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Résumé
Le contrôle des émetteurs quantiques (atomes, molécules, quantum dots, etc.) et des in-
teractions lumière-matière est une perspective majeure pour l’implémentation des systèmes
tout-optiques et du traitement de l’information à l’échelle quantique. En général, ceci néces-
site un régime de couplage fort entre les émetteurs et les modes photoniques, comme cela peut
être réalisé avec une cavité optique à haut facteur de qualité, afin de contrôler efficacement
la dynamique par le biais de l’électrodynamique en cavité (cQED).
L’intégration des principes de l’optique quantique à l’échelle nanométrique, via la plasmonique,
a été envisagée sur l’hypothèse d’un régime de couplage fort entre des émetteurs quantiques
et des plasmons-polaritons de surface (SPPs), dont le volume modal confiné transcende la
limite de diffraction. De récents progrès ont montré la possibilité d’un tel régime de couplage
fort, permettant le développement de la plasmonique quantique, où les plasmons-polaritons
jouent le rôle de modes de cavité. Cependant, les applications de la plasmonique quantique
apparaissent limitées en pratique à cause de la présence intrinsèque de nombreux modes dis-
sipatifs, ce qui complique la description et l’interprétation de l’interaction et introduit une
forte décohérence dans le système, en particulier dans le cas du couplage fort.
Ce travail présente une vue d’ensemble détaillée des concepts du contrôle quantique appliqués
à plusieurs systèmes : pièges à ions, cavités optiques et plasmons-polaritons de surface. La
première partie du manuscrit correspond à l’étude de processus adiabatiques dans le cas des
pièges à ions et de l’électrodynamique en cavité, elle présente :

• Un résumé de l’information et du calcul quantiques, ainsi que le contrôle de systèmes
quantiques par laser en régime adiabatique.
• Une démonstration de l’implémentation d’une porte quantique générale, en manipulant

des ions piégés par laser.
• Une étude et une application des modèles de l’électrodynamique en cavité pour la généra-

tion d’états à un ou plusieurs photons sortant d’une cavité.

La deuxième partie détaille un formalisme décrivant la dynamique quantique d’émetteurs
au voisinage de structures nanométriques et des résultats numériques montrant le régime de
couplage fort, ainsi que le couplage d’émetteurs via des plasmons ; elle aborde plus spécifique-
ment :

• Le détail de la quantification du champ électromagnétique pour un milieu à couches
sphériques.
• Le développement de modèles effectifs basés sur la quantification, dont nous mettons en

exergue leur analogie avec les modèles cQED.
• La description de l’interaction de plasmons-polaritons localisés (LSPs) avec des émet-

teurs.
• Le couplage et l’intrication d’émetteurs par passage adiabatique via des modes plas-

moniques d’une nanoparticule sphérique.
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Abstract
Controlling quantum emitters (atoms, molecules, quantum dots, etc.), light, and its inter-
actions is a key issue for implementing all-optical devices and information processing at the
quantum level. This generally necessitates a strong coupling of emitters to photonic modes,
as achieved by a high-Q cavity, for efficient manipulation of the atoms and field dynamics
through cavity quantum electrodynamics (cQED).
The integration of the principles of quantum optics at the nanoscale in a plasmonic platform
has been envisioned, on the basis of a possible strong coupling between a quantum emitter and
the surface plasmon polaritons (SPPs) via their strong mode confinement. Recent progress
showed the possibility to reach such a strong coupling regime, allowing the development of
quantum plasmonics where a SPP mode takes the role of the cavity mode. However, its ap-
plication appears notoriously limited in practical situations due to the intrinsic presence of
numerous and lossy modes, which complicates the description and the interpretation of the
interaction, and introduces strong decoherence in the system, in particular for strong cou-
pling.
In this work, a detailed overview of quantum control applied to ion trapping, cQED, and plas-
monics, is presented. The first part of the thesis is a study of adiabatic processes in trapped
ion systems and cQED:

• We summarize quantum computation processes using quantum gates, and control using
adiabatic laser pulses with atomic systems.
• We design arbitrary quantum gates with ions manipulated with laser pulses.
• Models for cQED are derived and applied for the production of photon states leaking

from a cavity.

In the second part, we develop a formalism to describe the quantum dynamics of emitters close
to nanoscale structures, and numerics showing the strong coupling regime and the coupling
of emitters via plasmon modes. More specifically:

• We provide a general field quantization procedure for spherically layered systems.
• Effective models using the field quantization are derived, and we show they are analogous

to cQED models.
• We describe the interaction of localized plasmons (LSPs) with quantum emitters.
• The coupling/entanglement of emitters by adiabatic passage through lossy plasmonic

modes of a nanosphere is shown.
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Overview of quantum control in information processing and
quantum optics
Quantum control has become an important tool over the last decades. The control of quan-
tum processes and the manipulation of quantum states have many applications in atomic,
molecular and condensed matter physics, as well as in optics, information processing and
computation, and chemistry with aims of a selective control of chemical reactions.
Specifically, the manipulation of quantum electronic states using microwave radiation or lasers
has been developing in all the mentioned fields. In this thesis, we focus on the fields of quan-
tum information processing, quantum computation and quantum optics. Tools to develop
robust, fast and efficient quantum control for the design of quantum gates, which are key
elements of quantum computation, are presented. We underline, in particular, their physical
implementation with trapped ions manipulated by laser pulses [1]. The robustness and effi-
ciency of the novel construction for the arbitrary quantum gate presented here is ensured by
the use of the stimulated Raman adiabatic passage (STIRAP), known for more than twenty-
five years now [2–7]. Such Raman adiabatic techniques, in general, are an efficient tool for the
control of quantum systems because they provide relatively high-fidelity population transfer
and entanglement, due to the avoidance of lossy excited states, yet exploiting them through
their coupling with the metastable initial and target states.
Control in quantum optics has also been developing over the last decades, in particular for
the control of flying qubits carried by photons, in quantum key distribution (QKD), quantum
cryptography [8], networking for distributed computation, communication and metrology. The
photon is seen as the best candidate for the role of quantum information carrier, transmitting
qubits from one node to the other. Nowadays, in most applications, photons in coherent states
are being used to carry flying qubits. Deterministic single photons are better candidates as
they show better entanglement and interference properties (crucial for quantum information
and security protocols) than coherent states produced with low-intensity lasers. However, the
experimental achievement of such single photon sources is still challenging. One key point
is to control the node-photon interfacing so that the node can send, receive, store and re-
lease photonic quantum information. In addition, the control of quantum emitters, such as
atoms, molecules, quantum dots and other artificial quantum systems, as well as the control
of light and its interaction with emitters are key issues for implementing all-optical devices
and information processing at the quantum level. The strong coupling of emitters with pho-
tonic modes, as it is achieved by a high quality factor cavity (high-Q cavity), is necessary
for efficient manipulation of the atoms and field dynamics. The field of cavity quantum elec-
trodynamics (cQED) provides understanding of the production of single or few-photon states
from an optical cavity, and its interaction with single atoms [9]. We present an overview of
this field, and detailed derivations of the models applicable to the control of the interaction
of quantum light with atoms. Then, we propose a self-consistent theoretical basis, valid for
leaky cavities and notably discuss the production of single and several photon states leaking
out of a cavity.
Moreover, the description of leaky (but non-absorbing) cavities will be helpful for understand-
ing the behaviour of lossy configurations, such as plasmonic systems investigated in the last
part of this manuscript.
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Towards quantum control in plasmonics
The interest of miniaturizing optical devices has grown since the 70s, but the size of optical
components is limited by diffraction, around 0.5 µm. This is the case, for instance, with optical
cavities, whose mode area must be significantly larger (at least seven orders of magnitude) than
the absorption cross-section of the emitters they interact with. Low temperature experiments
enables the absorption cross section of molecules to increase, then reaching a comparable size
with a highly focused beam, hence reaching a satisfactory quantum efficiency, as almost all
energy from the beam can be absorbed by the molecule.
Another strategy consists in the confinement of light in the subwavelength regime, as yielded
by the field of plasmonics [10–13]. Plasmons are collective oscillations of the free electrons at
the surface of a conductive medium. As they are a phenomenon of electric charge acceleration,
they are associated to electromagnetic waves due to the oscillating electric field they generate.
For this reason, one usually refers to plasmons as surface plasmon polaritons (SPPs). Plasmon
modes are generally of two kinds: propagating SPP modes, and localized surface plasmons
(LSPs). The integration of the principles of quantum optics at the nanoscale in a plasmonic
platform has been envisioned, on the basis of a possible strong coupling between quantum
emitters and SPPs, via their strong mode confinement in the subwavelength regime. Recent
progress showed the possibility to reach strong coupling regime, allowing the development of
quantum plasmonics, where a plasmon mode plays an analogous role as a cavity mode [14–27].
However, since the plasmon modes are intrinsically numerous and present strong losses due
to the ohmic properties of conductive media, it appears notoriously complicated to describe
and interpret their interaction with quantum emitters, and they introduce strong decoherence
in the system. These drawbacks severely limit the applications for coherent manipulation of
quantum emitters coupled to single plasmons at the nanoscale.
In this thesis, we solve these issues by introducing a novel approach for quantum plasmonics,
including a full quantization scheme derived from the Green’s tensor formalism, applying it to
spherically layered media, and constructing effective models for the dynamics of SPPs coupled
to quantum emitters. We show precisely how to calculate the emitter-field coupling constants
from the geometry and arrangements of the system, the material properties of the dielectric
bodies in it, and the positions of the quantum emitters. We provide a consistent guideline for
creating a geometry-specific, mode-selective quantization relying on the Green’s tensor of the
system. The quantization is demonstrated through the example of a spherically layered, non-
magnetic medium, with the aim of building models for quantum emitters coupled to metallic
nanospheres. Nevertheless, it can be analogously extended to other types of geometries, with
different symmetries. We construct, in a second step, effective models where the complete
plasmonic coupling can then be interpreted as a multimode lossy cQED interaction. The
potential of the derived effective models is shown in a last step, where we engineer a specific
coherent manipulation, by laser pulses, of a pair of emitters coupled by LSPs, making full use
of the coupling while circumventing the plasmonic losses. This is achieved by adapting the
technique of STIRAP. The transfer happens via a connection to a dark state, immune to loss,
thanks to adiabaticity usually reached for modest pulse durations and energies. The complete
population transfer mediated by plasmons can be interpreted as a polariton propagating
between the two networking emitters, while partial transfer creates high-fidelity entanglement
between them.
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Organization of the thesis, and reading guide
The body of the thesis is organized as follows. In part II we introduce the basic concepts of
quantum control and novel results with applications in quantum information and computation,
and quantum optics with cQED. It includes two chapters:
• A first chapter as a short introduction to quantum information processing, quantum

control in the adiabatic limit, and the application of these concepts to trapped ions,
which are excellent candidates for nodes in a quantum network, being addressable by
laser beams and having been used to perform quantum algorithms. We also show a
novel quantum gate construction based on the concept of qudit, and detail its physical
implementation using two-shot STIRAP pulse sequences.

• A second chapter where we present in a self-consistent way the field of cavity QED, and
applications of the models to the production of single and few-photon signals leaking
from a cavity. This chapter is essential to the understanding of the thesis since it
presents the most important concepts derived in quantum optics, which are used in
the quantization procedure and effective models in quantum plasmonics derived in the
following part.

Part III is designed as a route towards the application of quantum optics and control with
surface plasmon polaritons. It is constructed in three chapters being mutually dependent:
• Chapter three presents an introduction to light-matter interaction at the nanoscale, and

the mode-selective quantization procedure for spherically layered structures. The full
quantization based on the Green’s tensor formalism is presented and provides the basis
of the following chapter.

• Chapter four details the construction of effective, cQED-comparable models starting
from the mode-selective quantization procedure for spherically layered structures. The
construction is done in two steps: the construction of an effective continuous model, and
a discrete effective model structurally analogous to the alternative cQED model derived
in chapter two.

• Chapter five presents the applications of effective models to quantum emitters coupled
to a metallic nanoparticle (MNP), and in particular, when the emitters are manipulated
by laser in a STIRAP pulse sequence.

A conclusion of this work as well as perspectives for future applications of the derived concepts
is presented in part IV. We note that the first chapter can be read independently from the
others. Parts II and III are also self-consistent, therefore they can be read independently.
However, we underline the analogy between section 2.2 and chapter four, where the effective
models are structurally the same.
Last but not least, this work, in its self-consistent approach, present numerous equations and
expressions. Some important equations, in particular when they imply an important result,
are boxed in the following way:

{important result}.
For an easier reading, we also regrouped long derivations as well as examples of general
equations and models in appendices, at the end of every chapter.
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Quantum control with trapped ions and
optical cavities
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Chapter 1

Trapped ions controlled by lasers and
quantum information
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Objectives: This chapter presents quantum information and computation
through the example of trapped ions. Important concepts are introduced, such
as the adiabatic theorem, the control of ions by laser, and the design of quantum
gates by adiabatic passage.

Guideline:
• Basic concepts of quantum information & quantum computation.

• Introduction to adiabatic techniques for the control of atoms by lasers.

• Presentation of the stimulated Raman adiabatic passage (STIRAP).

• Description of ions in a Paul trap, quantization of the vibrational modes,
manipulation by laser.

• keywords: qubit, quantum gate, adiabatic passage, ion trap, vibrational mode,
center-of-mass mode, Lamb-Dicke regime, Householder reflection (HR), qudit,
quantum Fourier transform (QFT)

Results/novelty: Arbitrary qudit gate by adiabatic passage.
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CHAPTER 1. TRAPPED IONS CONTROLLED BY LASERS AND QUANTUM

INFORMATION

1.1 Quantum Information in the adiabatic limit
This chapter presents adiabatic techniques to build quantum gates, i.e. basic operations of
quantum computation. These techniques have been shown to provide efficient control of pop-
ulation transfer between quantum states of atoms, molecules, and ions by laser pulses. More
specifically, when the laser pulse area is large enough, the adiabatic limit is invoked and allows
one to target eigenvectors subspaces of interest for the dynamics, e.g. metastable quantum
states, which are less affected by decoherence.
This is of particular interest for quantum information and quantum computation [28, 29],
where decoherence is the main adversary and introduces errors in the algorithms or the pro-
tocols. It is also possible, using these techniques, to reduce the number of operations needed
to construct a given non-trivial quantum gate, as it is shown. To make the connection with
a physical implementation of quantum computation, the formalism for trapped ions experi-
ments is derived and the laser pulses configuration for the control of the latter is explained.
The chapter is organized as follows: in the first section we present the basic elements of quan-
tum information and the adiabatic theorem in a general way; the second section presents the
quantization of vibrational motion of ions in a Paul trap and the Hamiltonian of the system is
derived to determine the adiabatic dynamics; the last section presents the novel construction
of an arbitrary gate of dimension d, that can be implemented with a system of d+ 1 trapped
ions.

1.1.1 Basic notions of quantum computing

The qubit

The classical theory of information developed in the twentieth century is based on the concept
of bit, i.e. an information unit having two possible values: 0 or 1. An integer number can be
represented as an ensemble of bits, and operations applied on them are called logic gates.
In the quantum information theory, the concept of bit is replaced by the qubit, or quantum
bit. While a bit can have values 0 or 1 only, the qubit can be any quantum superposition of
states |0〉 and |1〉, and its wavefunction has the general form:

|ψ〉 = eiξ
(

cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉
)
, (1.1.1)

where ξ is an irrelevant global phase, and the state of the qubit is characterized by two angles:
0 6 θ 6 π defining the weights in the superposition state, and 0 6 φ < 2π being the relative
phase. The state of a qubit is often represented as a point on the surface of a sphere, whose
poles are |0〉 and |1〉. This representation is called the Bloch sphere, and is displayed in fig. 1.1.

Quantum gates and algorithms

When an operation is carried out on a qubit, its wavefunction is modified through a unitary
transformation. This is another difference with classical computing, because most operations
with classical bits are irreversible, as they are done with two bits for one output bit. The
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CHAPTER 1. TRAPPED IONS CONTROLLED BY LASERS AND QUANTUM

INFORMATION

Figure 1.1: Bloch sphere representation of the qubit (1.1.1).

reversible transformation corresponds to the propagator of the time-dependent Schrödinger
equation for the wavefunction |ψ〉, and for a transformation of duration T , we have:

|ψ(T )〉 = ÛT |ψ(t0)〉, (1.1.2)

where |ψ(t0)〉 is the initial wavefunction. For the qubit, the transformation ÛT ≡ Û(T + t0, t0)
is a two by two matrix, and in practice its elements can be tuned to get a specific target
transformation, which corresponds to a quantum gate. Thus, quantum gates are elementary
transformation that can be applied to one or many qubits, and specific algorithms such as the
Shor algorithm [30, 31], the Grover search algorithm [32], or the quantum Fourier transform
(QFT) [28, 29] can be designed using sequences of quantum gates. An example of a single
qubit quantum gate can be given by the NOT gate:

ÛNOT =

[
0 1
1 0

]
, (1.1.3)

which swaps the two components of the qubit. Another important transformation is the phase
gate:

Ûϕ =

[
1 0
0 eiϕ

]
, (1.1.4)

which brings a relative phase ϕ between the two components. As a last example, we can
mention the Hadamard gate:

ÛH =
1√
2

[
1 1
1 −1

]
. (1.1.5)

This last gate corresponds to bringing the qubit in a superposition state. If the initial state
is |0〉, for example, then the output state will be:

|ψ〉 = ÛH |0〉 = 1√
2

(
|0〉+ |1〉

)
. (1.1.6)
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In general, the synthesis of the whole space spanned by the single qubit propagator is
parametrized with four real-valued angles α, β, γ, δ [28]:

Û = eiα
[

e−iβ/2 0
0 eiβ/2

] [
cos γ

2
− sin γ

2

sin γ
2

cos γ
2

] [
e−iδ/2 0

0 eiδ/2

]
. (1.1.7)

Quantum gates are also designed to act on several qubits. The most famous example of
multiple qubits gate is the controlled-NOT (cNOT) gate, operating on two qubits. While
qubit 1 is in state |0〉, the cNOT operation leaves qubit 2 unchanged and while qubit 1 is in
|1〉, it transforms qubit 2 with a NOT operation. In the product basis {|00〉, |01〉, |10〉, |11〉}
(where |ij〉 ≡ |i〉1|j〉2), the cNOT gate has the matrix form:

ÛcNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 . (1.1.8)

The most general quantum transformation in terms of qubit transformations is a unitary
matrix operating in the 2n-dimensional Hilbert space H⊗n, where n is the number of qubits.
A theorem states that any unitary transformation on H⊗n can be decomposed into a product
of cNOT gates and single qubit gates (universal set of gates). Hence, all operations can be
done with only one and two-qubit operations.

Operating on qubits leads to many interesting computation applications, yet nowadays it
is still a challenge. The main obstacle to achieving effective quantum computing is decoher-
ence. Indeed, quantum systems are very sensitive to their environment, and the spontaneous
dissipation of energy brings errors in performed operations. The fragility of these processes
imposes a good timing for the implementation of gates, and the faster they are, the least
number of errors and the more efficient quantum computation will be achieved. Minimizing
the number of operations is a reasonable way of overcoming decoherence effects. For instance,
the quantum Fourier transform requires about n2/2 operations for n qubits. In the last sec-
tion, we show that gathering qubits in a single qudit with size d = n/2, the quantum Fourier
transform can be implemented with at most d operations.

1.1.2 Adiabatic theorem

The adiabatic regime is characterized by specific dynamics for a quantum system, which we
develop in this section. More precisely, we deal with a specific time scale T , the adiabatic limit
arising when T tends to the infinity. In quantum information, the dynamics are described by
the Schrödinger equation:

i~
d|Ψ(t)〉

dt
= Ĥ(t)|Ψ(t)〉, (1.1.9)

where |Ψ(t)〉 is the wavefunction of the system, and Ĥ(t) its time-dependent Hamiltonian.
The general solution of the Schrödinger equation reads:

|Ψ(t)〉 = Û(t, t0)|Ψ(t0)〉, (1.1.10)
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where Û(t, t0) is the propagator of the wavefunction from the initial time t0 to t. From
equation (1.1.10), we have the requirement that Û(t0, t0) = 1̂l. Rewriting the Schrödinger
equation in terms of propagator, and using the change of variables s = t/T , we get:

i~
T

dÛ(s, s0)

ds
= Ĥ(s)Û(s, s0), (1.1.11)

rewriting Û(sT, s0T ) as Û(s, s0) for simplicity. To specify the adiabatic regime, we need to
define a basis of instantaneous eigenvectors {|Φ(α)

n (s)〉}, with degeneracy index α = 0, ..., dn
such that:

Ĥ(s)|Φ(α)
n (s)〉 = λn(s)|Φ(α)

n (s)〉 (1.1.12a)

〈Φ(α)
n (t)|Φ(β)

m (t)〉 = δnmδαβ (1.1.12b)

λn(s) being the instantaneous eigenvalue associated with |Φ(α)
n (s)〉. We suppose that the

eigenvectors are differentiable with respect to time, and we define the transformation:

T̂ (s) =
∑

n,α

|Φ(α)
n (s)〉〈Φ(α)

n (s0)|, Û(s, s0)→ Û(s, s0) := T̂ †(s)Û(s, s0)T̂ (s0). (1.1.13)

From this definition, we have T̂ (s0) = 1̂l. The columns of T̂ (s) are the instantaneous eigen-
vectors |Φ(α)

n (s)〉 expressed in the same basis {|Φ(α)
n (s0)〉}. The new propagator Û(s, s0) obeys

also a Schrödinger equation:

i~
T

dÛ(s, s0)

ds
= Ĥ(s)Û(s, s0), (1.1.14)

with a new Hamiltonian Ĥ(s) that can be separated as:

Ĥ(s) = D̂(s)− i~
T
T̂ †(s)dT̂ (s)

ds
(1.1.15a)

D̂(s) = T̂ †(s)Ĥ(s)T̂ (s). (1.1.15b)

The transformed Hamiltonian D̂(s) is diagonal in the initial eigenvector basis:

D̂(s) =
∑

n

λn(s)P̂n(s0), (1.1.16)

where P̂n(s0) =
∑

α |Φ
(α)
n (s0)〉〈Φ(α)

n (s0)| is a projector in the n-th subspace manifold of the
eigenvector basis. We can write more explicitly the elements of the Hamiltonian Ĥ in two
specific parts:

• The elements corresponding to the internal elements of the eigenvector subspace of
eigenvalue λn(s):

〈Φ(α)
n (s0)|Ĥ(s)|Φ(β)

n (s0)〉 = λn(s)δαβ −
i~
T
〈Φ(α)

n (s)| d

ds
|Φ(β)

n (s)〉. (1.1.17)
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• The elements corresponding to couplings from a subspace to another (for n 6= m):

〈Φ(α)
n (s0)|Ĥ(s)|Φ(β)

m (s0)〉 =
i~
T

〈Φ(α)
n (s)|dĤ

ds
|Φ(β)

m (s)〉
λn(s)− λm(s)

. (1.1.18)

The adiabatic limit is specified when T →∞. As a consequence, the coupling term between
the subspaces (1.1.18), proportional to 1/T , shall be much smaller than the energy difference
|λn(s)− λm(s)| between the subspaces. However, if the energy difference is of the same order
of magnitude as the coupling term, the latter should be taken into account. This leads to the
adiabaticity condition:

|λn(s)− λm(s)| �
∣∣∣∣∣
~
T

〈Φ(α)
n (s)|dĤ

ds
|Φ(β)

m (s)〉
λn(s)− λm(s)

∣∣∣∣∣ , (1.1.19)

which can be formulated, in terms of the characteristic time scale:

T �
∣∣∣∣∣~
〈Φ(α)

n (s)|dĤ
ds
|Φ(β)

m (s)〉
(λn(s)− λm(s))2

∣∣∣∣∣ , (1.1.20)

for all α, β, n,m 6= n and for all s. The adiabatic limit implying vanishing couplings between
subspaces, the dynamics can be treated separately in each subspace (labelled n), in the initial
eigenvector basis. The consequence is a splitting of the Schrödinger equation into many
decoupled equations:

i~
T

dÛ (n)
a (s, s0)

ds
= Ĥ(n)(s)Û (n)

a (s, s0) (1.1.21)

Ĥ(n)(s) = P̂n(s0)Ĥ(s)P̂n(s0), (1.1.22)

where each propagator Û (n)
a (s, s0) works in the n-th subspace with initial basis {|Φα

n(s0)〉}.
The total adiabatic propagator Ûa(s, s0) working in the full basis writes then as a direct sum
of all n-th subspaces propagators:

Ûa(s, s0) =
⊕

n

Û (n)
a (s, s0). (1.1.23)

The propagator in the initial basis is obtained by inverting the transformation:

Ûa(s, s0) = T̂ (s)Ûa(s, s0)T̂ †(s0), (1.1.24)

leading to the identity, known as the adiabatic theorem:

P̂n(t)Ûa(t, t0) = Ûa(t, t0)P̂n(t0). (1.1.25)

The theorem is stated as follow [33]:
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Adiabatic theorem: If the instantaneous eigenvalues never cross, i.e. |λn(t) −
λm(t)| > δ0 ∈ R ∀t, then in the limit where the characteristic time T → ∞ the
subspaces generated by the instantaneous eigenvectors evolve independently from
each other:

lim
T→∞

P̂n(t)Û(t, t0) = lim
T→∞

Û(t, t0)P̂n(t0).

In a simpler case, where the eigenvalues are not degenerate, the Hamiltonian is entirely
diagonal (whereas block-diagonal in the general case). The state of the system at time t is
then, in the adiabatic limit:

|Ψ(t)〉 =
∑

n

〈Φn(t0)|Ψ(t0)〉e−i(φ(n)
d (t)+φ

(n)
B (t))|Φn(t)〉, (1.1.26)

where φ(n)
d (t) (dynamical phase) and φ(n)

B (t) (geometric phase) are two time-dependent phases
coming from the integration of (1.1.17):

φ
(n)
d (t) =

1

~

∫ t

t0

dt′λn(t′) (1.1.27a)

φ
(n)
B (t) = −i

∫ t

t0

dt′〈Φn(t′)| d

dt′
|Φn(t′)〉. (1.1.27b)

The geometric phase can be removed locally by an appropriate choice of local phase of the
eigenvectors. However, in a closed loop dynamics in the parameter space, the final phase
differs in general with respect to the initial one, leading to a Berry phase (only dependent on
the loop and the geometry of the parameter space, and not on the speed of the dynamics).
In this section the adiabatic theorem is derived for non-crossing eigenvalues in a finite dimen-
sional Hilbert space [34–37]. The most general case of an infinite dimensional Hilbert space
with possible crossing between the eigenvalues is treated in refs [34,38–41].

1.1.3 Stimulated Raman adiabatic passage (STIRAP)

Raman processes [42] are three-state sequences of transitions where the final state is different
from the initial state, after applying a pump field inducing radiative excitation. The final
state can be higher in energy than the initial one, resulting in an emission line being to the
red of the pump line, called Stokes line. If the final state is lower in energy than the initial
one, then the line is called anti-Stokes. The interest of stimulated Raman processes is to
provide coherent quantum states manipulation by using controlled laser (pump, Stokes and
anti-stokes) fields. In the following, we denote by pump the laser field providing the excitation
and by Stokes the field providing the final state, resulting in a two-photon process. We have
displayed on fig. 1.2 the sketch of a three-level system manipulated by pump and Stokes laser
fields. The pump field P with frequency ωP produces excitation into the excited state |e〉
from the initial metastable (or ground) state |g〉, while the Stokes field S with frequency ωS
produces deexcitation into the other metastable state |f〉. The excited state |e〉 is lossy with
a decay rate Γ. The rotating wave approximation (RWA) Hamiltonian for this system writes,
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Figure 1.2: Three-level system with two ground metastable states |g〉, |f〉 coupled to a lossy
excited state |e〉. Transition |g〉 ↔ |e〉 is driven with a pump laser pulse P (t) while transition
|f〉 ↔ |e〉 is driven with a Stokes laser pulse S(t). Both laser controls are detuned with the
transitions with detunings ∆P ,∆S, respectively. The losses of state |e〉 are modeled with a
decay rate Γ.

in a matrix form (in unit of ~):

Ĥ =




0 1
2
ΩP e−iφP 0

1
2
ΩP eiφP ∆P − iΓ

2
1
2
ΩSeiφS

0 1
2
ΩSe−iφS ∆P −∆S


 , (1.1.28)

where the ΩP,S are (time-dependent) Rabi frequencies associated with the pump (resp. Stokes)
laser fields, ∆P = ωeg − ωP , ∆S = ωef − ωS, and φP,S are phases suited to the “Λ” linkage.
Using this Hamiltonian, different stimulated Raman processes are possible using different
combination of pump-Stokes pulse sequences. The one in interest of this section has for
motivation the efficient population transfer between |g〉 and |f〉, and is called stimulated
Raman adiabatic passage (STIRAP) [2, 42–44]. It can be summarized in three points:

• Pulse sequence: for population initially in state |g〉, the Stokes field precedes the
pump with a delay, and an overlap. This is called a counter-intuitive pulse sequence, as
transfer population from |g〉 to |f〉 is achieved by turning on S first, and then P .

• Two-photon resonance: both fields should keep two-photon resonant detuning, that
is ∆P = ∆S ≡ ∆.

• Adiabaticity: the time length of the laser pulses should be adiabatic.

We notice that the Hamiltonian (1.1.28) is non-Hermitian due to the excited state’s loss Γ.
In the following, we consider the Hermitian part of the STIRAP Hamiltonian, for simplicity:

Ĥstirap =




0 1
2
ΩP e−iφP 0

1
2
ΩP eiφP ∆ 1

2
ΩSeiφS

0 1
2
ΩSe−iφS 0


 , (1.1.29)
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which admits for instantaneous eigenvalues:

λ0 = 0 (1.1.30a)

λ±(t) =
1

2

(
∆±

√
∆2 + Ω2

P (t) + Ω2
S(t)

)
, (1.1.30b)

and associated instantaneous eigenvectors:

|Φ0(t)〉 = cos θ(t)|g〉 − eiφ sin θ(t)|f〉 (1.1.31a)
|Φ+(t)〉 = sin θ(t) cosϕ(t)|g〉+ e−iφP sinϕ(t)|e〉+ eiφ cos θ(t) cosϕ(t)|f〉 (1.1.31b)
|Φ−(t)〉 = sin θ(t) sinϕ(t)|g〉 − e−iφP cosϕ(t)|e〉+ eiφ cos θ(t) sinϕ(t)|f〉, (1.1.31c)

where the dynamical angles θ(t), ϕ(t) and the phase φ are defined as follow:

tan θ(t) =
ΩP (t)

ΩS(t)
(1.1.32)

tanϕ(t) =
2λ+(t)√

Ω2
P (t) + Ω2

S(t)
(1.1.33)

φ = φP − φS. (1.1.34)

The eigenstate (1.1.31a) is important, because it has no component of the excited state |e〉,
hence it is not affected by the latter’s losses into spontaneous emission. For this reason, the
eigenstate |Φ0(t)〉 is called a dark state. Introducing the excited state’s loss in the Hamiltonian
leads to more complex expressions for λ±(t) and |Φ±(t)〉, but the dark state |Φ0(t)〉 is not
affected. We see from the expression of the eigenstates, and the initial condition |Ψ(ti)〉 = |g〉,
that the mixing angle θ(t) varies from 0 to π/2 over time to achieve population transfer
between |g〉 and |f〉. This implies, looking at (1.1.32), that:

tan θ(ti) = 0

tan θ(tf )→ +∞,
at the beginning and the end of the process, which is achieved with the counter-intuitive
pulse sequence. The dynamics of the STIRAP process are displayed on fig. 1.3. As can
be seen in the dynamics, the overlap between the pulses is necessary to keep the adiabatic
eigenvalues distant from each other, so that their difference remains much larger than the
couplings between the dynamical subspaces (see equation (1.1.19)). The dynamics then stays
in the adiabatic basis generated by |Φ0(t)〉, |Φ±(t)〉. Moreover, the counter-intuitive sequence
ensures that the wavefunction aligns with the dark state, so that we get the following time
evolution:

|Ψ(ti)〉 = |Φ0(ti)〉 = |g〉y
|Ψ(t)〉 = |Φ0(t)〉y
|Ψ(tf )〉 = |Φ0(tf )〉 = −eiφ|f〉.
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Figure 1.3: STIRAP dynamics for ∆ = 0. (upper pannel) Counter-intuitive sequence Rabi
frequencies of the driving lasers versus time. The pulse shapes are chosen to be gaussians:
ΩP,S(t) = Ω0e−((t±τ)/T )2 , where τ is the time delay between the two pulses, and T is the pulse
width. (middle pannel) Time-dependent adiabatic eigenvalues. (lower pannel) Populations of the
different levels. Complete population transfer from |g〉 to |f〉 is achieved with very small population
in the excited state |e〉.
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The overall process brings a phase gain φ+ π, where the phase φ can be controlled precisely
in experiments. The adiabaticity condition (1.1.20) for the STIRAP is:

|θ̇| �
∣∣∣∣Ω(s)T

sinϕ(s)

cos2 ϕ(s)

∣∣∣∣ (1.1.35a)

|θ̇| �
∣∣∣∣Ω(s)T

cosϕ(s)

sin2 ϕ(s)

∣∣∣∣ , (1.1.35b)

where θ̇ ≡ d
ds
θ(s), and Ω(s) =

√
Ω2
P (s) + Ω2

S(s). Two cases can be distinguished for deriving
the adiabaticity condition:

• If the detuning is small, that is ∆ � Ω0, where Ω0 is the maximal amplitude of the
pump (or Stokes) Rabi frequencies, then the angle ϕ(t) is close to π/2 and the condition
(1.1.35b) is stronger than (1.1.35a). Using slow-varying derivatives Ω̇P,S ' ΩP,S/T , we
get the usual adiabaticity condition for the STIRAP:

Ω0T � 1. (1.1.36)

• If the detuning is big, that is ∆� Ω0, we get analogously the large detuning adiabaticity
condition for the STIRAP:

Ω2
0T � ∆. (1.1.37)

The STIRAP technique is interesting because of its robustness, i.e. the fact that it does not
depend strongly on the parameters’ fluctuations. Only the variation of the mixing angle θ
from 0 to π/2 is essential, including the adiabaticity condition through the pulses area Ω0T .
However, it does neither depend on a specific pulse shape nor on a specific pulse area. It is
also not affected much by the detuning ∆, provided the corresponding adiabaticity condition.
The spontaneous emission occuring while population goes into state |e〉, the STIRAP avoids
it by negligibly populating it. If the dynamics are not perfectly adiabatic, the losses by
spontaneous emission are negligible in the limit where the decay rate Γ is small, that is:

Γ� Ω2
0T. (1.1.38)

We remark that this condition does not prevent Γ to be larger than Ω0, provided that Ω0T � 1.
We have presented the general concepts of quantum information and computation using quan-
tum gates, as well as a general guideline for the manipulation of quantum systems in the
adiabatic limit. We illustrated adiabatic processes with the example of the STIRAP. In the
next sections, we focus on the application of such concepts with trapped ions, which are very
good candidates for the design of quantum gates.



21
CHAPTER 1. TRAPPED IONS CONTROLLED BY LASERS AND QUANTUM

INFORMATION

(a) (b)

Figure 1.4: Two different geometries of Paul traps. Ions are trapped: (a) axially with two end cap
electrodes, and laterally with a ring electrode (b) axially with two ring electrodes, and laterally with
four rod electrodes.

1.2 Ion trap as a model for quantum information
In the previous section, we have presented some general conditions that allow robust control
of quantum states. Here we discuss some practical applications for an ion trap, this device
being a powerful configuration for quantum control.
An ion trap is a device designed to isolate and handle ions in a small region of space, using
electromagnetic potentials configurations. Trapping a point-like particle with charge q at
position r0 necessitates a potential extremum in all space directions, being minimal (resp.
maximal) for q > 0 (resp. q < 0). If U(r) is the potential and q > 0, this condition reads:

∂2U

∂α2

∣∣∣∣
r=r0

> 0, α = x, y, z. (1.2.1)

However, the Gauss theorem stating that the Laplacian of the potential is zero, it is not
possible to design a static potential satisfying (1.2.1) in all directions simultaneously. A static
potential can, at most, provide extrema in two spatial directions. In experiments, there are
many kinds of traps that can fulfill (1.2.1), such as Penning or Paul traps. In a Penning
trap, only static fields are involved: an electric potential confines the ion in a given direction,
while a magnetic field oriented along the same direction traps the ion sidelong with Lorentz
centripetal force. In our work, we focus on the Paul trap, which combines both static and
oscillating fields. Many geometries exist for the different ion traps ; we study in this section
the quadrupolar Paul trap.

1.2.1 Linear Paul trap - trapping of a single ion

The linear Paul trap is preferred in quantum information for its ability to isolate ions from
external disturbances. There are two main geometries known in the literature: both of them
are depicted in figure 1.4. We focus on the quadrupolar geometry (fig. 1.4 (b)), where the
two ring electrodes provide a static axial trapping with potential Uz(r), while the four rod
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Figure 1.5: Trajectory of a single ion (solid line), in an oscillating quadrupolar potential (contour
plot for ωt = 2kπ, k integer), for a = 0.001 and b = 0.1.

electrodes trap the ion in xy plane with a time-dependent potential Uxy(r, t). This oscillating
potential:

Uxy(r, t) =
U0 + V0 cos Ωt

2R2
(x2 − y2) (1.2.2)

is applied to two diagonal rods, while the two other ones are grounded. In the expression
above, U0 is a static potential, V0 is the oscillation amplitude, Ω the frequency of the oscilla-
tions (in the RF regime), and R the distance from the z-axis to one rod electrode. The classical
motion of an electric charge in a potential, given by mr̈ = −q∇U(r, t), when projected in the
xy-plane, gives the system of equations:

[
d2

ds2
+ a+ 2b cos 2s

]{
x(t)
y(t)

}
= 0, (1.2.3)

where:
s =

Ωt

2
, a =

4qU0

mR2Ω2
, b =

2qV0

mR2Ω2
. (1.2.4)

Equations (1.2.3) are called Mathieu equations. Adjusting R, Ω, U0 and V0, it is possible to
write approximate solutions of the Mathieu equation, in the case a� b2 � 1:

x(t) = x0

[
1 +

b

2
cos Ωt

]
cos(ωxt+ φx)

y(t) = y0

[
1− b

2
cos Ωt

]
cos(ωyt+ φy),

(1.2.5a)

(1.2.5b)

where:

ωx =
Ω

2

√
b2

2
+ a, ωy =

Ω

2

√
b2

2
− a. (1.2.6)

In figure 1.5, we show a single ion trajectory projected on the xy-plane, using the approximated
solutions of the Mathieu equations.
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1.2.2 Quantization of the vibrational modes

In quantum information, we consider an ensemble of ions as several qubits, which are coupled
through the Coulomb interaction. The vibrational normal modes will be derived considering
ideal lateral trapping, so that the motion is seen along the z-axis, where the ions are aligned
as a 1D lattice. The potential energy of N identical linearly trapped ions is given by:

V =
N∑

j=1

1

2
mω2

zz
2
j (t) +

N∑

j 6=k

q2

4πε0

1

|Zj(t)− Zk(t)|
, (1.2.7)

where Zj(t) = Z
(j)
0 + zj(t) is the position of the j-th ion on the z-axis, m is the mass of the

ion, ωz is the oscillation frequency of the potential, q is the ion charge, and ε0 the electric
permittivity of the vacuum. The first term in the expression of the potential corresponds to
the potential energy of the ions in the trap, considered as an approximation to be harmonic,
with 1

2
mω2

zz
2
r ' ηqUz, where Uz is the static potential applied to the electrodes, η a geometrical

factor, and zr the distance between the center of the trap and one electrode. The second term
corresponds to the Coulomb interaction between ions. The Lagrangian reads:

L =
1

2

N∑

j=1

mż2
j −

1

2

N∑

j,k=1

[
∂2V

∂Zj∂Zk

]

Z=Z0

zjzk, (1.2.8)

where the potential (1.2.7) is expanded in a Taylor series until the second order. Z =

[Z1, ..., ZN ] and Z0 = [Z
(1)
0 , ..., Z

(N)
0 ] are vectors containing all absolute and equilibrium posi-

tions of the ions, respectively, with [∂V/∂zj]Z=Z0 = 0. The Lagrange equation:

d

dt

∂L

∂żj
− ∂L

∂zj
= 0 (1.2.9)

leads to an eigenvalue equation, when solutions are written in the form zj(t) = Cje
−iωt. This

eigenvalue equation reads:
det(ω2

z

‖

V − ω2 ‖1lN) = 0, (1.2.10)

where

‖

V is a tensor of size N × N whose elements are Vjk = 1
mω2

z

[
∂2V

∂Zj∂Zk

]
Z=Z0

, and

‖

1lN is

the corresponding identity tensor. The eigenvalues that are solutions of (1.2.10) are being
written in the form να = ωz

√
µα where α is another index running from 1 to N , and µα is a

so-called reduced eigenvalue, as it is satisfying:

N∑

j=1

VjkD
(α)
j = µαD

(α)
k , (1.2.11)

with N eigenvectors Dα, chosen to be orthogonal and normalized:

N∑

j=1

D
(α)
j D

(β)
j = δαβ. (1.2.12)
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The j-th ion’s position can be expanded in this new basis:

zj(t) =
N∑

α=1

D
(α)
j qα(t), (1.2.13)

where qα(t) = Cαe−iναt. For example, if N = 2, we get two eigenvalues ν1 = ωz and ν2 =
ωz
√

3, each of them being associated to a specific vibrational mode. Mode 1 is known as the
center of mass mode (COM), and mode 2 is known as the breathing mode. The COM mode
is characterized by a collective motion where the velocity vectors of the ions are pointing
in the same direction, whereas in the breathing mode case, the velocity vectors point in
opposite directions. There are as many vibrational modes as there are ions, that is N , and
the diagonalization of matrix

‖
V leads to analytical results for N 6 3; for more ions, the

solutions of (1.2.10) can be determined numerically (see [1]). In ion trap quantum information,
the vibrational modes must be quantized, corresponding to phonon modes. In practice, the
experiment is realized under very low temperature regime (a few Kelvins) to avoid decoherence
effects. However, this is not enough, and further cooling is required: it is convenient to use
a combination of Doppler cooling and red sideband pumping to annihilate phonons. To
quantize the vibrational modes, we replace zj by its modal expansion (1.2.13) in the classical
Hamiltonian H = T + V . Defining the momenta pα = mq̇α, the Hamiltonian reads:

H =
N∑

α=1

(
p2
α

2m
+

1

2
mν2

αq
2
α

)
. (1.2.14)

Once we defined the conjugate variables (qα, pα), which obey the Hamilton equations, we
replace them by operators acting on a Hilbert space, and provide a change of variables to
express all observables in terms of creation/annihilation operators acting on a Fock space:

qα → q̂α =

√
~

2mνα

(
â†α + âα

)
, (1.2.15)

pα → p̂α = i

√
~mνα

2

(
â†α − âα

)
, (1.2.16)

where (q̂α, p̂α) and (âα, â
†
α) obey the commutation relations:

[q̂α, p̂β] = i~δαβ, [âα, â
†
β] = δαβ. (1.2.17)

The quantum Hamiltonian for the vibrational motion in the trap is the classical one, where
replaced all quantities by operators:

Ĥvib =
N∑

α=1

~να
(
â†αâα + 1

2

)
. (1.2.18)

Recalling the expression for the positions of the ions, we now write the quantized form:

ẑj =
N∑

α=1

K(α)
j

√
~

2mωz

(
â†α + âα

)
, (1.2.19)

where K(α)
j = D

(α)
j / 4
√
µα is a factor that can be determined numerically for N > 4. In the

following, we will consider only center-of-mass motion, that is α = 1. We summarize the
center-of-mass parameters in table 1.1.
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Table 1.1: center-of-mass motion parameters

index α = 1
eigenvalue µ1 = 1
frequency ν1 = ωz

eigenvector component K(1)
j = 1/

√
N

Figure 1.6: Single ion (labelled j), trapped on the axis z and driven by a laser field ÊL(ẑj , t), where
ẑj is the quantized position of the ion. The laser beam is oriented with an angle θL = (kL, Oz).
The excitation process leads to the creation and annihilation of quantized center-of-mass vibrational
modes â, â†.

1.2.3 Manipulating ions by laser - Lamb-Dicke regime

The vibrational motion Hamiltonian (1.2.18) describes external states of the ions. Quantum
information can be encoded in these states, but also in internal atomic states like the electronic
excitations. All the states can be manipulated by addressing each ion with a laser beam. The
laser beam is modeled by a monochromatic traveling wave:

ÊL(ẑj, t) = EL(t) cos(ωLt− kL cos θLẑj + φj(kL)), (1.2.20)

where EL(t) = EL(t)ε is a slow-varying envelope function times the polarization vector, ωL
is the frequency of the laser, kL is the norm of the wavevector kL = ωL

c
n (n being the unit

vector pointing towards the direction of propagation of the field), θL is the angle between kL
and Oz, ẑj is the ion position operator and φj(kL) = φ − kL cos θLz

(j)
0 is a phase factor. In

the next steps, we consider only a single mode center-of-mass vibrational motion, so we drop
the index α in (1.2.18), and the Hamiltonian is renormalized so that the zero-point energy
responsible for the 1/2 factor in (1.2.18) is dropped as well. The full quantum Hamiltonian
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for a single ion j is then given by:

Ĥj = Ĥ
(j)
0 + V̂j(t) (1.2.21a)

Ĥ
(j)
0 = ~ω0σ̂

(j)
+ σ̂

(j)
− + ~νâ†â (1.2.21b)

V̂j(t) = −d̂j · ÊL(ẑj, t), (1.2.21c)

where ω0 is the transition frequency of the ion, and d̂j = qx̂j is the transition dipole moment
associated to the internal position operator x̂j of the valence electron in the ion, q being
the electron charge. The internal degrees of freedom of the ion are supposed to be a two-
level structure, with a two-dimensional Hilbert space (with basis {|gj〉, |ej〉}) on which atomic
operators like σ̂(j)

− act. The dipole operator can be “sandwiched” with the unit operator
1̂lj = |ej〉〈ej|+ |gj〉〈gj| and we get:

d̂j = djσ̂
(j)
+ + d∗j σ̂

(j)
− , (1.2.22)

where dj = 〈ej|d̂j|gj〉, σ̂(j)
+ = |ej〉〈gj| and σ̂(j)

− = (σ̂
(j)
+ )†. Writing the position operator ẑj in

terms of the annihilation and creation operators â, â† we get:

kL cos θLẑj = ηj(â
† + â), (1.2.23)

where ηj = kL cos θLK(1)
j

√
~

2mν
is the Lamb-Dicke parameter associated with the j-th ion

driven by a laser beam, whose wavevector has an angle θL with the trapping axis (see fig.
1.6). As only the center-of-mass mode is considered, we used the eigenvector component
K(1)
j = 1/

√
N , which does not depend on the ion index j. As a consequence, the Lamb-Dicke

parameter ηj ≡ ηL will depend only on the laser parameters. To have a look at the energies
of the states, we write the interaction picture of the Hamiltonian (1.2.21a):

Ĥ
(I)
j (t) = Û †0,j(t, 0)Ĥj(t)Û0,j(t, 0) + i~

dÛ †0,j(t, 0)

dt
Û0,j(t, 0)

= Û †0,j(t, 0)V̂j(t)Û0,j(t, 0), (1.2.24a)

Û0,j(t, 0) = e−
i
~ Ĥ

(j)
0 t. (1.2.24b)

We see from the latter equations that the transformation applies only to the interaction
part Vj(t), as the term depending on the derivative of Û0,j(t, 0) with respect to time cancels
with H

(j)
0 , which is not affected. The interaction picture leads to a time-dependence of the

operators:

σ̂
(j)
+ → σ̂

(j)
+ eiω0t (1.2.25)

â→ âe−iνt, (1.2.26)

and writing the cosine function as a sum of exponentials in (1.2.20), we write:

Ĥ
(I)
j (t) = −(djσ̂

(j)
+ eiω0t + d∗j σ̂

(j)
− e−iω0t) · EL(t)

2

(
eiωLte−iηL(â†eiνt+âe−iνt)eiφj(kL) + h.c.

)
.

(1.2.27)
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At this point, we invoke a rotating wave approximation (RWA), as fast-rotating terms in
e±i(ω0+ωL)t appear in the interaction, and are averaged out. We keep only the slow varying
terms in e±i(ω0−ωL)t. Considering this approximation, we get:

Ĥ
(I)
j (t) =

~Ωj(t)

2
σ̂

(j)
+ ei(ω0−ωL)teiηL(â†eiνt+âe−iνt) + h.c. (1.2.28)

where Ωj(t) := −dj · EL(t)e−iφj(kL)/~ is the Rabi frequency associated with the laser field
envelope. In this chapter, our aim is to derive a simple model, which can be easily manipulated
to implement quantum processing techniques, as will be done in the next section. The work
done in ref. [1] on the derivation of models for quantum processing with cold trapped ions is
very complete, but a bit technical for this chapter, due to the eiηL(â†eiνt+âe−iνt) term in the last
expression. For simplicity, we consider that the spatial extent Z0 = K(1)

j

√
~

2mν
is much smaller

than the laser wavelength. This approximation is called Lamb-Dicke regime, and involves the
condition (see [1], appendix B):

η2
L

2
� 1. (1.2.29)

Using the Baker-Campbell-Hausdorff formula: eÂ+B̂ = eÂeB̂e−
1
2
Â,B̂], we write:

eiηL(â†eiνt+âe−iνt) = e−
η2
L
2

(
1l + iηLâ

†eiνt +O(η2
L)
) (

1l + iηLâe−iνt +O(η2
L)
)

≈
(
1l + iηLâ

†eiνt + iηLâe−iνt
)
, (1.2.30)

and the interaction picture Hamiltonian becomes:

Ĥ
(I)
j (t) =

~Ωj(t)

2
σ̂

(j)
+ ei(ω0−ωL)t

(
1l + iηLâ

†eiνt + iηLâe−iνt
)

+ h.c. (1.2.31)

From this expression, we see three terms oscillating with three different frequencies. When
the frequency of the laser is tuned to one of these terms the two others are fast-rotating and
consequently are evinced from the dynamics. If ωL ∼ ω0 the first term becomes slow-varying
and corresponds to the carrier frequency: in the dynamics the laser controls the |g〉 ↔ |e〉
for a given number state |n〉 for the vibrational motion. For ωL ∼ ω0 ± ν, either the second
or the third term becomes slow-varying, and those transitions correspond to the blue and red
sideband, respectively. The blue sideband frequency drives the transitions |g〉|n〉 ↔ |e〉|n+1〉,
and the red sideband drives |g〉|n+ 1〉 ↔ |e〉|n〉. A sketch representing the vibrational ladder
and the possible transitions is displayed in fig. 1.7.

Excitation of a single center-of-mass mode

From the Hamiltonian (1.2.31), we can see that it is possible to manipulate both the internal
and the vibrational states. Using different techniques of laser cooling, it is possible to bring the
ions into the vacuum vibrational state |0〉, and start the dynamics from there. We focus here
on how to excite a single center-of-mass vibrational mode using two laser beams: according
to the previous derivation and fig. 1.7, we require a carrier and a red sideband control, which
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Figure 1.7: Two-level structure of the internal states of a single trapped ion, with the vibrational
ladder associated with the creation/annihilation operators â†, â of a COM mode. The states can be
driven with three different frequencies corresponding to the carrier (ω0), the red sideband (ω0 − ν),
and the blue sideband (ω0 + ν). These three transitions are shown with black, red and blue double
arrows, respectively. On the right, we display the level scheme in the dressed basis (|i, n〉 ≡ |i〉|n〉
with i = g, e and n = 0, 1, 2...).

can be done using two laser pulses whose frequencies approach ω0 and ω0 − ν, respectively.
The coupling being assumed to be weak, we have therefore two Rabi frequencies associated
with each laser (for simplicity we drop the index j as we manipulate only one ion): ΩC(t)
and ΩR(t), with frequencies ωC ∼ ω0 and ωR ∼ ω0− ν. The Hamiltonian (1.2.31) back in the
Schrödinger picture is then:

Ĥ(t) = ~ω0σ̂+σ̂− + ~νâ†â+

(
~ΩC(t)

2
σ̂+e−iωCt +

~Ω̃R(t)

2
σ̂+âe−iωRt + h.c.

)
, (1.2.32)

where Ω̃R(t) = iηRΩR(t), ηR being the Lamb-Dicke parameter associated with the red side-
band laser beam. Finally, we transform the Hamiltonian into a rotating frame defined by the
operator:

R̂(t) := e−iωCt σ̂+σ̂−e−i(ωR−ωC)t â†â, (1.2.33)

leading to:

ĤR(t) = R̂†(t)Ĥ(t)R̂(t) + i~
dR̂†
dt
R̂(t)

= ~∆C σ̂+σ̂− + ~(∆C −∆R)â†â+

(
~ΩC(t)

2
σ̂+ +

~Ω̃R(t)

2
σ̂+â+ h.c.

)
, (1.2.34)

where we introduced the detunings ∆C = ω0 − ωC and ∆R = ω0 − ν − ωR, which should be
small compared to the frequencies ω0, ν. Taking the initial state to be:

|ψ(ti)〉 = |g, 0〉, (1.2.35)
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we can write the matrix form of the Hamiltonian in the rotating frame, in the single excitation
basis {|g, 0〉, |e, 0〉, |g, 1〉}:

ĤR(t)/~ =




0 1
2
ΩC(t) 0

1
2
Ω∗C(t) ∆C

1
2
Ω̃R(t)

0 1
2
Ω̃∗R(t) ∆C −∆R


 , (1.2.36)

and we recognize the structure of the Raman Hamiltonian (1.1.28).

1.3 Building arbitrary gates by adiabatic passage
We show, in this section, the feasibility of arbitrary quantum gates using adiabatic techniques.
It has been shown recently that a general SU(d) transformation can be implemented much
more efficiently, scaling as d operations, than d/2 sequences of SU(2) transformations, scaling
as d2. The mathematical transformation involved in an arbitrary SU(d) transformation is
called a generalised Householder reflection (HR). In a Hilbert space of dimension d, the
generalised HR has the form [45]:

M̂(χ;ϕ) = 1̂l + (eiϕ − 1)|χ〉〈χ|, (1.3.1)

where 1̂l is the identity operator, ϕ is a parametrizable phase, and |χ〉 is a parametrizable
vector belonging to the Hilbert space. This type of construction has been recently investigated
for the qutrit [46]. A HR can remarkably result from the propagator in the degenerate
manifold of a d-pod quantum system, which consists of d degenerate states coupled to a single
common upper state by d simultaneous pulsed fields of well-defined detuning and areas [47].
This applies in particular in an ensemble of trapped ions in a linear Paul trap [48]. The
quantum search algorithm can be, in principle, implemented without gates and circuits by
such HR transformations [32,49,50]. On the other hand, concrete implementations of quantum
information processing, and more generally of the control of quantum systems, suffers from
the imperfection of the systems, of the lack of knowledge on the system, and of decoherence
by the environment. In particular, the laser scheme proposed in references [45, 47] for the
implementation of a HR transformation requires stringent conditions of detuning and pulse
areas, which makes it difficult to implement in practice. It also leads to a significant population
transfer in the lossy excited state. Thus robust techniques that, in addition, restrict the
dynamics to decoherence-free subspaces, are desirable. Adiabatic passage techniques, and
especially the ones that make use of dark states, such as the stimulated Raman adiabatic
passage (STIRAP), are designed to overcome these issues [3–5]. STIRAP has been shown, for
instance, to allow the transfer between arbitrary initial and final superpositions of states [6].
The extension of such results to the construction of a general gate is a much more difficult task
since it requires to implement in a controlled way the propagator that produces an arbitrary
SU(d) transformation. This has been solved only by adiabatic techniques to generate an
arbitrary single-qubit gate [51], specific two-qubit gates [52–54], and a continuous version of
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the Grover search algorithm [55–57].
We solve the above issue by proposing a controlled adiabatic scheme that implements an
arbitrary SU(d) transformation. More precisely, we show how to generate any HR by a two-
shot STIRAP. Such processes are then sequentially composed according to the factorisation
of a SU(d) transformation into HRs. We show the remarkable property that the energy of the
lasers is constant as a function of d to achieve the adiabatic synthesis. This implies a growth
of the energy only as d for the implementation of an arbitrary SU(d) transformation. As an
example, we show a numerical synthesis of the quantum Fourier transform on a quartit (i.e.
a qudit with d = 4). We finally present a discussion for its practical implementation.

1.3.1 Householder reflections by adiabatic passage

...

...

gg...g,1

1 2 d a

eg...g,0 ge...g,0 g...eg,0 gg...e,0

S
PdP2

P1

...

1 2 d
d+1...

P1 P2 Pd S

Pi, S
i = 1,...,d

g

e

(a)

(b)

Figure 1.8: (a) Level scheme of the (d + 1)-pod featuring the d states of the qudit (labeled
from |1〉 to |d〉) and the ancillary state |a〉. The pump fields {P1, P2, ..., Pd} couple the states
of the qudit to an excited state, and a Stokes field S couples the ancillary to the excited state.
(b) The states can be identified with multipartite states from d + 1 trapped two-level ions
through zero- and one-phonon states and individually coupled by the pump and Stokes fields,
respectively.

We consider a (d + 1)-pod system comprising d + 1 ground states: the d states of the
qudit, and an ancillary state. All of them are coupled to a common excited state by d pump
lasers for the d first transitions, and a Stokes laser for the last one involving the ancillary
state (see fig. 1.8). Such a quantum system can be implemented by d + 1 ions in a linear
Paul trap, generalizing the system described in the previous section for one ion (see equation
(1.2.36)). The system is designed such that one laser pulse drives one ion using a vibrational
red sideband transition through the Coulomb interaction between all ions. As can be seen on
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fig. 1.8, the d + 1 trapped ions and their center-of-mass quantized motion create a dressed
state basis where:

• either one ion is in its excited state |ej〉, and the vibrational motion is in a vacuum state
|0〉,
• or all ions are in their ground states |gj〉, and one vibrational quantum is excited: |1〉.

For notational simplicity, we write the dressed states in the form {|g1〉 ⊗ ...⊗ |gj−1〉 ⊗ |ej〉 ⊗
|gj+1〉 ⊗ ... ⊗ |gd+1〉} ⊗ |n〉 ≡ |g...geg...g, n〉, with n = 0, 1 being the number of vibrational
quanta. The full basis contains d+ 2 elements and reads:

{|gg...g, 1〉, |eg...g, 0〉, |ge...g, 0〉, ..., |gg...e, 0〉}. (1.3.2)

The one-phonon excitation state |gg...g, 1〉 is coupled to all other states by d + 1 red side-
band laser pulses: d of them are pumps and will be denoted P1, P2, ..., Pd, and the last
one is a Stokes pulse, denoted S. All pump fields drive population of the defined qudit
{|eg...g, 0〉, |ge...g, 0〉, ..., |g...eg, 0〉} = {|1〉, |2〉, ..., |d〉} to the one-phonon state |gg...g, 1〉. The
Stokes drives population of the ancillary state, that we denote |gg...e, 0〉 = |a〉, with the same
excited state. We rewrite the basis:

{|a〉, |gg...g, 1〉, |1〉, |2, 〉, ..., |d〉︸ ︷︷ ︸
qudit

}. (1.3.3)

The symbols Pj and S denote the Rabi frequency corresponding ton respectively, the pump
fields j and the Stokes field with their respective transition moment.
The initial condition for the wavefunction is composed of any superposition of the first d
ground states:

|ψ(ti)〉 ≡ |ψi〉 = a1|1〉+ a2|2〉+ ...+ ad|d〉, (1.3.4)
and the fields are designed such that the Stokes-pump field sequence, where all the pumps
share a common pulse-shape dependence P0(t) (assuming that they are produced from a
single source), drives all the population to the ancillary state |a〉 by STIRAP. The full RWA
Hamiltonian written in basis (1.3.3) reads, in matrix form:

Ĥ(t) =




0 S∗(t) 0 0 . . . 0
S(t) ∆S P ∗1 (t) P ∗2 (t) . . . P ∗d (t)

0 P1(t) ∆S −∆P 0 . . . 0

0 P2(t) 0
. . . ...

...
...

...
0 Pd(t) 0 . . . ∆S −∆P



, (1.3.5)

where ∆S = ωS−ω0 +ν and ∆P = ωP −ω0 +ν. For the STIRAP to be achived, one requires a
two-photon resonance, that is ∆S = ∆P , therefore the diagonal term ∆S−∆P must vanish. In
the Hamiltonian (1.3.5), we can parametrize the pump fields Pj(t) in amplitudes and phases,
in the following manner:




P1(t)
P2(t)
...

Pd(t)


 = P0(t)




χ1

χ2
...
χd


 ≡ P0(t)|χ〉, (1.3.6)
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where P0(t) is a common real time-dependence shape for the pump fields (assuming we use
the same laser source), and |χ〉 is the vector which parametrizes the phases and amplitudes
of each component. As we will show, this |χ〉 vector is the same as in the Householder
reflection expression (1.3.1). Using these assumptions, we can find a (d + 1)-fold basis
{|a〉, |gg...g, 1〉, |χ〉, |n.c.1〉, ..., |n.c.d−1〉} where the dynamics happen only in the 3-fold sub-
space {|a〉, |gg...g, 1〉, |χ〉}. The basis vectors {|n.c.j〉} are not coupled to |gg...g, 1〉, therefore
they correspond to a subspace where nothing is affected by the dynamics. This basis is found
when we have defined a proper unitary, time-independent transformation T̂ :

T̂ =

(
1l2 02×d

0d×2 T̂d

)
, T̂d =

(
|χ〉, |n.c.1〉, ..., |n.c.d−1〉

)
, (1.3.7)

which leaves |a〉 and |gg...g, 1〉 unchanged while the qudit basis is being transformed into the
χ-basis:

{|1〉, |2〉, ..., |d〉} T̂d−→ {|χ〉, |n.c.1〉, ..., |n.c.d−1〉}.
The general parametrization of |χ〉 can be set defining angles θj such that 0 6 θj < π/2 and
1 6 j 6 d− 1, in the following way:

|χ〉 =




χ1 = cos θ1 cos θ2... cos θd−1

χ2 = sin θ1 cos θ2... cos θd−1eiφ2

χ3 = sin θ2 cos θ3... cos θd−1eiφ3

...
χd = sin θd−1eiφd



, (1.3.8)

where φj are the relative phases of the pump fields Pj with respect to P1 (φ1 = 0). The
above expression also ensures that 〈χ|χ〉 = 1, and one has to find the other components of
the transformation T̂d. This is achieved when we recall the unitary property T̂ †d T̂d = 1̂l or,
similarly:

〈n.c.j|χ〉 = 0 (1.3.9a)
〈n.c.j|n.c.k〉 = δjk. (1.3.9b)

We complete the transformation T̂d by writing the remaining columns, given by the |n.c.j〉:

|n.c.j〉 =




cos θ1... cos θj−1 sin θj
cos θ1... sin θj−1 sin θje

iφ2

...
cos θ1... cos θj−n sin θj−n+1... sin θje

iφn

...
sin θ1... sin θje

iφj

− cos θje
iφj+1

#»
0 d−(j+1)




, (1.3.10)

where 1 6 n 6 j labels the components and #»
0 d−(j+1) is a column of d − (j + 1) zeros.

Projecting the Hamiltonian (1.3.5) in the new basis, corresponding to a Morris-Shore basis,
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...

...

gg...g,1

1 2 d a
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...
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a χ
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n.c.1 n.c.d-1
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transf.

Figure 1.9: Sketch of the Morris-Shore transformation applied on the qudit basis {|1〉, ..., |d〉}. The
transformation projects the full system into an effective Λ system in the basis {|a〉, |gg...g, 1〉, |χ〉}.
All states |n.c.j〉 remain unaffected by the dynamics. This transformation can be applied when all
the pump fields share a common pulse shape dependence.

we get:

ĤMS(t) = T̂ †Ĥ(t)T̂ ≡




0 S∗(t) 0
S(t) 0 P0(t)

0 P0(t) 0


 , (1.3.11)

where we wrote the matrix form in the subspace {|a〉, |gg...g, 1〉, |χ〉}, as there are zeros ev-
erywhere else. The Morris-Shore transformation leads to a new basis where the (d + 1)-pod
system becomes an effective three-level (or Λ) system, as shown in fig. 1.9.
The most general quantum gate can be synthesized by a product of, at most, d Householder
reflections. Each of them is parametrized by angles θ1, ..., θd−1 and phases φ2, ..., φd in vector
|χ〉, plus an extra phase ϕ:

d∏

n=1

M̂d(χn;ϕn).

Each Householder reflection is built as follow:

• We start in the initial condition (1.3.4), and a first counter-intuitive Stokes-pump pulse
sequence brings population from |χ〉 to |a〉.

• After the first population transfer, a pump-Stokes pulse sequence brings back population
from |a〉 to eiϕ|χ〉, where a phase ϕ has been introduced with the second Stokes pulse,
so that the overall transfer |χ〉 → eiϕ|χ〉 is achieved.

A sketch of the physical process leading to the Householder reflection is shown in fig. 1.10.
When the process is over, the wavefunction |ψ(tf )〉 ≡ |ψf〉 is obtained by writing |ψi〉 in
the Morris-Shore basis and replacing |χ〉 by eiϕ|χ〉. Identifying the initial state in the final
expression, we can write the propagator Û(tf , ti) in the adiabatic limit:

Û(tf , ti) =




1 + (eiϕ − 1)|χ1|2 (eiϕ − 1)χ1χ2 . . . (eiϕ − 1)χ1χd
(eiϕ − 1)χ∗1χ

∗
2 1 + (eiϕ − 1)|χ2|2 . . . (eiϕ − 1)χ2χd

...
... . . . ...

(eiϕ − 1)χ∗1χ
∗
d (eiϕ − 1)χ∗2χ

∗
d . . . 1 + (eiϕ − 1)|χd|2


 ≡ M̂d(χ;ϕ).

(1.3.12)
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Figure 1.10: Pulse sequence with two consecutive STIRAPs generating the HR transformation
M̂d(χ;ϕ). Here the ensemble of the d pump fields P ≡ P0|χ〉 is schematically represented by a single
line. The second STIRAP is reversed with respect to the first one and contains the additional phase
ϕ for the Stokes pulse.

We remark the importance of the phase ϕ introduced with the second Stokes pulse: if ϕ = 0,
then M̂d(χ; 0) = 1̂l. For more details about how the Householder reflection synthesized by the
two-shot STIRAP is derived, we refer to appendix 1.A, where for simplicity we expanded the
derivation for a qubit (d = 2).
In practice, when we want to implement a specific quantum gate on a qudit, we have to
proceed as follow:

• The most general quantum gate on a d-dimensional space being a product of, at most,
d different HRs, the recipe for the factorisation of the desired gate into HRs has to
be known. The parametrization will then be spanned on k (1 6 k 6 d) Householder
vectors |χ〉` and phases ϕ`, 1 6 ` 6 k.

• For each specific HR, one has to determine the angles θj, j = 1, ..., d− 1 that define the
transformation (the phases φj are simply given by the phases of the components χj).
One achieves this program using the relations from the components of |χ〉:

cos2 θd−1 = |χ1|2 + ...+ |χd−1|2
cos2 θd−2 cos2 θd−1 = |χ1|2 + ...+ |χd−2|2

...
cos2 θ1... cos2 θd−1 = |χ1|2. (1.3.13)

1.3.2 Quantum Fourier transform on a quartit and energy study

To illustrate the construction of Householder reflections to design arbitrary quantum gates,
we show an implementation of a quantum Fourier transform (QFT), which is of great interest
in quantum computing, especially in algorithms like the famous Shore factorization algorithm.
The general qudit QFT is given by the unitary transformation:

F̂d =
1√
d

d∑

j,k=1

ei
2π(j−1)(k−1)

d |j〉〈k|. (1.3.14)

Recipes of QFT have been shown with qubits [28, 29, 58], and recently with qudits, using
Householder reflections [45, 46]. In this section, we apply the QFT on a quartit, or so to say
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Figure 1.11: Quartit in a 5-pod system, manipulated by two-shot STIRAP Householder
reflections to design a quartit QFT.

a qudit with d = 4. The matrix form of the QFT in the quartit basis {|1〉, |2〉, |3〉, |4〉} reads:

F̂4 =
1

2




1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i


 . (1.3.15)

This transformation is synthesized with two Householder reflections [45]:

F̂4 = M̂4(χ2; π)M̂4(χ1; π/2),

|χ1〉 =
1√
2




0
1
0
−1


 , |χ2〉 =

1

2




−1
1
1
1




, (1.3.16)

each of them being parametrized with a specific pulse sequence whose characteristics are given
by vectors |χ1〉, |χ2〉 and phases ϕ1, ϕ2. The quartit as a 5-pod system being manipulated by
two-shot STIRAPs to get Householder reflections is displayed in fig. 1.11.
The QFT can be described in two steps, each of them describing the physical implementation
of one Householder reflection:

• The first HR: M̂4(χ1; π/2). The parametrization of |χ1〉 shows that, for pumps, only
P2 and P4 are turned on during this process, each time having a phase difference of π
between them. The second Stokes pulse should have a phase difference of π/2 with the
first one.

• The second HR: M̂4(χ2; π). This time all pumps are on, and P1 must have a π phase
difference with all other pulses. The second Stokes should also have a phase difference
of π with the first one.

We solved the Schrödinger equation with this specific pulse sequence, and displayed the results
on figure 1.12. The dynamics are being focused on the propagator solution of the Schrödinger
equation:

i~
d

dt
Û(t, ti) = Ĥ(t)Û(t, ti), (1.3.17)
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as we are interested in the gate obtained at the end of the process. Such a computation must
be independent of the initial state, that is:

Û(ti, ti) = 1̂l. (1.3.18)

The third graph shown in fig. 1.12 is a calculation comparing the elements of Û(t, ti) and the
target propagator F̂4. The quantity being evaluated is the infidelity, as a matrix dimensionless
distance, defined as:

||Û4(t, ti)− F̂4|| = Tr

{(
Û(t, ti)− F̂4

)†(
Û(t, ti)− F̂4

)}
. (1.3.19)

The infidelity vanishing means that Û4(t, ti), being the propagator projected on the quartit
subspace, is strictly equal to F̂4, which is achieved in the end of the second Householder
reflection. The number of non-simultaneous pulses to reach the quartit QFT is 8. For a
qudit, the generalized quantum gate requires in general 4d non-simultaneous pulses, as d HRs
are in general required.
We study below, as a function of d, the total fluence of the amplitude of the laser fields (that
is, its time integrated pulse area), which is proportional to the total Rabi frequency fluence:

FE =

∫
+∞

−∞

dt

(
|S(t)|+

d∑

j=1

|Pj(t)|
)
, (1.3.20)

and the laser intensity fluence, corresponding to the laser energy (per unit area), proportional
to the fluence FI of the mean square pump Rabi frequency and the square Stokes Rabi
frequency:

FI =

∫
+∞

−∞

dt
(
|S(t)|2 + |P0(t)|2

)
. (1.3.21)

From the effective Hamiltonian (1.3.11), we immediately conclude that the process does not
depend on d. This means the remarkable property that the energy (FI) required to achieve
by adiabatic passage a single HR operation does not depend on d. This result is shown
numerically in fig. 1.13, where we have determined, for random HR (constructed from a
random normalized vector |χ〉 and taking ϕ = π), the peak amplitude of P0(t) from which
the infidelity ||Ûd(t, ti) − M̂d(χ; π)|| goes below the accuracy 10−4. On the other hand, we
anticipate the total Rabi frequency fluence FE to be bounded by a function growing as

√
d

for large d, since the adiabaticity criterium is given by the area P0,peakT � 1, with P0,peak the
peak amplitude of P0(t) and taking Speak ∼ P0,peak. We have indeed:

Speak +
d∑

j=1

Pj,peak = Speak + P0,peak

d∑

j=1

χj 6 Speak + P0,peak

√
d. (1.3.22)
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Figure 1.12: Numerical simulation of the quantum Fourier transform on a quartit in a 5-pod system
with two HRs. Upper: the dimensionless Rabi frequencies associated with the pump and Stokes
fields. The sequence of the pump and Stokes lasers allows the implementation of the two required
HRs, M̂4(χ1;π/2), where only the pumps P2 and P4 are on, and next M̂4(χ2;π), where all the pumps
are on [according to equation (1.3.16)]. All pulses are of shape e−(t/T )2 and the time delays between
Stokes and pumps are all T/1.4. Middle: Dynamics of the 5-pod system during the process for the
particular initial condition |ψi〉 = 1

2(|1〉+ i|2〉+ |3〉+ |4〉). Lower: Infidelity as dimensionless distance
||Û4(t, ti)− F̂4|| between the propagator Û4(t, ti) (projected in the space defining the quartit states)
and the quartit QFT F̂4.
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Figure 1.13: Normalized square Rabi frequency fluence FI proportional to the energy per area
unit (green crosses, in units of 1/T ) and normalized Rabi frequency fluence FE proportional
to the laser field amplitude fluence (crosses, dimensionless, fitted by the bent solid red line)
required to synthesize numerically a random HR with an infidelity below 10−4 as a function
of the dimension d. For simplicity, only the pump fields have been considered in the present
calculation. The curve fitting FE and the normalized Rabi frequency fluences are bounded
by P0,peakT

√
d.

Summary
In conclusion, we have summarized the basic concepts of quantum information and quantum
computation, expanded the formalism of adiabaticity with the Schrödinger equation when
manipulating single atoms or ions by laser pulses, and detailed the physical implementation
of such processes with the example of ions in a Paul trap. Lastly, we proposed a new technique
to perform an arbitrary quantum gate on a qudit, which is synthesized with d Householder
reflections at most. In the case of the Fourier transform, this is promising because this
algorithm requires n2/2 operations if done on a set of n qubits, but viewing the latter as a
single qudit of dimension d = 2n, the number of operations is reduced to d.
We have shown that a double STIRAP can be used to produce a single Householder reflection,
which acts as a phase gate in the space {|a〉, |χ〉}. It has been recently shown that a phase gate
can be used directly in the space {|χ〉, |gg...g, 1〉} if non-negligible population in the excited
state is allowed [59].
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Appendix

1.A Derivation of the Householder reflection for a qubit
We derive the Householder reflection transformation for a qubit, which shows in a simple
way how the general propagator is obtained. Generalization to higher dimensional qudits is
straightforward. The Hamiltonian and the transformation in the basis {|a〉, |ggg, 1〉, |1〉, |2〉}
are:

Ĥ(t) =




0 S∗(t) 0 0
S(t) 0 P ∗1 (t) P ∗2 (t)

0 P1(t) 0 0
0 P2(t) 0 0


 , T̂ =




1 0 0 0
0 1 0 0
0 0 cos θ sin θ
0 0 sin θeiφ − cos θeiφ


 . (1.A.1)

Here, the parametrization is done so that
{
P1(t)
P2(t)

}
= P0(t)|χ〉 ≡ P0(t)

{
cos θ

sin θeiφ

}
. From

the arbitrary initial state:
|ψi〉 = a1|1〉+ a2|2〉, (1.A.2)

we reach a final state where the |χ〉 component acquires a phase factor eiϕ. We need to write
the qubit vector components {|1〉, |2〉} in terms of {|χ〉, |n.c.〉}, which is done by inverting the
transformation T̂2:

{
|χ〉 = T̂2|1〉
|n.c.〉 = T̂2|2〉

inversion−→
{
|1〉 = T̂ †2 |χ〉 = cos θ|χ〉+ sin θ|n.c.〉
|2〉 = T̂ †2 |n.c.〉 = e−iφ

(
sin θ|χ〉 − cos θ|n.c.〉

) . (1.A.3)

Writing the initial and final states in the new basis, we get:

|ψi〉 = a1

(
cos θ|χ〉+ sin θ|n.c.〉

)
+ a2e−iφ

(
sin θ|χ〉 − cos θ|n.c.〉

)
yHR: |χ〉→eiϕ|χ〉

|ψf〉 = a1

(
cos θeiϕ|χ〉+ sin θ|n.c.〉

)
+ a2e−iφ

(
sin θeiϕ|χ〉 − cos θ|n.c.〉

)
, (1.A.4)

and writing the final state in the original basis, one obtains:

|ψf〉 =
(
a1(cos2 θeiϕ + sin2 θ) + a2e−iφ sin θ cos θ(eiϕ − 1)

)
|1〉

+
(
a1eiφ sin θ cos θ(eiϕ − 1) + a2(eiϕ sin2 θ + cos2 θ)

)
|2〉. (1.A.5)

The propagator is obtained by writing this result in a matrix form, and using the identity
sin2 θ + cos2 θ = 1:

|ψf〉 =




1 + (eiϕ − 1) cos2 θ (eiϕ − 1) sin θ cos θe−iφ

(eiϕ − 1) sin θ cos θeiφ 1 + (eiϕ − 1) sin2 θ






a1

a2


 = Û(tf , ti)|ψi〉, (1.A.6)

retrieving the expression for the Householder reflection Û(tf , ti) ≡ M̂2(χ;ϕ), for |χ〉 =
cos θ|1〉+ sin θeiφ|2〉.
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Objectives: In this chapter, we explore quantum optics in the field of cavity
quantum electrodynamics (cQED). Starting from the general field quantization pro-
cedure, we follow the construction of the cavity field, whose losses are modeled with
a reservoir coupling. We also present an alternative derivation of the atom-field ef-
fective model, and results for the generation of single and few-photon states leaking
from a cavity.

Guideline:
• Canonical quantization in a lossless dielectric medium.

• Study of the one-dimensional cavity system: response function, photon flux,
master equation.

• Alternative derivation of the effective atom-cavity model with global field op-
erators.

• Study of the output field with one and two Λ-atoms inside a cavity.

• keywords: canonical quantization, cavity, eigenmode equation, response func-
tion, input-output relations, photon flux, spontaneous emission, single photon,
photon state.

Results/novelty: Production of photon states from multiple Λ-atoms in a
cavity.
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2.1 Model for cavity quantum electrodynamics (cQED)
with imperfect mirrors

The quantization procedure for the electromagnetic modes of a perfect cavity is, nowadays,
well known. The quantization leads to a set of discrete normal modes with annihilation and
creation operators assigned to each of them. The wave functions associated with those modes
are the solutions of the one-dimensional Helmholtz equation, with zero boundary conditions
at the positions of the mirrors: the result is a set of sine functions with different discrete
frequencies ωn = nπc

`
, where ` is the length of the one-dimensional cavity.

The conventional way to describe a cavity field must, however, take losses via imperfect
(yet not absorbing) mirrors into account. Deriving models that are closer to real experiments,
having imperfect mirrors has its own interest, since it allows to transfer photons from the
cavity to propagating modes. In this work we will consider that one mirror is perfect while the
other is not in order to identify a unique channel for leaking photons. The procedure usually
adopted describes the damping of the radiation field in the cavity with a phenomenological
system-reservoir approach [60,61], where the cavity system is described by a set of quantized
harmonic oscillators associated to the discrete modes the cavity would have in the absence
of damping. The reservoir is another set of quantized harmonic oscillators associated with
the continuum of external free-space modes. It is often assumed that the coupling strength
between cavity and outside modes is independent of the frequency, leading to a Markovian
damping. The input-output relations, which relate in principle the outside field to the intra-
cavity field, are also based on this property. However, it has been shown by Dutra and
Nienhuis that this property is valid up to the first order in the transmission coefficient |t|,
based on the derivation of the phenomenological Hamiltonian from first principles [62, 63].
It allows one to obtain an explicit expression for the coupling strength. They show that
the phenomenological Hamiltonian is valid up to the first order transmission of the leaking
mirror, i.e. it is well justified for high-Q cavities. We present this approach in this section,
the approximations it involves and derive its consequences on the input-output formulation.
We also show that it allows one to characterize the leaking photon by including the Poynting
vector to this formulation.
In section 2.2, we will focus on another way of deriving effective models for cQED and show
that it is consistent with the derivation of Dutra and Nienhuis, since it leads to the effective
Hamiltonian up to the first order in the transmission |t|. This description will be used to link
cQED and plasmonic QED, studied in the next part of the thesis. Indeed, the input-output
description is valid for high-Q cavities, but in the case of plasmons the quality factor is low.
This requires stepping back to the global field description and building the effective model
from this starting point. As we show the equivalence of the input-output and the global field
approaches, this paves the way for cQED-like description of quantum plasmonics.
The chapter is organized as follows:

• In the first section we present the general field quantization, and its application to
a one-dimensional cavity and spontaneous emission in a homogeneous medium. The
global field operators are introduced, and we provide a description of the input-output
equivalence, i.e. the decomposition of the global field into a perfect cavity field coupled
to a set of continuous reservoir operators. We base the derivation of the photon flux
and the master equation on the input-output approach.
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• The second section is an alternative derivation of the atom-cavity field model, based on
the coupling between the atom and the global field operators. We show the equivalence
of this derivation with the input-output model, which is useful as the plasmonic system
will be studied under the structure of this alternative derivation.

• The last section presents results on the control of photon wavepackets leaking from a
cavity, with the use of single and multiple atoms coupled to a cavity field.

2.1.1 Quantization of the electromagnetic field

In this section we derive the quantization of the electromagnetic field in a linear, passive
medium. The standard quantization procedure is slightly tricky because unlike atoms, the
electromagnetic field is a continuous distribution of harmonic oscillators. A single harmonic
oscillator is quantized by writing the canonical variables q, p and substituting them by oper-
ators q̂, p̂ acting on a well-defined Hilbert space L2(R, dq). An infinite collection of harmonic
oscillators would then bring a total Hilbert space as an infinite tensor product of L2(R, dq),
and since d∞q is not a well-defined Lebesgue measure, the total space would not be defined
either [64]. The difficulty with the definition of the Hilbert space is avoided by reformulat-
ing the theory in a well-defined Fock space, which is isomorphic to L2(RN , dNq) for models
with finite degrees of freedom N . Another difficulty arises due to the electromagnetic field
transversality constraint ∇ · A = 0 (in a homogeneous medium), leading to the canonical
variables A,Π not being independent. The redundancy is removed by making a canonical
change of variables such that in the new coordinate system, the constraint is automatically
satisfied.

We start the quantization procedure by writing Maxwell’s equations for an inhomogeneous
lossless dielectric medium [65,66]:

∇ · (ε(r)E) = 0

∇× E = −∂B

∂t
∇ ·B = 0

∇×B = µ0ε(r)
∂E

∂t
,

(2.1.1)

(2.1.2)

(2.1.3)

(2.1.4)

where ε(r) = ε0εr(r) is the dielectric function of the medium. As usual we define the vector
potential A:

B = ∇×A, (2.1.5)

E = −∂A

∂t
−∇φ, (2.1.6)

where φ is the scalar electric potential. Combining Maxwell’s equations and the generalized
Coulomb gauge:

∇ · (ε(r)A) = 0, (2.1.7a)
φ = 0, (2.1.7b)
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we find the propagation equation for the vector potential:
(
∂2

∂t2
+

c2

εr(r)
∇×∇×

)
A = 0. (2.1.8)

At this point we make the change of variables A′ =
√
εr(r)A in order to get a Hermitian

and self-adjoint operator acting on the field variable, and write the latter equation as a
Hamiltonian system. The propagation equation turns into:

(
∂2

∂t2
+ Ω2

)
A′ = 0, (2.1.9)

where we define the Hermitian operator Ω := (Ξ†Ξ)1/2, with Ξ = c∇ × 1√
εr
. The next step

consists in defining a canonically conjugate variable Π′ such that the pair (A′,Π′) forms a
Hamiltonian system. This is done in appendix 2.A, where all the steps of the quantization
procedure are detailed. The field variables (A′,Π′) are then expressed as linear combinations
of complex eigenfunctions Φκ forming a complete orthonormal basis, satisfying the transver-
sality constraint:

∇ · (εΦκ) = 0. (2.1.10)

The latter must satisfies the eigenmode equation:

Ω2Φκ = ω2
κΦκ, (2.1.11)

where ωκ is the frequency associated to the normal mode labelled κ. Using the basis that
satisfies the constraints, we go to a new set of canonical, constraint-free variables with a map
(A′,Π′) 7→ (q, p). The latter are quantized using the principle of correspondence, and this
leads to the expressions of the quantized field variables in terms of the eigenfunctions Φκ, the
eigenvalues ωκ, and the creation/annihilation operators â†κ, âκ:

Â′(r) =
∑

κ

√
~

2ωκ

(
Φκ(r)âκ + Φ∗κ(r)â†κ

)
(2.1.12a)

Π̂
′
(r) = −i

∑

κ

√
~ωκ

2

(
Φκ(r)âκ −Φ∗κ(r)â†κ

)
, (2.1.12b)

where the creation/annihilation pairs are linear combinations of the quantized versions of
(q, p) (see appendix 2.A). The corresponding electric field is given by:

Ê(r) = − 1√
εr(r)

Π′(r), (2.1.13)

and the quantum Hamiltonian of the electromagnetic field is finally expressed as:

Ĥ =
1

2

∑

κ

~ωκ
(
â†κâκ + âκâ

†
κ

)
. (2.1.14)
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Quantization in a box and large box limit

In this paragraph, we first check that the global field operator, needed to describe the prop-
erties of leaky cavities is consistent with the standard field quantization for the vacuum (or
a homogeneous medium), derived using the large box limit. In a finite box of volume V with
zero boundary conditions for the electric field, there is a discrete number of possible k-vectors.
Therefore, we can replace the general index κ and its summation by k and a polarization index
λ = 1, 2. The Hamiltonian then assumes the form:

Ĥ =
∑

k,λ

~ωk
(
â†k,λâk,λ + 1

2

)
, (2.1.15)

where the field operators obey the commutation relations:
[
âk,λ, â

†
k′,λ′

]
= δkk′δλλ′ (2.1.16a)

[
âk,λ, âk′,λ′

]
=
[
â†k,λ, â

†
k′,λ′

]
= 0. (2.1.16b)

The electric field is expressed in terms of the annihilation/creation operators. In the vac-
uum, for example, the mode functions Φk,λ(r) reduce to 1√

V
εk,λe

ik·r, with εk,λ being the field
polarization unit vector, and the electric field reads:

Ê(r) = i
∑

k,λ

√
~ωk
2ε0V

εk,λ

(
eik·râk,λ − e−ik·râ†k,λ

)
, (2.1.17)

where ωk = |k|c. In the absence of boundaries, we write the large box limit, leading to a
3-dimensional integral over k:

∑

k,λ

−→ V

(2π)3

∑

λ

∫
d3k. (2.1.18)

The resulting integral leads to operators and mode functions written in units of
√
V/(2π)3:

âk,λ −→ b̂k,λ =
√

V
(2π)3 âk,λ (2.1.19)

Φk,λ(r) −→ Ψk,λ(r) =
√

V
(2π)3 Φk,λ(r), (2.1.20)

where the mode functions are orthonormal to each other: 〈Ψk,λ,Ψk′,λ′〉 = δ(k− k′)δλλ′ . The
commutation relations are then:

[̂
bk,λ, b̂

†
k′,λ′

]
= δ(k− k′)δλλ′ (2.1.21a)

[̂
bk,λ, b̂k′,λ′

]
=
[̂
b†k,λ, b̂

†
k′,λ′

]
= 0. (2.1.21b)

Finally, we write the Hamiltonian and the conjugate fields A′,Π′ in the large box limit:

Ĥ =
∑

λ=1,2

∫
d3k~ωk

(
b̂†k,λb̂k,λ + 1

2

)

Â′(r) =
∑

λ=1,2

∫
d3k

√
~

2ωk

(
Ψk,λ(r)̂bk,λ + Ψ∗k,λ(r)̂b†k,λ

)

Π̂
′
(r) = −i

∑

λ=1,2

∫
d3k

√
~ωk

2

(
Ψk,λ(r)̂bk,λ −Ψ∗k,λ(r)̂b†k,λ

)
,

(2.1.22)

(2.1.23)

(2.1.24)
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2.1.2 The one-dimensional cavity field

Figure 2.1: Sketch of a 1D cavity made of two planar mirrors facing each other. The left
mirror is perfect (r = −1, t = 0) and the right mirror is a thin semi-transparent layer.

We consider two mirrors facing each other, a perfect one placed at position xpm = −`
and a semi-transparent and non-absorbing one placed at position xstm = 0. We first restrict
the system to a one-dimensional model where only linearly polarized fields are taken into
account. As depicted on fig. 2.1, the electric field is polarized along the y-axis, the magnetic
field along the z-axis, and the wave vector is chosen to point in the direction of the positive
x coordinates. The electromagnetic field is determined by solving the eigenmode equation
(2.1.11) (also known as the general Helmholtz equation):

(
∂2

∂x2
+ εr(x)k2

)
Φ(x, ω) = 0, (2.1.25)

where εr(x) is the space-dependent relative permittivity, k = ω/c and Φ(x, ω) is the field
eigenfunction (here being scalar). The semi-transparent mirror is modeled by a medium of
thickness δm and refractive index n such that:

εr(x) =

{
1 if − ` 6 x < 0, x > δm
n2 if 0 6 x < δm,

(2.1.26)

and the reflection and transmission coefficients r(ω), t(ω) of the mirror must fulfill the general
relations:

|r(ω)|2 + |t(ω)|2 = 1, (2.1.27a)
r∗(ω)t(ω) + t∗(ω)r(ω) = 0. (2.1.27b)

By writing equations (2.1.27), we do not consider losses by absorption in the mirror. The
treatment of ohmic losses will be addressed in chapters 3-4, where lossy structured materials
are considered. However, we are interested in the process of cavity losses as a leakage of the
modes outside the cavity. In general, the reflection/transmission coefficients depend on ω
because of the thickness δm and the index of the mirror’s material:

r(ω) = rme−i
ω
c
δm

exp
[
i2nδmω/c

]
− 1

1− r2
m exp[i2nδmω/c]

, (2.1.28a)

t(ω) =
(1− r2

m) exp
[
i(n− 1)δmω/c

]

1− r2
m exp

[
i2nδmω/c

] , (2.1.28b)

rm =
n− 1

n+ 1
. (2.1.28c)
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Equations (2.1.28) are derived from (2.1.25), using the different boundary conditions for the
field, and eventually the global mode function for the vector potential, reads [67,68]:

Φ(x, ω) =
1√

2πcA




−2iei

ω
c
`T (ω) sin

[
ω
c
(x+ `)

]
if − ` 6 x < 0

−e−i
ω
c
x − ei

ω
c
x
[
r(ω)− t(ω)ei2

ω
c
LT (ω)

]
if x > δm,

(2.1.29)

where A is the mode area corresponding to the surface of one mirror, and we have introduced
the cavity response function:

T (ω) =
t(ω)

1 + r(ω)ei2
ω
c
L
, L = `+ δm. (2.1.30)

As can be seen in (2.1.29), we have not written the expression of Φ(x, ω) inside the semi-
transparent mirror, since we are interested in the field inside the cavity to describe the coupling
with atoms, and in the field outside to determine measured quantities like the Poynting vector.
The semi-transparent mirror is seen as a purely passive dielectric layer, described by the
coefficients (2.1.28).
The theoretical limit of a perfect cavity is recovered when n → ∞ (i.e. rm → 1), giving
r(ω) → −e−i

ω
c
δm and t(ω) → 0. If we take additionally ω

c
δm � 1, then r(ω) → −1. In

practice, to ensure high reflectivity, the mirror is made of a complicated dielectric multi-
slab configuration (coating of thin layers). Whatever the mode structure is inside the semi-
transparent mirror, equations (2.1.27), (2.1.29) and (2.1.30) (where L ≈ `, i.e. neglecting the
thickness of the mirror) are general with r(ω)→ −1 and t(ω)→ 0 for a perfect mirror.

High-quality resonator limit

We focus on the expression of the cavity response function (2.1.30), which is shown to have
a Lorentzian structure in appendix 2.B. We underline the nuance between what we call
Lorentzian structure and the fact that T (ω) can be a sum of Lorentzian functions. Indeed,
in appendix 2.B we show the exact result:

|T (ω)|2 =
+∞∑

m=−∞

c

2L

γ(ω)
(
ω − ω̃m(ω)

)2
+
(
γ(ω)

2

)2 , (2.1.31a)

γ(ω) = − c
L

ln |r(ω)|, (2.1.31b)

ω̃m(ω) = m
πc

L
+

c

2L

(
π − φr(ω)

)
, (2.1.31c)

where φr(ω) = arg(r(ω)), and the Lorentzian structure (2.1.31a) can be approximated as
a discrete sum of Lorentzian functions only if r(ω) is slow-varying in ω for the range of
frequencies considered, i.e. the eigenfrequencies ωn of the perfect cavity case. This condition
can be achieved when the reflection coefficient modulus is close to 1 (as shown in fig. 2.2)
and more generally when the reflection coefficient is sufficiently flat in frequency, i.e. does
not vary significantly over the width of the Lorentzian. In this case one can indeed make a
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Figure 2.2: (a) Absolute value of the reflection coefficient r(ω) (2.1.28a) with rm = 0.75 (dark blue
line). Corresponding square modulus cavity response function |T (ω)|2 (2.1.30), normalized with its
maximal value (black line), and its approximative representation as a sum of Lorentzian lineshapes
Lm(ω) (equation (2.1.31a) with r(ω) ' r(ωm)), also normalized with the maximal value of |T (ω)|2
(dashed blue line). (b) Error between the full response function and the Lorentzian fit, as a function
of |t|2. The error is defined as 1 − 〈T , Lm〉, where the scalar product is the integral over ω of the
response function times the Lorentzian fit, in a bandwidth taken around a resonance ω̃m.
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further approximation:

|T (ω)|2 ≈
+∞∑

m=−∞

Lm(ω); Lm(ω) =
c

2L

Γm(
ω − ω̃m

)2
+
(

Γm
2

)2 , (2.1.32a)

Γm = γ(ωm), (2.1.32b)

ω̃m = m
πc

L
+

c

2L

(
π − φr(ωm)

)
. (2.1.32c)

The approximation made in (2.1.32) is analyzed numerically and is shown in fig. 2.2 (b).
We refer to this Lorentzian behaviour in section 2.2, where we use it to derive an alternative
quantization procedure. For now, we follow the procedure derived in [62, 63], to justify the
choice of the known phenomenological cQED Hamiltonian, where we separate creation and
annihilation operators into two kinds:

• The intra-cavity discrete operators ĉn, ĉ †n, corresponding to a set of quantized harmonic
oscillators for a perfect cavity, isolated from the environment. Every mode n is char-
acterized by the eigenfrequency ωn = nπc

`
, and they are obtained applying the zero

boundary condition for the electric field at the positions of the two mirrors.

• The output continuous mode (or reservoir mode) operators b̂(ω), b̂†(ω), corresponding
to the outside of the cavity, applying the zero boundary condition to a single perfect
mirror at position x = 0, and solving the Helmholtz equation for free space.

With this scheme, the losses of the cavity field into the outside free space are modeled with
a coupling parameter κn(ω) between the two fields, and the phenomenological Hamiltonian
reads:

Ĥ = Ĥ0 + V̂ ,

Ĥ0 =
+∞∑

n=1

~ωn
(
ĉ †nĉn + 1

2

)
+

∫
+∞

0

dω~ω
(
b̂†(ω)̂b(ω) + 1

2

)
,

V̂ = i~
+∞∑

n=1

∫
+∞

0

dω
(
κn(ω)̂b†(ω)ĉn − κ∗n(ω)ĉ †nb̂(ω)

)
.

(2.1.33a)

(2.1.33b)

(2.1.33c)

The complete Hamiltonian (2.1.22) with the global operators â(ω), â†(ω) can be compared to
the latter one, which is valid for r(ω) ≡ r and r ∼ −1. To do so, we write the electric and
magnetic fields for the perfect cavity case, and compare them to the global field. As a result,
we get the expression of ĉn and b̂(ω) as functions of â(ω), â†(ω):

ĉn =

∫
+∞

0

dω
(
α∗n,−(ω)â(ω)− αn,+(ω)â†(ω)

)
(2.1.34)

b̂(ω) =

∫
+∞

0

dω′
(
β∗−(ω, ω′)â(ω′)− β+(ω, ω′)â†(ω′)

)
, (2.1.35)
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where the functions αn,±(ω), β±(ω, ω′) are properly chosen to fulfill the transformation (see
references [62,63]). The latter expressions hold, but inverting them to get the global operator:

â(ω) =
+∞∑

n=1

(
αn,−(ω)ĉn + αn,+(ω)ĉ †n

)

+

∫
+∞

0

dω′
(
β−(ω, ω′)̂b(ω′) + β+(ω, ω′)̂b†(ω′)

)
, (2.1.36)

is not possible without an approximation. Indeed, ĉn, ĉ †n, b̂(ω) and b̂†(ω) form a complete set
of operators for the Fock space spanned by â(ω), â†(ω) when the difference between the actual
values of the inside and the outside field on the boundaries x = 0, x = δm is negligible. It can
be shown that this difference is small for a highly reflective mirror (r ∼ −1). For instance, if
one can write:

r = −
√

1− |t|2, (2.1.37)

where |t|2 � 1, then the inversion (2.1.36) holds up to the first order in |t|.
Another important feature is the cavity-exterior coupling function, which expresses [62,67]:

κn(ω) = −|t|
2

√
c

πL
e−i

ω
c
L sin

[
(ω − ωn)L

c

]

(ω − ωn)L
c

. (2.1.38)

There is one single reservoir for the cavity field, described by the operators b̂(ω), b̂†(ω). How-
ever, the cavity-reservoir coupling splits into many functions κn(ω), each centered around
a resonance ωn, with a finite width πc/L. It can be shown that this finite width leads to
non-Markovian dynamics for the cavity mode operators ĉn in general, but in the case of a
high-Q resonator, the cavity-reservoir coupling varies slowly compared to the intra-cavity field
strength |T (ω)|2, whose width Γn is then much smaller than πc/L. In that limit, the Markov
approximation is valid.

A consequence of (2.1.38) is that, for a given mode, overlaps between its assigned reservoir
coupling function and the neighboring mode resonances might happen. The high-Q limit
prevents the overlaps because the reservoir coupling is far much smaller with a neighboring
reservoir mode than with its own reservoir. However, when the quality factor Q decreases,
this approach fails and one must consider the global shape of the reservoir, instead of writing
the Hamiltonian (2.1.33). A more global approach is going to be of interest later in the
manuscript, when studying the lossy plasmons coupled to quantum emitters. This derivation
is also presented for cQED in section 2.2.

2.1.3 Three-level atoms in a cavity

The production of quantum light can be achieved with the use of attenuated laser sources.
With low intensity lasers, one can design non-classical light beams, and nowadays such systems
are being commercialized for quantum key distribution (QKD), using the horizontal and
vertical polarization of anti-bunched photons as flying qubits [8]. With such non-classical
sources, portable devices have been developed. The production of controlled single or N -
photon states allows to generate entanglement and interference between them, hence quantum
information and high security protocols for QKD.
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Experiments with single quantum emitters, such as atoms, placed in an optical cavity showed
anti-bunched and indistinguishable single photon signals [69]. Hence, we require models for
understanding the interaction between single or few atoms with a quantized cavity field.
Moreover, three-level atoms trapped in a cavity can be controlled by laser pulses (in the
transverse direction with respect to the cavity axis), enabling the control of the single photon
time envelope [70–73].
We derive the full Hamiltonian for N identical three-level atoms in a single leaky cavity mode.
The atoms have a ground |g〉, a metastable|f〉 and an excited state |e〉, forming a set that
we denote by AN . They are coupled to the linearly polarized cavity field, of volume V and
frequency ωc, through the atomic transition |f〉 ↔ |e〉 of frequency ωef and dipole moment
modulus def , with the coupling factor (positioned at a maximum of the coupling):

g =

√
ωc

~ε0V
def . (2.1.39)

It is assumed that g is constant for each atom. It is also assumed that the j-th atom is
addressable with a laser field:

Ej(t) = Ej(t)εL cos(ωLt+ ϕ), (2.1.40)

where Ej(t) is the field envelope, εL is the field polarization, and ωL the frequency of the laser
field. For simplicity, we choose the laser polarization to be aligned with the dipole moment
of the atom, and we write the (assumed real) pulse-shaped Rabi frequency of the laser:

Ωj(t) = −degEj(t)
2~

, (2.1.41)

on the transition |g〉 ↔ |e〉 of frequency ωeg and dipole moment deg. We also consider a
two-photon resonance, that is we take the laser detuning ∆L = ωeg − ωL being equal to the
atom cavity detuning ∆c = ωef − ωc. This leads to the identity ωgf = ωc − ωL. A sketch of
the described system is shown in fig. 2.3, where we also displayed the intrinsic vacuum decay
rates Γa of the individual atoms, and the cavity decay rate Γc.
The cavity field (denoted C) and the output reservoir (denoted Rc) are modeled with the

Hamiltonian (2.1.33), where we drop the sum since we select a single mode (the other modes
being too far from the atomic transition):

Ĥcav = ~ωcĉ †ĉ+

∫
+∞

0

dω ~ω b̂†ω b̂ω + i~
∫

+∞

0

dω
(
κc(ω)̂b†ω ĉ− κ∗c(ω)ĉ †b̂ω

)
, (2.1.42)

where κc(ω) is the cavity-output field coupling corresponding to (2.1.38), and we have chosen a
compact notation b̂(ω)→ b̂ω. To describe the atoms AN and their decay outside of the cavity,
we assume that they are all coupled to a three-dimensional reservoir RF featuring all the
wave vectors k and the two corresponding transverse polarization vectors εk,λ labelled with
λ = 1, 2. For brevity of the derivation, we simplify the model considering the spontaneous
emission only on the |e〉 ↔ |f〉 transition. We further justify this simplification with the fact
that, in practice, the degradation of the photon generation by the spontaneous emission is
due to the |e〉 ↔ |f〉 transition, since it removes the atoms from the pump cycle [74]. The
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(a) (b)

Figure 2.3: Representation of the cQED system: (a) N atoms in a cavity with atom-cavity coupling
g, individual atomic decay rate Γa and decay rate Γc for the cavity field through the right (semi-
transparent) mirror. The j-th atom is driven by a laser pulse of Rabi frequency Ωj(t). (b) Three-level
(or “Λ”) linkage pattern of a single atom: transition |g〉 ↔ |e〉 is driven with the laser pulse Ωj(t)
while transition |f〉 ↔ |e〉 is coupled with the atom-cavity coupling g.

laser driven atoms and the vacuum reservoir modes are modeled with the RWA Hamiltonian:

Ĥat(t) = ~
N∑

j=1

(
∆σ̂(j)

ee + Ωj(t)
(
σ̂(j)
ge + σ̂(j)

eg

))
+
∑

λ

∫
d3k ~ωk b̂†k,λb̂k,λ

+ i~
√
N
∑

λ

∫
d3k
(
gk,λb̂

†
k,λσ̂ − g∗k,λσ̂†b̂k,λ

)
(2.1.43)

with ∆ = ∆L, the atomic operators σ̂(j)
k` = (|k〉〈`|)(j) for the j-th atom, the collective atomic

operator for transition |e〉 ↔ |f〉:

σ̂ =
1√
N

N∑

j=1

σ̂
(j)
fe , (2.1.44)

and the atom-field coupling for the outside mode (k, λ):

gk,λ = −
√

ωk
2(2π)3~ε0

def · εk,λ. (2.1.45)

We used for Ĥat(t) the rotating frame defined by the unitary operator:

ÛRW(t) = exp
[
iωLt

N∑

j=1

σ̂(j)
ee + iωfgt

N∑

j=1

σ̂
(j)
ff

]
. (2.1.46)

The last part of the Hamiltonian is the atom-cavity coupling:

ĤAC = ~g
√
N
(
ĉ †σ̂ + σ̂†ĉ

)
, (2.1.47)
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and the Hamiltonian for the full system AN ⊕C ⊕Rc⊕RF in the Schrödinger picture reads:

Ĥ(t) = Ĥat(t) + Ĥcav + ĤAC . (2.1.48)

The cavity and reservoir mode operators satisfy the commutation relations:
[
ĉ, ĉ †

]
= 1 (2.1.49a)

[̂
bω, b̂

†
ω′

]
= δ(ω − ω′) (2.1.49b)

[̂
bk,λ, b̂

†
k′,λ′

]
= δ(k− k′)δλλ′ . (2.1.49c)

We are going to derive the dynamics of the atoms-cavity system S = AN ⊕C, coupled to the
reservoir R = Rc ⊕ RF . Our aim is to control the production of outgoing photons leaking
from the cavity by driving specifically the atoms in the cavity, using external laser fields.
The effective model is derived in two steps: first we define the outgoing photon flux which is
connected to the quantum average of the Heisenberg time evolution of the cavity field number
operator ĉ †ĉ. Next we derive a master equation of the system S by eliminating the reservoir
degrees of freedom, which will allow the calculation of the quantum averages.

Equations of motion for the operators

Let X̂ be an arbitrary time-independent Schrödinger picture operator acting on the whole
Hilbert space corresponding to the atoms, the cavity field, and the external reservoir: HS⊗HR.
The Heisenberg picture operator X̂(H)(t) is obtained using the propagator of the (here time-
dependent) Schrödinger picture Hamiltonian Ĥ(t):

X̂(H)(t) = Û †(t, t0)X̂Û(t, t0), (2.1.50a)

i~
∂

∂t
Û(t, t0) = Ĥ(t)Û(t, t0). (2.1.50b)

The Heisenberg equation provides the time evolution of the Heisenberg picture operator
X̂(H)(t) through the equation:

dX̂(H)

dt
= − i

~
[
X̂(H)(t), Ĥ(H)(t)

]
, (2.1.51)

where Ĥ(H)(t) is the Heisenberg picture operator of the Hamiltonian Ĥ(t). From now on,
we drop the superscript (H) of the Heisenberg picture operators for readability, and they
will appear as X̂(H)(t) ≡ X̂(t), except if they are already time dependent in the Schrödinger
picture (like the Hamiltonian). The Heisenberg-Langevin equations of motion for the reservoir
operators and the cavity field operator are then:

˙̂
bω = −iωb̂ω(t) + κc(ω)ĉ(t),

˙̂
bk,λ = −iωkb̂k,λ(t) + gk,λ

√
Nσ̂(t),

˙̂c = −iωcĉ(t)−
∫

+∞

0

dω κ∗c(ω)̂bω(t)− ig
√
Nσ̂(t).

(2.1.52a)

(2.1.52b)

(2.1.52c)
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2.1.4 Cavity input-output relation and photon flux

Integrating equation (2.1.52a) from the initial time t0 to t, we define the integrated field
operator, propagated to the position z > 0 of the detector:

b̂(z, t) =
1√
2π

∫
+∞

0

dω b̂ω(t)eiω
z
c

= b̂in
(
t− z

c

)
+

∫ t

t0

dt′ĉ(t′)

∫
+∞

0

dω
κc(ω)√

2π
e−iω(t−t0−t′)eiω

z
c , (2.1.53)

with the input operator, defined as:

b̂in
(
t− z

c

)
=

1√
2π

∫
+∞

0

dωb̂ω(t0)e−iω(t−t0− zc ), (2.1.54)

corresponding to the solution of (2.1.52a) without the cavity mode. Consequently, we evaluate
the following integral:

I =

∫
+∞

0

dω
κc(ω)√

2π
e−iω(t−t′)eiω

z
c

= − |t|
2π

√
c

2L

∫
+∞

0

dω
sin[(ω − ωc)Lc ]

(ω − ωc)Lc
e−iω(L

c
− z
c

)e−iω(t−t′), (2.1.55)

where, for simplicity we set t0 = 0. We introduce the variables ω̃ = ω−ωc and τ̃ = t−t′− z
c
+L

c
,

and assume: ∫
+∞

0

dω →
∫

+∞

−ωc
dω̃ ≈

∫
+∞

−∞

dω̃, (2.1.56)

as ωc is very large compared to the width of the sinc function. We write now the integral:

I = − |t|
2π

√
c

2L
e−iωcτ̃

∫
+∞

−∞

dω̃ e−iω̃τ̃ sinc[ω̃L
c
], (2.1.57)

where we recognize the Fourier transform of the sinc function, which is computed using:
∫

+∞

−∞

dω̃ e−iω̃τ̃ sinc[ω̃L
c
] =

πc

2L

(
sgn(τ̃ + L

c
)− sgn(τ̃ − L

c
)
)
. (2.1.58)

Using the relation sgn(x) = 2Θ(x) − 1, where Θ(x) is the Heaviside step function, we find
that the integral reads:

I = −|t|c
2L

√
c

2L
e−iωcτ̃

(
Θ(τ̃ + L

c
)−Θ(τ̃ − L

c
)
)
, (2.1.59)

and back to the integrated operator, we have the following expression:

b̂(t− z
c
)− b̂in(t− z

c
) = −|t|

√
c

2L

∫ t

0

dt′ĉ(t′)e−iωc(t−t
′− z

c
+L
c

)

× c

2L

(
Θ(t− t′ − z

c
+ 2L

c
)−Θ(t− t′ − z

c
)
)
. (2.1.60)
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Figure 2.4: Rectangle function 1
ε

(
Θ(τ)−Θ(τ + ε)

)
.

The integrand of the time integral is a function multiplied with a rectangle function c
2L

(
Θ(t−

t′ − z
c

+ 2L
c

) − Θ(t − t′ − z
c
)
)
of width 2L/c (see fig. 2.4). The latter is equal to −c/2L

between t− z
c
and t− z

c
+ 2L

c
, and zero elsewhere. With the hypothesis of non-resolved time

of flight ε = 2L/c, the dynamics happens on a time scale which is much larger. Hence, we
have |t − z

c
| � ε. In the integral, we can take the limit ε → 0+ of the rectangle function,

whose area is 1:

lim
ε→0+

1

ε

(
Θ(t− t′ − z

c
+ ε)−Θ(t− t′ − z

c
)
)

= δ(t− t′ − z
c
). (2.1.61)

Finally, replacing in the integral we get, for z > 2L:

b̂(t− z
c
)− b̂in(t− z

c
) = |t|

√
c

2L
ĉ(t− z

c
). (2.1.62)

This calculation is justified since for z > 0, and t′ ∈ [0, t], the inequality 0 < t− z
c
−t′ < t holds.

In the cavity response function, the decay rate Γc is |t|2c/2L in the high quality resonator
limit. Hence, we write:

b̂(t− z
c
)− b̂in(t− z

c
) =

√
Γcĉ(t− z

c
), (2.1.63)

which is the input-output formula. We also underline that the “Markov approximation”
relation: 2π|κc(ωc)|2 = Γc is retrieved, with the use of (2.1.38), and that the result is not
well-defined when 0 6 z 6 2L.

Poynting vector and photon flux

Measurements are done with a photodetector, at position z. The observable we are interested
in is the averaged photon flux, which we derive here. The energy carried by the photons
leaking from the cavity can be characterized by the Poynting vector operator in the Heisenberg
picture [76], where we have assumed a propagation with increasing z and the cavity emitter at
position z = 0 (see fig. 2.5). We define an observable corresponding to the Poynting vector:

Ŝ(z, t) =
~

2πA

∫
+∞

0

dω

∫
+∞

0

dω′
√
ωω′ b̂†ω(t)̂bω′(t)e

−i(ω−ω′) z
c , (2.1.64)

with the use of the quantized electric and magnetic fields [77–79] and A is the area of the
free field modes. The time dependence of the Poynting vector arises from the Heisenberg
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Figure 2.5: Sketch of the photodetection process: the source system S emits a photon with decay
rate Γ at position 0, towards a detector D at a position z through the reservoir R. The photon flux
Φ is measured using the data on the averaged quantum Poynting vector 〈Ŝ(z, t)〉.

picture operators b̂ω(t), that we get from the integration of equation (2.1.52a), as it was done
precedingly for the integrated reservoir operators. The photodetection process is related with
the quantum average of Poynting vector flux, as depicted in fig. 2.5, hence we are interested
in computing the following expression:
〈
Ŝ(z, t)

〉
= 〈ψ(0)|Ŝ(z, t)|ψ(0)〉

=

(√
~

2πA

∫
+∞

0

dω
√
ω e−iω

z
c 〈ψ(0)|̂b†ω(t)

)(√
~

2πA

∫
+∞

0

dω
√
ω eiω

z
c b̂ω(t)|ψ(0)〉

)
,

(2.1.65)

where |ψ(0)〉 is the initial time field wavefunction for the system and the exterior. We see
from the latter expression that we have to evaluate only one integral in ω and then write
the scalar product with itself to get the average Poynting vector. Moreover, the initial time
wavefunction is chosen to be the vacuum state for the exterior: |ψ(0)〉 = |ψS(0),0〉, therefore
all terms containing b̂ω(0) will vanish since b̂ω(0)|0〉 = 0.
The integration of (2.1.52a) then leads to the following integral, where we exchange the order
of the time and the frequency integrals:

|IS(t)〉 =

√
~

2πA

∫
+∞

0

dω
√
ω eiω

z
c b̂ω(t)|ψ(0)〉

= − |t|
2π

√
~c

2AL

∫ t

0

dt′ĉ(t′)

∫
+∞

0

dω
√
ωκc(ω)e−iω(t−t′− zc+L

c )|ψ(0)〉. (2.1.66)

We notice that the frequency integral factor is very similar to expression (2.1.55) derived in
the preceding section, the only difference being a

√
ω factor in the integrand. Therefore, we

use the same change of variables as was done for the calculation of (2.1.55), leading to the
Fourier transform:∫

+∞

−∞

dω̃
√
ω̃ + ωce

−iω̃τ̃ sinc[ω̃L
c
] =
√
ωc
πc

L

(
Θ(τ̃ + L

c
)−Θ(τ̃ − L

c
)
)
, (2.1.67)

where we have used the expression of the coupling (2.1.38) and the approximation (2.1.56).
Using the limit ε → 0+ where ε = 2L/c, as was done above, a delta function appears in the
time integral, leading to the result (valid for z > 0):

|IS(t)〉 = −
√

~ωcΓc
A ĉ

(
t− z

c

)
|ψ(0)〉. (2.1.68)
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The quantum average of the Poynting vector is finally:

〈
Ŝ(z, t)

〉
= 〈IS(t)|IS(t)〉 =

~ωcΓc
A 〈ψ(0)|ĉ †

(
t− z

c

)
ĉ
(
t− z

c

)
|ψ(0)〉. (2.1.69)

For a given state, the amount of energy going through the field mode area A during the time
dt is the quantum average of the flux of the Poynting vector:

A〈Ŝ(z, t)〉dt = ~ωcΓc
〈
ĉ †
(
t− z

c

)
ĉ
(
t− z

c

)〉
dt. (2.1.70)

Normalizing by ~ωc, we get the averaged number of photons dn(z, t) = Γc
〈
ĉ †
(
t− z

c

)
ĉ
(
t− z

c

)〉
dt

going through the mode area during dt, defining the photon flux:

Φ
(
t− z

c

)
=

dn

dt

(
t− z

c

)
= Γc

〈
ĉ †
(
t− z

c

)
ĉ
(
t− z

c

) 〉
. (2.1.71)

This key result shows that one can determine the flux from the quantum average of the
dynamics of the cavity photon number in the Heisenberg picture [72]. Later in this chapter,
we derive the effective master equation reduced to the system S which is used to calculate
the flux (2.1.71).
We have derived the key quantity to describe the absorption of a photon by a photodetector.
In the next subsection, we treat the atomic spontaneous emission process.

2.1.5 Heisenberg treatment of spontaneous emission

Having derived the effective Heisenberg operator for the transmission of the field through
the semi-transparent mirror, we may now derive, at z = 0, the integrated field operator
corresponding to the transverse three-dimensional reservoir:

b̂F(t) =
∑

λ

∫
d3k g∗k,λb̂k,λ(t). (2.1.72)

This operator models the dynamics of the spontaneous emission of the transition |e〉 ↔ |f〉,
corresponding to the emission of photons outside of the cavity mode. We formally integrate
equation (2.1.52b) to get:

b̂k,λ(t) = e−iωk(t−t0)b̂k,λ(t0) + gk,λ
√
N

∫ t

t0

dt′σ̂(t′)e−iωk(t−t0−t′). (2.1.73)

Inserting this result in the definition of the integrated field operator yields:

b̂F(t) = b̂F ,in(t) +
√
N
∑

λ

∫
d3k |gk,λ|2

∫ t

t0

dt′σ̂(t′)e−iωk(t−t0−t′) (2.1.74a)

b̂F ,in(t) =
∑

λ

∫
d3k g∗k,λb̂k,λ(t0)e−iωk(t−t0), (2.1.74b)



57 CHAPTER 2. QUANTUM OPTICS WITH ATOMS IN CAVITIES

Figure 2.6: Transition dipole moment def = def ẑ of a single atom. The k-vector is represented in
spherical coordinates with the unit vectors (κ̂, θ̂, ϕ̂), and has an angle θ with the dipole moment.

and exchanging the order of the two integrals, we write:

b̂F(t) = b̂F ,in(t) +
√
N

∫ t

t0

dt′σ̂(t′)I(t− t′) (2.1.75a)

I(t− t′) =
∑

λ

∫
d3k |gk,λ|2e−iωk(t−t0−t′). (2.1.75b)

We evaluate the integral I(t− t′) using the expression of the atom-field coupling (2.1.45):

I(t− t′) =
1

2(2π)3~ε0

∑

λ

∫
d3k ωk|def · εk,λ|2e−iωk(t−t0−t′). (2.1.76)

For simplicity, we choose the dipole moment def to be aligned with the z-axis, as depicted
in fig. 2.6. Using the law of cosines, we write the scalar product:

∑

λ=1,2

|def · εk,λ|2 = d2
ef (1− cos2 θ), (2.1.77)

and expanding the three-dimensional integral over k in spherical coordinates, the angular part
in I(t− t′) factorizes and becomes:

∫ 2π

0

dϕ

∫ π

0

dθ sin θ(1− cos2 θ) =
8π

3
. (2.1.78)

The integrated operator assumes now a simpler form:

b̂F(t) = b̂F ,in(t) +
√
N

d2
ef

6π2~ε0c3

∫ t

t0

dt′σ̂(t′)

∫
+∞

0

dωk ω
3
ke
−iωk(t−t0−t′), (2.1.79)

where the integrals are evaluated using a the rotating frame σ̂(t′) → σ̃(t′)e−iωef t
′ and the

change of variables ∆k = ωk − ωef . The integral over ∆k runs from −ωef to +∞, but we
allow the extension of the lower bound to −∞ since ωef is large. Moreover, this integral has a



58 CHAPTER 2. QUANTUM OPTICS WITH ATOMS IN CAVITIES

large contribution around ωef and negligible contribution far away from this frequency, hence
it can be approximated with a Dirac delta function:

∫
+∞

−∞

d∆k(∆k + ωef )
3e−i∆k(t−t0−t′) ≈ 2πω3

efδ(t− t0 − t′). (2.1.80)

Finally, replacing the latter in the integrated operator formula yields:

b̂F(t) = b̂F ,in(t) +
√
N

Γa
2
σ̂(t), (2.1.81)

where Γa is the atomic vacuum decay rate corresponding to spontaneous emission with tran-
sition |e〉 ↔ |f〉:

Γa =
d2
efω

3
ef

3~πε0c3
. (2.1.82)

2.1.6 Master equation

To compute the dynamics of the atom-cavity system, and therefore get the time-dependent
photon flux, we have to derive the master equation. We recall for completeness the standard
way to derive it, as done in refs. [75, 80–82]. Let X̂S be an arbitrary operator acting on the
inside cavity field and the atomic Hilbert spaces. The Heisenberg picture of an arbitrary
operator reads:

X̂S(t) = Û †(t, t0)X̂SÛ(t, t0), X̂S acting on HS = HAN ⊗HC. (2.1.83)

The Heisenberg time evolution of this operator is described by the equation (we drop the time
argument t for readability):

˙̂
XS = − i

~
[
X̂S , Ĥ

(H)
S
]

+

∫
+∞

0

dω
(
κc(ω)̂b†ω

[
X̂S , ĉ

]
− κ∗c(ω)

[
X̂S , ĉ

†]̂bω
)

+
√
N
∑

λ

∫
d3k

(
gk,λb̂

†
k,λ

[
X̂S , σ̂

]
− g∗k,λ

[
X̂S , σ̂

†]̂bk,λ
)
, (2.1.84)

where Ĥ(H)
S ≡ Ĥ

(H)
S (t) = Û †(t, t0)ĤS(t)Û(t, t0) is the Heisenberg picture system Hamiltonian

whose Schrödinger picture is also time-dependent due to the laser fields:

ĤS(t) = ĤA(t) + ĤC + ĤAC (2.1.85a)

ĤA(t) = ~
N∑

j=1

(
∆σ̂(j)

ee + Ωj(t)
(
σ̂(j)
ge + σ̂(j)

eg

))
(2.1.85b)

ĤC = ~ωcĉ †ĉ, (2.1.85c)

and ĤAC is given in (2.1.47). We now insert the integrated Heisenberg operator (2.1.81)
derived in the preceding section into the equation of motion, and in the second term on the
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right hand side of equation (2.1.84), we insert the formal integration of equation (2.1.52a) to
evaluate the integral:

∫
+∞

0

dω κ∗c(ω)̂bω(t) = b̂′in(t) + I(t) (2.1.86a)

b̂′in(t) =

∫
+∞

0

dω κ∗c(ω)̂bω(0)e−iωt (2.1.86b)

I(t) =

∫ t

0

dt′ĉ(t′)

∫
+∞

0

dω|κc(ω)|2e−iω(t−t′) (2.1.86c)

We note that the introduced b̂′in(t) is a different definition from the input expression (2.1.54)
for z = 0, as here it is integrated jointly with the coupling κc(ω). The integral that is met is
similar to the previous (2.1.55) (t0 = 0 here), the only difference being that we have replace
κc(ω) by its square modulus. We have also exchanged the order of the time and frequency
integrals. In an analogous way, we write the frequency integral:

I ′(τ̃) =
Γc
2π

e−iωcτ̃
∫

+∞

−∞

dω̃ e−iω̃τ̃ sinc2[ω̃L
c
], (2.1.87)

where we used the variables ω̃ = ω − ωc and τ̃ = t − t′ + L
c
. This time, we have to evaluate

the Fourier transform of the sinc2 function, which is a triangular function:
∫

+∞

−∞

dω̃ e−iω̃τ̃ sinc2[ω̃L
c
] =

c

L
tri
(
τ̃ c

2πL

)
, (2.1.88)

and the triangular function is defined through (T > 0):

tri
(
t

T

)
=

{
1− |t|/T if |t| 6 T

0 elsewhere
. (2.1.89)

Hence, we have now:

I ′(τ̃) =
Γc
2π

e−iωcτ̃
c

L
tri
(
τ̃ c

2πL

)
, (2.1.90)

and we must now integrate it over time, through the original integral:

I(t) = Γc

∫ t

0

dt′ĉ(t′)e−iωc(t−t
′+ ε

2
) 1

πε
tri
(
t− t′ + ε

2

πε

)
, (2.1.91)

where we used ε = 2L/c. Taking the limit ε→ 0+, we have to integrate function ĉ(t′)e−iωc(t−t′+
ε
2

)

over a very narrow time domain [t− πε, t+ πε] corresponding to the triangle function, which
approaches the Dirac delta function:

lim
ε→0+

1

πε
tri
(
t− t′ + ε

2

πε

)
= δ(t− t′). (2.1.92)

The initial triangle function being centered on t + ε
2
, taking the limit leads to a Dirac delta

function centered on t. However, this leads to the strange result (see, e.g. [67]):
∫ t

0

dt′ϕ(t′)δ(t− t′) =? (2.1.93)
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To overcome this, we underline that the triangle function, centered around t, is then half-
integrated. As a consequence, and because the triangular function is symmetric in time, we
can extend the upper bound of the integral to +∞, as tri((t− t′+ ε

2
)/πε) = 0 when t′ > t+πε,

and divide the integral by two, as we now integrate over the whole triangle. Then, taking the
limit ε→ 0+:

I(t) = Γc lim
ε→0+

∫ t

0

dt′ĉ(t′)e−iωc(t−t
′+ ε

2
) 1

πε
tri
(
t− t′ + ε

2

πε

)

=
Γc
2

∫
+∞

0

dt′ĉ(t′)e−iωc(t−t
′)δ(t− t′)

=
Γc
2
ĉ(t), (2.1.94)

which is the expected result. Equation (2.1.84) then turns into:

˙̂
XS = − i

~
[
X̂S , Ĥ

(H)
S
]

+D†in
[
X̂S
]

+NΓa

(
σ̂†X̂S σ̂ − 1

2
X̂S σ̂

†σ̂ − 1
2
σ̂†σ̂X̂S

)

+ Γc

(
ĉ †X̂S ĉ− 1

2
X̂S ĉ

†ĉ− 1
2
ĉ †ĉX̂S

)
, (2.1.95)

with D†in
[
X̂S
]

=
√
N
(̂
b†F ,in

[
X̂S , σ̂

]
−
[
X̂S , σ̂

†]̂bF ,in
)

+ b̂′†in
[
X̂S , ĉ

]
−
[
X̂S , ĉ

†]̂b′in being the initial
field reservoir contribution. From this expression, we get to the master equation by trans-
forming it to the Schrödinger picture. To do so, we define the expectation value of X̂S :

〈
X̂S

〉
(t) = TrS

{
X̂S %̂S(t)

}
= Tr

{
X̂S(t)%̂(t0)

}
, (2.1.96)

where %̂(t0) = %̂S(t0) ⊗ %̂R(t0) is the complete density operator and %̂S(t) = TrR{%̂(t)} is the
reduced density operator describing S with partial trace TrR{·} eliminating the degrees of
freedom corresponding to the reservoir. We here assume that the reservoir is initially a vacuum
state %̂R(t0) ≡ |0〉〈0| such that D†in,t[·] cancels out in average. Finally, averaging equation
(2.1.84), using (2.1.96), the cyclic property of the trace, and the property ∀A Tr{AB} =
Tr{AC} ⇔ B = C, we find the Lindblad master equation for %̂S(t):

d

dt
%̂S(t) = − i

~
[ĤS(t), %̂S(t)] +NΓa

(
σ̂%̂S(t)σ̂† − 1

2
{σ̂†σ̂, %̂S(t)}

)

+ Γc

(
ĉ%̂S(t)ĉ † − 1

2
{ĉ †ĉ, %̂S(t)}

)
, (2.1.97)

where, here, all Schrödinger system operators σ̂, ĉ are time-independent. If several cavities
are considered, where the output of one cavity is fed into that of the next cavity, the systems
can be “cascaded” [70,75,81]. In the following sections, we assume that the atoms are strongly
coupled to the cavity mode and neglect for simplicity the transverse decay: Γa � g,Γc.

2.2 An alternative derivation of the cQED effective model
Starting from the general quantization procedure developed in section 2.1.1, we derive an
alternative form of the effective model corresponding to Hamiltonian (2.1.33). In the preceding
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sections, we quantized the global field and derived effective perfect cavity field operators ĉn, ĉ †n
coupled to a flat reservoir whose excitations are toggled by b̂(ω), b̂†(ω), and lastly we described
the interaction of the inside cavity field with atoms. The field in and out of the cavity must
match at the boundaries, and it does in the high-Q limit when we consider first order series
expansion in |t|2. The alternative derivation we present here is different in the order of the
procedure steps: we start with the global field operators â(ω), â†(ω) corresponding to the
classical mode Φ(x, ω) given by equation (2.1.29), and describe its interaction with a single
atom when it is placed inside of the cavity.

2.2.1 Atom-field interaction

The global field operator, considering a rectilinear polarization, has the form:

Ê(x) = i

∫
+∞

0

dω

√
~ω
2ε0

(
Φ(x, ω)â(ω)− Φ∗(x, ω)â†(ω)

)
. (2.2.1)

We recall that the mode function Φ(x, ω) satisfies the eigenvalue equation (2.1.11), and as it
is also normalized it verifies:

〈Φ(ω),Φ(ω′)〉 = δ(ω − ω′). (2.2.2)

Operators â(ω), â†(ω) then have the commutation relations:
[
â(ω), â†(ω′)

]
= δ(ω − ω′), (2.2.3a)[

â(ω), â(ω′)
]

=
[
â†(ω), â†(ω′)

]
= 0. (2.2.3b)

For notational preference we choose to write the mode function as a sum of two terms,
corresponding to the inside (−` 6 x < 0) and the outside field (x > δm) [see (2.1.29)]:

Φ(x, ω) = Φin(x, ω) + Φout(x, ω), (2.2.4a)

Φin(x, ω) =
−2i√
2πcA

χ[−`,0](x) sin
[
ω
c
(x+ `)

]
ei
ω
c
`T (ω), (2.2.4b)

Φout(x, ω) =
−1√
2πcA

Θ(x− δm)
(

e−i
ω
c
x + ei

ω
c
x
[
r(ω)− t(ω)ei2

ω
c
LT (ω)

])
, (2.2.4c)

where we introduced a characteristic function χ[−`,0](x) = 1 for x ∈ [−`, 0], 0 otherwise, and
a Heaviside function. In the high-Q limit, the cavity response function behaves as a sum
of Lorentzians whose widths Γm are much smaller than the spacing ∆ω = πc/L between
the resonance frequencies. Up to a global phase depending on the optical path nδm in the
semi-transparent mirror [68], the cavity response function reads, in this limit [see (2.1.32)]:

T (ω) =
∑

m

Tm(ω) =
∑

m

√
c

2L

√
Γm

ω − ω̃m + iΓm
2

+O(|t|2), (2.2.5)

where L = `+ δm ≈ ` as δm � `. The mode-selective response functions Tm(ω), in regard of
(2.1.32), have the property:

T ∗m(ω)Tm′(ω) = δmm′ |Tm(ω)|2. (2.2.6)
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Figure 2.7: Single atom placed in an one-dimensional cavity. The field is quantized fully and
operators â(ω), â†(ω) annihilate (resp. create) optical modes Φ(x, ω) corresponding to equation
(2.1.29) in the full space. The dipole moment d̂ of the atom positioned at −` < xA < 0 has an angle
θ with the electric field.

The decomposition of T (ω) leads to a mode-selective decomposition of the field mode function
inside the cavity:

Φin(x, ω) =
∑

m

Φm,in(x, ω), (2.2.7a)

Φm,in(x, ω) =
−i√
πAL

χ[−`,0](x)ei
ω
c
` sin

[
ω
c
(x+ `)]

√
Γm

ω − ω̃m + iΓm
2

. (2.2.7b)

We consider a single atom placed inside the cavity, at position −` < xA < 0, as depicted in
fig. 2.7. The interaction between the field and the single two-level atom is described by the
dipolar coupling term:

V̂ = −d̂Ê(xA), (2.2.8)

where d̂ = dσ̂++d∗σ̂− is the projection of the transition dipole moment on the field polarization
direction, with σ̂+ = |e〉〈 g| and σ̂− = |g〉〈e|. The electric field is picked at the position of the
atom, therefore it has the form:

Ê(xA) =
∑

m

∫
+∞

0

dω

√
~ω
2ε0

(
Φm,in(xA, ω)â(ω)− Φ∗m,in(xA, ω)â†(ω)

)
. (2.2.9)

The interaction Hamiltonian then reads, after having removed the fast-rotating terms (RWA):

V̂ = i~
∑

m

∫
+∞

0

dω
(
ηm(ω)σ̂+â(ω)− η∗m(ω)â†(ω)σ̂−

)
, (2.2.10a)

ηm(ω) = i

√
ω

~ε0AL
dei

ω
c
` sin

[
ω
c
(xA + `)

]
√

Γm
2π

1

ω − ω̃m + iΓm
2

, (2.2.10b)

where we have introduced the mode-selective coupling ηm(ω), which corresponds to the in-
teraction between the atom and a single Lorentzian cavity mode m. Over the width Γm
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of a single Lorentzian, ω is close to ω̃m and varies very slowly, therefore the mode-selective
coupling is further approximated as:

ηm(ω) ≈ i

√
ω̃m

~ε0AL
dei

ω
c
` sin

[
ω
c
(xA + `)

]
√

Γm
2π

1

ω − ω̃m + iΓm
2

. (2.2.11)

Finally, the full atom-field Hamiltonian reads:

Ĥ = ~ω0σ̂+σ̂− +

∫
+∞

0

dω ~ω â†(ω)â(ω)

+ i~
∑

m

∫
+∞

0

dω
(
ηm(ω)σ̂+â(ω)− η∗m(ω)â†(ω)σ̂−

)
, (2.2.12)

where ω0 is the transition frequency of the two-level atom.

2.2.2 Mode-selective quantum dynamics and effective Hamiltonian

From the Hamiltonian of the atom-field system, we get the dynamics with the time-dependent
Schrödinger equation. The atom is coupled to m structured reservoirs with the coupling
(2.2.11), and the structure of each reservoir leads to effective dynamics. If the coupling is
very weak (e.g. if the cavity volume is large) the atom must have a similar behavior as in the
vacuum: it should decay spontaneously with a modified decay rate depending on the atom-
field coupling (Purcell effect). However, to describe such a process one needs to introduce a
three-dimensional reservoir, because the atom emits photons in all directions. We focus here
on the strong coupling regime (small cavity volume) such that the atomic decay rate is small
compared to the inverse of the characteristic interaction time TS:

γ0TS � 1. (2.2.13)

In that limit, the space can be decomposed into one direction along the cavity axis and two
other transverse directions to account for the modified spontaneous emission of the atom [80].
This leads to a one-dimensional model for the atom-cavity interaction. For the spontaneous
emission, we usually use the same value as the one in the full three-dimensional reservoir.
Here we limit the calculation for the one-dimensional cavity model. Another remark about
the characteristic interaction time is that its inverse must be small compared to the system’s
characteristic transition frequencies:

ωSTS � 1. (2.2.14)

In the atom-cavity problem, ωS is either ω0 or the resonance frequency of the cavity mode
interacting with the atom. With this condition, the RWA argument is valid and the atom can
absorb only a single photon. Therefore, the dynamics of the system can be confined to the
vacuum state and the single excitation manifold for the Fock space associated to the field.
We denote the one-photon excitation with the ket notation:

â†(ω)|0〉 = |1ω〉 (2.2.15a)
â(ω)|1ω′〉 = δ(ω − ω′)|0〉, (2.2.15b)



64 CHAPTER 2. QUANTUM OPTICS WITH ATOMS IN CAVITIES

where |0〉 = |00...0〉 is the vacuum state and |1ω〉 = |00...1ω...0〉 is a single excitation state at
frequency ω. We expand the interaction picture wavefunction of the atom-field system as:

|ψ(t)〉 =

∫
+∞

0

dω cg,1(ω, t)e−iωt|g〉|1ω〉+ ce,0(t)e−iω0t|e〉|0〉, (2.2.16)

and the Schrödinger equation leads to the coupled equations of motion of the coefficients:

ċg,1(ω) = −
∑

m

η∗m(ω)ei(ω−ω0)tce,0(t), (2.2.17a)

ċe,0 =
∑

m

∫
+∞

0

dω ηm(ω)e−i(ω−ω0)tcg,1(ω, t). (2.2.17b)

In order to trace out the continuous degrees of freedom from the dynamics, we define the
integrated, mode-selective probability amplitude:

c
(m)
g,1 (t) :=

1

gm

∫
+∞

0

dω ηm(ω)e−i(ω−ω0)tcg,1(ω, t). (2.2.18)

The denominator gm is introduced as a normalization constant. We shall write the time
derivative of the mode-selective coefficient, using the property:

η∗m(ω)ηm′(ω) = δmm′ |ηm(ω)|2, (2.2.19)

which is a consequence of equation (2.2.6), and we get the equation of motion for the m-
th mode, using the integration of (2.2.17a) and inverting the order of time and frequency
integrations:

ċ
(m)
g,1 = ċ

(m,0)
g,1 − 1

gm

∫
+∞

0

dω|ηm(ω)|2ce,0(t)

+
i

gm

∫ t

0

dt′ce,0(t′)

∫
+∞

0

dω|ηm(ω)|2(ω − ω0)e−i(ω−ω0)(t−t′), (2.2.20)

where we introduce the time derivative of the initial time term defined as follows:

c
(m,0)
g,1 (t) :=

1

gm

∫
+∞

0

dω ηm(ω)e−i(ω−ω0)tcg,1(ω, 0). (2.2.21)

Two integrals appear in (2.2.20), which are to be evaluated using complex contour methods
derived in appendix 2.C:

I =

∫
+∞

0

dω|ηm(ω)|2, (2.2.22a)

I ′ =
∫

+∞

0

dω|ηm(ω)|2(ω − ω0)e−i(ω−ω0)(t−t′). (2.2.22b)

These integrals can be decomposed in three parts, with different exponential factors implying
integration either in the upper half plane or the lower half plane. The poles z± = ±iΓm

2
are
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given by the widths of the Lorentzians. The result of appendix 2.C is, in the limit Γm � ω̃m:

I =
ω̃m|d|2

2~ε0AL
(

1− e−Γm
xA+`

c cos
[
2 ω̃m

c
(xA + `)

])
(2.2.23)

I ′ = hm

(
∆̃m − i

Γm
2

)
e−i(∆̃m−iΓm

2 )(t−t′), (2.2.24)

where ∆̃m = ω̃m−ω0 is the atom-cavity mode detuning and the function hm has the following
expression:

hm =
ω̃m|d|2

2~ε0AL
(

1− cos
[
2 ω̃m

c
(xA + `)

]
cosh

[
Γm

xA+`
c

]
− i sin

[
2 ω̃m

c
(xA + `)

]
sinh

[
Γm

xA+`
c

])
.

(2.2.25)

In the expressions of I and hm, we find products of slow and fast-varying factors. The slow-
varying ones are in Γm

xA+`
c

and the fast ones are in 2 ω̃m
c

(xa + `), as we have Γm � ω̃m. The
Lorentzian width Γm, when the semi-transparent mirror transmission |t|2 in the vicinity of
the resonance is small, is expressed using a Taylor series expansion (from equation (2.1.32)):

Γm = − c
L

ln
[√

1− |t|2
]

=
c

2L

(
|t|2 +O(|t|4)

)
. (2.2.26)

The integral I and the function hm must correspond to the square modulus of the atom-cavity
mode coupling gm, introduced before to normalize the mode-selective probability amplitude
c

(m)
g,1 . We show below that this is the case when we expand the slow-varying factors in Taylor
series up to the first order in |t|. The argument Γm

xA+`
c

is of the order of |t|2 as we see in
(2.2.26). We write the Taylor expansions:

e−Γm
xA+`

c = 1 +O(|t|2) (2.2.27a)

cosh
[
Γm

xA+`
c

]
= 1 +O(|t|2) (2.2.27b)

sinh
[
Γm

xA+`
c

]
= O(|t|2). (2.2.27c)

In this limit, both I and hm are equal up to an error of the order of |t|2 and correspond to
|gm|2:

|gm|2 =
ω̃m|d|2
~ε0AL

sin2
[
ω̃m
c

(xA + `)
]

+O(|t|2), (2.2.28)

where we used the identity sin2 a = 1
2
(1−cos 2a). The atom-cavity mode coupling gm is found

to be the same as if we had a perfect cavity, up to a factor in O(|t|2). Its expression is found
when writing the perfect cavity Hamiltonian with zero boundary conditions at the mirrors:

gm =

√
ω̃m

~ε0AL
d ei

ω̃m
c
` sin

[
ω̃m
c

(xA + `)
]
. (2.2.29)

We can now rewrite the equation of motion (2.2.20):

ċ
(m)
g,1 = ċ

(m,0)
g,1 − g∗mce,0(t) + ig∗m

∫ t

0

dt′ce,0(t′)
(

∆̃m − i
Γm
2

)
e−i(∆̃m−iΓm

2 )(t−t′). (2.2.30)
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With the definition (2.2.18) and the formal integration of equation (2.2.17a), we show that:

c
(m)
g,1 (t)− c(m,0)

g,1 (t) = −g∗m
∫ t

0

dt′ce,0(t′)e−i(∆̃m−iΓm
2 )(t−t′), (2.2.31)

where another integral appears, and is evaluated with a treatment which is analogous to
appendix 2.C:

∫
+∞

0

dω|ηm(ω)|2e−i(ω−ω0)(t−t′) = |gm|2e−i(∆̃m−iΓm
2 )(t−t′). (2.2.32)

Replacing (2.2.31) in the equation of motion, we finally get:

ċ
(m)
g,1 = ċ

(m,0)
g,1 − g∗mce,0(t)− i

(
∆̃m − i

Γm
2

)(
c

(m)
g,1 (t)− c(m,0)

g,1 (t)
)
. (2.2.33)

This equation is valid for all possible initial conditions. However, we will limit the Hilbert
space to a subspace containing the excited atom state |e,0〉 and the single excitation of a cavity
mode. The latter is defined using an analogous definition as (2.2.18) in terms of operators:

âm :=
1

gm

∫
+∞

0

ηm(ω)â(ω). (2.2.34)

Using the commutation relations (2.2.3) and the property (2.2.19), we find easily the commu-
tation relations:

[
âm, â

†
m′

]
= δmm′ , (2.2.35a)

[
âm, âm′

]
=
[
â†m, â

†
m′

]
= 0. (2.2.35b)

The application of operator â†m on the vacuum state creates the single cavity mode excitation:

â†m|0〉 = |1m〉, (2.2.36a)
âm|1m′〉 = δmm′ |0〉. (2.2.36b)

Writing the initial condition being any superposition state:

|ψ(0)〉 = α|e,0〉+
∑

m

βm|g, 1m〉, (2.2.37)

with |α|2 +
∑

m |βm|2 = 1, which corresponds to cg,1(ω, 0) =
∑

m βm
η∗m(ω)
g∗m

, we find that the
set of equations of motion for the probability amplitudes is:

ċ
(m)
g,1 = −g∗mce,0(t)− i

(
∆̃m − i

Γm
2

)
c

(m)
g,1 (t),

ċe,0 =
∑

m

gmc
(m)
g,1 (t).

(2.2.38a)

(2.2.38b)
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These probability amplitudes correspond to the effective unnormalized wavefunction:

|ψ̄(t)〉 = ce,0(t) +
∑

m

c
(m)
g,1 (t)|g, 1m〉, (2.2.39)

with, in the simplified basis {|e,0〉, |g, 1m〉}, the non-Hermitian Hamiltonian in matrix form:

Ĥeff =

(
0 −ig∗m
igm ∆̃m − iΓm

2

)
. (2.2.40)

We remark that the coupling is taken up to the first order in |t|, while the (imaginary)
loss is taken up to the second order in |t|, corresponding to the lowest order different from
zero. Finally, we can write the effective Hamiltonian back from the rotating frame, via the
transformation:

R̂(t) = eiω0t(σ̂+σ̂−+
∑
m â†mâm), (2.2.41)

leading to:

Ĥeff = ~ω0σ̂+σ̂− +
∑

m

(
~ω̃m − i~

Γm
2

)
â†mâm

+ i~
∑

m

(
gmσ̂+âm − g∗mâ†mσ̂−

)
. (2.2.42)

This Hamiltonian describes the dynamics of the 1D atom-cavity mode system, therefore, as
the atomic transition is considered nearly resonant to a single cavity mode m, the sum can be
dropped. Since it is non-Hermitian, the energy leaves this system as t increases. This leakage
corresponds to the escape of photons through the semi-transparent mirror. This effective
model is found as well using the master equation formalism (2.1.97) derived earlier from the
Hamiltonian (2.1.33). Indeed, when writing the master equation in the product basis (as will
be done in the next section), the dynamics is decomposed into a leaking part equivalent to
the Schrödinger equation with Hamiltonian (2.2.42), and another part collecting the energy
loss of the preceding one. The first part corresponds to the atom-cavity mode system, while
the other one corresponds to the photon leakage. Therefore, the effective model we have just
derived is enough to get the dynamics of the atom in the cavity. The output field is found
when writing the Poynting vector in terms of the output reservoir operators b̂(ω), b̂†(ω), which
depend on the perfect cavity operators ĉ, ĉ † (see equation (2.1.71)), shown to be equivalent
to âm, â†m.
Such a derivation is very useful for the understanding of strong coupling regime and quantum
emitter interactions with plasmons, as will be seen in chapter 4, where we build effective
models for quantum emitters coupled to spherically layered media.
In the next section, however, we require the output field information, therefore we will use
the usual cQED model with the master equation (2.1.97).
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Figure 2.8: Atom-field interaction in the cavity: (left panel) a single Λ-atom is driven by an external
classical laser field of Rabi frequency Ω(t), and a quantized cavity field with coupling strength g. (right
panel) The fields are in two-photon resonance, the one-photon detuning is ∆. Initially the atom is in
the ground state |g〉. In the course of the excitation process, one photon is taken from the laser field
and transferred to the cavity, and eventually leaks out of the cavity, through the semi-transparent
mirror, with decay rate Γc.

2.3 Production of photon states with atoms in a cavity

2.3.1 Single photons with one atom in a cavity

We derive from the preceding analysis the model for the generation of a single photon using
a leaking cavity containing one atom driven by a pulsed laser of Rabi frequency Ω(t). The
production of a single photon in such a system has been demonstrated with an atom flying
through the cavity in a resonant stimulated Raman adiabatic passage configuration [71, 83]
and for a trapped ion in a cavity [74]. We show that a large cavity detuning and a large
leakage rate allows the direct and simple control of the photon temporal shape.
In a dressed basis, one denotes states |i〉|n〉 ≡ |i, n〉 with i labelling the atomic states and n
is the number state in the cavity. We assume an initial condition with zero photon in the
cavity, and the basis splits into four relevant dressed states (see fig. 2.8):

{
|g, 0〉, |e, 0〉, |f, 1〉, |f, 0〉

}
. (2.3.1)

The dynamics is described by the Lindblad equation derived in the preceding sections:

˙̂% = − i
~
[
ĤS(t), %̂(t)

]
+ Γc

(
ĉ %̂(t)ĉ † − 1

2

{
ĉ †ĉ, %̂(t)

})
, (2.3.2)

where the brackets
{
Â, B̂

}
= ÂB̂ + B̂Â denote the anticommutator between two operators.

The Lindblad equation can be written in another form:

˙̂% = − i
~

(
Ĥnh(t)%̂(t)− %̂(t)Ĥ†nh(t)

)
+ Γcĉ %̂(t)ĉ †, (2.3.3a)

Ĥnh(t) = ĤS(t)− i~Γc
2
ĉ †ĉ, (2.3.3b)



69 CHAPTER 2. QUANTUM OPTICS WITH ATOMS IN CAVITIES

where we introduce a non-Hermitian dissipative Hamiltonian Ĥnh. Expressed in the dressed
basis (2.3.1), the non-Hermitian Hamiltonian reads:

Ĥnh(t)/~ =




0 Ω(t) 0 0
Ω(t) ∆ g 0

0 g −iΓc
2

0
0 0 0 0


 =

(
A(t) 031

013 0

)
, (2.3.4)

where we have highlighted the block A(t) in which the atom dynamics is happening, and 0nm
is a n×m matrix containing zeros everywhere. Separating the blocks A and {0} (the second
one corresponding to the state |f, 0〉), we write the density matrix in the following form:

%̂(t) =

(
%AA(t) %A0(t)
%0A(t) %00(t)

)
. (2.3.5)

Rewriting equation (2.3.3a) and choosing the initial condition such that %A0(ti) = %0A(ti) = 0,
we get a set of two equations which are solved sequently:

%̇AA = −i
(
A(t)%AA(t)− %AA(t)A†(t)

)
, (2.3.6a)

%̇00 = Γc〈f, 1|%AA(t)|f, 1〉. (2.3.6b)

With the initial condition chosen to be:

|ψ(ti)〉 = |g, 0〉, (2.3.7)

the dynamics of this system of equations is described in two steps:

• We solve equation (2.3.6a), which is a time-dependent Schrödinger equation with losses,
since A is non-Hermitian:

i
d|ψA〉

dt
= A(t)|ψA(t)〉, (2.3.8)

where |ψA(t)〉 = cg,0(t)|g, 0〉+ce,0(t)|e, 0〉+cf,1(t)|f, 1〉. As the cavity is going to decay in
|f, 0〉 when the state reaches |f, 1〉, the total population of |ψA(t)〉 decreases over time.

• Rewriting equation (2.3.6b) in terms of state population Pi,n(t) = 〈i, n|%̂(t)|i, n〉, we get:
Ṗf,0 = ΓcPf,1(t), (2.3.9)

and this equation shows that the losses are collected in the population of |f, 0〉, closing
the whole system with the completeness:

∑

i,n

Pi,n(t) = 1. (2.3.10)

The population of |f, 0〉 is obtained by integrating Pf,1(t) over time, and the dynamics is
solved with equation (2.3.8). To calculate the photon flux, we use equation (2.1.71) and the
definition of the average 〈Â〉 = Tr

{
Â%̂
}
:

Φ(t) =
dn

dt
= ΓcPf,1(t), (2.3.11a)

n(t) =

∫ t

ti

dt′Φ(t′) = Γc

∫ t

ti

dt′Pf,1(t′). (2.3.11b)
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We see from the latter equation and (2.3.9) that the average photon number is identical to
Pf,0(t). The direct control of the production of a leaking single photon can be achieved with
an adiabatic elimination of the excited state |e, 0〉 [42], i.e. with a large one-photon detuning
and a bad cavity regime:

∆� Ω(t), g (2.3.12a)

Γc � G(t),
g2

∆
, (2.3.12b)

where G(t) = −gΩ(t)/∆ is the effective Raman coupling. Those two conditions combined
lead to the adiabatic elimination of the state |f, 1〉. Writing (2.3.8) for each coefficient, we
get:

iċg,0 = Ω(t)ce,0(t) (2.3.13a)
iċe,0 = Ω(t)cg,0(t) + ∆ce,0(t) + gcf,1(t) (2.3.13b)
iċf,1 = gce,0(t)− iΓc

2
cf,1(t), (2.3.13c)

and in the large detuning limit, the adiabatic elimination is done setting ċe,0 = 0, which is
equivalent to averaging the fast oscillations of ce,0(t):

ce,0(t) ' −
(

Ω(t)

∆
cg,0(t) +

g

∆
cf,1(t)

)
. (2.3.14)

The system of equations for the coefficients then reduces to:

iċg,0 = SL(t)cg,0(t) +G(t)cf,1(t) (2.3.15a)
iċf,1 = G(t)cg,0(t) +

(
Sc − iΓc

2

)
cf,1(t), (2.3.15b)

where we introduced the Stark shifts SL(t) = −Ω2(t)/∆ and Sc = −g2/∆ caused respectively
by the laser pulse and the cavity field. The last step of the adiabatic elimination is brought
with condition (2.3.12b), which leads to ċf,1 = 0 and:

cf,1(t) ' − G(t)

Sc − iΓc
2

cg,0(t) ' i
2G(t)

Γc
cg,0(t). (2.3.16)

As a consequence, only one equation of motion remains and it is integrated to determine
cg,0(t):

cg,0(t) = eiζ(t)e−
θ(t)

2 , (2.3.17a)

ζ(t) =

∫ t

ti

dt′ SL(t′), (2.3.17b)

θ(t) =

∫ t

ti

dt′
4G2(t′)

Γc
. (2.3.17c)

For any g, ∆, Γc and Ω(t) fulfilling conditions (2.3.12), we have solved the dynamics and,
using both relation (2.3.16) and (2.3.11a), the time shape of the photon flux is:

Φ(t) = θ̇ e−θ(t). (2.3.18)
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Figure 2.9: (a) Rabi frequency Ω(t)T (2.3.20) with (g,Γc,∆) × T = (25, 50, 100) and η = 0.99,
determined from the desired Gaussian shape flux Φ(t) (2.3.21) [desired (dashed line) and numerical
from the original model (2.3.8) (thick line)] of the single photon through the semi-transparent mirror
(in units of T ); number of outgoing photons n(t) (2.3.11b) during the process (thin line). (b) Same
calculation done for Γc = 5/T and a chosen Rabi frequency Ω(t) = Ω0 exp[−(t/T )2], Ω0T = 25.

An interesting feature from this analytic form of the photon flux is the possibility of reverse-
engineering the process and to tailor a desired photon flux by deriving explicitly the corre-
sponding laser pulse shape Ω(t), given g, ∆ and Γc. This is achieved by determining θ(t) from
(2.3.18):

θ(t) = − ln

[
1−

∫ t

ti

dt′Φ(t′)

]
, (2.3.19)

and using the definition of θ(t) (2.3.17c), the laser Rabi frequency is obtained by differentiating
the latter equation:

Ω(t) =
∆
√

Γc
2g

√
Φ(t)

1−
∫ t
ti

dt′Φ(t′)
. (2.3.20)

We remark that this definition of the Rabi frequency can diverge at large times. To prevent
it, we introduce an efficiency parameter η < 1, which ensures that Ω(t → +∞) = 0 when
Φ(t → +∞) = 0 [69]. Numerical results are shown for two different parameter sets. The
first result, displayed on fig. 2.9a, is a plot of the Rabi frequency (2.3.20) when we chose a
Gaussian probability shape for the single photon flux:

Φ(t) =
η

T
√
π

e−(t/T )2

,

∫
+∞

−∞

dt′Φ(t′) = η, (2.3.21)

where T is the width of the flux. We have also set η = 0.99 such that the Rabi frequency
needed to get Φ(t) does not diverge, and we obtain maxtG(t) ≈ 5.5/T � Γc = 50/T as
required. The resulting photon flux is checked numerically by calculating it from the solution
of the Schrödinger equation (2.3.8) without applying the adiabatic elimination, with the Rabi
frequency (2.3.20). The numerical photon flux closely follows the desired shape as expected.
Other more complex forms can be investigated through (2.3.20) such as the ones obtained by
the resonant process with flying atoms in [69].
Figure 2.9b shows a different situation in which the cavity has a better effective quality factor,
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1 2

Figure 2.10: Atom-field interaction in the cavity: (left panel) two Λ-atoms driven by two external
classical laser fields of Rabi frequency Ω1,2(t) with the one-photon detuning ∆, and a quantized cavity
field with coupling strength g. (right panel) 2-atom-cavity system. The states |i〉1 ⊗ |j〉2 ≡ |ij〉 with
i, j = g, e, f form a basis for atoms 1 and 2.

and as a consequence the second adiabatic elimination (2.3.12b) cannot be made. In that case
we do not reverse-engineer the process, and we chose the Rabi frequency of the laser pulse as
a Gaussian function. The decay rate is taken to be smaller than in the preceding calculation:
Γc = 5/T ≈ maxtG(t) = 6.25/T . The leakage of the single photon occurs earlier and faster
due to the earlier peak and the different shape of the Rabi frequency. The better quality of
the cavity leads to a deformation of the tail of the photonic shape, since the emitted photon
still has time to interact with the atom before leaving the cavity.

2.3.2 Single and two-photon states with two atoms in a cavity

We present a numerical study of the outgoing photon flux when the cavity field interacts with
two laser-driven atoms. The aim of this section is to describe in a precise way the nature of
the outgoing two-photon state. The generation of an N -photon state has been investigated
using, for instance, the Zeeman sublevels of a single alkali atom [72].
We consider the system shown in fig. 2.10: we assume that each atom (labelled 1 and 2) can
be driven independently by two Rabi frequencies Ω1(t) and Ω2(t). The atom-cavity coupling
g for the transition |e〉 ↔ |f〉 allows the production of photons in the cavity mode leaking
outside with decay rate Γc. We proceed as for the case of one atom and consider a large
detuning. Stark shifts proportional to Ω2

j(t)/∆ and g2/∆ appear from the elimination of
the excited states, but the second condition of a leaking cavity make them negligible in the
dynamics, since they are of the same order of magnitude as the effective Raman coupling
strength Gj(t) = −gΩj(t)/∆. We summarize the double adiabatic elimination conditions by
the following relations:

∆� Ωj(t), g (2.3.22a)
Γc � Gj(t). (2.3.22b)

The effective dressed basis derived from the adiabatic eliminations is:
{
|gg, 0〉, |fg, 1〉, |gf, 1〉, |ff, 2〉︸ ︷︷ ︸

A

, |fg, 0〉, |gf, 0〉, |ff, 1〉︸ ︷︷ ︸
B

|ff, 0〉︸ ︷︷ ︸
{0}

}
, (2.3.23)
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Figure 2.11: Dynamical map of a two-atom system driven by two laser fields and trapped in a cavity.
The dynamics splits into three blocks [from left to right, A,B and {0} see (2.3.24)] leaking from one
to another with decay rate Γc. Eventually, all population ends up in state |ff, 0〉 (block {0}).

where |ij, n〉 ≡ |i〉⊗|j〉⊗|n〉, i, j label the atomic states g, e, f and n = 0, 1, 2 label the photon
number states. The effective non-Hermitian Hamiltonian in this basis is:

Ĥad(t) =




0 G1(t) G2(t) 0 0 0 0 0
G1(t) −iΓc

2
0 G2(t) 0 0 0 0

G2(t) 0 −iΓc
2

G1(t) 0 0 0 0
0 G2(t) G1(t) −iΓc 0 0 0 0
0 0 0 0 0 0 G2(t) 0
0 0 0 0 0 0 G1(t) 0
0 0 0 0 G2(t) G1(t) −iΓc

2
0

0 0 0 0 0 0 0 0




=




A(t) 043 041

034 B(t) 031

014 013 0


 , (2.3.24)

where we have recognized the block-diagonal structure and called the two big blocks A(t) and
B(t). We denote by A,B and {0} the three blocks of the dynamics, each one corresponding
to a subspace in the effective basis (2.3.23). The system density matrix may be expanded as:

%̂ =



%AA %AB %A0

%BA %BB %B0

%0A %0B %00


 , (2.3.25)

and, as in the preceding section, the initial condition is taken in block A. The off-diagonal
blocks are then always empty: %AB(t) = %A0(t) = %B0(t) = 0 and due to the strong cavity
leakage, the dynamics flows from block to block as described in fig. 2.11. The dynamics
is given by the Lindblad effective equation (2.3.3a), which can be reformulated with a non-
Hermitian Schrödinger equation (2.3.8) for block A. In the limit of strong leakage, one can
solve this equation analytically. The dynamics for the B block features a Schrödinger equation
with a probability source:

%̇BB = −i
(
B(t)%BB(t)− %BB(t)B†(t)

)
+ ΓcC%AA(t)C†︸ ︷︷ ︸

prob. source term

, (2.3.26)
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with

C =




0 1 0 0
0 0 1 0

0 0 0
√

2


 . (2.3.27)

We need the solution %AA(t) = |ψA(t)〉〈ψA(t)| from (2.3.8) to get the source term and solve
(2.3.26). In the Redfield representation, this equation becomes:

~̇%BB = −i
(
B(t)⊗ 1lB − 1lB ⊗B†(t)

)
~%BB(t) + Γc~Y (t), (2.3.28)

where ~%BB(t) corresponds to the column form of the density matrix %BB(t) associated to block
B, and ~Y (t) is the Redfield representation of the source term. This equation is of the form:

~̇X = M(t) ~X(t) + ~Y (t), (2.3.29)

which is solvable numerically with a good precision (see appendix 2.D). The outgoing photon
flux is calculated as in the preceding section, and reads:

Φ(t) = Γc
∑

n>0

nPij,n(t)

= ΦA→B(t) + ΦB→{0}(t), (2.3.30)

where ΦA→B(t) = Φfg,1(t) + Φgf,1(t) + Φff,2(t) describes the emission of a single photon from
block A to block B, and ΦB→{0}(t) = Φff,1(t) corresponds to the emission of a single photon
from B to {0}. Here, Pff,2(t) can be neglected with regard to (2.3.22b). One finds that the
photon flux is a sum of partial photon fluxes as suggested in (2.3.30), each one corresponding
to the production of a single photon. Figure 2.12 show the photon fluxes, for Gaussian pulse
shapes:

Ω1(t) = Ω0e−( t−t0−τT )
2

, Ω2(t) = Ω0e−( t−t0+τ
T )

2

, (2.3.31)
where τ is the time delay between the laser pulses and T is the time duration of a pulse.
The fluxes are determined numerically for the following two cases: (i) a sequence of laser
pulses (laser 1 is switched on before laser 2), and (ii) simultaneous laser pulses. The partial
flux Φff,2(t) is seen to be negligible, and in the first case we obtain ΦA→B(t) ≈ Φfg,1(t).
The two photons are produced one by one with a time delay corresponding to τ , and each
photon results from a leakage from block to block. In fig. 2.12b, however, the photons are not
generated separately, and the resulting two-photon state is not a Fock state. In the following
section, we describe how to characterize the photonic state in the case of general one and
two-photon states.

2.3.3 Characterization of the outgoing two-photon state

Knowing the photon flux from the previous calculations, we must provide a good description
of the outgoing photonic state. We proceed in two steps:

• We write the general form of single and two-photon states, and we match it with the
photon flux. The matching results in a fit, whose parameters help to fully determine
the state function.

• We study the unnormalized second-order correlation function G(2)(t, τ), whose shape
provides information about the photonic state.
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Figure 2.12: (a) (upper panel) Rabi frequencies (in units of T ) of delay 2τ = 2.8T . (middle panel)
Populations in the dressed basis for (Ω0,∆, g,Γc) × T = (15, 100, 40, 40). (lower panel) Outgoing
photon flux Φ = Φfg,1 + Φff,1 + Φff,2 (in units of T ) and outgoing photon number n(t) (dark blue).
(b) Same as in (a) but for Ω1(t) = Ω2(t) ≡ Ω(t).

One and multi-mode representation

According to reference [84, 85], general one and two-photon states |1φ〉, |2Ψ〉 can be fully
characterized from the knowledge of a function φ(ω) for the single photon and a two-variable
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function Ψ(ω1, ω2), both defined in the frequency domain:

|1φ〉 = â†φ|0〉, â†φ :=

∫
+∞

0

dω φ(ω)̂b†(ω), (2.3.32)

|2Ψ〉 =
1

N2

∫
+∞

0

dω1dω2Ψ(ω1, ω2)̂b†(ω1)̂b†(ω2)|0〉, (2.3.33)

where N2 is a normalization factor, and b̂†(ω) is a creation operator for a photon in the mode
ω, outside of the cavity. In the time domain, the same states can be written equivalently:

|1φ〉 = â†φ|0〉, â†φ :=

∫
+∞

−∞

dt φ̃(t)̂b†(t), (2.3.34a)

|2Ψ〉 =
1

N2

∫
+∞

−∞

dt1dt2Ψ̃(t1, t2)̂b†(t1)̂b†(t2)|0〉. (2.3.34b)

where we introduce the one and two-time Fourier transforms of φ(ω),Ψ(ω1, ω2), respectively:

φ̃(t) =
1

2π

∫
+∞

0

dωφ(ω)e−iωt, (2.3.35a)

Ψ̃(t1, t2) =
1

(2π)2

∫
+∞

0

dω1dω2Ψ(ω1, ω2)e−i(ω1t1+ω2t2), (2.3.35b)

and, considering the preceding functions to be square-integrable and normalized, the two-
photon normalization factor is shown to be:

N2 = 1 +

∫
+∞

−∞

dt1dt2Ψ̃(t1, t2)Ψ̃∗(t2, t1). (2.3.36)

In the following, we make the connection between Ψ̃(t1, t2) and the photon flux in the vacuum:

Φ(t) :=
〈
b̂†(t)̂b(t)

〉
= 〈2Ψ| b̂†(t)̂b(t)|2Ψ〉. (2.3.37)

Using equation (2.3.35b) with the expression of the flux, we show that it splits into a sum of
two partial fluxes of the form:

Φ(t) = Φ1(t) + Φ2(t), (2.3.38a)

Φ1(t) =
1

N2

∫
+∞

−∞

dt′
(

Ψ̃∗(t, t′) + Ψ̃∗(t′, t)
)

Ψ̃(t, t′), (2.3.38b)

Φ2(t) =
1

N2

∫
+∞

−∞

dt′
(

Ψ̃∗(t, t′) + Ψ̃∗(t′, t)
)

Ψ̃(t′, t). (2.3.38c)

The expression for the photon flux derived here can be used to recover the photon number,
by integration over time t. We see from the latter expression that the integrated partial fluxes
both provide a single photon number, that is:

∫
+∞

−∞

dtΦ1,2(t) = 1, (2.3.39)

which naturally brings a two-photon number for the total flux. However, we have to pay
attention to the meaning of the partial fluxes Φ1,2. Their time integral being one does not mean
that they carry one single photon, whose general state representation is given by equation
(2.3.34a).
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Well-separated single photon fluxes

The flux of a single photon is given, using the commutation relation
[
b̂(t), b̂†(t′)

]
= δ(t − t′)

and the temporal function φ̃(t):

Φsp(t) = 〈1φ| b̂†(t)̂b(t)|1φ〉 = |φ̃(t)|2. (2.3.40)

If two single photons are emitted with a time delay τ such that τ � Tsp where Tsp is a
characteristic pulse width for a single photon, then the two photon state function can be
written as:

Ψ̃(t1, t2) = φ̃1(t1)φ̃2(t2), (2.3.41)

where φ̃1,2(t) are the temporal functions of the first and second single photons, respectively.
Those two functions respect φ̃1(t)φ̃2(t) = 0 for all t, since the single photons are well separated.
As a consequence, we have N2 = 1 and the partial photon fluxes (2.3.38) become simply:

Φ1,2(t) = |φ̃1,2(t)|2. (2.3.42)

As a consequence, the state (2.3.34b) can be written as two orthogonal single photon states:

|2Ψ〉 ≡ |1φ1〉|1φ2〉, (2.3.43a)

〈1φ1|1φ2〉 =

∫
+∞

−∞

dt φ̃∗1(t)φ̃2(t) = 0. (2.3.43b)

General two-photon Fock state

A Fock state with two photons in the same mode has a temporal function which must be
factorizable into two identical functions:

Ψ̃2F (t1, t2) = φ̃(t1)φ̃(t2), (2.3.44)

such that the general two-photon state (2.3.34b) can take the form:

|2φ〉 =

(
â†φ
)2

√
2!
|0〉. (2.3.45)

The criteria on producing a two-photon Fock state is then to have the partial photon fluxes
(2.3.38) overlapping completely:

Φ1(t) = Φ2(t) = |φ̃(t)|2. (2.3.46)

Outgoing two-photon state with two atoms in a cavity

We analyze the results showed in fig. 2.12: for the case (a), we have two non-overlapping
partial photon fluxes, each carrying one single photon. The outgoing photon state is then
|1φ1〉|1φ2〉, where:

φ̃1(t) ≡ φ̃(t), (2.3.47)

φ̃2(t) = φ̃(t+ τL), (2.3.48)
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τL being the delay between the two single photons, corresponding to the delay between the
laser pulses. The wavefunction of this state can be fully determined from the partial fluxes:

|Ψ̃(0)(t1, t2)| =
√
N2

√
Φ

(0)
1 (t1)Φ

(0)
2 (t2), (2.3.49)

where we have labelled the wavefunction and the partial fluxes with a superscript (0) to
specify that they don’t overlap. For the case displayed on fig. 2.12b, the partial photon fluxes
overlap. To determine the wavefunction, we assume the form:

|Ψ̃(t1, t2)| =
√
N2

√
Φ1(t1)Φ2(t2), (2.3.50)

where:

Φj

( t
Tj

)
≈
T

(0)
j

Tj
Φ

(0)
j

(
t+ τj

T
(0)
j

)
, i = 1, 2 (2.3.51)

with Φ1 = Φfg,1 + Φgf,1, Φ2 = Φff,1 taken from fig. 2.12b and Φ
(0)
1 = Φfg,1,Φ

(0)
2 = Φff,1 from

fig. 2.12a. The coefficients T (0)
j , Tj and τj are adapted to satisfy at best (2.3.51). The results

are shown in fig. 2.13. We can observe very close shapes between the exact and fitted fluxes.
This allows the characterization with a good accuracy of the two-photon state in fig. 2.12 by
a state of the form (2.3.34b) with (2.3.50).

Second-order correlation function

The autocorrelation function, or second-order correlation function, is a measurement per-
formed by a Handbury-Brown-Twiss setup, and characterizes the quantum behavior of light,
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such as single photon sources, squeezed light, or coherent states. We study the behavior of the
unnormalized second-order correlation function G(2)(t, τ) associated with the outgoing field
of the cavity:

G(2)(t, τ) =
〈
ĉ †(t)ĉ †(t+ τ)ĉ(t+ τ)ĉ(t)

〉
. (2.3.52)

The two-time second order correlation function is not defined in the Schrödinger picture,
because of the two time arguments. We apply the quantum regression theorem to compute
numerically this function [86]. Using the propagator Û(t, t0) of the system and the environ-
ment, and considering the Markov approximation, one finds:

G(2)(t, τ) = TrS
{

Λ̃(t+ τ, t)ĉ%̂(t)ĉ †
}

= TrS
{
ĉ †ĉΛ(t+ τ, t)

}
, (2.3.53)

with Λ(t+ τ, t), Λ̃(t+ τ, t) being defined as follows:

Λ(t+ τ, t) = TrR
{
Û(t+ τ, t)ĉ%̂(t)ĉ †%̂RÛ

†(t+ τ, t)
}
, (2.3.54)

Λ̃(t+ τ, t) = TrR
{
Û(t+ τ, t)ĉ †ĉ Û †(t+ τ, t)%̂R

}
. (2.3.55)

As can be seen from equation (2.3.53), we have the identity:

TrS
{

Λ̃(t+ τ, t)ĉ%̂(t)ĉ †
}

= TrS
{
ĉ †ĉΛ(t+ τ, t)

}
, (2.3.56)

and this identity still stands if ĉ%̂(t)ĉ † is replaced by %̂(t), leading to:

TrS
{

Λ̃(t+ τ, t)%̂(t)
}

= TrS
{
ĉ †ĉ %̂(t)

}

=
〈
ĉ †(t+ τ)ĉ(t+ τ)

〉
. (2.3.57)

We have to compute the density operator propagated to t+ τ :
d

dτ
%̂(t+ τ) = L(t+ τ)%̂(t+ τ), (2.3.58a)

L(t)%̂(t) = − i
~
[
ĤS(t), %̂(t)

]
+ Γc

(
ĉ%̂(t)ĉ † − 1

2

{
ĉ †ĉ, %̂(t)

})
, (2.3.58b)

and we write the solution of this equation:

%̂(t+ τ) = V (t+ τ, t)%̂(t). (2.3.59)

Using bot equations (2.3.54) and (2.3.58a), we find that the same equation applies to Λ(t+τ, t):
d

dτ
Λ(t+ τ, t) = L(t+ τ)Λ(t+ τ), (2.3.60)

and as a consequence, the solution writes:

Λ(t+ τ, t) = V (t+ τ, t)Λ(t, t)

= V (t+ τ, t)ĉ%̂(t)ĉ †. (2.3.61)

We display the unnormalized two-time second order correlation function in fig. 2.14. In this
calculation, we chose a reference time tpeak corresponding to the peaked value of the total
photon flux, and we propagated the solution of the master equation Λ(tpeak + τ, tpeak) to get
the results. The figure shows a small bump due to the coincidences at zero delays (τ = 0),
indicating that the probability of a joint generation of two photons is higher than any other
delayed generation of two single photons. However, regarding the sum over all possible delays,
this probability is very small.



80 CHAPTER 2. QUANTUM OPTICS WITH ATOMS IN CAVITIES

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

x 10
−3

τ /T

G
(2

) (
τ
)

Figure 2.14: Unnormalized two-time second-order correlation function G(2)(tpeak, τ) ≡ G(2)(τ), with
respect to the reference time tpeak corresponding to the maximum of Φ(t).

Summary
We have presented a general study of cavity QED concepts, and derived the models associated
with them. An application for the production of photon states leaking from a cavity was
shown. In the next part, we transpose the concept of cQED to quantum plasmonics. Optical
cavities are usually understood in the high-Q limit, but in the case of plasmons we have to
consider low-Q systems. Nevertheless, the transposition of the concepts is still possible in
terms of the structure of the effective models, as is shown in chapter 4.
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Appendix

2.A Canonical quantization of the electromagnetic field
in a dielectric medium

In this appendix, we derive the quantization procedure step by step, starting from the prop-
agation equation (2.1.8). Using the new variable A′ =

√
εr(r)A, the propagation equation

has the form:
(
∂2

∂t2
+ Ω2

)
A′ = 0, (2.A.1)

where we define the Hermitian operator Ω := (Ξ†Ξ)1/2, with Ξ = c∇ × 1√
εr
. To show the

hermiticity of this operator, one can write operator Ξ as a matrix in Cartesian coordinates:

Ξ = c




0 −∂z ∂y
∂z 0 −∂x
−∂y ∂x 0


 1√

εr
, (2.A.2)

where we used the simplified notation ∂x ≡ ∂
∂x
. Recalling that (∂x)

† = −∂x, we find the
operator Ξ†Ξ to be Hermitian. The operator Ξ†Ξ is positive by construction, so its square
root is well-defined. The next step consists in defining a canonical conjugate variable Π′ such
that the pair (A′,Π′) forms a Hamiltonian system:

∂Π′

∂t
= − ∂H

∂A′
(2.A.3)

∂A′

∂t
=
∂H
∂Π′

, (2.A.4)

with the Hamiltonian density:

H =
1

2

(
Π′ ·Π′ + A′ ·Ω2A′

)
. (2.A.5)

The Hamiltonian is obtained when integrating the latter over r. Equations (2.A.3) to(2.A.5)
lead indeed to (2.A.1). To relate Π′ to a physical quantity, we connect (2.A.4) with (2.1.6)
via:

Π′ = −
√
εr(r)E. (2.A.6)

The Hamiltonian cannot be quantized directly using the principle of correspondence because
the canonical variables have to satisfy the constraint given by the generalized Coulomb gauge
(2.1.7). To get rid of the constraint, we introduce a coordinate in the complex phase space
PC{A′,Π′} spanned by (A′,Π′):

Z =
1√
2~

(
Ω1/2A′ + iΩ−1/2Π′

)
, (2.A.7)

and we consider an orthonormal basis of complex functions {Φκ} with the scalar product:

〈Φκ,Φκ′〉 =

∫

V

d3rΦ∗κ(r) ·Φκ′(r) = δκκ′ , (2.A.8)
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where κ is a label denoting the classical mode, and the total number N of normal modes
is finite. These mode functions must fulfill the constraint (2.1.7): ∇ · (εΦκ) = 0 and we
represent the phase space coordinate in this basis:

Z =
∑

κ

aκΦκ. (2.A.9)

Doing so, we unravel a new map leading to another phase space where aκ is the coordinate.
Combining all modes in a vector a = (aκ1 , ..., aκN ), we write:

a =
1√
2~

(
Ω̄1/2q + iΩ̄−1/2p

)
, (2.A.10)

where we introduced the mode representation of Ω with the matrix elements:

Ω̄κκ′ = 〈Φκ,ΩΦκ′〉. (2.A.11)

By writing the coordinate in the mode representation, we get the map (A′,Π′) 7→ (q, p),
which is a canonical transformation, and the new coordinates (q, p) are free of constraints,
therefore independent. The principle of correspondence is now possible and we replace the
canonical operators by operators:

qκ 7→ q̂κ (operator of multiplication by qκ), pκ 7→ p̂κ := −i~ ∂

∂qκ
, (2.A.12)

with the commutation relations:
[
q̂κ, q̂κ′

]
=
[
p̂κ, p̂κ′

]
= 0 (2.A.13a)[

q̂κ, p̂κ′
]

= i~δκκ′ . (2.A.13b)

The phase space coordinate becomes the annihilation operator with the related commutation
relation:

z 7→ â :=
1√
2~

(
Ω̄1/2q̂ + iΩ̄−1/2p̂

)
,

[
âκ, â

†
κ′

]
= δκκ′ . (2.A.14)

The original variables corresponding to the field can be expressed as linear combinations of
the creation and annihilation operators when writing the inverse relations:

Â′(r) =

√
~
2

∑

κ

Ω−1/2
(
Φκ(r)âκ + Φ∗κ(r)â†κ

)
(2.A.15a)

Π̂
′
(r) = −i

√
~
2

∑

κ

Ω1/2
(
Φκ(r)âκ −Φ∗κ(r)â†κ

)
. (2.A.15b)

In the previous derivation, the mode functions Φκ have to satisfy the constraint and the
boundary conditions. We consider them to be eigenmodes (or normal modes) of the frequency
operator:

Ω2Φκ = ω2
κΦκ, (2.A.16)
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where ωκ is the frequency associated to the normal mode labelled κ. The frequency oper-
ator being positive, its square root is defined and we write the observables in terms of the
eigenvalues ωκ:

Â′(r) =
∑

κ

√
~

2ωκ

(
Φκ(r)âκ + Φ∗κ(r)â†κ

)
(2.A.17a)

Π̂
′
(r) = −i

∑

κ

√
~ωκ

2

(
Φκ(r)âκ −Φ∗κ(r)â†κ

)
. (2.A.17b)
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2.B Lorentzian structure of the cavity spectral response
function

In this section we derive the Lorentzian structure of the cavity response function (2.1.30):

T (ω) =
t(ω)

1 + r(ω)ei2
ω
c
L
. (2.B.1)

For simplicity, we do not write the dependence in ω of r and t in the calculation, and we use
the complex notation r = |r|eiφr . Writing the square modulus of T (ω), and using (2.1.27a)
we get:

|T (ω)|2 =
1− |r|2
|1 + |r|eiφ|2

= 1− |r|eiφ
1 + |r|eiφ −

|r|e−iφ
1 + |r|e−iφ , (2.B.2)

where φ = φr + 2ω
c
L. Using the geometric series formula:

+∞∑

n=1

qn =
q

1− q , |q| < 1, (2.B.3)

we can write the two last terms of the above expression in terms of discrete sums:

|T (ω)|2 = 1 +
+∞∑

n=1

|r|n
(
ein(φ+π) + e−in(φ+π)

)

=
+∞∑

n=−∞

|r||n|ein(φ+π). (2.B.4)

Having the expression of |T (ω)|2 in terms of a single discrete sum where n runs from −∞ to
+∞, we invoke the Poisson summation formula [87]:

+∞∑

n=−∞

f(n) =
+∞∑

m=−∞

∫
+∞

−∞

dx f(x)e−i2πmx

=
+∞∑

m=−∞

f̃(m), (2.B.5)

f̃(y) = Fy[f(x)] being the Fourier transform of f(x). We apply it to the function:

f(x) = |r||x|eix(φ±π) = exp
(
|x| ln |r|+ ix(φ± π)

)
, (2.B.6)
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and we use the following identity to compute the Fourier transform:

Fy
[
ei2πy0xe−a|x|

]
= Fy−y0

[
e−a|x|

]

=
2a

(
2π(y − y0)

)2
+ a2

. (2.B.7)

Finally, the Fourier transform reads:

f̃(m) =
−2 ln |r|

(
2πm− (2ω

c
L− φr + π)

)2
+ (ln |r|)2

, (2.B.8)

and multiplying both the numerator and the denominator by (c/2L)2 we find the Lorentzian
structure of the cavity spectral response function:

|T (ω)|2 =
+∞∑

m=−∞

c

2L

γ(ω)
(
ω − ω̃m(ω)

)2
+
(
γ(ω)

2

)2 ,

γ(ω) = − c
L

ln |r(ω)|,

ω̃m(ω) = m
πc

L
+

c

2L

(
π − φr(ω)

)
.

(2.B.9a)

(2.B.9b)

(2.B.9c)
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2.C Complex plane integration of the atom-field coupling
The integrals (2.2.22) are evaluated here. We recall the expression of the square modulus of
the atom-field coupling:

|ηm(ω)|2 =
ω̃m|d|2
~ε0AL

sin2
[
ω
c
(xA + `)

]Γm
2π

1

(ω − ω̃m)2 +
(

Γm
2

)2 . (2.C.1)

The sin2 function can be split into three terms:

sin2
[
ω
c
(xA + `)

]
=

1

2

(
1− ei2

ω
c

(xA+`) + e−i2
ω
c

(xA+`)

2

)
, (2.C.2)

leading to three integral parts that have to be calculated separately. The first terms leads
simply to the integral:

I0 =
ω̃m|d|2

2~ε0AL

∫
+∞

−ω̃m
d∆

Γm
2π

1

∆2 +
(

Γm
2

)2

︸ ︷︷ ︸
1 for ω̃m→+∞

=
ω̃m|d|2

2~ε0AL
, (2.C.3)

where we introduced the change of variables ∆ = ω− ω̃m and extended the lower bound of the
integral to −∞, as we consider the limit Γm � ω̃m. The two other integrals, corresponding
to the exponential terms in (2.C.2), are:

I± =
ω̃m|d|2

4~ε0AL
e±i2

ω̃m
c

(xA+`)

∫
+∞

−∞

d∆
Γm
2π

e±i2
∆
c

(xA+`)

∆2 +
(

Γm
2

)2 . (2.C.4)

These integrals have to be done in the complex plane, using a proper contour (see fig. 2.15).
To do so we define the complex functions:

f±(z) =
Γm
2π

e±i2
z
c

(xA+`)

z2 +
(

Γm
2

)2 . (2.C.5)

The exponentials of the complex variable z lead to an integration in the positive half-plane
for f+(z) and the negative half-plane for f−(z) (see fig. 2.15), because xA + ` > 0 and we
require that the half-circle integrals vanish when |z| → +∞, such that we can use the residue
theorem:

∫
+∞

−∞

d∆ f±(∆) =

∮

C

dzf±(z)

= ±2πiResz=z±f±(z), (2.C.6)
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(a) (b)

Figure 2.15: Half-plane contour integration in the complex plane for the integrals (a) I+ and (b)
I− (see (2.C.4)).

where z± = ±iΓm
2

are the poles of the functions f±(z). Their denominators can be factorized
as (z − z±)(z + z±), and the residues lead to:

∫
+∞

−∞

d∆ f±(∆) = e−Γm
xA+`

c . (2.C.7)

As a result, we get the two integrals:

I± =
ω̃m|d|2

4~ε0AL
e±i2

ω̃m
c

(xA+`)e−Γm
xA+`

c , (2.C.8)

and summing all three integrals as I = I0 − (I+ + I−) we get the integrated atom-field
coupling:

∫
+∞

0

dω|ηm(ω)|2 =
ω̃m|d|2

2~ε0AL
(

1− e−Γm
xA+`

c cos
[
2 ω̃m

c
(xA + `)

])
. (2.C.9)

Another integral has to be calculated in (2.2.20):

I ′ =
∫

+∞

0

dω|ηm(ω)|2(ω − ω0)e−i(ω−ω0)(t−t′), t− t′ > 0. (2.C.10)

Its integration, if analogous to the previous procedure, is slightly tricky and involves a coarse-
graining approximation. The complex function to integrate has the same poles, but the
exponential factor is more complicated:

f ′±(z) =
Γm
2π

z + ∆̃m

z2 +
(

Γm
2

)2 e
−iz

(
t−t′∓ 2(xA+`)

c

)
, (2.C.11)

where we have introduced the atom-cavity mode detuning ∆̃m = ω̃m−ω0. The integral splits
in three parts, due to the square sine function, and the three integrals are:

I ′0 =
ω̃m|d|2

2~ε0AL
e−i∆̃m(t−t′)

∫
+∞

−∞

d∆
Γm
2π

∆ + ∆̃m

∆2 +
(

Γm
2

)2 e−i∆(t−t′) (2.C.12a)

I ′± =
ω̃m|d|2

4~ε0AL
e−i∆̃m(t−t′)e±i

ω̃m
c

(xA+`)

∫
+∞

−∞

d∆f ′±(∆). (2.C.12b)
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Figure 2.16: Positive and negative domains of the exponential argument in (2.C.11).

The first integral I ′0 is trivial and is done in the lower half-plane, where the exponential doesn’t
diverge as t− t′ > 0. For I ′+ there is a possibility in the exponential term that t− t′− 2(xA+`)

c

is negative (see fig. 2.16), whereas t− t′ + 2(xA+`)
c

is always positive in I ′−. The integral over
time can then be split into a positive and negative part:

∫ t

0

dt′ =

∫ t− 2(xA+`)

c

0

dt′ +

∫ t

t− 2(xA+`)

c

dt′. (2.C.13)

However, the second part provides very little contribution due to the non-resolved time-of-
flight timescale. Indeed, 2(xA+`)

c
is of the order of this timescale Tfl = `/c, which is much

smaller than the typical timescale in which the system evolves. As a consequence, we drop
the second integral and one has:

∫ t

0

dt′ ≈
∫ t− 2(xA+`)

c

0

dt′, t− t′ − 2(xA+`)
c

> 0. (2.C.14)

Therefore, all integrals are done in the lower half-plane and we get:

I ′0 =
ω̃m|d|2

2~ε0AL
(

∆̃m − i
Γm
2

)
e−i(∆̃m−iΓm

2 )(t−t′) (2.C.15a)

I ′± =
ω̃m|d|2

4~ε0AL
(

∆̃m − i
Γm
2

)
e−i(∆̃m−iΓm

2 )(t−t′)e±i
ω̃m
c

(xA+`)e±Γm
xA+`

c . (2.C.15b)

Summing them all, we finally get:

I ′ =
∫

+∞

0

dω|ηm(ω)|2(ω − ω0)e−i(ω−ω0)(t−t′)

= hm

(
∆̃m − i

Γm
2

)
e−i(∆̃m−iΓm

2 )(t−t′), (2.C.16)

where:

hm =
ω̃m|d|2

2~ε0AL
(

1− cos
[
2 ω̃m

c
(xA + `)

]
cosh

[
Γm

xA+`
c

]
− i sin

[
2 ω̃m

c
(xA + `)

]
sinh

[
Γm

xA+`
c

])
.

(2.C.17)
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2.D Numerical solution of ~̇X(t) = M(t) ~X(t) + ~Y (t)

We solve numerically the equation:
(

d

dt
−M(t)

)
~X(t) = ~Y (t), (2.D.1)

where ~X and ~Y are two columns of same dimension, and M is a matrix. The general solution
of (2.D.1) is:

~X(t) = e
∫ t
t0

dt′M(t′) ~X(t0) +

∫ t

t0

dt′e
∫ t
t′ dt

′′M(t′′)~Y (t′). (2.D.2)

The numerical solution of (2.D.1) is obtained while discretizing time into small intervals.
Thus, the full timespan T is cut into N time steps, each of them having a duration ∆t ≡ ε.
Knowing ~X at time tn, we get it at time tn+1:

~X(tn+1) = ~X(tn) +

∫ tn+1

tn

dt′M(t′) ~X(t′) +

∫ tn+1

tn

dt′~Y (t′). (2.D.3)

We get a good approximation of this expression when taking trapezoid integrals, i.e. taking
values of ~X, ~Y , M in tn+ 1

2
rather than in tn:

~X(tn+1) = ~X(tn) + εM(tn+ 1
2
) ~X(tn+ 1

2
) + ε~Y (tn+ 1

2
) +O(ε3). (2.D.4)

~X(tn+ 1
2
) writes explicitly:

~X(tn+ 1
2
) = ~X(tn) +

ε

2

d ~X(tn)

dt
+O(ε2) (2.D.5a)

= ~X(tn) +
ε

2
M(tn) ~X(tn) +

ε

2
~Y (tn) +O(ε2). (2.D.5b)

The error between tn and tn+ 1
2
is of the order of ε:

M(tn) = M(tn+ 1
2
) +O(ε) (2.D.6)

~Y (tn) = ~Y (tn+ 1
2
) +O(ε), (2.D.7)

and equation (2.D.5b) becomes:

~X(tn+ 1
2
) = ~X(tn) +

ε

2
M(tn+ 1

2
) ~X(tn) +

ε

2
~Y (tn+ 1

2
) +O(ε2). (2.D.8)

Thus we can replace X(tn+ 1
2
) in (2.D.4) and write:

~X(tn+1) =
(

1l + εM(tn+ 1
2
) +

ε

2
M2(tn+ 1

2
)
)
~X(tn) + ε

(
1l +

ε

2
M(tn+ 1

2
)
)
~Y (tn+ 1

2
) +O(ε3).

(2.D.9)
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The factors in front of ~X(tn) and ~Y (tn+ 1
2
) can be identified as Taylor series of exponential

functions up to the third and second order, respectively. The error is then of the order of ε3,
and we write finally:

~X(tn+1) = e
εM(t

n+ 1
2

) ~X(tn) + εe
ε
2
M(t

n+ 1
2

)~Y (tn+ 1
2
) +O(ε3). (2.D.10)

The number of operations being N = T/ε, the total error corresponds to O(ε2).
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Chapter 3

Mode-selective quantization procedure in
a spherically layered medium
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	Chapter overview'
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Objectives: In this chapter we present the basic concepts of light-matter inter-
actions at the nanoscale, developing a quantum plasmonics approach. We notably
quantize localized surface plasmons supported by a metallic spherical particle, with
particular attention devoted to the dissipation process. Finally, we express the full
Hamiltonian describing the interaction between emitters and plasmonic particles,
that will serve as a basis for the derivation of effective models presented in the next
chapter.

Guideline:
• Concepts of light-matter interaction at the nanoscale.

• Introduction to plasmonics and quantum plasmonics.

• Quantum approach with metallic nanospheres.

• Mode-selective field quantization for spherically layered systems.

• keywords: nano-optics, plasmons, absorption cross section, surface plasmon
polariton (SPP), localized surface plasmon (LSP), quantum emitter, Purcell
factor, strong coupling regime, metallic nanosphere, mode expansion, spherical
vector harmonics, Green’s tensor, field quantization.

Results/novelty: Mode-selective quantization and multimodal effective models
for spherically layered systems.
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3.1 Light-emitter interactions and quantum plasmonics

3.1.1 Nano-optics and plasmonics

For more than two decades, nanoscience and nanotechnology have been regrouping physics,
chemistry, biology, and other fields to reduce the size of systems, for a better understand-
ing of phenomena as well as for the improvement of diverse processes. In micro-electronics,
the integration of a maximum number of components on chip has lead to component sizes
approaching 30 nm. The bandwidth of these components, however, does not exceed a few
GHz, while photonics has brought accessible THz bandwidths. For this reason, the interest in
miniaturizing optical devices has grown since the 70s, but the size of the optical components
is limited by the diffraction limit, around 0.5 µm.
Confining light in the subwavelength regime opened the opportunity of probing matter at the
nanoscale. To get an idea of the light-matter interaction efficiency in a quantitative way, we
can introduce the cross section: for a fluorescent molecule, the absorption cross section at
room temperature is of the order of σabs ∼ 10−20 m2. A beam of light in the visible regime
can be focused at best around (λ/2)2 ∼ 10−13 m2, which is seven orders of magnitude larger
than the molecule cross section. This mismatch reveals the challenges to overcome to obtain
comparable surfaces.
There are several strategies to increase the efficiency of interaction between light and molecules.
It is possible to increase the cross section of the molecule at very low temperature (T < 10
K): σabs → 3λ

2

2π
, so that it can absorb almost all the energy of a focused beam. Increasing

the time of interaction is also another way of increasing the coupling: placing a molecule in a
high-Q micro-cavity accelerates its spontaneous emission rate. The light can also be confined
to dimensions comparable to the size of the molecule: working beyond the diffraction limit
is possible in near-field optics or using plasmonic structures. In this thesis, we focus on plas-
monics and connect it with quantum control methods to access effective models, which are
analogous to cavity QED models.

Plasmons

Plasmons are collective oscillations of free electrons localized at the surface of a metallic struc-
ture. The oscillatory motion of charges is associated with electromagnetic waves, which are
confined at the surface of the structure. Modes resulting from the coupling of an electro-
magnetic wave and free charges from the metal are called surface plasmon polaritons (SPP).
These modes are of two kinds: we distinguish propagating SPP modes, that can guide light
on a few dozens of micrometers, from localized surface plasmons (LSP) arising with nanopar-
ticles. LSP do not propagate, yet they confine the electromagnetic field in three dimensions.
Both aspects of plasmons are displayed in fig. 3.1, with two examples: the excitation of a
propagating SPP at the surface of a metallic layer covering a prism, and localized plasmons
behaving as dipole antennas with spherical nanoparticles. In both cases the confinement of
the plasmon is in the subwavelength regime. However this is achieved at the price of large
ohmic losses in the metal. For instance a delocalized plasmon cannot propagate over a few
micrometer decades. Similarly, the dipole moment of a metallic nanoparticle lifetime is of the
order of 10 fs.
The confinement of light in the subwavelength regime leads to a strong field intensity in the
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(a) (b)

Figure 3.1: Surface plasmon polaritons in two schemes: (a) the excitation of a propagating plasmon
at the surface of a metallic layer on a prism, excited with a laser beam; (b) the excitation of a dipolar
plasmonic mode around a spherical nanoparticle. The plasmon is confined around the particle, and
aligns with the excitation field in a two-lobe energy pattern. Reciprocally, the dipolar mode also
radiates in the far field.

vicinity of the plasmonic structures, and such behavior has been used for applications such
as bio-chemical sensors by surface plasmon resonance, or plasmonic waveguides for integrated
photonics. The latter application allows both miniaturization and large bandwidth, making
a compromise between micro-electronics and photonics.
Other applications such as plasmonic probes for near field optics can be mentioned [88]. To
access subwavelength dimensions, a metallic nanoparticle is placed at the tip of an AFM probe
and scatters the field efficiently. This enables enhanced surface spectroscopy, control of the
fluorescence emission or Raman scattering by nanoscale monitoring of the probe-surface dis-
tance. In the following, we focus on the quantum control of nano-emitters and the interaction
between light and plasmonic systems.

3.1.2 Nano-emitters near plasmonic structures

In the strategy of light confinement using plasmonic structures, the understanding of light-
matter interactions at the nanoscale is crucial. Plasmons are confined on subwavelength scales,
therefore they can be exploited via their interaction with very small light sources, such as
quantum dots, N-V centers in diamond, or single molecules. Such nano-emitters, or quantum
emitters therefore exchange energy with plasmonic modes, which present ∼ 10 fs lifetime.
This opens the door to ultrafast nanophotonics.
From the point of view of a single emitter, the presence of plasmons opens new decay channels
(through LSP modes) leading to the enhancement of the spontaneous emission process [89–
91]. This effect is known as the Purcell effect and is often modeled as a single cavity mode
interacting with quantum emitters. The key quantity is called Purcell factor and corresponds
to the ratio between the modified decay rate Γ of the emitter near the plasmonic structure
and the vacuum decay rate γ0.
In the following, we consider a single emitter coupled to a cavity mode to derive the Purcell
factor and show the use of this quantity. This opens the door to ultrafast nanophotonics [92].
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(a) (b)

Figure 3.2: (a) A single atom in the vacuum: when emitting a photon, the atom decays to its ground
state with decay rate γ0, accounting for all possible direction along the wavevector k of the emitted
photon. (b) An atom is placed in a cavity, and its transition coupled to the cavity field with coupling
constant g. The cavity field leaks into outside vacuum modes with decay rate Γc (see chapter 2).

Emitter in a cavity - Purcell factor

The emission of light from a single emitter depends on its environment. The emission rate
(or decay rate) corresponding to the emission is given by Fermi’s golden rule:

Γ =
2π

~2

∑

k

|〈g, 1k|d̂ · Ê(rA)|e,0〉|2δ(ω0 − ωk), (3.1.1)

where d̂ = d|e〉〈g| + H.c. is the transition dipole operator of the emitter and Ê(rA) is the
electric field operator at the position rA of the emitter. In the vacuum, the quantized field
is written using (2.A.17b), (2.A.6) and replacing the global index κ→ (k, λ), where k is the
wavevector and λ = 1, 2 labels the polarization component. Hence the field is:

Êvac(r) = i
∑

k,λ

√
~ωk
2ε0V

ελ

(
âk,λe

−ik·r − â†k,λeik·r
)
. (3.1.2)

Writing the continuous limit 1
V

∑
k,λ →

∑
λ

1
(2π)3

∫
d3k and replacing in the expression for the

decay rate, we find the vacuum decay rate:

γ0 =
d2ω3

0

3~πε0c3
. (3.1.3)

When placing the emitter in a different environment, e.g. a cavity (see fig. 3.2), its effective
decay rate increases, since the confinement of the field increases the time of interaction between
the emitter and a cavity mode. We can consider the cQED RWA Hamiltonian (2.2.42) for
one cavity mode:

Ĥ = ~
(
ω0 − i

γ0

2

)
σ̂+σ̂− + ~

(
ωc − i

Γc
2

)
ĉ †ĉ+ ~

(
gσ̂+ĉ+ g∗ĉ †σ̂−

)
, (3.1.4)

where we added the spontaneous emission as a non-Hermitian diagonal term for the emitter.
We can remark that this model, derived in the preceding chapter, is one-dimensional, hence
it cannot describe spontaneous emission, which is a three-dimensional process. To build such
a model, one would have to consider a 3D cavity (e.g. two plane mirrors separated by a



96
CHAPTER 3. MODE-SELECTIVE QUANTIZATION PROCEDURE IN A

SPHERICALLY LAYERED MEDIUM

distance `) [93]. Another remark can be made about the vacuum decay rate in the presence
of a planar cavity: if at least one of the mirrors is perfect (rm = −1), then the decay rate γ0

can be modified if the emitter’s distance xA to the mirror is subwavelength. For microcavities
that is not the case because such distances are below the diffraction limit, and in general we
choose the position of the emitter so that it is many wavelengths distant from the mirrors:

xA ∼
`

2
� λ0. (3.1.5)

If this condition is true, then the decay rate for the emitter is given by (3.1.3). To study
the modification of the decay due to the cavity field, we need to derive the dynamics of the
excited state of the emitter in the presence of the cavity, for the case when the emitter-cavity
coupling is weak (g � Γc). In the strong coupling regime (g ? Γc), Rabi oscillations arise and
the decaying property is set by the cavity decay. The initial condition being the excited state
for the emitter and the vacuum for the cavity field, the Hamiltonian may be represented in
the matrix form:

Ĥ/~ =

(
−iγ0

2
g

g∗ ∆− iΓc
2

)
. (3.1.6)

where ∆ = ωc − ω0. The wavefunction is expanded in the basis:

|ψ(t)〉 = ce,0(t)|e,0〉+ cg,1(t)|g, 1〉, (3.1.7)

where |j, n〉 ≡ |j〉 ⊗ |n〉 with j = e, g and n = 0, 1. The Schrödinger equation leads to the
equations of motion:

iċe,0 = −iγ0

2
ce,0(t) + gcg,1(t) (3.1.8a)

iċg,1 = g∗ce,0(t) +
(

∆− iΓc
2

)
cg,1(t). (3.1.8b)

In the weak coupling regime, we can adiabatically eliminate the excited state and set ċg,1 ∼ 0
since Γc � g. The cg,1(t) coefficient then follows the dynamics of the excited state and we
get:

cg,1(t) ≈ − g∗

∆− iΓc
2

ce,0(t), (3.1.9)

and the system of two equations reduces to the single one:

iċe,0 = −
(
i
γ0

2
+

|g|2
∆− iΓc

2

)
ce,0(t). (3.1.10)

Finally, we write the solution of (3.1.10) as:

ce,0(t) = ce,0(0)eiδωte−
Γ
2
t,

δω =
|g|2∆

∆2 +
(

Γc
2

)2 ,

Γ = γ0 +
|g|2Γc

∆2 +
(

Γc
2

)2 ,

(3.1.11a)

(3.1.11b)

(3.1.11c)
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Figure 3.3: Probability of the excited state versus time of a two-level emitter initially in |e,0〉 in the
vacuum (light blue line) and in a cavity (dark blue line), obtained by the numerical solution of eq.
(3.1.8) with ce,0(0) = 1. A comparison with the function e−Γt with Γ corresponding to expression
(3.1.11c) is done (red dashed line). Here g � Γc and we chose zero detuning.

where δω is a frequency shift induced by the cavity and Γ is the effective decay rate of the
emitter. This solution retrieves the probability of excitation Pe,0(t) = Pe,0(0)e−Γt, and we see
that the decay rate Γ of the emitter is increased with a term depending on the emitter-cavity
coupling g, the cavity decay Γc and the detuning ∆. We call Purcell factor this additional
term scaled by the vacuum decay rate:

FP =
|g|2Γc

γ0

[
(ωc − ω0)2 +

(
Γc
2

)2 ] =
Γ− γ0

γ0

. (3.1.12)

We display a graph of the dynamics of a two-level emitter coupled to a cavity field on fig.
3.3. The cavity coupling g can be expressed as (see e.g. equation (2.2.29) in chapter 2):

g =

√
ωc

2~ε0V
d ·Φcav(xA), (3.1.13)

where d = dn is the transition dipole moment, V is the mode volume and Φcav(xA) is the
mode spatial dependence of the cavity field at the position xA of the emitter. Using the
free-space decay rate expression (3.1.3) and the definition of the quality factor Q = ωc/Γc, we
get the well-known expression of the Purcell factor:

FP =
3

4π2
λ3

0

Q

V

|n ·Φcav(xA)|2

1 + 4Q2
(
ωc−ω0

ωc

)2 . (3.1.14)

We have retrieved the Q/V factor, and here we derived the Purcell factor for an emitter in
the vacuum. If the emitter is embedded in a passive dielectric medium of index nb, the above
expression should be divided by n3

b . The Purcell factor depends only on the cavity parameters
and the frequency of the emitter transition, and is therefore a key parameter to design optical
microcavities.
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The Q/V ratio emphasizes that light-matter interactions can be controlled by adjusting ei-
ther the mode lifetime through the Q factor (cQED approach), or the mode confinement V
(quantum plasmonics approach). It is indeed possible to adapt this expression to plasmon-
ics [90, 91]. This established a link between cQED and quantum plasmonics, and motivates
the work presented in this chapter, devoted to deriving an exact model that transposes cQED
concepts to quantum plasmonics.
For the derivation of the Purcell factor, we have considered the weak coupling regime ap-
proximation, therefore the plasmonic structure is here seen as a perturbation for the single
emitter. To investigate the strong coupling regime, one has to go a step further and seek
information in resonance fluorescence spectra. The vacuum Rabi splitting observed in the
spectrum of a plasmonic structure coupled to emitters is a signature of the strong coupling
regime [17,18,21–23,25,26].

3.1.3 Localized plasmons and nanoparticles

In general, the interaction of quantum emitters with plasmonic structures can be classified
in two branches corresponding to the two main classes of plasmons: propagating SPPs and
LSPs. In the first case, different groups are studying the interaction of emitters with plas-
monic waveguides, as well as the coupling and the entanglement of emitters mediated by
SPPs [11,17,101,102].
In the thesis, we focus on the interaction of emitters with LSPs. The localized plasmon
modes are observed with metallic nanoparticles whose size range is below the subwavelength
regime [16,18,21–24,26,89,103–105].
Nanoparticles can be of different shapes, but in general the study focuses on spherical or
ellipsoidal nanoparticles. Other types of particles, such as nanoprisms, are examined experi-
mentally because their geometries show strong light confinement [26].
Metal nanospheres are a widely chosen subject because the electromagnetic field can be ex-
panded analytically with this geometry, and this provides benchmark models to study the
interaction of emitters with LSPs. For this reason, we choose to expand the field quantization
for spherically layered media in the following sections. In the next chapter, we derive the
quantum effective models that we use for such systems, and we apply these models for the
study of emitters near a metal nanosphere in the last chapter.

Plasmonic modes of a metal nanosphere

The optical response of a metal nanosphere of arbitrary size is exactly described by the Mie
expansion of the particle plasmonic modes. This leads to the analytical expression for the
metal nanosphere modes, which will be presented later.
Before discussing in details the quantum description of the emitter-field interaction, it is
worthwhile to understand the dipole-nanosphere coupling in the classical approach. This
allows to show the excitation of metal nanosphere modes by a single emitter and also intro-
duces the Green’s tensor that is used in the quantum description. The electric field at point
r resulting from a dipole source placed at rd is given by [88]:

E(r) = ω2µ0

‖

G(r, rd)d, (3.1.15)
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Figure 3.4: Normalized exterior field intensity (filled contour plot) and electric field (arrows) in the
vicinity of a point-like quantum emitter (white circle) and a metallic nanosphere of radius R = 8
nm. On the left, we show the dipolar mode (n = 1), and on the right we show the quadrupolar mode
(n=2). Upper panels: the dipole d is oriented along φ̂. Lower panels: the dipole is oriented along r̂.

where ω is the angular frequency, µ0 the magnetic permeability of the vacuum,
‖

G(r, rd) the
Green’s tensor at the observation point r considering the source located at rd, and d is the
dipole moment of the source. If we consider the scattered field of a metallic nanosphere,
the Green’s tensor can be decomposed as a sum over the index n of mode-selective terms

‖

Gn(r, rd), and therefore the electric field also splits as an infinite sum of modes, each one
associated to a specific plasmonic mode:

E(r) = E1(r) + E2(r) + ... =
+∞∑

n=1

En(r). (3.1.16)

The first mode, corresponding to n = 1 is called the dipole mode, due to its two-lobe spatial
structure. The second one is the quadrupole mode, with four lobes, the third one is the
hexapole mode, and so on. We show the two first modes of the scattered field in fig. 3.4,
where we computed the external scattering for a dipole located 4 nm away from the surface
of a silver sphere of radius R = 8 nm. Depending on the dipole orientation and oscillation
frequency, we observe the excitation of different LSP modes. We note also that a LSP mode
of order n presents a 2n+ 1 degeneracy (later labelled with index m), so that different mode
profiles can be observed for the same number n. We study with more details the mode
structure of nanospheres (resonances, decay rates...) in chapter 5.
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3.2 Mode expansion in a spherically layered medium
In order to quantize the electromagnetic field for spherical metal nanoparticles, we derive the
classical mode expansion of a spherically layered system. The initial steps of the method
follow the scheme presented in refs. [94, 95]. We start with Maxwell’s equations, where we
introduce a charge and current density source term ρN and jN , respectively, usually called
“noise polarization” and “noise current” in the literature. They are needed in order to later
construct creation and annihilation operators for elementary excitations. Maxwell’s equations
read, in Fourier space:

∇ · (ε0ε(r, ω)E(r, ω)) = ρN(r, ω)

∇× E(r, ω) = iωB(r, ω)

∇ ·B(r, ω) = 0

∇×B(r, ω) = µ0jN(r, ω)− i ω
c2
ε(r, ω)E(r, ω).

(3.2.1a)
(3.2.1b)
(3.2.1c)

(3.2.1d)

The noise charge and the noise current densities are expressed in terms of the noise polariza-
tion:

ρN(r, ω) = −∇ ·PN(r, ω) (3.2.2)
jN(r, ω) = −iωPN(r, ω), (3.2.3)

the latter showing up as a small fluctuation in the polarization in Fourier space:

P(r, ω) = ε0(ε(r, ω)− 1)E(r, ω) + PN(r, ω). (3.2.4)

We write the wave propagation equation for the electric field, with the noise current as a
source term:

∇×∇× E(r, ω)− ω2

c2
ε(r, ω)E(r, ω) = iωjN(r, ω). (3.2.5)

The solution of this equation expresses in terms of the Green’s tensor of the system:

E(r, ω) = iωµ0

∫
d3r′

‖

G(r, r′, ω) jN(r′, ω), (3.2.6)

and the Green’s tensor must satisfy the Maxwell-Helmholtz equation:

∇×∇× ‖

G(r, r′, ω)− ω2

c2
ε(r, ω)

‖

G(r, r′, ω) =

‖

δ(r− r′), (3.2.7)

where

‖

δ(r−r′) =

‖

1lδ(r−r′). In order to construct a class of operators which separately create or
annihilate excitations in arbitrary modes of a system, we must take into account the geometry.

3.2.1 Spherical vector harmonics and orthogonality relations

In this section we summarize the mathematical tools for layered systems with spherical sym-
metry, following refs. [96,97]. The derivation of the mode expansion is done here for a spher-
ically layered system: we consider N spherical layers of arbitrary different dielectric indices,
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Figure 3.5: Structure of a spherically N -layered medium, where the material properties are piecewise
homogeneous between individual layer interfaces. The source, located at r′, belongs to the layer
labelled s, and the observation point r is contained in the layer f where the field is measured.

all centered around the origin. The system is shown in fig. 3.5. The Green’s tensor can be
expanded in the tensorial basis obtained from a well chosen set of harmonic vector functions.
These functions serve the technical purpose of fulfilling the boundary conditions, and using
this expansion enables one to efficiently describe and handle intrinsic resonances with proper
indices, as will be seen further in the derivation. In order to get the vector functions suitable
for the multilayered system, we first solve the scalar Helmholtz equation:

(
∇2 + q2

)
ψ(r, q) = 0, (3.2.8)

where q > 0 is a parameter having the dimension of the wave number. The solutions of this
equation can be expressed in terms of the spherical harmonic eigenfunctions [96–98]:

ψnmeo(r, q) = zn(qr)Pm
n (cos θ)

cos
sin

(mφ), (3.2.9)

with n,m being discrete harmonic indices, e and o refer to even and odd solutions in φ,
respectively, zn denoting a Bessel or Hankel function depending on the boundary conditions,
and Pm

n are the associated Legendre polynomials labelled with the harmonic indices. The
function zn can be either a spherical Bessel or a spherical Hankel function depending on
regularization requirements based on the boundary conditions. The vector harmonics used
for the expansion of the Green’s tensor are constructed as:

Mnmeo(r, q) = ∇×
(
ψnmeo(r, q)r

)
(3.2.10)

Nnmeo(r, q) =
1

q
∇×∇×

(
ψnmeo(r, q)r

)
(3.2.11)

Lnmeo(r, q) = ∇ψnmeo(r, q). (3.2.12)

M(r, q) and N(r, q) are continuous-spectrum eigenvectors of:

∇×∇×K(r, q) = q2K(r, q), (3.2.13)

with eigenvalue q2, and L(r, q) spans the eigenvectors of the latter equation with eigenvalue
0. We show that the spherical vector harmonics form a complete basis that is orthogonal, but
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not normalized. Using (3.2.9) and the expressions of the vector harmonics, we expand them
as:

Mnmeo(r, q) = ∓ m

sin θ
zn(qr)Pm

n (cos θ)
sin
cos

(mφ)θ̂ − zn(qr)
dPm

n (cos θ)

dθ

cos
sin

(mφ)φ̂ (3.2.14)

Nnmeo(r, q) =
n(n+ 1)

qr
zn(qr)Pm

n (cos θ)
cos
sin

(mφ)r̂

+
1

qr

d
(
rzn(qr)

)

dr

[
dPm

n (cos θ)

dθ

cos
sin

(mφ)θ̂ ∓ m

sin θ
Pm
n (cos θ)

sin
cos

(mφ)φ̂

]
(3.2.15)

Lnmeo(r, q) =
dzn(qr)

dr
Pm
n (cos θ)

cos
sin

(mφ)r̂

+
zn(qr)

r

dPm
n (cos θ)

dθ

cos
sin

(mφ)θ̂ ∓ mzn(qr)

r sin θ
Pm
n (cos θ)

sin
cos

(mφ)φ̂, (3.2.16)

where we used the notation r̂, θ̂, φ̂ for the three unit vectors in spherical coordinates. To ease
the readability while deriving the orthogonality relations, we introduce the notation:

∫
d3rK∗(r, q) ·K′(r, q′) = 〈K(q)|K′(q′)〉, (3.2.17)

where K,K′ are any of the three vector harmonics M,N,L. The first part of the orthogonality
relations is:

〈Knmp(q)|K′n′m′p′(q′)〉 = 0 if K 6= K′, (3.2.18)

p, p′ = e, o being indices associated with the parity. Taking the same class of vector harmonics,
there is an orthogonality in the harmonic indices and in the parameter q. We choose a solution
that is regular around the origin, i.e. the spherical Bessel function of the first kind:

zn(qr) = jn(qr), (3.2.19)

and this should be true for the Nth layer, which contains the origin. The orthogonality
relations, for K = K′, are:

〈Mnmeo(q)|Mn′m′eo(q
′)〉 = 〈Nnmeo(q)|Nn′m′eo(q

′)〉 = Qnm(q)
1± δm0

2
δnn′δmm′δ(q − q′) (3.2.20a)

〈Lnmeo(q)|Ln′m′eo(q
′)〉 = Qnm(q)

1± δm0

2n(n+ 1)
δnn′δmm′δ(q − q′), (3.2.20b)

where the upper sign on the right hand side refers to the scalar product of the even functions
and the lower one to the odd ones, and:

Qnm(q) =
2π2n(n+ 1)(n+m)!

q2(2n+ 1)(n−m)!
. (3.2.21)

We note that choosing a Hankel function of the first kind: zn(qr) = h
(1)
n (qr), leads to similar

orthogonality relations, the only difference being a factor of 2 in the normalization constants.
Due to the layered nature of the system, we will also encounter the situation of q being a
function of the radius r:

q → q(r).
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In this case, the orthogonality relations become:

〈Mnmeo(q)|Mn′m′eo(q
′)〉 = 〈Nnmeo(q)|Nn′m′eo(q

′)〉 = Snn′(q, q
′)Qnm(q)

1± δm0

2
δnn′δmm′ (3.2.22a)

〈Lnmeo(q)|Ln′m′eo(q
′)〉 = Snn′(q, q

′)Qnm(q)
1± δm0

2n(n+ 1)
δnn′δmm′ (3.2.22b)

Snn′(q, q
′) =

∫
+∞

0

dr r2 zn
(
q(r)r

)
zn′
(
q′(r)r

)
. (3.2.22c)

However, this leaves the orthogonality between the spherical indices n, n′ and m,m′ intact.

3.2.2 Green’s tensor expansion

The Green’s tensor of a general N -layered spherical system (see fig. 3.5) is given by:

‖

G(r, r′, ω) =

‖

G0(r, r′, ω)δfs +

‖

GS(r, r′, ω), (3.2.23)

where f is the index of the layer wherein the field point r is located, and the source point r′

is contained in layer s. When r and r′ are in the same layer, a term

‖

G0(r, r′, ω) that accounts
for direct propagation between the source and the field point is added, while in general there
is a single term

‖

GS(r, r′, ω) resulting from the scattering on the surrounding layers.
We expand the Green’s tensor in the tensorial basis of spherical vector harmonics, in order to
fulfill the boundary conditions on the layer interfaces:

‖

G(r, r′, ω) =
∑

p=e,o

+∞∑

n=0

n∑

m=0

‖

Gnmp(r, r
′, ω). (3.2.24)

Here, the expansion terms contain both

‖

G0 and

‖

GS parts, and they have the general form:

‖

Gnmp(r, r
′, ω) =

1

k2
s

δfs

‖

δnmp(r− r′) +
∑

j,k=0,1

[
A(jk)
nmp(ω)M(j)

nmp(r, kf )⊗M(k)
nmp(r

′, ks)

+B(jk)
nmp(ω)N(j)

nmp(r, kf )⊗N(k)
nmp(r

′, ks)
]
, (3.2.25)

where we have used the compact coefficients A(jk)
nmp(ω),B(jk)

nmp(ω), which are chosen so that
the boundary conditions are fulfilled. Moreover, if f = s, they contain terms of the direct
contribution

‖

G0 as well. A detailed derivation is shown in appendix 3.A. The Dirac delta
introduced in the latter expression is used to unravel the singular term in

‖

G0, and reads:

‖

δnmp(r− r′) =

∫
+∞

0

dq Cnm(q)
(
N(0)
nmp(r, q)⊗N(0)

nmp(r
′, q)

+ n(n+ 1)L(0)
nmp(r, q)⊗ L(0)

nmp(r
′, q)
)
r̂⊗r̂

, (3.2.26)

with the coefficient:
Cnm(q) =

q2(2n+ 1)(n−m)!

π2n(n+ 1)(n+m)!(1 + δm0)
. (3.2.27)
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This expansion obeys: ∑

nmp

‖

δnmp(r− r′) = δ(r− r′)r̂ ⊗ r̂. (3.2.28)

We note that the integral contains the tensorial product of the radial components of N and L
only. The indices j and k can assume the values 0 and 1, meaning that for the radial function
zn(qr) in (3.2.9) we use a spherical Bessel, or a spherical Hankel function of the first kind,
respectively. All the layers are piecewise homogeneous, thus:

kf,s =
ω

c

√
εf,s, (3.2.29)

where εf,s is the relative electric permittivity corresponding to layers f, s respectively. Recall-
ing the field expression (3.2.6), we create a similar expansion for the noise current as well, so
that instead of having a globally defined jN , we can manage separate currents labelled by the
mode expansion indices n,m and the parity p:

jN(r, ω) =
∑

p=e,o

+∞∑

n=0

n∑

m=0

j
(nmp)
N (r, ω). (3.2.30)

The noise current is the variable that, in the next section, will be replaced by an operator
by a correspondence principle. Nevertheless, this variable is not normalized; hence, we define
the fundamental dynamical variables:

fnmp(r, ω) =
1

ω

√
π

~ε0ε′′(r, ω)
j
(nmp)
N (r, ω), (3.2.31)

where ε′′(r, ω) is the imaginary part of the relative electric permittivity. Writing the expansion
in the vector spherical harmonics:

fnmp(r, ω) =

∫
+∞

0

dq
[
anmp(ω, q)M

(0)
nmp(r, q) + bnmp(ω, q)N

(0)
nmp(r, q) + cnmp(ω, q)L

(0)
nmp(r, q)

]
.

(3.2.32)

With this expansion, we represent each noise current term on the subspace spanned by the
basis functions belonging to the respective n and m indices. The choice of Bessel functions
for zn(qr) in the vector harmonics is justified because it yields an orthogonal, complete set
of vectorial functions, which are regular at the origin. Now substituting (3.2.24) and (3.2.30)
into (3.2.6), we get:

E(r, ω) = iωµ0

∑

n̄

∑

n̄′

∫
d3r′

‖

Gn̄(r, r′, ω) j
(n̄′)
N (r′, ω), (3.2.33)

where we have grouped the harmonic and parity indices as n̄ = n,m, p. Using the relations
(3.2.25) and (3.2.30) in the latter, applying the identity:

(a⊗ b) · c = a(b · c), (3.2.34)
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and the orthogonality relations, the expression of the field simplifies into:

E(r, ω) = iωµ0

∑

n̄

∫
d3r′

‖

Gn̄(r, r′, ω) j
(n̄)
N (r′, ω). (3.2.35)

Because of the spherical symmetry of the system, ε(r, ω) ≡ ε(r, ω) depends only radially on
r. The orthogonality relations (3.2.22) ensure that the harmonic index terms do not cross,
and thus we have assigned independent noise currents to each of the harmonic terms of the
Green’s tensor.

3.3 Mode-selective quantization

3.3.1 Field quantization

To quantize the combined field-matter system in a way that creation/annihilation operators
toggle excitations corresponding to individual harmonic orders, we take the quantization
scheme of refs [94,100] as a starting point, and then define new operators in relation to it.
In the last section, we have introduced the dynamical variable f(r, ω) being the normalized
noise current:

jN(r, ω) = ω

√
~ε0ε′′(r, ω)

π
f(r, ω). (3.3.1)

Using the correspondence principle, we replace this classical quantity by an operator acting
on a Fock space:

f(r, ω) 7→ f̂(r, ω).

The action of the creation operator on the vacuum state |0〉 creates the single excitation state:

|1(r, ω)〉 = f̂ †(r, ω)|0〉, (3.3.2)

that is, the Fock space of a single excitation is spanned with three subspaces, each corre-
sponding to a component of the vector operator f̂ †(r, ω). The components obey the following
bosonic commutation relations:

[
f̂i(r, ω), f̂ †j (r′, ω′)

]
= δijδ(r− r′)δ(ω − ω′) (3.3.3a)

[
f̂i(r, ω), f̂j(r

′, ω′)
]

=
[
f̂ †i (r, ω), f̂ †j (r′, ω′)

]
= 0. (3.3.3b)

The electric field operator can be written using (3.2.6) and (3.3.1), as:

Ê(r, ω) = i

√
~
πε0

ω2

c2

∫
d3r′

√
ε′′(r′, ω)

‖

G(r, r′, ω) f̂(r′, ω), (3.3.4)

and the Hamiltonian of the electromagnetic field coupled with the medium is obtained using
the Fano diagonalisation procedure [95]:

ĤF =

∫
d3r

∫
+∞

0

dω~ω f̂ †(r, ω) · f̂(r, ω). (3.3.5)
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3.3.2 Addressing harmonic excitations

Having the quantized annihilation/creation operators f̂(r, ω), f̂ †(r, ω), we make the connection
with the spherically layered medium depicted in fig. 3.5, and the expression of the dynamical
variable expansion (3.2.32). The results of this section have been published in ref. [99]. We
expand the annihilation operator as:

f̂(r, ω) =
∑

K

∑

p=e,o

+∞∑

n=0

n∑

m=0

∫
+∞

0

dq
1√

Q
(K)
nm (q)

Knmp(r, q)F̂
(nmp)
K (ω, q), (3.3.6)

where K = M,N,L and F̂ (nmp)
K (ω, q) are the mode-selective annihilation operators associated

with the vector spherical harmonics. The normalization constants Q(K)
nm (q) are defined as:

Q(K)
nm (q) =

{
π2n(n+1)(n+m)!(1+δm0)

q2(2n+1)(n−m)!
K = M,N

π2(n+m)!(1+δm0)
q2(2n+1)(n−m)!

K = L
. (3.3.7)

Writing this decomposition, the spatial dependence and the polarization component are
contained in the vector harmonics Knmp(r, q), and the quantization is scalar. Operators
F̂

(nmp)
K (ω, q) span a one-dimensional single excitation Fock space associated with the vector

spherical harmonics Knmp(r, q):

F̂
(nmp)†
K (ω, q)|0〉 =

∣∣1(nmp)
K (ω, q)

〉
. (3.3.8)

The parameters {q, n,m} can be interpreted as coordinates in a spherical reciprocal space,
analogous to {kx, ky, kz} of the reciprocal space in a Cartesian frame of reference.
We can establish the commutation relations of the mode-selective operators, recalling the
orthogonality relations (3.2.20), and we invert expression (3.3.6):

F̂
(nmp)
K =

1√
Q

(K)
nm (q)

∫
d3r f̂(r, ω) ·Knmp(r, q). (3.3.9)

Subsequently, we the commutation relation are:
[
F̂

(n̄)
K (ω, q), F̂

(n̄′)†
K′ (ω′, q′)

]
= δn̄n̄′δKK′δ(ω − ω′)δ(q − q′) (3.3.10a)

[
F̂

(n̄)
K (ω, q), F̂

(n̄′)
K′ (ω′, q′)

]
=
[
F̂

(n̄)†
K (ω, q), F̂

(n̄′)†
K′ (ω′, q′)

]
= 0, (3.3.10b)

where we used the compact index notation n̄ = n,m, p. We have thus specified creation
and annihilation operators associated with the spherical harmonic orders. The Hamiltonian
(3.3.5) is rewritten in the following form, assuming the new decomposition:

ĤF =
∑

K

∑

n̄

∫
+∞

0

dq

∫
+∞

0

dω ~ω F̂ (n̄)†
K (ω, q)F̂

(n̄)
K (ω, q). (3.3.11)
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..
.

Figure 3.6: Two-level emitters embedded in a spherically layered medium. The layers are piecewise
homogeneous with relative electric permittivity εi, i = 1...N . The emitters are located at point rj ,
and their transition dipole moment is dj .

3.3.3 Spherical mode-structured field and quantum emitters

Having derived the mode-selective field Hamiltonian, we now look at the situation where
Ne two-level quantum emitters interact with the mode structure of the spherically layered
medium (see fig. 3.6). The system under consideration is described by the following RWA
Hamiltonian [21]:

Ĥ =
Ne∑

j=1

~ωjσ̂(j)
+ σ̂

(j)
− + ĤF −

Ne∑

j=1

∫
+∞

0

dω
(
dj · Ê(rj, ω)σ̂

(j)
+ + h.c.

)
, (3.3.12)

where ĤF is given by (3.3.5), ωj is the resonance frequency of the j-th emitter, σ̂(j)
+ = |ej〉〈gj| =

σ̂
(j)†
− is its raising fermionic operator, and dj is its transition dipole moment. Combining

(3.3.4), (3.3.5) and (3.3.6), we construct the mode-selective Hamiltonian, where the field
operators address excitations associated with spherical harmonic orders:

Ĥ =
Ne∑

j=1

~ωjσ̂(j)
+ σ̂

(j)
− +

∑

K

∑

n̄

∫
+∞

0

dq

∫
+∞

0

dω ~ω F̂ (n̄)†
K (ω, q)F̂

(n̄)
K (ω, q)

− i~
Ne∑

j=1

∑

K

∑

n̄

∫
+∞

0

dq

∫
+∞

0

dω
(
V

(n̄)
K (rj, ω, q)σ̂

(j)
+ F̂

(n̄)
K (ω, q)− h.c.

)
, (3.3.13)

with the spherical harmonic coupling strength:

V
(n̄)
K (rj, ω, q) =

1√
~πε0QK

nm(q)

ω2

c2

∫
d3r
√
ε′′(r, ω) dj ·

‖

Gn̄(rj, r, ω)Kn̄(r, q). (3.3.14)
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Summary
We have constructed a theoretical framework that allows for addressing harmonic orders indi-
vidually. Is is also consistent with previous, established methods of quantization. The general
spherically layered system is rather complicated as a description, but can be directly applied
to simpler systems, such as nanoparticles or core-shell spherical systems. Quantizing the ex-
citation in such a way, starting from a microscopic model fulfilling the macroscopic equations,
provides a basis for the derivation of simpler models, such as the effective Hamiltonians that
we present in the next chapter.
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Appendix

3.A Green’s tensor in a spherically layered medium
The Green’s tensor of a spherically layered system can be calculated following [96–98]. Con-
structing the Green’s tensor of a layered, piecewise homogeneous medium involves two major
steps: the expansion in the tensor-product basis of the eigenfunctions for the homogeneous
medium, and the determination of the expansion coefficients by imposing boundary condi-
tions at the layer interfaces. The general dyadic Green’s function of a multilayered medium
is:

‖

G(r, r′, ω) =

‖

G0(r, r′, ω)δfs +

‖

GS(r, r′, ω), (3.A.1)

where the field point r and the source point r′ are in the layers indexed with f and s,
respectively. If f = s, a term appears in the Green’s tensor that represents direct propagation
from r′ to r.

‖

GS accounts for propagation between r′ and r due to the scattering of radiation
on the surrounding layers. In the basis of vector spherical harmonics, the direct electric
Green’s tensor term assumes the form:

‖

G0(r, r′, ω) =
δ(r− r′)

k2
s

r̂ ⊗ r̂ + i
ks
4π

∑

p=e,o

+∞∑

n=0

n∑

m=0

(2n+ 1)(n−m)!

n(n+ 1)(n+m)!

×





M
(1)
nmp(r, ks)⊗M

(0)
nmp(r′, ks) + N

(1)
nmp(r, ks)⊗N

(0)
nmp(r′, ks) r > r′

M
(0)
nmp(r, ks)⊗M

(1)
nmp(r′, ks) + N

(0)
nmp(r, ks)⊗N

(1)
nmp(r′, ks) r 6 r′

, (3.A.2)

where, depending on whether the field or the source point is closer to the origin, one has to
choose a spherical Bessel or a spherical Hankel function of the first kind (upper indices 0 and
1, respectively) for the radial part zn(qr) of the vector harmonics. This ensures that

‖

G0 is
regularized as its spatial arguments tend to the origin or infinity. The scattered term of the
Green’s tensor reads:

‖

GS(r, r′, ω) = i
ks
4π

∑

p=e,o

+∞∑

n=0

n∑

m=0

(2− δ0m)
(2n+ 1)(n−m)!

n(n+ 1)(n+m)!

×
{

(1− δfN)M(1)
nmp(r, kf )⊗

(
(1− δs1)AfsMM(0)

nmp(r
′, ks) + (1− δsN)Bfs

MM(1)
nmp(r

′, ks)
)

+ (1− δfN)N(1)
nmp(r, kf )⊗

(
(1− δs1)AfsNN(0)

nmp(r
′, ks) + (1− δsN)Bfs

N N(1)
nmp(r

′, ks)
)

+ (1− δf1)M(0)
nmp(r, kf )⊗

(
(1− δs1)Cfs

MM(0)
nmp(r

′, ks) + (1− δsN)Dfs
MM(1)

nmp(r
′, ks)

)

+ (1− δf1)N(0)
nmp(r, kf )⊗

(
(1− δs1)Cfs

N N(0)
nmp(r

′, ks) + (1− δsN)Dfs
N N(1)

nmp(r
′, ks)

)}
, (3.A.3)

where the field and source wave numbers are:

kf,s =
ω

c

√
µf,sεf,s, (3.A.4)
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µf,s and εf,s being the relative magnetic permeability and electric permittivity of the layers
considered. The coefficients AfsM,N, B

fs
M,N, C

fs
M,N, D

fs
M,N are found by imposing the boundary

conditions:

lim
δr→0+

r̂ × ‖

G(r, r′, ω)
∣∣∣
r=Rj−δr

= lim
δr→0+

r̂ × ‖

G(r, r′, ω)
∣∣∣
r=Rj+δr

1

µj
lim
δr→0+

r̂ ×∇× ‖

G(r, r′, ω)
∣∣∣
r=Rj−δr

=
1

µj+1

lim
δr→0+

r̂ ×∇× ‖

G(r, r′, ω)
∣∣∣
r=Rj+δr

, (3.A.5)

meaning that the tangential components of the electric and magnetic fields are continuous as
we approach the boundary between two layers j and j + 1 with the field point r from two
sides of the interface, located at distance Rj from the origin. Solving for each boundary, we
obtain the coefficients in

‖

GS and thus the total Green’s tensor.
In the expression (3.A.2), the singular term involving a Dirac delta function must also be
expanded in the vector spherical harmonics basis. To do so we expand the total unit oper-
ator, choosing spherical Bessel function for the radial parts, i.e. zn = jn. Because of the
completeness of the basis, we can express the delta operator as:

‖

δ(r− r′) =
∑

nmp

∫
+∞

0

dq
[
C

(nmp)
M (q)M(0)

nmp(r, q)⊗M(0)
nmp(r

′, q)

+ C
(nmp)
N (q)N(0)

nmp(r, q)⊗N(0)
nmp(r

′, q) + C
(nmp)
L (q)L(0)

nmp(r, q)⊗ L(0)
nmp(r

′, q)
]
, (3.A.6)

which, taking the notation (3.2.17), is the position representation of the unit operator expan-
sion:

‖

1l =
∑

nmp

∫
+∞

0

dq
[
C

(nmp)
M (q)|M(0)

nmp(q)〉〈M(0)
nmp(q)|

+ C
(nmp)
N (q)|N(0)

nmp(q)〉〈N(0)
nmp(q)|+ C

(nmp)
L (q)|L(0)

nmp(q)〉〈L(0)
nmp(q)|

]
. (3.A.7)

In order to find the coefficients C(nmp)
K (q), where K = M,N,L, we multiply both sides with

the eigenfunctions 〈K|, |K〉, and using the orthogonality relations (3.2.20), we find:

C
(nmeo)
M (q) = C

(nmeo)
N (q) =

q2(2n+ 1)(n−m)!

π2n(n+ 1)(n+m)!(1± δm0)
(3.A.8a)

C
(nmeo)
L (q) = n(n+ 1)C

(nmeo)
M (q), (3.A.8b)

where the upper sign refers to p = e and the lower one to p = o. For the odd components, it
seems that there is a divergence in the coefficients for m = 0. It is easy to check that:

Mn0o(r, q) = Nn0o(r, q) = Ln0o(r, q) = 0, (3.A.9)

hence for p = o and m = 0 we do not need a coefficient in the expansion, and the divergence
is not a problem. Finally we write the Dirac delta expansion:

‖

δ(r− r′) =
∑

nmp

∫
+∞

0

dq
q2(2n+ 1)(n−m)!

π2n(n+ 1)(n+m)!(1 + δm0)

[
M(0)

nmp(r, q)⊗M(0)
nmp(r

′, q)

+ N(0)
nmp(r, q)⊗N(0)

nmp(r
′, q) + n(n+ 1)L(0)

nmp(r, q)⊗ L(0)
nmp(r

′, q)
]
. (3.A.10)

To expand the singular term in

‖

G0 we take the r̂ ⊗ r̂ component of the latter.
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In the preceding chapter, we have derived a modal field quantization procedure for a
spherically layered medium. The set of creation and annihilation operators defined in this
quantization scheme allows to selectively toggle excitations associated with the separate spher-
ical harmonic modes. In turn, it is possible to transpose cQED concepts to describe a range
of systems where quantum emitters interact with eigenmodes, with a special regard to the
field of nano-optics and plasmonics.
We focus on the effective models that are built from the quantization of the eigenmodes,
following a derivation that is analogous to section 2.2, where it is done for a single atom in a
cavity. The effective models are derived in two steps:

• A continuous model describing the interaction between emitters and the field, leading
to a Hermitian Hamiltonian.

• A discrete model constructed from the preceding one, where all continuous degrees
of freedom are integrated in the complex plane and the effective Hamiltonian is non-
Hermitian.

In a last section, we derive both the continuous and effective models for two quantum emitters
in the vicinity of a metal nanosphere.

4.1 Continuous model with multiple emitters
Resonances of the spherically layered system are structured with respect to the spherical
harmonic orders. As an example, we can compute the local density of states (LDOS) of a
metallic nanoparticle, which is defined as:

ρn(r, ω) =
6ω

πc2
n · Im

{

‖

G(r, r, ω)
}

n, (4.1.1)

with n being the unit vector corresponding to the polarization direction on which the field is
measured. In the case of a quantum emitter located in the vicinity of a sphere, the Green’s
tensor is of the form:

‖

G(r, r′, ω) =

‖

G0(r, r′, ω) +

‖

GS(r, r′, ω), (4.1.2)

since r > R, R being the radius of the sphere. Thus, the LDOS is decomposed into two
terms corresponding to the vacuum and scattered parts of the Green’s tensor. It is shown in
refs [21, 88] that:

n · Im
{

‖

G0(r, r, ω)
}

n =
ω

6πc
, (4.1.3)

hence this term leads to a quadratic behaviour of the LDOS in free space. The scattered
contribution

‖

GS contains the properties of the metallic nanoparticle, and if the emitter is
located very close to it, it is dominant. Using (3.2.24), we can decompose the Green’s tensor
into a sum, each term corresponding to a spherical harmonic index n:

‖

G(r, r′, ω) =
∑

n

‖

Gn(r, r′, ω). (4.1.4)

Fig. 4.1 shows the local density of states at position r1 close to a silver sphere of radius R = 8
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465.4 448.8 433.3 418.9 405.4 392.7

Figure 4.1: Scattered radial orders close to a silver nanosphere of 8 nm radius (r1 = 10 nm), for an
emitter polarized in the radial direction, i.e. n = r̂. Each harmonic order contribution contains a
single resonance peak.

nm, associated with the scattered part of the Green’s tensor and the harmonic indices n. Each
resonance peak corresponds to a particular mode labelled by the index n. As a consequence,
it is convenient to derive cQED models from the Hamiltonian (3.3.13), with field operators
associated with harmonic indices. In the following, we construct cQED Hamiltonians where
field operators no longer depend on r as a continuous variable, and only contain harmonic
indices that are relevant for a specific configuration.

4.1.1 Single emitter - dark and bright operators

Effective operators

Let us consider a single quantum emitter at position rA interacting with the mode structure of
a spherically layered, nonmagnetic medium, i.e. Ne = 1 in (3.3.12). Based on the interaction
part of the Hamiltonian, we define the effective field operators driving the dynamics of the
field-atom system:

ân̄(ω) :=
1√

~πε0κn̄(ω)

ω2

c2

∫
d3r
√
ε′′(r, ω)d · ‖

Gn̄(rA, r, ω) f̂(r, ω), (4.1.5)

with n̄ = n,m, p and κn̄(ω) is the emitter-field coupling. Writing this definition in terms of
the mode-selective operators and looking at the orthogonality relations (3.2.20) of the vector
spherical harmonics, it is indeed seen that ân̄(ω) annihilates excitations associated with the
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harmonic term n,m and the parity p:

ân̄(ω) =
∑

K

∫
+∞

0

dq
1√

~πε0QK
nm(q)κn̄(ω)

ω2

c2

∫
d3r
√
ε′′(r, ω)d · ‖

Gn̄(rA, r, ω) Kn̄(r, q)F̂
(n̄)
K (ω, q).

(4.1.6)
The interaction Hamiltonian in (3.3.12) assumes then the form:

Ĥint = −i~
∑

n̄

∫
+∞

0

dω
(
κn̄(ω)σ̂+ân̄(ω)− κ∗n̄(ω)â†n̄(ω)σ̂−

)
. (4.1.7)

We notice that this expression has the same form as (2.2.10a). We derive the commutation
relation for the operators ân̄(ω), â†n̄′(ω

′), using the commutation relations (3.3.3) and the
Green’s tensor identity for nonmagnetic materials [68]:

∫
d3r

ω2

c2
ε′′(r, ω)

‖

Gn̄(r1, r, ω)

‖

G∗n̄(r, r2, ω) = Im
{

‖

Gn̄(r1, r2, ω)
}
. (4.1.8)

For the excitations to be normalized, we introduced the emitter-field coupling κn̄(ω), which
should take the form:

|κn̄(ω)|2 =
1

~πε0
ω2

c2
d · Im

{
‖

Gn̄(rA, rA, ω)
}

d∗, (4.1.9)

and the commutation relations read:
[
ân̄(ω), â†n̄′(ω

′)
]

= δn̄n̄′δ(ω − ω′) (4.1.10a)
[
ân̄(ω), ân̄′(ω

′)
]

=
[
â†n̄(ω), â†n̄′(ω

′)
]

= 0. (4.1.10b)

We underline that the definition of these operators depends on the position rA of the emit-
ter. For different positions and frequencies, the emitter-field coupling varies and provides a
structured continuum. The case where we consider several emitters will be derived later in
this chapter.

Separation of dark and bright subspaces

We still have to express the field Hamiltonian ĤF in terms of the effective operators ân̄(ω), â†n̄(ω).
In order to achieve this, we make the following consideration: since ân̄(ω) is a particular linear
combination of operators F̂ (n̄)

K (ω, q) (as well as f̂(r, ω)), the field-atom dynamics driven by it
involves only a certain subspace of the total Hilbert space. States belonging to the rest of the
Hilbert space will be decoupled from the dynamics. Thus, we separate the original Hilbert
space into orthogonal bright and dark subspaces in order to construct an effective model by
keeping the first and ignoring the latter.
This procedure is similar to the Gram-Schmidt orthogonalization, and consists in building
the set of the dark field operators, and writing the total field Hamiltonian in a split form, as
is done in section 2.2. In the following, we use the condensed definition:

ân̄(ω) =
∑

K

∫
+∞

0

dq α
(n̄)
K (ω, q)F̂

(n̄)
K (ω, q), (4.1.11)
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which is identical to (4.1.6), with the coefficients:

α
(n̄)
K (ω, q) =

1√
~πε0QK

nm(q)κn̄(ω)

ω2

c2

∫
d3r
√
ε′′(r, ω)d · ‖

Gn̄(rA, r, ω) Kn̄(r, q). (4.1.12)

Now, we define a set of operators in a way that, by construction, the Fock subspace generated
by their action on the vacuum is orthogonal to the Fock subspace generated by the bright
operators ân̄(ω):

d̂
(n̄)
K (ω, q) = F̂

(n̄)
K (ω, q)−

∫
+∞

0

dω′
[
F̂

(n̄)
K (ω, q), â†n̄(ω′)

]
ân̄(ω′)

= F̂
(n̄)
K (ω, q)− α(n̄)∗

K (ω, q)ân̄(ω). (4.1.13)

From this definition, it is easy to check that the commutators between bright and dark
operators are always zero:

[
d̂

(n̄)
K (ω, q), â†n̄′(ω

′)
]

=
[
d̂

(n̄)
K (ω, q), ân̄′(ω

′)
]

=
[
d̂

(n̄)†
K (ω, q), â†n̄′(ω

′)
]

= 0. (4.1.14)

As a final step, we use the commutation relations (4.1.10) and the expression of the expansion
coefficients α(n̄)

K (ω, q) to derive the property:

∑

K

∫
+∞

0

dq α
(n̄)
K (ω, q)α

(n̄)∗
K (ω, q) = 1, (4.1.15)

that we invoke to obtain the expression of ĤF in terms of the bright and dark operators:

∑

K

∫
+∞

0

dq F̂
(n̄)†
K (ω, q)F̂

(n̄)
K (ω, q) = â†n̄(ω)ân̄(ω) +

∑

K

∫
+∞

0

dq d̂
(n̄)†
K (ω, q)d̂

(n̄)
K (ω, q). (4.1.16)

Having successfully separated the dark and bright subspaces, we write the single emitter
effective Hamiltonian restricted to the bright subspace:

Ĥeff = ~ω0σ̂+σ̂− +
∑

n̄

∫
+∞

0

dω â†n̄(ω)ân̄(ω)

− i~
∑

n̄

∫
+∞

0

dω
(
κn̄(ω)σ̂+ân̄(ω)− κ∗n̄(ω)â†n̄(ω)σ̂−

)
, (4.1.17)

where ω0 is the transition frequency of the two-level emitter. We note that the dark/bright
separation is feasible only if the spectrum of the non-interacting Hamiltonian (here ~ω) does
not depend on the eliminated variables. In our case, the eigenvalues do not depend on
K, q, n,m, p hence we could construct effective models eliminating all of these parameters.

Eliminating indices

The mode-selective quantization procedure allows to access degrees of freedom from the vector
spherical harmonics, i.e. indices associated with each eigenfunction. In practice, not all
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harmonic indices are always relevant depending on the degree of specificity we want to reach.
In the case of plasmon resonances with a metallic nanoparticle, for example, we can label
the plasmonic modes with index n, leading to a set of normal modes, with different spatial
patterns (dipolar for n = 1, quadrupolar for n = 2, etc...). However, both the parity and the
m harmonics are summed over, and we do not need to specify them.
The described method for dark/bright separation of the Hilbert space enables us to eliminate
some of the harmonic indices in case they are not relevant for the current investigation. In
the following, we construct an effective model where n is the only index present, and m, p are
summed over. To do so, we define the field operator:

ân(ω) =
1

κn(ω)

∑

p=e,o

n∑

m=0

κnmp(ω)ânmp(ω), (4.1.18)

where we have expanded the compact notation n̄ = n,m, p back in its explicit form. Using
(4.1.7), we express the interaction Hamiltonian as:

Ĥint = −i~
+∞∑

n=0

∫
+∞

0

dω
(
κn(ω)σ̂+ân(ω)− κ∗n(ω)â†n(ω)σ̂−

)
. (4.1.19)

Again, we define the value of the emitter-field coupling κn(ω) by the normalization of the
field operator, whose commutation relations are:

[
ân(ω), â†n′(ω

′)
]

= δnn′δ(ω − ω′) (4.1.20a)
[
ân(ω), ân′(ω

′)
]

=
[
â†n(ω), â†n′(ω

′)
]

= 0, (4.1.20b)

and the emitter-field coupling is given by the relation:

|κn(ω)|2 =
∑

m,p

|κnmp(ω)|2

=
1

~πε0
ω2

c2
d · Im

{

‖

Gn(rA, rA, ω)
}

d∗. (4.1.21)

To construct the full effective Hamiltonian, we perform the dark/bright subspace separation
and define:

d̂nmp(ω) = ânmp(ω)−
∫

+∞

0

dω
[
ânmp(ω), â†n(ω′)

]
ân(ω′), (4.1.22)

and the integrand of ĤF becomes:
∑

m,p

â†nmp(ω)ânmp(ω) = â†n(ω)ân(ω) +
∑

m,p

d̂†nmp(ω)d̂nmp(ω). (4.1.23)

Based on this description, we rewrite the effective Hamiltonian:

Ĥeff = ~ω0σ̂+σ̂− +
∑

n

∫
+∞

0

dω â†n(ω)ân(ω)

− i~
∑

n

∫
+∞

0

dω
(
κn(ω)σ̂+ân(ω)− κ∗n(ω)â†n(ω)σ̂−

)
, (4.1.24)



117 CHAPTER 4. EFFECTIVE MODELS FOR QUANTUM PLASMONICS

4.1.2 Multiple two-level emitters

Effective operators

We consider the case of Ne quantum emitters coupled to the structured field, as done in section
3.3.3 (see also fig. 3.6). We wish to connect the effective model to the quantization scheme
derived earlier. Because each individual emitter interacts differently with the structured field
(characterized by the Green’s tensor), we need to define a coupling for each emitter. In the
following, we use the compact index n̄ = n,m, p for the mode structure, but we keep in mind
that indices can be summed up. The interaction Hamiltonian for the multi-emitter system
reads:

Ĥint = −i~
Ne∑

j=1

∑

n̄

∫
+∞

0

dω
(
κ

(j)
n̄ (ω)σ̂

(j)
+ â

(j)
n̄ (ω)− κ(j)∗

n̄ (ω)â
(j)†
n̄ (ω)σ̂

(j)
−

)
, (4.1.25)

where we have a set of creation and annihilation operators for each atomic position rj:

â
(j)
n̄ (ω) =

1

κ
(j)
n̄ (ω)

∑

K

∫
+∞

0

dq
1√

~πε0QK
nm(q)

×
∫

d3r
√
ε′′(r, ω)dj ·

‖
Gn̄(rj, r, ω)Kn̄(r, q)F̂

(n̄)
K (ω, q), (4.1.26)

analogously with the single emitter case, and the atom-field κ(j)
n̄ (ω) is defined as (4.1.9) for the

respective emitter positions rj and transition dipole moments dj. To derive the commutation
relations, we use (3.3.10) and the following identity, resulting from the orthogonality of the
vector harmonics K:

3∑

`=1

∫
d3r′Gk`,n̄(r, r′)K`,n̄(r′, q) =

3∑

`=1

∫
d3r′Gk`,n̄(r, r′)

∑

n̄′

K`,n̄′(r
′, q), (4.1.27)

where Gk`,n̄ are matrix elements of

‖

Gn̄ and K` are spatial components of K. Simplifying the
resulting expression by aid of the Dirac delta expansion in terms of spherical harmonics (see
appendix 3.A) it becomes apparent that the creation and annihilation operators cease to be
orthogonal for different emitter positions:

[
â

(j)
n̄ (ω), â

(k)†
n̄′ (ω′)

]
= δn̄n̄′δ(ω − ω′)µ(jk)

n̄ (ω) (4.1.28a)
[
â

(j)
n̄ (ω), â

(k)
n̄′ (ω′)

]
=
[
â

(j)†
n̄ (ω), â

(k)†
n̄′ (ω′)

]
= 0, (4.1.28b)

where we introduced the mode overlap function:

µ
(jk)
n̄ (ω) =

1

~πε0
ω2

c2

dj · Im
{

‖

Gn̄(rj, rk, ω)
}

d∗k

κ
(j)
n̄ (ω)κ

(k)∗
n̄ (ω)

. (4.1.29)

An illustration of the non-orthogonality of the modes due to different atomic positions is
shown in fig. 4.2. Using (4.1.9) it is seen that the Ne-emitter model returns the single emitter
commutation for Ne = 1, as µ(jj)

n̄ (ω) = 1.
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Figure 4.2: Dipolar modes (n = 1) of a single metallic sphere excited by emitters at r1 and r2.
Although each emitter is directly coupled only to the field assigned to its position, the overlap
between modes (red region) can induce a transfer of excitation between them.

Orthogonalization of the bright subspace and dark/bright decomposition

Following the procedure of dark/bright subspace separation, we should get the desired effective
Hamiltonian. However, the presence of non-unity mode overlap poses a problem: since, for
different j parameters, the bright operators â(j)

n̄ (ω) are not necessarily orthogonal, trying
to construct the dark operators similarly to (4.1.13) will not result in a set of operators
commuting with the bright ones. In other words, the Hilbert space does no longer separate
into two orthogonal subspaces if we follow this procedure.
Instead, one must include an intermediate step: the orthogonalization of the bright operator
manifold with respect to the emitter position parameter. In a first step, we reduce the set
of the original bright operators to linearly independent ones. If, for a given pair of position
indices j, k associated with the emitters’ positions rj, rk we have:

|µ(jk)
n̄ (ω)| = 1, (4.1.30)

then it means that â(j)
n̄ (ω) and â(k)

n̄ (ω) are not linearly independent. This is apparent when
multiplying the commutation relation (4.1.28) by µ(jk)∗

n̄′ (ω′):
[
â

(j)
n̄ (ω),

[
µ

(jk)
n̄′ (ω′)â

(k)
n̄′ (ω′)

]†]
= δn̄n̄′δ(ω − ω′), (4.1.31)

which is the same as the commutation relation for a single emitter (4.1.10). As a consequence,
we have a linear relation between the two operators:

â
(j)
n̄ = µ

(jk)
n̄ (ω)â

(k)
n̄ (ω). (4.1.32)

Listing all the pairs j > k for which (4.1.30) is satisfied and making the above assignment,
reducing the number of field operators, we end up with a reduced dimensionality Nr 6 Ne

where Nr is the number of linearly independent field operators. We rewrite the Hamiltonian
(4.1.25) in the form:

Ĥint = −i~
Nr∑

j=1

Ne∑

k=1

∑

n̄

∫
+∞

0

dω
(
κ

(jk)
n̄ (ω)σ̂

(k)
+ â

(j)
n̄ (ω)− κ(jk)∗

n̄ (ω)â
(j)†
n̄ (ω)σ̂

(k)
−

)
, (4.1.33)
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where

κ
(jk)
n̄ (ω) =

{
µkjn̄ (ω)κ

(k)
n̄ (ω) j 6 k and |µ(kj)

n̄ (ω)| = 1

0 otherwise
. (4.1.34)

At this stage, we have just written Hamiltonian (4.1.25) in a more detailed way, where we
include the possibility of linearly dependent field operators, and labelled them with the same
indices. Indeed, for the general case where all field operators are linearly independent, i.e.
if |µ(jk)

n̄ (ω)| < 1, only j = k terms remain in (4.1.34), yielding κ(jj)
n̄ (ω) ≡ κ

(j)
n̄ (ω). The sum

over j in (4.1.33) is dropped as it corresponds, in that case, to the sum over the number of
emitters, and we find that (4.1.33) takes the form (4.1.25).
Having obtained a set of linearly independent operators, we can orthogonalize them. The
orthogonalization procedure is not unique, and depending on our convenience, we can choose
different methods. For example, with a Gram-Schmidt orthogonalization we can construct a
set of orthogonal, normalized operators:

b̂
(1)
n̄ (ω) = â

(1)
n̄ (ω)

b̂
(2)
n̄ (ω) =

1

β
(21)
n

(
â

(2)
n̄ (ω)−

∫
+∞

0

dω′
[
â

(2)
n̄ (ω), b̂

(1)†
n̄ (ω′)

]
b̂

(1)
n̄ (ω′)

)

...

b̂
(Nr)
n̄ (ω) =

1

βNr

(
â

(Nr)
n̄ (ω)−

Nr∑

j=1

∫
+∞

0

dω′
[
â

(Nr)
n̄ (ω), b̂

(j)†
n̄ (ω′)

]
b̂

(j)
n̄ (ω′)

)
, (4.1.35)

where βj are normalization factors. Other methods, such as the Householder reflection, can
be chosen. The latter one, for example, preserves the symmetry of the original basis. In
general, we represent the orthogonalized operators in the form:

b̂
(i)
n̄ (ω) =

Nr∑

j=1

B
(ij)
n̄ (ω)â

(j)
n̄ (ω), (4.1.36)

where, since the operators â(j)
n̄ (ω) are linearly independent, the matrix made up by the ele-

ments B(ij)
n̄ (ω) is non-singular. Taking the inverse of the latter, we write:

â
(j)
n̄ (ω) =

Nr∑

i=1

A
(ji)
n̄ (ω)̂b

(i)
n̄ (ω). (4.1.37)

The orthogonality being constructed, the commutation relations for the new operators are:
[
b̂

(i)
n̄ (ω), b̂

(j)†
n̄′ (ω′)

]
= δijδn̄n̄′δ(ω − ω′) (4.1.38a)

[
b̂

(i)
n̄ (ω), b̂

(j)
n̄′ (ω

′)
]

=
[
b̂

(i)†
n̄ (ω), b̂

(j)†
n̄′ (ω′)

]
= 0, (4.1.38b)

and thus we perform the dark/bright subspace separation described above, the only difference
being that we use the new basis of operators {b̂(j)

n̄ (ω)} instead of the original field operator
basis. The dark operators read:

d̂
(n̄)
K (ω, q) = F̂

(n̄)
K (ω, q)−

Nr∑

j=1

∫
+∞

0

dω′
[
F̂

(n̄)
K (ω, q), b̂

(j)†
n̄ (ω′)

]
b̂

(j)
n̄ (ω′), (4.1.39)
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and we choose to represent operators b̂(j)
n̄ (ω) in the compact form:

b̂
(j)
n̄ (ω) =

∑

K

∫
+∞

0

dq β
(n̄)
K,j(ω, q)F̂

(n̄)
K (ω, q). (4.1.40)

The commutation relations (3.3.10) and (4.1.38) together with the latter definition bring the
property: ∑

K

∫
+∞

0

dq β
(n̄)
K,j(ω, q)β

(n̄)∗
K,j (ω, q) = 1. (4.1.41)

Writing the integrand of HF , we get the expression in terms of the bright and dark modes:

∑

K

∫
+∞

0

dqF̂
(n̄)†
K (ω, q)F̂

(n̄)
K (ω, q) = b̂

(j)†
n̄ (ω)̂b

(j)
n̄ (ω) +

∑

K

∫
+∞

0

dq d̂
(n̄)†
K (ω, q)d̂

(n̄)
K (ω, q), (4.1.42)

and we finally write the effective Hamiltonian for multiple emitters coupled to the spherical
mode structure:

Ĥeff =
Ne∑

k=1

~ωkσ̂(k)
+ σ̂

(k)
− +

Nr∑

j=1

∑

n̄

∫
+∞

0

dω~ω b̂(j)†
n̄ (ω)̂b

(j)
n̄ (ω)

− i~
Nr∑

j=1

Ne∑

k=1

∑

n̄

∫
+∞

0

dω
(
κ̃

(jk)
n̄ (ω)σ̂

(k)
+ b̂

(j)
n̄ (ω)− κ̃(jk)∗

n̄ (ω)̂b
(j)†
n̄ (ω)σ̂

(k)
−

)
, (4.1.43)

where each atom interacts with all the othogonalized field modes with atom-field couplings:

κ̃
(jk)
n̄ (ω) =

Nr∑

i=1

A
(ij)
n̄ (ω)κ

(ik)
n̄ (ω). (4.1.44)

4.2 Discrete model
We proceed, in this section, with the last step of the effective model construction. We have
previously successfully derived effective continuous models for quantum emitters interacting
with a spherically layered, non-magnetic and absorbing medium, and those models can be
used directly to compute the quantum dynamics of emitters coupled to the mode structure.
However, when the continuum has a structure, it is possible to simplify the model even further
by integrating the continuous degrees of freedom, leading to a discrete effective model. This
reduces the size of the computation, and no discretization of the continuum is required.
In the following derivation, we will get rid of the frequency dependence and construct dis-
crete field operators, each labelled by the index group n̄. Thus, in case of a metallic system,
we have an effective model where each plasmonic resonance peak has a single, discrete cre-
ation/annihilation pair of operators associated to it. The section is structured in an analogous
way as the previous one, that is we derive the model for one single emitter, and extend it to
multiple emitters interacting with the field.
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4.2.1 Single emitter

For simplicity, we start with a system where a single quantum emitter interacts with its
environment and so the effective Hamiltonian is given by (4.1.17). Eliminating ω from the
interaction part naturally suggests the interaction Hamiltonian:

Ĥ
(d)
int = −i~

∑

n̄

(
gn̄σ̂+ân̄ − g∗n̄â†n̄σ̂−

)
, (4.2.1)

where we used the superscript (d) to note that the model is discrete, and the field operator
relates to the previously established set as:

ân̄ =
1

gn̄

∫
+∞

0

dω κn̄(ω)ân̄(ω). (4.2.2)

However, the variable that we eliminate being ω, it is present in the eigenvalues of the non-
interacting Hamiltonian. Thus, a dark/bright separation is no longer possible in the way
previously discussed. In order to construct a discrete model, we follow a different path,
analogous to the last part of section 2.2 for a single atom in a cavity.
We write explicitly the dynamics of the continuous effective model, using the Hamiltonian
(4.1.17) and the Schrödinger equation:

i~
d|ψ〉
dt

= Ĥeff|ψ(t)〉. (4.2.3)

The single emitter having a two-level structure, it is reasonable to work in the single excitation
subspace of the field, and thus we expand the wavefunction in the product basis and in the
interaction picture:

|ψ(t)〉 = ce,0(t)e−iω0t|e,0〉+
∑

n̄

∫
+∞

0

dω c
(n̄)
g,1(ω, t)e−iωt|g, 1(n̄)

ω 〉, (4.2.4)

where the system is described only by one excitation in the field and the emitter in its ground
state, or the field is in the vacuum state and the emitter is excited (see fig. 4.3). The single
excitation state is given by the action of the creation operator on the vacuum state:

|1(n̄)
ω 〉 = â†n̄(ω)|0〉. (4.2.5)

The equations of motion for the probability amplitudes read:

ċe,0 = −
∑

n̄

∫
+∞

0

dω κn̄e−i(ω−ω0)tc
(n̄)
g,1(ω, t) (4.2.6a)

ċ
(n̄)
g,1(ω) = κ∗n̄(ω)ei(ω−ω0)tce,0(t). (4.2.6b)

In order to proceed, we require an important feature of the atom-field coupling, namely, that
it has a Lorentzian profile:

κn̄(ω) = gn̄Ln̄(ω) with Ln̄(ω) =

√
γn̄
2π

1

ω − ωn̄ + iγn̄
2

, (4.2.7)
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Figure 4.3: Single excitation subspace: the discrete state |e,0〉 couples to several continua, where
the atom is in its ground state and the field has one excitation |1(n̄)

ω 〉. To underline the multiplicity
of the continua, two manifolds are shown, corresponding to index n̄ for the first and index n̄′ for the
second. Each of them is coupled to the discrete state with couplings κn̄(ω) and κn̄′(ω), respectively.

the parameters γn̄ and ωn̄ being the width and the center of the peak associated with mode
n̄, respectively. For a spherical system, examining the structure of the Green’s tensor in
more detail (see for instance appendix 3.A), one finds that the resonance-like behavior of
the LDOS is possible due to the presence of the reflection and transmission coefficients in
(3.A.3). The only other terms with frequency dependence are the radial terms of the vector
spherical harmonics: these superimpose oscillations onto the resonance peak. Consequently,
if the period of these oscillations is larger than the inverse of the peak’s width γn̄ (provided
by the reflection coefficients), then the Lorentzian lineshape is a good approximation for the
LDOS. We state that the condition for the applicability of this approximation is:

γn̄ �
2πc
√
εfrA

, (4.2.8)

where rA is the radial coordinate of the atomic position and εf is the electric permittivity of
the layer in which the emitter is located. This typically leads to γn̄ � 2π × (6 × 1016 s−1)
(for εf = 1 and rA = 5 nm), and is generally available as γn̄ ∼ 2π × (1013 s−1). We note that
there is no need of a numerical fitting procedure in order to determine the center and the
width of the resonances. Instead, one can construct the so-called mode equation [105,106] by
requiring a non-trivial solution of the boundary conditions equations. The solutions of the
mode equation are complex numbers, the real part and the imaginary part being the central
frequency and the width of the given resonance, respectively.
To derive the discrete model, we define the collective probability amplitude:

c
(n̄)
g,1(t) =

∫
+∞

0

dω Ln̄(ω)e−i(ω−ω0)tc
(n̄)
g,1(ω, t). (4.2.9)
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We differentiate the above equation with respect to time, and using equations (4.2.6) we get
the equation of motion for the collective probability amplitude:

ċ
(n̄)
g,1 = ċ

(n̄,0)
g,1 + g∗n̄

∫
+∞

0

dω|Ln̄(ω)|2ce,0(t)

− ig∗n̄
∫ t

0

dt′ce,0(t′)

∫
+∞

0

dω(ω − ω0)|Ln̄(ω)|2e−i(ω−ω0)(t−t′), (4.2.10)

where we have defined:

c
(n̄,0)
g,1 (t) =

∫
+∞

0

dω Ln̄(ω)e−i(ω−ω0)tc
(n̄)
g,1(ω, 0). (4.2.11)

The construction of the effective model is done in appendix 2.C, as the equations of motion
are completely analogous to the one-dimensional cavity problem. After the complex plane
integration, the above equation of motion becomes:

ċ
(n̄)
g,1 = ċ

(n̄,0)
g,1 + g∗n̄ce,0(t)− ig∗n̄

(
∆n̄ − i

γn̄
2

)∫ t

0

dt′ce,0(t′)e−i(∆n̄−i γn̄2 )(t−t′), (4.2.12)

where ∆n̄ = ωn̄ − ω0 is the detuning between the atomic frequency and the peak frequency
of a given mode associated with the triplet n̄ = n,m, p. We further simplify the equation of
motion of the collective probability amplitude by integrating the second equation of (4.2.6),
inserting it in the definition (4.2.9) and identifying the last term of the right hand side of
(4.2.12), leading to:

ċ
(n̄)
g,1 = ċ

(n̄,0)
g,1 + g∗n̄ce,0(t)− i

(
∆n̄ − i

γn̄
2

)(
c

(n̄)
g,1(t)− c(n̄,0)

g,1 (t)
)
. (4.2.13)

We take the initial condition of the wavefunction being the vacuum state for the field, and
the excited state for the emitter:

|ψ(0)〉 = |e,0〉, (4.2.14)

which nullifies both c(n̄,0)
g,1 (t) and ċ(n̄,0)

g,1 , and rewriting the system of equations (4.2.6) we get:

ċe,0 = −
∑

n̄

gn̄c
(n̄)
g,1(t)

ċ
(n̄)
g,1 = g∗n̄ce,0(t)− i

(
∆n̄ − i

γn̄
2

)
c

(n̄)
g,1(t).

(4.2.15a)

(4.2.15b)

The dynamics is happening in a discrete system where each Lorentzian coupling leads to a
specific mode, and the quantum emitter couples to each of them with couplings gn̄, thereby
getting rid of the continuous frequency dependence. The wavefunction of the discrete basis is
represented, in the Schrödinger picture, as:

|ψ(t)〉 = ce,0(t)|e,0〉+
∑

n̄

c
(n̄)
g,1(t)|g, 1n̄〉, (4.2.16)

and the corresponding Hamiltonian is:

Ĥ
(d)
eff =

∑

n̄

~
(

∆n̄ − i
γn̄
2

)
â†n̄ân̄ − i~

∑

n̄

(
gn̄σ̂+ân̄ − g∗n̄ân̄σ̂−

)
. (4.2.17)
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Without influencing the dynamics, we renormalize the zero point energy by applying the
unitary transformation:

R̂(t) = eiω0t1̂l = eiω0t
(
σ̂+σ̂− +

∑

n̄

â†n̄ân̄

)
, (4.2.18)

leading to the effective Hamiltonian:

Ĥ
(d)
eff = ~ω0σ̂+σ̂− +

∑

n̄

~
(
ωn̄ − i

γn̄
2

)
â†n̄ân̄

− i~
∑

n̄

(
gn̄σ̂+ân̄ − g∗n̄ân̄σ̂−

)
. (4.2.19)

The operators ân̄, â†n̄ are defined through (4.2.2) and, using the commutation relations of the
frequency-dependent ân̄(ω), â†n̄(ω) (4.1.10) and the identity:

∫
+∞

0

dω |Ln̄(ω)|2 = 1, (4.2.20)

which is valid for ωn̄ � γn̄, we find the expected commutation relations:
[
ân̄, â

†
n̄′

]
= δn̄n̄′ (4.2.21a)

[
ân̄, ân̄′

]
=
[
â†n̄, â

†
n̄′

]
= 0. (4.2.21b)

We note that the structure requirements for the density of states can be less strict upon
deriving the discrete model: resonances with general Fano profiles [107] also yield a similar
Hamiltonian. A remark we can make about building the discrete effective model is the infor-
mation loss aspect: with the dark/bright subspace separation, we find the subspace of bright
operators participating in the dynamics, while the dark operators all remain decoupled. In
this procedure, all the information about the system is kept, and is rearranged in a more
efficient manner to eliminate unnecessary subspaces. The information about the energy dis-
tribution in the continuum is also accessible. The discrete model results from an integration
over the frequency parameter, and to each peak in the structured reservoir is associated a
resonance frequency ωn̄ and a width γn̄. Due to the contour integration, the structure of the
discrete Hamiltonian is non-Hermitian, and the information about the energy distribution
within a given mode in the continuum is lost.

4.2.2 Multiple emitters

To construct a discrete effective Hamiltonian in case of several emitters interacting with their
environment, we apply a procedure analogous to the one described above. However, having
had to orthogonalize the original set of modes with respect to emitter positions, the atom-
field couplings κ̃(jk)

n̄ (ω) (4.1.44) in the effective continuous Hamiltonian (4.1.43) are different
from the original, single-index couplings. It is essential to ascertain whether they inherited
the Lorentzian resonance profile from the original κ(j)

n̄ (ω) couplings if we want to construct a
discrete effective model for multiple emitters.
According to definition (4.1.44), the possibly non-Lorentzian frequency dependence can only
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come from the coefficients A(ij)
n̄ (ω). These, in turn, originate from the construction (4.1.35)

derived from the Gram-Schmidt orthogonalization procedure, and so they contain combina-
tions of the mode overlap µ(jk)

n̄ (ω), as defined in (4.1.29).
According to the reasoning in the previous section, if the following condition is fulfilled:

γn̄ �
2πc

max(
√
εfjrj,

√
εfkrk)

, (4.2.22)

where εfj is the electric permittivity of the layer in which the emitter j is located, then we
can make the slow-varying approximation:

dj · Im
{

‖

Gn̄(rj, rk, ω)
}

d∗k ≈ Ω
(jk)
n̄ |Ln̄(ω)|2 (4.2.23a)

dj · Im
{

‖
Gn̄(rj, rj, ω)

}
d∗j ≈ Ω

(j)
n̄ |Ln̄(ω)|2, (4.2.23b)

where Ln̄(ω) is the complex Lorentzian function defined in (4.2.7). Compared to it, the other
position-dependent terms vary so slowly in frequency that they can be regarded as constants
over the width of the Lorentzian peak:

Ω
(jk)
n̄ =

2π

γn̄
dj · Im

{
‖

Gn̄(rj, rk, ωn̄)
}

d∗k (4.2.24a)

Ω
(j)
n̄ =

2π

γn̄
dj · Im

{

‖

Gn̄(rj, rj, ωn̄)
}

d∗j . (4.2.24b)

Thus, the mode overlap function can be expressed as:

µ
(jk)
n̄ (ω) ≈ µ

(jk)
n̄ =

Ω
(jk)
n̄√

Ω
(j)
n̄ Ω

(k)∗
n̄

. (4.2.25)

Since, compared to Ln̄(ω), µ(jk)
n̄ can be regarded as constant in frequency, the atom-field

couplings between the emitters and the orthogonalized field operators will have the same
Lorentzian dependence as the original couplings, only with a modified amplitude. Therefore,
based on equations (4.1.34), (4.1.44) and (4.2.7), we write:

κ̃
(jk)
n̄ (ω) ≈

Nr∑

i=1

A
(ij)
n̄ (ωn̄)g

(ik)
n̄ Ln̄(ω) = g̃

(jk)
n̄ Ln̄(ω). (4.2.26)

With the latter equation, the same procedure can be applied as for the single emitter case.
Also, starting from Hamiltonian (4.1.43), the derived model is the same. We obtain the
discrete, effective Hamiltonian for Ne emitters interacting with their environment:

Ĥeff =
Ne∑

k=1

~ωkσ̂(k)
+ σ̂

(k)
− +

Nr∑

j=1

∑

n̄

~
(
ωn̄ − i

γn̄
2

)
b̂

(j)†
n̄ b̂

(j)
n̄

− i~
Nr∑

j=1

Ne∑

k=1

∑

n̄

(
g̃

(jk)
n̄ σ̂

(k)
+ b̂

(j)
n̄ − g̃(jk)∗

n̄ b̂
(j)†
n̄ σ̂

(k)
−

)
, (4.2.27)
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where we have now discrete, lossy modes interacting with the emitters, and the field operators
are connected to those with continuous dependence as:

b̂
(j)
n̄ =

∫
+∞

0

dω Ln̄(ω)̂b
(j)
n̄ (ω). (4.2.28)

The use of the commutation relations (4.1.38) allows us to find the expected commutators for
the discrete operators:

[
b̂

(i)
n̄ , b̂

(j)†
n̄′

]
= δijδn̄n̄′ (4.2.29a)

[
b̂

(i)
n̄ , b̂

(j)
n̄′

]
=
[
b̂

(i)†
n̄ , b̂

(j)†
n̄′

]
= 0. (4.2.29b)

4.3 Application: two emitters and a single metallic nanopar-
ticle

In this section, we derive the general model describing two emitters at arbitrary positions
around a metallic nanoparticle. This model is based on the general procedure developped in
chapter 3 and the two preceding sections: the mode-selective quantization and effective models
for spherically-layered media. We focus on the first harmonic index n mode decomposition,
as was shown in fig. 4.1 at the beginning of the chapter. However, this derivation is also valid
for more general mode decompositions, such as the general n̄ = n,m, p mode.

4.3.1 Continuous model

The procedure includes an orthonormalization of field operators â(j)
n (ω), â

(j)†
n (ω) that are as-

sociated with emitters positions rj. The new field operators b̂(j)
n (ω), b̂

(j)†
n (ω), derived from the

orthonormalization, describe the field-matter system in a frame where we can compute their
couplings with individual emitters, as a function of the couplings between the field and single
emitters. The continuous model Hamiltonian is given by:

Heff =
∑

n

∫
+∞

0

dω~ω
(
b̂(1)†
n (ω)̂b(1)

n (ω) + b̂(2)†
n (ω)̂b(2)

n (ω)
)

+ ~ω0

(
σ̂

(1)
+ σ̂

(1)
− + σ̂

(2)
+ σ̂

(2)
−

)

− i~
∑

n

∫
+∞

0

dω
(
κ̃(11)
n (ω)̂b(1)

n (ω)σ̂
(1)
+ + κ̃(12)

n (ω)̂b(1)
n (ω)σ̂

(2)
+

+ κ̃(22)
n (ω)̂b(2)

n (ω)σ̂
(2)
+ + κ̃(21)

n (ω)̂b(2)
n (ω)σ̂

(1)
+ − h.c.

)
, (4.3.1)

where the κ̃(jk)
n (ω) are the field-emitter couplings. They are expressed as linear combination

of the single emitter couplings (proportional to the LDOS):

|κ(j)
n (ω)|2 =

1

~πε0
ω2

c2
dj · Im

{

‖

Gn(rj, rj, ω)
}

d∗j , (4.3.2)
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with proper coefficients that are found when performing the Gram-Schmidt orthogonalization
procedure. The latter is done writing the linear relations:




b̂

(1)
n (ω) = â

(1)
n (ω)

b̂
(2)
n (ω) =

1

β
(21)
n

(
â(2)
n −

∫
+∞

0

dω′
[
â(2)
n (ω), b̂(1)†

n (ω′)
]
b̂(1)
n (ω′)

)
.

(4.3.3)

We recall the original operator basis commutation relations:
[
â(2)
n (ω), â

(1)†
n′ (ω′)

]
= δnn′δ(ω − ω′)µ(21)

n (ω), (4.3.4)

where µ(21)
n (ω) is the mode overlap function depending on the Green’s tensor

‖

G(r2, r1, ω).
Using the commutation relation, the Gram-Schmidt decomposition reduces to:




b̂

(1)
n (ω) = â

(1)
n (ω)

b̂
(2)
n (ω) =

1

β
(21)
n

(
â(2)
n − µ(21)

n (ω)â(1)
n (ω)

)
.

(4.3.5)

Inverting the orthogonalization, we express the original operators as linear combination of the
new ones:

{
â

(1)
n (ω) = b̂

(1)
n (ω)

â
(2)
n (ω) = µ

(21)
n (ω)̂b

(1)
n (ω) + β

(21)
n b̂

(2)
n ,

(4.3.6)

which, in a compact form, can be written as:

â(j)
n (ω) = A

(n)
j1 (ω)̂b(1)

n (ω) + A
(n)
j2 (ω)̂b(2)

n (ω). (4.3.7)

The coefficients A(n)
jk (ω) must be used to express the new couplings κ̃(jk)

n (ω) in terms of the
κ

(k)
n (ω):

κ̃(jk)
n =

2∑

i=1

A
(n)
ij (ω)κ(k)

n (ω). (4.3.8)

We remark that in the case when some modes are overlapping completely, that is |µ(21)
n (ω)| =

1, one has to construct intermediate couplings κ(12)
n (ω) = µ

(21)
n (ω)κ

(2)
n (ω). Unravelling the

couplings, we write:

κ̃
(11)
n = A

(n)
11 (ω)κ

(1)
n (ω)

κ̃
(22)
n = A

(n)
22 (ω)κ

(2)
n (ω)

κ̃
(12)
n = A

(n)
21 (ω)κ

(2)
n (ω)

κ̃
(21)
n = A

(n)
12 (ω)κ

(1)
n (ω),

(4.3.9)

and with the use of the linear relations (4.3.6), the A coefficients are found to be:

A
(n)
11 (ω) = 1

A
(n)
22 (ω) = β

(21)
n

A
(n)
21 (ω) = µ

(21)
n (ω)

A
(n)
12 (ω) = 0.

(4.3.10)
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Figure 4.4: Left: Two emitter at arbitrary positions r1, r2 around a metallic nanosphere. Right:
Effective linkage pattern in the orthogonalized basis.

One more request is the expression of the normalization coefficient β(21)
n , which is found when

writing the following commutation relation:

[
b̂(2)
n (ω), b̂

(2)†
n′ (ω′)

]
= δnn′δ(ω − ω′)

1− |µ(21)
n (ω)|2

β
(21)2
n

, (4.3.11)

where we have used µ
(12)
n (ω) = [µ

(21)
n (ω)]∗ due to the fact that d1 · Im{

‖

G(r1, r2, ω)}d∗2 =

(d2 · Im{

‖

G(r2, r1, ω)}d∗1)∗. The orthonormalization is effective when:

β(21)
n =

√
1− |µ(21)

n (ω)|2. (4.3.12)

4.3.2 Discrete effective model

The discrete effective model associated with the precedingly detailed derivation is developed
in section 4.2. The dependence in ω of the overlap function is ignored in the subwavelength
limit, since the Lorentzian lineshape factorizes in the expression of the LDOS and the overlap
term d2 · Im{

‖

G(r2, r1, ω)}d∗1. The effective discrete Hamiltonian is given by:

Ĥ
(d)
eff =

∑

n

~
(
ωn − i

γn
2

)(
b̂(1)†
n b̂(1)

n + b̂(2)†
n b̂(2)

n

)
+ ~ω0

(
σ̂

(1)
+ σ̂

(1)
− + σ̂

(2)
+ σ̂

(2)
−

)

− i~
∑

n

(
g̃(11)
n b̂(1)

n σ̂
(1)
+ + g̃(22)

n b̂(2)
n σ̂

(2)
+ + g̃(12)

n b̂(1)
n σ̂

(2)
+ + g̃(21)

n b̂(2)
n σ̂

(1)
+ − h.c.

)
, (4.3.13)

where:

g̃(jk)
n =

2∑

i=1

A
(n)
ij (ωn)g(k)

n . (4.3.14)

The coefficients A(n)
ij (ωn) are the same as derived before, with the difference that they are

frequency independent (since µ(21)
n (ωn) ≡ µ

(21)
n ), due to the subwavelength regime. We expand
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the couplings:
g̃

(11)
n = g

(1)
n

g̃
(12)
n = µ

(21)
n g

(2)
n

g̃
(22)
n =

√
1− |µ(21)

n |2g(2)
n

g̃
(21)
n = 0.

(4.3.15)

The Hamiltonian can be projected in a one-excitation basis:

{|e, g; [0]〉, ...|g, g; 1n,0〉..., ...|g, g; 0, 1n〉..., |g, e; [0]〉},
where |i, j;n,m〉 = |i〉1 ⊗ |j〉2 ⊗ |n〉1 ⊗ |m〉2 for i, j = g, e and n,m = 0, 1n are product states
of the atomic-field system (|[0]〉 = |0〉1 ⊗ |0〉2). The matrix form of the Hamiltonian is then:

Ĥ
(d)
eff =




0 . . . g̃
(11)
n . . . 0 . . . 0 0

... . . . 0 . . . 0
...

g̃
(11)∗
n ∆n − iγn2

...
... g̃

(12)∗
n

... . . . 0 . . . 0
...

0 0 . . . 0
. . . ...

...
...

... ∆n − iγn2 g̃
(22)∗
n

0 0 . . . 0
. . . ...

0 . . . g̃
(12)
n . . . . . . g̃

(22)
n . . . 0




. (4.3.16)

The effective linkage pattern corresponding to the discrete Hamiltonian is shown in fig. 4.4.
In the limit where |µ(21)

n | → 1, we see that the effective model corresponds to a single field
operator b̂(1)

n , coupled to both emitters.

Summary
We have derived effective models, in different stages: a continuous model where the Hamilto-
nian is projected on a subspace corresponding to the Lorentzian modes, and a discrete model
where the reservoir population is modeled as losses through the decay rates γn̄. The general
mode structure of a spherical system can be expressed analytically, hence the calculation
towards the different stages of the effective models is straightforward. In general, the mode
structure of an arbitrary nanoscale system is complex, and is highly geometry-dependent.
Therefore, this procedure is not applicable up to the discrete effective model for every system.
Nonetheless, since all geometry-related information is contained in the Green’s tensor, the
construction of the effective models is done generally with the study of the LDOS, which is
calculated from the Green’s tensor associated with the structure. One can isolate resonances
and study their interaction with nearly resonant quantum emitters, but as soon as resonances
overlap, one has to check whether they form an orthogonal basis or not.
The derivations and results gathered in chapters 3 and 4 are an expansion of reference [99]. In
the next chapter, we will apply the discrete effective model for the study of one and two emit-
ters close to a spherical nanoparticle. We also provide a comparison between the continuous
and the discrete models for the dynamics, and demonstrate their equivalence.
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Appendix

4.A Single Lorentzian model - continuous and discrete
Hamiltonian

In this appendix, we show numerical results obtained with Hamiltonians (4.1.24) and (4.2.19)
with n = 1, i.e. we consider only one Lorentzian-structured mode in the field continuum, and
the field is coupled to a two-level atom. We show the equivalence of the two models. The
continuous effective Hamiltonian is:

Ĥ = ~ω0σ̂+σ̂− +

∫
+∞

0

dω~ω â†(ω)â(ω)− i~
∫

+∞

0

dω
(
κ(ω)σ̂+â(ω)− κ∗(ω)â†(ω)σ̂−

)
, (4.A.1)

and the discrete non-Hermitian Hamiltonian corresponding to the latter is:

Ĥ(d) = ~ω0σ̂+σ̂− + ~
(
ωr − i

γ

2

)
â†â− i~

(
gσ̂+â− g∗â†σ̂−

)
. (4.A.2)

Both Hamiltonians corresponds to each other in terms of dynamics when the atom-field cou-
pling has the Lorentzian profile:

κ(ω) =

√
γ

2π

g

ω − ωr + iγ
2

, (4.A.3)

where ωr is the resonance frequency, γ is the full width at half maximum (FWHM), and g is
a scaling corresponding to the effective Rabi frequency coupling in the discrete Hamiltonian.

4.A.1 Discretization

To solve the Schödinger equation numerically, we discretize the Hamiltonian Ĥ. For a simpler
notation, we write it in the rotating frame R̂(t) = e−iω0t1̂l, and discretizing the frequency
continuum in N steps of length ε� 1, the discretized version of (4.A.1) reads:

Ĥ/~ =

N
2∑

k=−N
2

(
∆kâ

†
kâk − i

√
ε
(
κkσ̂+âk − κ∗kâ†kσ̂−

))
, (4.A.4)

where ∆k = ωk − ω0 = kε and κk ≡ κ(ωk). In matrix form, we write:

Ĥ/~ ≡




0 i
√
εκ∗−N

2

i
√
εκ∗−N−1

2

. . . i
√
εκ∗N

2

−i√εκ−N
2

−N
2
ε 0 . . . 0

−i√εκ−N−1
2

0 −N−1
2
ε

. . . ...
...

... . . . . . . 0
−i√εκN

2
0 . . . 0 N

2
ε



. (4.A.5)

The wavefunction is also discretized:

|ψ(t)〉 = ce,0(t)|e,0〉+

N
2∑

k=−N
2

cg,1k(t)|g, 1k〉, (4.A.6)

where |1k〉 = â†k|0〉.
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Figure 4.5: Dynamics of a two-level system interacting with a Lorentzian-structured continuum.
Upper panels: square modulus of the emitter-field coupling. Lower panels: excitation probability
versus time for the continuous Hamiltonian (blue line) and the discrete one (red dashed line). The
chosen parameters are normalized with respect to the width γ. (a) g = 0.1γ. (b) g = 3γ.

4.A.2 Dynamics

We compute the dynamics of the emitter-field system, using the initial wavefunction:

|ψ(0)〉 = |e,0〉, (4.A.7)

and we show the equivalence between the continuous and the discrete Hamiltonians, for the
probability of excitation Pe(t) = |ce,0(t)|2, shown in fig. 4.5. To do so, we run a program
where the solution of the Schrödinger equation is found using the discretized continuum
Hamiltonian, and in parallel, the effective non-Hermitian Hamiltonian in the matrix form:

Ĥ(d)/~ =

(
0 ig∗

−ig ∆r − iγ2

)
, (4.A.8)

where ∆r = ωr − ω0 (here we chose ∆r = 0). From the results we get, we distinguish two
regimes:

• the weak coupling regime (g � γ), where the excitation probability follows an
exponential decrease, as seen in section 3.1.2 for the Purcell factor. The effective decay
rate is:

Γ =
|g|2γ

(ω0 − ωr)2 +
(
γ
2

)2 . (4.A.9)

• the strong coupling regime (g ? γ), where the excitation probability is a combina-
tion of Rabi oscillations corresponding to a coherent coupling between the emitter and
the field, and an exponential decay of the order of γ.
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Figure 5.1: Single two-level quantum emitter coupled to a MNP, whose relative dielectric permittivity
is ε(ω). The transition |e〉 ↔ |g〉 of the emitter is nearly resonant with the plasmonic modes. The
quantized electric field Ê couples to the dipole d̂ of the emitter, and the intrinsic vacuum decay rate
of the transition is γ0.

The effective models derived in the preceding chapter are applied to quantum plasmonic
systems, where quantum emitters interact with spherical metallic nanoparticles (MNP).
We expand in the plasmonic modes of a single MNP interacting with one emitter, and compute
the dynamics of the excitation probability [108]. We also demonstrate the feasability of the
STIRAP process introduced in section 1.1.3 for two three-level quantum emitters coupled to a
metal nanoparticle [109]. This application paves the way to decoherence-free quantum control
at the nanoscale, since the lossy plasmonic excitations are avoided during the process.

5.1 Quantum emitter coupled to a metallic nanoparticle

5.1.1 Local density of states

We study the interaction of a single, two-level quantum emitter with a MNP of radius R (see
fig. 5.1) [21]. The emitter is located at position rA, the origin being the center of the spherical
MNP. We consider a silver MNP, and its dielectric constant is modeled by the Drude formula:

ε(ω) = ε∞ −
ω2
p

ω2 + iγeω
, (5.1.1)

where ε∞ is the high-frequency limit of the dielectric function, ωp is the bulk plasmon fre-
quency, and γe is the Landau damping constant. We note that tabulated data can also be
used assuming that they obey the Kramers-Kronig relations.The quantum emitter is modeled
with a two-level structure {|g〉, |e〉}, where |g〉 is the emitter’s ground state and |e〉 is the
excited state. The transition frequency is ω0, and the vacuum decay rate is given by the
Wigner-Weisskopf formula:

γ0 =
ω3

0d
2

3~πε0c3
, (5.1.2)

where d = |〈e|d̂|g〉| is the norm of the transition dipole moment. We see from expressions
(4.1.1) and (4.1.3) that the vacuum decay rate can be expressed with the LDOS in the vacuum
ρn,0(rA, ω0):

γ0 =
2d2

~ε0
ω2

0

c2
ρn,0(rA, ω0) =

2

~ε0
ω2

0

c2
d · Im

{

‖

G0(rA, rA, ω0)
}

d∗. (5.1.3)
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Figure 5.2: Local density of states scaled by the vacuum LDOS for a sphere of radius R = 8 nm
and a quantum emitter located at various distances rA from the center of the sphere, as a function
of ω/c. The emitter has a radial polarization n = r̂. The n-mode resonance positions are located
with vertical lines.

The Hamiltonian of the single emitter-MNP system is given by (4.1.24), where the mode
structure is labelled with the index n. Indeed, the symmetry of the system is independent of
the angular part, hence we sum over the parity and the m indices. The emitter-field coupling
has the form (4.1.21):

|κn(ω)|2 =
1

~πε0
ω2

c2
d · Im

{

‖

Gn(rA, rA, ω)
}

d∗, (5.1.4)

where

‖

Gn(rA, rA, ω) is the Green’s tensor associated with the mode n. The full Green’s tensor
is obtained by summing all the mode-selective components:

‖

G(r, r′, ω) =
+∞∑

n=1

‖

Gn(r, r′, ω) =

‖

G0(r, r′, ω) +

‖

GS(r, r′, ω), (5.1.5)

with

‖

G0 being the direct contribution part and

‖

GS the scattered part. The calculation of the
Green’s tensor is detailed in appendix 3.A of chapter 3.
The coupling constant (5.1.4) depends on the partial LDOS along the transition dipole mo-
ment (see also equation (4.1.1)). It is remarkable that, as the emitter is closer to the MNP (2
nm from the surface), the LDOS exceeds 105 times the vacuum LDOS and we can reach the
strong coupling regime, as discussed in the next paragraph. This originates from the highly
confined high order modes [108].

5.1.2 Dynamics and strong coupling regime

We investigate the dynamics of the emitter-MNP system using the effective Hamiltonian
(4.2.19) derived in chapter 4. The discrete non-Hermitian Hamiltonian of the system is



135 CHAPTER 5. QUANTUM PLASMONICS WITH METALLIC NANOPARTICLES

...

...

...

Figure 5.3: Linkage pattern of the emitter dressed by the plasmonic modes corresponding to Hamil-
tonian (5.1.6). The dissipation of each plasmon leads to the state |g,0〉.

expressed in matrix form:

Ĥ(d)/~ =




0 ig1 ig2 . . . igN
−ig1 ∆1 − iγ1

2
0 . . . 0

−ig2 0 ∆2 − iγ2

2

. . . ...
...

... . . . . . . 0
−igN 0 . . . 0 ∆N − iγN2



, (5.1.6)

∆n = ωn−ω0 being the detuning between the emitter transition and the n-th LSP resonance,
and gn being given by:

gn =

(
γn

ω2
n

2~ε0c2
d · Im

{

‖

Gn(rA, rA, ωn)
}

d∗
)1/2

, (5.1.7)

where we replaced ω by ωn since the evolution of ω2 is slow-varying with respect to the
Lorentzian lineshape of the original continuous model: γn � ωn. The poles of the Lorentzian
functions are found using the mode equation, and then both the continuous and discrete cou-
plings are constructed using (5.1.7). This effective model corresponds to the linkage pattern
shown in fig. 5.3. The dynamics with a quantum emitter initially in |e,0〉 is shown in fig. 5.4
for two nanospheres of radii R = 8 and R = 20 nm. We check that the convergence is achieved
using the 25 first LSP modes. We show that, although the excitation probability decays over a
few dozens of femtoseconds, it oscillates as well and the dynamics is non-Markovian. For first
understanding of the strong coupling regime, we define the average decay rate and coupling:

γ̄ =
1

N

N∑

n=1

γn, ḡ =
√
N

(
1

N

N∑

n=1

gn

)
, (5.1.8)

and computing the ratio ḡ/γ̄, we find 1.05 and 1.23 for R = 8 and R = 20 nm, respectively.
This fulfills the strong coupling condition, that is ḡ ? γ̄. Lastly, we plot the excitation
probability for a two level model using the Hamiltonian:

Ĥtls/~ =

(
0 iḡ
−iḡ ∆̄− i γ̄

2

)
, (5.1.9)
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Figure 5.4: Dynamics of a single quantum emitter initially in |e,0〉, 2 nm away from the surface of
a MNP of radius (a) R = 8 and (b) R = 20 nm. The calculation is done using N = 25 plasmonic
modes. Upper panel: continuous emitter-field coupling |κ(ω)|2 =

∑
n |κn(ω)|2 (in units of the average

mode width γ̄) versus k = ω/c in µm−1. The position of the transition frequency ω0 is shown by
a vertical line. Lower panel: excitation probability Pe(t) of the emitter versus time (in fs). The
continuous and discrete models are shown to be equivalent and an approximative two-level model is
compared to them.
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Figure 5.5: Two three-level emitters in the vicinity of a metal nanoparticle of permittivity εm(ω).
Transitions |e〉 ↔ |f〉 are addressed with laser beams P (t) and S(t), while transitions |e〉 ↔ |g〉 are
nearly resonant with the plasmonic modes of the MNP.

with ∆̄ = ω̄ − ω0 being the average mode frequency detuning. This model qualitatively
reproduces the dynamics with Rabi oscillations characterizing the energy exchange between
the emitter and the MNP. However, the exact behavior of the dynamics can be understood
solely from the discrete Hamiltonian (5.1.6), and leads to the definition of atomic states
dressed by all the LSP modes [108]. We see in fig. 5.4 that this model works better for
R = 20 nm because the lineshape of the full LDOS has an overall Lorentzian behavior.
It is important to note that the strong coupling regime is reached due to a mode accumulation
phenomenon. The emitter being coupled to a large number of modes, the effective coupling
ḡ increases with a factor

√
N . However, the individual modes have small gn values compared

to γ̄: between 0.15 and 0.30 for R = 20 nm. Therefore, the strong coupling regime arises
from the accumulation effect, associated with the closeness of the emitter to the surface of
the sphere.

5.2 Adiabatic passage mediated by plasmons
Surface plasmon polaritons provide a strong mode confinement, allowing control below the
diffraction limit. The plasmon field is strongly confined and enhanced, but the modes are
very lossy. In the following, we present adiabatic techniques to couple two quantum emitters
together, circumventing the lossy nature of the modes of a metallic nanoparticle (MNP).
Having already built effective models in chapters 3 and 4, we derive a configuration that
allows an efficient coupling between the emitters, mediated by the plasmon modes. We show
that in the strong coupling regime, we can do a complete population transfer between two
emitters using the STIRAP technique. In a last section, we use a fractional STIRAP leading
to the entanglement between the emitters.

5.2.1 Population transfer: STIRAP

We consider two three-level quantum emitters that are located close to a MNP (see fig. 5.5).
The emitters are both coupled to the plasmon modes through their |e〉 ↔ |g〉 transitions.
They are also individually driven by control laser pulses, referred to as pump for emitter 1
and Stokes pulses for emitter 2, through transitions |e〉 ↔ |f〉. The Rabi frequencies associated
with the control pulses are denoted P (t) and S(t) = |S(t)|eiφ, and their resonant frequencies
are ωP and ωS, respectively.
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Effective model: simplest structure

We use the previously derived discrete effective model (4.2.27) where we sum over the parity
and the m indices so that n̄→ n, to model the emitter-plasmon field interaction. The struc-
ture of this Hamiltonian is complex, in general, because one has to write the original model
with the field operators (4.1.26), and compute the mode overlap function (4.1.29) constructed
from the Green’s tensor of the spherically layered system, to see whether we can reduce the
span of the field operators, leading to the effective b̂(j)

n , b̂
(j)†
n . We suggest the reader to go

through sections 4.1.2 and 4.2.2 for a detailed description of this construction, as well as
section 4.3 for the construction of the effective model for two emitters close to a nanosphere.
Because of the spatial properties of the plasmon modes, the simplest effective model corre-
sponds to the case where the emitters are very close to each other. We recall the mode overlap
function for two emitters:

µ(12)
n (ω) =

1

~πε0
ω2

c2

d1 · Im
{

‖

Gn(r1, r2, ω)
}

d∗2

κ
(1)
n (ω)κ

(2)∗
n (ω)

, (5.2.1)

where here dj = 〈e|d̂j|g〉, and the single emitter-field couplings are:

|κ(j)
n (ω)|2 =

1

~πε0
ω2

c2
dj · Im

{
‖

Gn(rj, rj, ω)
}

d∗j . (5.2.2)

Choosing the emitters to be located close to each other on the same side of the MNP, that is
r2 → r1, and having identical dipole polarization (chosen radial as it leads to better energy
exchange), we get:

µ(12)
n (ω) = 1 (5.2.3a)

r2 → r1. (5.2.3b)

Later, we also investigate the case where the two emitters are placed symmetrically on each
side of the MNP, that is r2 = −r1 and µ(21)

n = (−1)n. The absolute value of µ(12)
n being 1, the

field operators associated with each atomic position â(1)
n (ω) and â(2)

n (ω) are linearly dependent.
Hence, Nr = 1 in (4.2.27), and the Hamiltonian of the emitter-field system reduces to:

Ĥ(d) =
2∑

j=1

(
~
(
ωeg − i

γ0

2

)
σ̂(j)
ee + ~ωfgσ̂(j)

ff

)
+
∑

n

~
(
ωn − i

γn
2

)
â†nân

− i~
2∑

j=1

∑

n

(
g(j)
n σ̂(j)

eg ân − g(j)∗
n â†nσ̂

(j)
ge

)

+
(
~P (t)e−iωP tσ̂

(1)
ef + ~|S(t)|e−i(ωSt−φ)σ̂

(2)
ef + h.c.

)
.

(5.2.4)

The state of the full system is expressed in a tensor product basis featuring the two ground
states |g〉, |f〉 and the excited state |e〉 of the emitters, and those of the plasmonic modes. We
assume initially the emitter state |f, g〉 and the empty plasmonic modes |0〉 = |01, 02, ..., 0N〉
for the field. Considering N modes, we can thus construct the complete tensor basis as
depicted in fig. 5.6.
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...
...

Figure 5.6: Linkage pattern of the two emitters dressed by the plasmonic modes with |1n〉 =
|01, ..., 1n, ..., 0N 〉. Each single plasmon of mode n and loss rate γn couples the atomic transition
(frequency ωeg) with the Rabi frequency g(j)

n and the detuning ∆n.

Writing the Hamiltonian in the basis {|f, g,0〉, |e, g,0〉, ..., |g, g, 1n〉, ..., |g, e,0〉, |g, f,0〉},
and moving to the proper rotating frame, we get the matrix form:

Ĥ(d) =




0 P (t) 0 0 . . . 0 0 0

P (t) −iγ0

2
ig

(1)
1 ig

(1)
2 . . . ig

(1)
N 0 0

0 −ig(1)
1 ∆1 − iγ1

2
0 . . . 0 ig

(2)
1 0

0 −ig(1)
2 0 ∆2 − iγ2

2

. . . ... ig
(2)
2 0

...
...

... . . . . . . 0
...

...
0 −ig(1)

N 0 . . . 0 ∆N − iγn2 ig
(2)
N 0

0 0 −ig(2)
1 −ig(2)

2 . . . −ig(2)
N −iγ0

2
S(t)

0 0 0 0 . . . 0 S∗(t) 0




, (5.2.5)

where ∆n = ωn − ωeg, and for simplicity we set the laser frequencies equal to the transition
frequency: ωP = ωS = ωef . We recall condition (5.2.3) to express the couplings:

g(2)
n = g(1)

n . (5.2.6)

All the parameters ωn, γn, g
(j)
n are found by solving the mode equation and calculating the

LDOS at the resonance frequencies, as shown in (5.1.7). This effective Hamiltonian shows
that one can manipulate coherently, by laser fields, the states of the emitter, coupled by the
SPP. This formulation shows clearly that all the modes are involved and we can anticipate a
relatively broad frequency range where the coherent accumulation of all of them enhances the
coupling, even if one mode is weakly interacting (for instance, the dipolar mode at very small
distance). This is confirmed in the numerics below. The resulting strong coupling allows one
to fully exploit the tools developed in quantum control [42].

Numerics

STIRAP-type processes between the states |f, g,0〉 and |g, f,0〉 can be achieved via Hamil-
tonian (5.2.5) under strong coupling gn ? γn. For this purpose, we use a sequence of two
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Figure 5.7: Dynamics of the STIRAP process for two emitters located 2 nm away from the surface
of a MNP (R = 20 nm and emitters on the same side [see (5.2.3)]). (a) Counterintuitive pulse
sequence. (b) Population history with complete transfer from |f, g,0〉 to |g, f,0〉 and low population
of |e, g,0〉, |g, e,0〉. (c) Population dynamics for the single plasmon mode excitations. For better
visibility only five curves are represented, as modes around n = 10 show very similar dynamics (red
line). We used Ω0T = 10 and τ/T = 0.6. The number of modes taken into account is N = 25.

Gaussian pulses delayed by a time τ , of peak Rabi frequency Ω0:

P (t) = Ω0e−(t−t0−τ)2/T 2

(5.2.7a)

|S(t)| = Ω0e−(t−t0+τ)2/T 2

, (5.2.7b)

such that a negative delay (resp. positive) corresponds to an intuitive sequence (resp. coun-
terintuitive). The pulse duration T is set with respect to the average plasmon loss γ̄T = 7500.
Complete population transfer from |f, g,0〉 to |g, f,0〉 is achieved and shown in fig. 5.7, with
pulse area Ω0T = 10 and delay τ/T = 0.6. We chose the MNP being made of silver, with
radius R = 20 nm, and the emitters are located on the same side of the MNP, both dis-
tant 2 nm away from its surface. We show complete transfer, with negligible population of
|e, g,0〉, |g, e,0〉 and of the plasmon modes |g, g, 1n〉.

In fig. 5.8, we show a contour plot of the transfer efficiency from |f, g,0〉 to |g, f,0〉 as
a function of the pulse delay and the peak Rabi amplitude. A non-robust, oscillating and
low transfer efficiency for the intuitive sequence is observed, due to the strong population of
the lossy plasmon excitation. On the other hand, the counterintuitive sequence results in a
robust and efficient (above 95%) transfer due to low plasmon population during the process
for a modest pulse area Ω0T . The process has been found more efficient for an emitter whose
transition frequency is resonant with higher-order modes, since there is an accumulation of
strong resonances at high orders for emitters close to the sphere. For this reason, the choice
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Figure 5.8: Left panel: Contour plot of the transfer efficiency to state |g, f,0〉 at the end of the
pulse sequence, as a function of the pulse delay τ and the peak Rabi frequency Ω0 for γ̄T = 7500.
We chose a sphere radius R = 20 nm, and the emitters are located 2 nm away from the sphere, on
the same side. Their transition frequency is set resonant to the 10th mode: ωeg = ω10, their dipole
moment is taken to be d(1)

eg = d
(2)
eg = 10 D, and N = 25 plasmon modes have been taken into account.

Right panel: same calculation for r2 = −r1 (emitters on opposite sides) and µ(21)
n = (−1)n.

of frequency is not required to be very precise, as long as it belongs to the plasmon polariton
bandwidth. In addition, we show that the population transfer fails when the emitters are
placed on each side of the sphere, symmetrically (r2 = −r1, right panel in fig. 5.8). This
is due to the presence of a mode-wise phase factor corresponding to µ(21)

n = (−1)n in the
coupling of the second emitter: g(2)

n = (−1)ng
(1)
n . The transfer efficiency obtained for this

configuration is shown to be below 10−5. In reference [109], we mistakenly wrote that the
population transfer was effective for the case r2 = −r1, while we presented figures for the case
r2 → r1, as shown on the left panel in fig. 5.8. We plan to correct this mistake in an erratum.

5.2.2 Entanglement: fractional STIRAP

The interest in the entanglement of emitters close to a plasmonic structure is motivated by the
possibility of creating mixed states that cannot be factorized in a product of states belonging
to the basis [17, 102, 110]. This is essential for quantum information and computing, relying
on the superposition states and entanglement properties of quantum mechanics.
In our system, the following state can be achieved:

|f, g,0〉 7→ 1√
2

(
|g, f〉+ e−iφ|f, g〉

)
|0〉, (5.2.8)

by shaping the laser pulses such that they start in a counterintuitive way and they are switched
off simultaneously. This sequence is known as fractional STIRAP (or f-STIRAP) since it leads,
in principle, to a partial population transfer corresponding to a final coherent superposition of
the initial and target state [111,112]. We show the fully deterministic process of entanglement
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Figure 5.9: Dynamics leading to the entangled state in the same conditions as in fig. 5.7 except for
the pulse shaping (pump: green line; Stokes: red line) starting in a counterintuitive way and ending
simultaneously. The populations of state |f, g,0〉 (blue line) and state |g, f,0〉 (purple line) converge
to 1/2 in a coherent way (the absolute value of their coherence is shown as a red dash-dotted line).
The populations of |e, g,0〉 and |g, e,0〉 are not distinguishable at the scale of the figure.

creation between the two emitters in fig. 5.9. We have designed the pulses using:

P (t) = sin θ0Ω0e−(t−t0−τ)2/T 2

(5.2.9a)

|S(t)| = Ω0e−(t−t0+τ)2/T 2

+ cos θ0Ω0e−(t−t0−τ)2/T 2

, (5.2.9b)

where we chose θ0 = π/4. The coherence between |f, g〉 and |g, f〉 is shown to increase and
reaches 0.5, demonstrating deterministic entanglement.
In the next sections, we provide a simplified model to understand the dynamics of the STI-
RAP process, and discuss its limits. Finally, perspectives for the study of more general
configurations will be presented.

5.2.3 Simplified model and discussion

To interpret and determine the practical limitations of the above results by complete or
fractional STIRAP, it is useful to consider a simplified effective Hamiltonian with a resonant
(∆1 = 0) single mode N = 1:

Ĥ(d) =




0 P 0 0 0
P 0 g 0 0
0 g −iγ

2
g 0

0 0 g 0 S
0 0 0 S 0



. (5.2.10)
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We consider the transformation which diagonalizes the excited plasmonic and emitter parts:

T̂ =




1 013 0

031 T̂3 031

0 013 1


 ,

T̂ †3




0 g 0
g −iγ

2
g

0 g 0


 T̂3 =




λ− 0 0
0 0 0
0 0 λ+


 , (5.2.11)

with the lossy eigenvalues:

λ± =
1

2

(
−iγ

2
±
√

8g2 −
(γ

2

)2
)
. (5.2.12)

and the non-lossy eigenvalue 0 associated with the dark state |Φ(ge)
0 〉 = 1√

2
(|e, g〉−|g, e〉)|0〉. It

is convenient to choose the normalization of the transformation T̂3 via a complex mixing angle
(see e.g. ref. [113] for a lossy two-state Hamiltonian). The application of the transformation
on the full Hamiltonian leads to:

T̂ †Ĥ(d)T̂ =
1√
2




0 Pc P Ps 0

Pc
√

2λ+ 0 0 Sc
P 0 0 0 −S
Ps 0 0

√
2λ− Ss

0 Sc −S Ss 0




(5.2.13a)

c =

√
2g√

λ+(λ+ − λ−)
(5.2.13b)

s =

√
λ+

λ+ − λ−
. (5.2.13c)

This shows that the adiabatic passage will be immune to loss when Re(λ±)� P, |S|, that is:

g � P, |S|. (5.2.14)

At the lowest order, this leads to the effective Hamiltonian in the basis {|f, g,0〉, |Φ(eg)
0 〉, |g, f,0〉}:

T̂ †Ĥ(d)T̂ ≈ 1√
2




0 P 0
P 0 −S
0 −S 0


 . (5.2.15)

Adiabatic passage is achieved along the eigenstate:

|Φ(fg)
0 〉 =

(
cos θ|f, g〉+ sin θ|g, f〉

)
|0〉, (5.2.16)

corresponding remarkably to the same state in the original basis: T̂ |Φ(fg)
0 〉 = |Φ(fg)

0 〉, with the
mixing angle tan θ = P/|S|, which connects the initial state when P = 0, i.e. θ = 0, and the
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Figure 5.10: Effective discrete linkage pattern of a system of two three-level emitters at arbitrary
positions r1, r2 around a metallic nanosphere. The basis corresponds to the product between atomic
states {|g〉, |e〉, |f〉} and the Gram-Schmidt orthogonalized Fock spaces of the plasmonic excitations.
Laser pulses P (t) ans S(t) drive the |e〉 ↔ |f〉 transitions of each emitter, respectively.

final state when S = 0, i.e. θ = π/2. This corresponds to the counterintuitive pulse sequence.
The requirement is a relatively large pulse area:

Ω0T � 1, (5.2.17)

as confirmed in fig. 5.8. The strong coupling regime corresponds to to g ∼ γ with the typical
width in this system γ ∼ 7.5 × 1013 s−1, hence a duration for the pulse of the order of 100
ps corresponds to γT = 7500, with which figs. 5.7 and 5.8 have been produced. A modest
pulse area of the laser pulse Ω0T ∼ 10 gives already a high efficiency, and this corresponds
to peak Rabi frequency of the order of 100 GHz, i.e. of peak intensity 10 GW/cm2 for a 1
debye dipole. Shorter pulse durations can be considered, but they would need stronger pulse
intensities for the same pulse area to achieve adiabatic passage.

5.2.4 General model and perspectives

To close this chapter, we provide an overview of the general system formed by two three-level
emitters close to a nanosphere, as well as future prospects for the achievement of adiabatic
passage in this system.
The effective two-emitter model presented for the STIRAP has been limited to the close emit-
ters case (5.2.3) for simplicity. This allows us to use a simplified version of the more general
model, which is useful to investigate and discuss the properties of the STIRAP mediated by
LSPs. However, the simplified model does not provide a realistic description of the system,
since emitters cannot be at the same position. The general model implies that the emitters are
located such that r1 and r2 are arbitrary. This is shown in section 4.3, where we considered
two-level emitters coupled to a nanosphere.
Adiabatic passage in the general linkage pattern, corresponding to arbitrary subwavelength
positions (i.e. considering distances below 100 nm), can be envisioned. The linkage pattern
of the effective discrete model is shown in fig. 5.10 (see preceding sections and section 4.3).
It is seen that this pattern is more complicated than the one of the r2 → r1 case shown
in fig. 5.6: the plasmonic excitation basis splits into two Fock spaces, each associated with
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an excitation b̂
(j)
n , b̂

(j)†
n created by emitter j. The emitter-field coupling also becomes more

complicated, since emitter 2 couples to both field subspaces with µ(21)
n g

(2)
n and β(21)

n g
(2)
n , with

β
(21)
n being the Gram-Schmidt normalization factor. The asymmetry of the coupling structure

comes from the Gram-Schmidt orthogonalization procedure. We underline that the dynamics
of the r2 → r1 case is recovered by this pattern since this yields µ(21)

n = 1 and β(21)
n = 0.

The general study of the dynamics of such a system is not done yet. However, we identified
the structural obstacles of the linkage pattern in the case of population transfer from state
|f, g; [0]〉 to state |g, f ; [0]〉:

1. As the middle block, corresponding to {|e, g; [0]〉, |g, g; 1n,0〉, |g, g; 0, 1n〉, |g, e; [0]〉}, em-
bed the plasmon dynamics, we see that the transition |g, g; 0, 1n〉 ↔ |e, g; [0]〉 is an
obstacle to the population transfer. Therefore, if β(21)

n is large (i.e. close to 1), those
two states couple and the plasmons will strongly decay.

2. Moreover, if β(21)
n is large, then µ

(21)
n is small and this induces an asymmetry in the

coupling, which is also preventing the population transfer.

3. Finally, when the overlap function µ(21)
n varies from one mode to another, this induces

an interference effect as the high-order modes of the nanospheres overlap in frequency.
Therefore the collective effect of the modes is a blockade for the population transfer
when µ

(21)
n varies, that is when the emitters are not aligned on the same side of the

sphere. This happens for example when considering the case r2 = −r1 (the emitters
located symmetrically at two poles of the sphere), where the overlap function flips sign
from a mode to another: µ(21)

n = (−1)n.

We project to use an adiabatic elimination in order to solve points 1 and 2. Indeed, if ∆n is
chosen such that:

∆n � g(j)
n , (5.2.18)

then we adiabatically eliminate the plasmonic excitation states |g, g; 1n,0〉 and |g, g; 0, 1n〉.
Consequently, the transition |g, g; 0, 1n〉 ↔ |e, g; [0]〉 is blocked while the V-shaped block
transition |g, e; [0]〉 ↔ |g, g; 1n,0〉 ↔ |e, g; [0]〉 is allowed since there is no two-photon detuning.
The last point can be addressed by designing plasmonic systems with well-resolved resonances,
so that the interference effects are small. In the case of the sphere, the mode accumulation
can be exploited by placing the emitters on the same side of the sphere, therefore allowing a
bigger mode overlap, hence a better coupling.
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Summary of the thesis
In this manuscript, we have addressed different aspects of quantum control, stated its cur-
rent development and extended it to further applications in quantum technologies at the
nanoscale. The challenges brought by quantum information and computation play, nowa-
days, an important role in the fields of quantum light-matter interactions, like cQED and ion
trapping. Optical cavities and ion traps provide interesting features for the control of atoms,
molecules, quantum dots, and quantum light. They are quantum systems where applications
of strong coupling, quantum computation using gates, and quantum communication can be
achieved provided that the decoherence processes are avoided. This presents strong technical
requirements, such as the control of very low temperatures in the system environment.
In this thesis, we have considered applications of adiabatic techniques, such as the stimulated
Raman adiabatic passage (STIRAP), or the adiabatic elimination, to bypass lossy states
that are detrimental to population transfer between two metastable states. These techniques
were used for different systems: trapped ions, atoms in a cavity, emitters close to plasmonic
structures. Moreover, they are also necessary for the design of the fast qudit quantum gate
presented in chapter 1.
We have also extended the quantization procedures necessary for the understanding of quan-
tum optics, both in the fields of cQED and quantum plasmonics. These extensions lead to
effective models, that we derive in detail and are shown to be similar both for cQED and
quantum plasmonics: the rotating wave approximation Hamiltonians derived have the struc-
ture of multilevel systems, each cavity or plasmonic mode corresponding to a particular family
of quantum states. The effective Hamiltonians were derived in two steps: a first one leading
to an effective continuous system, where the atom-field coupling has a Lorentzian structure,
and a second one where the structure of the Hamiltonian is discrete and non-Hermitian, the
losses being modeled by imaginary terms on the diagonal.
The effective models were used to describe the dynamics of quantum systems composed of
emitters coupled to either a cavity field or the plasmonic modes of a single metallic nanosphere.
In the case of the cavity system, we studied the output field derived from the Poynting vec-
tor, and described the nature of the leaking photonic quantum state. As for the plasmonic
system, we studied the dynamics of a quantum emitter placed very close to the surface of the
nanoparticle, in the strong coupling regime. We also computed the dynamics of two emit-
ters coupled to the modes of a nanoparticle, and showed the feasibility of STIRAP at the
nanoscale, allowing the coupling of emitters mediated by plasmons. This opens the door to
ultrafast quantum control at the nanoscale in the field of quantum plasmonics.

Perspectives
The detailed work of this manuscript has lead to some future prospects and further questions.
In view of the recent developments in quantum plasmonics, and its analogies with cQED,
the quantum mechanical approach of plasmons that we presented in this manuscript is of
particular interest.
We have expanded a quantization procedure based on the Green’s tensor for spherically lay-
ered media, and applied it to the study of emitters coupled to a single spherical nanoparticle.
In the end of chapter 5, we detailed the prospects concerning the STIRAP applied to two



148

emitters near a metallic nanoparticle: we plan to analyze the full description of this system,
where the emitters are placed at arbitrary positions around the sphere.
One could also apply such a formalism to core-shell structures, such as spherical nanoparticles
with a coating (e.g. a gain medium as in the study of SPASER systems), or other spherical
systems. In addition, the full quantization, the effective models, and therefore the adiabatic
processes can be further studied with different geometries, since the Green’s tensor can be
expanded in a basis of electromagnetic eigenfunctions, or calculated numerically when the ge-
ometry is complex. Some experiments, e.g. with ellipsoid nanoparticles, nanoprisms, bow-tie
systems or plasmonic waveguides present interesting optical properties and are still not well
understood theoretically. The quantization procedure using the Green’s tensor may provide
the basis of a quantum mechanical study of such systems.
Finally, the description of quantum measurement processes in quantum optics has been ad-
dressed, in the manuscript, for cQED systems. The quantum Poynting vector is the observ-
able which allows to understand the absorption of a photon by a photodetector. The study
of light scattered by nanoparticles contributes to the development of single photon gener-
ation at the nanoscale, therefore the description of the Poynting vector in the far field is
required to understand the quantum nature of light for plasmonics experiments. One could
also think of developing input-output relations at the nanoscale, which would correspond to
relations between near-field and far-field observables. This would also be consistent with the
cQED analogy, and establish an even stronger link between the fields of quantum optics and
plasmonics.
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