M. Amari, G. Valérie, H. Robert, S. Morel, C. Moulis et al., Overview of the glucansucrase equipment of Leuconostoc citreum LBAE-E16 and LBAE-C11, two strains isolated from sourdough, FEMS Microbiol. Lett, vol.362, pp.1-8, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01269370

I. André, S. Grelier, D. Guieysse, A. Lafraya, P. Monsan et al., Enzymatic Production of Glycosylated Synthons, 2018.

H. Aoki, T. Shiroza, M. Hayakawa, S. Sato, and H. K. Kuramitsu, Cloning of a Streptococcus mutans glucosyltransferase gene coding for insoluble glucan synthesis, Infect. Immun, vol.53, pp.587-594, 1986.

H. Arabnejad, M. Dal-lago, P. A. Jekel, R. J. Floor, A. W. Thunnissen et al., A robust cosolvent-compatible halohydrin dehalogenase by computational library design, Protein Eng. Des. Sel, vol.30, pp.175-189, 2017.

M. Arenas, C. C. Weber, D. A. Liberles, and U. Bastolla, ProtASR: an evolutionary framework for ancestral protein reconstruction with selection on folding stability, Syst. Biol, vol.66, pp.1054-1064, 2017.

S. Argimón, A. V. Alekseyenko, R. Desalle, and P. W. Caufield, Phylogenetic analysis of glucosyltransferases and implications for the coevolution of mutans Streptococci with their mammalian hosts, PLoS ONE, vol.8, 2013.

A. Morales, M. A. Remaud-siméon, M. Willemot, R. Vignon, M. R. Monsan et al., Novel oligosaccharides synthesized from sucrose donor and cellobiose acceptor by alternansucrase, Carbohydr. Res, vol.331, pp.38-44, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00307701

M. A. Argüello-morales, M. Remaud-siméon, S. Pizzut-serin, P. Sarcabal, R. Willemot et al., Leuconostoc mesenteroides NRRL B-1355 dsrC gene for dextransucrase, GenBank Access, 2000.

M. A. Argüello-morales, M. Remaud-siméon, S. Pizzut-serin, P. Sarçabal, R. Willemot et al., Sequence analysis of the gene encoding alternansucrase, a sucrose glucosyltransferase from Leuconostoc mesenteroides NRRL B-1355, FEMS Microbiol. Lett, vol.182, pp.81-85, 2000.

F. H. Arnold, Directed evolution: Creating biocatalysts for the future, Chem. Eng. Sci, vol.51, pp.288-294, 1996.

J. L. Asensio, A. Ardá, F. J. Cañada, and J. Jiménez-barbero, Carbohydrate-aromatic interactions, Acc. Chem. Res, vol.46, pp.946-954, 2013.

H. Ashkenazy, O. Penn, A. Doron-faigenboim, O. Cohen, G. Cannarozzi et al., FastML: a web server for probabilistic reconstruction of ancestral sequences, Nucleic Acids Res, vol.40, pp.580-584, 2012.

S. Badel, T. Bernardi, and P. Michaud, New perspectives for Lactobacilli exopolysaccharides, Biotechnol. Adv, vol.29, pp.54-66, 2011.

Y. Bai, J. Gangoiti, B. W. Dijkstra, L. Dijkhuizen, and T. Pijning, Crystal structure of 4,6-?glucanotransferase supports diet-driven evolution of GH70 enzymes from ?-amylases in oral bacteria, Struct. Lond. Engl, vol.25, pp.231-242, 1993.

S. Bershtein, K. Goldin, and D. S. Tawfik, Intense neutral drifts yield robust and evolvable consensus proteins, J. Mol. Biol, vol.379, pp.1029-1044, 2008.

A. Bertrand, S. Morel, F. Lefoulon, Y. Rolland, P. Monsan et al., Leuconostoc mesenteroides glucansucrase synthesis of flavonoid glucosides by acceptor reactions in aqueous-organic solvents, Carbohydr. Res, vol.341, pp.855-863, 2006.

,

S. Biswas and I. Biswas, Complete genome sequence of Streptococcus mutans GS-5, a serotype c strain, J. Bacteriol, vol.194, pp.4787-4788, 2012.

J. D. Bloom, P. A. Romero, Z. Lu, and F. H. Arnold, Neutral genetic drift can alter promiscuous protein functions, potentially aiding functional evolution, Biol. Direct, vol.2, p.17, 2007.

M. Bounaix, V. Gabriel, H. Robert, S. Morel, M. Remaud-siméon et al., Characterization of glucan-producing Leuconostoc strains isolated from sourdough, The 16th CBL (Club des Bactéries Lactiques) Symposium, vol.144, pp.1-9, 2009.

S. Bozonnet, M. Dols-laffargue, E. Fabre, S. Pizzut-serin, M. Remaud-siméon et al., Molecular characterization of DSR-E, an alpha-1,2 linkage-synthesizing dextransucrase with two catalytic domains, J. Bacteriol, vol.184, pp.5753-5761, 2002.

Y. Brison, E. Fabre, C. Moulis, J. Portais, P. Monsan et al., , 2010.

, Appl. Microbiol. Biotechnol, vol.86, pp.545-554

Y. Brison, Y. Malbert, G. Czaplicki, L. Mourey, M. Remaud-siméon et al., Structural Insights into the Carbohydrate Binding Ability of an ?-(1?2) Branching Sucrase from Glycoside Hydrolase Family 70, J. Biol. Chem, vol.291, pp.7527-7540, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01886416

,

Y. Brison, T. Pijning, Y. Malbert, É. Fabre, L. Mourey et al., Functional and structural characterization of ?-(1->2) branching sucrase derived from DSR-E glucansucrase, J. Biol. Chem, vol.287, pp.7915-7924, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01268398

D. W. Buchan, F. Minneci, T. C. Nugent, K. Bryson, and D. T. Jones, Scalable web services for the PSIPRED Protein Analysis Workbench, Nucleic Acids Res, vol.41, pp.349-357, 2013.

T. L. Carlson and A. Woo, Use of low-glycemic sweeteners in food and beverage compositions, 2013.

T. L. Carlson, A. Woo, G. Zheng, . Wo2006088884a1, E. Champion et al., Synthesis of L-rhamnose and N-acetyl-D-glucosamine derivatives entering in the composition of bacterial polysaccharides by use of glucansucrases, J. Carbohydr. Chem, vol.28, pp.142-160, 2006.

N. W. Cheetham, M. E. Slodki, and G. J. Walker, Structure of the linear, low molecular weight dextran synthesized by a D-glucosyltransferase (GTF-S3) of Streptococcus sobrinus, Carbohydr. Polym, vol.16, pp.341-353, 1991.

K. Chen and F. H. Arnold, Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide, Proc. Natl. Acad. Sci. U. S. A, vol.90, pp.5618-5622, 1993.

V. B. Chen, W. B. Arendall, J. J. Headd, D. A. Keedy, R. M. Immormino et al., MolProbity: all-atom structure validation for macromolecular crystallography, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.12-21, 2010.

M. Claverie, G. Cioci, M. Guionnet, J. Schörghuber, R. Lichtenecker et al., Futile Encounter Engineering of the DSR-M Dextransucrase Modifies the Resulting Polymer Length, Biochemistry (Mosc.), vol.58, pp.2853-2859, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02176417

,

M. Claverie, G. Cioci, M. Vuillemin, P. Bondy, M. Remaud-siméon et al., Identification of key molecular determinants in the domain V of Oenococcus kitaharae DSM 17330 dextransucrase involved in high molar mass dextran synthesis, 2019.

M. Claverie, G. Cioci, M. Vuillemin, N. Monties, P. Roblin et al., Investigations on the Determinants Responsible for Low Molar Mass Dextran Formation by DSR-M Dextransucrase, ACS Catal, vol.7, pp.7106-7119, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01886431

,

G. L. Côté, Acceptor products of alternansucrase with gentiobiose. Production of novel oligosaccharides for food and feed and elimination of bitterness, Carbohydr. Res, vol.344, pp.187-190, 2009.

G. L. Côté, Polysaccharides from Prokaryotes, pp.232-350, 2002.

G. L. Côté, Low-viscosity ?-d-glucan fractions derived from sucrose which are resistant to enzymatic digestion, Carbohydr. Polym, vol.19, issue.92, pp.90077-90081, 1992.

G. L. Côté and C. A. Dunlap, Alternansucrase acceptor reactions with methyl hexopyranosides, Carbohydr. Res, vol.338, pp.1961-1967, 2003.

G. L. Côté, C. A. Dunlap, and K. E. Vermillion, Glucosylation of raffinose via alternansucrase acceptor reactions, Carbohydr. Res, vol.344, pp.1951-1959, 2009.

,

G. L. Côté, C. A. Dunlap, K. E. Vermillion, and C. D. Skory, Production of isomelezitose from sucrose by engineered glucansucrases, vol.1, pp.82-93, 2017.

G. L. Côté and S. M. Holt, Prebiotic oligosaccharides via alternansucrase acceptor reactions, 2007.

G. L. Côté, S. M. Holt, and C. Miller-fosmore, Prebiotic Oligosaccharides via Alternansucrase Acceptor Reactions, Oligosaccharides in Food and Agriculture, ACS Symposium Series, pp.76-89, 2003.

G. L. Côté and J. F. Robyt, The formation of ?-D-(1?3) branch linkages by an exocellular glucansucrase from Leuconostoc mesenteroides NRRL B-742, Carbohydr. Res, vol.119, pp.141-156, 1983.

G. L. Côté and J. F. Robyt, Isolation and partial characterization of an extracellular glucansucrase from Leuconostoc mesenteroides NRRL B-1355 that synthesizes an alternating (1?6),(1?3)-?-D-glucan, Carbohydr. Res, vol.101, pp.57-74, 1982.

G. L. Côté and J. F. Robyt, Acceptor reactions of alternansucrase from Leuconostoc mesenteroides NRRL B-1355, Carbohydr. Res, vol.111, pp.127-142, 1982.

G. L. Côté and S. Sheng, Penta-, hexa-, and heptasaccharide acceptor products of alternansucrase, Carbohydr. Res, vol.341, pp.2066-2072, 2006.

G. L. Côté, S. Sheng, and C. A. Dunlap, Alternansucrase acceptor products, Biocatal. Biotransformation, vol.26, pp.161-168, 2008.

G. L. Côté and C. D. Skory, Isomelezitose formation by glucansucrases, Carbohydr. Res, vol.439, pp.57-60, 2017.

G. L. Côté and C. D. Skory, Effects of mutations at threonine-654 on the insoluble glucan synthesized by Leuconostoc mesenteroides NRRL B-1118 glucansucrase, Appl. Microbiol. Biotechnol, vol.98, pp.6651-6658, 2014.

D. B. Craig and A. A. Dombkowski, Disulfide by Design 2.0: a web-based tool for disulfide engineering in proteins, BMC Bioinformatics, vol.14, 2013.

G. E. Crooks, G. Hon, J. Chandonia, and S. E. Brenner, WebLogo: a sequence logo generator, Genome Res, vol.14, pp.1188-1190, 2004.

D. Daudé, A. Vergès, E. Cambon, S. Emond, S. Tranier et al., Neutral genetic drift-based engineering of a sucrose-utilizing enzyme toward glycodiversification, ACS Catal, 2019.

G. J. Davies, K. S. Wilson, and B. Henrissat, Nomenclature for sugar-binding subsites in glycosyl hydrolases, Biochem. J, vol.321, pp.557-559, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00309901

T. J. Dennes, A. M. Perticone, and J. L. Paullin, Cationic poly alpha-1,3-glucan ethers, 2015.

A. Dereeper, V. Guignon, G. Blanc, S. Audic, S. Buffet et al., Phylogeny.fr: robust phylogenetic analysis for the non-specialist, Nucleic Acids Res, vol.36, pp.465-469, 2008.
URL : https://hal.archives-ouvertes.fr/lirmm-00324099

,

E. Dertli, I. J. Colquhoun, G. L. Côté, L. Gall, G. Narbad et al., Structural analysis of the ?-dglucan produced by the sourdough isolate Lactobacillus brevis E25, Food Chem, vol.242, pp.45-52, 2018.

K. S. Devulapalle, S. D. Goodman, Q. Gao, A. Hemsley, and G. Mooser, Knowledge-based model of a glucosyltransferase from the oral bacterial group of mutans Streptococci, Protein Sci. Publ. Protein Soc, vol.6, pp.2489-2493, 1997.

T. B. Dey, A. Kumar, R. Banerjee, P. Chandna, and R. C. Kuhad, Improvement of microbial ?amylase stability: strategic approaches, Process Biochem, 2016.

M. Dimopoulou, M. Vuillemin, H. Campbell-sills, P. M. Lucas, P. Ballestra et al., Exopolysaccharide (EPS) Synthesis by Oenococcus oeni: From Genes to Phenotypes, PloS One, vol.9, 2014.

Z. Djouzi, C. Andrieux, V. Pelenc, S. Somarriba, F. Popot et al., Degradation and fermentation of ?-gluco-oligosaccharides by bacterial strains from human colon: in vitro and in vivo studies in gnotobiotic rats, J. Appl. Bacteriol, vol.79, pp.117-127, 1995.

J. M. Dobruchowska, X. Meng, H. Leemhuis, G. J. Gerwig, L. Dijkhuizen et al., Glucooligomers initially formed by the reuteransucrase enzyme of Lactobacillus reuteri 121 incubated with sucrose and malto-oligosaccharides, Glycobiology, vol.23, pp.1084-1096, 2013.

V. G. Eijsink, A. Bjørk, S. Gåseidnes, R. Sirevåg, B. Synstad et al., Rational engineering of enzyme stability, Highlights from the ECB11: Building Bridges between Biosciences and Bioengineering, vol.113, pp.105-120, 2004.

,

S. Emond, I. André, K. Jaziri, G. Potocki-véronèse, P. Mondon et al., Combinatorial engineering to enhance thermostability of amylosucrase, Protein Sci. Publ. Protein Soc, vol.17, pp.967-976, 2008.

,

E. F-fabre, Caractérisation de la dextrane-saccharase DSR-E de Leuconostoc mesenteroides NRRL B-1299 et applications à la synthèse de composés prébiotiques, Institut national des sciences appliquées de Toulouse, 2004.

E. Fabre, S. Bozonnet, A. Arcache, R. Willemot, M. Vignon et al., Role of the two catalytic domains of DSR-E dextransucrase and their involvement in the formation of highly ?-1,2 branched dextran, J. Bacteriol, vol.187, pp.296-303, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00305980

E. Fabre, G. Joucla, C. Moulis, S. Emond, G. Richard et al., Glucansucrases of GH family 70: What are the determinants of their specifities?, Biocatal. Biotransformation, vol.24, pp.137-145, 2006.

,

J. J. Ferretti, M. L. Gilpin, and R. R. Russell, Nucleotide sequence of a glucosyltransferase gene from Streptococcus sobrinus MFe28, J. Bacteriol, vol.169, pp.4271-4278, 1987.

V. L. Finkenstadt, G. L. Côté, and J. L. Willett, Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides, Biotechnol. Lett, vol.33, pp.1093-1100, 2011.

H. Flemming and J. Wingender, The biofilm matrix, Nat. Rev. Microbiol, vol.8, pp.623-633, 2010.

R. J. Floor, H. J. Wijma, D. I. Colpa, A. Ramos-silva, P. A. Jekel et al., Computational Library Design for Increasing Haloalkane Dehalogenase Stability, ChemBioChem, vol.15, pp.1660-1672, 2014.

,

F. Freitas, V. D. Alves, and M. A. Reis, Advances in bacterial exopolysaccharides: from production to biotechnological applications, Trends Biotechnol, vol.29, pp.388-398, 2011.

K. Funane, T. Ookura, and M. Kobayashi, Glucan binding regions of dextransucrase from Leuconostoc mesenteroides NRRL B-512F, Biosci. Biotechnol. Biochem, vol.62, pp.123-127, 1998.

J. Gangoiti, L. Lamothe, S. S. Van-leeuwen, C. Vafiadi, and L. Dijkhuizen, Characterization of the Paenibacillus beijingensis DSM 24997 GtfD and its glucan polymer products representing a new glycoside hydrolase 70 subfamily of 4,6-?-glucanotransferase enzymes, PLoS ONE, vol.12, 2017.

J. Gangoiti, S. S. Leeuwen, . Van, G. J. Gerwig, S. Duboux et al., 3-?-Glucanotransferase, a novel reaction specificity in glycoside hydrolase family 70 and clan GH-H, Sci. Rep, vol.4, 2017.

J. Gangoiti, T. Pijning, and L. Dijkhuizen, The Exiguobacterium sibiricum 255-15 GtfC Enzyme Represents a Novel Glycoside Hydrolase 70, 2015.

, Appl. Environ. Microbiol, vol.82, pp.756-766

J. Gangoiti, S. S. Van-leeuwen, C. Vafiadi, and L. Dijkhuizen, The Gram-negative bacterium Azotobacter chroococcum NCIMB 8003 employs a new glycoside hydrolase family 70 4,6-?glucanotransferase enzyme (GtfD) to synthesize a reuteran like polymer from maltodextrins and starch, Biochim. Biophys. Acta, vol.1860, pp.1224-1236, 2016.

,

G. R. Gibson, R. Hutkins, M. E. Sanders, S. L. Prescott, R. A. Reimer et al., Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics, Nat. Rev. Gastroenterol. Hepatol, vol.14, pp.491-502, 2017.

P. M. Giffard, D. M. Allen, C. P. Milward, C. L. Simpson, and N. A. Jacques, Sequence of the gtfK gene of Streptococcus salivarius ATCC 25975 and evolution of the gtf genes of oral Streptococci, J. Gen. Microbiol, vol.139, pp.1511-1522, 1993.

P. M. Giffard and N. A. Jacques, Definition of a fundamental repeating unit in streptococcal glucosyltransferase glucan-binding regions and related sequences, J. Dent. Res, vol.73, pp.1133-1141, 1994.

K. S. Gilmore, R. R. Russell, and J. J. Ferretti, Analysis of the Streptococcus downei gtfS gene, which specifies a glucosyltransferase that synthesizes soluble glucans, Infect. Immun, vol.58, pp.2452-2458, 1990.

A. Goldenzweig, M. Goldsmith, S. E. Hill, O. Gertman, P. Laurino et al., Automated structure-and sequence-based design of proteins for high bacterial expression and stability, Mol. Cell, vol.63, pp.337-346, 2016.

,

I. J. Goldstein and W. J. Whelan, Structural studies of dextrans. Part I. A dextran containing ?-1, 3-glucosidic linkages, J. Chem. Soc. Resumed, vol.32, pp.170-175, 1962.

D. Gonzalez, J. Hiblot, N. Darbinian, J. C. Miller, G. Gotthard et al., Ancestral mutations as a tool for solubilizing proteins: The case of a hydrophobic phosphate-binding protein, FEBS Open Bio, vol.4, pp.121-127, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01772922

,

F. Grimaud, P. Faucard, L. Tarquis, S. Pizzut-serin, P. Roblin et al., Enzymatic synthesis of polysaccharide-based copolymers, Green Chem, vol.20, pp.4012-4022, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01889263

A. Grysman, T. Carlson, and T. M. Wolever, Effects of sucromalt on postprandial responses in human subjects, Eur. J. Clin. Nutr, vol.62, pp.1364-1371, 2008.

F. Guérin, S. Barbe, S. Pizzut-serin, G. Potocki-véronèse, D. Guieysse et al., Structural investigation of the thermostability and product specificity of amylosucrase from the bacterium Deinococcus geothermalis, J. Biol. Chem, vol.287, pp.6642-6654, 2012.

R. D. Gupta and D. S. Tawfik, Directed enzyme evolution via small and effective neutral drift libraries, Nat. Methods, vol.5, pp.939-942, 2008.

N. H-hakulinen, O. Turunen, J. Jänis, M. Leisola, and J. Rouvinen, Three-dimensional structures of thermophilic beta-1,4-xylanases from Chaetomium thermophilum and Nonomuraea flexuosa. Comparison of twelve xylanases in relation to their thermal stability, Eur. J. Biochem. FEBS, vol.270, pp.1399-1412, 2003.

M. D. Hare, S. Svensson, and G. J. Walker, Characterization of the extracellular, water-insoluble ?-D-glucans of oral Streptococci by methylation analysis, and by enzymic synthesis and degradation, Carbohydr. Res, vol.66, pp.245-264, 1978.

O. Hasselwander, R. Dicosimo, Z. You, Q. Cheng, S. C. Rothman et al., Development of dietary soluble fibres by enzymatic synthesis and assessment of their digestibility in in vitro, animal and randomised clinical trial models, Int. J. Food Sci. Nutr, vol.68, pp.849-864, 2017.

E. J. Hehre, Production from sucrose of a serologically reactive polysaccharide by a sterile bacterial extract, Science, vol.93, pp.237-238, 1941.

E. J. Hehre and J. Y. Sugg, Serologically reactive polysaccharides produced through the action of bacterial enzymes : I. Dextran of Leuconostoc mesenteroides from sucrose, J. Exp. Med, vol.75, pp.339-353, 1942.

T. Heinze, T. Liebert, B. Heublein, and S. Hornig, Functional Polymers Based on Dextran, Polysaccharides II, Advances in Polymer Science, pp.199-291, 2006.

P. Heinzelman, R. Komor, A. Kanaan, P. Romero, X. Yu et al., Efficient screening of fungal cellobiohydrolase class I enzymes for thermostabilizing sequence blocks by SCHEMA structure-guided recombination, Protein Eng. Des. Sel, vol.23, pp.871-880, 2010.

P. Heinzelman, C. D. Snow, M. A. Smith, X. Yu, A. Kanaan et al., SCHEMA recombination of a fungal cellulase uncovers a single mutation that contributes markedly to stability, J. Biol. Chem. jbc, 2009.

O. Hernandez-hernandez, G. L. Côté, S. Kolida, R. A. Rastall, and M. L. Sanz, In vitro fermentation of alternansucrase raffinose-derived oligosaccharides by human gut bacteria, J. Agric. Food Chem, vol.59, pp.10901-10906, 2011.

S. M. Holt, C. M. Miller-fosmore, and G. L. Côté, Growth of various intestinal bacteria on alternansucrase-derived oligosaccharides, Lett. Appl. Microbiol, vol.40, pp.385-390, 2005.

S. M. Holt, J. M. Teresi, and G. L. Côté, Influence of alternansucrase-derived oligosaccharides and other carbohydrates on ?-galactosidase and ?-glucosidase activity in Bifidobacterium adolescentis, Lett. Appl. Microbiol, vol.46, pp.73-79, 2008.

T. Hoshino, T. Fujiwara, and S. Kawabata, Evolution of cariogenic character in Streptococcus mutans: horizontal transmission of Glycosyl Hydrolase family 70 genes, Sci. Rep, vol.2, 2012.

P. Hotz, B. Guggenheim, and R. Schmid, Carbohydrates in pooled dental plaque, Caries Res, vol.6, pp.103-121, 1972.

J. Huang, D. Xie, and Y. Feng, Engineering thermostable (R)-selective amine transaminase from Aspergillus terreus through in silico design employing B-factor and folding free energy calculations, Biochem. Biophys. Res. Commun, vol.483, pp.397-402, 2017.

,

K. L. Hudson, G. J. Bartlett, R. C. Diehl, J. Agirre, T. Gallagher et al., Carbohydrate-Aromatic Interactions in Proteins, J. Am. Chem. Soc, vol.137, pp.15152-15160, 2015.

R. I-irague, L. Tarquis, I. André, C. Moulis, S. Morel et al., Combinatorial Engineering of Dextransucrase Specificity, PLOS ONE, vol.8, 2013.

S. L. Isenberg, A. K. Brewer, G. L. Côté, and A. M. Striegel, Hydrodynamic versus size exclusion chromatography characterization of alternan and comparison to off-line MALS, Biomacromolecules, vol.11, pp.2505-2511, 2010.

K. Ito, S. Ito, T. Shimamura, S. Weyand, Y. Kawarasaki et al., Crystal structure of glucansucrase from the dental caries pathogen Streptococcus mutans, J. Mol. Biol, vol.408, pp.177-186, 2011.

R. Jaenicke and G. Böhm, The stability of proteins in extreme environments, Curr. Opin. Struct. Biol, vol.8, pp.738-748, 1998.

S. Janec?k, How many conserved sequences regions are there in the a-amylase family?, Biologia, vol.57, pp.29-41, 2002.

S. Janec?k, ?-amylase family: Molecular biology and evolution, Prog. Biophys. Mol. Biol, vol.67, pp.15-16, 1997.

?. Jane?ek, B. Svensson, and E. A. Macgregor, ?-Amylase: an enzyme specificity found in various families of glycoside hydrolases, Cell. Mol. Life Sci, vol.71, pp.1149-1170, 2014.

S. Janec?k, B. Svensson, and R. R. Russell, Location of repeat elements in glucansucrases of Leuconostoc and Streptococcus species, FEMS Microbiol. Lett, vol.192, pp.53-57, 2000.

A. Jeanes, W. C. Haynes, C. A. Wilham, J. C. Rankin, E. H. Melvin et al., Characterization and classification of dextrans from ninety-six strains of bacteria, J. Am. Chem. Soc, vol.76, pp.5041-5052, 1954.

,

H. M. Jespersen, A. Macgregor, E. Henrissat, B. Sierks, M. R. Svensson et al., Starch-and glycogen-debranching and branching enzymes: Prediction of structural features of the catalytic (?/?)8-barrel domain and evolutionary relationship to other amylolytic enzymes, J. Protein Chem, vol.12, pp.791-805, 1993.

G. Joucla, Caractérisation de l'alternane-saccharase de Leuconostoc mesenteroides NRRL B-1355 : Approche rationnelle et aléatoire pour la conception de nouvelles glucanesaccharases (Thèse de doctorat), Institut national des sciences appliquées de Toulouse, 2003.

G. Joucla, S. Pizzut-serin, P. Monsan, and M. Remaud-siméon, Construction of a fully active truncated alternansucrase partially deleted of its carboxy-terminal domain, FEBS Lett, vol.580, pp.763-768, 2006.

W. Kabsch, XDS. Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.125-132, 2010.

H. Kang, J. Oh, and D. Kim, Molecular characterization and expression analysis of the glucansucrase DSRWC from Weissella cibaria synthesizing a ?(1?6) glucan, FEMS Microbiol. Lett, vol.292, pp.33-41, 2009.

C. Kato, Y. Nakano, M. Lis, and H. K. Kuramitsu, Molecular genetic analysis of the catalytic site of Streptococcus mutans glucosyltransferases, Biochem. Biophys. Res. Commun, vol.189, pp.1184-1188, 1992.

D. Kim and J. F. Robyt, Production, selection, and characteristics of mutants of Leuconostoc mesenteroides B-742 constitutive for dextransucrases, Enzyme Microb. Technol, vol.17, pp.689-695, 1995.

D. Kim and J. F. Robyt, Production and selection of mutants of Leuconostoc mesenteroides constitutive for glucansucrases, Enzyme Microb. Technol, vol.16, pp.659-664, 1994.

J. F. Kim, H. Jeong, J. Lee, S. Choi, M. Ha et al., Complete genome gequence of Leuconostoc citreum KM20, J. Bacteriol, vol.190, pp.3093-3094, 2008.

M. Kimura, The neutral theory of molecular evolution and the world view of the neutralists, Genome, vol.31, pp.24-31, 1989.

M. Kitaoka and J. F. Robyt, Use of a Microtiter Plate Screening Method for Obtaining Leuconostoc mesenteroides Mutants Constitutive for Glucansucrase, Enzyme Microb. Technol, vol.22, pp.527-531, 1998.

M. Kobayashi and K. Matsuda, Structural characteristics of dextrans synthesized by dextransucrases from Leuconostoc mesenteroides NRRL B-1299, Agric. Biol. Chem, vol.41, pp.1931-1937, 1977.

H. J. Koepsell, H. M. Tsuchiya, N. N. Hellman, A. Kazenko, C. A. Hoffman et al., Enzymatic Synthesis of Dextran Acceptor Specificity and Chain Initiation, J. Biol. Chem, vol.200, pp.793-801, 1953.

H. Komatsu, Y. Abe, K. Eguchi, H. Matsuno, Y. Matsuoka et al., Kinetics of dextran-independent ?-(1?3)-glucan synthesis by Streptococcus sobrinus glucosyltransferase I, FEBS J, vol.278, pp.531-540, 2011.

,

H. Komatsu, M. Katayama, M. Sawada, Y. Hirata, M. Mori et al., Thermodynamics of the Binding of the C-Terminal Repeat Domain of Streptococcus sobrinus Glucosyltransferase-I to Dextran, Biochemistry (Mosc.), vol.46, pp.8436-8444, 2007.

D. E. Koshland, Stereochemistry and the Mechanism of Enzymatic Reactions, Biol. Rev, vol.28, pp.416-436, 1953.

T. Koudelakova, R. Chaloupkova, J. Brezovsky, Z. Prokop, E. Sebestova et al., Engineering Enzyme Stability and Resistance to an Organic Cosolvent by Modification of Residues in the Access Tunnel, Angew. Chem. Int. Ed, vol.52, pp.1959-1963, 2013.

S. Kralj, W. Eeuwema, T. H. Eckhardt, and L. Dijkhuizen, Role of asparagine 1134 in glucosidic bond and transglycosylation specificity of reuteransucrase from Lactobacillus reuteri 121, FEBS J, vol.273, pp.3735-3742, 2006.

S. Kralj, P. Grijpstra, S. S. Van-leeuwen, H. Leemhuis, J. M. Dobruchowska et al., 4,6-?-Glucanotransferase, a Novel Enzyme That Structurally and Functionally Provides an Evolutionary Link between Glycoside Hydrolase Enzyme Families 13 and 70?, Appl. Environ. Microbiol, vol.77, pp.8154-8163, 2011.

S. Kralj, S. S. Leeuwen, . Van, V. Valk, W. Eeuwema et al., Hybrid reuteransucrase enzymes reveal regions important for glucosidic linkage specificity and the transglucosylation/hydrolysis ratio, FEBS J, vol.275, pp.6002-6010, 2008.

S. Kralj, E. Stripling, P. Sanders, G. H. Geel-schutten, and L. Van,-dijkhuizen, Highly Hydrolytic Reuteransucrase from Probiotic Lactobacillus reuteri Strain ATCC 55730, Appl Env. Microbiol, vol.71, pp.3942-3950, 2005.

S. Kralj, G. H. Van-geel-schutten, M. M. Dondorff, S. Kirsanovs, M. J. Van-der-maarel et al., Glucan synthesis in the genus Lactobacillus: isolation and characterization of glucansucrase genes, enzymes and glucan products from six different strains, Microbiology, vol.150, pp.3681-3690, 2004.

S. Kralj, G. H. Van-geel-schutten, M. J. Van-der-maarel, and L. Dijkhuizen, Biochemical and molecular characterization of Lactobacillus reuteri 121 reuteransucrase, Microbiology, vol.150, pp.2099-2112, 2004.

S. Kralj, I. G. Van-geel-schutten, E. J. Faber, M. J. Van-der-maarel, and L. Dijkhuizen, Rational Transformation of Lactobacillus reuteri 121 Reuteransucrase into a Dextransucrase, Biochemistry (Mosc.), vol.44, pp.9206-9216, 2005.

S. Kumar, C. J. Tsai, and R. Nussinov, Factors enhancing protein thermostability, Protein Eng, vol.13, pp.179-191, 2000.

J. Kyte and R. F. Doolittle, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol, vol.157, pp.105-132, 1982.

S. Laguerre, M. Amari, M. Vuillemin, H. Robert, V. Loux et al., Genome sequences of three Leuconostoc citreum strains, LBAE C10, LBAE C11, and LBAE E16, isolated from wheat sourdoughs, J. Bacteriol, vol.194, pp.1610-1611, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01267778

T. D. Leathers, T. D. Leathers, J. A. Ahlgren, and G. L. Cote, Alternansucrase mutants of Leuconostoc mesenteroides strain NRRL B-21138, Dextran. Polysacch. Polyam. Food Ind. Prop. Prod. Pat, vol.1, pp.278-283, 1997.

,

T. D. Leathers, G. T. Hayman, and G. L. Cote, Rapid screening of Leuconostoc mesenteroides mutants for elevated proportions of alternan to dextran, Curr. Microbiol, vol.31, pp.19-22, 1995.

T. D. Leathers, M. S. Nunnally, and G. L. Côté, Modification of alternan by dextranase, Biotechnol. Lett, vol.31, pp.289-293, 2009.

T. D. Leathers, M. S. Nunnally, and G. L. Côté, Modification of alternan by novel Penicillium spp, J. Ind. Microbiol. Biotechnol, vol.29, pp.177-180, 2002.

H. Leemhuis, T. Pijning, J. M. Dobruchowska, S. S. Leeuwen, . Van et al., Glucansucrases: Three-dimensional structures, reactions, mechanism, ?-glucan analysis and their implications in biotechnology and food applications, J. Biotechnol, vol.250, 2013.

M. Li, H. Zhang, Y. Li, X. Hu, and J. Yang, The thermoduric effects of site-directed mutagenesis of proline and lysine on dextransucrase from Leuconostoc mesenteroides 0326, Int. J. Biol. Macromol, vol.107, pp.1641-1649, 2018.

Y. Li, D. A. Drummond, A. M. Sawayama, C. D. Snow, J. D. Bloom et al., A diverse family of thermostable cytochrome P450s created by recombination of stabilizing fragments, Nat. Biotechnol, vol.25, pp.1051-1056, 2007.

R. Linding, L. J. Jensen, F. Diella, P. Bork, T. J. Gibson et al., Protein disorder prediction: implications for structural proteomics, Struct. Lond. Engl, vol.11, pp.1453-1459, 1993.

W. J. Loesche, Dental Caries: A Treatable Infection, 1993.

V. Lombard, H. Golaconda-ramulu, E. Drula, P. M. Coutinho, and B. Henrissat, The carbohydrateactive enzymes database (CAZy) in 2013, Nucleic Acids Res, vol.42, pp.490-495, 2014.

A. López-munguía, V. Pelenc, M. Remaud-siméon, J. Biton, J. M. Michel et al., Production and purification of alternansucrase, a glucosyltransferase from Leuconostoc mesenteroides NRRL B-1355, for the synthesis of oligoalternans, Enzyme Microb. Technol, vol.15, pp.77-85, 1993.

A. López-munguía, V. Pelenc, M. Remaud-siméon, F. Paul, P. Monsan et al., Production and purification of Leuconostoc mesenteroides NRRL B-1355 alternansucrase, Ann. N. Y. Acad. Sci, vol.613, pp.717-722, 1990.

G. A. Luzio and R. M. Mayer, The hydrolysis of sucrose by dextransucrase, Carbohydr. Res, vol.111, issue.83, pp.88315-88318, 1983.

K. M. Lynch, A. Coffey, and E. K. Arendt, Exopolysaccharide producing lactic acid bacteria: Their techno-functional role and potential application in gluten-free bread products, GF2016 -4th International Symposium on Gluten-Free food and beverages 110, pp.52-61, 2018.

E. A. Macgregor, H. M. Jespersen, and B. Svensson, A circularly permuted ?-amylase-type ?/?barrel structure in glucan-synthesizing glucosyltransferases, FEBS Lett, vol.378, pp.263-266, 1996.

Y. Malbert, C. Moulis, Y. Brison, S. Morel, I. André et al., Engineering a branching sucrase for flavonoid glucoside diversification, Sci. Rep, vol.8, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01952108

X. Meng, J. M. Dobruchowska, G. J. Gerwig, J. P. Kamerling, and L. Dijkhuizen, Synthesis of oligoand polysaccharides by Lactobacillus reuteri 121 reuteransucrase at high concentrations of sucrose, Carbohydr. Res, vol.414, pp.85-92, 2015.

X. Meng, J. M. Dobruchowska, T. Pijning, G. J. Gerwig, and L. Dijkhuizen, Synthesis of new hyperbranched ?-glucans from sucrose by Lactobacillus reuteri 180 glucansucrase mutants, J. Agric. Food Chem, 2016.

X. Meng, J. M. Dobruchowska, T. Pijning, C. A. López, J. P. Kamerling et al., Residue Leu940 has a crucial role in the linkage and reaction specificity of the glucansucrase GTF180 of the probiotic bacterium Lactobacillus reuteri 180, J. Biol. Chem, vol.289, pp.32773-32782, 2014.

X. Meng, J. Gangoiti, Y. Bai, T. Pijning, S. S. Van-leeuwen et al., Structure-function relationships of family GH70 glucansucrase and 4,6-?-glucanotransferase enzymes, and their evolutionary relationships with family GH13 enzymes, Cell. Mol. Life Sci. CMLS, vol.73, pp.2681-2706, 2016.

X. Meng, J. Gangoiti, X. Wang, P. Grijpstra, S. S. Van-leeuwen et al., Biochemical characterization of a GH70 protein from Lactobacillus kunkeei DSM 12361 with two catalytic domains involving branching sucrase activity, Appl. Microbiol. Biotechnol, 2018.

X. Meng, T. Pijning, J. M. Dobruchowska, G. J. Gerwig, and L. Dijkhuizen, Characterization of the functional roles of amino acid residues in acceptor binding subsite +1 in the active site of the glucansucrase GTF180 enzyme of Lactobacillus reuteri 180, J. Biol. Chem, 2015.

X. Meng, T. Pijning, J. M. Dobruchowska, H. Yin, G. J. Gerwig et al., Structural determinants of alternating ?(1?4) and ?(1?6) linkage specificity in reuteransucrase of Lactobacillus reuteri, Sci. Rep, vol.6, p.35261, 2016.

X. Meng, T. Pijning, M. Tietema, J. M. Dobruchowska, H. Yin et al., Characterization of the glucansucrase GTF180 W1065 mutant enzymes producing polysaccharides and oligosaccharides with altered linkage composition, Food Chem, vol.217, pp.81-90, 2017.

G. L. Miller, Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar, Anal. Chem, vol.31, pp.426-428, 1959.

A. Misaki, M. Torii, T. Sawai, and I. J. Goldstein, Structure of the dextran of Leuconostoc mesenteroides B-1355, Carbohydr. Res, vol.84, issue.00, pp.85557-85560, 1980.

K. Miyazaki, P. L. Wintrode, R. A. Grayling, D. N. Rubingh, and F. H. Arnold, Directed evolution study of temperature adaptation in a psychrophilic enzyme, J. Mol. Biol, vol.297, pp.1015-1026, 2000.

N. Mizutani, M. Yamada, K. Takayama, and M. Shoda, Constitutive mutants for dextransucrase from Leuconostoc mesenteroides NRRL B-512F, J. Ferment. Bioeng, vol.77, pp.248-251, 1994.

M. Molina, C. Moulis, N. Monties, S. Pizzut-serin, D. Guieysse et al., Deciphering an undecided enzyme: investigations of the structural determinants involved in the linkage specificity of alternansucrase, ACS Catal, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02177343

V. Monchois, M. Arguello-morales, and R. R. Russell, Isolation of an Active Catalytic Core of Streptococcus downei MFe28 GTF-I Glucosyltransferase, J. Bacteriol, vol.181, pp.2290-2292, 1999.

V. Monchois, M. Remaud-siméon, P. Monsan, and R. Willemot, Cloning and sequencing of a gene coding for an extracellular dextransucrase (DSRB) from Leuconostoc mesenteroides NRRL B-1299 synthesizing only a ?(1-6) glucan, FEMS Microbiol. Lett, vol.159, pp.307-315, 1998.

V. Monchois, M. Remaud-siméon, R. R. Russell, P. Monsan, and R. Willemot, Characterization of Leuconostoc mesenteroides NRRL B-512F dextransucrase (DSRS) and identification of amino-acid residues playing a key role in enzyme activity, Appl. Microbiol. Biotechnol, vol.48, pp.465-472, 1997.

V. Monchois, M. Vignon, P. Escalier, B. Svensson, and R. R. Russell, Involvement of Gln937 of Streptococcus downei GTF-I glucansucrase in transition-state stabilization, Eur. J. Biochem, vol.267, pp.4127-4136, 2000.

V. Monchois, M. Vignon, and R. R. Russell, Mutagenesis of Asp-569 of glucosyltransferase I glucansucrase modulates glucan and oligosaccharide synthesis, Appl. Environ. Microbiol, vol.66, pp.1923-1927, 2000.

V. Monchois, R. M. Willemot, and P. Monsan, Glucansucrases: mechanism of action and structure-function relationships, FEMS Microbiol. Rev, vol.23, pp.131-151, 1999.

P. Monsan, S. Bozonnet, C. Albenne, G. Joucla, R. Willemot et al., Homopolysaccharides from lactic acid bacteria, First International Symposium on Exopolysaccharides from Lactic A cid Bacteria: from Fundamentals to Applications, vol.11, pp.113-116, 2001.

P. Monsan and A. Lopez, On the production of dextran by free and immobilized dextransucrase, Biotechnol. Bioeng, vol.23, pp.2027-2037, 1981.

P. Monsan, F. Paul, and D. Auriol, New Developments in the Application of Enzymes to Synthesis Reactions Peptides and Oligosaccharides, pp.357-363, 1995.

P. Monsan, M. Remaud-siméon, and I. André, Transglucosidases as efficient tools for oligosaccharide and glucoconjugate synthesis, Curr. Opin. Microbiol, vol.13, pp.293-300, 2010.

J. C. Moore and F. H. Arnold, Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents, Nat. Biotechnol, vol.14, pp.458-467, 1996.

G. Mooser, S. A. Hefta, R. J. Paxton, J. E. Shively, and T. D. Lee, Isolation and sequence of an activesite peptide containing a catalytic aspartic acid from two Streptococcus sobrinus alphaglucosyltransferases, J. Biol. Chem, vol.266, pp.8916-8922, 1991.

G. Mooser and K. R. Iwaoka, Sucrose 6-alpha-D-glucosyltransferase from Streptococcus sobrinus: characterization of a glucosyl-enzyme complex, Biochemistry (Mosc.), vol.28, pp.443-449, 1989.

S. Morel, I. Andre, Y. Brison, E. Cambon, Y. Malbert et al., Novel flavonoids o-a-glucosylated on the B cycle, method for the production thereof and uses, 2017.

M. Moscovici, Present and future medical applications of microbial exopolysaccharides, Front. Microbiol, vol.6, p.1012, 2015.

C. Moulis, I. André, and M. Remaud-siméon, GH13 amylosucrases and GH70 branching sucrases, atypical enzymes in their respective families, Cell. Mol. Life Sci. CMLS, vol.73, pp.2661-2679, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01886401

C. Moulis, G. Joucla, D. Harrison, E. Fabre, G. Potocki-veronese et al., Understanding the polymerization mechanism of glycoside-hydrolase family 70 glucansucrases, J. Biol. Chem, vol.281, pp.31254-31267, 2006.

G. N. Murshudov, P. Skubák, A. A. Lebedev, N. S. Pannu, R. A. Steiner et al., REFMAC5 for the refinement of macromolecular crystal structures, Acta Crystallogr. D Biol. Crystallogr, vol.67, pp.355-367, 2011.

,

A. Musa, M. Miao, T. Zhang, and B. Jiang, Biotransformation of stevioside by Leuconostoc citreum SK24.002 alternansucrase acceptor reaction, Food Chem, vol.146, pp.23-29, 2014.

,

M. Naessens, A. Cerdobbel, W. Soetaert, and E. J. Vandamme, Leuconostoc dextransucrase and dextran: production, properties and applications, J. Chem. Technol. Biotechnol, vol.80, pp.845-860, 2005.

A. D. Nagi and L. Regan, An inverse correlation between loop length and stability in a four-helixbundle protein, Fold. Des, vol.2, pp.7-9, 1997.

E. Newbrun, C. I. Hoover, and G. J. Walker, Inhibition by acarbose, nojirimycin and 1-deoxynojirimycin of glucosyltransferase produced by oral Streptococci, Arch. Oral Biol, vol.28, pp.531-536, 1983.

H. Nielsen and A. Krogh, Prediction of signal peptides and signal anchors by a hidden Markov model, Proc. Int. Conf. Intell. Syst. Mol. Biol, vol.6, pp.122-130, 1998.

A. K. Nivedha, D. F. Thieker, S. Makeneni, H. Hu, and R. J. Woods, Vina-Carb: Improving Glycosidic Angles during Carbohydrate Docking, J. Chem. Theory Comput, vol.12, pp.892-901, 2016.

O. Olivares-illana, V. López-munguía, A. Olvera, and C. , Molecular characterization of inulosucrase from Leuconostoc citreum: a fructosyltransferase within a glucosyltransferase, J. Bacteriol, vol.185, pp.3606-3612, 2003.

M. I. Osorio, M. A. Zúñiga, F. Mendoza, G. A. Jaña, and V. A. Jiménez, Modulation of glucanenzyme interactions by domain V in GTF-SI from Streptococcus mutans, Proteins Struct. Funct. Bioinforma, vol.87, pp.74-80, 2019.

M. S. Packer and D. R. Liu, Methods for the directed evolution of proteins, Nat. Rev. Genet, vol.16, pp.379-394, 2015.

R. Palframan, G. R. Gibson, and R. A. Rastall, Development of a quantitative tool for the comparison of the prebiotic effect of dietary oligosaccharides, Lett. Appl. Microbiol, vol.37, pp.281-284, 2003.

D. Passerini, M. Vuillemin, S. Laguerre, M. Amari, V. Loux et al., Complete Genome Sequence of Leuconostoc citreum Strain NRRL B-742, Genome Announc, vol.2, 2014.

D. Passerini, M. Vuillemin, L. Ufarté, S. Morel, V. Loux et al., Inventory of the GH70 enzymes encoded by Leuconostoc citreum NRRL B-1299 -identification of three novel ?-transglucosylases, FEBS J, vol.282, pp.2115-2130, 2015.

J. L. Paullin, A. M. Perticone, R. B. Kasat, and T. J. Dennes, Preparation of poly alpha-1,3-glucan ethers, 2014.

J. Pei and N. V. Grishin, PROMALS3D: multiple protein sequence alignment enhanced with evolutionary and three-dimensional structural information, Methods Mol. Biol. Clifton NJ, vol.1079, pp.263-271, 2014.

T. N. Petersen, S. Brunak, G. Heijne, and H. Nielsen, SignalP 4.0: discriminating signal peptides from transmembrane regions, Nat. Methods, vol.8, pp.785-786, 2011.

,

T. Pijning, A. Vuji?i?-?agar, S. Kralj, L. Dijkhuizen, and B. W. Dijkstra, Flexibility of truncated and full-length glucansucrase GTF180 enzymes from Lactobacillus reuteri 180, FEBS J, vol.281, pp.2159-2171, 2014.

T. Pijning, A. Vuji?i?-?agar, S. Kralj, L. Dijkhuizen, and B. W. Dijkstra, Structure of the ?-1,6/?-1,4-specific glucansucrase GTFA from Lactobacillus reuteri 121, Acta Crystallograph. Sect. F Struct. Biol. Cryst. Commun, vol.68, pp.1448-1454, 2012.

D. Piovesan, G. Minervini, and S. C. Tosatto, The RING 2.0 web server for high quality residue interaction networks, Nucleic Acids Res, vol.44, pp.367-374, 2016.

O. Prakash and N. Jaiswal, alpha-Amylase: an ideal representative of thermostable enzymes, Appl. Biochem. Biotechnol, vol.160, pp.2401-2414, 2010.

J. H. Prestegard, J. Liu, G. Widmalm, A. Varki, R. D. Cummings et al., Oligosaccharides and Polysaccharides, Essentials of Glycobiology, 2015.

M. J. Pucci, K. R. Jones, H. K. Kuramitsu, and F. L. Macrina, Molecular cloning and characterization of the glucosyltransferase C gene (gtfC) from Streptococcus mutansLM7, Infect. Immun, vol.55, pp.2176-2182, 1987.

M. T. Reetz, J. D. Carballeira, and A. Vogel, Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability, Angew. Chem. Int. Ed, vol.45, pp.7745-7751, 2006.

M. T. Reetz, P. Soni, L. Fernández, Y. Gumulya, and J. D. Carballeira, Increasing the stability of an enzyme toward hostile organic solvents by directed evolution based on iterative saturation mutagenesis using the B-FIT method, Chem. Commun, vol.46, pp.8657-8658, 2010.

M. Remaud-siméon, R. Willemot, P. Sarçabal, G. Potocki-de-montalk, and P. Monsan, Glucansucrases: molecular engineering and oligosaccharide synthesis, J. Mol. Catal. B Enzym, vol.10, pp.119-122, 2000.

G. Richard, S. Morel, R. Willemot, P. Monsan, and M. Remaud-siméon, Glucosylation of ?butyl-and ?-octyl-D-glucopyranosides by dextransucrase and alternansucrase from Leuconostoc mesenteroides, Carbohydr. Res, vol.338, issue.03, pp.70-73, 2003.

H. Robert, V. Gabriel, and C. Fontagné-faucher, Biodiversity of lactic acid bacteria in French wheat sourdough as determined by molecular characterization using species-specific PCR, Int. J. Food Microbiol, vol.135, pp.53-59, 2009.

X. Robert and P. Gouet, Deciphering key features in protein structures with the new ENDscript server, Nucleic Acids Res, vol.42, pp.320-324, 2014.

C. Roca, V. D. Alves, F. Freitas, and M. A. Reis, Exopolysaccharides enriched in rare sugars: bacterial sources, production, and applications, Front. Microbiol, vol.6, 2015.

M. L. Sanz, G. L. Côté, G. R. Gibson, and R. A. Rastall, Selective fermentation of gentiobiose-derived oligosaccharides by human gut bacteria and influence of molecular weight, FEMS Microbiol. Ecol, vol.56, pp.383-388, 2006.

M. L. Sanz, G. L. Côté, G. R. Gibson, and R. A. Rastall, Prebiotic properties of alternansucrase maltose-acceptor oligosaccharides, J. Agric. Food Chem, vol.53, pp.5911-5916, 2005.

M. L. Sanz, G. R. Gibson, and R. A. Rastall, Influence of disaccharide structure on prebiotic selectivity in vitro, J. Agric. Food Chem, vol.53, pp.5192-5199, 2005.

S. R. Sarbini, S. Kolida, T. Naeye, A. Einerhand, Y. Brison et al., In vitro fermentation of linear and ?-1,2-branched dextrans by the human fecal microbiota, Appl Env. Microbiol, vol.77, pp.5307-5315, 2011.

,

S. R. Sarbini, S. Kolida, T. Naeye, A. W. Einerhand, G. R. Gibson et al., The prebiotic effect of ?-1,2 branched, low molecular weight dextran in the batch and continuous faecal fermentation system, J. Funct. Foods, vol.5, pp.1938-1946, 2013.

S. Sato, T. Koga, and M. Inoue, Isolation and some properties of extracellular Dglucosyltransferases and D-fructosyltransferases from Streptococcus mutans serotypes c, e, and f, Carbohydr. Res, vol.134, pp.293-304, 1984.

T. Sawai, T. Tohyama, and T. Natsume, Hydrolysis of fourteen native dextrans by Arthrobacter isomaltodextranase and correlation with dextran structure, Carbohydr. Res, vol.66, pp.195-205, 1978.

T. A. Scott, N. N. Hellman, and F. R. Senti, Characterization of dextrans by the optical rotation of their cuprammonium complexes, J. Am. Chem. Soc, vol.79, pp.1178-1182, 1957.

,

D. Semyonov, O. Ramon, Y. Shoham, and E. Shimoni, Enzymatically synthesized dextran nanoparticles and their use as carriers for nutraceuticals, Food Funct, vol.5, pp.2463-2474, 2014.

F. R. Seymour, R. D. Knapp, and S. H. Bishop, Correlation of the structure of dextrans to their, M.R. Spectra. Carbohydr. Res, vol.74, pp.84766-84773, 1979.

F. R. Seymour, R. D. Knapp, and S. H. Bishop, Determination of the structure of dextran by 13C-nuclear magnetic resonance spectroscopy, Carbohydr. Res, vol.51, pp.179-194, 1976.

F. R. Seymour, R. D. Knapp, E. C. Chen, S. H. Bishop, and A. Jeanes, Structural analysis of Leuconostoc dextrans containing 3-O-?-D-glucosylated ?-D-glucosyl residues in both linearchain and branch-point positions, or only in branch-point positions, Carbohydr. Res, vol.74, issue.00, pp.84764-84767, 1979.

F. R. Seymour, M. E. Slodki, R. D. Plattner, and A. Jeanes, Six unusual dextrans: methylation structural analysis by combined g.l.c.-m.s. of per-O-acetyl-aldononitriles, Carbohydr. Res, vol.53, pp.153-166, 1977.

D. S. Shah, G. Joucla, M. Remaud-siméon, and R. R. Russell, Conserved repeat motifs and glucan binding by glucansucrases of oral Streptococci and Leuconostoc mesenteroides, J. Bacteriol, vol.186, pp.8301-8308, 2004.

A. Shimamura, Y. J. Nakano, H. Mukasa, and H. K. Kuramitsu, Identification of amino acid residues in Streptococcus mutans glucosyltransferases influencing the structure of the glucan product, J. Bacteriol, vol.176, pp.4845-4850, 1994.

T. Shiroza, S. Ueda, and H. K. Kuramitsu, Sequence analysis of the gtfB gene from Streptococcus mutans, J. Bacteriol, vol.169, pp.4263-4270, 1987.

R. L. Sidebotham, Dextrans, Advances in Carbohydrate Chemistry and Biochemistry, pp.60268-60269, 1974.

J. S. Singh, K. G. Taylor, and R. J. Doyle, Essential amino acids involved in glucan-dependent aggregation of Streptococcus sobrinus, Carbohydr. Res, vol.244, pp.137-147, 1993.

-. Smith, M. R. Zahnley, J. Goodman, and N. , Glucosyltransferase mutants of Leuconostoc mesenteroides NRRL B-1355, Appl. Environ. Microbiol, vol.60, pp.2723-2731, 1994.

M. R. Smith, J. C. Zahnley, R. Y. Wong, R. E. Lundin, and J. A. Ahlgren, A mutant strain of Leuconostoc mesenteroides B-1355 producing a glucosyltransferase synthesizing ?(1?2) glucosidic linkages, J. Ind. Microbiol. Biotechnol, vol.21, pp.37-45, 1998.

,

W. S. Smith, J. R. Hale, and C. Neylon, Applying neutral drift to the directed molecular evolution of a ?-glucuronidase into a ?-galactosidase: Two different evolutionary pathways lead to the same variant, BMC Res. Notes, vol.4, 2011.

W. Soetaert, D. Schwengers, K. Buchholz, and E. J. Vandamme, A wide range of carbohydrate modifications by a single micro-organism: Leuconostoc mesenteroides, Progress in Biotechnology, Carbohydrate Bioengineering, pp.351-358, 1995.

K. Steiner and H. Schwab, Recent advances in rational approaches for enzyme engineering, Comput. Struct. Biotechnol. J, vol.2, 2012.

W. P. Stemmer, Rapid evolution of a protein in vitro by DNA shuffling, Nature, vol.370, pp.389-391, 1994.

F. W. Studier, Protein production by auto-induction in high density shaking cultures, Protein Expr. Purif, vol.41, pp.207-234, 2005.

S. Kumar, A. Mody, K. Jha, and B. , Bacterial exopolysaccharides -a perception, J. Basic Microbiol, vol.47, pp.103-117, 2007.

S. Suwannarangsee, C. Moulis, G. Potocki-veronese, P. Monsan, M. Remaud-siméon et al., Search for a dextransucrase minimal motif involved in dextran binding, FEBS Lett, vol.581, pp.4675-4680, 2007.

A. M. Swistowska, S. Gronert, S. Wittrock, W. Collisi, H. Hecht et al., Identification of structural determinants for substrate binding and turnover by glucosyltransferase R supports the permutation hypothesis, FEBS Lett, vol.581, pp.4036-4042, 2007.

,

M. Torii and K. Sakakibara, Column chromatographic separation and quantitation of ?-linked glucose oligosaccharides, J. Chromatogr. A, vol.96, issue.00, pp.98572-98580, 1974.

D. L. Trudeau, M. Kaltenbach, and D. S. Tawfik, On the potential origins of the high stability of reconstructed ancestral proteins, Mol. Biol. Evol, vol.33, pp.2633-2641, 2016.

,

H. Tsumori, T. Minami, and H. K. Kuramitsu, Identification of essential amino acids in the Streptococcus mutans glucosyltransferases, J. Bacteriol, vol.179, pp.3391-3396, 1997.

,

J. C. Uitdehaag, B. A. Van-der-veen, L. Dijkhuizen, and B. W. Dijkstra, Catalytic mechanism and product specificity of cyclodextrin glycosyltransferase, a prototypical transglycosylase from the ?-amylase family, Enzyme Microb. Technol., Third International Symposium on Industrial Proteins, vol.30, pp.498-505, 2002.

V. ,

P. Valette, V. Pelenc, Z. Djouzi, C. Andrieux, F. Paul et al., Bioavailability of new synthesised glucooligosaccharides in the intestinal tract of gnotobiotic rats, J. Sci. Food Agric, vol.62, pp.121-127, 1993.

S. A. Van-hijum, . Van, S. Kralj, L. K. Ozimek, L. Dijkhuizen et al., Structure-function relationships of glucansucrase and fructansucrase enzymes from Lactic Acid Bacteria, Microbiol Mol Biol Rev, vol.70, pp.157-176, 2006.

S. S. Van-leeuwen, S. Kralj, W. Eeuwema, G. J. Gerwig, L. Dijkhuizen et al., Structural characterization of bioengineered ?-D-glucans produced by mutant glucansucrase GTF180 enzymes of Lactobacillus reuteri strain 180, Biomacromolecules, vol.10, pp.580-588, 2009.

K. Vanschoonbeek, M. Lansink, K. M. Van-laere, J. M. Senden, L. B. Verdijk et al., Slowly digestible carbohydrate sources can be used to attenuate the postprandial glycemic response to the ingestion of diabetes-specific enteral formulas, Diabetes Educ, vol.35, pp.631-640, 2009.

E. Vazquez-figueroa, V. Yeh, J. M. Broering, J. F. Chaparro-riggers, and A. S. Bommarius, Thermostable variants constructed via the structure-guided consensus method also show increased stability in salts solutions and homogeneous aqueous-organic media, Protein Eng. Des. Sel, vol.21, pp.673-680, 2008.

M. H. Vettori, K. Blanco, M. Cortezi, C. De-lima, and J. Contiero, Dextran: effect of process parameters on production, purification and molecular weight and recent applications, pp.171-186, 2012.

G. Vriend, WHAT IF: A molecular modeling and drug design program, J. Mol. Graph, vol.8, pp.52-56, 1990.

M. Vuillemin, M. Claverie, Y. Brison, E. Séverac, P. Bondy et al., Characterization of the First ?-(1?3) Branching Sucrases of the GH70 Family, J. Biol. Chem, vol.291, pp.7687-7702, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01601907

M. Vuillemin, F. Grimaud, M. Claverie, A. Rolland-sabaté, C. Garnier et al., A dextran with unique rheological properties produced by the dextransucrase from Oenococcus kitaharae DSM 17330, Carbohydr. Polym, vol.179, pp.10-18, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01886437

M. Vuillemin, Y. Malbert, S. Laguerre, M. Remaud-siméon, and C. Moulis, Optimizing the production of an ?-(1?2) branching sucrase in Escherichia coli using statistical design, Appl. Microbiol. Biotechnol, vol.98, pp.5173-5184, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01268758

A. Vuji?i?-?agar, T. Pijning, S. Kralj, C. A. López, W. Eeuwema et al., Crystal structure of a 117 kDa glucansucrase fragment provides insight into evolution and product specificity of GH70 enzymes, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.21406-21411, 2010.

C. Wang, H. Zhang, M. Li, X. Hu, and Y. Li, Functional analysis of truncated and sitedirected mutagenesis dextransucrases to produce different type dextrans, Enzyme Microb. Technol, vol.102, pp.26-34, 2017.

Y. Wang, M. G. Gänzle, and C. Schwab, Exopolysaccharide synthesized by Lactobacillus reuteri decreases the ability of enterotoxigenic Escherichia coli to bind to porcine erythrocytes, Appl Env. Microbiol, vol.76, pp.4863-4866, 2010.

K. Wangpaiboon, P. Padungros, S. Nakapong, T. Charoenwongpaiboon, M. Rejzek et al., An ?-1,6-and ?-1,3-linked glucan produced by Leuconostoc citreum ABK-1 alternansucrase with nanoparticle and film-forming properties, Sci. Rep, vol.8, 2018.

K. Wangpaiboon, C. Pitakchatwong, P. Panpetch, T. Charoenwongpaiboon, R. A. Field et al., Modified properties of alternan polymers arising from deletion of SH3-like motifs in Leuconostoc citreum ABK-1 alternansucrase, Carbohydr. Polym, vol.220, pp.103-109, 2019.

L. C. Wheeler, S. A. Lim, S. Marqusee, and M. J. Harms, The thermostability and specificity of ancient proteins, Curr. Opin. Struct. Biol, vol.38, pp.37-43, 2016.

,

H. J. Wijma, R. J. Floor, and D. B. Janssen, Structure-and sequence-analysis inspired engineering of proteins for enhanced thermostability, Curr. Opin. Struct. Biol, vol.23, pp.588-594, 2013.

H. J. Wijma, R. J. Floor, P. A. Jekel, D. Baker, S. J. Marrink et al., Computationally designed libraries for rapid enzyme stabilization, Protein Eng. Des. Sel, vol.27, pp.49-58, 2014.

C. A. Wilham, B. H. Alexander, and A. Jeanes, Heterogeneity in dextran preparations, Arch. Biochem. Biophys, vol.59, pp.61-75, 1955.

M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley et al., Overview of the CCP4 suite and current developments, Acta Crystallogr. D Biol. Crystallogr, vol.67, pp.235-242, 2011.

S. Withers and S. Williams, Glycoside hydrolases. CAZypedia, 2007.

S. Wittrock, A. M. Swistowska, W. Collisi, B. Hofmann, H. Hecht et al., Re-or displacement of invariant residues in the C-terminal half of the catalytic domain strongly affects catalysis by glucosyltransferase R, FEBS Lett, vol.582, pp.491-496, 2008.

,

C. Wong, S. A. Hefta, R. J. Paxton, J. E. Shively, and G. Mooser, Size and subdomain architecture of the glucan-binding domain of sucrose:3-?-D-glucosyltransferase from Streptococcus sobrinus, Infect. Immun, vol.58, pp.2165-2170, 1990.

B. W. Wren, R. R. Russell, and S. Tabaqchali, Antigenic cross-reactivity and functional inhibition by antibodies to Clostridium difficile toxin A, Streptococcus mutans glucan-binding protein, and a synthetic peptide, Infect. Immun, vol.59, pp.3151-3155, 1991.

B. Wu, H. J. Wijma, L. Song, H. J. Rozeboom, C. Poloni et al., Versatile peptide C-terminal functionalization via a computationally engineered peptide amidase, ACS Catal, vol.6, pp.5405-5414, 2016.

M. Yan, B. Wang, X. Xu, P. Chang, F. Hang et al., Molecular and functional study of a branching sucrase-like glucansucrase reveals an evolutionary intermediate between two subfamilies of the GH70 enzymes, Appl. Environ. Microbiol, vol.84, 2018.

Z. R. Yang, R. Thomson, P. Mcneil, and R. M. Esnouf, RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins, Bioinformatics, vol.21, pp.3369-3376, 2005.

L. You and F. H. Arnold, Directed evolution of subtilisin E in Bacillus subtilis to enhance total activity in aqueous dimethylformamide, Protein Eng. Des. Sel, vol.9, pp.77-83, 1996.

C. Zeymer and D. Hilvert, Directed evolution of protein catalysts, Annu. Rev. Biochem, vol.87, pp.131-157, 2018.

J. Zhang, Y. Lin, Y. Sun, Y. Ye, S. Zheng et al., High-throughput screening of B factor saturation mutated Rhizomucor miehei lipase thermostability based on synthetic reaction, Enzyme Microb. Technol, vol.50, pp.325-330, 2012.

J. Zhang, G. Dawes, and W. P. Stemmer, Directed evolution of a fucosidase from a galactosidase by DNA shuffling and screening, Proc. Natl. Acad. Sci, vol.94, pp.4504-4509, 1997.

X. Zhang, G. Yang, Y. Zhang, Y. Xie, S. G. Withers et al., A general and efficient strategy for generating the stable enzymes, Sci. Rep, vol.6, 2016.

, ASR: Alternansucrase BRS: Branching sucrase CAZy: Carbohydrate-active enzymes CW: Cell wall DNS: dinitrosalicylic acid DP: Degree of Polymerization DSR: dextransucrase GBD: Glucan Binding Domain GH: Glycoside Hydrolase GS: Glucansucrase GT: glucanotransferase GTF: glucosyltransferase HPAEC-PAD: High pressure anion exchange chromatography with pulsed amperometric detection HPLC: High pressure liquid chromatography HPSEC: High pressure size exclusion chromatography HMM: High molar mass, vol.2

, IPTG: Isopropyl ?-D-1-thiogalactopyranoside kDa: kilo dalton LAB: Lactic acid bacteria LB: Lysogeny Broth LMM: Low molar mass L.: Lactobacillus Ln.: Leuconostoc NMR: Nuclear Magnetic Resonance OA: Oligoalternan OD: Oligodextran / Optical density PEG: Polyethylene glycol PCR: Polymerase Chain Reaction PDB: Protein Data Bank SBS-A1: Sugar Binding Site A1

. Sds-page,