planet. Change, vol.56, pp.274-296, 2007.

D. Spittlehouse and R. B. Stewart, Adaptation to climate change in forest management, 2003.

H. Von-stedingk, R. M. Fyfe, and A. Allard, Pollen productivity estimates from the foresttundra ecotone in west-central Sweden: implications for vegetation reconstruction at the limits of the boreal forest, The Holocene, vol.18, pp.323-332, 2008.

N. Stivrins, T. Aakala, L. Ilvonen, L. Pasanen, T. Kuuluvainen et al., Integrating fire-scar, charcoal and fungal spore data to study fire events in the boreal forest of northern Europe, 2019.

T. Stocker, Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change, 2014.

B. J. Stocks and D. L. Martell, Forest fire management expenditures in Canada, pp.1970-2013, 2016.

. For and . Chron, , vol.92, pp.298-306

B. J. Stocks, M. A. Fosberg, T. J. Lynham, L. Mearns, B. M. Wotton et al., Climate Change and Forest Fire Potential in Russian and Canadian Boreal Forests, Clim. Change, vol.38, pp.1-13, 1998.

M. A. Stokes and T. L. Smiley, An Introduction to Tree-ring Dating, 1968.

S. Sugita, Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition, The Holocene, vol.17, pp.229-241, 2007.

S. Sugita, Theory of quantitative reconstruction of vegetation II: all you need is LOVE, The Holocene, vol.17, pp.243-257, 2007.

S. Sugita, T. Parshall, R. Calcote, and K. Walker, Testing the Landscape Reconstruction Algorithm for spatially explicit reconstruction of vegetation in northern Michigan and Wisconsin, Quat. Res, vol.74, pp.289-300, 2010.

O. Suominen, Impact of cervid browsing and grazing on the terrestrial gastropod fauna in the boreal forests of Fennoscandia, Ecography, vol.22, pp.651-658, 1999.

J. I. Svendsen, H. Alexanderson, V. I. Astakhov, I. Demidov, J. A. Dowdeswell et al., Late Quaternary ice sheet history of northern Eurasia, Quat. Sci. Rev, vol.23, pp.1229-1271, 2004.

T. W. Swetnam, Fire History and Climate Change in Giant Sequoia Groves, Science, vol.262, pp.885-889, 1993.

K. Syrjänen, R. Kalliola, A. Puolasmaa, and J. Mattsson, Landscape structure and forest dynamics in subcontinental Russian European taiga, pp.19-34, 1994.

P. Tarasov, E. Bezrukova, E. Karabanov, T. Nakagawa, M. Wagner et al.,

A. Abzaeva, W. Granoszewski, and F. Riedel, Vegetation and climate dynamics during the Holocene and Eemian interglacials derived from Lake Baikal pollen records, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.252, pp.440-457, 2007.

P. Tarasov, E. Bezrukova, and S. Krivonogov, Late Glacial and Holocene changes in vegetation cover and climate in southern Siberia derived from a 15 kyr long pollen record from Lake Kotokel, 2009.

, Clim. Past, vol.5, pp.285-295

P. E. Tarasov, J. Guiot, R. Cheddadi, A. A. Andreev, L. G. Bezusko et al., Climate in northern Eurasia 6000 years ago reconstructed from pollen data, Earth Planet. Sci. Lett, vol.171, pp.635-645, 1999.

A. Taskaev, Virgin forests of Komi: the UNESCO world cultural and natural heritage site. Publ. Cent, Design Inf. Cartogr, 2006.

N. Tchebakova, E. Parfenova, and A. Soja, The effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate, Environ. Res. Lett, vol.4, p.45013, 2009.

R. C. Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2013.

C. W. Team, R. K. Pachauri, and L. Meyer, IPCC, 2014: climate change 2014: synthesis report. Contribution of Working Groups I. II III Fifth Assess, Rep. Intergov. Panel Clim. Change IPCC Geneva Switz, vol.151, 2014.

M. M. Tollefsrud, M. Lata?owa, W. O. Van-der-knaap, C. Brochmann, and C. Sperisen, Late Quaternary history of North Eurasian Norway spruce (Picea abies) and Siberian spruce (Picea obovata) inferred from macrofossils, pollen and cytoplasmic DNA variation, J. Biogeogr, vol.42, pp.1431-1442, 2015.

K. Tolonen, The history of Norway spruce, Picea abies, in Finland (in Dutch), Sorbifolia, vol.14, pp.53-59, 1983.

A. Trondman, M. Gaillard, S. Sugita, L. Björkman, A. Greisman et al., Are pollen records from small sites appropriate for REVEALS model-based quantitative reconstructions of past regional vegetation? An empirical test in southern Sweden, Veg. Hist. Archaeobotany, vol.25, pp.131-151, 2016.

Y. Tsuda, J. Chen, M. Stocks, T. Källman, J. H. Sønstebø et al., The extent and meaning of hybridization and introgression between Siberian spruce (Picea obovata) and Norway spruce (Picea abies): cryptic refugia as stepping stones to the west?, Mol. Ecol, vol.25, pp.2773-2789, 2016.

M. Ulrich, S. Wetterich, N. Rudaya, L. Frolova, J. Schmidt et al., Rapid thermokarst evolution during the mid-Holocene in Central Yakutia, Russia. The Holocene, vol.27, pp.1899-1913, 2017.

M. Väliranta, A. Kaakinen, and P. Kuhry, Holocene climate and landscape evolution east of the Pechora Delta, East-European Russian Arctic, Quat. Res, vol.59, pp.335-344, 2003.

M. Väliranta, A. Kaakinen, P. Kuhry, S. Kultti, J. S. Salonen et al., Scattered lateglacial and early Holocene tree populations as dispersal nuclei for forest development in north-eastern European Russia, J. Biogeogr, vol.38, pp.922-932, 2011.

G. Velle, S. J. Brooks, H. Birks, and E. Willassen, Chironomids as a tool for inferring Holocene climate: an assessment based on six sites in southern Scandinavia, Quat. Sci. Rev, vol.24, pp.1429-1462, 2005.

S. Veraverbeke, B. M. Rogers, M. L. Goulden, R. R. Jandt, C. E. Miller et al., Lightning as a major driver of recent large fire years in North American boreal forests, Nat. Clim. Change, vol.7, p.529, 2017.

S. Veski, L. Amon, A. Heinsalu, T. Reitalu, L. Saarse et al., , 2012.

, Lateglacial vegetation dynamics in the eastern Baltic region between 14,500 and 11,400 cal yr BP: A complete record since the Bølling (GI-1e) to the Holocene, Quat. Sci. Rev, vol.40, pp.39-53

A. E. Viau and K. Gajewski, Reconstructing Millennial-Scale, Regional Paleoclimates of Boreal Canada during the Holocene, J. Clim, vol.22, pp.316-330, 2009.

W. J. Volney and R. A. Fleming, Climate change and impacts of boreal forest insects, Agric. Ecosyst. Environ, vol.82, pp.283-294, 2000.

N. Vygodskaya, P. Y. Groisman, N. Tchebakova, J. Kurbatova, O. Panfyorov et al., Ecosystems and climate interactions in the boreal zone of northern Eurasia, Environ. Res. Lett, vol.2, p.45033, 2007.

J. Waito, M. P. Girardin, J. C. Tardif, F. Conciatori, Y. Bergeron et al., , p.2287, 2018.

X. J. Walker, J. L. Baltzer, S. G. Cumming, N. J. Day, C. Ebert et al.,

B. M. Rogers and E. A. Schuur, Increasing wildfires threaten historic carbon sink of boreal forest soils, Nature, vol.572, pp.520-523, 2019.

Y. Wang and U. Herzschuh, Reassessment of Holocene vegetation change on the upper Tibetan Plateau using the pollen-based REVEALS model, Rev. Palaeobot. Palynol, vol.168, pp.31-40, 2011.

L. Wang, W. Chen, W. Zhou, J. C. Chan, D. Barriopedro et al., Effect of the climate shift around mid 1970s on the relationship between wintertime Ural blocking circulation and East Asian climate, Int. J. Climatol. J. R. Meteorol. Soc, vol.30, pp.153-158, 2010.

M. G. Weber and M. D. Flannigan, Canadian boreal forest ecosystem structure and function in a changing climate: impact on fire regimes, Environ. Rev, vol.5, pp.145-166, 1997.

J. W. Weijers, S. Schouten, O. C. Spaargaren, and J. S. Damsté, Occurrence and distribution of tetraether membrane lipids in soils: Implications for the use of the TEX86 proxy and the BIT index, 2006.

, Org. Geochem, vol.37, pp.1680-1693

J. W. Weijers, S. Schouten, J. C. Van-den-donker, E. C. Hopmans, and J. S. Damsté, , 2007.

, Environmental controls on bacterial tetraether membrane lipid distribution in soils, Geochim. Cosmochim. Acta, vol.71, pp.703-713

J. W. Weijers, S. Schouten, A. Sluijs, H. Brinkhuis, and J. S. Damsté, Warm arctic continents during the Palaeocene-Eocene thermal maximum, Earth Planet. Sci. Lett, vol.261, pp.230-238, 2007.

C. Whitlock, P. E. Higuera, D. B. Mcwethy, and C. E. Briles, Paleoecological perspectives on fire ecology: revisiting the fire-regime concept, Open Ecol. J, vol.3, 2010.

B. Wohlfarth, T. Lacourse, O. Bennike, D. Subetto, P. Tarasov et al., Relative pollen productivities of typical steppe species in northern China and their potential in past vegetation reconstruction, Sci. China Earth Sci, vol.57, pp.1254-1266, 2007.

Z. Yu and U. Eicher, Three amphi-Atlantic century-scale cold events during the Bølling-Allerød warm period, Géographie Phys. Quat, vol.55, pp.171-179, 2001.

I. V. Zaboeva, Soil ecology of Northern Taiga, 1997.

N. E. Zaretskaya, A. V. Panin, Y. V. Golubeva, and A. V. Chernov, Sedimentation settings and the late pleistocene-holocene geochronology in the Vychegda River valley, Dokl. Earth Sci, vol.455, pp.223-228, 2014.

S. C. Zoltai, L. A. Morrissey, G. P. Livingston, and W. J. Groot, Effects of fires on carbon cycling in North American boreal peatlands, ANNEXES Annexe 1 : Modèles d'âge obtenus avec Winbacon, de Vohto1 et Vohto2, vol.6, pp.13-24, 1998.

, Annexe 2 : Modèles d'âge obtenus avec Winbacon