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Glossary

General rules

a a scalar in the image plane is represented by a lowercase letter

A a scalar in E
3 is represented by an uppercase letter

a a vector is represented by a bold lowercase letter

A a matrix is represented by a bold uppercase letter

Mathematics

E
n Euclidean space with n dimensions

Fa a generic Euclidean reference frame Fa(Pa, ia, ja,ka) consists of an
origin Pa and an orthogonal basis (ia, ja,ka)

p the bold lowercase letter p is reserved to represent a vector containing
the normalized coordinates of an image point. For example, pa =
[xa ya 1]T represents an image point a in the camera frame

Pa a generic point in the Euclidean space E
3 is noted Pa, where the

subscript a identifies the point

PbPa a vector defined by starting point Pb and end point Pa
bPa the overlined bold uppercase letter P is reserved to represent a vector

containing the Cartesian coordinates of a 3-D point. b {PbPa} =
bPa = [bXa

bYa
bZa]

T represents the 3-D point Pa in frame Fb

a
{

dP2P1

dt

}
Fb

the derivative of vector P2P1 with respect to frame Fb and expressed

in frame Fa
˙bPa the derivative of vector PbPa with respect to frame Fb and expressed

in frame Fb
bPa the bold uppercase letter P is reserved to represent a vector contain-

ing the homogeneous coordinates of a 3-D point. bPa = [bPa 1]T

represents a 3-D point Pa in frame Fb
bRa a 3-D rotation matrix from frame Fa to frame Fb
bMa an homogeneous transformation matrix from frame Fa to frame Fb
bva the velocity screw vector bva = [bνa,

b
ωa]

T of point Pa expressed in
the coordinate frame Fb.

b
νa and b

ωa are, respectively, the linear
and angular components of the velocity vector

va the generic velocity screw vector va = [νa,ωa]
T of point Pa not

projected in any coordinate frame. The linear velocity of Pa is noted

5
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νa and the angular velocity of frame Fa with respect to the world
frame FW is noted ωa.



Introduction

Unmanned mobile robots are well suited to explore environments considered too costly,
time consuming, and hazardous for human inspection. They execute a wide variety
of tasks such as gathering samples or monitoring and maintenance of structures in
inaccessible sites. In some cases, when the explored environment is well structured,
these robots can operate in autonomy, without any human intervention, being mostly
employed in survey applications. However, autonomous navigation in unknown spaces
and autonomous manipulation requiring physical contacts with unstructured environ-
ments without human supervision represent technical and technological challenges that
remain to be addressed.

Many robotic tasks require continuous human intervention to be carried out. In
such cases, the decision-making and intelligence of operation is the human responsi-
bility, while the robot is limited to execute the low level tasks. Teleoperation systems
are required to allow human operators to control the robots with the aid of visual and
other sensory feedback. Teleoperation systems can be divided into two main categories:
wired and wireless communication. Wireless teleoperation is preferable in some robotic
applications, since it offers the robot more freedom of motion and flexibility in naviga-
tion. Nevertheless, a wireless link may be subject to interference and signal loss that
degrade the reliability of data exchange with the robot. Therefore, the use of tethers
has advantages in applications where robust data communication is a priority and its
interruption can lead to the loss of the robot and mission failure.

Applications where the use of tethers is preferable instead of wireless communica-
tion include, for example, urban search and rescue operations (Fukushima et al., 2000;
Perrin et al., 2004), planetary geologic survey (Tsai et al., 2013), underwater missions
(McKerrow and Ratner, 2007) and sewerage (Reverte et al., 2011). Specifically in the
case of underwater operations, wireless communication is even more complicated, since
electromagnetic waves are strongly attenuated in water and acoustic subsea commu-
nications have a very low bandwidth and significant time delay, which represents a
considerable obstacle to robust teleoperation (Marani et al., 2009).

The main advantage of using tethers is the provision of a fast and stable commu-
nication link. In addition, tethers can transfer power, which makes it possible to carry
out longer operations with energy consuming payload and enable vehicle downsizing
thanks to the absence of batteries. Another advantage of tethers is that they can be
used as a mechanical support for robots exploring hard-to-reach areas as cliffs, caves,
crevices and other steep terrains (McGarey et al., 2016b). Nevertheless, tethering also

7



8 Introduction

have important shortcomings. Tethers are known to limit the robot workspace and
they may become entangled with obstacles or with other fellow robots, leading to im-
mobilization. The energy transfer by wire may also represent a constraint to large
robot displacements since a very long cable increases the losses by Joule heating. A
compromise must be found between the power demanded by the robot and the size of
the cable: for a better power flow, thicker cables are needed. However, the thicker the
cable, the more rigid it is and greater torsion efforts it applies on the robot, which will
require more power to compensate them.

In this thesis, we are interested in the use of small tethered underwater robots, also
called mini remotely operated vehicles (mini-ROVs), in the context of exploration of
shallow waters, with less than 10 meters of depth. The ROVs are linked to a surface
vessel by a tether (also called umbilical) that ensures energy supply and data transfer.
Typical ROVs generally weigh some hundred kilograms and are powerful electrome-
chanical machines that require significant human and material resources to be deployed.
They have a working depth between 1,000 and 6,000 meters and can move away several
tenths of kilometers from their base. The logistical difficulties of deploying large un-
derwater robots led to the development of mini-ROVs, that weigh a few kilograms and
are low-power demanding. They are able to explore shallow waters, caves and some
wrecks that are not accessible to typical ROVs. However, these light-weight and less
powerful vehicles are much more sensitive to the disturbances engendered by a long
tether, which can cause unbalance and make them difficult to maneuver. Mini-ROVs
are thus limited to displacements around the surface vessel, which consequently limits
the exploration of shallow waters, since the vessel cannot get too close to the coast.

The Cosmer Laboratory and the SUBSEA-TECH company, a partner and co-funder
of this thesis, came together in reflections and discussions on the possible strategies of
underwater robotic teleoperation in coastal areas. Thereby, the idea of using mini-
ROVs serially linked with a tether arose: a group of small-size identical robots are
distributed all along the tether (see Figure 1). All robots forming the fleet have the same
architecture, the same set of sensors and actuators, hence the same motion capability.
Together, the small robots can compensate the disturbances of a long tether and allow
the leader robot to behave as if it were in the vicinity of the base. Moreover, this
chain of robots can work as a sensor network that have a distributed perception of the
underwater environment. Mapping of currents and seabed can be achieved with this
fleet of robots that can collect data and share informations in real time thanks to the
wired connection. Depending on the situation, the fleet could also be organized in ways
other than serial, as triangular or square grids, in order to enlarge the covered area.

The objective of this PhD thesis is to investigate how to control the shape of a
section of tether linking a pair of robots, a leader and a follower, as it is illustrated by
Figure 1. The general idea is that the leader robot freely explores its surrounding, as
if it was not attached to anything, while the follower robot is expected to manage the
tether shape from its embedded sensors feedback so that the tether does not hamper
the leader movements. We propose to use only standard sensors commonly embedded
in the mini-ROVs while the tether itself will not be modified nor instrumented.

The thesis is structured as follows. Chapter 1 is dedicated to the state-of-the-
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Chapter 1

State of the Art on Tether

Management

There are two types of unmanned underwater vehicles: remotely operated vehicles
(ROVs) and autonomous underwater vehicles (AUVs). ROVs communicate continu-
ously with a surface vessel thanks to a physical link called umbilical or tether, due
to the low-bandwidth of underwater wireless communication. AUVs are completely
autonomous and previously programmed to execute specific mission with very little
communication with the surface vessel.

Despite the recent development of techniques of autonomous navigation and task
execution, a large number of underwater robotic missions are still carried out by tele-
operation. The tether provides a reliable communication link and power supply that
enables the fulfillment of long-term missions. There are different types of tethers, de-
pending on the type of mission and deployed robot. Heavy, thick and rigid tethers are
used to transfer data and huge amounts of energy to work-class ROVs that operate in
deep sea. Thinner and more flexible tethers are used to provide data exchange to large
ROVs that have embedded batteries, or also to provide energy to low power-consuming
ROVs. Tethers are thus an important element in underwater robotics operations, and
a large number of missions that require continuous human intervention could not be
achieved without them. Tethers, however, also bring with them additional problems
to robotics operation, since they limit the robot workspace and can be entangled with
objects in the environment, leading to robot immobilization and, consequently, mission
abort.

Tether management is one of the most challenging issues in operations using teth-
ered robots. In this Chapter we address the current strategies that deal with the control
of umbilicals. We start by describing the underwater coastal environment where our
system will be deployed. Then, we continue by defining the different types of robots
and tethers that are used in underwater operation. Next, we give some details about
the existing strategies of tether and deformable objects handling in the context of un-
derwater application, which can be also extended to others domains of application.
Finally, we present our strategy of tether management for mini-ROVs that operate in

11



12 State of the Art on Tether Management

underwater cluttered coastal zones (less than 10 meters deep) while being as far as
possible from the surface vessel.

1.1 The Underwater Environment

Coastal areas are the boundaries between the marine and continental domains. These
are important areas in terms of both marine and terrestrial biodiversity as well as in
terms of convergence of oceanic and continental processes that play a major role in the
determination of geomorphological, geochemical and climatic changes. The coasts are
very attractive, as evidenced by the strong anthropomorphization of the littoral zone.
It is estimated that currently more than 60% of the world’s population (3.8 billion
people) live in coastal area (less than 150km from the coast). This high concentration
of population is due to a considerable economic activity, particularly in the fisheries
sector, aquaculture, trade and energy, but also due to the booming touristic sector.

With respect to the underwater environment, the abundance of light in the first
meters of depth makes the environment the home of a large range of species. It is
also an important area of reproduction, as it is, for example, the case of estuaries and
coral reefs. The coastal marine environment shelters fragile ecosystems that should be
constantly monitored with the aim of preserving their balance. This surveillance is all
the more important since coastal ecosystems are often affected by pollutants generated
by ship traffic and liquid waste emission of cities.

Seawater can be characterized by thermophysical properties as density, temperature
and salinity. The density of surface seawater ranges from about 1020 to 1029kg/m3,
depending on the temperature and salinity. At a temperature of 25◦C, salinity of 35g/kg
and pressure of 1atm, the density of seawater is 1023.6kg/m3 (Nayar et al., 2016). Deep
in the ocean, under high pressure, seawater can reach a density of 1050kg/m3 or higher.
In the Mediterranean sea, the surface temperature ranges from 13◦C to 25◦C annually.
Salinity varies between 38.4 and 41.2g/kg and its density is around 1027kg/m3. Water
density slightly varies with depth and can be considered constant in the first 30 meters.

The sea profile can be schematically divided into different areas based on the wave
propagation, and the hydromorphodynamic processes involved (see Figure 1.1). The
wave base is the depth from which waves can interact with the seabed moving sand
shoreward. It is normally characterized as a half of the wavelength. At depths greater
than half the wavelength, water motion is less than 4% of its value at water surface
and can be neglected. The wave base depth is generally between 1 and 30 meters. The
nearshore zone extends from the wave base depth until the waves break point. The surf
zone (or breaker zone) extends from the waves break point until the shore line. This is a
dynamic area associated with wave-generated currents, including longshore, undertow
and seaward moving rip currents. Finally the swash zone represents the portion of
beach alternately covered and discovered by the water.

We are interested in exploring the nearshore and breaker zones, which are both
areas where intense sea currents take place. As we will see in the next Sections, most
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Figure 1.1: Profile or cross-section of a typical wave-dominated beach showing the near-
shore zone, the surf zone, and finally the swash zone. Courtesy of Short and Woodroffe
(2009).

of the time, unmanned underwater vehicles are equipped with proprioceptive and exte-
roceptive sensors, such as inertial measurement units (IMU), sonars, cameras, doppler
velocity-log (DVL), pressure gauge, etc. In coastal environments, inertial measure-
ments become noisier due to accelerations produced by the currents on the robot. This
leads to a gradual drift of position estimation in inertial navigation systems. The image
feedback of the cameras are also affected by the presence of current, since they put the
seabed sediments in suspension, rendering the water more turbid. Camera visibility is
already limited to some tenths of meters in clear waters due to light absorption (all
colors are absorbed, except blue). In turbid waters, the presence of sediments can fur-
ther degrade the image quality of cameras. The following Sections deal with a survey
of existing solutions in order to design a relevant robotic system that could be used to
explore such challenging environments.

1.2 Underwater Robots

There are different categories of underwater robots that are each one suited for the
execution of specific tasks at a given depth range (see some examples in Figure 1.2).

1.2.1 Autonomous Underwater Vehicles

In survey missions, where large areas shall be covered and inspected by robots (a
few square kilometers in a day, for example), the AUVs (Autonomous Underwater
Vehicles) are commonly employed. They are untethered robots designed to cover large
travel distances thanks to their hydrodynamic shape (usually in torpedo form) and to
collect data in autonomy for post processing. Examples of application are localization
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missions of wreckages of missing airplanes or detailed mosaicking of the seafloor for
the oil and gas industries (Wynn et al., 2014). An important subclass of AUVs are
the underwater gliders, that use small changes in their buoyancy in order to move up
and down in the ocean. This vertical displacement generates a forward motion thanks
to the use of flying wings and to the control of the vehicle pitch by movable internal
ballast (usually battery packs). Vehicle steering is accomplished either with a rudder
or by moving internal ballast to control roll. They are generally used in oceanography
research to collect chemical and physical measurements of seawater in ocean sampling
missions that range from hours to weeks or months, with up to hundreds of kilometers
of range (Inzartsev and Alexander Pavin, 2009, chap. 26). Since they are deployed for
missions of long duration (up to several months) and large displacement (hundreds of
kilometers), their localization is less accurate than other AUVs during the cyclic diving
period.

(a) (b)

(c) (d)

Figure 1.2: Some examples of French underwater robots. (a) the AUV A9 from ECA
robotics. (b) the AUV glider Sea-Explorer from Alseamar. (c) Victor 6000, an Ifre-
mer work-class ROV dedicated to scientific ocean research in deep waters. (d) the
observation-class mini-ROV observer from Subseatech.

1.2.2 Remotely Operated Vehicles

ROVs are employed in missions where continuous human intervention is required. They
are highly maneuverable vehicles that are operated by a crew aboard a vessel or floating
platform. The connection between the robot and the crew is made possible thanks to
a tether or an umbilical cable that is used along with a tether management system
(TMS). ROVs are often designed to execute inspection, repair and maintenance of sub-
sea structures in deep water. Some fields of applications are the offshore hydrocarbon
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extraction and the scientific research studying deep sea ecosystems and archaeolog-
ical sites. There are three main categories of ROVs, based on the vehicle size and
capabilities (Christ and Wernli Sr, 2013):

1. Work class ROVs: Vehicles in this category are generally heavy electrome-
chanical machines (over 1000 kg). These robots are used to execute maintenance
and construction tasks of huge underwater structures, typically in the oil and gas
industry or in the heavy civil engineering. Due to the necessity of large amounts
of force, the vehicle propellers and manipulators are hydraulically powered. They
are designed to be deployed in waters deeper than 3000 meters. This deep depth
can be achieved thanks to bulky pressure housings that protect the whole system
from high pressure. The size and weight of the vehicle implies that they have to
be deployed from large surface vessels with a specific launch and recovery system
(LARS) that looks like a crane. In such operations, the amount of exposed cable
is so important that a dedicated tether management system (TMS) is required
to reduce the disturbances generated by the cable on the robot.

2. Mid-sized ROVs: These vehicles weigh from 100 kg up to 1000 kg. They are
designed to operate in intermediate depths around 1000 meters, being thus more
compact than the work-class ROVs. They are also generally all-electric vehicles
(powering locomotion and sensors) with some hydraulic power for the operation
of manipulators. Their missions are similar to work-class ROVs, but operating
at lower depths. They also need to be deployed by a LARS and depending on
their weight and size, smaller surface vessel and fewer crew members are needed,
reducing the operation costs.

3. Observation class ROVs: These robots go from the smallest vehicles to those
wighting 100 kg. They are employed in depths lower than 300 meters. They
are completely electric machines, DC-powered and much less expensive than the
other class of ROVs. They are mainly used for observation missions, for inspection
in offshore industry or for oceanographic and archaeological research. Some of
them are equipped with electrical manipulator arms to perform dexterous tasks
(as biological sampling or archaeological excavation). The arm is equipped with
specific tools such as vacuum gripper, brushes or pliers. The lighter vehicles within
this class are typically hand launched, and can move freely from the surface with
manual handling of the tether.

In this thesis we focus on the use of mini-ROVs, a sub-category of the observation
class. Usually, mini-ROVs are used in places such as a sewer, pipeline, small cavities,
very shallow waters and other cluttered spaces. One person can carry the complete
ROV system (robot and tether) up to a small boat, deploy it and complete the job
without outside help. A remarkable advantage of using mini-ROVs is the low cost of
the operation (Wernli and Christ, 2009). Actually, the reduction of the operating costs
is a main goal in underwater robotics research, since the mobilization of huge structures
(host ship and crew) represents an important part of the mission charges. In the cases
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of survey or light manipulation missions, mini-ROVs can be used in cooperation with
USVs (unmanned surface vessels), as described in Shimono et al. (2015); Conte et al.
(2018). This kind of system eliminates the need of an on-board crew, that can in
return operate onshore via a radio-link. The reduced costs facilitate the access to
underwater intervention for safety and security operations in civil structures such as
ports, channels and dams (Molchan, 2005), as well as for many other scientific domains,
such as oceanography (Smolowitz et al., 2015) and archaeological (L’Hour and Creuze,
2016) research. Normally, in such fields, the tasks of surveying and sampling are made
by a professional diver. However, the operating complexity, medical problems, high
costs and limited time of diving have led to the development of alternative robotic
solutions in which the use of mini-ROVs plays a relevant role. These robots are operated
up to some hundreds of meters away from the surface vessel.

At these distances, important dragging forces are applied to the tether which con-
siderably disturbs the motion of the mini-ROV. Therefore, even for these small robots,
a system that could manage the tether is required. Besides, this system should be able
to detect or prevent tether entanglement. This necessity is even more important if the
mini-ROV is deployed in confined or cluttered environments. In order to achieve a
functional tether management for mini-ROV we must have some knwoledge about the
tether properties. Another objective is to minimize the forces that the tether applies
on the ROV. In the next section we focus on the different types of tether and their
physical properties.

1.3 Tethers

In order to understand the forces that a tether applies on a mini-ROV, the interaction
between the robot motion and the cable shape should be modeled. First we will give
some definitions about ROV usual tethers. Secondly we will investigate the influence
of the tether cross-sectional area on the system design and then present some existing
cable models.

1.3.1 Utility

ROVs require an electromechanical cable that provides mechanical support, power sup-
ply and data exchange with the surface vessel. In work-class and middle-class ROVs,
a tether management system (TMS) is needed to regulate the thousands of meters of
cable deployed and disturbances caused by the surface vessel motion. The cable linking
the surface to TMS is termed the umbilical, while the cable from the TMS to the
submersible is termed the tether. The umbilical cable is used to reach the operational
depth while the tether cable allows the ROV to make excursions at that depth for a
distance of around a few hundred meters away from the TMS. ROVs of various sizes
and categories can use a TMS, with the constraint of having a crane on board the ship
that can move the whole system (robot and TMS) from the deck to the splash zone.

In the case of mini-ROVs, since their operational depth is limited to some hundreds
of meters, no TMS is needed and the robot remains in the vicinity of the surface vessel.
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Thus, we will always use the term tether when making reference to a cable linking a
mini-ROV to a surface vessel, base station or fellow robot. The diameter of the cable is
the dominant factor in overall vehicle drag. Therefore, minimizing cable diameter is an
important part of ROV design and operation. Some advanced ROVs carry their own
power sources and only require a communication link to the surface vessel through an
expendable fiber-optic cable (Brignone et al., 2015). The umbilical cable is generally
steel jacketed, while the tether cable uses synthetic fibers to maintain the required
buoyancy (neutral, slightly negative or positive).

1.3.2 Buoyancy

The tether buoyancy in water is also an important aspect to consider. There are three
buoyancies to consider:

• Positive: when the tether has a lower density than water and therefore rises.

• Neutral: when the tether has the same density than water and therefore remains
in suspension in the water column.

• Negative: when the tether has a higher density than water and sinks.

Some examples of tethers are depicted in Figure 1.3 and their physical properties can
be found in Table 1.1.

Which tether to choose depends on the application. For example if the ROV is to
operate on the sea floor it would be preferable to use a neutral or positive tether to keep
it from dragging along the sea floor and potentially becoming entangled with objects.
A negatively buoyant tether has fewer applications and are commonly employed in deep
water environments, or areas with snagging hazards near the surface of the water, such
as under-ice teleoperations (Bowen et al., 2012; Katlein et al., 2017).

Tether diam. (m) lin. density (kg/m) buoyancy

Fathom 7.6× 10−3 4.3× 10−2 neutral

Novasub 7.4× 10−3 5.4× 10−2 negative

µlinx 8.0× 10−4 7.0× 10−4 negative

Table 1.1: Tethers physical properties shown in Figure 1.3: diameter, linear density
and buoyancy in fresh water.

1.3.3 Cross-section

Work class ROVs have power provided in alternating current (AC), which is transmitted
through the umbilical from the surface vessel to the cage and then from the cage to the
ROV through the tether. When it reaches the robot, the electrical power is converted
to direct current (DC) to power the electronics. Video and data are often transmitted
through optical fibers in order to reduce the electromagnetic disturbances caused by
the AC power transmission.
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Figure 1.3: Some examples of tethers used by mini-ROVs. (a) the tether model DLR-
1P20-2C50 from Novasub for power supply and data transfer. (b) the Fathom tether
from BlueRobotics that carries four pairs of 26 AWG wire for data exchange. (c) the
µlinx 50 OM3 tether from OFS optics is composed of a multimode 50 µm optical fiber
for data transfer.

While mid-sized and work class ROVs use AC current for power transmission
through the umbilical and then a combination (AC and DC) along the tether, most
observation class ROV systems use exclusively DC current for power transmission. The
delivered power should be sufficient to operate all the electronics and thrusters. The
propulsion of the vehicle must be powerful enough to overcome its own drag force but
also that of the tether. Therefore, the tether length may be critical in determining the
available power for vehicle displacement. A too long tether can generate too much drag
force that would lead to the vehicle immobilization. In addition, long cables also de-
creases the available power due to losses caused by Joule effect. The maximum tether
length for a given power requirement is a function of the voltage, the size and the
resistance of the conductor:

P =
U2A

ρL
(1.1)

where P is the delivered power, U is the voltage, A is the cross-sectional area of the
conductor, ρ is its electrical resistivity and L is the tether length. The maximum range
of the robot is hence limited by a maximum tether length above which the most part
of the delivered power is dissipated in heat through the cables (see Figure 1.4). In the
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case of mini-ROVs, this limitation is even more restrictive due to the low voltage of the
embedded electronic devices and thrusters (about 12 volts).

Figure 1.4: The maximum tether length for a given voltage V and a given cable cross-
sectional area A. Extracted from Christ and Wernli Sr (2013).

The ROV’s tether is typically the highest drag item on the ROV system. The drag
produced by the ROV is based upon the following formula (Christ and Wernli Sr, 2013):

Dtether =
σAtLtV

2
t Cdt

2
(1.2)

where σ is the ratio between the density of water and the gravitational acceleration;
Cd is the non-dimensional drag coefficient, ranging from 0.8 to 1 based on the cross-
sectional area of the tether profile (A); L is the tether length; V is the tether relative
velocity with respect to water and AL is the characteristic area on which Cd is applied.
The robot drag is calculated in the same way and the system total drag is then:

Dtotal =
σAtLtV

2
t Cdt

2
+
σAvLvV

2
v Cdv

2
(1.3)

The total drag increases proportionally with the tether length for a given cross-
section (see Figure 1.5).
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Figure 1.5: Tether drag versus tether length. Extracted from Christ and Wernli Sr
(2013).

The demanded power needed to compensate the total drag is calculated as follows:

PD = DvVv +DtVt. (1.4)

It is linearly proportional to the tether length and to the cube of the velocity, which
means that for a given maximum velocity, the longest the cable, the highest the power
needed to displace the vehicle and tether. From equation 1.1, in order to increase the
available power, for a given length, we have to increase the cable cross-sectional area,
which directly impacts the power needed to compensate the dragging force. Then, a
trade-off has to be found between the maximum velocity and maximum reach of the
system with reasonable power requirements.

1.3.4 Models

In order to be able to manage the motion of a cable that is freely deployed in seawater
in presence of currents, tides and waves, we need to estimate the tether shape. To do
so, there are two solutions. The first one is to add sensors at the attachment points and
all along the cable, as is the case of Smart Tethers (Frank et al., 2013). These tethers
are designed to offer a real-time GPS location of the ROV using non-acoustic tether
shape measurements. Several nodes are embedded along the tether cable to provide
local orientation and depth. This information is used to estimate the current tether
shape and ROV heading and position with a 10-30 Hz refresh rate. Similarly, optical
fiber may also be used to give visual feedback of the tether shape (Childers et al., 2010).

The second solution, if we consider a non-equipped tether, is to use a parametrized
model of the cable. A cable can be physically described by its attachment points, a
cross-sectional area, length, linear density and axial, flexural and torsional rigidities.
Cable modeling is useful to help to understand cabled structure statics and dynamics as
well as to design carrying cables for suspension bridges, intercontinental communication
cables, cable-driven robots, and to design umbilicals and tethers providing power supply
and data transfer for teleoperated robots.

The most complete cable model in the air relies on the Irvine equation (Irvine,
1981) that takes into account both the elasticity and the deformation of the cable due



Tethers and Deformable Objects Management 21

to its own mass and has been shown to be very realistic (Merlet, 2018c). This model
assumes that the cable lies in a vertical plane, the cable plane, and is therefore a 2D
model. However, this model is complex to use in a kinematic analysis (Merlet, 2018c).
In Howell (1992), the problem of low-tension cables is investigated for underwater ap-
plications and several models that consider or ignore the cables elasticity are studied.
The equations of motion for a cable are nonlinear and strongly coupled for complete
cable models. Other numerical models of underwater umbilicals and tether were ad-
dressed in Buckham (2003); Buckham et al. (2003), where a tether lumped mass model
is addressed. If we consider inextensible (nonelastic), perfectly flexible and subjected to
a uniformly distributed load, a widely spread cable model is the catenary curve (Irvine,
1981). Analytic solutions are difficult to obtain for complete models, and numerical
approximation techniques are often necessary. In the simplified case of a catenary,
analytic solutions are available.

In the next section we will see that other simplified models were used for tether
and deformable objects shape control strategies such as parabolas, splines and circle
arcs. For real-time robotic control these approximated parametric models have the
great advantage of speeding up the computational time of the control loop, although
being limited to some environmental and operational assumptions.

1.4 Tethers and Deformable Objects Management

This section focuses on existing strategies of tether management for underwater and
mobile robots in general. Since the tether can also be seen as a deformable object, this
section will also address some techniques of deformable objects handling that could be
applied to tether management.

1.4.1 Underwater Applications

This subsection deals with tether management systems (TMS) that are typically used
for work-class and middle-class robots. As depicted in Figure 1.6, the TMS is placed at
the junction between the end of the umbilical and the beginning of the tether (Hawkes
and Jeffrey, 1987; Abel, 1994). This junction is made by a simple clump/depressor
weight or by a vehicle handling system (a protection cage or a top hat mechanism), as
it is shown in Figure 1.7.

The use of a clump weight is prevalent in the observation-class category. The
clump weight absorbs the cross-section drag of the current in a passive way, relieving
the submersible of the umbilical drag from the surface to the working depth. Therefore,
the ROV only needs to drag a portion of the tether length between the clump weight
and the vehicle. Similarly to clump weights, cages also function as a negatively buoyant
anchor to overcome the drag imposed by the umbilical, and additionally, they are used
to protect the vehicle against abrasions and deployment damage due to the instability
of most surface vessels. Clump weights and cages can be used without a TMS for
reasons of simplicity. The addition of a TMS is considered by operators as a similar
complexity of having a second ROV concurrently in the water.
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LARS

TMS
ROV

Figure 1.6: Main components for teleoperation in underwater robotics. A remotely
operated vehicle (ROV), a tether management system (TMS) and a launch and recovery
system (LARS). Adapted from (Salgado-Jimenez et al., 2010).

The TMS aims to control the amount of unwound tether between the ROV and a
cage housing or clump weight. With respect to the umbilical, the amount of unwound
cable can be controlled by a heave compensator system (see Figure 1.8). The objective
is to reduce the umbilical slackness by reeling in the cable or to unwind additional
cable as the sea dynamics dictates. If these heave dynamics are not compensated for
then the vehicle at the end of the umbilical will not be stable and/or the umbilical can
become overstressed and damaged. Heave compensation systems can be active (Yang
et al., 2008) or passive (Driscoll et al., 2000). With active heave compensation (AHC),
motion sensors measure vessel movement along the vessel’s vertical axis and direct the
AHC unit to reel in or reel out the cable. With passive heave compensation (PHC),
a system of sheaves is used for shortening or lengthening the exposed cable length in
concert with the vessel’s motion. AHC is much more accurate for achieving a constant
load position as it works on a position reference frame (rather than weight which has
no direct reference to motion).

In most offshore applications, the ROV umbilical will be handled by a winch system
that can have a heave compensator embedded to wind/unwind the umbilical following
the ocean dynamics. The tether connecting the ROV to the cage is handled by the TMS,
which increases or decreases the tether length according to the operator’s commands.

Another strategy for tether management more rarely addressed in the literature
is the use of the surface vessel for the dynamic positioning of a control point on the
tether in order to reduce the disturbance force exerted on the ROV. In Triantafyllou and
Grosenbaugh (1991), a control scheme is proposed to manage an underwater tether from



Tethers and Deformable Objects Management 23

(a) (b)

Figure 1.7: Two examples of a ROV operation with a negatively buoyant anchor to
overcome the drag imposed by the umbilical: (a) a clump weight/depressor and (b) a
cage used to protect the ROV against abrasions and deployment damage while lowering
and heaving the ROV. Both options can be used with a tether management system
(TMS) in order to reduce the drag force the vehicle has to deal with. Courtesy of Christ
and Wernli Sr (2013).

a dynamically positioned surface ship. The dynamic positioning system uses the surface
ship’s thrusters to provide the control force and hydrophones and submerged pingers to
position itself, while the ROV position is calculated through a tether numerical model
using the ship position as input. The main challenge of this control scheme is to take
into account the important time delay that the system exhibits: the underwater cable
motion reacts much slower to the ship displacement than to the reeling activity of the
winch. In Prabhakar and Buckham (2005), this approach is evolved and a decoupled
controller is proposed for the horizontal positioning and depth regulation of a tether
point near the ROV. Since the transverse motions propagate much more slowly in
the tether than motions along its vertical profile, the horizontal tether positioning is
accomplished via the ship displacement and the depth regulation is made by the winch.

In Khatib et al. (2016), the concept of using an observation-class ROV as a relay
station between the surface vessel and an humanoid underwater robot was addressed.
The objective was that the middle robot could reduce the disturbances caused by the
tether on the humanoid robot during the execution of delicate tasks of archaeologi-
cal pieces collection from the seabed. In addition, the relay station provided nearby
recharge and reduced the risks of tether entanglement, allowing the humanoid robot to
achieve wider and safer operations.

1.4.2 Terrestrial and Aerial Applications

Tether and deformable objects handling is a challenge also found in some fields of ap-
plication other than underwater environment. In the context of planetary exploration,
tethers are used to connect a base station to a rover dedicated to explore hard-to-reach
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Figure 1.8: Illustration of heave compensation. Courtesy of Christ and Wernli Sr (2013)

terrains (Krishna et al., 1997; McGarey et al., 2016b; Brown et al., 2018). In such
applications, the tether works as both a mechanical support and a transmission link of
power and data. In Iqbal et al. (2008), the tether also serves as a guide line so that
the rover can autonomously track it in order to find the way back to the base station.
Frontal infra-red sensors mounted on the front of the rover are used to track the tether
while it is rewound into the rover reel. The tether lays on the ground and entanglement
with obstacles was an issue unfortunately not addressed in this paper.

When the terrain is to steep, the tether can be kept under tension and function as
an anchor for the rover to explore planetary craters. In Tsai et al. (2013), the problem
of vision-based tether-assisted docking of a daughter rover to its base station (central
module) is addressed. The docking strategy relies on an algorithm running on the rover
that uses stereo cameras to detect fiducials markers mounted on the central module
and then estimate its relative pose. The rover uses a motion planner to position and
orient itself such that it aligns its arm with the docking cone to be retracted back to the
mother station at the end of the mission. Proper tether tension is maintained during
motion thanks to the vision-based relative pose estimation that enables to geometrically
calculate the instantaneous exposed tether length from the tip of the rover’s arm to
the mother station. The fact that the tether itself is not used to provide information
for the docking process limits the robot workspace since the docking station should
permanently stay in the rover’s field of view.

Objects in the environment can also be seen as anchor points instead of obstacles.
In Vishnu et al. (2008) and Rajan et al. (2016), force sensors were used to detect tether
anchor points. On-board tilt sensors together with the exposed tether length measure-
ment allowed to estimate the robot position in a line-of-sight. The disentanglement
technique proposed was based on an algorithm of tether-following that allows the robot
to bypass the obstacles without being clung to them. Experiments with two wheeled
robots serially linked together by a tether to a base station were carried out. The robots
were organized in a leader/slave configuration and performed tether disentanglement
around a single obstacle. Tether aided localization was then further improved by gath-
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ering multiple sensory feedback. In Murtra and Tur (2013), wheel odometry, tether
length measurements, and an IMU (inertial measurement unit) were used to localize
a pipe-inspection robot, where tether length was used to limit uncertainty about the
distance traveled in a pipe. This work was only concerned with localization of the robot
and no attempt was made to detect and map tether contact points (i.e., the anchor
point) within the pipe. In McGarey et al. (2016a) and McGarey et al. (2017), the pose
of a tethered robot and the positions of the intermediate tether anchor points were
estimated using tether length, bearing-to-anchor angle, and odometry gathered along
the trajectory. The objective of this work was the formulation of a tethered simultane-
ous localization and mapping (TSLAM) problem whose solution would allow the robot
to safely return to its base along an outgoing trajectory while avoiding tether entan-
glement. The motivation was to use TSLAM as a building block to aid conventional,
camera and laser-based approaches to SLAM, which tend to fail in dark and or dusty
environments.

Multiple mobile robots can be used for cooperative transportation of large objects,
that can be rigid (Huntsberger et al., 2004) or flexible. In Echegoyen et al. (2010), three
terrestrial robots were used to transport a flexible hose modeled by Geometrically Exact
Dynamic Splines (GEDS). A camera with a global view of the scene was used to detect
the robots and the hose by color segmentation. The leader robot pursued a predefined
trajectory while the follower-robots’ command velocities were computed from a fuzzy-
heuristic local controller. The curvature of the hose segment in front of each robot was
used as a visual feature by the controller that was regulated in order to avoid the hose
of being taut.

Aerial robots were also used in the transportation of flexible cables (Estevez and
Graña, 2015; Estevez et al., 2015). The criteria for the transportation was that all the
robots should carry the same load. Thus, the hose was modeled by a catenary and the
IMU of the robots were used to estimate their relative height, which was regulated by
a PID controller with the aim of evenly distribute the hose weight among the robots.

Tethers are used by unmanned aerial vehicles (UAV) for long-term missions with
high-speed communication between the operator and the robot in an wide range of
applications, such as robot-assisted search and rescue (Pratt et al., 2008) and coastal
and environmental remote sensing (Klemas, 2015). Most published work in the field
of tethered flight are restricted to the taut tether case. In these systems no tether
management is employed while the UAV maintains tension. Otherwise, a winch mech-
anism placed in a fixed or mobile base station continuously reels in any slack tether
length (Nicotra et al., 2017). The dynamics and control of a quadrotor unmanned
aerial vehicle connected to a fixed point on the ground via a tether was addressed
in Lee (2015). The tether was considered as a collection of an arbitrary number of
rigid links that are serially interconnected via ideal ball joints. The motion equations
of the system (robot and tether) were obtained from Hamilton’s principle. A control
law based on inertial sensing was designed through feedback linearizion and used the
UAV pose with the aim of maintaining a desired tether state (orientation and tension).
This control law was evaluated in two numerical examples of station keeping and pre-
defined path tracking. A reactive tether management approach, where the tension and
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departure angle are measured at the winch, showed moderate winch controller results
that can be further improved by incorporating knowledge of the UAV position (Zikou
et al., 2015). Another work used the measured tether length, tension, and departure
angle as a means for non-GPS position estimation of the UAV based on a catenary
cable model (Kiribayashi et al., 2017). In Talke et al. (2018), the quasi-static catenary
curve of a hanging tether between an essentially stationary UAV and a small unmanned
surface vehicle (USV) is investigated and characterized. The objective is to develop in
a near future a winch controller that could maintain the tether slack and compensate
the USV heave in order to minimize the tether traction and the risk of being in contact
with the water surface. A multi-agent extension of the tethered aerial robot problem
was investigated through numerical simulations in Tognon and Franchi (2015), where
a chain of two flying robots was considered. The goal was to independently control the
elevation angles of the two tether segments as well as their internal stress.

Cable management is also an important issue in cable-driven parallel robots (CDPR)
domain. In Dallej et al. (2011) and Dallej et al. (2012), a vision-based controller was
introduced and validated on simulation. The cable model relied on a simplified model
of an inextensible hefty cable in which the profile was considered to be a parabolic
curve. A multi-camera setup allowed to measure the direction of the cable tangents as
well as the pose of a visual target attached to the robot’s mobile platform, whose pose
was then controlled through visual servoing. Recently, a novel method for workspace
planning for a cable-control robot in cluttered environments was introduced (Wang and
Bhattacharya, 2018). More complex cable models were also considered and their use
was proved to enlarge the workspace border of CDPR (Merlet, 2018a).

1.4.3 Synthesis of Existing Cable Management Strategies

In this Section we will present a short summary of the cable perception and handling
strategies previously addressed. We will conclude by analyzing which solutions would
be adapted to operations with mini-ROVs navigating in the underwater coastal envi-
ronment.

1.4.3.1 Passive and Active Cable Management Strategies

The ROV systems are composed of a surface vessel, a linking cable and a teleoperated
robot. The solutions for tethers and cables management presented in Sections 1.4.1
and 1.4.2 are grouped in the following list:

A. Passive management

A1. add an intermediate clump weight: the heave motion of the sur-
face vessel is absorbed by a submerged massive body placed at the junction
between the umbilical cable and the ROV tether (Christ and Wernli Sr, 2013,
chap. 9).

A2. add a passive heave compensator: shock absorbers, drill string
compensators or more sophisticated hydraulic and mechanical systems of
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winches (Huster et al., 2009) are used to absorb and dissipate the energy
generated by the ship heave motion.

B. Active management

B1. actuate the tether extremities: winches are used in underwater
missions to compensate heave motion of the vessel and manage the amount
of tether between the clump weight and the robot. The winch mechanism
can be placed on the ship (Yang et al., 2008), on the robot (Brignone et al.,
2015) or inside the TMS cage (Hawkes and Jeffrey, 1987; Abel, 1994). They
are also used by cable-driven parallel robots (Dallej et al., 2011, 2012), ter-
restrial rovers (Tsai et al., 2013; Vishnu et al., 2008; Rajan et al., 2016) and
unmanned aerial robots (Lee, 2015; Talke et al., 2018) to regulate the length
of exposed cable.

B2. actuate the surface vessel: regulate the ship-robot relative position
in order to reduce the amount of tether deployed to allow the ROV hori-
zontal displacement (Triantafyllou and Grosenbaugh, 1991; Prabhakar and
Buckham, 2005).

B3. actuate the tether: add an intermediate robot that works as a
relay station and is commanded by an onboard operator (Khatib et al.,
2016) or use a team of robots that transport together deformable ob-
jects (Echegoyen et al., 2010; Estevez et al., 2015; Rajan et al., 2016).

The most simple strategy to reduce the disturbances generated by the cable on the
robot is to use a clump weight that absorbs the cable oscillations caused by the heave
motion of the ship (item A1 of the list). This is a passive tether management solution
where neither the ship nor the cable are instrumented. This option is commonly used by
work-class and middle-class ROVs that operate in mostly wide and empty environments
and is therefore not adapted to the type of mission we focus on that use mini-ROVs to
explore coastal underwater environments.

The cable oscillations can be compensated by equipping its extremities with in-
telligent winch mechanisms that can either be aboard the surface vessel, embedded
in the robot or submerged at the depth of operation (item B1). When the exposed
tether length is controlled aboard the ship it is called heave compensator. When the
system is submerged and it is commanded by an onboard operator it is called tether
management system (TMS). Heave compensator could be an interesting solution for
tether management of mini-ROVs. However, a shortcoming of this solution is that the
mini-ROVs would be limited to explore a zone in the vicinity of the ship since they
cannot pull a large amount of cable (over 300 meters). On the other hand, the choice of
adding submerged winch mechanisms is not adapted to coastal zones due to the shal-
low depth and to the presence of obstacles in the marine relief such as stones and coral
reefs. Finally, equipping the ROV with winches increases its weight, making it bulkier.
Moreover, the reeling activity generates non-negligible variation of the mini-ROV mass
repartition, affecting its buoyancy and whole dynamics.
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Other studies proposed to use a combined control scheme that regulates both the
ship positioning and the amount of deployed tether by the surface winch (item B2 item
of the list). However, the mini-ROVs would remain limited to the exploration around
the surface vessel, which is also constrained itself not to get too close to the coast.

1.4.3.2 Classification according to Cable Perception and Modeling tech-

niques

In the case of active tether management, an estimation of the tether state must be com-
puted to determine the action the system has to take: reel in/out the tether or move its
extremities, for example. The models used to represent the cable shape vary depending
on the physical properties of the cable and the hypothesis of operation. The sensors
used to perceive the cable and to provide input information for the model computation
also vary depending on the type of robot used and the domain of application.

The list here below summarizes cable handling strategies with respect to the absence
or presence of cable models:

A. Without tether model: the tether shape can be regulated without con-
sidering any cable model. This can be done by a human operator, by a passive
mechanical system or by an active compensator based on sensory feedback. Unless
otherwise noted, the three subclasses below are related to underwater operations.

A1. teleoperation: human operators can command a tether management
systems (TMS) reeling in/out the tether based on visual information or on
ROV-ship relative position estimation (Abel, 1994). Another alternative is
to add an intermediate robot that works as a relay station near the main
ROV. It was the case of the operations of the underwater humanoid robot
Ocean One (Khatib et al., 2016).

A2. passive regulation: shock absorbers, string compensators or more
sophisticated hydraulic and mechanical winch system can be used to pas-
sively absorb the heave motion of the ship and thus reduce the disturbances
generated on the umbilical (Huster et al., 2009).

A3. active regulation: the disturbances caused by the ship heave motion
on the umbilical can also be compensated by a control unit that manages
the speed of a hydraulic winch from information provided by an inertial
measurement unit (IMU) (Yang et al., 2008). In the context of planetary
exploration, the exposed tether length was also regulated through active
winches mounted on rovers (Tsai et al., 2013). The tether connected the
rover to a base station and it was maintained taut during the entire opera-
tion. Fiducial markers mounted on the front of the base station allowed the
rover to estimate its relative pose and then maintain the tether taut during
the entire operation.

B. With geometric tether models: cables and deformable objects can be
represented by geometric models that may offer regulation parameters to be used
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in a control loop.

B1. Parabolic curves were used to model the cable profile for cable-driven
parallel robots. In Dallej et al. (2012), a set of cameras was used to estimate
the relative position of the robotic platform and the control winches in order
to regulate the cable length deployed.

B2. Spline curves were used to model a flexible hose that is transported
by a team of terrestrial robots (Echegoyen et al., 2010). A camera observing
the global scene was used to return to the vehicles velocity controllers the
robots position and the spline curvature (that represented the hose 1-D
deformation).

B3. Catenaries were used to model tethers and flexible wires in the context
of unmanned aerial vehicles (UAV) operations. In Estevez and Graña (2015),
the relative pose of three simulated quadrotors was regulated so that the hose
being carried has its weight equally distributed among the robots. In Lee
(2015), a control scheme was proposed to manage the shape of a simulated
tether linking an UAV to a grounded anchor point. No winch system was
used and the tether shape was managed through the UAV-anchor relative
position. In Talke et al. (2018), a tether with known length and attachment
points relative position was modeled by catenary curve. The tether was
linking UAV and USV (unmanned surface vessel) prototypes. The catenary
model was useful to investigate the system robustness to the USV heave
motion in order to minimize the risks of the tether touching the water surface.

C. With tether lumped mass models: more complex numeric schemes are
also used to represent the tether shape in underwater applications (Prabhakar
and Buckham, 2005; Triantafyllou and Grosenbaugh, 1991). These approaches
are often grounded in the knowledge of the relative position between ship and
ROV, which implies the use of external acoustic positioning systems. In Eidsvik
and Schjølberg (2016), the cable was modeled by finite-elements methods using
Beam equations.

The amount and type of information given by the sensory feedback determines the
cable model that will be used. For example, force and angle sensors can be used to
regulate the tension and orientation of a cable without necessarily having to resort to
an accurate model. Otherwise, vision sensors are preferably used to return information
that can be easily applied to geometric models of the object in the observed scene.
Positioning systems are used in the case of more precise models where the physical
properties of cables are well-known.

The sensory payload available in a mini-ROV is very restrictive because of its small
size and its low propulsive power. These robots are mainly used for observation tasks
and are, therefore, often equipped with cameras that give visual feedback to the opera-
tor, and with an IMU that gives feedback about the robot orientation and that can be
used to get a rough location estimation. Since visual sensors are available, representing
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the cable by parametrized geometric curves sounds a natural choice. That is actually
part of the solution we investigate in this thesis with the aim of proving the feasibility
of a tether management strategy that allows mini-ROVs to be deployed far away from
the surface vessel without being limited by an important drag force of a long tether.
This will be discussed in the following Section.

1.5 Our Scientific Focus: Vision Servoing of a Pair of

Robots in a Chain of Mini-ROVs

The long term objective of this project is to design an active tether man-

agement solution for mini-ROV missions of long range displacements within

cluttered environments and shallow waters.

We choose to control the tether shape by adding several robots linked together
all along it. We call this concept the chain of mini-ROVs (see Figure 1.9). The
robots play the role of actuators and change the whole tether shape depending on the
situation at hand. Our strategy is to avoid any contact with obstacles. If the depth
is too narrow, it would be better to maintain the tether more taut in order to prevent
it from dragging on the seabed. Otherwise, if the environment is more spacious, the
tether can be more slack in order to give more freedom of motion to the robots.

The robots that compose the chain are compact, lightweight and with a limited
sensory payload. Thus, we choose to investigate the use of the onboard camera to
perceive and estimate a parameterized geometric model of the cable. The main focus
of this thesis is to manage the tether linking two robots through visual feedback. These
robots are named leader, for the front vehicle, and follower, for the rear vehicle. The
thesis objective can be therefore summarized by the following question:

How can we manage a tether link between two successive robots, a

leader and a follower, within the chain through visual sensory feed-

back?

The proposed chain of mini-ROVs will operate under the set of assumptions listed
below:

A.1.1 the maximum distance between robots is about 10 meters;

A.1.2 the robots can navigate at slightly different depths (difference less than 5 meters,
depending on the tether length);

A.1.3 the roll and pitch motion of the robots are mechanically stabilized or regulated
at low level to keep the vehicle horizontal;
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A.1.4 the robots are equipped with a frontal and/or a rear camera that films the tether;

A.1.5 each robot within the chain must manage the tether segment preceding it;

A.1.6 the leader robot should not manage any portion of the tether, being free to explore
its surroundings and execute other tasks;

A.1.7 the leader robot may be outside the follower camera field of view, but a portion
of the tether is always visible.

A.1.8 the tether is detectable in the camera image flow;

A.1.9 the tether linking both robots is negatively buoyant and the tether plane remains
in the vertical. The tether lowest point is always situated between both robots;

10 m

0.70 m

Follower Leader

FOCUS OF THE THESIS

2000 m

Figure 1.9: A chain of N compact tethered robots used to explore shallow waters.
The thesis focuses on the shape control of the tether link between the first two robots,
namely the leader and its immediate follower. The robots that compose the chain are
light-weight mini-ROVs equipped with a frontal and rear cameras and an IMU.
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The maximum distance between the robots is limited because the modeling errors
would be propagated over a too long length of tether and then affect our management
strategy. A camera mounted on the front of the robot will be used to give real-time
informations about the current tether shape. The camera is supposed to be near the
tether attachment point on the robot so that at least a portion of the tether can be
captured all along the mission. This also gives more freedom of motion to the leader
robot that is not required to be in the field of view of the follower.

As depicted in Figure 1.10, the tether management strategy we proposed can be
decomposed into three main steps. First, the tether is detected in the camera image.
Secondly, the detected points are used to estimate a parametrized geometric model
that fits the tether observed shape. Third, the current tether parameters are entered in
a control loop that will displace the tether attachment points so that a desired shape
of the tether is reached. Actually, the tether desired shape is obtained through the
regulation of robots relative pose. Both robots could enter in the control loop, but
we took the choice of leaving the leader robot free to move in the environment and
execute other tasks. The follower robot, in turn, will be in charge of moving itself in
order to regulate the tether shape. Each step mentioned above will be developed in the
following three Chapters of this document, as presented in right side of Figure 1.10.

Chapter 2:
system modeling

the tether and robot models

are introduced

detect the
tether

tether
desired
shape

calculate variation
of tether-shape

features

estimate the
current shape of

the tether

move follower
robot to reach
desired shape

Chapter 3 Chapter 4

START

Chapter 3:
tether perception

the proposed method for

tether perception and shape

estimation is introduced

Chapter 4:
tether shape control

the proposed method for

tether shape control is

developed

Chapter 5:
Conclusions

concluding remarks are

given and work perspectives

are analyzed

Figure 1.10: Left: simplified algorithm chart flow of the proposed vision-based tether
shape control scheme. Right: short presentation of the following Chapters content.



Chapter 2

System Modeling

This Chapter presents the model of the tether used and the robotic system composed of
two underwater robots linked together by the tether, which is under study in this thesis.
This set is the initial portion of the chain of tethered robots presented in the previous
Chapter. The robots do not have the same task in this system: one is the leader, and
has as main task the exploration of its surroundings; the other is the follower, behind
the leader, whose main task is the control of the tether shape in order not to hamper
the leader movements. The follower robot should manage the tether shape primarily
using its own sensory feedback. In this thesis, the objective is to use the tether as it
is, and not considering additional sensors that could equip the tether to obtain sensory
feedback on its current shape. The Chapter is organized in three parts. The first part
deals with the catenary equations, the second part presents the model of the robots and
the last part gives the relation between the kinematics of the robots and the kinematics
of the attachment points.

2.1 Tether Model

The underwater tether we use in this work is slightly negative buoyant, which is fre-
quently the case of tethers and umbilicals that transfer power. They are used in main-
tenance, survey (see Section 1.3.2) and archaeological missions (Khatib et al., 2016).
We assume that our tether is a perfectly inextensible and flexible cable with a constant
transversal section and constant linear density. From these assumptions, we choose to
model the tether as a catenary.

2.1.1 Catenary Equation

The catenary curve is the shape of a perfectly flexible, inextensible hanging cable
that is subject to uniform load distribution along itself and that is supported at its
extremities (Johnston et al., 2009).

Figure 2.1 presents a scheme of a hanging cable attached at points P1 and P2.
The cable lowest point, P0, is supposed to be at the center of the coordinate frame

33
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F0(P0, i0, j0,k0), where k0 is vertical, i0 and j0 are horizontal axes. Appendix A sum-
marizes the notations used for position and orientation representation of points and
solids in the Euclidean space.

T

W = µR

T0

W = µRT

P1

P0

P P

R

dZ

β
dR

T0

dX

R

P2

k0

i0

F0

Figure 2.1: A cable hanging under its own weight and attached to points P2 and P1.
The cable linear weight is given by µ, expressed in N/m.

We denote the load per unit length by µ, expressed in N/m. The magnitude W
of the total load carried by a portion of cable with a length of R, extending from the
lowest point P0 to some generic point P, is:

W = µR. (2.1)

Therefore, the tension at P can be calculated as

T =
√
T 2
0 + µ2R2, (2.2)

where T0 is the tension at point P0. In order to simplify, let us introduce the catenary
constant

C =
µ

T0
. (2.3)

Replacing it in equation (2.2) yields:

T = µ
√
1/C2 +R2. (2.4)

Let us now define the horizontal projection of an small element of cable length dR
as:

dX = cosβdR. (2.5)

Observing from Figure 2.1 that cosβ = T0

T
and using equations (2.3), (2.4) and (2.5)

we have

dX =
T0
T
dR =

dR√
1 +R2C2

. (2.6)

Integrating equation (2.6) from P0 to P, we obtain

X =

∫ R

0

dR√
1 +R2C2

=
1

C
sinh−1 (RC) (2.7)
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that can be rewritten as

R =
1

C
sinh (CX) , (2.8)

which is the geometric expression of the catenary cable half-length.

We can now write that:

dZ = tanβdX. (2.9)

Observing from Figure 2.1 that tanβ = W
T0

and using equations (2.1), (2.3), (2.8) and
(2.9), we have:

dZ = sinh (CX) dX. (2.10)

Integrating from P0 to P we obtain

Z =

∫ X

0
sinh (CX) dX, (2.11)

which reduces to the equation of the catenary cable in the coordinate frame F0 centered
at the lowest point of the catenary, namely P0:

Z =
1

C
[cosh (CX)− 1] . (2.12)

2.1.2 Catenary Parameter

The catenary parameter C depends on the height difference between attachment points
∆H, the cable slackness H and the cable total length L. Figure 2.2 depicts the notation
used for the catenary model.
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Figure 2.2: Illustration of a catenary with attachment points P2 and P1, and lowest
point P0. (a) an example of catenary with ∆H > 0. (b) an example of catenary with
∆H < 0.

In order to calculate the catenary parameter C as a function of the H, ∆H and L
we express that the attachment points belong to the catenary and that the total length
of the catenary is constant. Knowing that the coordinates of the attachment points in
frame F0 are 0P2 = [−D, 0, H]T and 0P1 = [D+∆D, 0, H+∆H], we obtain, thanks
to equation (2.12), that:

H =
1

C
[cosh(CD)− 1] and (2.13)

H +∆H =
1

C
[cosh(C(D +∆D)− 1] . (2.14)

Using equation (2.8) we can calculate the total length of the catenary:

L =
1

C
[sinh(C(D +∆D)) + sinh(CD)] . (2.15)

The analytical solving of this equation leads to a second order equation for C. One
of the solutions is a catenary where the lowest point is between the cable attachment
points and therefore belongs to the cable. The other solution is a catenary where the
lowest point does not belong the cable.
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Appendix B gives the details of the calculation of the catenary parameter C, whose
expression related to the lowest point belonging to the catenary is:

C =
2

L2 − (2H +∆H)2

(
2H +∆H + 2L

√
H

H +∆H

L2 −∆H2

)
(2.16)

which can be rewritten as:

C = 2
Cn

Cd

= 2
2H +∆H + 2L

√
H H+∆H

L2−∆H2

L2 − (2H +∆H)2
(2.17)

In the case where the attachment points are at the same height, ∆H = 0, and we
obtain the following expression for C:

C =
2H

R2 −H2
, (2.18)

where R is the catenary half-length.

2.1.3 Catenary Parameter Constraints

The conditions of study of the catenary relative to cable length L, slackness H and
difference of attachment points height ∆H are:

H > 0 (2.19)

H +∆H > 0 (2.20)

2H +∆H < L. (2.21)

These inequalities ensure the validity of equation (2.17), where the term below the
square root must be positive, as well as the denominator.

Equations (2.19) and (2.20) state that the catenary lowest point is between the
attachment points. If ∆H is positive (see Figure 2.2a), the cable should be long enough
to cumulate twice the slackness length H and the difference of height ∆H. The limit
case, H = 0, is when the attachment point P2 is the lowest point of the catenary. If
∆H is negative (see Figure 2.2b), the slackness H should be greater than the difference
of height so that the catenary lowest point still remains between the attachment points.
The limit case, H + ∆H = 0, is when the attachment point P1 is the lowest point of
the catenary.

The inequalities (2.21) ensures that parameter C remains positive which means that
the catenary is not degenerated. The degenerated case, L = 2H + ∆H, occurs when
both attachment points and the lowest point are on the same vertical.
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2.2 Robots Model and Configuration

Small teleoperated underwater robots, classified as mini-ROVs, are preferable to the
execution of missions in confined environments or in shallow coastal waters thanks
to their high maneuverability and small size. In this thesis, we choose to use the 6-
thruster model of mini-ROVs inspired from the BlueROV experimental platform from
Blue Robotics. There are two models, the first one is related to the BlueROV1 and the
second one to the BlueROV2 (see Figure 2.3). A comparison between both robots is
presented in table 2.1.

(a) (b)

Figure 2.3: The experimental robots used in this thesis: (a) the BlueROV1 and (b) the
BlueROV2, both from Blue Robotics.

BlueROV1 BlueROV2

Thrusters configuration

direct vectorial
3 vertical 2 vertical

2 horizontal 4 horizontal
1 lateral

number of controllable DOF 6 5
number of
watertight enclosures one

two
(electronic and battery)

weight 8 kg 9 kg

dimensions (LxWxH) 483 x 330 x 267 (mm) 457 x 338 x 254 (mm)

architecture Raspiberry 3 model with Pixhawk autopilot

sensors IMU, Raspicam and external pressure gauge

Table 2.1: A comparison of the some characteristics of the two robots used in this
thesis.

The architecture of the robots is composed of a main board Raspberry Pi 3 Model
(Ethernet, micro SD, GPIO ports, CPU Quad Core 1.2GHz ARMCortex A53 (ARMv8)
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Broadcom BCM2837 64bit, 1GB of RAM), which is connected via USB to a general
purpose microcontroller, namely a Pixhawk autopilot microcontroller that was designed
for aerial drones. The microcontroller has the following internal sensors: a 3-axis
accelerometer and gyroscope (Invensense MPU6000), a 3-axis gyroscope (ST Micro
L3GD20H), a 3D e-compass (ST Micro LSM303D) and a barometer (MEAS MS5611).

Both robots are equipped with an external pressure sensor (the Bar30 model from
BlueRobotics) that is connected to the Pixhawk and used to measure water pressure.
The Pixhawk controls the six ESCs (electronic speed controllers) that manage the power
and rotation velocity commands sent to the thrusters. Each robot is also equipped
with a Raspberry Pi Camera. The onboard computer communicates with a remote
workstation via a Fathom-X Tether Interface that provides robust high-speed Ether-
net connection. The tether attached to the robot only provides data exchange with
the workstation. The power is delivered by an embedded battery (a LiPo 3S 11.1V
5000mAh) that ensures an average autonomy of 1 hour. A schematic overview of the
robot components is presented in Figure 2.4.

power
data

Legend:

control/sensors
messages

workstation
onboard
computer

micro-
controller

electronic
speed

controller
(ESC)

camera
pressure
sensor

thrusters

power

network
interface

watertight enclosure

Figure 2.4: A scheme presenting the components of the BlueROVs. The watertight
zone is delimited by the dashed rectangle.

2.2.1 Thruster Configuration and Allocation Matrix

The main difference between the two models is the thruster configuration: the BlueROV1
has a direct thrusters configuration and the BlueROV2 has a vectored thrusters con-
figuration.

Figure 2.5 presents, for both robots, a scheme containing the camera and thrusters
positions and orientations. We note Fr(Pr, ir, jr,kr) the coordinate frame linked to
robot r. Pr is the center of the robot, ir, jr, kr are respectively the robot’s longitudinal,
lateral and vertical axes. For the BlueROV1, Pr is at the middle of the segment linking



40 System Modeling

th4

th3th1

th6

th2

th5

Fr

jr

ir
Fc

ic
kckr

jc

(a)

th1th3 th5

th4 th6

kc

ic

Fc

Fr

jr
ir

kr
jc

th2 γ = 45
◦

(b)

Figure 2.5: A top view scheme with thrusters and camera positions for (a) BlueROV1
and (b) BlueROV2. The BlueROV2 horizontal thrusters orientation angle is given by
γ = 45◦.

thrusters th1 and th2, which are used to generate longitudinal and yaw motion. For
the BlueROV2, Pr is at the center of the rectangle whose vertices are the center of the
thrusters th1, th2, th3 and th4, which are used to generate longitudinal, lateral and yaw
motion. The camera frame is noted Fc(Pc, ic, jc,kc) and details about its orientation
with respect to the robot frame are given in Chapter 3.

Tables 2.2 and 2.3 give the corresponding thrusters and cameras orientations and
positions for BlueROV1 and BlueROV2, respectively. The thruster configuration of the
BlueROV1 enables to control the 6 DOF of the robot, whereas the thruster configu-
ration of BlueROV2 does not allow the control of the pitch DOF. All the motors are
T200 models from BlueRobotics (350 W, 25 A of max. current, 5.1 kgf of max. thrust,
300-3800 rev/min of rotation speed). Details about the motors characteristics can be
found in BlueRobotics (2019).
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Positions X Y Z
rPth1 0 -0.115 0
rPth2 0 0.115 0
rPth3 0.175 -0.115 0
rPth4 0.175 0.115 0
rPth5 -0.175 0 -0.100
rPth6 -0.05 0 -0.120
rPc 0.17 0 0

Table 2.2: BlueROV1 thrusters and camera positions with respect to the robot frame.
The measurements are in meters. An illustration showing the robot thrusters and
camera positions is given in Figure 2.5a.

Positions X Y Z
rPth1 0.135 -0.115 0.0
rPth2 0.135 0.115 0.0
rPth3 -0.135 -0.115 0.0
rPth4 -0.135 0.115 0.0
rPth5 0 -0.115 0.070
rPth6 0 0.115 0.070
rPc 0.17 0 0.070

Table 2.3: BlueROV2 thrusters and camera positions with respect to the robot frame.
The measurements are in meters. An illustration showing the robot thrusters and
camera positions is given in Figure 2.5b.

In model-based control of underwater robots, the vehicle motion is regulated through
the thrust forces generated by the propellers. Thus, a thruster allocation system maps
the command forces calculated by the vehicle motion controller into the command of
each actuator (Fossen et al., 2009).

Figure 2.6 describes the conversion chain from the desired body thrust commands
to the pulse width modulation (PWM) signals sent to the ESC circuits. This chain is
implemented inside the microcontroller. The first step is the conversion from the body
thrusts to the actuators thrusts. The second step consists of converting the actuator
thrusts into motor commands in the shape of PWM signals. The body thrust vector
can be denoted, in the body-fixed frame, by (Antonelli et al., 2008):

τ body =




Fx

Fy

Fz

Γx

Γy

Γz



, (2.22)
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where (Fx, Fy, Fz) and (Γx,Γy,Γz) are, respectively, the components of the resultant
forces and moments acting on the center of the vehicle, namely Pr. The actuator thrust
vector can be denoted by:

τ actuators =




Fth1

Fth2

Fth3

Fth4

Fth5

Fth6



, (2.23)

where Fthi
is the thrust force generated by the thruster thi.

thruster
allocation
matrix
inversion

body
thrust

conversion from
actuator thrusts

to motors
command
velocity

actuator
thrust

ESC

motors
commands
(PWM)

motors
microcontroller

Figure 2.6: A block diagram illustrating the low level thrust conversion from the vehicle
desired body thrust to the PWM commands sent to the motors. The steps implemented
in the robot micro-controller are surrounded by a black dashed line.

The relation between τ body and τ actuators can be expressed as (Creuze, 2014):

τ body = TWτ actuators, (2.24)

where T is called the thruster allocation matrix and W is a weighting matrix that
takes into account the thrusters specificities. As the thrusters are all the same for the
BlueROVs, we have W = I6×6.

The thruster allocation matrix is given by:

T =

[
u1 · · · ui · · · un

rPth1
× u1 · · · rPthi

× ui · · · rPthn
× un

]
(2.25)

where rPthi
is the thruster thi position with respect to the robot center, and ui is the

unit vector giving the thrust direction of thruster thi. The total number of thrusters
is n.

For the BlueROV1 the allocation matrix is given by

TBR1 =




1 1 0 0 0 0
0 0 0 0 0 −1
0 0 1 1 1 0
0 0 −dY dY 0 −dZ6

0 0 −dX −dX dX 0
dY −dY 0 0 0 dX6



, (2.26)
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where dX = 0.175m, dY = 0.115m, dX6
= 0.050m and dZ6

= 0.175m (see table 2.2).
The inverse matrix is given by:

T−1
BR1 =




0.5
dX6

2dY
0 0 0 1

2dY

0.5 −dX6

2dY
0 0 0 − 1

2dY

0
dZ6

2dY
0.25 − 1

2dY
− 1

4dX
0

0 − dZ6

2dY
0.25 1

2dY
− 1

4dX
0

0 0 0.5 0 1
2dX

0

0 −1 0 0 0 0




. (2.27)

The motors configuration of the BlueROV1 allocates only one motor – thruster 6 –
for the lateral motion. As a consequence, the single lateral thrust will also generate
roll and yaw motion, since the motor is not positioned at center of the robot. In
case the positioning of the motor is not accurate, it can generate disturbing roll and
yaw motion. Moreover, the single lateral thruster is also responsible for a disturbing
pitch motion because the propeller rotation exerts a torque on the robot body frame,
according to the action/reaction principle. These disturbances could be compensated
by adding counteracting roll/pitch/yaw thrust terms that depend on the lateral thrust.
The compensation matrix that could be applied after the TBR1 matrix is:

CBR1 =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 δx 0 1 0 0
0 δy 0 0 1 0
0 δz 0 0 0 1



, (2.28)

where δx, δy and δz have to be determined empirically. The equation (2.24) can be
hence rewritten as:

τ body = CBR1TBR1τ actuators. (2.29)

If we want to control the actuator, we need to inverse the previous equation to get:

τ actuators = (CBR1TBR1)
−1

τ body, (2.30)

where

(CBR1TBR1)
−1 =




0.5
−δz+dX6

2dY
0 0 0 1

2dY

0.5 −−δz+dX6

2dY
0 0 0 −1

2dY

0
δy
4dX
− −δx−dZ6

2dY
0.25 −1

2dY
−1
4dX

0

0
δy
4dX

+
−δx−dZ6

2dY
0.25 1

2dY
−1
4dX

0

0
−δy
2dX

0.5 0 1
2dX

0

0 −1 0 0 0 0




. (2.31)
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The values of δx and δz are used to compensate the inaccuracies of measurements of
dX6

and dZ6
, while δy is mainly used to compensate the disturbing pitch motion due

to the propeller rotation of thruster 6.

For the BlueROV2 the allocation matrix is given by:

TBR2 =




cos γ cos γ − cos γ − cos γ 0 0
sin γ − sin γ sin γ − sin γ 0 0
0 0 0 0 1 1
0 0 0 0 −dY dY
d⊥ −d⊥ −d⊥ d⊥ 0 0



, (2.32)

where γ is the angle between ir and the thruster direction axis, d⊥ = dXsγ + dY cγ,
dX = 0.135m, dY = 0.115m, sγ = sin γ and cγ = cos γ (see table 2.3). The body thrust
vector is now given by:

τ body =




Fx

Fy

Fz

Γx

Γz



, (2.33)

since the pitch motion is not controllable. The allocation matrix can be decoupled into
two submatrices, one that deals with longitudinal, lateral and yaw motion, and the
other one that deals with vertical and roll motion:



Fx

Fy

Γz


 =



cos γ cos γ − cos γ − cos γ
sin γ − sin γ sin γ − sin γ
d⊥ −d⊥ −d⊥ d⊥







Fth1

Fth2

Fth3

Fth4


 = M




Fth1

Fth2

Fth3

Fth4


 (2.34)

[
Fz

Γx

]
=

[
1 1
−dY dY

] [
Fth5

Fth6

]
(2.35)

The equation (2.35) can be directly inverted to get

[
Fth5

Fth6

]
=

[
0.5 −0.5/dY
0.5 0.5/dY

] [
Fz

Γx

]
. (2.36)

The matrix M is not square. However, since γ = 45◦, matrix MMT is invertible and we
can use the Moore-Penrose pseudo-inverse to express the actuator vector as a function
of the desired body thrust vector:




Fth1

Fth2

Fth3

Fth4


 = M+



Fx

Fy

Γz


 (2.37)

with M+ = MT (MMT )−1.
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Another solution to obtain the actuators commands is to exploit the vectorial con-
figuration of motors th1 to th4. If we consider a longitudinal displacement, and we
choose to have the same thrust produced by th1 and th2 for the one part, and th3 and
th4 for the other part, we can set:

Fth1
+ Fth2

= − (Fth3
+ Fth4

) . (2.38)

In the same way, for the lateral displacement we have:

Fth1
+ Fth3

= − (Fth2
+ Fth4

) . (2.39)

Finally, for the yaw displacement, we have:

Fth1
+ Fth4

= − (Fth2
+ Fth3

) . (2.40)

Actually, the equations (2.38) to (2.40) are the same:

Fth1
+ Fth2

+ Fth3
+ Fth4

= 0. (2.41)

This equation can be used as an additional equation to invert the system of equations
defined by (2.34). Hence, the system to be inverted becomes:




0
Fx

Fy

Γz


 =




1 1 1 1
cos γ cos γ − cos γ − cos γ
sin γ − sin γ sin γ − sin γ
d⊥ −d⊥ −d⊥ d⊥







Fth1

Fth2

Fth3

Fth4


 , (2.42)

whose inversion leads to:



Fth1

Fth2

Fth3

Fth4


 =




0.25 0.25/ cos γ 0.25/ sin γ 0.25/d⊥
0.25 0.25/ cos γ −0.25/ sin γ −0.25/d⊥
0.25 −0.25/ cos γ 0.25/ sin γ −0.25/d⊥
0.25 −0.25/ cos γ −0.25/ sin γ 0.25/d⊥







0
Fx

Fy

Γz


 (2.43)




Fth1

Fth2

Fth3

Fth4


 =




0.25/ cos γ 0.25/ sin γ 0.25/d⊥
0.25/ cos γ −0.25/ sin γ −0.25/d⊥
−0.25/ cos γ 0.25/ sin γ −0.25/d⊥
−0.25/ cos γ −0.25/ sin γ 0.25/d⊥






Fx

Fy

Γz


 (2.44)

The thrusters of the BlueROVs are controlled through Pulse-Width Modulation
(PWM) signals that are sent to an ESC (electronic speed control) circuit that regulates
the power delivered to the motor. The relation between the desired actuator thrusts
calculated by the high-level control law and the PWM signals sent to the ESC circuit
is governed by the motor characteristics depicted in Figure 2.7. This involves values of
PWM signals that are bounded between 1100 µs and 1900 µs. In order to deal with
the deadband around the null velocity, an interpolation of the curve can be used to
determine the PWM commands from the thrust desired input (Bessa et al., 2006).
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Figure 2.7: T200 motor curve featuring thrust versus PWM commands. Courtesy
of BlueRobotics (2019).

Regarding the vectorial configuration like in the BlueROV2, it is possible to deal
with the dead-band by applying different thrusts to the pair of propellers (longitudinal:
forward/rear pairs, lateral: left/right pairs, yaw: left/right diagonal paris), which comes
to introduce a motor regime rm in the equation (2.41), as:

Fth1
+ Fth2

+ Fth3
+ Fth4

= rm. (2.45)

This solution involves more power consumption. However, the motor regime rm can be
optimized as proposed by Ropars et al. (2015).

2.2.2 Kinematic Model of a mini-ROV

This subsection looks at the three-dimensional modeling of a mini-ROV, which is a
solid (non-articulated) robot.

The robot’s state vector is composed of its position and orientation with respect to a
world reference frame FW (PW , iW , jW ,kW ), with origin denoted PW , that is supposed
to be world-fixed and inertial, and iW = [1, 0, 0]T , jW = [0, 1, 0]T ,kW = [0, 0, 1]T (see
Figure 2.8). In the nautical field, the axes orientation is frequently used with the world-
frame vertical axis (kW ) pointing downward, following the SANAME (Society of Naal
and Marine Engineers) convention. In this thesis we have chosen to use the vertical
axis pointing upwards, which is the convention commonly used in the others robotic
fields. The reason for this is that the control scheme that we propose in Chapter 4 is
also applicable to domains other than underwater robotics.

We note Fri(Pri , iri , jri ,kri) the coordinate frame linked to robot ri. Pri is the
center of the robot, iri , jri , kri are respectively the robot’s longitudinal, lateral and
vertical axes.
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water surface

Fr

kr

ir

jr

P
r

FW

kW

iW

jW

PW

Figure 2.8: The world-fixed and robot-fixed coordinate frames: FW and Fr, respec-
tively.

Kinematic Equations in the World Frame Let us define

WPr =



WXr
WYr
WZr


 , (2.46)

the vector containing the position coordinates of center of the robot expressed in the
world-fixed reference frame FW , and

WΩr =



φ
θ
ψ


 , (2.47)

the vector containing the Euler angle coordinates in FW .
The time derivative of the robot position vector expressed in the world-fixed frame

is ˙WPr. If we define

r
νr =



νx
νy
νz


 (2.48)

as the linear velocity vector of the robot-fixed frame Fr(Pr, ir, jr,kr) with respect to
the world-fixed frame FW , expressed in the robot-fixed frame, the following relation
between the defined linear velocities holds

˙WPr =
WRr

r
νr, (2.49)

where WRr ∈ SO(3) is the rotation matrix expressing the transformation from the
robot-fixed frame to the world frame.

The time derivative of the orientation vector expressed in the world frame is ˙WΩr.
Let us define

r
ωr =



ωx

ωy

ωz


 (2.50)
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as the angular velocity vector of the robot frame Fr with respect to the world-fixed
frame FW , expressed in the robot frame. The relation between ˙WΩr and the robot
angular velocity is given by:

˙WΩr =
WJr

r
ωr, (2.51)

where WJr ∈ R
3×3 is a proper Jacobian matrix that can be expressed in terms of the

Euler angles as

WJr(Ω) =
1

cos θ



1 sinφ sin θ cosφ sin θ
0 cosφ cos θ − cos θ sinφ
0 sinφ cosφ


 , (2.52)

which is a singular matrix for θ = π
2 (2l+1), with l ∈ N, i. e., for a pitch angle of ±π/2

rad. The inverse of matrix rJW (Ω), when possible, is calculated by

rJW (Ω) = WJ−1
r (Ω) =



1 0 − sin θ
0 cosφ cos θ sinφ
0 − sinφ cos θ cosφ


 . (2.53)

By bringing together equations (2.49) and (2.51), we obtain the following kinematic
model for the robot: {

˙WPr =
WRr

r
νr

˙WΩr =
WJr

r
ωr

. (2.54)

It is often useful to collect the kinematic equations in six-dimensional matrix forms
(Siciliano and Khatib, 2016, chap. 43). Let us thus define the pose vector W

ηr ∈ R
6 as

W
ηr =

[
WPr
WΩr

]
, (2.55)

and the velocity vector rvr ∈ R
6 as

rvr =

[
r
νr

r
ωr

]
. (2.56)
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2.3 Pair of Robots Connected by a Tether

In this Section, the physical system under study is modeled. It is composed of two
mini-ROVs linked together by a sagging tether, which corresponds to the first pair of
robots that composes the chain of robots described in the previous Chapter. First,
the geometric model of a hanging tether linking both robots is introduced. Then, the
equation relating the robot velocity with the tether attachment point relative position
variation is given.

Figure 2.9 presents the generic nomenclature pattern of coordinate frames inside the
chain of robots. The index i ∈ [0, n] is the robot index inside the chain composed of n
robots. The robot’s front and rear camera frames are named Fci,1 and Fci,2 . Similarly,
the tether attachment point frames in the robots are named Fi,1 and Fi,2, respectively
for front and rear attachment. This is a generic nomenclature. The detailed description
of our system composed of the first pair of robots and the tether segment linking them
is given in the following.

FW

kW

iW

Fr2

kr2

ir2

F2,1 i2,1

k2,1

F1,2

k1,2

i1,2
toward the
surface vessel

jc2,2

kc2,2

Fc2,2

jc2,1

kc2,1

Fc2,1

Fn,1 in,1

kn,1

jcn,1

Frn

krn

irn
jcn,2

kcn,2

Fcn,2

kcn,1

Fcn,1

F2,2

i2,2

k2,2

Fr1

kr1

ir1
jc1,2

kc1,2

Fc1,2

jc1,1

kc1,1

Fc1,1

Figure 2.9: An illustration presenting the generic nomenclature pattern of coordinate
frames inside the chain of robots.

2.3.1 Catenary Model Applied for Tethered Robots

The catenary model of a tether is suitable for quasi-static analyses (Milutinović et al.,
2014). This means that the system has a slow dynamic behavior and the tether attach-
ment points move at a low relative velocity (lower than 0.5 m/s). In such conditions,
we can assume that the tether is in static equilibrium at successive instants of time
while the robots, and consequently the attachment points, move.

We consider the case of the first two robots of the chain linked by a sagging tether
catenary (see Figure 2.10). The robots are named r1 and r2, respectively for leader and
follower. The tether attachment points frames are named F1 and F2, respectively for
attachment on the leader and on the follower robot. The coordinate frame named F0

is at the tether lowest point.
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k1

i1
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Figure 2.10: Two illustrations presenting the (a) top view and (b) side view of the
first pair of robots composing the chain of robots. The tether linking the robots is
modeled by a catenary whose slackness is noted H2. The difference of height between
the attachment points from P2 is ∆H2. The H2-slack catenary half-span is noted D2

and ∆D2 is the supplementary span due to the height difference. The tether orientation
angles with respect to its attachment point frames are noted α1 and α2, respectively
for leader and follower attachment points.

The tether attachment point coordinate frames are noted Fi(Pi, ii, ji,ki), with i =
1, 2, and are defined as follows:

ii =
jri × kW

‖jri × kW ‖
(2.57)

ki = kW (2.58)

ji = ki × ii. (2.59)

This means that ki is vertical, ii is the intersection of the sagittal plane of the robot ri
with the horizontal plane, and ji is horizontal and orthogonal to ii.

The coordinate frame F1(P1, i1, j1,k1) is at the tether attachment point on the
leader robot r1. The axis k1 is vertical, i1 is parallel to the longitudinal axis of the
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robot (ir1) and points backwards. Axis j1 is horizontal and orthogonal to i1. The
oriented angle from i1 to i0 is named α1.

The coordinate frame F2(P2, i2, j2,k2) is at the tether attachment point on the
follower robot r2. The axis k2 is vertical, i2 is parallel to the longitudinal axis of the
robot (ir2) and points forwards. Axis j2 is horizontal and orthogonal to i2. The oriented
angle from i2 to i0 is named α2.

The coordinate frame F0(P0, i0, j0,k0) is attached to the catenary lowest point (see
Section 2.1.1). The axis k0 is vertical and i0 is horizontal inside the vertical plane
where the catenary is included. The axis j0 is horizontal and orthogonal to i0.

The catenary equation can be expressed in the lowest point frame F0 or in the
attachment point frames F1 and F2. Since we are interested in this work to estimate and
control the tether shape evolution due to the robots motion, we choose to express the
catenary equation in the attachment point frames. Actually, F1 and F2 are symmetric,
and the catenary slackness and half-span presented in Figure 2.10 with respect to F2

can also be defined with respect to F1. Figure 2.11 presents the symmetry of the
catenary features according to the frame of reference (F1 or F2).

FW

kW

iW

F2

i2

k2

∆H2

H2

P0

F1

k0

i0,2

k1

i1

D2 D2 ∆D2

F0

P1

P2

D1 D1
∆D1

∆H1

H1

i0,1

Figure 2.11: An illustration presenting the symmetry of the catenary features according
to the reference frame chosen (F1 or F2). The catenary slackness are H1 = 0Z1 and
H2 =

0Z2. The attachment points difference of height is ∆H1 =
1Z2 andH2 =

2Z1. The
catenary parameter C(H1,∆H1) = C(H2,∆H2) is invariant whatever the point Pi we
choose for the starting attachment point of the cable. Thanks to the symmetry we have:
∆H1 = −∆H2, H1 = H2 + ∆H2, H2 = H1 + ∆H1, ∆D1 = −∆D2, D1 = D2 + ∆D2,
D2 = D1 +∆D1. As a reminder: Hi > 0, Hi +∆Hi > 0, Di > 0 and Di +∆Di > 0.

Here below we develop the catenary equation in F2, centered at the follower robot
attachment point. The same procedure could be applied to express this equation in F1.

From equation (2.12), a generic point with homogeneous coordinates 0P =
[
0X,

0Y, 0Z, 1
]T
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defined in frame F0, belongs to the catenary if its coordinates are:

0P =




0X
0

1
C

[
cosh(C 0X)− 1

]

1


 . (2.60)

We can write the same equation in frame F2 though the following homogeneous trans-
formation:

2P = 2M0
0P, (2.61)

where

2M0 =




cosα2 − sinα2 0 D2 cosα2

sinα2 cosα2 0 D2 sinα2

0 0 1 −H2

0 0 0 1


 (2.62)

is the homogeneous transformation matrix from F0 to F2. Developing equation 2.61,
we obtain the following equations:

2X = cosα2

(
0X +D2

)
(2.63)

2Y = sinα2(
0X +D2) (2.64)

2Z =
1

C

[
cosh(C 0X)− 1

]
−H2. (2.65)

From equations (2.63) and (2.64) we obtain

2X = cotα2
2Y,

and from equations (2.64) and (2.65) we obtain

2Z =
1

C

[
cosh

(
C

(
2Y

sinα2
−D2

))
− 1

]
−H2.

Both equations form the catenary equation in frame F2 that is given by:

2P =




cotα2
2Y

2Y
1
C

[
cosh

(
C
(

2Y
sinα2

−D2

))
− 1
]
−H2

1


 . (2.66)

2.3.2 Tether Attachment Points and Robots Kinematics

In this section we focus on the tether attachment point kinematics in relationship with
robots kinematics. In order to design the robot motion control (Chapter 4), we will
need to take into account the kinematics of the tether attachment points with respect
to the robot.
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The vector defined from P2 to P1 is noted P2P1. The time-derivative with respect
to frame F2 is developed to introduce the robots velocities in the following way:

{
dP2P1

dt

}

F2

=

{
dP2P1

dt

}

FW

− ω2 ×P2P1,

where, ω2 is the angular velocity of F2 with respect to FW . From the Chasles relation
we have:

{
dP2P1

dt

}

F2

=

{
dP2Pr2

dt

}

FW

+

{
dPr2PW

dt

}

FW

+

{
dPWPr1

dt

}

FW

(2.67)

+

{
dPr1P1

dt

}

FW

− ω2 ×P2P1.

Noting
{

dPWPr1

dt

}
FW

= νr1 and
{

dPr2
PW

dt

}
FW

= −νr2 , we have:

{
dP2P1

dt

}

F2

=

{
dP2Pr2

dt

}

FW

− νr2 + νr1 +

{
dPr1P1

dt

}

FW

− ω2 ×P2P1

Expressing the derivatives
{

dP2Pr2

dt

}
FW

and
{

dPr1
P1

dt

}
FW

in the robot’s frames we

have:
{
dP2P1

dt

}

F2

=

{
dP2Pr2

dt

}

Fr2

+ ωr2 ×P2Pr2 − νr2 + νr1 (2.68)

+

{
dPr1P1

dt

}

Fr1

+ ωr1 ×Pr1P1 − ω2 ×P2P1,

and knowing that
{

dP2Pr2

dt

}
Fr2

= 0 and
{

dPr1
P1

dt

}
Fr1

= 0, we finally obtain

{
dP2P1

dt

}

F2

= νr1 − νr2 + ωr2 ×P2Pr2 − ωr1 ×P1Pr1 − ω2 ×P2P1 (2.69)

If the robot remains horizontal (see assumption A.1.3 in the Introduction), F2 and
Fr2 have the same orientation, and ω2 = ωr2 .

Otherwise, if there are slight pitch and roll movements, ω2 can be approximated
with ω2 = (ωr2 .kW )kW , with kW the unit vector along the vertical axis of the world
frame. This is valid as long as pitch and roll angles remain small enough to make a
first order approximation with respect to the horizontal orientation of the robot.

{
dP2P1

dt

}

F2

= νr1 − νr2 + ω1 ×Pr1P1 − ωr2 ×Pr2P2 − (ωr2 .kW )kW ×P2P1

(2.70)
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If the leader robot is considered motionless,

{
dP2P1

dt

}

F2

= −νr2 − ωr2 ×Pr2P2 − (ωr2 .kW )kW ×P2P1 (2.71)

The inertial measurement unit (IMU) of the robot can give the quaternion of orien-
tation of the robot and therefore the world coordinates of the robot axes, hence WRr2 .
Then, the orientation of F2 in FW can be calculated thanks to equations (2.57) to
(2.59), and therefore the rotation matrix between F2 and Fr2 , noted

2Rr2 .

We assume we also have WRr1 thanks to the IMU of the leader robot, which allows
to get 1Rr1 , thanks to equations (2.57) to (2.59). The relative orientation between the
robots is given by r2Rr1 = WRT

r2
WRr1 .

If pitch and roll angles are considered as zero (see assumption A.1.3 in the Intro-
duction),

2Rr2 = I (2.72)
1Rr1 = I (2.73)

r2Rr1 =



− cos(α2 − α1) sin(α2 − α1) 0
− sin(α2 − α1) − cos(α2 − α1) 0

0 0 1


 (2.74)

Then,

2
ν2 =

2Rr2
r2ν2 (2.75)

2
ν1 =

2Rr2
r2Rr1

r1ν1 (2.76)
2
ω2 =

2Rr2
r2ω2 (2.77)

2
ω1 =

2Rr2
r1ω1 (2.78)

2 {Pr2P2} = 2Rr2
r2P2 (2.79)

2 {Pr1P1} = 2Rr2
r2Rr1

r1P1 (2.80)
2 {P2P1} = 2P1 (2.81)
2 {Pr2P1} = 2 {Pr2P2}+ 2 {P2P1} (2.82)

= 2Rr2
r2P2 +

2P1 (2.83)

We note ˙2P1 the velocity of P1 with respect to frame F2 expressed in F2:

˙2P1 =
2

{
dP2P1

dt

}

F2

(2.84)

We also note rivri = [riνri ,
riωri ]

T , the velocity vector defined at Pri, center of the
robot ri, and expressed in frame Fri . In order to simplify the writing, we note for now
on this ego-centered velocity as:
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riv = [riν , riω ]T (2.85)

We can rewrite Eq. (2.70) in matrix form:

˙2P1 =
[
2Rr2

r2Rr1 , −[2Rr2
r2Rr1

r1P1]
×2Rr2

r2Rr1

]
r1v

−


2Rr2 , −[2Rr2

r2P2]
×2Rr2 − [2P1]

×



0 0 0
0 0 0
0 0 1


 2Rr2


 r2v, (2.86)

where [X]× is the skew matrix defined from vector X.
We note Tr1,2 and Tr2,2 and rewrite equation (2.86) such that:

˙2P1 = Tr1,2
r1v +Tr2,2

r2v. (2.87)

Symmetrically, we can write

˙1P2 = Tr1,1
r1v +Tr2,1

r2v. (2.88)

Equations (2.87) and (2.88) link the kinematics of the tether attachment points Pi with
respect to the kinematics of both robots. These kinematic equations will be used for
the control scheme described in Chapter 4.

If we assume that the robots remain horizontal (r2R2 = I), we can write:

Tr2,2 = −
[
I3×3, −

{
[r2P2]

× − [2P1]
×}] = −

[
I3×3, −[r2P1]

×] (2.89)

Tr1,2 =
[
r2Rr1 , −[r2Rr1

r1P1]
×r2Rr1

]

Otherwise we can extract the robot attitude angle from the IMU sensors. The frames
Fr2 and F2 have the same azimuthal orientation. Therefore, the rotation matrix r2R2

is a function of only roll (φ) and pitch (θ) angles of robot r2, as follows:

r2R2 =




cos θ sin θ sinφ sin θ cosφ
0 cosφ − sinφ

− sin θ cos θ sinφ cos θ cosφ


 . (2.90)

In addition, Tr1,2 can be expressed as a function of Tr2,2. Indeed we have:

Tr1,2 = −Tr2,2
r2Vr1 (2.91)

where
r2Vr1 =

[
r2Rr1 , [r2Pr1 ]

×r2Rr1

0 r2Rr1

]
(2.92)

is the velocity twist matrix that allows to get the velocity of the center of another
coordinate frame (Fr1), while making the frame transformation from Fr1 to Fr2 (see
appendix C). We need the coordinates of the previous frame center, Pr1 , expressed in
the new frame (Fr2).
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Using the twist matrix, we can rewrite the equation (2.87) as:

˙2P1 = Tr2,2 (−r2Vr1
r1v + r2v) . (2.93)

Finally, if we assume that the robot is horizontal and that the leader robot is
stationary (r1v = 0), the equation that links the kinematics of attachment point P1 to
the kinematics of the follower robot is reduced to:

˙2P1 = Tr2,2
r2v =

[
−I3×3, [r2P1]

×]
[
r2ν

r2ω

]
(2.94)

˙2P1 = −r2ν − r2ω × r2P1 (2.95)

2.4 Conclusions

In this Chapter we focused on the model description of the first pair of robots of
the chain. The pair is connected by a tether segment and it is composed of a leader
robot, that should freely explore its surroundings, and a follower, that is expected to
control the tether shape in order not ot hamper the leader movements. Two different
types of robots are used in this work: one with vectored thrusters configuration and
another with direct configuration. Both types of robots are described, a kinematic
model is developed and details about their architecture, embedded sensors and thrusters
allocation are given. A model of the tether linking the leader and the follower robots
is also introduced. The tether is supposed to be slightly negative buoyant, perfectly
flexible and inextensible, being, therefore, modeled by a catenary cable. The catenary
model of the tether is developed in order to express the tether equations in the follower
robot attachment frame. The complete system composed of both robots (leader and
follower) and the linking tether is also modeled.

The next Chapter addresses the strategies of perception of the tether, explaining
how it is detected in the image and how its shape is estimated from the camera feed-
back.



Chapter 3

Underwater Perception of the

Tether

A camera is a sensor commonly present in mini-ROVs since it can provide a great
amount of comprehensive and detailed information about the environment to the human
operator. Moreover, cameras are light, compact and have low power consumption,
which is perfectly suitable to be embedded to small robots. We use the camera as the
main sensor for tether perception inside the chain of robots.

In this Chapter we develop the method used to detect the tether and to estimate
its shape parameters from visual feedback provided by embedded cameras. First, we
introduce some camera and tether positioning assumptions on which our algorithms of
tether detection and shape estimation are based. Then, the camera model is presented,
followed by the calculation of the catenary projection equation in the image plane.
This equation, that contains the catenary shape parameters, is used for the curve
fitting procedure that estimates the tether 3-D shape. Finally, simulation results are
presented.

3.1 Camera Configurations and Assumptions

An illustration of the first pair of the chain of robots is presented in Figure 3.1, which
is actually the same as Figure 2.10 with two cameras added that film the tether ex-
tremities. Our objective is to detect the tether and estimate its shape by analyzing the
portion of tether that is visible by the cameras.

As presented in Section 2.3, the robots are named ri, with i being the robot index
inside the chain. Since we focus on the first pair of robots we will use the simplified
nomenclature of the cameras. The cameras are named ci, with i being the index of the
robot where the camera is mounted.

To implement our vision-based procedure of tether shape estimation, some assump-
tions are made with respect to the camera position and tether properties. They are
listed here below:
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Figure 3.1: Illustration of a pair of tethered robots where the field of view of the cameras
is highlighted by red dashed lines. (a) top view and (b) side view.

A.3.1 The cameras have a fixed and known pose with respect to the robot frame, which
can be expressed as the following homogeneous matrix: riMci . We assume that
the camera optical axis (kci) is aligned with the robot longitudinal axis (iri). The
optical axis points forwards for frontal camera and backwards for rear camera.
The camera vertical axis (jci) points downwards and it is aligned with the robot
vertical axis (kri). In other words, we have: kci ‖ iri and jci ‖ kri ;

A.3.2 The tether attachment points have a fixed and known positions with respect to
the robots. This means that r2P2 and r1P1 are constant and known. The tether
attachment point is above the camera in the robot frame. For a robot ri and
attachment point riPi we have: riZi >

riZci ;

A.3.3 The difference of height between the tether attachment points can be estimated
through pressure sensors embedded on the robots. ∆Hi is thus directly measured.

A.3.4 The tether has a known length;
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Considering assumption A.3.3, there are only two parameters left to be

estimated through camera feedback: the tether slacknesses Hi and the ori-

entation angles αi.

3.2 Camera Modeling

In this section we will introduce the pinhole camera model, which is a standard camera
model used in computer vision applications.

3.2.1 Image Formation

A camera is a device composed of a set of lenses used to direct the light on a sensitive
surface in order to form an image of the observed scene. Digital cameras are equipped
with a light sensitive surface composed of metal-oxide-semiconductors (MOS) capaci-
tors that allows the conversion of incoming photons into electron charges that are read
by a charge-coupled device (CCD) to form the image. In order to have a quality image,
some camera parameters related to the photometry must be set. Among these settings,
we will highlight, in the next subsection, the adjustment of the camera exposure and
the white balance, which are the precondition for image sharpness and color fidelity.

An image is a two-dimensional brightness array. Mathematically, an image is a
function I, defined on a compact region S of a two-dimensional surface, taking values
in the positive real numbers(Ma et al., 2012):

I : S ∈ R
2 → R

+; (x, y) 7→ I(x, y), (3.1)

for a single channel or grayscale image. Images capture two kinds of information:
photometric, which are related to intensity and color of images, and geometric, which
are related to positions, lines and curves of the objects in the scene.

If the image is colored, it is actually composed of three arrays also called chan-
nels (Ma et al., 2012). The RGB (red, green, blue) model is a widely used color model
in which these basic colors are added to form a colored image. An alternative repre-
sentation is the HSV (hue, saturation, value) model, which is widely used in computer
vision algorithms to perform color detection of objects since the color can be directly
filtered by the hue channel. In this thesis we will consider the hue channel to segment
the tether.

3.2.2 Camera Exposure and White Balance

Camera exposure determines the amount of light entering in the device, that is to say,
how dark or light the image will appear when it is captured by the camera. The camera
exposure is defined by three camera parameters that compose the exposure triangle:
the aperture, the ISO setting and the shutter speed. Each parameter controls the
exposure differently.

The aperture controls the area over which light can enter in the camera and it is
usually specified in terms of a f-number N , which is given by the ratio of focal length
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to effective aperture diameter.

N =
f

d

where f is the focal length and d is the diameter of the entrance pupil (effective aper-
ture).

The shutter speed (or exposure time) determines when the camera sensor will be
open or closed to incoming light from the camera lens. It is measured in seconds and
range from 1/400 to 30 seconds.

The ISO setting determines how sensitive the camera’s sensor is to incoming light,
which is measured on a numerical scale defined by the ISO standard.

Many combinations of the above three settings can be used to achieve the same
exposure. The key, however, is knowing which trade-offs to make, since each setting
also influences other image properties. For example, shutter speed affects motion blur,
ISO setting affects image noise and aperture affects depth of field (the range of dis-
tance that objects in the image appear acceptably sharp). Most digital cameras have
standardized exposure modes that automatically control the aperture, ISO setting and
shutter speed. For robotic applications, this means that the camera does not have a
constant configuration and its exposure can change during the operation. Such behav-
ior is mostly undesirable. Therefore, in this thesis, the camera exposure is manually
set by the operator.

White balance (WB) is the process of removing unrealistic color casts, so that ob-
jects which appear white in the scene are rendered white in the photo. The human
eyes are very good at judging what is white under different light sources, but digital
cameras often have great difficulty with automatic white balance (AWB) and can create
unsightly blue, orange, or even green color casts. Such changes can cause disturbances
in the execution of robotic tasks that uses image feedback for the detection or recog-
nition of objects. Many algorithms relay on the objects hue information to perform
detection, classification and recognition in the computer vision. Therefore, an incor-
rect adjustment of white balance or an AWB that incorrectly compensate to change
of lighting can degrade the performance of vision-based detection algorithms, once the
hue of objects will change in the image. In some robotic tasks, AWB is avoided and,
in this thesis, the white balance of the camera is manually set by the human operator.

The camera exposure and the white balance determine the brightness, sharpness
and colors (hue) of objects in the image. These parameters have to be set carefully to
obtain an accurate and robust color detection of the tether.

In the next subsection we will address the geometric aspects of image formation
in order to obtain the relationship between the position of objects in the scene and
its correspondence in the image. In computer vision, the most used geometric camera
model is the pinhole model, since it allows a simple and linear modeling of image
formation in homogeneous coordinates.
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3.2.3 The Pinhole Camera Model

The pinhole model considers that the reflection and diffraction effects can be neglected
during light propagation in the camera’s lens system, and only light refraction is con-
sidered (Ma et al., 2012). The model also assumes that the light enters in the camera
through a minimal aperture so that all rays are undeflected from the emitting source
towards the optical center. Moreover, the intensity measured at a pixel is identical to
the amount of energy radiated at the corresponding point in space, i.e., a Lambertian
surface (Ma et al., 2012). Under these conditions, the image formation process can be
reduced to an ideal perspective projection, which is a good geometric approximation
of a well-focused system.

The pinhole model (Figure 3.3) is composed of a frame Fc(Pc, ic, jc,kc), whose
origin Pc is the center of projection. The projection plane or image plane πi is parallel
to the plane (ic, jc) and it is placed at a distance f (the focal length) from the origin.
The axis kc is called the optical axis and its intersection with the image plane is called
the principal point pc.

A point a in the space is defined in the camera frame Fc by the vector cPa =
[cXa

cYa
cZa 1]T in metric coordinates. It is projected on the image plane πi as a point

with coordinates pa = [xa, ya, 1]
T , that are calculated using the Thales theorem:

pa =
f

cZa



cXa
cYa
cZa


 , (3.2)

where cZa 6= 0. This equation can be rewritten in matrix form:

pa =
1

cZa



f 0 0 0
0 f 0 0
0 0 1 0


 cPa. (3.3)

If the focal length is known, it can be normalized to 1 and the equation (3.3) becomes:

pa =
1

cZa
AcPa, (3.4)

where

A =



1 0 0 0
0 1 0 0
0 0 1 0


 (3.5)

is called the standard (or canonical) projection matrix.



Camera Modeling 63

Fc

Pc

jc

ic

pc

pa

Pa

kc

Pa

pa

jc

kcPc

f
cY a
cZa

cZa

cYa

Figure 3.3: Frontal pinhole imaging model: the perspective projection of a 3-D point
Pa on the image plane πi is the point pa. The camera center is noted Pc.

3.2.4 Intrinsic Parameters

In digital cameras, the measurements are made in terms of pixels (u, v) with respect
to a frame Fπi

(Pπi
, iπi

, jπi
,kπi

) whose origin Pπi
is in the image upper-left corner

(see Figure 3.4). Therefore, the transformation from the normalized metric to pixel
coordinates of pa takes into account the change of units followed by a translation of
origin:



ua
va
1


 =




1
lx

0 u0
0 1

ly
v0

0 0 1





xa
ya
1


 (3.6)

where lx and ly are the pixel size and (u0, v0) are the pixel coordinates of the principal
point in frame Fπi

.

a pixel

uPπi

v

cpa

jc

ic
pc

Figure 3.4: Transformation from pixels to meters coordinates.

Now, combining the perspective projection model (equation (3.3)) with the above
equation yields a realistic model of transformation between the homogeneous coordi-
nates of 3-D point and its corresponding pixel coordinates in the image plane:
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

ua
va
1


 =

1
cZa




1
lx

0 u0
0 1

ly
v0

0 0 1





f 0 0 0
0 f 0 0
0 0 1 0







cXa
cYa
cZa

1


 . (3.7)

This equation is frequently rewritten placing all the camera intrinsic parameters in
only one matrix K called the intrinsic parameter matrix or the calibration matrix of
the camera. This amounts to considering a camera with a focal length normalized to

1, whose pixel size is
(
px = f

lx

)
×
(
py = f

ly

)
:



ua
va
1


 =

1
cZa

KA




cXa
cYa
cZa

1


 (3.8)

where

K =



px 0 u0
0 py v0
0 0 1


 . (3.9)

The conversion between the 3-D point coordinates and its corresponding pixel co-
ordinates is an important step to achieve the estimation of 3D models from monocular
camera images. Firstly, this conversion is made by projecting the 3D points of the
scene in the image plane. We obtain the ideal metric coordinates of the projected
point. Secondly, the conversion between metric and pixel coordinates is made by the
intrinsic parameter matrix, which is estimated through a calibration procedure. In our
case, the camera calibration procedure is based on a Levenberg-Marquardt optimization
algorithm that minimizes the reprojection error (Tsai, 1987).
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3.3 Tether Detection

Underwater images are mostly blue due to color absorption. The longest wavelengths
with lowest energy are absorbed first: red, then orange, yellow, green and finally blue
(see Figure 3.5).

Figure 3.5: Visible light spectrum for varying wavelengths. Extracted from shutha.org.

In order to ease the tether detection in the image we select the color of the mock
tether so that it is far enough from the main blue color in the hue representation (see
figure 3.6). We chose orange which is expected not to be present in a natural scene.
The tether is then detected in each image thanks to a simple segmentation method
in the HSV space. We chose detection rather than tracking to increase the algorithm
robustness.

We use the assumptions A.3.1 and A.3.2 about the tether attachment point posi-
tion with respect to the camera as a heuristic to detect a starting point of the tether in
the image. Then we propagate the color segmentation to the rest of the tether, starting
from this seed point. Once the orange pixels belonging to the tether are detected, we
use the following morphomathematical transformation to shrink the tether detection to
a single line: first a closing to fill in the holes, then a skeletisation. The transformation
from pixel to metric coordinates in the image plane is given in equation (3.4).

Two examples of this tether detection algorithm are presented in Figure 3.7. The
source images are depicted in Figures 3.7a and 3.7d. Their respective hue histograms
are shown in Figures 3.7b and 3.7e. The histograms are shifted so that the orange
color is placed at the middle of the variation range. The results on tether detection are
presented in Figures 3.7c and 3.7f.

The first example corresponds to an easy aerial setup with an homogeneous blue
background. The second one is an underwater scene acquired in the experimental
pool. The segmentation thresholds are manually selected during initial setup for each
experiment. In the first experiment that is carried out in the air, we clearly observe
two histogram modes. The first one corresponds to the blue background and the other
one corresponds to the tether. In the second experiment, the scene is more complex
and has a wider hue variation. Even mainly blue, the scene background is composed
of several hues. We still observe a mode corresponding to the tether hue, yet it is less
isolated. In both cases the algorithm manages to segment the tether.

Wrong tether detection may occur due to lighting changes or when the tether cannot
be distinguished from background objects of similar color. A minimum number of
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3.4 Catenary Features Estimation

Once the 2D points that belong to the tether are detected in the image, we can use them
to estimate the tether features that are related to its 3D shape: H and α. First, we have
to express the 3D equation of the catenary in the camera frame. Then, its perspective
projection in the image plane can be expressed using the pinhole model described in
Section 3.2. Finally, the 3D catenary features can be estimated by matching the 2D
projection to the detected points through a curve fitting algorithm.

3.4.1 Catenary Equation in the Camera Frame

The expression of the tether catenary in frame F2 was given by equation (2.66), in the
previous Chapter, as follows:

2P =




cotα2
2Y

2Y
1
C

[
cosh

(
C
(

2Y
sinα2

−D2

))
− 1
]
−H2

1


 . (3.10)

The transformation between F2 and the robot centered frame Fr2 is then made by

r2P = r2M2
2P, (3.11)

where r2M2 the homogeneous matrix expressing the pose of F2 in Fr2 :

r2M2 =

[
r2R2

r2P2

0T3×1 1

]
. (3.12)

As presented in Section 2.3.1, the frames Fr2 and F2 have the same azimuthal orien-
tation. Therefore, the rotation matrix r2R2 is a function of only roll (φ) and pitch (θ)
angles of robot r2, as follows:

r2R2 =




cos θ sin θ sinφ sin θ cosφ
0 cosφ − sinφ

− sin θ cos θ sinφ cos θ cosφ


 . (3.13)

If we suppose that the robot r2 is mechanically stabilized in roll and pitch by floaters,
we have that r2R2 = I and the previous homogeneous transformation becomes a simple
translation:

r2M2 =




1 0 0 r2X2

0 1 0 r2Y2
0 0 1 r2Z2

0 0 0 1


 . (3.14)

The catenary equation transformation between the follower robot camera frame Fc2

and the robot frame Fr2 then made as follows:

c2P = c2Mr2
r2M2

2P. (3.15)
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If we consider the frontal camera is fixed to the robot body, c2Mr2 = r2M−1
c2

is constant.
Considering the alignment between the camera and robot frame axes given by the
assumptions A.3.1 and A.3.2 in the previous section (and also depicted in Figure 3.1)
we have that

c2Mr2 =




0 −1 0 r2Yc2
0 0 −1 r2Zc2

1 0 0 −r2Xc2

0 0 0 1


 . (3.16)

Replacing equations (3.16) and (3.14) in (3.15) we obtain:

c2P =




0 −1 0 r2Yc2
0 0 −1 r2Zc2

1 0 0 −r2Xc2

0 0 0 1







1 0 0 r2X2

0 1 0 r2Y2
0 0 1 r2Z2

0 0 0 1




2P, (3.17)

that yields

c2P =




0 −1 0 −r2Y2 +
r2Yc2

0 0 −1 −r2Z2 +
r2Zc2

1 0 0 r2X2 − r2Xc2

0 0 0 1




2P. (3.18)

The position of the tether attachment point P2 in the camera frame Fc2 is given by:

c2P2 =
c2Mr2

r2P2. (3.19)

Using equation (3.16) in (3.19) we obtain

c2P2 =




c2X2
c2Y2
c2Z2

1


 =




−r2Y2 +
r2Yc2

−r2Z2 +
r2Zc2

r2X2 − r2Xc2

1


 , (3.20)

and replacing equation (3.20) in (3.18) yields:

c2P =




0 −1 0 c2X2

0 0 −1 c2Y2
1 0 0 c2Z2

0 0 0 1




2P. (3.21)

Finally, replacing equation (3.10) in (3.21) we obtain:

c2P =




−2Y + c2X2

− 1
C

[
cosh

(
C
(

2Y
sinα2

−D2

))
− 1
]
+H2 +

c2Y2

cotα2
2Y + c2Z2

1


 . (3.22)
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From the first line of equation (3.22) we have the following relationship:

2Y = −c2X + c2X2. (3.23)

Hence, we can rewrite equation (3.22) as:

c2P =




c2X

− 1
C

[
cosh

(
C
(
−c2X+c2X2

sinα2
−D2

))
− 1
]
+H2 +

c2Y2

cotα2 (−c2X + c2X2) +
c2Z2

1


 . (3.24)

Symmetrically, the equation of the tether catenary can also be written in frames F1

and Fc1 . This leads to an equation similar to (3.24), but with parameters H1, ∆H1, D1

and ∆D1 (see Section 2.3.2 and Figure 2.11). From now on, we develop the catenary
projection equation in the camera frame Fc2 . The frame Fc2 is noted Fc, the angle α2

is noted α, the catenary half-span and slackness are respectively noted D and H, and
the tether attachment points difference of height is noted ∆H. Hence, the notation of
equation (3.24) is simplified to:

cP =




cX

− 1
C

[
cosh

(
C
(−cX+cX2

sinα
−D

))
− 1
]
+H + cY2

cotα (−cX + cX2) +
cZ2

1


 . (3.25)

3.4.2 Catenary Projection on the Image Plane

A generic 3-D point belonging to the catenary with homogeneous coordinates cP in Fc,
is projected on the image plane as a 2-D point with coordinates p = [x y 1]T using
equation (3.4):

p =
1
cZ



1 0 0 0
0 1 0 0
0 0 1 0


 cP (3.26)

that yields 



x =
cX
cZ

y =
cY
cZ

(3.27a)

(3.27b)

From the second line of the matrix of equation (3.25), let us define that

ζ =
−cX + cX2

sinα
, (3.28)

and from the third line of the same equation we have that

cZ = cotα (−cX + cX2) +
cZ2. (3.29)
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Then, replacing equation (3.29) in (3.27a) yields:

cX =
x (cX2 cotα+ cZ2)

1 + x cotα
, (3.30)

that replaced back in equations (3.28) and (3.29) gives, respectively:

ζ =
cX2 − xcZ2

sinα+ x cosα
(3.31)

and
cZ =

cotαcX2 +
cZ2

1 + x cotα
. (3.32)

Finally, from equations (3.31) and (3.32), and replacing the second line of equa-
tion (3.25) in (3.27b) we obtain the catenary projection equation on the image plane
y = f(x,H,∆H,α), knowing that C and D depend on H and ∆H (see equations (2.14)
and (2.17)):

y =
1
cZ

[
−cosh (Cζ − CD)− 1

C
+H + cY2

]
(3.33)

where ζ and cZ are defined by equations (3.31) and (3.32), respectively.

3.4.3 Catenary Curve Fitting

The catenary 3D shape is estimated through a nonlinear least-square fitting procedure
based on a Guass-Newton algorithm: the catenary projection model (equation (3.33))
is fitted to the tether points detected in the camera image. The algorithm of tether
detection was addressed in Section 3.3. In this current Section we focus on the fitting
procedure, assuming that the tether is detectable.

The catenary shape is described by the following parameters:

a =
H

Hmax
(3.34a)

b = sinα (3.34b)

∆H = 2Z1 (3.34c)

with Hmax being a maximum acceptable tether slackness. We assume that the differ-
ence of height between the tether attachments points (∆H) is estimated through the
robot’s external pressure sensors (see assumption A.3.3). Therefore, only the first two
parameters of equation (3.34) are estimated through curve fitting. These parameters
form a feature vector s defined as:

s =

[
a
b

]
. (3.35)

The parameters a and b are respectively related to the tether slackness and orienta-
tion with respect to the follower robot. Since 0 < H < Hmax, the a-parameter ranges
in the interval ]0, 1[.
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For the b-parameter, we will consider that it ranges in the same interval ]0, 1[.
Therefore, we always consider the case α > 0. When α < 0, we will use the mirror
image in order to comply with these boundaries.

The tether is completely taut when a = 0 and it reaches the maximum acceptable
slackness Hmax when a = 1. When b = 0 the tether belongs to the plane π (P2, i2,k2)
and when b = 1 it belongs to the plane π (P2, j2,k2).

Rewriting equation (3.33) with these new parameters yields:

y (s, x) =
1
cZ

[
−cosh (Cζ − CD)− 1

C
+ aHmax +

cY2

]
, (3.36)

where

ζ =
cX2 − xcZ2

b+ x
√
1− b2

(3.37)

and

cZ =

√
1− b2cX2 + bcZ2

b+
√
1− b2x

. (3.38)

3.4.3.1 Gauss-Newton Algorithm

The Gauss-Newton algorithm is a modification of the Newton’s method for solving
nonlinear least squares problems of continuous and differentiable functions. The Gauss-
Newton algorithm has the advantage of not requiring second derivatives, therefore, it
is commonly used in curve fitting problems, where a sum of squared functions called
residuals is minimized.

A residual can be defined as the distance between a point in the curve we want to
fit and its correspondent in the curve issued from the current parameters estimation.
In our case, we computed the residuals as follows:

ri (s) = yi − y(s, xi) (3.39)

where(xi, yi) are the metric coordinates of the i-th detected point of the tether in the
image and y(s, xi) is the tether model given by equation (3.36).

The sum of residuals is commonly called the cost function and our objective is to
minimize it. Here below is the cost function we designed for the catenary fitting:

Γ(s) =
1

M

M∑

i=1

r2i (s), (3.40)

where M ∈ N is the total number of detected points.

The minimum of the cost function Γ(s) is found through an iterative process that
is usually initialized at a starting point in the middle of variation range of the feature
vector. In our case, since a ∈]0; 1[ and b ∈]0; 1[, we use

s0 = [0.5, 0.5]T (3.41)
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as starting point (in Section 3.4.3.5 a procedure of initial guess is presented). The
feature vector is iterated as follows:

sk+1 = sk − λJ+
r r
(
sk
)
, (3.42)

where k ∈ {1, ..., N} is the iteration index with N ∈ N, λ ∈ R
+, r

(
sk
)
is a column

vector that stacks the residuals ri
(
sk
)
and J+

r is the Moore-Penrose pseudo-inverse of
the Jacobian matrix Jr. Since the catenary is continuous and differentiable, so is the
cost function Γ(s). The Jacobian matrix Jr of the residuals vector is thus given by

Jr =
1

M

dr

ds
, (3.43)

whose i-th row has the following form:

Jr (i) =
1

M

[
−∂y(xi,s)

∂a
−∂y(xi,s)

∂b

]
, (3.44)

where

∂y(xi, s)

∂a
=

1

Z

[
−∂

(
1
C

)

∂a
[cosh (Cζ − CD)− 1]

− sinh (Cζ − CD)

C
(A1 +A2 +A3) +Hmax

] (3.45)

and

∂y(xi, s)

∂b
=− 1

C

∂ 1
Z

∂b
[cosh (Cζ − CD)− 1− C (H + cY 2)]

− 1

Z

∂ζ

∂b
sinh (Cζ − CD) ,

(3.46)

with A1 = ζ ∂C
∂a

, A2 = −D ∂C
∂a

and A3 = −C ∂D
∂a

. The calculation details of the Jacobian
derivatives are presented in appendix D.

3.4.3.2 Study of the Gauss-Newton Jacobian Singularities

A singular matrix is a matrix whose determinant is zero and it is hence non-invertible.
This occurs when the matrix is not full ranked or when there are elements in the matrix
that tend to infinity. We will study the singularities of the Jacobian matrix defined in
equation (3.43) with respect to parameters a and b.

Firstly, let us focus on the partial derivative with respect to the a-parameter, which
is given by equation (3.45). We note that this equation is singular in the following case:

2H +∆H = L. (3.47)

However, this corresponds to the degenerated case and it is excluded as defined in the
conditions of existence of the catenary presented in Section 2.1.3. Therefore, such a
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case will never occur, since we choose the values of Hmax, ∆H and the range of the
a-parameter that avoid it.

Secondly, focusing on the partial derivative with respect to the b-parameter, which
is given by equation (3.46), we find the following singularities:

√
1− b2 = 0 (3.48)

√
1− b2 cX2 + b cZ2 = 0 (3.49)

b+
√
1− b2xi = 0. (3.50)

Equation (3.48) represents the case where b = sinα = ±1, thus α = ±90◦ and the
tether plane is perpendicular to the robot longitudinal plane, as shows Figure 3.8a.
Considering the experimental setup, the cases where α ≥ 90◦ or α ≤ −90◦ will be
avoided since the tether is less visible (limited camera field of view) and it risks of
becoming entangled with the robot.

α = 90◦

Fc

kc
ic

F2
j2

i2

(a)

Fc

kc
ic

F2
j2

i2

α

(b)

Fc

kc
ic

F2
j2

i2
α = 0◦

(c)

Figure 3.8: Top view of a robot-tether system presenting the singularities on catenary
shape estimation with respect to the tether orientation parameter b = sinα. (a) the
tether is perpendicular to the robot longitudinal axis. (b) the tether plane is aligned
with the segment PcP2 and the catenary curve degenerates into a straight line in the
image. The tether attachment point has an offset with respect to the camera axis
(cX2 6= 0). (c) the specific case where cX2 = 0.

Equation (3.49) represents the case where the catenary plane is aligned with the
segment linking the camera center Pc to the tether attachment point P2, as shows
Figure 3.8b. The catenary shape is therefore degenerated into a straight line in the
image. Indeed, we have:

tanα =
b√

1− b2
= −

cX2

cZ2
.
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If cX2 = 0, this situation occurs when the catenary plane is also aligned with the robot
longitudinal axis and thus b = 0 (see Figure 3.8c).

Equation (3.50) leads to:

b√
1− b2

= −xi

and from the perspective projection given by equation (3.4), we obtain:

tanα = −
cXi

cZi
.

Regarding Figure 3.9b and from the definition of tanα, we obtain

cXi − cX2

cZi − cZ2
=

cXi

cZi
.

which simplifies to (assuming cZi 6= 0):

xi =
cX2

cZ2
= x2.

This means that the points Pi and P2 have the same abscissa in the image plane.
Therefore, this occurs when the catenary projection degenerates into a vertical line in
the image. This is the generalization of equation (3.49). These cases are depicted in
Figures 3.8b and 3.8c.

3.4.3.3 Particular Case of Remote Points

The more remote the catenary points from the image plane, the more tightened the
x-coordinates of their projection in the image plane. This is illustrated in Figure 3.9 by
the left part of the curves that tend to be more and more vertical as the 3-D points get
further away from the image plane. As a consequence, derivatives can take very high
values, which can lead to numerical issues such as ill-conditioning of the Gauss-Newton
Jacobian matrix. Another issue is occurrence of high residuals in the cost function.

In order to cope with these problems, a filter that selects only bounded residuals
is used. This filter and other improvements added to the standard Gauss-Newton
algorithm are described in the following Section.
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Figure 3.9: Case of remote points and large residuals. (a) an illustration of residuals
(black arrows) between tether detected points (in green) and the projection of the
catenary current estimation (in red). The tether length is L = 1.50m and the height
difference between the attachment points is ∆H = 0. The tether shape is defined by
the feature vector s = [0.6, 0.6] T , with Hmax = 0.70m. The red dashed line represents
the catenary points which are beyond the tether length (L = 1.50m). (b) a top view
illustration of catenary remote points that become more and more tight and vertical in
the image plane as ᾱ→ α.

3.4.3.4 Gauss-Newton Improved Algorithm

The general scheme of the improved Gauss-Newton algorithm proposed for the catenary
fitting procedure is presented in Figure 3.10. It comprises four new functions that are
described below. The tether shape estimation starts from the acquisition of a new image
and the detection of the tether points. Then, the residuals are calculated between the
tether detected points and the catenary projection generated by the starting feature
vector s0. Subsequently, the residuals vector is filtered by the functions unbounded

residuals removal (1) and 2-D points subsampling (2). Next, a residual weighting
matrix, calculated through the method of the M-estimators (3), is applied. Then,
the feature vector is iterated ensuring that it remains inside its bounds of definition
(function bounded iteration) (4). Finally, the stopping criteria are checked. If the
algorithm converges or the maximum number of iterations is reached, the estimated
feature vector is returned and a new image is acquired. The improved Gauss-Newton
is also represented in pseudo-code by Algorithm 1.
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Figure 3.10: Chart flow of the improved Gauss-Newton algorithm. The four new func-
tions added to the algorithm flow are numbered and highlighted by a pink background.

Algorithm 1 improved Gauss-Newton Algorithm

1: procedure GNA(Tin, s
0, kmax)

2: k ← 0
3: sk ← s0

4: while k ≤ kmax do

5: T← Tin ⊲ retrieve tether points
6: r← calculateResiduals(T, sk)
7: r,T← unboundedResidualsRemoval(T, sk, r)
8: r,T← 2DPointsSubsampling(T, r)
9: D← robustEstimation(r)

10: J← calculateJacobian(T, sk)
11: sk+1 ← boundedIteration(B,J,D, r, sk)
12: if Γ

(
sk+1

)
− Γ

(
sk
)
< 0 and

∣∣Γ
(
sk+1

)
− Γ

(
sk
)∣∣ < ǫ then

13: return sk+1 ⊲ precision threshold reached
14: else if Γ

(
sk+1

)
− Γ

(
sk
)
> 0 then

15: return sk ⊲ cost function increased

16: sk ← sk+1

17: return sk+1 ⊲ max. number of steps exceeded

The first two functions are illustrated with the tether detected points obtained
from the simulated image shown in Figure 3.11. In this simulation the feature vector
is s = [0.6, 0.6]T , Hmax = 0.70meter and ∆H = 0meter. All the steps of detection
and fitting are run. Thus, it includes noise due to image segmentation and pixel/meter
conversion.
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The residuals are calculated from the difference between the current tether detected
points and the estimated catenary projection, whose feature vector is ŝ = [0.5, 0.5]T .
This is the starting point of the fitting iteration process (see equation (3.41)).

(a) (b)

Figure 3.11: An example of tether points detection from simulated images. The sim-
ulated tether is 1.50meter long, 3milimeter thick, with feature vector s = [0.6, 0.6]T ,
Hmax = 0.70meter and ∆H = 0meter. (a) the raw image obtained from follower robot
camera. (b) the tether detected points obtained from image processing (described in
Section 3.3) and used as input data by the Gauss-Newton algorithm.

1. Unbounded Residuals Removal The objective of this function is to remove
the residuals that are related to catenary points that physically do not exist, being an
extension of the tether length. Regarding Figure 3.9, for example, only the residuals
between the red and green full lines should be taken into account. Therefore, the resid-
ual related to the detected point pi = [xi, yi, 1]

T is accepted if the following conditions
are satisfied.

First, from equation (3.50), we extract the following condition:

b̂+ xi

√
1− b̂2 6= 0. (3.51)

Secondly, we bound the point depth in the scene:

ĉZi >
cZ2 (3.52)

ĉZi < L+ cZ2, (3.53)

As a reminder, L is the tether total length and the depth ĉZi is calculated from equa-
tion (3.38).

The unbounded residuals removal function is applied to the tether points presented
in Figure 3.11b and the result is shown in Figure 3.12.
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Figure 3.12: An example of unbounded residuals removal applied to tether points
depicted in Figure 3.11b. (a) the tether points are drawn in green, an example of
catenary shape estimation with ŝ = [0.5, 0.5]T is drawn in red and some residuals are
shown by black arrows. The red dashed line represents the catenary points that do not
satisfy the bounding conditions and are therefore eliminated. (b) the selected points
resulting from the unbounded residuals removal are drawn in blue.

The full red line represents the catenary points that satisfy the conditions given
by equations (3.51), (3.52) and (3.53). These equations give the coordinate of the
projection of the attachment points P1, which bounds the coordinate of the tether in
the image plane. The red dashed line represents the catenary points that do not satisfy
these conditions and that will be therefore filtered out. The selected points resulting
from the filtering are down in blue in Figure 3.12b.
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2-D Points Subsampling The residuals are not evenly distributed throughout the
tether projection. As shows Figure 3.13a, the 2-D detected points are more concen-
trated, with respect to the abscissa axis, in zones where the tether cable is closer to
the vertical. In the zone near to the tether lowest point, the points are more spaced.
This has a great impact on the residual computation since we use a vertical distance.
Algorithm 2 introduces a procedure allowing to obtain a more uniform distribution of
detected points along the tether.

The algorithm takes as input the vector of residuals rin and the matrix Tin con-
taining the tether points resulting from the unbounded residuals filtering described
previously. Tin is a 2 ×m matrix, where m is the number of input points. The algo-
rithm returns the vector rout containing the smallest residual for each abscissa, and the
matrix Tout that contains the tether points used to calculate the residuals.

Algorithm 2 2-D points subsampling

1: procedure 2DPS(rin,Tin) ⊲ inputs: residuals vector, tether points
2: i← 0, k ← 0
3: m← getColumns(Tin) ⊲ get number of measurements
4: while i < m do

5: if |Tin(0, i)−Tin(0, i+ 1)| > ǫ then ⊲ different abscissa
6: if usemin then

7: usemin ← false
8: rout(k)← rmin

9: Tout(:, k)← Tin(:, imin)
10: rmin ←∞
11: k ← k + 1
12: else

13: rout(k)← rin(i)
14: Tout(:, k)← Tin(:, i)
15: k ← k + 1

16: else

17: usemin ← true ⊲ same abscissa
18: ri ← rin(i)
19: ri+1 ← rin(i+ 1)
20: if |ri| < |rmin| then ⊲ choose the smallest residual
21: rmin ← r
22: imin ← i
23: else if |ri+1| < |rmin| then
24: rmin ← ri+1

25: imin ← i+ 1

26: i← i+ 1

27: return rout,Tout

The resulting subsampled residuals are shown in Figure 3.13b in black dots. The
number of computed residuals is reduced from 738 to 177, which also reduces the
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Jacobian matrix size and allows a faster computation of the Gauss-Newton iterations.
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Figure 3.13: An example of 2-D points subsampling applied to tether points that
were already filtered by the unbounded residuals removal function, as presented in
Figure 3.12b. (a) the input points are drawn in blue and the current catenary shape
estimation (ŝ = [0.5, 0.5]T ) is drawn in red. The unevenly tether points distribution is
demonstrated by two zoomed regions. (b) the selected points resulting from the 2-D
points subsampling are drawn in black. Only one tether point per abscissa is selected
(the one with the smallest residual).
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Robust Estimation Following the residuals subsampling, we apply a procedure of
residuals weighting called M-estimators (Pressigout, 2006, chap. 3). This procedure
aims to make the tether shape estimation more robust to detection noise (color seg-
mentation and pixel/meter conversion). The general idea is to give a higher weight to
smaller residuals, which are associated to a more reliable measure. The new residuals
vector is thus weighted by the diagonal matrix D as follows:

rM = Dr (3.54)

where

D =



w1 · · · 0

. . .

0 · · · wM


 . (3.55)

The weights wi, with i ∈ {1, ...,M} and M being the number of residuals, range in the
interval [0, 1]. They are calculated according to Huber (1981), as follows:

wi =
fM (ri)

ri
, (3.56)

where fM (ri) is the weighting function defined as (Marchand et al., 2005):

fM (ri, S) =

{
ri(r

2
i − S2)2 if |ri| < S

0 else
(3.57)

where S = 4.7σ̂ and σ̂ = 1.48Medi(|ri −Medi(ri)|) is the median absolute deviation.
Once we added a new weight matrix D, the feature vector iteration rule defined by

equation (3.42) should be updated as follows:

sk+1 = sk − λ (DJr)
+
Dr
(
sk
)
. (3.58)

Bounded Iteration The feature vector, as defined by equation (3.35), is bounded:
s ∈]0, 1[×]0, 1[. Feature vectors outside these bounds are associated to catenary pro-
jections that do not exist. Therefore, we have to ensure that the feature vector remains
inside this bounded zone throughout the iteration process.

In order to manage the boundedness of the feature vector, the function described
by Algorithm 3 is applied to each iteration step. This function takes as input the
Jacobian matrix J, the weighting matrix D, the residual vector r, the feature vector
at the current iteration sk and the matrix B that contains the bounds of the feature
vector.

The general idea of the algorithm is to reduce the gains inside matrix Λ correspond-
ing to features that are out of bounds. These gains are reduced until the feature return
to the bounds. Matrix Λ is diagonal and it is defined as follows:

Λ =



λ1 · · · 0

. . .

0 · · · λN


 , (3.59)
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where N is the size of the feature vector.

Algorithm 3 Bounded Iteration Algorithm

1: procedure BI(J,D, r, sk,B)
2: sk+1 = sk −Λ (DJr)

+
Dr
(
sk
)

3: while isOutofBounds(sk+1,B) do ⊲ if vector is out of bounds
4: i← 0
5: while i < size(sk+1) do ⊲ find feature that is out of bounds
6: if isOutofBounds(sk+1(i),B(i, :)) then
7: Λ(i, i) = 0.1Λ(i, i) ⊲ reduce the corresponding gain

8: i← i+ 1

9: sk+1 = sk −Λ (DJr)
+
Dr
(
sk
)

⊲ re-iterate

10: return sk+1

Iteration Stopping Criteria The stopping criteria for the iteration process we
choose are related to the evolution of the cost function. They are enumerated here
below.

1. If the cost function decrement is positive and smaller than the precision threshold
ǫ:

Γ
(
sk+1

)
− Γ

(
sk
)
< 0

and∣∣∣Γ
(
sk+1

)
− Γ

(
sk
)∣∣∣ < ǫ.

The found solution that minimizes the cost function is:

ŝ = sk+1.

2. If the cost function decrement is positive, the iteration process is stopped:

Γ
(
sk+1

)
− Γ

(
sk
)
> 0.

The found solution that minimizes the cost function is:

ŝ = sk.

3. If the number of iterations exceed a maximum threshold kmax:

k ≥ kmax,

where k is the number of the current iteration.
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Cost Functions Comparison The improvements we introduced to the fitting pro-
cedure modify the shape of the original cost function. Let us examine here below the
differences these improvements brought. The case of study is the cost function for a
tether whose feature vector is s = [0.6, 0.6] T , which means slackness H = 0.42meter
and orientation angle α = 37◦. The projection of this tether in the image plane is
drawn in Figure 3.9a.

The original cost function is depicted in Figure 3.14. We observe a sharp variation
at b = 0.6. This is produced by the computation of large residuals, since the remote
points (see Section 3.4.3.3) are not filtered. We note some local minima at b < 0.6 and
a → 0. Indeed, one of the solution to minimize the large residuals generated by the
remote points is to tighten the tether.

The new cost function with the modifications we propose for the improved Gauss-
Newton is depicted in Figure 3.15. It is much smoother than the original one and no
sharp variation is observed. Local minima also exist. Therefore, the use of an initial
guess of the tether shape will be important to achieve the global minimum, leading to
a correct shape fitting and parameters estimations.
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Figure 3.14: The hyperbolic tangent of the cost function of the catenary curve presented
in Figure 3.9, whose feature vector is s = [0.6, 0.6] T , the tether total length is L =
1.50m and ∆H = 0m. The hyperbolic tangent was used to saturate the highest values
of the cost function to 1. The function minimum is marked by the red star at a = 0.6,
b = 0.6.

A more detailed study of cases on tether fitting is presented in the section dedicated
to the simulation results, at the end of this Chapter. Next, we present the calculation
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Figure 3.15: The hyperbolic tangent of the improved Gauss-Newton cost function of the
catenary curve presented in Figure 3.9. The hyperbolic tangent was used to saturate
the highest values of the cost function to 1. The function minimum at a = 0.6, b = 0.6,
marked by the red star.

procedure of the tether shape initial guess.

3.4.3.5 Initial Guess of Catenary Shape for Gauss-Newton

The Gauss-Newton algorithm proposed in the previous Section is always initialized
at the starting point s0 = [0.5, 0.5]T , which is not necessarily near the solution that
minimizes the cost function. Since global convergence is not assured by the Gauss-
Newton algorithm, local minima may be found. This would lead to the algorithm
convergence but to wrong parameters estimation. In order to avoid these local minima,
an initial guess near the global minimum should be used as starting point of the Gauss-
Newton algorithm.

In the case of catenary fitting, we propose to use an initial guess based on the
following approximation (see Figure 3.16):

The projection p0 of the tether 3D lowest point P0 is approximated with the tether
lowest point detected in the image pB.

Our objective is to calculate an initial estimation, an initial guess, of the tether
shape. This is achieved by calculating a catenary projection that passes through the
tether lowest point in the image considering the approximation mentioned here above
(pB ≈ p0).
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Figure 3.16: An illustration showing the difference between the projection of the tether
3D lowest point, p0 marked by a black cross, and the tether lowest point detected
in the image, pB marked by a red dot, is highlighted. The observed tether is drawn
in green and the catenary curve corresponding to the initial guess is drawn by a red
dashed line. (a) an embedded camera view where p0 is outside of the camera field of
view. (b) another situation where p0 is inside camera field of view and pB ≈ p0.

Evaluating equations (3.36), (3.37) and (3.38) at pB ≈ p0 (ζ = D) leads to:

H = yB

√
1− b2cX2 + bcZ2

b+
√
1− b2xB

− cY2 (3.60)

and

D =
cX2 − xBcZ2

b+ xB
√
1− b2

, (3.61)

where xB and yB are the metric-coordinates of the tether lowest point in the image:
pB = [xB, yB, 1]

T .
The relation between D and H can be easily obtained evaluating equation (2.60)

at P2, yielding:

H =
1

C
[cosh(CD)− 1] (3.62)
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In order to facilitate writing, let us redefine equations (3.60) and (3.61) as

H =
G2

G3
(3.63)

and

D =
G1

G3
. (3.64)

where

G1 =
cX2 − cZ2xB

G2 = yB

(√
1− b2cX2 + bcZ2

)
− cY2G3

G3 = b+ xB
√
1− b2

Then, replacing equations (3.63) and (3.64) in (3.62) we obtain the new function

g (b) =
CG2

G3
− cosh

(
CG1

G3

)
+ 1 = 0. (3.65)

Replacing H = G2/G3 in the expression of the catenary parameter C in equation (2.17)
we obtain:

C = 2
2G2

G3
+∆H + 2L

√
G2

G3

G2

G3
+∆H

L2−∆H2

L2 −
(
2G2

G3
+∆H

)2 (3.66)

C = 2G3

2G2 +G3∆H + 2L
√
G2

G2+G3∆H
L2−∆H2

G2
3L

2 − (2G2 +G3∆H)2
. (3.67)

Replacing equation (3.67) in (3.65) yields:

g (b) = C̃G2 − cosh
(
C̃G1

)
+ 1 = 0, (3.68)

where

C̃ = 2
2G2 +G3∆H + 2L

√
G2

G2+G3∆H
L2−∆H2

G2
3L

2 − (2G2 +G3∆H)2
.

The equation (3.68) can be used to find a root value binit for the initial estimation of
the orientation parameter (b) that corresponds to a catenary that passes through pB.
The calculation of the slackness parameter (a) is obtained replacing equation (3.60) in
Eq. (3.34a):

a =
G2

G3Hmax
. (3.69)

In order to search for the root value of equation (3.68), we must use a numerical
method. Among the possible numerical solving algorithms, we use the bisection (or
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dichotomy) algorithm. We could have used other methods like an interval analysis
method. However this method requires to find bounds of the function derivative, which
is more complicated to implement. In all these methods the functions must be contin-
uous in order to avoid numerical drift generated by function derivatives that tend to
infinity.

Bounds for initial guess The root of equation (3.65) should be explored by the
dichotomy algorithm within a bounded interval b ∈ [blow, bupp] that ensures the existence
of the catenary. This interval is given by the following constraints:

1. The tether lowest point pB is in front of the robot, which means that D > 0;

2. The tether lowest point pB is below the attachment points which means H > 0
and H +∆H > 0. The constraint is H > max(0,−∆H);

3. The tether lowest point pB is between the attachment points and the catenary
shape is not degenerated, which requires that L > 2H+∆H. Taking into account
H < Hmax, the constraint is H < min(Hmax,

L−∆H
2 ).

The first constraint imposes that the catenary half-span between the tether attach-
ment points is a positive quantity: D > 0. Knowing that the tether lowest point pB

is considered on the left of the tether attachment point cP2 for the study (b > 0), we
have:

xB < x2 (3.70)

xB <
cX2

cZ2
, (3.71)

which yields
cX2 − cZ2xB > 0

and, from equation (3.64), we have:

G1 > 0.

In order to have D > 0, since G1 > 0, we get, from the denominator of equation (3.64):

G3 > 0

b+ xB
√

1− b2 > 0

Knowing that

tanα =
b√

1− b2
,

we finally obtain:

tanα > −xB.
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The first bound is thus given by:

αL1 = tan−1(−xB) (3.72)

The second constraint imposes H > 0 and H > −∆H. Let us write the slackness
lower bound inequality from equation (3.63):

H > max(0,−∆H) (3.73)

G2

G3
> max(0,−∆H) (3.74)

yB

(√
1− b2cX2 + bcZ2

)

b+ xB
√
1− b2

− cY2 > max(0,−∆H) (3.75)

Let us introduce the tether slackness lower bound as:

ξmax = max(0,−∆H).

Replacing it in equation (3.75) we obtain:

E(ξmax) tanα > F (ξmax) (3.76)

where

F = −yBcX2 + xB(ξmax +
cY2)

E = yB
cZ2 − (ξmax +

cY2)

If E > 0, equation (3.76) yields a lower bound for α:

αL2 = tan−1

(
F (ξmax)

E(ξmax)

)
. (3.77)

Otherwise, if E < 0, it yields an upper bound:

αU2 = tan−1

(
F (ξmax)

E(ξmax)

)
. (3.78)

The third constraint imposes H < L−∆H
2 and H < Hmax. From equation (3.63),

let us write the inequality that gives the tether slackness upper bound:

H < min

(
Hmax,

L−∆H

2

)
(3.79)

yB

(√
1− b2cX2 + bcZ2

)

b+ xB
√
1− b2

− cY2 < min

(
Hmax,

L−∆H

2

)
(3.80)

Let us introduce the tether slackness upper bound as:

ξmin = min

(
Hmax,

L−∆H

2

)
.
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Similarly to equation (3.76), we obtain the bounds for α as:

E(ξmin) tanα < F (ξmin) (3.81)

If E > 0, equation (3.81) yields an upper bound:

αU3 = tan−1

(
F (ξmin)

E(ξmin)

)
(3.82)

Otherwise, if E < 0, it yields a lower bound:

αL3 = tan−1

(
F (ξmin)

E(ξmin)

)
. (3.83)

The procedure that gives the upper and lower bounds for α is described by Algo-
rithm 4, which finally yields:

blow = sin (αlow) (3.84)

and

bupp = sin (αupp) . (3.85)

The definition of the bounds ensures that the root searching algorithm will find a
solution for the initial guess of the catenary shape that meets the conditions of existence
of the catenary. These conditions were discussed in Section 2.1.3 and state, in summary,
that the tether lowest point remains between the attachment points. The uniqueness
of the solution was not established but we are only interested in getting one solution
for the initial guess.

An example of the initial guess function g(b), defined by equation (3.68), is drawn
in Figure 3.17. This function was generated by a catenary curve with feature vector
s = [0.6, 0.6]T . The root of g(b) is searched inside the bounds blow = 0.54 and bupp = 1.0,
which are marked by green vertical lines. For this case, the initial guess of the catenary
shape is given by s = [0.66, 0.57]T .
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Algorithm 4 Bounds for Initial Guess

1: procedure BIG(cP2, pB, L,∆H,Hmax)
2: xB, yB ← extractCoordinates (pB)
3: cX2,

cY2,
cZ2 ← extractCoordinates

(
cP2

)

4: αlow ← 0
5: αupp ← π/2
6: αL1 ← tan−1(−xB) ⊲ constraint 1 lower bound
7: if αL1 > αlow then

8: αlow ← αL1

9: ξmax ← max(0,−∆H)
10: E ← yB

cZ2 − (ξmax +
cY2)

11: F ← −yBcX2 + xB(ξmax +
cY2)

12: if E > 0 then

13: αL2 ← tan−1
(
F
E

)

14: if αL2 > αlow then

15: αlow ← αL2 ⊲ constraint 2 lower bound

16: else

17: αU2 ← tan−1
(
F
E

)

18: if αU2 < αupp then

19: αupp ← αU2 ⊲ constraint 2 upper bound

20: ξmin ← min(Hmax,
L−∆H

2 )
21: E ← yB

cZ2 − (ξmin + cY2)
22: F ← −yBcX2 + xB(ξmin + cY2)
23: if E > 0 then

24: αU3 ← tan−1
(
F
E

)

25: if αU3 < αupp then

26: αupp ← αU3 ⊲ constraint 3 upper bound

27: else

28: αL3 ← tan−1
(
F
E

)

29: if αL3 > αlow then

30: αlow ← αL3 ⊲ constraint 3 lower bound

31: blow = sin(αlow)
32: bupp = sin(αupp)
33: return blow, bupp
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Figure 3.17: The initial guess function g(b) given by equation (3.68) for a catenary
whose feature vector is [0.6, 0.6]T . The root of g(b) is searched in the interval defined
by the green vertical lines.
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3.5 Results

We present in this Section the simulation results we obtained for tether shape es-
timation. Three methods of catenary fitting are tested: the standard Gauss-Newton
algorithm (GN), the improved Gauss-Newton without initial guess (IGN) and improved
Gauss-Newton with initial guess (IGN + IG).

First, the estimation error of the feature vector is evaluated in the entire range of
definition (s ∈]0, 1[×]0, 1[), considering non-noisy data and an infinite camera field of
view, which means that the 2-D points are generated from the theoretical projection
equation of the catenary into the image (see equation (3.36)), and that all points of the
tether are taken into account.

Next, these methods are tested in a simulation environment comprising all aspects
of tether shape estimation, from detection to fitting procedure. Two study cases where
the camera is static are presented to demonstrate the improvements our modifications
brought to catenary curve fitting and, consequently, to tether shape estimation. In
addition, to evaluate the fitting robustness, the feature vector is estimated all along a
predefined path of the camera.

3.5.1 Focus on Feature Vector Estimation Error

In this study, image tether points are generated through the catenary projection equa-
tion. The tether detection is not simulated and the camera field of view is assumed as
infinite. Then, these points are used as input for the studied fitting procedures, whose
accuracy is compared through the following error measurement:

e = |ssim − ŝ|

where ssim is the feature vector used to simulate the tether points, ŝ is the estimation
provided by the fitting procedure, and |.| is the Euclidean norm. Since the input data is
not noisy, this study allows to check the estimation error arising from the optimization
procedure itself.

The simulated tether is composed of 1000 points, which is a constant value. The
tether is 1.50meter long, the height difference between the attachment points is zero
(∆H = 0) and the maximum authorized slackness is Hmax = 0.70meter. The fitting
algorithm gain is set to λ = 0.5 (see equation (3.42)).

Figure 3.18 presents the feature vector estimation error and the exit status for
the standard Gauss-Newton (GN). This algorithm produces accurate results when the
solution is near the starting point s0 = [0.5, 0.5]T . Around b = 0.5, we observe that the
shape estimation is more accurate for low values of a-parameter and worse for large
values. This occurs because, for a same orientation angle, the slacker the tether is (a→
1), the tighter it becomes in the image. Both tether portions near the attachment points
get closer and more vertical in the image and the catenary shape is less characterized.

Analyzing Figure 3.18a, we could incorrectly conclude that the GN algorithm es-
timation error is moderately low for most of cases, particularly in the zone around
s = [0.5, 0.5]T . However, the algorithm does not converge towards the solution and
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remains stuck near the departing point, which is in the middle of the feature vector
variation range. The iteration process is interrupted at the beginning due to an increase
in the cost function or singular Jacobian computation, as shows Figure 3.18b. This be-
havior is expected because, as seen at the end of Section 3.4.3.4, the existence of large
residuals produces sharp variations in the cost function of the standard Gauss-Newton.
Moreover, the feature vector is not bounded and it may be evaluated in regions where
our catenary model is not defined.

Figure 3.19a presents the estimation error for the improved Gauss-Newton without
initial guess (IGN). This algorithm may reach the solution when 0.4 < b < 0.8. We
observe that the error increases for low values of the b-parameter. In such cases, the
cable is very tight in the image and catenary shape is not well characterized. If the
a-parameter approaches zero, the estimation accuracy becomes even worse since the
tether cable is taut. The catenary is thus degenerated into a straight line in the image.

The exit status for the IGN algorithm is depicted in Figure 3.19b. Globally, the
algorithm converges when the solution is near the starting point s0 = [0.5, 0.5]T , spe-
cially with respect to the b-parameter. The reason is that the b-parameter has a direct
influence on the amount of points to be removed due to large residuals computation
(see Section 3.4.3.3). If too many points are filtered, the iteration process cannot be
continued and the algorithm stops. These cases are signalized by the red squares in
the legend and typically occur for tight tether projections in the image (low values of
b-parameter).

Figure 3.20a presents the estimation error for the improved Gauss-Newton with
initial guess (IGN + IG). The error is kept close to zero throughout the whole plane
a, b, except for low values of a and b parameters. In these few cases, the tether is taut
(a → 0) and its projection in the image is tight (b → 0). The catenary shape in the
image plane is thus degenerated into a straight line and the fitting procedure is not
able to improve the shape estimation given by the initial guess.

Since the camera field of view is assumed to be infinite, the projection of the tether
lowest point is always present in the image plane. As a result, the approximation used to
calculate the initial guess on the tether shape and initialize the IGN + IG algorithm is
always near the solution. This greatly enhances the probability of the global minimum
to be reached. That is the reason why the IGN +IG has such a better accuracy in
comparison with the IGN (see Figures 3.19a and 3.20a).

Regarding the exit status for the IGN + IG (Figure 3.20b), the algorithm converges
in the vast majority of cases. This does not occur for some few cases of low values of
a and b parameters, as expected. There is no exit due to excessive points removal (red
squares), since the starting point is always close to the solution.

In the next Section we will study the whole fitting chain including image processing
and pixel/meter conversion. Taking into account a limited camera field of view, 3-D
projection of the tether lowest point will not always be inside the image. In these cases,
we expect the initial guess to be less accurate, nonetheless ensuring the convergence.
Moreover, we may find additional error due to image processing.
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Figure 3.18: Simulation results for the standard Gauss-Newton algorithm (GN). (a)
the feature vector estimation error is represented in color scale. (b) the algorithm exit
status is depicted in color code.
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Figure 3.19: Simulation results for the improved Gauss-Newton algorithm without
initial guess (IGN). (a) the feature vector estimation error is represented in color scale.
(b) the algorithm exit status is depicted in color code.
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Figure 3.20: Simulation results for the improved Gauss-Newton algorithm without
initial guess (IGN + IG). (a) the feature vector estimation error is represented in color
scale. (b) the algorithm exit status is depicted in color code.
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3.5.2 Study Cases in a Simulated Environment

The simulations are carried out on Gazebo (Koenig and Howard, 2004) using the UUV
(unmanned underwater vehicle) package (Manhães et al., 2016). This simulation envi-
ronment comprises all aspects of tether shape estimation, from detection to fitting.

The simulation scenario is composed of two BlueROV1 connected by a sagging or-
ange tether (see Figure 3.21). The robots are equipped with simulated pressure sensors,
frontal and rear cameras. Hydrodynamics aspects were only considered in the robots
motions, modeled through the Fossen equations (Fossen, 2011), and viscous forces of
water on the tether cable were neglected. The robot’s hydrodynamic parameters used
in the simulations are available in Aili and Ekelund (2016).

The simulated tether is composed of 150 links of 0.01m length connected by spheri-
cal ball joints. The tether is 3millimeter thick and has a total length of 1.50m and total
mass of 0.150 kg. The maximum authorized slackness is selected to be Hmax = 0.70m.

Figure 3.21: The simulation of two BlueROV 1 linked by an orange sagging tether on
Gazebo.

Three cases of tether shape estimation are studied. In the first case, all three al-
gorithms, namely GN, IGN and IGN + IG, converge to the solution. In the second
case, only the IGN + IG algorithm reaches the solution. The IGN + IG algorithm
robustness is tested in the third study case, where the follower robot executes a pre-
defined path, varying the tether slackness, orientation and height difference between
attachment points. All algorithms use the same step gain λ = 0.5 (see equation (3.42)
for the Gauss-Newton iteration process definition).

The simulation is useful to have a ground truth for the features to be compared
with their estimation. The tether slackness H results from the search for the lowest link
and the Z-coordinates of the tether attachment point on the follower. The orientation
angle α is calculated thanks to the 3-D position of the robots. The value of ∆H is
directly obtained from the difference of height between the first and last link of the
tether. The ground truth will be used in the third study case.
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Case 1 The image source and tether detected points of case 1 are presented in Fig-
ure 3.22. The tether is entirely visible in the image and its shape given by the feature
vector s = [0.40, 0.45]T , which is the solution of our minimization problem. This fea-
ture vector corresponds to a tether with slackness H = 0.28meter and orientation angle
α = 27◦.

(a) (b)

Figure 3.22: The (a) source image and (b) tether detected points of study case 1.
The tether shape is given by the feature vector s[0.40, 0.45]T , which corresponds to a
slackness H = 0.28meter and orientation angle α = 27◦.

The cost function and the steps of the standard Gauss-Newton (GN) are drawn in
Figure 3.23. As we can observe, the algorithm starting point is in the blue zone, where
the cost function values are lowest. This allows to converge quickly to the solution,
after 8 iterations. The cost function, however, is not smooth everywhere. We observe
a sharp variation around b = 0.45 due to the presence of large residuals, as previously
explained in Section 3.4.3.3.

Both IGN and IGN + IG algorithms converge to the solution, as expected. The cost
function and steps of both optimization algorithms are drawn in Figure 3.24. The cost
function is much smoother than that of the standard Gauss-Newton. No sharp variation
is observed, thanks to the function of large residuals removal (see Section 3.4.3.4). Both
starting points are near the solution (blue zone). The IGN and IGN + IG algorithms
converge after 7 and 8 iterations, respectively. Comparing IGN and GN optimizations,
we observe that both realize a large first step. Otherwise, the convergence of IGN +
IG is more gradual since the departure point is closer to the solution.

The initial and final tether shape estimation for the three studied procedures are
depicted in Figure 3.25. As expected, the estimated catenary fits the tether detected
points using any of the three methods. Notably, the tether shape initial guess is very
close to the solution.
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Figure 3.23: The descent of the GN algorithm marked by black dots. The starting
point is at s0 = [0.5, 0.5]T and the solution is at s = [0.40, 0.45]T , marked by a red star.
The cost function values are plotted in the background using the color scale depicted
on the right.
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Figure 3.24: Comparison of the descent of IGN (white dots) and IGN + IG (black
dots) algorithms. The solution is at s = [0.40, 0.45]T , marked by a red star. The cost
function values are plotted in the background using the color scale depicted on the
right.
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Figure 3.25: Catenary curve fitting problem depicted in the image plane. The tether
detected points are drawn in green dots, the tether catenary initial estimation is drawn
by a red dashed line and the final estimation is drawn by a red full line. The tether
shape estimation is achieved by the three methods: (a) GN, (b) IGN and (c) IGN +
IG algorithms. The initial guess of the tether shape is given by s0 = [0.38, 0.44]T . The
solution is at s = [0.40, 0.45]T .
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Case 2 The image source and tether detected points of case 2 are presented in Fig-
ure 3.26. The tether is also entirely visible in the image and its shape is given by the
feature vector s = [0.4, 0.6]T , which corresponds to H = 0.28meter and orientation
angle α = 37◦.

(a) (b)

Figure 3.26: The (a) source image and (b) tether detected points of study case 2.
The tether shape is given by the feature vector s[0.4, 0.6]T , which corresponds to H =
0.28meter and α = 37◦.

The cost function and the steps of the standard Gauss-Newton are drawn in Fig-
ure 3.27. The algorithm is initialized in a region with large residuals, which involves the
computation of large numerical values in the Jacobian and leads to an ill-conditioned
matrix. As a consequence, the algorithm cannot converge to the solution. It reaches
s = [0.02, 0.50]T after 172 steps and exits due to an increase of the cost function. The
final feature vector corresponds to a tight tether (a ≈ 0). The initial and final tether
shape estimations are depicted in Figure 3.29a.

The cost function and steps of the IGN and IGN+IG algorithms are depicted in
Figure 3.28. The standard starting point s0 = [0.5, 0.5]T is far away from the solution,
in the red zone. As a result, the IGN fitting procedure reaches a local minimum,
whereas IGN + IG algorithm converges to the solution. Indeed, the Gauss-Newton
algorithm does not ensure global convergence.

Without the initial guess, the IGN algorithm reaches a local minimum at s =
[0.27, 0.52]T after 7 steps. As presented in Figure 3.29b, this feature vector corresponds
to a catenary that minimizes the residuals related to the portion of the detected tether
near the robot attachment point (top middle of the image).

With the initial guess (s0 = [0.47, 0.57]T ), the IGN+IG algorithm reaches the solu-
tion after 14 steps. We observe in Figure 3.29c that the final estimation of the catenary
fits the tether detected points. The initial estimation is close to the solution and passes
through the tether lowest point in the image, as explained in Section 3.4.3.5. This
limits the number of large residuals to be filtered and helps the algorithm to converge
to the global minimum.
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Figure 3.27: The descent of a standard Gauss-Newton algorithm marked by black dots.
The starting point is at s0 = [0.5, 0.5]T and the solution is at s = [0.4, 0.6]T , marked
by a red star. The cost function values are plotted in the background using the color
scale depicted on the right. The algorithm does not reach the solution.
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Figure 3.28: Comparison of the descent of the IGN (white dots) and IGN+IG (black
dots) algorithms. The solution is at s = [0.4, 0.6]T , marked by a red star. The cost
function values are plotted in the background using the color scale depicted on the
right. The solution is only reached if an initial guess (s0 = [0.47, 0.57]T ) of the tether
shape is given.
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Figure 3.29: Catenary curve fitting problem depicted in the image plane for the three
methods studied: (a) GN, (b) IGN and (c) IGN+IG. The tether detected points are
drawn in green, the initial estimation is drawn by a red dashed line and the final
estimation is drawn by a red full line. The correct tether shape estimation is only
achieved by the improved Gauss-Newton with initial guess (IGN+IG).
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A summary with the number of computed steps and exit status of study cases
1 and 2 is given on Table 3.1 for all the three algorithms under study. The exit
code 0 corresponds to algorithm convergence and the code −1 corresponds to iteration
interrupted due to increase in cost function.

GN IGN IGN+IG

steps exit steps exit steps exit
case1

s = [0.40, 0.45]T 8 0 7 0 8 0
case2

s = [0.40, 0.60]T 172 -1 8 -1 14 0

Table 3.1: A summary of study cases 1 and 2. The exit code 0 corresponds to algorithm
convergence and the code −1 corresponds to iteration interrupted due to increase in
cost function.

Case 3 The tether shape estimation is tested in a case where the follower robot
executes a predefined path, while the three features, namely H, α and ∆H, are made
variable. Moreover, during the motion, the robot will have to cross the singularity b = 0.
At the beginning (0 − 17s), α = −45◦ and ∆H = 0.26m, the follower robot executes
a lateral motion in order to pass through the singularity α = 0◦. Then (17− 24s), the
robot goes downwards and stops when ∆H = −0.23m. At the end (24 − 35s), one
more lateral motion is executed until α = 52◦ so that the tether lowest point is outside
the camera field of view.

The value of ∆H is estimated from pressure sensors mounted on the robots, while
the tether parameters H and α are estimated through the curve fitting procedure we
propose. The evolution of the estimated and real values of these variables throughout
the executed path are depicted in Figure 3.30.

We observe that the tether shape estimation procedure yields accurate results all
along the path, except around the singularity b = 0. Some oscillations are noted in the
estimated values of H and α. This is due to the natural motion of the tether when it
is displaced by the robot. In the simulation the cable is not subject to the damping
effect of the water. Back-and-forth movements on the cable add some noise to the
estimation of H, while the swinging motion of the tether plane around the vertical is
responsible for the oscillations on α. Actually, the catenary model assumes a static
cable. Therefore, the tether shape variations caused by the cable motion are not taken
into account in our fitting procedure. The tether cable does not behave as a perfect
catenary all the time, which generates slight inaccuracies in the shape estimation.

The crossing of the singularity α = 0◦ occurs around 8 s, when we observe a poor
estimation of H and α (see Figure 3.30a). In such cases, the tether is very tight in
the image, which can be noted by examining the standard deviation of the detected
points abscissa. In such cases, instead of launching the fitting procedure, the previously
estimated values of the tether parameters can be maintained (see Figure 3.30b). Thus,
the estimated curves of H and α are flat around the singularity, instead of being
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unstable. Furthermore, the tether shape control law, that will be presented in the
next Chapter, can be used to predict the shape features evolution from the robot
motion (Laranjeira et al., 2017). This prediction can help to cross the singularity.
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Figure 3.30: Estimation and real values of the tether shape during the execution of
a path by the follower robot. (a) the fitting procedure is used during the whole path
execution. (b) during the singularity crossing (around 8 second), the fitting procedure
is stopped and the previously estimated values of the tether shape are maintained.
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3.5.3 Discussion

The improved Gauss-Newton with an initial (IGN+IG) guess has been demonstrated to
yield accurate results in tether shape estimation. The modifications proposed make the
cost function much smoother, avoiding singularities in the Jacobian computation and
allowing the algorithm to reach the solution. Moreover, the feature vector is bounded,
which ensures that the catenary projection equation is always evaluated within the
definition range of the shape parameters a and b. As soon as the initial guess provides
a fine first approximation of the tether shape, the algorithm converges to the solution
and local minima are avoided. This occurs when the tether lowest point is inside the
camera field of view.

Some enhancements on the proposed procedure of tether shape estimated can be
discussed. They are addressed here below.

Detection Improvements The catenary projection equation may be used to imple-
ment a model tracker (Marchand and Chaumette, 2005). The nonlinear minimization
process would thus start from the estimated tether shape resulting from the previous
image. This would lead to a faster computation of the estimation loop. However, the
drawback of such tracking methods is the loss of robustness in environments where there
are objects the tether can be confused with. A strategy of tracking reinitialization, with
a new the tether detection, should thus be additionally implemented.

Choice of Residual Distance Function We use a vertical distance between points
to compute the residuals. This distance is not very discriminating in terms of shape
variation when the tether is tightened in the image and its projection is similar to
two vertical line segments connected. An alternative would be to use a horizontal
distance, but the same problem would be faced in cases where the tether is taut and
its projection in the image plane approaches a horizontal line. The orthogonal distance
between the curves could be also computed. However, this increases the complexity
(and thus computing time) of the fitting procedure, since another minimization problem
included inside the estimation loop in order to find the orthogonal distance.

Optimization Algorithm Other optimization algorithms could be investigated. For
example, the feature vector boundaries could be dealt with a barrier function, as is
done in interior points methods. Moreover, inequality constraints could be added to
the problem. The information provided by the tether lowest point in the image could be
thus further explored, in addition to the initialization step. The minimizing catenary
would be constrained to pass near the detected tether lowest point in order to lead
the fitting procedure to reach the global minimum. This would be interesting in cases
where the tether lowest point projection is outside the camera field of view and the
initial guess is not close to the solution.

Tether Attachment Point Influence The first points of the detected tether could
be used to online refine the measured position of the tether attachment point cP2. This
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point has a non-negligible influence on the fitting, since it defines the departing point
of the tether in the image. It is assumed to be a constant, but, in fact, variations
on its actual position may occur. A solution would be to estimate it as an additional
parameter of the curve fitting. However, this would lead to three more derivatives and
to additional local minima in the cost function.

Additional Sensors The catenary model may be degenerated into a vertical line in
the image when the tether plane is aligned with the camera optical axis. This singularity
could be avoided through the addition of another camera that films the tether from
another point of view. Hence, this degenerated case will never occur simultaneously in
both images, and the fusion of such complementary visual information would lead to
an accurate tether shape estimation in an wider workspace.

Other sensors, such as 3-D accelerometers could be added to the tether ends and
provide additional information about its shape. The cable plane vertical orientation
and its departure angles could be estimated from the accelerometers inclination with
respect to the gravitational field. This additional data can be used together with
the visual feedback in order to produce a more robust shape estimation, namely in
complex scenes where tether detection may be less accurate. In this thesis, we assumed
that the tether is not instrumented, as it is the case with most of the tethers found
in the market. However, new products have been recently introduced where inertial
measurements units are distributed throughout the cable (Frank et al., 2013), which
are promising.

Model Improvements The cable model studied is the catenary curve, which is
adapted for sagging cable modeling. Negatively buoyant tethers are sagging cables,
and the catenary curve was used to estimate their 3-D shape from curve fitting. The
features issued from the catenary model, the slackness and orientation parameters, give
a physical and intelligible notion of the cable shape. In this thesis, the tether plane
is assumed to remain in the vertical. This degree of freedom can be integrated to the
tether model in future works. Moreover, the physical interaction between tether, robots
and surrounding water can be studied in an hydrodynamic modeling of the system.
Other models could also be investigated, such as parabolas and splines, although their
parameters reflect a less physical notion of the cable shape. Finite element models have
been recently proposed a system composed of a ROV and a cable. The main advantage
of the catenary model is the reduced number of parameters, which allows a fast and
analytical computation of the cable shape and its projection in the image. As long
as the disturbances in water are limited, the catenary model is sufficient to design a
local vision-based estimator and controller of the tether shape and regulate the relative
positions of robots inside a chain.
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3.6 Conclusions

In this Chapter, the procedure of tether 3-D shape estimation from camera feedback
was presented. First, the pinhole camera model and the procedure of tether points
detection in the image were introduced. Then, the catenary 3-D equation of the tether
cable was developed in the camera frame, and its projection in the image plane was
calculated. The tether 3-D shape is given by a feature vector that expresses the tether
slackness and orientation with respect to the robot. The objective is to estimate the
feature vector, and consequently the tether 3-D shape, from the detected points in the
image through a curve fitting process. Therefore, a Gauss-Newton-like algorithm was
used to fit the catenary projection to the tether detected points and thus estimate its
3-D shape.

Four new functions were added to the standard Gauss-Newton algorithm in order
to improve the fitting procedure performance. Three residual filtering functions were
introduced and used to avoid singularities in the Gauss-Newton Jacobian, speed up its
computation, and to enhance the algorithm robustness to detection noise. The fourth
function aims to bound the feature vector throughout the iteration process. Moreover,
an initialization heuristic was introduced in order to obtain a starting point closer to
the solution and hence avoid local minima.

The tether shape estimation procedure was validated in simulations and it has been
shown to produce accurate results. The advantage of the simulation is to provide a
ground truth to check the validity of the algorithm. Experimental results on real images
were carried out with terrestrial robots in Laranjeira et al. (2017). These experiments
have shown the robustness of the algorithm in presence of light change and detection
noise. The proposed improvement functions added to the standard Gauss-Newton
algorithm (GN) make the cost function much smoother, avoiding singularities in the
Jacobian computation. The algorithm initialization heuristic has been shown to ensure
the global minimum is reached as soon as the tether lowest point projection is visible in
the image. Possible improvements in tether detection and shape estimation procedures
were also addressed and the use of alternative methods and sensors were discussed.



Chapter 4

Tether Shape Control

In this Chapter the control scheme used to regulate the tether shape from visual feed-
back is introduced. We propose a new visual servoing scheme for parametric deformable
objects. This new vision based control is innovative in two ways: firstly because it deals
with deformable objects, secondly because the object is linked to the robot and its de-
formation is directly induced by the robot motion itself.

We will see in the literature survey why only a few research work on visual servoing
deals with deformable objects, whereas the literature dealing with rigid objects is very
extensive. We will especially point out the differences between the control of rigid
objects and deformable objects shape. Furthermore, only a few works envision the
case where the objects are directly attached to the robot and modified by the robot’s
motion.

Next, the general control scheme is presented: a low level controller based on IMU
(inertial measurement unit) data is dedicated to high speed control of the pitch and
roll and a high level controller is designed for the positioning of the follower robot with
regards to tether shape.

We will show how the standard visual servoing scheme, proposed by Chaumette and
Hutchinson (2006, 2007), can be adapted to control a robot relatively to deformable
objects linked with it. Hence we will develop the equations of our visual servoing
control scheme based on the catenary model of the tether and the motion of the tether
attachment points.

Firstly, an interaction matrix related to the follower robot motion with regards
to the catenary features variation is established. Preliminary results on tether shape
control obtained with terrestrial robots are presented.

Secondly, keeping in mind that both leader and follower are equipped with vision
sensors, it follows another symmetrically built interaction matrix related to the leader
point of view. We will show that the fusion of both controllers allows to fully constrain
the pair of robots. The catenary-based interaction matrices are then used to build
different proportional control laws: simple stack of matrices and hierarchical control
schemes. These controllers are tested in simulation.

Finally, the results are discussed and concluding remarks are given.

109
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4.1 State of the Art on Vision-Based Control

In this thesis, we want to use the cameras embedded on the robots to estimate and
control the shape of the tether. The use of visual information to control the pose of
an object in the camera frame through the movements of a robot is part of the visual
servoing framework of study (Shirai and Inoue, 1973; Weiss et al., 1987; Feddema and
Mitchell, 1989; Chaumette and Hutchinson, 2006, 2007). In underwater applications,
visual servoing has been used in a wide range of situations such as station keeping
from the observation of landmarks in the sea bottom (van der Zwaan et al., 2002),
alignment and tracking with respect to airplane black box (Prats et al., 2012), pipeline
tracking (Krupinski et al., 2015), autonomous docking (Park et al., 2009) and valve
tuning (Carreras et al., 2015).

In this section we will give details about some uses of visual servoing that can be
applied to the pose control of rigid objects as well as to the shape control of deformable
objects, which enters more specifically in our framework of study. More details about
the visual servo control methodology will by given in Section 4.3, where the visual
command aspects of the thesis are addressed.

4.1.1 Rigid Objects

The objective of vision-based control, or visual servo control, is to regulate the pose
of a robot in order to reach 2-D desired image features or 3-D desired geometrical
features (Espiau et al., 1992; Chaumette and Hutchinson, 2006, 2007). This is achieved
by minimizing an error function typically defined by

e(t) = s(m(t),a)− s∗. (4.1)

The vector m(t) contains some measurements made on the image (e.g. the tether de-
tected points) while the vector a contains some additional knowledge about the system,
as camera intrinsic parameters and 3-D models of objects in the scene(Chaumette and
Hutchinson, 2006). This information is used to compute the feature vector s whose
desired values are stored in s∗, which is supposed to be constant. The most straightfor-
ward approach to regulate the visual features towards the desired values is to design a
velocity controller. In order to do so, it is necessary to know the relationship between
the time variation of s and the camera velocity vc:

ṡ = Lsvc, (4.2)

where Ls is called the interaction matrix.

Visual servoing is used to regulate a wide range of visual primitives (also called
visual features). First works addressed the use of image features composed of a set of
image point coordinates (see Figure 4.1a) which have to reach a particular value in the
image in order to achieve the specified task (Allen et al., 1993; Feddema et al., 1991;
Hashimoto, 1993; Papanikolopoulos et al., 1993). This approach was then generalized
to more complex visual features defined upon the projection in the image of geometrical
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primitives such as lines, spheres and cylinders (Chaumette, 1994). These works were
concerned with known and simple objects. They assumed that the objects in the scene
can be expressed with simple geometrical features (points, straight lines, ellipses etc.).
The group of objects that these methods can be applied to is thus limited.

(a) (b) (c)

(d) (e)

Figure 4.1: Example of visual servo control on rigid and articulated objects. (a) an
experiment of positioning in front of a square extracted from Espiau et al. (1992).
Detected feature points in large dots and their desired positions are drawn in small
white dots. (b) an example of an amorphous planar shape used to validate the use of
image moments in visual servoing; extracted from Tahri and Chaumette (2003). (c)
an example of shape alignment using a technique of contour fitting to estimate object
feature points to be used in visual servoing (extracted from Yazicioglu et al. (2009)).
The feature points trajectories are drawn in green and blue lines. (d) an example of
visual servoing used to regulate the robot’s pose with respect to a rigid object whose
CAD model is known (from Comport et al. (2004)). (e) another similar example but
applied to articulated objects (from Comport et al. (2007)).

Positioning tasks through 2-D visual servoing with respect to objects of unknown
shape was achieved in Collewet and Chaumette (2002) and Dune (2009). In Collewet
and Chaumette (2002), the object was assumed to be planar and motionless and the
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proposed method was based on the use of points as visual features. The object was
modeled by a triangle formed by three points extracted from the image. The task was
then executed in two steps: first, the object is maintained in the camera field of view
and then the positioning task is performed so that the triangle base length and height
are maximized and the object desired position is achieved. The image moments were
also investigated in visual servoing positioning tasks with respect to planar objects of
unknown shape (Tahri and Chaumette, 2003), as presented in Figure 4.1b. A method
to determine the analytical form of the interaction matrix relating the camera velocity
to any image moment time variation was presented in Chaumette (2004). The visual
features were selected by combinations of moments and presented nice decoupling and
stability properties. However, this visual servoing scheme is adequate in cases where
it is possible to consider that the object is planar and that the object and the camera
plane are parallel at the desired position. The obtained behavior was satisfactory for
small displacements, but could be unsatisfactory for large displacements around the
camera axes Chaumette (2004).

More recently, algebraic curves were also applied to shape alignment tasks in visual
servo control (Yazicioglu et al., 2009), as it is illustrated in Figure 4.1c. The boundary of
planar objects of unknown shape were modeled by algebraic equations obtained through
the regularized 3L fitting algorithm (Sahin and Unel, 2004). These algebraic equations
were then decomposed into a unique sum of product of lines, whose intersection were
used as feature points in a visual servoing control scheme.

If the object is known, then its model can be used to perform positioning tasks
(see an example in Figure 4.1d). This model can be a CAD (Computer-Aided Design)
model (Lowe, 1992; Gennery, 1992; Comport et al., 2004) or a 2D template of the
object (Kervrann and Heitz, 1998). In Marchand et al. (1999), polyhedral models
were used to approximate the shape of known objects. A visual tracking based on the
estimation, between two successive images, of a 2D global affine transformation was
used to maintain the object in sight and the coordinates of the model corners where used
as features in the visual servoing control scheme. This model-based approach evolved
and was also applied to more complex, articulated objects (Nickels and Hutchinson,
2001; Comport et al., 2007) as presented in Figure 4.1e.

The visual servo control methods presented above were applied to the control of the
robot’s pose with respect to rigid or articulated objects that were not attached to the
robot and could move independently in the space. Therefore, such approaches seem not
to be adapted to tether handling, where the cable itself is used as a visual feature, since
the tether is attached to the robot and its 3-D shape changes with the robot motion.
This type of visual servoed task where the object deformation is taken into account is
addressed in the next subsection.

4.1.2 Deformable Objects

The feedback control of soft object deformations has many applications in a wide range
of fields, such as medical robotics for the manipulation of soft tissues (Mallapragada
et al., 2011; Torabi et al., 2009), the automated food processing for shaping compliant
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food materials (Wang and Hirai, 2011; Pettersson et al., 2011), 3C (Computers, Con-
sumer Electronics and Communications) industry for cable positioning (Wakamatsu
et al., 2006; Bretl and McCarthy, 2014), and the garment industry for folding fab-
rics (Bell, 2010). To servo-control deformations, a robotic system must continuously
measure the object’s configuration, typically with a vision sensor, and use its feedback
data to compute a trajectory that deforms the object into a desired shape. This type of
manipulation task aims to achieve a desired object shape, an approach that contrasts
with standard visual servoing on rigid objects, where the servo loop is formulated in
terms of the robot’s desired pose with respect to the object.

Contrary to research studies on visual servoing of rigid objects, there does not exist
many research work on visual servoing on deformable objects. Actually, some shape
parametrization of deformable objects is required in order to achieve visual servoing,
which can be a difficult challenge.

The active deformation control of compliant objects by robot manipulators was ad-
dressed in Navarro-Alarcon et al. (2013a) and Navarro-Alarcon et al. (2013b), where
geometric visual features such as points, angles and curvatures were used to automati-
cally deform soft objects toward a desired target shape (see Figure 4.2a). Only objects
that exhibit or can be modeled based on purely elastic deformation were considered. A
feature vector that expresses the desired deformation (a desired angle or curvature) is
built from the observation of points of interest of the object. The time derivative of this
feature vector is then related to the manipulator end-effector velocity by a deformation
Jacobian matrix. A velocity controller was thus designed in order to bring the object
to the desired state of deformation.

Since the proposed method was used to handle objects of unknown shape in a
model-free approach, the deformation Jacobian matrix is unknown. It is numerically
computed through the Broyden update rule (Chaumette and Hutchinson, 2007) at
the control algorithm initialization and at each loop iteration. Besides the fact that
the proposed method is only adapted to elastic deformation, other limitations were
highlighted. The online estimation method presented requires slow motion of the robot
manipulators, low-pass filtering of the observation points, and small control gains in
order to provide smooth deformation trajectories.

An improved version of this controller was proposed in Navarro-Alarcon et al.
(2014), that combined a minimum of offline information with online adaptation of de-
formation parameters. An analytical solution for the deformation Jacobian matrix was
also proposed, which contrasts with the previous purely numeric algorithm. Moreover,
the earlier approach only considers the affine camera model, whereas in this updated
version the authors presented the complete solution to estimate the deformation Jaco-
bian matrix with perspective camera model.

An innovative representation of the object’s shape was introduced in Navarro-
Alarcon and Liu (2018), where the closed-loop deformation task was based on a trun-
cated Fourier series of 2-D image contours (see Figure 4.2b).
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(a)

(b)

(c)

Figure 4.2: Some examples of visual servoing on deformable objects. (a) shape control
of a sponge with current and desired shape feature drawn in red and green, respectively.
Initial shape on the left-hand side and final shape on the right-hand side. Extracted
from Navarro-Alarcon et al. (2013b). (b) manipulation of an uterus model though
visual feedback where the object contour is modeled by a truncated Fourier series. The
desired contour is drawn in red and the figure was extracted from Navarro-Alarcon and
Liu (2018). (c) the same technique of shape modeling through Fourier series applied
to 1-D objects. Image extracted from Zhu et al. (2018).

This approach contrasts with previous methods that typically use the displacements
of feature points to define the deformation task (reach a desired angle or curvature).
The controller design relied on an explicit shape servo loop by feeding back a vector of
Fourier coefficients. This design provided more flexibility for the description of the feed-
back shape and its target configuration (the desired contour can be roughly sketched
on a screen), and allowed the manipulation of soft objects with unstructured surfaces
without special fiducial markers. To avoid the full parametric identification of the ob-
ject’s model, an online algorithm that approximates the deformation properties was
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proposed. This algorithm iteratively re-calibrates an approximated linear deformation
model computed from multiple data points collected along the local trajectory. The
presented method has some limitations. First, the segmentation of the manipulated
object may be complicated to perform for scenes with poor illumination, similar back-
ground/object colors or blurred edges. Similarly to other model-free approaches, this
method is unable to determine whether a final target shape is physically reachable or
not before the task is performed. Although the method does not require to use fiducial
markers, it does need to observe one clearly distinguishable feature point to define the
origin of the feedback contour (the authors used the position of the static gripper). It
must be also noticed that since the estimator computes a linearized model that is valid
only locally, a single approximation cannot, in general, be used to model the whole
properties of the object. Finally, although the design of the robot motion controller is
not restricted to plane motions, the proposed method can only control 2-D image pro-
jections of the observed shapes. An application to linear deformation on flexible cables
was recently reported in Zhu et al. (2018). An example is depicted in Figure 4.2c.

4.2 General Control Scheme

In this thesis, we assume that the robots are horizontal, i.e., with a regulation of pitch
and roll to zero. We assume that the roll and pitch angles are regulated by a low level
controller or mechanically stabilized. These degrees of freedom will be thus excluded
from the visual servoing control scheme. The general scheme of the vision-based tether
shape control proposed in this thesis is depicted in Figure 4.3.
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shape
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servoing
control
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PID control

thrust
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IMU
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Motors
PWM
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20 Hz
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+

−
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Figure 4.3: Chart flow of the vision-based tether shape control scheme. Details about
the visual servoing control loop (blue frame) are given in Figure 4.4.
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a catenary fitting algorithm. Then, the cost function value is used to calculate a
fitting quality index. If the shape estimation is not accurate, the tether features are
predicted from the previous command velocities and interaction matrix evaluation. If
the shape estimation is enough accurate, the error vector between current and desired
features are computed. Next, the interaction matrix and the new command velocities
are calculated before sending them to the embedded micro-controller. The calculation
of the interaction matrix is detailed in the following Section.

4.3 Catenary-Based Interaction Matrices

The objective of this Section is to express the velocities of the follower robot as a
function of features extracted from the catenary model of the tether, i.e., its slackness,
orientation, and height difference between attachment points. As explained in previous
Section, the tether slackness and orientation are estimated thanks to image fitting
techniques whereas the attachment points height difference is calculated from depth
sensors feedback.
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Figure 4.5: Figure 3.1 is reproduced to remind the features definition. (a) top view
and (b) side view.
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The catenary features (see Figure 4.5) from the follower robot side, as introduced
in Chapter 3 in equations (3.34a) and (3.34b), are noted

a2 =
H2

Hmax
(4.3)

b2 = sinα2, (4.4)

and range in the interval ]0, 1[. In addition to these features, we add a third one related
to ∆H2:

d2 =
∆H2 +∆Hmax

2∆Hmax
(4.5)

This new feature is also normalized and ranges in the interval ]0, 1[. If P1 is above P2,
then d2 ∈ [0.5, 1] else d2 ∈ [0, 0.5], which means that ∆H2 ∈ [−∆Hmax,∆Hmax].

We then define the feature vector as:

s2 =



a2
b2
d2


 . (4.6)

Similarly, from the leader robot side, we can set the feature vector as:

s1 =



a1
b1
d1


 , (4.7)

where a1 =
H1

Hmax
, b1 = sinα1 and d1 =

∆H1+∆Hmax

2∆Hmax
.

From equations (2.87) and (2.88) in Chapter 2, we have the relation between the
robots velocities and the variation of the tether attachment points relative position:

˙2P1 =




˙2X1
˙2Y1
˙2Z1


 = Tr1,2

r1v +Tr2,2
r2v (4.8)

˙1P2 =




˙1X2
˙1Y2
˙1Z2


 = Tr1,1

r1v +Tr2,1
r2v.

Now, we need to find the relationship between the feature vector time derivative and
the coordinates of the attachment points time derivative. We will conduct the calcu-

lation from the follower side using ṡ2 =
[
ȧ2, ḃ2, ḋ2

]T
and ˙2P1 =

[
˙2X1, ˙2Y1, ˙2Z1

]T
. The

expression regarding the leader robot side will be obtained symmetrically.
We start the calculation with

2P1 =



2X1
2Y1
2Z1


 =



(2D2 +∆D2) cosα2

(2D2 +∆D2) sinα2

∆H2



F2

=



(2D2 +∆D2)

√
1− b22

(2D2 +∆D2)b2
2d2∆Hmax −∆Hmax



F2

. (4.9)
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We know from Figure 2.10 that:

sinα2 = b2 =
2Y1

2D2 +∆D2
(4.10)

cosα2 =
√
1− b22 =

2X1

2D2 +∆D2
. (4.11)

The values of a2 and b2 are obtained from the vision system, and d2 from the depth
sensors. The value of D2 is obtained thanks to the following equation:

D2 =
1

C
cosh−1 (Ca2Hmax + 1) , (4.12)

which states that P2 belongs to the catenary, as introduced by equation (2.13) in
Section 2.1.2.

The value of D2 +∆D2 is obtained thanks to the equation:

D2 +∆D2 =
1

C
cosh−1 (C (a2Hmax + 2d2∆Hmax −∆Hmax) + 1) , (4.13)

which states that P1 belongs to the catenary, as introduced by equation (2.14).
Let us differentiate equation 4.9:

˙2P1 =




[
Ḋ2 + (Ḋ2 + ∆̇D2)

]√
1− b22 − (2D2 +∆D2)

b2ḃ2√
1−b2

2[
Ḋ2 + (Ḋ2 + ∆̇D2)

]
b2 + (2D2 +∆D2)ḃ2

2ḋ2∆Hmax




F2

(4.14)

=




[
Ḋ2 + (Ḋ2 + ∆̇D2)

]
2X1

2D2+∆D2
− 2Y1

ḃ2√
1−b2

2[
Ḋ2 + (Ḋ2 + ∆̇D2)

]
2Y1

2D2+∆D2
+ (2D2 +∆D2)ḃ2

2ḋ2∆Hmax




F2

(4.15)

We then need to explicit the derivative of the features a2, b2 and d2 as function of
˙2X1, ˙2Y1 and ˙2Z1.

Expression of ḋ2 as function of ˙2X1, ˙2Y1 and ˙2Z1

From equation (4.5), we directly have:

ḋ2 =
˙∆H2

2∆Hmax
=

˙2Z1

2∆Hmax
(4.16)

Expression of ḃ2 as function of ˙2X1, ˙2Y1 and ˙2Z1

From the first two lines of the matrix given in equation (4.15) we get:

˙2X1 = (Ḋ2 + (Ḋ2 + ∆̇D2))
√
1− b22 − (2D2 +∆D2)

b2ḃ2√
1− b22

(4.17)

˙2Y1 = (Ḋ2 + (Ḋ2 + ∆̇D2))b2 + (2D2 +∆D2)ḃ2 (4.18)
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which leads to:

2Ḋ2 + ∆̇D2 =
√

1− b22 ˙2X1 + b2 ˙2Y1 =
2X1

˙2X1 +
2Y1 ˙2Y1

2D2 +∆D2
(4.19)

ḃ2 =

√
1− b22

2D2 +∆D2

[
−b2 ˙2X1 +

√
1− b22 ˙2Y1

]
(4.20)

Expression of ȧ2 as function of ˙2X1, ˙2Y1 and ˙2Z1

From the definition of parameter a2 in equation (4.3) we obtain:

ȧ2 =
Ḣ2

Hmax
(4.21)

The equation (4.19) is useful to get Ḣ2 as a function of the coordinates derivatives
˙2X1, ˙2Y1 and ˙2Z1 because Ḋ2 and ∆̇D2 depend on H2 and ∆H2.
From equation (4.12) we have

CH2 = [cosh(CD2)− 1] . (4.22)

The differentiation of this equation yields:

Ḋ2 = p2Ḣ2 + q2 ˙∆H2 (4.23)

with

p2 =
C + LD2

∂C
∂H2

C sinh(CD2)
(4.24)

q2 =
LD2

∂C
∂∆H2

C sinh(CD2)
(4.25)

LD2
= H2 −D2 sinh(CD2) (4.26)

From equation (4.13) we have:

C (H2 +∆H2) = [cosh(C(D2 +∆D2)− 1] . (4.27)

The differentiation of this equation yields:

Ḋ2 + ˙∆D2 = u2Ḣ2 + v2 ˙∆H2 (4.28)

with:

u2 =
C + L∆D2

∂C
∂H2

C sinh(C(D2 +∆D2))
(4.29)

v2 =
C + L∆D2

∂C
∂∆H2

C sinh(C(D2 +∆D2))
(4.30)

L∆D2
= H2 +∆H2 − (D2 +∆D2) sinh(C(D2 +∆D2)) (4.31)
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The partial derivatives of the catenary C parameter are calculated from differenti-
ation of equation (2.16):

Ċ(H2,∆H2) =
∂C

∂H2
Ḣ2 +

∂C

∂∆H2

˙∆H2. (4.32)

The expression of the partial derivatives ∂C
∂H2

and ∂C
∂∆H2

are given in appendix D.

Finally, combining equations (4.19), 4.21, (4.23) and (4.28) leads to:

2Ḋ2 + ˙∆D2 = (u2 + p2)Ḣ2 + (v2 + q2) ˙∆H2 (4.33)

ȧ2 =
1

(u2 + p2)Hmax

(
2X1

˙2X1 +
2Y1 ˙2Y1

2D2 +∆D2
− (v2 + q2) ˙2Z1

)
(4.34)

Catenary Interaction Matrix

In summary, we can write equations (4.34), (4.20) and (4.16) as:

ȧ2 =
1

(u2 + p2)Hmax

[√
1− b22, b2, −(v2 + q2)

]



˙2X1
˙2Y1
˙2Z1


 (4.35)

ḃ2 =

√
1− b22

2D2 +∆D2

[
−b2,

√
1− b22, 0

]



˙2X1
˙2Y1
˙2Z1


 (4.36)

ḋ2 =
1

2∆Hmax

[
0 0 1

]



˙2X1
˙2Y1
˙2Z1


 , (4.37)

where the expressions of b2 and
√
1− b22 were given in equations (4.10) and (4.11).

Rewriting equations (4.35), (4.36) and (4.37) in matrix form yields:



ȧ2
ḃ2
ḋ2


 = M2




˙2X1
˙2Y1
˙2Z1


 (4.38)

with

M2 =




√
1−b2

2

(u2+p2)Hmax

b2
(u2+p2)Hmax

− v2+q2
(u2+p2)Hmax

−b2
√

1−b2
2

2D2+∆D2

1−b2
2

2D2+∆D2
0

0 0 1
2∆Hmax




Introducing equation (2.87) into (4.38) we obtain:

ṡ2 =



ȧ2
ḃ2
ḋ2


 = Lr1,2

r1v + Lr2,2
r2v, (4.39)
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with

Lr1,2 = M2Tr1,2

Lr2,2 = M2Tr2,2.

Using the twist matrix (see appendix C), we have:

Lr1,2 = −M2Tr2,2
r2Vr1

Lr1,2 = −Lr2,2
r2Vr1 ,

which allows us to rewrite equation (4.39) as follows:

ṡ2 =



ȧ2
ḃ2
ḋ2


 = Lr2,2 (

r2v − r2Vr1
r1v) , (4.40)

The matrices Lr1,2 and Lr2,2 are called interaction matrices and link, respectively,
the velocities of leader (r1) and follower (r2) robots with the time derivative of the
feature vector s2. Symmetrically, we have:

ṡ1 =



ȧ1
ḃ1
ḋ1


 = Lr2,1

r2v + Lr1,1
r1v = Lr2,1 (

r2v − r2Vr1
r1v) (4.41)

with

Lr2,1 = M1Tr2,1

Lr1,1 = M1Tr1,1

Lr1,1 = −M1Tr2,1
r2Vr1 = −Lr2,1

r2Vr1

Generalizing equations (4.39) and (4.41), we can write, for i ∈ {1, 2}, that:

ṡi =



ȧi
ḃi
ḋi


 = Lr2,i

r2v + Lr1,i
r1v (4.42)

with

Lr2,i = MiTr2,i (4.43)

Lr1,i = MiTr1,i

and

Mi =




√
1−b2i

(ui+pi)Hmax

bi
(ui+pi)Hmax

− vi+qi
(ui+pi)Hmax

−bi
√

1−b2i
2Di+∆Di

1−b2i
2Di+∆Di

0

0 0 1
2∆Hmax



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Interaction Matrices for 4 Degrees of Freedom

In order to avoid the control of roll and pitch rotations through visual servoing, but
rather to let a low level control scheme regulate them, we choose to remove these degrees
of freedom from the interaction matrix.

As a matter of fact, the calculation of the pseudo-inverse of the complete interaction
matrix involves a minimization of the norm of r2v = [r2νx,

r2νy,
r2ν2,

r2ωx,
r2ωy,

r2ωz]
T ,

and of the norm of ‖s2 − Lr2,2
r2v‖, which can generate values for ωx and ωy that may

disturb the low level control used for the stabilization of the vehicle. Therefore, instead
of considering all the degrees of freedom of the robot, we can use a trimmed interaction
matrix:



ȧ2
ḃ2
ḋ2


 =




√
1−b2

2

(u2+p2)Hmax

b2
(u2+p2)Hmax

− v2+q2
(u2+p2)Hmax

−b2
√

1−b2
2

2D2+∆D2

1−b2
2

2D2+∆D2
0

0 0 1
2∆Hmax






−1 0 0 r2Y1
0 −1 0 −r2X1

0 0 −1 0







r2νx
r2νy
r2νz
r2ωz




with the new interaction matrix L3×4
r2,2, excluding the roll and pitch of the robot:

L3×4
r2,2 =




√
1−b2

2

(u2+p2)Hmax

b2
(u2+p2)Hmax

− v2+q2
(u2+p2)Hmax

−b2
√

1−b2
2

2D2+∆D2

1−b2
2

2D2+∆D2
0

0 0 1
2∆Hmax






−1 0 0 r2Y1
0 −1 0 −r2X1

0 0 −1 0




that yields, in its developed form:

L3×4
r2,2 =


−

√
1−b2

2

(u2+p2)Hmax
− b2

(u2+p2)Hmax

v2+q2
(u2+p2)Hmax

r2Y1

√
1−b2

2

(u2+p2)Hmax
− r2X1

b2
(u2+p2)Hmax

b2
√

1−b2
2

2D2+∆D2
− 1−b2

2

2D2+∆D2
0 r2Y1

−b2
√

1−b2
2

2D2+∆D2
− r2X1

1−b2
2

2D2+∆D2

0 0 − 1
2∆Hmax

0



.

(4.44)

In a similar way, we can calculate the matrices L3×4
r2,1, L

3×4
r1,2 and L3×4

r1,1, removing the roll
and pitch degrees of freedom from matrices Tr2,1, Tr1,2 and Tr1,1. A procedure of test
for the interaction matrices is presented in appendix F.

Singularity on the Interaction Matrix

The maximum rank of matrix L3×4
r2,2 is 3. The minimum rank of matrix L3×4

r2,2 is 2, since
there are at least two independent columns including the third one. The fourth column
is a linear combination of the first and second columns. Therefore, the rank is reduced
to 2 when the first and second columns are linked, which occurs when the determinant
of the submatrix L3×4

r2,2
(1 : 2, 1 : 2) is zero:

√
1− b22

(u2 + p2)Hmax(2D2 +∆D2)
= 0,
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which corresponds to

1− b2 = 0. (4.45)

The equation (4.45) represents the cases where b = sinα = ±1, thus α = ±90◦
and the tether plane is perpendicular to the robot longitudinal plane. In such cases,
the first column of the interaction matrix is zero. This produces a loss of control of
the longitudinal velocity. As discussed in Section 3.4.3.2, these cases will be avoided
since the tether is less visible (limited camera field of view) and it risks of becoming
entangled with the robot.

Analyzing the matrix L3×4
r2,2

we note that it can be singular due to infinite values, if:

2D2 +∆D2 = 0 (4.46)

u2 + p2 = 0 (4.47)

The singularity given in equation (4.46) corresponds to a tether whose span is zero
(attachments points on the same vertical), which is not possible.

The equation (4.47) corresponds to a singularity that never occurs because u2+p2 6=
0 and keeps a negative sign. If u2+p2 were to become zero, it would mean that the span
between the tether attachment points could be changed whatever the tether slackness,
which is impossible (see equation (4.33)).

Another explanation can be given by looking at equation (4.33), and considering a
fixed ∆H2, which yields:

2Ḋ2 + ˙∆D2 = (u2 + p2)Ḣ2.

If we extend the catenary span, 2D2 +∆D2 increases, and the slackness H2 decreases,
which means that 2Ḋ2 + ˙∆D2 is positive and Ḣ2 is negative. Therefore, (u2 + p2) < 0.
Conversely, if we reduce the catenary span, 2D2+∆D2 decreases and the slackness H2

increases, which means that 2Ḋ2 + ˙∆D2 is negative and Ḣ2 is positive, also leading to
(u2 + p2) < 0.
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4.4 Follower Robot Control using Tether Visual Feedback

In this Section, we present the vision-based control scheme used to command the fol-
lower robot motion in order to regulate the tether shape. As introduced in Chapter 2,
the leader robot is free to explore its surroundings, while the follower robot main task
is to ensure, from its onboard camera feedback, that the tether cable does not hamper
the leader movements. Therefore, the follower must maintain the cable slack enough
not to pull the leader. Moreover, it must keep a desired orientation between tether
and onboard camera in order to ensure that the tether is well visible in the image and
that its shape can be accurately estimated from the curve fitting algorithm presented
in Chapter 3. The tether attachment points difference of height must also be regulated,
since it impacts the tether slackness and shape in the image.

Here, only the follower robot frontal camera is used in the visual servoing control
scheme (both leader and follower cameras will be used in Section 4.5). The feature
vector to be regulated from the follower robot motion is defined as:

s2 =



a2
b2
d2


 =




H2

Hmax

sinα2
∆H2+∆Hmax

2∆Hmax


 .

The error vector e2 between the current and the desired feature vector s∗2 is defined as:

e2 = s2 − s∗2. (4.48)

The error vector time derivative is therefore:

ė2 = ṡ2. (4.49)

As explained in the previous Section, the roll and pitch angles are assumed to be
fixed thanks to a low level control or to a mechanical self-stabilization. We use hence
3 by 4 interaction matrices, removing the columns related to roll and pitch motions of
the robot. For example, the interaction matrix L3×4

r2,2
, given by the equation (4.44), is

a 3 by 4 matrix that links the variations of the feature vector s2 to the follower robot
velocities r2v3×4 = [νx, νy, νz, ωz]

T . In order to simplify the writing, we will note from
now on:

Lr2,2 = L3×4
r2,2

Lr1,2 = L3×4
r2,2

Lr2,1 = L3×4
r2,2

Lr1,1 = L3×4
r2,2

r2v = r2v3×4

r1v = r1v3×4.

In the sequel, preliminary results with 2-D terrestrial robots are given. Then a
number of tether shape control schemes for 3-D underwater robots are tested in simu-
lation. Two types of situations are addressed. First, the leader robot is stopped and the
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follower robot brings the tether from its initial to its desired shape. Second, the leader
robot executes a predefined path and the follower robot must maintain the tether at
its desired shape. The leader robot velocities may be considered or not in the follower
robot control law.

The simulations are carried out on Gazebo (Koenig and Howard, 2004). In the
case of underwater robots, the UUV (unmanned underwater vehicle) package (Manhães
et al., 2016) is used, as described in the previous Chapter. The robots are equipped with
simulated pressure sensors, frontal and rear cameras. The simulated tether is 1.50meter
long and 3millimeter thick. The maximum slackness is set at Hmax = 0.70meter. The
maximum attachment point difference of height is set at ∆Hmax = 0.50meter. The
control loop runs at a rate of 30Hz.

4.4.1 Preliminary Results with Terrestrial Robots

In this Section we present a summary of our preliminary research results on tether
shape control using terrestrial robots. More details are given in appendix E.

First, we introduce the work that was presented at the 2017 IEEE International
Conference on Robotics and Automation (ICRA 2017), whose title is Catenary-based

Visual Servoing for Tethered Robots. This work addressed the use of catenary-
model-based features to achieve visual servoing of an umbilical linking two terrestrial
robots.

Second, we introduce another work that compared catenary-based with image-
based visual servoing controllers. More details are available in the article entitled
Tether Shape Control through Catenary-Model-Based Visual Servoing, in
appendix E.

4.4.1.1 Catenary-Based Visual Servoing for Terrestrial Robots

The new visual servoing scheme introduced for catenary shaped deformable objects was
tested on terrestrial robots to control the tether parametric shape by properly moving
its fixation point.

The interaction matrix is a full 2×6 matrix (see equation (23) of the corresponding
paper in appendix E), assuming that the tether attachment points are at the same
height. Only the features from the follower camera image view were taken into account.

The experimental system is composed of two terrestrial mobile robots of the same
motion capabilities linked with a slack rope.

One simulation and two real experiments were carried out in order to validate the
control law with two Turtlebots (Gerkey and Conley, 2011) with 2 DOF (translation
vx and rotation wz). They were equipped with an onboard RGBD camera and linked
by a 1.4 meter long and 3 millimeter thick orange rope. The video frame rate was fixed
to 10Hz. The same robot motion capabilities, rope length, thickness and maximum sag
were used in simulation and real experiments.
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Simulation and Experimental Results One simulation and two real experiments
are presented in order to validate the control law. Two Turtlebots Gerkey and Conley
(2011) with 2 DOF (translation νx and rotation ωz) are used as experimental robots.
They are equipped with a Kinect device and linked by a 1.4 meter long and 3 millimeter
thick orange rope (see Figure 4.6). The rope maximum sag is Hmax = 0.40m, corre-
sponding to its attachment point’s height. The servoing algorithm runs in the follower
robot computer, which is equipped with a Intel Core i5-2410M @ 2.3 GHz processor.
The video frame rate is fixed to 10Hz. The same robot motion capabilities, rope length,
thickness and maximum sag are used in simulation and real experiments.

Figure 4.6: Experimental setup: two Turtlebots (Gerkey and Conley, 2011) simulate a
tether handling system for remotely operated robots. The leader robot freely explores
its surroundings while the follower robot is expected to maintain the tether slack enough
not to hamper the leader movements

The objective of the simulation is that the follower robot moves the tether from
a very slackened to a moderately tight shape. The tether orientation is controlled,
passing from a large angle θ1 to a desired smaller angle. The initial and desired values
of the feature vector are so = (0.9, 0.8) and s∗ = (0.5, 0.5), respectively. We assume that
the robots can perfectly estimate the tether parameters, so the fitting process is not
simulated. Figure 4.7 presents the simulation results. As expected, both parameters
have an exponential decay and converge to the desired value within 4 seconds for a gain
λ = 0.75 and a sampling period of 0.1 seconds.

In the first experiment, the simulation initial conditions are repeated and the fol-
lower robot moves the tether from an initial shape so = (0.9, 0.8) to a desired shape
s∗ = (0.5, 0.5). We used the same gain as for simulation (λ = 0.75) and a fitting quality
threshold Qmax = 1. Results are summarized in Figure 4.8.

In the second experiment (see Figure 4.9), the leader robot is freely displaced while
the follower robot ensures that the rope keeps a desired shape s∗ = (0.7,−0.5). First,
the leader robot moves forward, then turns left (24s). Next, it moves about 1.25
meters forward (38s), makes a half-turn (50s) and moves about 1.25 meters forward

1for the Turtlebots, we note the orientation angle as θ, instead of α
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Figure 4.7: Simulation results for tether shape control. (a) the parameters evolution.
The tether goes from an initial to a desired shape (so = (0.9, 0.8) and s∗ = (0.5, 0.5),
respectively). (b) the control velocities. Linear velocity (νx) in m/s and angular
velocity (ωz) in rad/s
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Figure 4.8: Results of a real experiment for tether shape control. (a) the tether param-
eters evolution. The tether goes from an initial to a desired shape (so = (0.9, 0.8) and
s∗ = (0.5, 0.5), respectively). (b) the control velocities. Linear velocity (νx) in m/s
and angular velocity (ωz) in rad/s

again (64s). At the end, it makes a quarter turn and moves about 0.50 meters backward
(76s). Compared with the first experiment, a higher value was set to the tether first
parameter in order to give more freedom of maneuvering to the leader robot. We
used Qmax = 1 and two different gains for linear and angular velocities: λl = 1.0 and
λω = 6.0, respectively (see discussion below). Figure 4.9c presents the fitting quality
index evolution during the experiment. The feature prediction was used 20 times in
cases of wrong rope detection and more 38 times due to inaccurate fitting.

In Figure 4.8, the angular velocity command does not converge to zero, and remains
quasi constant. This is due to the limitations of our experimental platform that cannot
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Figure 4.9: Two robots are linked by a tether. The leader robot freely moves while
the follower robot maintains a desired tether shape s∗ = (0.7,−0.5). (a) the leader
and follower trajectories with time indications in seconds. (b) the tether parameters
evolution. (c) the fitting quality index Q evolution during the experiment. Feature
prediction is used in cases of wrong rope detection and inaccurate fitting (Q = 1 i.e.
log(103Q) = 3)
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achieve a rotation velocity lower than 0.05 rad/s. In the second experiment, we selected
a higher gain for the angular velocity compared to the linear velocity gain in order to
overcome this problem. As a future improvement, an integrator compensator to deal
with the low level control of the velocity can be added to the servoing loop.

Looking at Figure 4.8, we can note that the real experimentation curves are noisy
compared with those obtained in simulation. This is mainly due to wrong rope detection
that can affect the tether feature estimation. Another reason is the possible rope
oscillation during the robot motion, which can occur when the robot halts and restarts
motion. This could be taken into account by designing a dynamic controller that takes
the rope inertia into account. In addition, the rope can be tracked in the image by a
gradient-guided algorithm.

Despite the problem of nonholonomy, the control scheme was validated by simu-
lation and by two series of real experiments. The comparison of simulation and real
experiments showed that the tether converged to their desired values, validating the
proposed control law. More details about this work can be found in appendix E, where
the paper Catenary-based Visual Servoing for Tethered Robots, presented at
ICRA 2017, is reproduced. These experiments constituted our first results obtained
with catenary-based visual servoing of umbilicals. This work showed the feasibility of
the catenary-based visual servoing proposed in the framework of this thesis.

4.4.1.2 Comparison of Catenary-Based Control with Image-Based Visual

Servoing

In a second series of studies, we compared the catenary-based controllers with standard
image-based visual servoing techniques. We considered some salient points such as the
highest and lowest tether points in the image, or we approximated the first portion of
the tether with a line segment (see Figure 4.10). Such features were successfully used to
control a robot motion by regulating the shape of rigid objects in the image (Collewet
and Chaumette, 2002; Cherubini et al., 2008). The tether shape evolution, velocity
commands and condition number of interaction matrices were studied in normal and
limit cases for two image-based controllers and both catenary-based controllers pro-
posed:

• image points: coordinates of the tether highest and lowest points (pA and pB)
detected in the image without taking into account that the points belong to a
catenary projection (Espiau et al., 1992)

• image line segment : center, length and orientation of the segment pApB link-
ing the highest and the lowest points of the tether detected in the image, without
taking into account that the points belong to a catenary projection (Chaumette
et al., 1993)

• catenary parameters: two features s = [a b]T , related to tether slackness and
orientation that parameterize the catenary curve to fit the tether 3D shape (Laran-
jeira et al., 2017).
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• catenary-projection lowest point: coordinates of the tether lowest point (pB)
detected in the image, making the approximation that this point is the projection
of the 3D catenary lowest point .

x
P0

(a)
pA

pB
p0
x

(b)

x

pA

p0 pB

(c)

Figure 4.10: Image features used to manage the tether shape: its highest and lowest
points in the image (pA and pB) and the line segment pApB in blue. (a) 3D simulated
scene where the tether 3D lowest point P0 is out of the follower’s camera field of view.
(b) corresponding embedded view with p0 being the perspective projection of P0. (c)
Another situation where P0 is inside the follower’s camera field of view

Simulation are performed using Gazebo Koenig and Howard (2004) to test the
whole control loop including computer vision algorithms. The setup is composed of
two Turtlebots Gerkey and Conley (2011) linked by a 1 meter long and 3 mm thick
orange rope that simulates the tether. The robots have 2 DOF (one translation and
one rotation) and the follower is equipped with a camera that monitors an extremity of
the rope. The maximum authorized rope sag is fixed to Hmax = 0.40m, corresponding
to its attachment points height.

The rope is detected in the follower’s camera by a color segmentation algorithm,
that is refined by morphological skeletonization. The segmented points are then used
to compute the visual servoing features.

Three simulations are carried out in order to compare the performances of vision-
based tether shape controllers (see Figure 4.11). The objective is to study the controllers
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behavior in normal conditions, when the tether shape is clearly visible, as well as in
limit cases, when the tether is not completely visible or when it degenerates into a
vertical line in the image.

The first simulation (Figure 4.11a) is a typical example where the tether is com-
pletely visible and not degenerated in the image. The orientation angle θ2 is required
to vary from 20◦ to 45◦ while the tether slackness must remain the same (initial
H0 = 0.20m and desired H∗ = 0.20m). In the second simulation (4.11b), the an-
gle θ is required to vary from 10◦ to 60◦ to check controllers performance when the
tether is partially visible (θ close to 60◦). The initial and desired slackness are the
same (H0 = H∗ = 0.25m). In the third simulation (4.11c), the angle θ is required to
vary from 20◦ to 0◦ to check the controller performance when the tether plane is near to
the camera optical axis (θ close to 0). The initial and desired slackness are H0 = 0.10m
and H∗ = 0.24m, respectively.

follower view

(a) normal case

follower view

(b) limit case 1

follower view

(c) limit case 2

Figure 4.11: Follower robot camera view for (a) first, (b) second and (c) third simu-
lation. Initial and desired tether shape in the image are drawn in blue and red lines,
respectively

Figures 4.12, 4.13 and 4.14 show, for the three studied cases, the tether shape
parameters error and the velocity commands of the follower robot as a function of time.
Figure 4.15 presents the trajectory of the tether lowest point in the image. Figure 4.16
presents the condition number evolution for the controllers interaction matrices and
the Gauss-Newton Jacobian used for the catenary curve fitting. The condition number
of a matrix A is defined as follows Feddema et al. (1989):

cond(A) = |A||A+| (4.50)

where |.| is the L2 norm.
In the normal case, the tether shape control is achieved by all the controllers. They

also allow to reach the desired position in the image plane (see Figure 4.12, and 4.15a).
The tether parameters (slackness H and orientation θ) converge to their desired values
even using image-based features. Image-based controllers are very sensitive to the de-
tection of the lowest part of the tether, and work well when this part is well visible in
the image. Compared with pure image-based controllers, the catenary lowest-point con-
troller appears to execute a more balanced regulation between slackness (Figure 4.12a)

2for the Turtlebots, we note the orientation angle as θ, instead of α
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and orientation (Figure 4.12b). In the image plane, the resulting trajectory of the lowest
point is more regular than pure image-based trajectories (Figure 4.15a). In addition,
the catenary parameter controller is less sensitive to noisy tether detection whereas the
other controllers are very dependent on the accurate detection of the lowest point in
the image.
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Figure 4.12: Normal case: error evolution for (a) tether slackness and (b) orientation
as well as (c) linear and (d) angular command velocities. Tether initial and desired
shape are respectively: (H0 = 0.20m, θ0 = 20◦) and (H∗ = 0.20m, θ∗ = 45◦). Legend
in Fig. 4.15d. All controllers use a gain λ = 1.0.
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In the first limit case, the tether desired shape is only achieved by the catenary pa-
rameter controller (Figure 4.13). The other controllers cannot reach the desired tether
shape leading to a residual offset of slackness (Figure 4.13a) and angle (Figure 4.13b).
However, these controllers converge as expected in the image plane, while we observe a
discontinuity of the lowest point trajectory in the case of catenary-parameter controller
(Figure 4.15b). This is not surprising since the catenary-parameter controller directly
regulates the tether 3D shape, and converges to the real lowest point that is outside
the image.
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Figure 4.13: Limit case 1: error evolution for (a) tether slackness and (b) orientation
as well as (c) linear and (d) angular command velocities. Tether initial and desired
shape are respectively: (H0 = 0.25m, θ0 = 10◦) and (H∗ = 0.25m, θ∗ = 60◦). Legend
in Fig. 4.15d. All controllers use a gain λ = 1.0.
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In the second limit case (see Figures 4.14a to 4.14d), image-based and catenary
lowest point controllers achieve the tether desired shape. The image features can be well
estimated since at least half of the tether is visible. However, the catenary parameters
controller cannot reach the target shape because of fitting failure when the tether gets
close to the camera sagittal plane. This is confirmed by the condition number of the
curve fitting Gauss-Newton Jacobian (4.16d) that becomes ill-conditioned at the end
of the simulation. Nevertheless, all the interaction matrices are well conditioned (see
Figures 4.16a to 4.16c), which means that they are robust to input noise.
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Figure 4.14: Limit case 2: error evolution for (a) tether slackness and (b) orientation
as well as (c) linear and (d) angular command velocities. Tether initial and desired
shape are respectively: (H0 = 0.10m, θ0 = 20◦) and (H∗ = 0.24m, θ∗ = 0◦). Legend in
Fig. 4.15d. All controllers use a gain λ = 1.0.
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Figure 4.15: Tether lowest point trajectory in the image plane for (a) normal case, (b)
limit case 1 and (c) limit case 2. (d) legend

The catenary lowest-point controller makes use of an initial guess of the tether angle
parameter. In the proximity of θ = 0, the slackness parameter is not well estimated due
to a singularity in the Jacobian matrix of the Gauss-Newton. In order to improve the
catenary parameter controller, a solution will be to directly carry out an initial guess
on the slackness parameter.

All four controllers need at least 50% of tether detected points in the image when
the tether gets closer to the camera sagittal plane. In real situations it will be difficult
to detect half the tether the longer it is. In order to deal with this issue, a solution could
be to equip the robot with an additional camera outside its sagittal plane. Another
solution would consist of placing fiducial markers along the tether at known length,
which could be easily detected in the image and overcome the noisy detection of the
lowest point.

More details about this comparison of controllers are given in appendix E. The study
showed that the additional knowledge about the tether 3-D shape in the visual servoing
control allowed to obtain satisfactory tether handling, provided that the projection of
the tether is not degenerated into a straight line in the image. The visual controller
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based on catenary parameters performed better in cases where the tether was partially
out of the camera field of view. The visual control based on the lowest point could
be useful near the degenerated cases when the lowest part of the catenary is visible.
The standard Image-Based features failed to converge accurately in the case of partial
visibility of the tether in the image. Both catenary-based controllers could be combined
to design a more robust controller.
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Figure 4.16: Interaction matrices condition number evolution for (Fig. a) normal and
(Figs. b and c). Legend in Fig. 4.15d. (d) condition number evolution for the curve
fitting Gauss-Newton Jacobian during normal and limit cases
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4.4.2 Underwater Tether Shape Regulation while Leader Robot is

Motionless

Let us consider the case with underwater robots where the leader robot is motionless.
The follower robot should bring the tether from its initial towards the desired shape, as
given in Table 4.1. The initial and desired shape of the tether in the image are depicted
in Figure 4.17.

Follower

H2(m) α2 ∆H2(m)

initial 0.50 80° 0.0

desired 0.15 30° 0.20

Table 4.1: Initial and desired tether features for visual servoing control scheme using
only the follower robot’s camera.
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Figure 4.17: Follower onboard view of the tether. The (a,c) initial and (b,d) final
images of the visual servoing. Figures (a) and (b) are the camera source images while
figures (c) and (d) depict the tether detected points (in blue), the shape estimation
(in red) and the desired shape in the image (in green). The tether initial and desired
features are given in Table 4.1.

At the beginning, the leader robot is outside the camera field of view and the tether
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is only partially visible in the image. The objective is to bring the tether into the
camera field of view in order to ensure an accurate estimation of its shape. Moreover,
we would like to maintain the tether not too slack in order to prevent it from getting
entangled with obstacles in the sea floor, for example.

In the following subsections, a number of control schemes are tested in this scenario.
First, the complete 3×4 interaction matrix is used so that the follower robot performs all
features regulation (H2, α2 and ∆H2) simultaneously. Second, a sum of controllers set
up, splitting the interaction matrix into two, in order to separately regulate the features
(H2, α2) and (∆H). Finally, hierarchical control schemes are introduced, where the
regulation of H2 and α2 is prioritized over the regulation of ∆H2. The control gain is
always the same for all controllers : λ = 1.0.

4.4.2.1 Visual Servoing Control with 3× 4 Interaction Matrix

In this control scheme, the follower robot must regulate the feature vector s2 as a whole.

Control Law From equations (4.39) and (4.49), and fixing r1v = 0, we have:

Lr2,2
r2v = ė2. (4.51)

Setting ė2 = −λe2 for exponential convergence, with λ ∈ R
+, the follower command

velocity can be calculated as follows:

r2v = −λL+
r2,2

e2. (4.52)

Simulation Results The tether shape evolution, from visual feedback estimation
and simulation ground truth, is depicted in Figure 4.18a. The robot’s commanded and
executed velocities are shown in Figure 4.18b.

At the beginning of the simulation (0− 40 iterations), the tether shape estimation
is not accurate, mainly with respect to the parameter α2 (see Figure 4.18a). Indeed, as
presented in Figure 4.17a, the tether is almost a straight line in the image at its initial
shape, and the catenary curve fitting procedure cannot yield an accurate estimation
of its shape. Despite this, the control loop brings the tether towards its desired shape
in the image (see Figure 4.17d) and the tether features (H2, α2 and ∆H2) converge
towards their desired values (see Figure 4.18a).

With respect to the command velocities (see Figure 4.18b), we observe a decay after
the 40th iteration, the time the tether lowest point takes to come back into the camera
field of view. The robot commanded velocities are nearly zero after the 120th iteration,
since the tether reached its desired shape.
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Figure 4.18: Simulation results for a control law using full 3 × 4 interaction matrix.
(a) tether shape and (b) follower robot velocity evolution. The tether desired shape is
given by H∗

2 = 0.15m, α∗
2 = 30◦ and ∆H∗

2 = 0.20m.
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4.4.2.2 Sum of Controllers

We now introduce another control scheme, splitting the interaction matrix into two, in
order to separately regulate the features (H2, α2) and (∆H2). Thus, we ensure that
the control of ∆H2 only generates vertical velocity commands (νz), whereas it might
also generate forward velocity commands (νx) using the 3× 4 interaction matrix.

Control Law Let us note e
H,α
2 and e∆H

2 the error vectors related to the regulation
of (H2, α2) and ∆H2, respectively:

e
H,α
2 =

[
a2 − a∗2
b2 − b∗2

]

and

e∆H
2 =

[
d2 − d∗2

]
.

Their interaction matrices are obtained splitting the matrix given in equation (4.44),
as follows:

L
H,α
r2,2 =
−

√
1−b2

2

(u2+p2)Hmax
− b2

(u2+p2)Hmax

v2+q2
(u2+p2)Hmax

r2Y1

√
1−b2

2

(u2+p2)Hmax
− r2X1

b2
(u2+p2)Hmax

b2
√

1−b2
2

2D2+∆D2
− 1−b2

2

2D2+∆D2
0 r2Y1

−b2
√

1−b2
2

2D2+∆D2
− r2X1

1−b2
2

2D2+∆D2




and

L∆H
r2,2 =

[
0 0 − 1

2∆Hmax
0
]
.

Similarly to equation (4.52), we can calculate the follower robot control law as:

r2v = −λ1
(
L
H,α
r2,2

)+
e
H,α
2 − λ2

(
L∆H
r2,2

)+
e∆H
2 , (4.53)

where λ1, λ2 ∈ R
+ are the control gains for the regulation of eH,α

2 and e∆H
2 .

Simulation Results The same simulation presented in the previous subsection is
now performed using the sum controller. As a reminder, the tether initial and desired
shape are given in Table 4.1. The control gain is set to λ1 = λ2 = 1.0. The tether shape
evolution, from visual feedback estimation and simulation ground truth, is depicted in
Figure 4.19a. The robot’s commands and executed velocities are shown in Figure 4.19b.

Analyzing Figure 4.19a, we observe that the tether reaches its desired shape within
300 iterations. However, the feature ∆H2 takes more time to converge when compared
to the controller using the entire interaction matrix (see Figure 4.18a).

Such a control scheme may be interesting to ensure that the regulation of ∆H2 only
implies a vertical motion. Yet, since the first task also implies vertical motion, it can
happen that none of the tasks are fully regulated. In order to ensure tasks regulation,
we have to set up a hierarchical control scheme.
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Figure 4.19: Simulation results for the sum of controllers. (a) tether shape and (b)
follower robot velocity evolution. The tether desired shape is given by H∗

2 = 0.15m,
α∗
2 = 30◦ and ∆H∗

2 = 0.20m.
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The interaction matrix presented in equation (4.44) already has nice decoupling
properties, which allows the features to be simultaneously regulated without disturbing
each other. As a result, we obtain a faster convergence of the tether features using the
entire matrix instead of making the sum controllers. Let us look in the sequel the
results obtained with hierarchical control schemes.

4.4.2.3 Hierarchical Task Control

Let us now split the follower robot command into two tasks. The first task corresponds
to the regulation of H2 and α2, The second task corresponds to the regulation of ∆H2.
In order to ensure that the secondary task will not interfere the execution of the priority
task, the redundancy formalism can be used (Mansard and Chaumette, 2007).

Control Law Let us note e
H,α
2 and e∆H

2 as the error vector of the priority and
secondary tasks, respectively:

e
H,α
2 =

[
a2 − a∗2
b2 − b∗2

]

and

e∆H
2 =

[
d2 − d∗2

]
.

Similarly to equation (4.52), we can calculate the follower robot control law as:

r2v = −λ
(
L
H,α
r2,2

)+
e
H,α
2 +P1z, (4.54)

where

P1 = I−
(
L
H,α
r2,2

)+
L
H,α
r2,2 (4.55)

is the orthogonal projection operator on the null space of LH,α
r2,2, the interaction matrix

of the first task. The vector z is an arbitrary vector that can be used to apply the
secondary task. Thanks to the projector operator P1, the first task is ensured not to
be disturbed by the secondary command introduced by z.

We can now introduce the secondary task through:

z = −λ2
(
L∆H
r2,2

)+
e∆H
2

and rewriting equation (4.54) as:

r2v = −λ1
(
L
H,α
r2,2

)+
e
H,α
2 − λ2P1

(
L∆H
r2,2

)+
e∆H
2 , (4.56)

where λ1, λ2 ∈ R
+ are the control gains for the first and second tasks, respectively.

The interaction matrices L
H,α
r2,2 and L∆H

r2,2 are obtained splitting the matrix given in
equation (4.44), as made in subsection 4.4.2.2.

Actually, this control law can be seen as the application of the first task commands
and those of the second task that do not disturb the first task execution. The task
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hierarchy is respected. However, the second task execution is not optimal in the least-
square sense.

An alternative to the control law given in equation (4.56) can be designed in order
to meet the requirements of optimal control.

Similarly to equation (4.51), the evolution of the second task error is given by:

ė∆H
2 = L∆H

r2,2
r2v. (4.57)

Then, introducing equation (4.57) in (4.54) we obtain:

z =
(
L∆H
r2,2P1

)+
[
ė∆H
2 − L∆H

r2,2

(
L
H,α
r2,2

)+
ė
H,α
2

]
, (4.58)

which can be finally introduced back in equation (4.54), yielding:

r2v =
(
L
H,α
r2,2

)+
ė
H,α
2 +P1

(
L∆H
r2,2P1

)+
[
ė∆H
2 − L∆H

r2,2

(
L
H,α
r2,2

)+
ė
H,α
2

]
, (4.59)

Since P1 is idempotent and Hermitian (it is a projection operator), equation (4.59) can
be rewritten as (Mansard and Chaumette, 2007):

r2v =
(
L
H,α
r2,2

)+
ė
H,α
2 +

(
L̃∆H
r2,2

)+
˙̃e
∆H

2 , (4.60)

where L̃∆H
r2,2 = L∆H

r2,2P1 and ˙̃e
∆H

2 = ė∆H
2 − L∆H

r2,2

(
L
H,α
r2,2

)+
ė
H,α
2 . We can rewrite this

equation as:

r2v = −λ1
(
L
H,α
r2,2

)+
e
H,α
2 − λ2

(
L̃∆H
r2,2

)+
ẽ∆H
2 , (4.61)

Let us present in the sequel the simulation results obtained from both control laws,
given in equations (4.56) and (4.61)

Simulation Results The same simulation presented in the previous subsection is
now performed using the hierarchical control laws. As a reminder, the tether initial
and desired shape were given in Table 4.1.

The simulation results for the hierarchical non-optimal controller (equation (4.56))
are presented in Figure 4.20. The simulation results for the hierarchical optimal con-
troller (equation (4.61)) are presented in Figure 4.21. The control gains are λ1 = λ2 =
1.0 in both cases.
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Figure 4.20: Simulation results for the hierarchical non-optimal control. (a) tether
shape and (b) follower robot velocity evolution. The tether desired shape is given by
H∗

2 = 0.15m, α∗
2 = 30◦ and ∆H∗

2 = 0.20m.
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Figure 4.21: Simulation results for the hierarchical optimal control. a) tether shape and
(b) follower robot velocity evolution. The tether desired shape is given by H∗

2 = 0.15m,
α∗
2 = 30◦ and ∆H∗

2 = 0.20m.
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We clearly observe that using the hierarchical non-optimal controller, the secondary
task (regulation of ∆H) is not properly regulated at the beginning. The value of ∆H
overshoots its desired value by 0.13m around the 70th iteration (see Figure 4.20a).
Using the hierarchical optimal controller, however, the secondary task can be better
executed and all the features converge towards their desired values within the 300
iterations without overshoot (see Figure 4.21a). This behavior is expected (Mansard
and Chaumette, 2007). In the non-optimal control, the second task commands are
just filtered by the projector operator, whereas, in the optimal control, the second task
control law allows a more efficient distribution of the control efforts in the remaining
degrees of freedom of the robot. The difference on the velocity commands between
these two hierarchical control approaches is notable regarding the velocity component
νz (in blue) in Figures 4.20b and 4.21b. Using the optimal controller, the velocity
component νz has a lower magnitude, which represents an optimized command in term
of control efforts.

4.4.2.4 Comparing Follower Robot Trajectories

The executed trajectories of the follower robot for each of the controllers above studied
is depicted in Figure 4.22.
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Figure 4.22: Comparing the follower robot trajectories for the four controllers presented
in the previous subsections: full 3 × 4 interaction matrix controller (in red), sum of
controllers (in yellow), hierarchical non-optimal (in green) and hierarchical optimal (in
blue) controllers. The robot starting position is marked by a black star.

The full interaction matrix and hierarchical optimal controllers generate similar
trajectories. These trajectories go more directly towards the final position, when com-
pared to the sum of controllers and the hierarchical non-optimal controller. The full
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interaction matrix and hierarchical optimal controllers are more efficient in terms of
features regulation. This is also visible regarding the executed trajectories. Moreover,
we note that the final positions are not the same for each of the controllers. Actually,
the regulated features (H2, α2,∆H2) do not constrain the pose of the follower robot,
as will be discussed in Section 4.5.

4.4.3 Underwater Tether Shape Regulation while Leader Robot Moves

Let us now consider the case where the leader robot moves and executes a predefined
path. This path consists of a constant speed straight forward displacement combined
with lateral and vertical motions. The leader robot executed velocities are depicted in
Figure 4.23. The lateral (νy, in green) and vertical (νz, in blue) velocities are executed
in parallel with a straight forward motion (νx, in red).

All the way through, the follower robot must maintain the tether desired shape
given in Table 4.2. The control gain is always the same for all controllers : λ = 2.0.
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Figure 4.23: The leader robot executed velocities. The executed path consists of a
constant straight forward displacement combined with lateral and vertical motions.

Follower

H2(m) α2 ∆H2(m)

desired 0.35 30° 0.0

Table 4.2: Desired tether features for visual servoing control scheme while the leader
robot moves.
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Firstly, we present the simulation results where the follower robot tries to regulate
the tether shape not being aware of the leader robot motion. Secondly, we include the
leader velocity commands in the follower robot control law.

4.4.3.1 Neglecting the Leader Velocity on the Follower Robot Command

Let us analyze the case where the leader robot velocities are not integrated in the
follower robot commands. Therefore, the leader robot motion acts as an additional
perturbation to the tether shape control task.

Control Law Four control laws are tested:

1. The entire interaction matrix in a non-hierarchical control law, as presented in
equation (4.52). As a reminder, the follower command velocities are calculated
as:

r2v = −λL+
r2,2

e2.

2. A sum of controllers where the features (H2, α2) and ∆H2 are regulated sepa-
rately, as presented in equation (4.53). As a reminder, the follower command
velocities are calculated as:

r2v = −λ1
(
L
H,α
r2,2

)+
e
H,α
2 − λ2

(
L∆H
r2,2

)+
e∆H
2 .

3. The hierarchical non-optimal control law applying the projection operator after
the second task commands computation, as presented in equation (4.56). As a
reminder, the follower command velocities are calculated as:

r2v = −λ1
(
L
H,α
r2,2

)+
e
H,α
2 − λ2P1

(
L∆H
r2,2

)+
e∆H
2 .

4. The hierarchical optimal controller, as presented in equation (4.61). As a re-
minder, the follower command velocities are calculated as:

r2v = −λ1
(
L
H,α
r2,2

)+
e
H,α
2 − λ2

(
L̃∆H
r2,2

)+
ẽ∆H
2 ,

where L̃∆H
r2,2 = L∆H

r2,2P1 and ˙̃e
∆H

2 = ė∆H
2 − L∆H

r2,2

(
L
H,α
r2,2

)+
ė
H,α
2 .

Simulation Results Figures 4.24, 4.25, 4.26 and 4.27 respectively present the sim-
ulation results for the studied control above enumerated as (1), (2), (3) and (4).
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Figure 4.24: Simulation results for a non-hierarchical control law using the 3× 4 inter-
action matrix. (a) tether shape and (b) follower robot velocity evolution. The tether
desired shape is given by H2 = 0.35m, α2 = 30◦ and ∆H2 = 0m.
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Figure 4.25: Simulation results for the sum of controllers law with no task priority.
(a) tether shape and (b) follower robot velocity evolution. The tether desired shape is
given by H2 = 0.35m, α2 = 30◦ and ∆H2 = 0m.
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Figure 4.26: Simulation results for the hierarchical non-optimal controller. (a) tether
shape and (b) follower robot velocity evolution. The tether desired shape is given by
H2 = 0.35m, α2 = 30◦ and ∆H2 = 0m.
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Figure 4.27: Simulation results for the hierarchical optimal controller. (a) tether shape
and (b) follower robot velocity evolution. The tether desired shape is given by H2 =
0.35m, α2 = 30◦ and ∆H2 = 0m.
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At the beginning (0 − 80 iterations), we observe, for all control laws, a greater
control effort to bring the tether from its initial to its desired slackness: H0 = 0.43m
and H∗ = 0.35m, respectively. During the lateral motion of the leader (100 − 750
iterations), all the four controllers achieve to maintain the tether near its desired shape.
A gap between current and desired tether shape is expected, since the leader motion is
not considered in the follower commands, which are always lagged.

When the leader executes vertical displacements (900−1500 iterations), we observe
a slight disturbance on the regulation of the tether slackness for the controller using the
entire interaction matrix. This occurs because the controller must deal simultaneously
with the regulations of H2 and ∆H2. Such a disturbance is less remarkable for the
sum of controllers, since the regulation of ∆H2 acts only on the vertical velocity (νz),
leaving the forward motion (νx) free for the slackness regulation. This controller yields,
however, a less efficient regulation of ∆H2. A similar behavior is observed for the
hierarchical non-optimal controller, since the second tasks commands are filtered by
the projector operator. The hierarchical optimal controller yields similar results to the
controller using the entire interaction matrix. Since the robot has enough degrees of
freedom to regulate all the features, the execution of the second task can be optimized
in the least-square sense.

4.4.3.2 Including the Leader Velocity on the Follower Robot Command

We can also include the leader robot velocities in the follower robots commands. This
allows the follower robot to take into account the disturbances generated by the leader
motion and thus to regulate the tether shape as if the leader was stopped.

Control Law From equations (4.40) and (4.49), we have:

Lr2,2 (
r2v − r2Vr1

r1v) = ė2 (4.62)

and, setting ė2 = −λe2 for exponential convergence, with λ ∈ R
+, the follower

command velocity can be calculated as follows:

r2v = −λL+
r2,2

e2 +
r2Vr1

r1v. (4.63)

Simulation Results Figure 4.28 presents the simulation results using the control
law given in equation (4.63).
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Figure 4.28: Simulation results for a control law including the leader velocities in
the follower commands computation. (a) tether shape and (b) follower robot velocity
evolution. The tether desired shape is given by H2 = 0.35m, α2 = 30◦ and ∆H2 = 0m.
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Similarly to the previous control schemes, at the beginning of the simulation(0−80
iterations), we observe a greater control effort of the follower robot to bring the tether
from its initial towards its desired slackness: H0

2 = 0.45m to H∗
2 = 0.35m. For the

rest of the simulation, the tether is maintained near its desired shape. Some little
perturbations are observed in the change of direction of the robot leader, around the
400th, 900th and 1200th iteration. The oscillations on the forward velocity command
(νx) can be reduced through the use of a lower control gain, since the leader motion is
included in the follower commands (we used λ = 2.0 in all simulations).

We note the follower robot executes a forward (νx) and lateral (νy) velocities during
a large part of the simulation (starting from 400th iteration until the end). This occurs
because the follower robot must keep its desired orientation with respect to the tether
(regulate α2) while following the leader robot (regulate H2). Leader and follower robots
do not have the same heading.

4.5 Follower Robot Control using Tether Visual Feedback

from Both Cameras - Underwater Case

The system we want to control has 4 degrees of freedom (DOF), as presented in Chap-
ter 2 (see Figures 2.10 and 2.11):

1. the tether plane orientation with respect to the leader robot (α1);

2. the tether plane orientation with respect to the follower robot (α2);

3. the difference of height between the attachment points (∆H1 = −∆H2);

4. the distance between the attachment points (2D1 +∆D1 = 2D2 +∆D2), which
is actually a function of the tether slackness, as defined in equations (4.12) and
(4.13).

The control schemes introduced in the previous Section do not allow us to control all
the DOF of the system, since the angle α1 is not regulated. Therefore, the relative pose
between leader and follower robot is not fully constrained, as presented in Figure 4.29.

Using only the follower robot camera, we achieve to control three tether features
(H2, α2 and ∆H2) through the interaction matrix given in equation (4.44). The rank
of this matrix is 3, which does not constrain all the degrees of freedom of the system.
In order to constrain the relative pose between the robots, we use the leader camera to
obtain additional information and regulate the angle α1.
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Figure 4.29: Top view of the system composed of leader and follower robots connected
by a tether. The relative pose between the robots is not fully constrained without
the regulation of angle α1 between the tether plane and the leader robot longitudinal
axis. A circle around the leader attachment point defines an infinity of positions for
the follower robot that regulates the features H2, ∆H2 and α2.

In the sequel, we carry one simulation to validate the use of both leader and follower
cameras for tether shape regulation. The leader robot is motionless and the simulation
environment is the same as described in Section 4.4.

Control Law In order to fully control the 4 DOF of the two robots system, we
propose to use the following feature vector:

sf =

[
s1
s2

]
, (4.64)

where s1 and s2 were respectively given in equations (4.7) and (4.6). The interaction
matrix Lr2,f relating the follower robot velocity to the feature vector time derivative is
given by:

ṡf =

[
Lr2,1

Lr2,2

]
r2v = Lr2,f

r2v, (4.65)
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with

Lr2,1 = −Lr1,1
r1Vr2 =




−
√

1−b2
1
c21+b1s21

(u1+p1)Hmax
−
√

1−b2
1
s21+b1c21

(u1+p1)Hmax
− v1+q1

(u1+p1)Hmax
−r2X2

√
1−b2

1
s21+b1c21

(u1+p1)Hmax

b1
√

1−b2
1
c21+(1−b2

1
)s21

2D1+∆D1

b1
√

1−b2
1
s21−(1−b2

1
)c21

2D1+∆D1
0 r2X2

b1
√

1−b2
1
s21−(1−b2

1
)c21

2D1+∆D1

0 0 1
2∆Hmax

0



.

(4.66)

s21 = sin(α2 − α1) and c21 = cos(α2 − α1). The follower robot velocity commands are
calculated through:

r2v = −λL+
r2,f

ef , (4.67)

where ef = sf − s∗f and s∗f is the desired feature vector.

Simulation Results The following simulation reproduces the same initial scenario
of the simulations presented in Section 4.4.2, where only the follower camera is used to
regulate the tether shape while the leader robot remains stopped.

The initial tether features are given in Table 4.3. The initial and desired tether
shape in the image are depicted in Figure 4.30. At the beginning, the tether is partially
visible in both leader and follower cameras.

The tether shape evolution, from visual feedback estimation and simulation ground
truth, is depicted in Figure 4.31a. The commanded and executed velocities of the
follower robot are shown in Figure 4.31b. The control gain is λ = 0.5.

Leader Follower

H1(m) α1 ∆H1(m) H2(m) α2 ∆H2(m)

initial 0.50 80° 0.0 0.50 80° 0.0

desired 0.35 30° −0.20 0.15 30° 0.20

Table 4.3: Initial and desired tether features.
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Figure 4.30: Embedded image view of the tether from the (a,b,c,d) leader and (e,f,g,h)
follower point of view. The (a,c,e,g) initial and (b,d,f,h) final images of the visual
servoing. Figures (a,b,e,f) are the source images while figures (c,d,g,h) depict the
tether detected points (in blue), the shape estimation (in red) and the desired shape in
the image (in green).
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Figure 4.31: Simulation results for the controller using both leader and follower cameras.
(a) tether shape evolution from leader and follower points of view. Full and dashed
lines represent estimated and real simulated values, respectively. (b) follower robot
velocity evolution. The tether initial and desired shape are given in Table4.3.
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Similar to the results obtained in Section 4.4.2, the tether shape estimation is not
accurate at the beginning of the simulation (0 − 80 iterations), as presented in Fig-
ure 4.31a. Indeed, the tether is almost a straight line in the image at its initial shape
(see Figure 4.30e), and the catenary curve fitting procedure cannot yield an accurate
estimation of its shape. The curves of estimated and real values of the tether features
meet again after the 80th iteration, when the tether is completely visible in both images.

We note a greater oscillation of the estimated values of α2 when compared to the
results obtained in Section 4.4.2.1. This is caused by a greater lateral motion of the
follower robot. When only the follower’s camera is used to regulate the tether shape,
the tether orientation is mainly regulated by a rotation (ωz) of the follower robot and
the lateral motion (νy) is almost zero (see Figure 4.18b). When using both cameras,
however, the follower robot has to employ a greater lateral motion in order to regulate
the angle α1 simultaneously to α2. The lateral velocity νy causes a swinging motion
of the tether plane, which is responsible for the oscillations on α1 and α2. These
oscillations do not appear on the ground truth curve because the tether attachment
points do not oscillate.

Despite the initial shape estimation inaccuracies and the swinging motion of the
cable, the control loop brings the tether towards its desired shape in the image (see
Figure 4.30h) and the tether features smoothly converge towards their desired values.
The robot commanded velocities are nearly zero after the 300th iteration, since the
tether reached its desired shape.

4.6 Discussion

The proposed tether shape control scheme has proved useful to properly manage the
tether shape. Even in conditions of coarse tether shape estimation, such as cable
partial visibility, the controller achieves to bring the tether towards its desired position
in the image. The features converge to their desired values as required, with a smooth
exponential decay of the error once the tether shape is well fitted in the image. It may
occur that at the beginning, the tether is not well fitted due to a lack of tether detected
points in the image.

The controller has also proved to be robust to external perturbations, such as un-
expected movements of the leader robot. This situation was tested in the case where
the leader robot executes a path and the follower must ensure the tether remains at
its desired shape. When the leader velocities are neglected by the follower, its com-
mands are lagged, as expected, and the tether is maintained around its desired shape,
within a small margin of error. When the leader velocities are included in the follower
commands, the tether shape is maintained at its desired shape all along the path.

Four types of controllers were tested. First, the most straightforward approach
was implemented, using the entire interaction matrix to regulate all the catenary fea-
tures simultaneously. This matrix showed to be efficient for the visual servoing control
scheme.

Second, a sum of controllers was tested and the features (H2, α2) and ∆H2 were
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separately regulated. Such a controller did not show good performances, in particu-
lar, the regulation of ∆H2 introduced an overshoot generated by the vertical velocity
commands (νz). This is not surprising since both regulations combine their effects in a
separate way.

Third, a hierarchical non-optimal control was used for the regulation of (H2, α2) as
a priority and then ∆H2 as a secondary task. This solution also showed an overshoot
for ∆H2. Actually, the distribution of the secondary task commands were not optimal
with respect to the remaining degrees of freedom of the robot.

Forth, a hierarchical optimal control was tested. This controller optimized the exe-
cution of the secondary task, carrying out the best of it without affecting the execution
of the priority task. This controller achieved to regulate all the three features properly
without overshoot. Convergence performances were observed to be comparable with
the controller using the full 3× 4 interaction matrix.

Finally, features from the onboard camera of the leader robot were added to the
control scheme. This allowed to regulate the angle α1 between the tether plane and the
leader robot longitudinal axis. As a result, the relative position of both robots could be
fully constrained. The regulation of the features of both cameras and depth sensor was
achieved by stacking the corresponding interaction matrices: the one that regulates the
leader features and the other that regulates the follower features. Satisfactory results
were also obtained using both cameras, and all the features converged towards their
desired values as required, with a smooth exponential decay of the error once the tether
was well fitted in the image.

In the following, some perspectives of improvement of our catenary-based control
scheme are discussed.

Considering Roll and Pitch Disturbances The robots roll and pitch angles are
assumed to be mechanically stabilized or regulated by a low level control law. Distur-
bances on roll and pitch angles may occur when the robots are deployed in zones with
strong disturbances. As our ultimate goal is to deploy a chain of robots in the coastal
zone, one of the first possible extensions to be implemented is to consider desired non-
zero roll and pitch angles in the control schemes in order to take into account specific
diving movements, even though they are not controlled through visual servoing.

Investigate Other Visual Features We investigated the use of the catenary model
for a hanging tether cable that links two robots. This model allowed us to parameterize
the tether shape accurately, using tether slackness and relative orientation with respect
to the robots. Other parametric curves can be investigated. For example, parabolas
and splines could be used to fit the tether shape and provide parameters to perform
visual control of the tether shape. Recently, Fourier transform coefficients were used in
vision-based shape control of linear objects Zhu et al. (2018). This strategy could also
be used for tether shape control.
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Model-Based Dynamic Control Dynamic interactions between cable and robots
can also be modeled. The catenary model can provide information about the forces
exerted at its extremities. These could be used in a dynamic control scheme to prevent
the robot motion from being disturbed by the cable weight and traction. Moreover, the
hydrodynamic modeling of robots and cable can be made in order to achieve a more
precise cable handling in water, taking into account its weight and dragging forces. The
swinging motion of the tether cable could also be considered.

4.7 Conclusions

In this Chapter we presented 3-D catenary-based visual servoing control schemes used
for the shape regulation of a tether linking two robots, a leader and a follower. The
tether shape is regulated by the follower robot through the proper displacement of its
attachment point.

The tether shape is defined by three parameters: slackness H, orientation angle
α and height difference between attachment points ∆H. These parameters are called
features, whose values are estimated from sensory feedback data, namely the cameras
and pressure sensors embedded on the robots. The pressure sensors give the difference
of height between the tether attachment whereas the cameras provide tether detected
points used to estimate its slackness and orientation through the curve fitting procedure
described in Chapter 3. The tether shape parameters are calculated in relation to the
robots. Therefore, there are two slacknesses (H1 and H2), two orientations (α1 and α2),
and two height differences (∆H1 and ∆H2), related to the leader and follower robots.
These features are hence used by the control schemes we introduced to regulate the
tether shape with respect to one or both robots simultaneously.

The control schemes proposed are proportional control laws based on the interaction
matrix relating the follower robot motion to the time derivative of the tether features.
Three types of control schemes were tested in the regulation of the tether shape with
respect to the follower robot. All the control schemes have proved to properly manage
the tether shape, even in conditions of coarse tether shape estimation, such as cable
partial visibility. Moreover, they demonstrated to be robust to external perturbations,
such as unexpected movements of the leader robot.

First, the entire interaction matrix was used so that all the features were regulated
simultaneously. All the features converged towards their desired values as required.

Second, a summing controller was tested and the features (H2, α2) and ∆H2 were
separately regulated. As expected, such a controller did not outperform the controller
based on the entire interaction matrix.

Third, two hierarchical control laws were tested for the regulation of (H2, α2) as a
priority and then ∆H2 as a secondary task. The first one was a hierarchical non-optimal
controller whose behavior tended to produce an overshoot of feature ∆H2, which was
also observed with the summing controller. The other one was a hierarchical optimal
controller that optimized the execution of the secondary task, carrying out the best
of it without affecting the execution of the priority task. All the features were thus
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properly regulated, with comparable convergence performances to the controller using
the entire matrix.

The simultaneous regulation of the tether features with respect to both leader and
follower robots was also achieved with satisfactory results. The relative position of both
robots could therefore be fully constrained.

The use of both leader and follower cameras opens interesting perspectives of future
works, in the context of the study of high level navigation strategies. Hierarchical
control schemes can be used to give priority to the regulation of the tether features
with respect to the leader or follower robot, depending on the situation at hand.



Chapter 5

Conclusions

5.1 Summary

In this thesis we investigated the use of camera feedback for the shape control of a
tether linking two underwater robots, a leader and a follower. Both robots have the
same motion capabilities, and are assumed to remain in the horizontal, with roll and
pitch angles autonomously regulated by a high frequency low level controller. Our
objective was to prove the feasibility of a visual servoing control scheme that could
allow the follower robot to regulate the tether shape releasing the leader robot to
explore its surrounding, in autonomy or by teleoperation.

The tether linking the robots is modeled by a catenary. This model is useful to
obtain shape parameters of the tether cable. Since our catenary model is symmetric
with respect to the attachment point frames, the catenary parameters are calculated
relatively to each robot. These parameters, also called catenary features, are defined
as: the difference of height between the attachment points, the tether slackness and
orientation.

The robots are equipped with depth sensors and cameras positioned near the tether
attachment points. The height difference between the attachment points is calculated
from the depth sensors measurements, whereas the tether slacknesses and orientations
are estimated through an image fitting procedure based on the Gauss-Newton algo-
rithm. Tether points are detected through color segmentation in the images provided
by the embedded cameras feedback. The projection of the catenary model in the image
plane is thus fitted to the detected points, which yields the estimation of the tether
slackness and orientation.

The catenary curve fitting was validated in simulations and it showed to produce
accurate results on tether shape estimation. Residual filtering functions were added
to the fitting procedure in order to avoid singularities in the Gauss-Newton Jacobian,
speed up its computation, and enhance the algorithm robustness to detection noise.
Moreover, an initialization heuristic was introduced in order to obtain a starting point
closer to the solution and hence avoid local minima.

The estimated catenary features are grouped in a feature vector, which must be

165



166 Conclusion

regulated in order to maintain the tether at a desired shape. The tether must be slack
enough not to hamper the leader movements. Also, an adequate orientation between
the robots and the tether plane must be maintained so that the tether is kept inside the
camera field of view. This ensures an accurate shape estimation from camera feedback.

The tether shape is regulated by the follower robot motion, generating a proper
displacement of the tether attachment point. The relation between the follower robot
motion and the catenary feature time derivatives is given by an interaction matrix,
which is the base of the visual servoing control scheme presented in this thesis. A
general formalism for the calculation of this interaction matrix was introduced, allowing
the regulation of the catenary features with respect to both leader and follower robots.

The catenary-based visual servoing control scheme was validated in simulations.
A number of proportional control laws were tested, ranging from the use of one or
both robot’s cameras to the simultaneous or hierarchical regulation of features. The
proposed control scheme has proved to properly manage the tether shape, even in
conditions of coarse shape estimation, such as cable partial visibility. Moreover, it
has been demonstrated to be robust to external perturbations, such as unexpected
movements of the leader robot.

When compared to the control scheme regulating all the catenary features simul-
taneously, the hierarchical control schemes also yielded satisfactory results, in terms of
rapidity, efficiency or robustness to external perturbations. Actually, the interaction
matrix we introduced proved to be efficient, since all the features were well tracked
by the robot without disturbing each other. The hierarchical control schemes can be
useful in the implementation of high level navigation strategies, as will be discussed in
the following Section.

In short, the main contributions of this thesis can be enumerated as follows:

1. The real-time estimation of the tether shape through an image fitting procedure
based on the catenary model of the tether;

2. The achievement of tether shape regulation through an innovative catenary-based
visual servoing control scheme;

3. The study of a number of control laws dedicated to tether shape regulation;

4. The relative positioning of two underwater robots linked by a tether from their
embedded cameras and depth sensors feedback.

The scientific publications, workshop participations and scientific popularization
activities carried out in this thesis are listed in appendixG.

5.2 Perspectives

Looking forward for tether shape control, one interesting extension of this thesis is to
use additional sensory information in order to provide reliable shape estimation for long
tether cable lengths (with tens or hundreds of meters length). Cameras have a limited
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range, and the tether cable remains visible only up to a few meters away. Moreover,
operations in turbid water can make tether point detection difficult, compromising its
shape estimation from camera feedback.

As discussed in Chapter 3, additional sensors such as 3-D accelerometers can be
added to the tether ends in order to provide additional information about its shape (Mer-
let, 2018b). These sensors could be useful to measure the departure angles of the tether
cables, which can be used to calculate its slackness. Moreover, the accelerometers may
provide information about the swinging motion of the tether cable, which was not
considered in the control schemes proposed.

Even considering the case of large cables shape regulation, the cameras could yield
exploitable information about the cable orientation with respect to the robots. The
use of both leader and follower cameras may also provide redundant information about
the tether slackness, which can be used together with accelerometers data in order to
enhance the reliability of cable shape estimation.

The concept of catenary-based tether shape control for a pair of robots may also
be extended for a chain composed of several underwater robots deployed by a surface
vessel. The visual servoing control scheme that we introduced could be used to regulate
the portion of tether cable connecting successive robots. Since the motion of one robot
has an effect on the others, a high level control must be set up to avoid platooning
effect.

The navigation of the whole chain of robots is an interesting research theme to be
developed. The high level controller must manage the relative position between the
robots depending on the situation at hand. If small cavities are to be crossed, the
robots must be mostly aligned and the tether not too slack so as not to drag on the
floor. Otherwise, when exploring open sites, it would be better to have the robots
more spaced laterally in order to have a wider perception of the environment. The
hierarchical control schemes can be used so that priority can be given to the orientation
or slackness, depending on the situation.

Other geometric configurations than a chain of robots can be used. Triangular and
squared grids can be interesting formations to explore open sites and achieve a more
distributed perception of the environment.

Possible applications of this work include the exploration of coastal zones by small
underwater tethered robots, called mini-ROVs. Small underwater robots are required to
carry out exploration missions of these zones due to the low depth. Alone, such robots
cannot counterbalance the disturbance caused by tides and currents acting on the tether
cable. Together, however, they can more efficiently control the tether shape. Moreover,
the use of multiple robots connected by a tether yield a distributed perception of the
underwater environment for the human operator on the surface, which is interesting
for cartography purposes and synchronized data collection of the environment.

Catenary-based tether shape control can be also useful in the context of cluttered
environments exploration, such as underwater caves and submerged mining sites. In
such situations, the correct management of the tether shape is crucial for the success
of the mission, preventing robots from being lost due to tether entanglement with
obstacles.
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In a broader sense, this thesis proved that the tether cable can be used for the
relative positioning between robots, or between robot and a stationary base. This can
be used, for example, by a robot that anchors itself to the seabed relief or underwater
structure in order to have its position stabilized for its mission execution. Another
example of application would be the relative positioning between a surface vessel and
a scout robot.



Appendix A

Position and Orientation

Representation

In a 3-dimensional Euclidean space, noted E
3, a coordinate reference frame is defined

as Fa(Pa, ia, ja,ka) and consists of an origin, denoted Pa, and a triad of mutually
orthogonal basis vectors, denoted (ia, ja,ka), that are all fixed within a particular body
(Siciliano and Khatib, 2016, chap. 1).

The position of a 3-D point, center of frame Fb, relative to another coordinate frame
Fa can be denoted by the 3× 1 vector

aPb =



aXb
aYb
aZb


 . (A.1)

The components of this vector are the Cartesian coordinates of the center of Fb in the
frame Fa, which are the projections the vector aPb onto the corresponding axes i, j,k.

The orientation of frame Fb relative to frame Fa can be denoted by expressing the
basis vectors (ib, jb,kb) in terms of the basis vectors (ia, ja,ka). This yields (

aib,
a jb,

a kb),
which when written together as a 3× 3 matrix is known as the rotation matrix

aRb =



ib · ia jb · ia kb · ia
ib · ja jb · ja kb · ja
ib · ka jb · ka kb · ka


 , (A.2)

which is an special orthogonal matrix, such that aRT
b = aR−1

b and det aRb = 1.
An elementary rotation of Fb about the k axis of Fa through an angle θ is

aRb(k, θ) =



cos θ − sin θ 0
sin θ cos θ 0
0 0 1


 , (A.3)

while the same rotation around the j axis is

aRb(j, θ) =




cos θ sin θ 0
0 1 0

− sin θ cos θ 0


 , (A.4)
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and around i axis is

aRb(i, θ) =




1 0 0
0 cos θ − sin θ

sin θ cos θ 0


 . (A.5)

The Euler angle used to define the orientation of solid bodies in the space are not
uniquely defined. Several formulations are proposed in the literature, among which we
mainly distinguish roll-yaw-roll, roll-pitch-roll and roll-pitch-yaw. Any rotation matrix
of E3 can be expressed in a form of a product of the three matrices as follows (Jaulin,
2015):

bRa = aRb(k, θk)
aRb(j, θj)

aRb(i, θi) (A.6)

Position vectors and rotation matrices can be combined together in an homogeneous
transformation in order to represent position and orientation in a compact notation.
Any 3-D point vector iPa expressed relative to frame Fi can be expressed relative to
Fj if the position and orientation of Fi are known relative to the Fj :

jPa = jRi
iPa +

jPi. (A.7)

This equation can be written
jPa = jMi

iPa, (A.8)

where
jMi =

[
jRi

jPi

0T 1

]

is the 4 × 4 homogeneous matrix that transforms vectors from coordinate frame Fi

to coordinate frame Fj , and
jPa = [jPa 1]T and iPa = [iPa 1]T are homogeneous

representations of position vectors jPa and iPa. The homogeneous matrix iMj is
invertible and the inverse coordinates transformation from frame Fj to frame Fi is
represented by:

jM−1
i = iMj =

[
jRT

i −jRT
i
jPi

0T 1

]
.

The transformation between frames can be expressed as a composition of transforma-
tions, such that:

kMi =
kMj

jMi.



Appendix B

Expression of the catenary

parameter C

This appendix gives details about the calculation of the catenary parameter C as a
function of its slackness H, attachment point difference of height ∆H and cable total
length L.

The catenary shape of a hanging cable can be obtained from a set of three equations.
The first two equations express that the tether extremities are points belonging to the
catenary. The third equation states that the total length of the cable is a known
constant. These equations are given here above:

H =
1

C
[cosh(CD)− 1] (B.1)

H +∆H =
1

C
[cosh(C(D +∆D)− 1] (B.2)

L =
1

C
[sinh(C(D +∆D)) + sinh(CD)] , (B.3)

which can be rewritten as:

CH + 1 = cosh(CD) (B.4)

C(H +∆H) + 1 = cosh(C(D +∆D) (B.5)

CL = sinh(C(D +∆D)) + sinh(CD). (B.6)

We must eliminate D between the equations. Using the identity equation

cosh2(C(D +∆D))− sinh2(C(D +∆D)) = 1 (B.7)

with equations (B.5) and (B.6) leads to (this means that there can be a minus sign in
front of sinh(C(D +∆D)) in Eq. (B.6)):

[C(H +∆H) + 1]2 − [CL− sinh(CD)]2 = 1, (B.8)

that can be developed to

[C(H +∆H) + 1]2 −
[
(CL)2 + sinh2(CD)− 2CL sinh(CD)

]
= 1. (B.9)
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From equations (B.4) and (B.7) we have

sinh2(CD) = (CH + 1)2 − 1, (B.10)

that can be introduced in equation (B.9) yielding:

[(CH + 1) + C∆H)]2 − (CL)2 − (CH + 1)2 + 2CL sinh(CD) = 0. (B.11)

This equation can be further developed to:

(C∆H)2 + 2C∆H(CH + 1)− (CL)2 + 2CL sinh(CD) = 0 (B.12)

C(L2 −∆H2 − 2H∆H)− 2∆H = 2L sinh(CD). (B.13)

Taking the square of equation (B.13) leads to (this means that there can be a minus
sign in front of sinh(CD) in the equation above but C must remain positive):

[
C(L2 −∆H2 − 2H∆H)− 2∆H

]2
= 4L2

[
(CH)2 + 2CH

]
. (B.14)

This is a second order equation in C:

A.C2 +B.C + C = 0, (B.15)

with

A = (L2 −∆H2 − 2H∆H)2 − 4L2H2

= (L2 −∆H2)
[
L2 − (2H +∆H)2

]
(B.16)

B = −4∆H(L2 −∆H2 − 2H∆H)− 8HL2

= −4(L2 −∆H2)(2H +∆H) (B.17)

C = 4∆H2. (B.18)

The determinant ∆ is:

∆ = B
2 − 4AC

= 64HL2(L2 −∆H2)(H +∆H). (B.19)

There exist solutions if ∆ > 0, i.e. if:

L > |∆H| (B.20)

H +∆H > 0 (B.21)

H is always positive because the attachment point P2 is always above the lowest point
P0 of the catenary. Therefore, if a solution exists, we necessarily have B < 0.

In this case the two solutions can be expressed as:

C1 =
−B −

√
∆

2A
(B.22)

C2 =
−B +

√
∆

2A
(B.23)



173

Since C > 0,

sign(C1C2) = sign(CA) = sign(A)

• ifA < 0, there is only one positive solution for C, which is C1 (
√
∆ =

√
B − 4AC >

−B).

• if A > 0, there are two positive solutions C1 and C2 with C1 < C2. The catenary
with coefficient C2 is the tightest one (ch(C2X1) behaves like e

C2X1 whenX1 tends
to infinity, which increases much faster than eC1X1 as X1 increases.). Figures B.1
and B.2 illustrate both solutions, the catenary C1 does not allow the lowest point
to belong to the umbilical, whereas the catenary C2 does.

If we want to have the tightest catenary as a solution, we must have A > 0, i.e.

L > 2H +∆H

since 2H +∆H > 0.

If ∆H = 0, we get:

C2 =
−B +

√
∆

2A
(B.24)

=
8L2H +

√
64H2L4

2L2(L2 − 4H2)
(B.25)

=
16L2H

2L2(L2 − 4H2)
(B.26)

=
8H

L2 − 4H2
(B.27)

If we replace L by 2R, we have:

C2 =
8H

4R2 − 4H2
=

2H

R2 −H2
(B.28)

As a conclusion, the solution for C to have the catenary with the lowest point
belonging to the umbilical is:

C =
2(L2 −∆H2)(2H +∆H) + 4L

√
H(L2 −∆H2)(H +∆H)

(L2 −∆H2) [L2 − (2H +∆H)2]
(B.29)

=
2

L2 − (2H +∆H)2

(
2H +∆H + 2L

√
H

H +∆H

L2 −∆H2

)
(B.30)
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Let us denote α = 2H+∆H
L

,

C =
2/L2

1− α2


Lα+ 2L

√
(H + 1/2.∆H)2 −∆H2/4

L2 −∆H2


 (B.31)

C =
2/L

1− α2


α+

√
(2H +∆H)2 −∆H2

L2 −∆H2


 (B.32)

C =
2

1− α2

(
α/L+

√
α2 −∆H2/L2

L2 −∆H2

)
(B.33)

If we denote β = ∆H/L:

C =
1

L

2

1− α2

(
α+

√
α2 − β2
1− β2

)
(B.34)

with the following conditions:

H ≥ 0 (B.35)

H +∆H ≥ 0 (B.36)

L ≥ max {|∆H|, 2H +∆H} (B.37)

Figure B.1: Catenary solutions with DH positive. DH = 0.32. H = 0.4. L = 2. (0, 0)
is the attachment point of the umbilical to the following robot.
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Figure B.2: Catenary solutions with DH negative. DH = −0.32. H = 0.4. L = 2.
(0, 0) is the attachment point of the umbilical to the following robot.



176 Expression of the catenary parameter C



Appendix C

Kinematic Equations with Twist

Matrix: General Case

Here we establish the relationship between Tr1,2 and Tr2,2. From equation (2.87)) we
have:

˙2P1 = Tr1,2
r1v +Tr2,2

r2v.

where

Tr1,2 =
[
2Rr2

r2Rr1 , −[2Rr2
r2Rr1

r1P1]
×2Rr2

r2Rr1

]
(C.1)

Tr2,2 = −
[
2Rr2 , −[2Rr2

r2P2]
×2Rr2 − [2P1]

×2Rr2

]
(C.2)

where [X]× is the skew matrix defined from vector X.

Let us introduce the twist matrix defined as follows:

r2Vr1 =

[
r2Rr1 , [r2Pr1 ]

×r2Rr1

0 r2Rr1

]
.

Tr2,2
r2Vr1 = −

[
2Rr2 , −[2Rr2

r2P2]
×2Rr2 − [2P1]

×2Rr2

] [r2Rr1 , [r2Pr1 ]
×r2Rr1

0 r2Rr1

]

= −
[
2Rr2

r2Rr1 ,
2Rr2 [

r2Pr1 ]
×r2Rr1 − [2Rr2

r2P2]
×2Rr2

r2Rr1 − [2P1]
×2Rr2

r2Rr1

]

We have:

2Rr2 [
r2Pr1 ]

× = [2Rr2
r2Pr1 ]

×2Rr2 , (C.3)
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This allows to apply the skew matrix in frame F2, instead of Fr2.

−Tr2,2
r2Vr1 =

[
2Rr2

r2Rr1 ,
2Rr2 [

r2Pr1 ]
×r2Rr1 − [2Rr2

r2P2]
×2Rr2

r2Rr1 − [2P1]
×2Rr2

r2Rr1

]

=
[
2Rr2

r2Rr1 , [2Rr2
r2Pr1 ]

×2Rr2
r2Rr1 − [2Rr2

r2P2]
×2Rr2

r2Rr1 − [2P1]
×2Rr2

r2Rr1

]

=
[
2Rr2

r2Rr1 ,
{
[2Rr2

r2Pr1 ]
× − [2Rr2

r2P2]
× − [2P1]

×} 2Rr2
r2Rr1

]

=
[
2Rr2

r2Rr1 ,
[
2Rr2

r2Pr1 − 2Rr2
r2P2 − 2P1

]× 2Rr2
r2Rr1

]

=
[
2Rr2

r2Rr1 ,
[
2Rr2

r2Pr1 − 2Rr2
r2P2 − 2Rr2

r2 (P2P1)
]× 2Rr2

r2Rr1

]

=
[
2Rr2

r2Rr1 ,
[
2Rr2 {r2 (Pr2Pr1 −Pr2P2 −P2P1)}

]× 2Rr2
r2Rr1

]

=
[
2Rr2

r2Rr1 ,
[
2Rr2

r2Rr1
r1 (P1Pr1)

]× 2Rr2
r2Rr1

]

Since
r1 (P1Pr1) = −r1P1,

we obtain:

−Tr2,2
r2Vr1 =

[
2Rr2

r2Rr1 , −
[
2Rr2

r2Rr1
r1P1

]× 2Rr2
r2Rr1

]
.

Finally,
−Tr2,2

r2Vr1 = Tr1,2. (C.4)

Similarly,
−Tr2,1

r2Vr1 = Tr1,1. (C.5)



Appendix D

Catenary Derivatives

The catenary projection equation was defined in equation (3.36) and is rewritten here
below as a reminder:

y (s, xi) =
1
cZ

[
−cosh (Cζ − CD)− 1

C
+ aHmax +

cY2

]
,

where

ζ =
cX2 − xicZ2

b+ x
√
1− b2

and

cZ =

√
1− b2cX2 + bcZ2

b+
√
1− b2xi

.

The derivative of the catenary projection equation with respect to the parameters
a = H

Hmax
and b = sinα was introduced by equations 3.45 and 3.46. They are rewritten

here below:

∂y(xi, s)

∂a
=

1
cZ

[
−∂

1
C

∂a
[cosh (Cζ − CD)− 1]

− sinh (Cζ − CD)

C
(A1 +A2 +A3) +Hmax

] (D.1)

and

∂y(s, xi)

∂b
=− 1

C

∂ 1
cZ

∂b
[cosh (Cζ − CD)− 1− C (H + cY 2)]

− 1
cZ

∂ζ

∂b
sinh (Cζ − CD) .

(D.2)

In this appendix, we give the calculation details of these derivatives.
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First, from equation D.1, the intermediate variables A1, A2 and A3 of are defined
as:

A1 = ζ
∂C

∂a
(D.3)

A2 = −D
∂C

∂a
(D.4)

A3 = −C
∂D

∂a
. (D.5)

The catenary parameter C was defined in equation (2.17), which is presented again
here below as a reminder:

C = 2
Cn

Cd

= 2
2H +∆H + 2L

√
H H+∆H

L2−∆H2

L2 − (2H +∆H)2
.

The partial derivative of C with respect to the a-parameter is:

∂C

∂a
=
∂C

∂H

dH

da
(D.6)

∂C

∂H
= 2

∂Cn

∂H
Cd − ∂Cd

∂H
Cn

C2
d

(D.7)

∂Cn

∂H
= 2 + L

2H +∆H√
H(H +∆H)(L2 −∆H2)

(D.8)

∂Cd

∂H
= −4(2H +∆H) , (D.9)

with dH
da

= Hmax. The partial derivative of 1
C

with respect to the a-parameter is:

∂ 1
C

∂a
=
∂ 1
C

∂H

dH

da
(D.10)

∂ 1
C

∂H
=

∂Cd

∂H
Cn − ∂Cn

∂H
Cd

2C2
n

. (D.11)

The partial derivative of D, the catenary half-span, with respect to the a-parameter is:

∂D

∂a
=
∂ 1
C

∂a
acosh(CH + 1) +

∂C
∂a
H + CHmax

C
√

(CH)2 + 2CH
(D.12)

Finally, the derivative given by equation (D.2) are calculated as follows:

∂ 1
Z

∂b
=

cX2 − cZ2xi
√
1− b2

(√
1− b2 cX2 + b cZ2

)2 (D.13)

∂ζ

∂b
= −

(cX2 − cZ2xi)
(√

1− b2 − bxi
)

√
1− b2

(
b+
√
1− b2xi

)2 . (D.14)



Appendix E

Preliminary Results with

Terrestrial Robots

In this appendix is resumed the preliminary work we made on tether shape control
using terrestrial robots. Two articles are reproduced in the following pages.

First, the article we presented at the 2017 IEEE International Conference on Robotics
and Automation (ICRA 2017) is reproduced. The title of this paper is Catenary-

based Visual Servoing for Tethered Robots. It addressed the use of catenary
model to achieve visual of an umbilical linking two terrestrial robots.

Second, the article Tether Shape Control through Catenary-Model-Based

Visual Servoing is reproduced. This paper makes a comparison between catenary-
based and image-based visual servoing controllers.
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Catenary-based Visual Servoing for Tethered Robots

Matheus Laranjeira 1, Claire Dune1 and Vincent Hugel1

Abstract— Tethers are used to supply power and transfer
data for teleoperated robots. They are known to limit the robot’s
workspace and could have the effect of hampering its motion.
What if we could take advantage of the tether? In this paper
a new visual servoing scheme for catenary shaped deformable
objects is introduced in order to control the tether parametric
shape by properly moving its fixation point. In most of the
visual servoing approaches the target object is rigid and distant
from the controlled robot. On the contrary, in this paper, the
object is deformable and attached to the robot, thus its 3D
shape changes while the robot is moving. The experimental
system is composed of two terrestrial mobile robots of the same
motion capabilities linked with a slack rope. Simulation and real
experiments validate the proposed control scheme for proper
tether handling.

I. INTRODUCTION

Tethered and umbilical systems are used to provide power,

communication and assistance to robots operating in severe

environments. Some planetary rovers are connected to a

remote station by a cable to secure the exploration of

unknown and steep terrains. Their motion can be controlled

thanks to cameras that can be mounted either on the rover [1]

or on the station [2]. Tethered systems are also designed for

underwater missions. The underwater tether is usually slack,

and links a remotely operated vehicle (ROV) to a ship on the

surface. Some research studies deal with solutions to prevent

the ROV from beeing disturbed by the tether due to ship

motion [3].

Long flexible sagging objects like tethers, cables, wires,

hoses can be modeled by splines [4] and catenaries [5], [6],

in the context of object transportation and aerial systems, or

by parabolas [7], in the case of cable-driven parallel robots.

These objects are subject to gravity and the geometrical

equation that matches their shape can be used to control

the motion of the load to be transferred from one location

to another.

Visual servoing [8], [9] controls a robot motion to regulate

some visual features that are usually extracted from rigid

objects that can be fixed or moving freely. First, geometrical

features such as points, line segments and circles were

investigated [10]. Then, 3D models were introduced for

known manufactured objects [11], [12], image moments to

deal with objects of natural shape [13], splines for shape

tracking [14] and algebraic curves for shape alignment [15].

Articulated objects were also considered [16]. Some recent

works focus on deformable object shape control where robots

push or pull the object to reach a desired configuration [17],

[18]. In the context of hose transportation, several robots

1 Cosmer Laboratory EA 7398, University of Toulon, France

Fig. 1: Experimental setup: two Turtlebots [19] simulate a

tether handling system for remotely operated robots. The

leader robot freely explores its surroundings while the fol-

lower robot is expected to maintain the tether slack enough

not to hamper the leader movements

were attached to a semi-rigid cable and a coordinate vi-

sual servoing control was introduced based on the cable

curvature derived from splines and GEDS (Geometrically

Exact Dynamic Splines) [4]. Unknown deformable objects

can be modeled thanks to their viscoelasticity properties [17]

or using virtual geometrical features such as image points,

distances and curvatures [18].

This paper deals with a novel visual servoing strategy

based on the deformable shape of a sagging tether that

links two terrestrial mobile robots of the same motion

capabilities. The objective is to free the leader robot from

tether management while the follower robot will be able to

position itself to ensure an average sag of the tether and

proper orientation with respect to it. The three points below

illustrate the contribution of this work:

• The tether is managed between two mobile robots

through a visual system embedded on the follower robot

that can extract visual information on the tether.

• The tether is modeled by a catenary shape whose

parameters are estimated thanks to a real time curve

fitting in the image. This allows to take into account

the deformation of the tether beyond pixels detected in

the image.

• An interaction matrix based on the estimated catenary

parameters is calculated and used for the motion control

of the follower robot with respect to the deformable

tether.

The paper is organized as follows: Section II presents the

tether modeling, Section III focuses on the visual servoing

strategy used for controlling the position of the follower
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robot with respect to the tether. Section IV presents and dis-

cusses the experimental results. Finally, Section V concludes

the paper and gives directions for future work.

II. TETHER MODELING

A. Catenary-based geometrical modeling

The experimental setup is presented in Fig. 1. Two

terrestrial mobile robots of the same motion capabilities

simulate a tether handling system for remotely operated

robots. The leader robot freely explores its surroundings

while the follower robot is expected to maintain the tether

slack enough not to hamper the leader movements. Figure

2 defines the notations and reference frames used in the

remainder of the paper. Let Σr1 and Σr2 be two Cartesian

frames centered at the middle of the robots wheel axis with

X-axis pointing towards the front of the robot and a vertical

Z-axis. A camera is mounted on the follower robot to track

the tether shape. Let Σc be a Cartesian frame attached to the

camera’s optical center, with Z-axis being its optical axis

and Y -axis vertically set towards the ground. It is assumed

that the optical axis is aligned with the robot X-axis. A 3

millimeter orange rope that links the two robots simulates

the tether. Its attachment points are at the same height and

define the centers of the Cartesian frames Σ1 and Σ2, their

orientation being the same as the robot they are attached

to. The tether is modeled as a catenary, where R is its half-

length, D is the half-span between the attachment points and

H is the rope sag. Let Σ0 be a Cartesian frame attached to

the rope. Its center is the center of the rope and the X-axis

and Z-axis are in the rope plane.

The classic equation of a catenary, expressed in frame Σ0,

has the following form [20]:

Σ0 :

{
Y = 0

Z = 1
C
[cosh(Ct)− 1]

(1)

where C = 2·H
R2−H2 . Expressing the same equation in Σ2

leads to:

Σ2 :

{
Y = tan θX

Z = 1
C

[
cosh

(
C
(

Y
sin θ
−D

))
− 1
]
−H

(2)

where θ is the angle between the catenary plane and the

Σ2 X-axis. Finally, the same equation can be written in the

camera frame (Σc) as:

Σc :

{
Y = − 1

C
[cosh (C (η −D))− 1] +H + Y2

Z = cot θ (−X +X2) + Z2

(3)

where η = −X+X2

sin θ
and (X2, Y2, Z2) are the coordinates of

Σ2 in frame Σc.

A 3-D point with coordinates P = (X,Y, Z) in the camera

frame is projected on the image plane as a 2-D point with

coordinates p = (x, y) through the equation:



x
y
1


 =

1

Z



f 0 cx 0
0 f cy 0
0 0 1 0







X
Y
Z
1


 (4)

a)

X0

Z0

b)

Fig. 2: Scheme of experimental setup. Two terrestrial mobile

robots with 2-DOF (rotation and translation) are linked by a

passive tether. (a) top view and (b) side view of the scene

where (cx, cy) are the coordinates of the principal point and

f is the focal length [21]. Therefore, using Eqs. (3) and (4)

we obtain the catenary projection on the image plane:

y =

η1

[
− 1

C
(cosh (C (η2 −D))− 1) + aHmax + Y2

]
(5)

where

η1 =
b+
√
1− b2x√

1− b2X2 + bZ2

and η2 =
X2 − Z2x

b+ x
√
1− b2

As variable shape parameters for the projected curve in the

image, we choose:

a =
H

Hmax

(6)

and

b = sin θ (7)

with Hmax being the tether maximum acceptable sag (i.e. the

tether attachment point height). The parameters a and b are

respectively relative to the tether slackness and orientation

with respect to the follower robot. They range in the interval

[0, 1], and the sign of sin θ is discriminated by the side on

which the tether appears in the image. The tether is horizontal

when a = 0 and it reaches the ground when a = 1. When

b = 0 the tether belongs to the plane (Σ2, X2, Z2) and when

b = 1 it belongs to the plane (Σ2, Y2, Z2).

III. VISUAL SERVOING ALGORITHM

In this paper, the tether 3D shape is defined by the

following feature vector:

s = (a, b)
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Fig. 4: Catenary features estimation through a non-linear

least-squares fitting. (a) tether detection in the robot image

view. (b) tether fitting corresponding to the image view

above. The rope detected points are in blue, the fitted and

desired catenary curve are in red and green, respectively

order linearization of Eq. (11) is used to predict the feature

vector value, as follows:

s(t+ dt) = s(t) + L(t)v2(t) (10)

where dt is the sampling period, L is the catenary interaction

matrix and v2 = (v2, ω2) is the velocity vector of frame

Σ2 with linear velocity v2 and angular velocity ω2. In the

current implementation, the number of consecutive iterations

used for prediction is not limited.

C. Visual-based control scheme

The relation between the tether features time-derivative

and the attachment point Σ2 motion is given by the following

equation:

ṡ = Lv2 (11)

The aim of visual-based control schemes is to minimize

the error e defined as

e = s− s∗ (12)

where s and s∗ are respectively the current and desired

feature vectors (see Fig. 4). In order to ensure an exponential

decay of the error, the following control law is designed [8]:

v2 = −λL†e (13)

where L† is the Moore-Penrose pseudo-inverse of L and

λ ∈ R
+. The velocity of the follower robot is then obtained

through: vr2 = r2V2v2, where r2V2 is the twist transfor-

mation matrix from frame Σ2 to frame Σr2 .

We used a nonholonomic robot with 2 DOF to experimen-

tally validate our control scheme, as is explained in Section

IV. In such case, the conversion between vr2 and the pair of

control variables u = (vx, ωz) is achieved by the following

projection:

u =

[
1 0 0 0 0 0
0 0 0 0 0 1

]
vr2

D. Interaction matrix computation

The interaction matrix L is the tether deformation model.

It links the relative motion of the attached points to the

derivative of the tether parameters. Contrary to [18], the

object has a known parametric shape and this matrix is

analytically computed from the definition of s = (a,b).
Let P0 = (X0, Y0, Z0) and P1 = (X1, Y1, Z1) be the

centers of frames Σ0 and Σ1, respectively. Evaluating and

differentiating Eq. (2) at P1, we get

Ḣ =

− Ċ

C2
[cosh (CD)− 1] + sinh (CD)

(
ĊD

C
+ Ḋ

)
(14)

and differentiating the expression of C in Eq. (1) we have

Ċ = KCḢ (15)

where KC =
2(R2+H2)
(R2−H2)2

. Then, from the definition of a in

Eq. (6) and replacing Eq. (15) in (14), we obtain

ȧ =
KH

Hmax

Ḋ (16)

where

KH =
sinh (CD)

1 + KC

C2 [cosh (CD)− 1− CD sinh (CD)]

The relative motion of P1 in the reference frame Σ2, due

to the velocity of the follower robot v2 expressed in Σ2 is:

Ṗ1 = −v2 − ω2 × P1 (17)

Geometrically,

Ṗ0 =
Ṗ1

2
(18)

and

Ḋ =
X0Ẋ0 + Y0Ẏ0

D
(19)

Thus, using Eqs. (17) and (18) in (19) we have:

Ḋ =
1

2




− cos θ
− sin θ

0
Z1 sin θ
−Z1 cos θ

Y1 cos θ −X1 sin θ




⊤

v2 (20)
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Fig. 5: Multiple positions of the follower robot for the same

tether slackness and orientation: the problem only constrains

the tether shape and orientation w.r.t. the follower robot

Finally, using Eq. (20) in (16) and given that b = sin θ,

ȧ =
KH

2Hmax




−
√
1− b2
−b
0
Z1b

−Z1

√
1− b2

Y1
√
1− b2 −X1b




⊤

v2 (21)

Differentiating b = Y0

D
leads to:

ḃ =
Ẏ0 − bḊ

D

From the expressions of Ẏ0 and Ḋ in Eqs. (18) and (20)

respectively, we get:

ḃ =
1

2D




b
√
1− b2

−1 + b2

0
Z1(1− b2)
Z1b
√
1− b2

−Y1b
√
1− b2 −X1(1− b2)




⊤

v2 (22)

The complete interaction matrix (Eq. (23)) is composed

of the rows given in Eqs. (21) and (22) with one more

simplification: Z1 = 0 since the attachment points are at

the same height. The values of X1 and Y1 are geometrically

calculated from Eq. (2).

The rank of L is 2, which means that this control law only

commands two degrees of freedom of the follower robots,

i.e. the relative attached points distance and the follower

orientation with regards to the tether plane. Figure 5 shows

several follower positions for the same set of parameters

s = (a, b). Remaining degrees of freedom are thus available

for additional tasks, such as obstacle avoidance.

IV. EXPERIMENTAL RESULTS

A. Setup

One simulation and two real experiments are presented

in order to validate the control law. Two Turtlebots [19]

with 2 DOF (translation vx and rotation wz) are used as

experimental robots. They are equipped with a Kinect device

and linked by a 1.4 meter long and 3 millimeter thick orange

rope (Fig. 1). The rope maximum sag is Hmax = 0.40m,

corresponding to its attachment point’s height. The servoing

algorithm runs in the follower robot computer, which is

equipped with a Intel Core i5-2410M @ 2.3 GHz processor.

The video frame rate is fixed to 10Hz. The same robot motion

capabilities, rope length, thickness and maximum sag are

used in simulation and real experiments.

B. Simulation

The objective of the simulation is that the follower robot

moves the tether from a very slackened to a moderately tight

shape. The tether orientation is controlled, passing from a

large angle θ to a desired smaller angle. The initial and

desired values of the feature vector are so = (0.9, 0.8) and

s∗ = (0.5, 0.5), respectively. We assume that the robots can

perfectly estimate the tether parameters, so the fitting process

is not simulated. Figure 6 presents the simulation results. As

expected, both parameters have an exponential decay and

converge to the desired value within 4 seconds for a gain

λ = 0.75 and a sampling period of 0.1 seconds.

C. Real experiments

In the first experiment, the simulation initial conditions

are repeated and the follower robot moves the tether from

an initial shape so = (0.9, 0.8) to a desired shape s∗ =
(0.5, 0.5). We used the same gain as for simulation (λ =
0.75) and a fitting quality threshold Qmax = 1. Results are

summarized in Fig. 7.

In the second experiment (Fig. 8), the leader robot is freely

displaced while the follower robot ensures that the rope keeps

a desired shape s∗ = (0.7,−0.5). First, the leader robot

moves forward, then turns left (24s). Next, it moves about

1.25 meters forward (38s), makes a half-turn (50s) and moves

about 1.25 meters forward again (64s). At the end, it makes

a quarter turn and moves about 0.50 meters backward (76s).

Compared with the first experiment, a higher value was set

to the tether first parameter in order to give more freedom

of maneuvering to the leader robot. We used Qmax = 1
and two different gains for linear and angular velocities:

λl = 1.0 and λω = 6.0, respectively (see discussion below).

Figure 8c presents the fitting quality index evolution during

the experiment. The feature prediction was used 20 times

in cases of wrong rope detection and more 38 times due to

inaccurate fitting.

In Fig. 7, the angular velocity command does not converge

to zero, and remains quasi constant. This is due to the

limitations of our experimental platform that cannot achieve

a rotation velocity lower than 0.05 rad/s. In the second

experiment, we selected a higher gain for the angular velocity

compared to the linear velocity gain in order to overcome
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L =

[
−KH

√
1−b2

2Hmax
− KHb

2Hmax
0 0 0

KH(Y1

√
1−b2−X1b)

2Hmax

b
√
1−b2

2D
−1+b2

2D 0 0 0 −Y1b
√
1−b2+X1(1−b2)

2D

]
(23)
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Fig. 6: Simulation results for tether shape control. (a) the

parameters evolution. The tether goes from an initial to

a desired shape (so = (0.9, 0.8) and s∗ = (0.5, 0.5),
respectively). (b) the control velocities. Linear velocity (vx)

in m/s and angular velocity (wz) in rad/s

this problem. As a future improvement, an integrator com-

pensator to deal with the low level control of the velocity

can be added to the servoing loop.

Looking at Fig. 7, we can note that the real experimen-

tation curves are noisy compared with those obtained in

simulation. This is mainly due to wrong rope detection that

can affect the tether feature estimation. Another reason is the

possible rope oscillation during the robot motion, which can

occur when the robot halts and restarts motion. This could

be taken into account by designing a dynamic controller that

takes the rope inertia into account. In addition, the rope can

be tracked in the image by a gradient-guided algorithm.

V. CONCLUSIONS AND PERSPECTIVES

This paper presents a new visual servoing control scheme

to manage a tether linking two terrestrial mobile robots. The

tether is modeled by a catenary and its shape parameters are

estimated by a non-linear least square fitting. A control law
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Fig. 7: Results of a real experiment for tether shape control.

(a) the tether parameters evolution. The tether goes from an

initial to a desired shape (so = (0.9, 0.8) and s∗ = (0.5, 0.5),
respectively). (b) the control velocities. Linear velocity (vx)

in m/s and angular velocity (wz) in rad/s

that takes into account the tether deformation was introduced

in order to allow the robot to visually control the tether shape.

The control scheme is validated by simulation and by two

series of real experiments. The comparison of simulation and

real experiments shows that both curves converge, validating

the proposed control law. The vision-based tether shape

controller implemented here gives promising results.

Future work will address the extension of the visual

control scheme to multiple 6-D0F robots, and the use of

complementary sensors to increase visual feature detection

accuracy.
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Fig. 8: Two robots are linked by a tether. The leader robot

freely moves while the follower robot maintains a desired
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parameters evolution. (c) the fitting quality index Q evolution
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Tether Shape Control through Catenary-Model-Based Visual Servoing

Matheus Laranjeira 1, Claire Dune1 and Vincent Hugel1

Abstract— Tethers are usually required by robots operating
in hostile environment to ensure power supply and data transfer.
Yet, the tether can have an adverse pulling effect on the robot
motion. In this work, we envision a chain of robots where
vision based control is used between two successive robots to
manage the tether slackness. This paper presents a new visual
servoing scheme based on the tether lowest point, assuming a
catenary shape of the tether. This scheme is compared with an
upgraded version of our previous controller based on catenary
parameters, and two standard IBVS controllers. Three cases
are studied: normal tether visibility, limited tether visibility
and tether close to robot’s sagittal plane. Simulation results
show that traditional visual servoing cannot reach tether desired
shape in some limit cases whereas catenary-based controllers
can successfully achieve tether shape control as long as the
estimation of catenary parameters is enough reliable.

I. INTRODUCTION

Tethered and umbilical systems are used to provide power

and communication to robotic operations in hazardous and

remote environments such as planetary exploration [1], [2],

underwater missions [3], [4] and rescue operations [5]. How-

ever, tethers can limit the robots motion and get entangled

with obstacles or with other fellow robots. In order to

deal with these issues, mechanical systems such as actuated

spools [5]–[7] can be used, embedded cameras can give

visual feedback to control the tether slackness during docking

operations [1] and an intermediate robot can be used to

manage the tether during underwater tasks [4].

Actually, a chain of tethered robots can be useful to ex-

plore hostile and cluttered environments. Thanks to the chain

configuration, the tethered robots can cover larger areas while

keeping connection between pairs of robots. Tether force and

tether heading sensing capabilities at attachment points can

provide means of estimating situations of entanglements [8].

The work presented in this paper focuses on tethered

robots inside a chain of robots that have built-in frontal cam-

era, which is used for local detection of the tether. Vision-

based control of deformable objects is rarely addressed

due to shape estimation complexity or lack of knowledge

about the object model. A Geometrically Exact Dynamic

Splines controller was introduced in [9] to servo wheeled

robots carrying a cable. Virtual geometrical features, such as

image points, angles and curvatures were used to control the

shape of unknown deformable objects [10]. Cables are also

modeled by splines [9], parabolas [11] and catenaries [12],

[13].

Recently, we introduced an original visual servoing control

scheme for catenary-shaped deformable objects to control the

shape of a sagging tether linking two mobile robots [14]. In

1 Cosmer Laboratory EA 7398, University of Toulon, France
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Fig. 1: A leader (r1) and a follower (r2) mobile robots

are linked by a sagging tether: (a) top view and (b) side

view of the scene. Camera, robots and tether frames are

respectively represented by: Σc = (C, Xc, Yc, Zc), Σri =
(Ori , Xri , Yri , Zri) and Σi = (Pi, Xi, Yi, Zi). The tether

half-length is noted R, its sag is H and the half-span between

attachment points is D. The angle between the tether plane

and X2-axis is θ.

this paper, this visual servoing control scheme is upgraded

for better parameters estimation, and a new visual servoing

control scheme based on the catenary lowest point is intro-

duced to combine visual features and catenary parameters.

In addition, both catenary-based visual servoing controllers

are compared with traditional image-based visual servoing

techniques.

The paper is structured as follows. Section II presents

the upgraded version of the original catenary-parameter-

based visual servoing scheme. Section III describes the new

visual servoing scheme based on the catenary lowest point.

Section IV deals with the comparison between catenary

based visual servoing and traditional image-based visual

servoing, in different cases of tether projection shape in

the image. Section V concludes the work and presents new

perspectives.

II. UPGRADED CATENARY-BASED VISUAL SERVOING

A. Catenary Model

In [14], we introduced an original visual servoing control

scheme for tether shape control based on catenary param-

eters that are estimated through curve fitting of the image

projection of the catenary. Parameters are a = H
Hmax

and
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b = sin θ, respectively related to the tether slackness (H)

and to the tether orientation (θ) with respect to the follower

robot sagittal plane (Fig. 1). The tether maximum authorized

slackness is noted Hmax. The catenary 3D equation model-

ing the tether linking both robots is given by:

Σc :

{
Y = − 1

C
[cosh (C (η −D))− 1] +H + cY2

Z = cot θ (−X + cX2) +
cZ2

(1)

where C = 2·H
R2−H2 , η = −X+X2

sin θ
and P2 = (cX2,

cY2,
cZ2)

in frame Σc. The equation of the catenary projection on the

image plane is given by:

y = η1

[
− 1

C
(cosh (C (η2 −D))− 1) + aHmax + Y2

]

(2)

where η1 = b+
√
1−b2x√

1−b2cX2+bcZ2

and η2 =
cX2−cZ2x

b+x
√
1−b2

. The

tether is supposed to be only subject to gravity, and that

its mass is negligible with respect to the robot’s mass.

Attachment points are at the same height.

The objective function of the curve fitting algorithm is

given by χ2 =
∑N

i=1 r
2
i (s), where s = [a b]T , ri (s) =

yi−y(xi, s) is the residual, (xi, yi) are the metric coordinates

of the i-th detected point of the tether in the image, N is the

total number of detected points and y(x, s) is obtained from

the current catenary projection in the image (Eq. (2)). The

Gauss-Newton Jacobian used by the fitting algorithm is:

Jr (i) =
[
−∂y(xi,s)

∂a
−∂y(xi,s)

∂b

]
(3)

The curve fitting algorithm used in this approach has the

advantage of only requiring 30% of tether visibility for

accurate shape estimation. However, this is a local approach

that can converge to a local minimum. In order to find a

global minimum, an initial guess can be estimated from the

position of the lowest point of the catenary.

B. Upgraded parameters estimation through initial guess

The initial guess for the catenary curve fitting algorithm

makes the following approximation: the lowest point pB

of the tether projection that is detected in the image is

approximated with the projection p0 = [x0, y0] of the tether

3D lowest point P0 (Fig. 2).

Evaluating Eq. (2) at p0 ≈ pB leads to

Σc :





D̂ =
cX2 − cZ2xB

sin θ̂ + xB cos θ̂

Ĥ = yB
cos θ̂cX2 + sin θ̂cZ2

sin θ̂ + xB cos θ̂
− cY2

(4a)

(4b)

The relation between D and H is obtained evaluating Eq. (1)

at P1, yielding:

Ĥ =
1

Ĉ

[
cosh(ĈD̂)− 1

]
(5)

In order to facilitate writing, let’s redefine Eq. (4) with:

D̂ =
G1

G3

and

Ĥ =
G2

G3

where G1 = cX2 − cZ2xB , G2 =

yB

(
cos θ̂cX2 + sin θ̂cZ2

)
− cY2G3 and G3 =

sin θ̂ + xB cos θ̂. Then, replacing Eq. (4) in (5) yields:

g
(
θ̂
)
=

2G2
2

R2G2
3 −G2

2

− cosh
(

2G1G2

R2G2
3 −G2

2

)
+ 1 (6)

The root of g(θ̂) yields an estimation of θ, and Ĥ is

obtained from Eq. (4b). This initial estimation of the catenary

parameters is then used by the curve fitting algorithm.

C. Visual Servoing Control

The aim of vision-based control schemes is to minimize an

error defined as e = s− s∗, where s and s∗ are respectively

the current and the desired visual feature vectors [15], [16].

In our control scheme, the feature vector s = [a b]T issued

from catenary parameters is regulated through the follower

robot motion using the following control law [14]:

vr2 = −λr2V2L
+
Ce (7)

where r2V2 is the twist transformation matrix from frame

Σ2 to Σr2 and λ ∈ R
+. The interaction matrix LC is given

by Eq. (8), where K̂C =
2(R2+Ĥ2)
(R2−Ĥ2)

2 , 2P1 =
(
2X1,

2 Y1,
2 Z1

)

in frame Σ2 is estimated thanks to the fitted catenary, and

K̂H =
sinh

(
ĈD̂

)

1 + K̂C

Ĉ2

[
cosh

(
ĈD̂

)
− 1− ĈD̂ sinh

(
ĈD̂

)]

where Ĉ = 2Ĥ
R2−Ĥ2

and D̂ is given by Eq. (4a).

III. CATENARY LOWEST-POINT VISUAL SERVOING

The first version of the catenary-based controller uses

3D catenary parameters in the feature vector. We propose

to design a new controller driven by image features that

takes into account the catenary model of the tether. The idea

behind this new controller is to take advantage of the same

approximation that is used for the upgrade of the first version.

The image feature vector is therefore s = [xB yB ]
T

, where

the coordinates (x0 y0) are approximated with (xB yB).
The new interaction matrix LP that links the variation of

the feature vector s = [xB yB ]
T

to the camera velocity is

calculated starting with the catenary model given by Eq. (1).

Let cP0 = (cX0,
cY0,

cZ0),
cP1 = (cX1,

cY1,
cZ1) and

cP2 = (cX2,
cY2,

cZ2) be respectively the catenary frame

center and the two attachment points in the follower camera

frame Σc. Differentiating the projection equation [17] at cP0

leads to:

Σc :





ẋ0 =
˙cX0 − x0 ˙cZ0

cZ0

ẏ0 =
˙cY0 − y0 ˙cZ0

cZ0

(9a)

(9b)

Then, differentiating Eq. (1) at cP0 and cP1 yields

˙cY0 = KHḊ (10)
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Σ2 : LC =


−

KH

√
1− b2

2Hmax
− KHb

2Hmax
0 0 0

KH

(

2Y1

√
1− b2 − 2X1b

)

2Hmax

b
√
1− b2

2D

−1 + b2

2D
0 0 0 −

2Y1b
√
1− b2 + 2X1(1− b2)

2D


 (8)

The relative motion of cP1 in the reference frame Σc,

due to the camera velocity vc = (vc, wc) expressed in Σc is

given by
˙cP1 = −vc − ωc ×c P1 (11)

Geometrically,

[
˙cX0

˙cZ0

]T
=

1

2

[
˙cX1

˙cZ1

]T
(12)

and using Eq. (11) leads to
[

˙cX0

˙cZ0

]
=

1

2

[
−1 0 0 0 −cZ1

cY1
0 0 −1 −cY1

cX1 0

]
vc (13)

From D2 = (cX0 − cX2)
2 + (cZ0 − cZ2)

2,

˙̂
D = − sin θ ˙cX0 + cos θ ˙cZ0 (14)

Using Eqs. (11) and (12) in Eq. (14),

˙̂
D =

1

2




sin θ̂
0

− cos θ̂

−cY1 cos θ̂
cZ1 sin θ̂ − cX1 cos θ̂

−cY1 sin θ̂




T

vc (15)

Finally, replacing Eqs. (13), (15) and (10) in (9) and consid-

ering the approximation x0 ≈ xB and y0 ≈ yB leads to the

interaction matrix LP given by Eq. (17), where

cZ0 = cZ2 +D cos θ
cX0 = cX2 −D sin θ
cZ1 = cZ2 + 2D cos θ

Here it is assumed that the camera frame axes are parallel

with the axes of the tether attachment point frame. The

matrix is presented in frame Σ2 in order to be compared

to LC . The feature vector s = [xB yB ]
T

is then regulated

through the following control law:

vr2 = −λr2V2L
+
Pe (16)

IV. COMPARISONS AND ANALYZES

Let us compare the catenary-based controllers with tra-

ditional image-based visual servoing techniques. We can

consider some salient points such as the highest and lowest

tether points in the image or approximate the first portion of

the tether with a line segment (see Fig. 2). Such features were

successfully used to control a robot motion by regulating

the shape of rigid objects in the image [18], [19]. The

tether shape evolution, velocity commands and condition

number of interaction matrices are studied in normal and

limit cases for two image-based controllers and the catenary-

based controllers:

• image points: coordinates of the tether highest and

lowest point (pA and pB) detected in the image without

taking into account that the points belong to a catenary

projection [20]

• image line segment : center, length and orientation of

the segment pApB linking the highest and the lowest

points of the tether detected in the image, without

taking into account that the points belong to a catenary

projection [21]

• catenary parameters: two features s = [a b]T , related

to the tether slackness and orientation that parameterize

the catenary curve fitting the tether 3D shape [14].

• catenary-projection lowest point: coordinates of the

tether lowest point (pB) detected in the image, making

the approximation that this point is the projection of the

3D catenary lowest point

x
P0

a)
pA

pB
p0
x

b)

x

pA

p0 pB

c)

Fig. 2: Image features used to manage the tether shape: its

highest and lowest point in the image (pA and pB) and the

line segment pApB in blue. (a) 3D simulated scene where

the tether 3D lowest point P0 is out of the follower’s camera

field of view. (b) corresponding embedded view with p0

being the perspective projection of P0. (c) Another situation

where P0 is inside the follower’s camera field of view

A. Simulation Setup

Simulation is performed using Gazebo [22] to test the

whole control loop including computer vision algorithms.

The setup is composed of two Turtlebots [23] linked by a

1 meter long and 3 mm thick orange rope that simulates

the tether. The robots have 2 DOF (one translation and one
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Σ2 : LP =
KH

2 cZ0

[
xB

KH

1
KH

0 0 0 (cZ1−cZ2)+xB(cX1−cX2)
KH

yB

KH
− cos θ − sin θ 0 0 0 −(cZ1 − cZ2) sin θ − (cX1 − cX2)

(
cos θ − yB

KH

)
]

(17)

rotation) and the follower is equipped with a camera that

monitors an extremity of the rope. The maximum authorized

rope sag is fixed to Hmax = 0.40m, corresponding to its

attachment points height.

The rope is detected in the follower’s camera by a color

segmentation algorithm, that is refined by morphological

skeletonization. The segmented points are then used to

compute the visual servoing features.

Three simulations are carried out in order to compare the

performances of vision-based tether shape controllers (see

Fig. 3). The objective is to study the controllers behavior in

normal conditions, when the tether shape is clearly visible,

as well as in limit cases, when the tether is not completely

visible or when it degenerates into a vertical line in the

image.

The first simulation (Fig. 3a) is a typical example where

the tether is completely visible and not degenerated in the

image. The angle θ is required to vary from 20◦ to 45◦

while the tether slackness must remain the same (initial H0 =
0.20m and desired H∗ = 0.20m). In the second simulation

(Fig. 3b), the angle θ is required to vary from 10◦ to 60◦

to check controllers performance when the tether is partially

visible (θ close to 60◦). The initial and desired slackness

are the same (H0 = H∗ = 0.25m). In the third simulation

(Fig. 3c), the angle θ is required to vary from 20◦ to 0◦ to

check the controller performance when the tether plane is

near to the camera optical axis (θ close to 0). The initial

and desired slackness are H0 = 0.10m and H∗ = 0.24m,

respectively.

follower view

a) normal case

follower view

b) limit case 1

follower view

c) limit case 2

Fig. 3: Follower robot camera view for (a) first, (b) second

and (c) third simulation. Initial and desired tether shape in

the image are drawn in blue and red lines, respectively

B. Results Analysis

Figure 4 shows, for the three studied cases, the tether

shape parameters error and the velocity commands of the

follower robot as a function of time. Figure 5 presents the

trajectory of the tether lowest point in the image. Figure 6

presents the condition number evolution for the controllers

interaction matrices and the Gauss-Newton Jacobian used for

curve fitting (Eq. (3)). The condition number of a matrix A

is defined as follows [24]:

cond(A) = |A||A+| (18)

where |.| is the L2 norm.

In the normal case, the tether shape control is achieved

by all the controllers. They also allow to reach the desired

position in the image plane (see Figs. 4a to 4d and 5a). The

tether parameters (slackness H and orientation θ) converge

to their desired values even using image-based features.

Image-based controllers are very sensitive to the detection

of the lowest part of the tether, and work well when this

part is well visible in the image. Compared with pure

image-based controllers, the catenary lowest-point controller

appears to execute a more balanced regulation between slack-

ness (Fig. 4a) and orientation (Fig. 4b). In the image plane,

the resulting trajectory of the lowest point is more regular

than pure image-based trajectories (Fig. 5a). In addition, the

catenary parameter controller is less sensitive to noisy tether

detection whereas the other controllers are very dependent

on the accurate detection of the lowest point in the image.

In the first limit case, the tether desired shape is only

achieved by the catenary parameter controller (Figs. 4e

to 4h). The other controllers cannot reach the desired tether

shape leading to a residual offset of slackness (Fig. 4e)

and angle (Fig. 4f). However, these controllers converge as

expected in the image plane, while we observe a disconti-

nuity of the lowest point trajectory in the case of catenary-

parameter controller (Fig. 5b). This is not surprising since the

catenary-parameter controller directly regulates the tether 3D

shape, and converges to the real lowest point that is outside

the image.

In the second limit case (see Figs. 4i to 4l), image-

based and catenary lowest point controllers achieve the tether

desired shape. The image features can be well estimated

since at least half of the tether is visible. However, the

catenary parameters controller cannot reach the target shape

because of fitting failure when the tether gets close to the

camera sagittal plane. This is confirmed by the condition

number of the curve fitting Gauss-Newton Jacobian (Fig. 6d)

that becomes ill-conditioned at the end of the simulation.

Nevertheless, all the interaction matrices are well conditioned

(Figs. 6a to 6c), which means that they are robust to input

noise.

The catenary lowest-point controller makes use of an

initial guess of the tether angle parameter. In the proximity

of θ = 0, the slackness parameter is not well estimated,

since it is subjected to numerical drift resulting from small

denominator value in Eq. (4b). In order to improve the

catenary parameter controller, a solution will be to directly

carry out an initial guess on the slackness parameter.

All four controllers need at least 50% of tether detected

points in the image when the tether gets closer to the camera

sagittal plane. In real situations it will be difficult to detect

half the tether the longer it is. In order to deal with this issue,
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a solution could be to equip the robot with an additional

camera outside its sagittal plane. Another solution would

consist of placing fiducial markers along the tether at known

length, which could be easily detected in the image and

overcome the noisy detection of the lowest point.

This work is a first step to the regulation of the tether

shape inside a chain of robots. In order to navigate in

narrow or cluttered environments, the relative position of two

successive robots will have to be fully constrained. In this

case, the distance between the two attachment points as well

as the two relative angles between the robots orientation and

the tether plane will have to be regulated. In the considered

scenario, the leader robot will be able to move freely while

the follower robot will be in charge of maintaining a desired

tether slackness. Catenary-based visual servoing will be

extended to fulfill this kind of scenario.

V. CONCLUSIONS AND PERSPECTIVES

This paper studied vision-based control strategies that can

be used to manage the shape of a sagging tether linking two

terrestrial robots. Four different visual controllers are tested

to regulate the tether shape. Two of them are pure image-

based while the other two are catenary-based controllers, one

that uses catenary parameters as features and another one that

uses image features taking advantage of the catenary model.

The study shows that the additional knowledge about the

tether 3D shape allows to obtain satisfactory tether handling.

Both catenary-based controllers could be combined to design

a more robust controller.

Future work will extend tether visual servoing control to

3D holonomic vehicles like underwater robots through the

management of vertical translation and pitch rotation. One

target application will be the displacement of a chain of

tethered robots inside a cluttered environment.

ACKNOWLEDGMENTS

This work was achieved thanks to specific funding from

the France PACA (Provence-Alpes-Côte-d’Azur) region,
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Fig. 4: Error evolution for tether slackness and orientation as well as linear and angular command velocities for normal

case (Figs. a, b, c and d), limit case 1 (Figs. e, f, g and h) and limit case 2 (Figs. i, j, k and l). Tether initial

and desired shape are respectively: (H0 = 0.20m, θ0 = 20◦) and (H∗ = 0.20m, θ∗ = 45◦); (H0 = 0.25m, θ0 = 10◦) and

(H∗ = 0.25m, θ∗ = 60◦); (H0 = 0.10m, θ0 = 20◦) and (H∗ = 0.24m, θ∗ = 0◦). Legend in Fig. 5d. All controllers use a

gain λ = 1.0.
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Fig. 5: Tether lowest point trajectory in the image plane for (a) normal case, (b) limit case 1 and (c) limit case 2. (d) legend

0 5 10 15 20 25 30
Time (s)

0

2

4

6

8

10

12 Condition Number

a)

0 10 20 30 40 50 60
Time (s)

0

2

4

6

8

10

12 Condition Number

b)

0 5 10 15 20 25 30
Time (s)

0

2

4

6

8

10

12 Condition Number

c)

0 10 20 30 40 50 60
Time (s)

0

1

2

3

4

5

lo
g
10
(c
o
n
d
(J
))

Jacobian condition number

Normal case

Limit case 1

Limit case 2

d)

Fig. 6: Interaction matrices condition number evolution for (Fig. a) normal and (Figs. b and c). Legend in Fig. 5d. (d)
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Appendix F

Interaction Matrix Test Protocol

Introduction

This appendix depicts a protocol to validate the interaction matrices in the context
of visual servoing of a pair of underwater robots linked with a cable. The robots are
assumed to remain horizontal. 4 degrees of freedom (DOF) are used: three translational
(νx, νy, νz) and one rotational (ωz).

Methodology

Definition

Let v be the Cartesian velocity of an embedded sensor and s a set of visual features.
The interaction matrix L links the features time variations ṡ with the sensor motion
v = [νx, νy, νz, ωz]. It is defined as:

ṡ(t) = L(s, t)v(t) (F.1)

Feature trajectories estimation

Let us consider a discrete version sk of s at time samples kdt, where k ∈ N and dt
the time step duration, in seconds. Linearizing equation (F.5) leads to a recursive
expression of sk:

{
s0 = s(t = 0)

sk+1 = sk + dtLk(sk)vk

(F.2)

Interaction matrices validation

In order to evaluate the interaction matrix L, the measured features s(kdt) can be
compared with the estimated features sk for small displacements of the sensor. One
dimension will be tested after the other. It allows to evaluate the matrix components
independently.
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Figure F.1: Top view and lateral view of the robot set up.

For example, if s is a 3 dimensional, evaluating the first features s[0] for a forward
motion in the X-direction corresponds to the component L1,1 of the interaction matrix.
It allows to check the sign of the component and its rough evolution w.r.t features.

Matrices evaluation

Simulation set up

The matrices are tested on Scilab.
Let us introduce two robots that are symmetrically set and have the following

positions in a global world reference frame (see figure F.1).

{
WPr2 = [0, 0, 0.2, 0, 0, 0]
WPr1 = [1.9, 0.1, 0.5, 0, 0, π]

(F.3)

They are linked with a catenary shaped 1.5m length cable. The maximal sag is
Hmax = 0.7m and the maximal difference between the attachment points is ∆Hmax =
0.5m.

Leader and follower interaction matrix evaluation

Let us consider the Lr2,2 and Lr1,2 interaction matrices, and the follower robot velocity
r2v. In our case, the interaction matrix is directly computed in the robot frame. Then,
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classical sensor velocity is changed for robot velocity. The follower s2 and leader features
s1 can be expressed as

ṡ1 =
[
a1, b1, d1

]T
= Lr1,2

r2v (F.4)

ṡ2 =
[
a2, b2, d2

]T
= Lr2,2

r2v (F.5)

We will test the degrees of freedom one by one and compare. The estimated features
are drawn in dashed line and the real features are in solid line.

Follower velocity in the X direction: test of first column

r2v = [±0.1, 0.0, 0.0, 0.0] (F.6)
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Figure F.2: The follower moves along the X-axis. Left: follower features when νx > 0,
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Figure F.3: The follower moves along the X-axis. Left: leader features when νx > 0,
Right: leader features when νx < 0 (blue ai, red bi, green di)
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Follower velocity in the Y direction: test of second column

r2v = [0.0,±0.1, 0.0, 0.0] (F.7)

0 2010 305 15 25 35

0

−1

1

−1.5

−0.5

0.5

real a 

real b

real d

estimated a

estimated b

estimated d

Follower features

0 2010 305 15 25 35

0

−1

1

−1.5

−0.5

0.5

real a 

real b

real d

estimated a

estimated b

estimated d

Follower features

Figure F.4: The follower moves along the Y -axis. Left: follower features when νy > 0,
Right: follower features when νy < 0 (blue ai, red bi, green di)
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Figure F.5: The follower moves along the Y -axis. Left: leader features when νy > 0,
Right: leader features when νy < 0 (blue ai, red bi, green di)
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Follower velocity along the Z-axis: test of third column

r2v = [0.0, 0.0,±0.1, 0.0] (F.8)
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Figure F.6: The follower moves along the Z-axis. Left: follower features when νz > 0,
Right: follower features when νz < 0 (blue ai, red bi, green di)
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Figure F.7: The follower moves along the Z-axis. Left: leader features when νz > 0,
Right: leader features when νz < 0 (blue ai, red bi, green di)

Follower velocity around the Z-axis: test of fourth column

r2v = [0.0, 0.0, 0.0,±0.1] (F.9)
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Figure F.8: The follower turns around the Z-axis. Left: follower features when ωz > 0.
Right: follower features when ωz < 0. (blue ai, red bi, green di)
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Figure F.9: The follower turns around the Z-axis. Left: leader features when ωz > 0.
Right: leader features when ωz < 0. (blue ai, red bi, green di)

Conclusion

The estimated and real features are superimposed, which validates both matrices Lr1,2

and Lr2,2.
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Appendix H

Résumé en français

Introduction

En robotique sous-marine, deux types de robots sont différenciés par la présence ou
l’absence d’un ombilical les reliant à un navire de surface. On distingue ainsi les robots
autonomes, dits AUV (autonomous underwater vehicles) et les robots téléopérés, dits
ROVs (Remotely Operated Vehicles). Les robots autonomes ont une grande liberté
de déplacement mais sont limités par leur autonomie et par l’intelligence embarquée.
L’eau absorbant fortement les ondes, ils n’ont pas ou peu de moyen de communication
avec la surface durant leur immersion. Ils sont généralement dédiés à des tâches de
cartographie où leur mission est d’effectuer un parcours prédéfini pour couvrir une
zone. Les ROVs, quant à eux, sont privilégiés dans des tâches d’exploration ou de
maintenance pour lesquelles un opérateur en surface prend les décisions. Le câble sert
de support au transfert des données, à haut débit. Il peut également transmettre de
l’énergie et servir de support mécanique pour ramener le véhicule au navire de surface.
Cependant, il limite la zone de déploiement et peut s’emmêler au fond ou s’accrocher
à des objets dérivants, comme des filets.

La majorité des ROVs actuellement en service sont des engins de grande dimension
qui nécessitent des systèmes de mise à l’eau semblables à des grues (LARS, launch
and recovery systems) et des navires de surfaces de grand tonnage, dont le coût de
fonctionnement est prohibitif. Le développement d’engins de petite taille, de moindre
coût et pouvant être déployés par une ou deux personnes depuis une petite embarcation
a un intérêt économique évident. Cependant, plus l’engin est petit, plus sa puissance
et son inertie sont faibles et plus les effets hydrodynamiques s’exerçant sur le câble
impactent sa manoeuvrabilité. Le laboratoire COSMER et la société Subseatech ont
proposé d’aligner plusieurs petits ROVs afin de résoudre ce problème. L’union des
forces de propulsion des ROVs leur permet de lutter efficacement contre les forces
hydrodynamiques et libère le ROV de tête, le leader, pour des tâches d’exploration.

Nous appelons ce concept la cordée de robots (Fig. H.1). Les robots qui com-
posent la cordée sont compacts, légers et avec une charge utile sensorielle limitée.
Chaque robot joue le rôle d’actionneur et modifie la forme du câble en fonction de
la situation. Notre stratégie est d’éviter tout contact avec les obstacles pour limiter les
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emmêlements. Si la profondeur est trop faible, il est préférable de maintenir l’ombilical
plus tendu afin d’éviter qu’il ne trâıne sur le fond marin. Sinon, si l’environnement est
plus large, l’ombilical peut être plus lâche afin de donner plus de liberté de mouvement
aux robots.

10 m

0.70 m

Suiveur Leader

Focus de la thèse

2000 m

Figure H.1: Une châıne de N robots reliés compacts utilisés pour explorer les eaux peu
profondes. La thèse porte sur le contrôle de la forme du câble entre les deux premiers
robots, à savoir le leader et son suiveur immédiat. Les robots qui composent la châıne
sont des mini-ROV légers équipés d’une caméra frontale, d’une caméra arrière, d’une
centrale inertielle et d’un profondimètre.

Dans le cadre de cette thèse, seuls les capteurs embarqués sur les mini-ROVs sont
utilisés, soit principalement les caméras embarquées, et de manière secondaire les pro-
fondimètres et les centrales inertielles. Le câble n’est pas instrumenté. Nous nous
sommes intéressés plus particulièrement à la première paire de robots, supposant que
le comportement obtenu pourrait ensuite servir de contrôleur bas niveau entre deux
éléments de la cordée et être répliqué sur les autres paires de robots.

Les développements réalisés dans le cadre de cette thèse visent à définir des stratégies
de contrôle d’objets déformables par asservissement visuel, appliquées aux objets de
type câble reliant deux robots sous-marins, un leader et un suiveur, en utilisant le re-
tour des caméras embarquées. Les deux robots ont les mêmes capacités de mouvement
et sont supposés rester à l’horizontale, les angles de roulis et de tangage étant réglés de
façon autonome par un contrôleur bas niveau haute fréquence.
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L’objectif principal est de prouver la faisabilité d’un schéma de commande d’asservis-
sement visuel qui permette au robot suiveur de réguler la forme de l’ombilical en libérant
le robot leader pour explorer son environnement, en autonomie ou par téléopération.

Les contributions principales de cette thèse sont les suivantes :

• L’estimation en temps réel de la forme du câble par une procédure de mise en
correspondance de sa projection dans le plan l’image avec le modéle géométrique
de type châınette.

• La conception d’une stratégie de régulation de la forme du câble grâce à une
technique novatrice d’asservissement visuel basée sur les paramètres du modèle
de châınette.

• Le positionnement relatif de deux robots sous-marins reliés par un câble grâce
à la perception locale du câble lui-même à partir de leurs caméras et grâce aux
capteurs de profondeur intégrés.

Modélisation

Le fonctionnement de la châıne proposée de mini-ROVs suppose les hypothèses suiv-
antes :

1. la distance maximale entre robots est d’environ 10 mètres ;

2. les robots peuvent naviguer à des profondeurs légèrement différentes (différence
inférieure à 5 mètres, en fonction de la longueur de l’ombilical) ;

3. le mouvement de roulis et de tangage des robots est mécaniquement stabilisé ou
régulé à bas niveau pour maintenir le véhicule horizontal ;

4. les robots sont équipés d’une caméra frontale et/ou arrière qui filment le câble ;

5. chaque robot dans la châıne doit gérer le câble qui le précède ;

6. le robot leader ne gère aucune partie de l’ombilical, et reste libre pour explorer
son environnement et pour exécuter d’autres tâches ;

7. le robot leader peut se trouver en dehors du champ de vision de la caméra du
robot suiveur, mais une partie du câble est toujours visible.

8. le câble est détectable dans le flux d’images de la caméra ;

9. l’ombilical reliant les deux robots est pesant et le plan du câble reste dans le plan
vertical. Le point le plus bas est toujours situé entre les deux robots ;

Le câble reliant les robots est modélisé par une châınette, dont les paramètres
géométriques servent d’entrées aux algorithmes de contrôle. Le paramétrage est rendu
symétrique par rapport aux points d’attache. Ces paramètres sont définis par rapport
à chaque robot, à savoir la différence de hauteur entre les points d’attache ∆Hi, la
hauteur Hi de câble et l’orientation αi du plan du câble (Fig. H.2).
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Figure H.2: (a) vue de dessus et (b) vue de côté de la première paire de robots com-
posant la châıne des robots. L’ombilical reliant les robots est modélisé par une châınette
dont la hauteur est notée H2. La différence de hauteur entre les points d’attache du
côté suiveur est ∆H2. La portée horizontale de châınette correspondant à la hauteur
H2 est notée D2 et ∆D2 est la portée supplémentaire due à la différence de hauteur.
Les angles d’orientation du câble par rapport à chaque repère de point d’attache sont
notés α1 et α2, respectivement pour les points d’attache du câble au robot de tête et
au robot suiveur.

Perception proprioceptive du câble reliant deux robots sous-marins

Les robots sont équipés de capteurs de profondeur, et de caméras placées à proximité
des points d’attache du câble. La différence de hauteur entre les points de fixation est
calculée à partir des mesures prises par les capteurs de profondeur, tandis que la hauteur
et l’orientation du câble sont estimées par une procédure de mise en correspondance
dans le plan image basée sur l’algorithme de Gauss-Newton. Les points de la projec-
tion du câble dans l’image sont détectés par segmentation couleur dans l’espace HSV
puis par l’application d’opérateurs morphologiques : ouverture, fermeture et squeletti-
sation. La projection du modèle de châınette dans le plan image est ainsi ajustée aux
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points détectés, ce qui permet d’estimer les paramètres correspondant à la hauteur et
à l’orientation du câble.

Le schéma général de l’algorithme de Gauss-Newton amélioré proposé pour l’esti-
mation des paramètres de châınette est présentée dans la figure H.3. Après l’acquisition
d’une nouvelle image et la détection des points projetés dans l’image, l’estimation de
la forme du câble passe par le calcul des résidus qui représentent la différence dans
l’image entre les points détectés et la courbe à ajuster. Des fonctions de traitement
des résidus ont été ajoutées à la procédure d’ajustement afin d’éviter les problèmes
de calcul numérique dans la matrice Jacobienne de Gauss-Newton, afin d’accélérer son
calcul et d’améliorer la robustesse de l’algorithme au bruit de détection. Elles sont
définies suivant quatre étapes. L’étape 1 consiste à filtrer les résidus en éliminant les
points correspondants à des écarts trop importants entre la courbe paramétrée et la
courbe formée par les points détectés. L’étape 2 effectue le sous-échantillonnage des
points 2-D de l’image afin de retenir un seul point par abscisse. L’étape 3 fait appel
à la méthode des M-estimateurs afin de pondérer les écarts et de favoriser les plus
faibles. L’étape 4 permet d’assurer que les paramètres restent bien dans leur domaine
de définition.

détection des points
du câble

calcul des résidus

suppression
des résidus non bornés

M-estimateurs

gestion
saturation

test critère d’arrêtnouvelle acquisition
d’image
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1.

2.

3.

4.

point de départ
s0 = [0.5, 0.5]T

vecteur de paramètres
estimé ŝ

itération suivante

stop

heuristique
d’initialisation

ou

Figure H.3: Schéma de l’algorithme de Gauss-Newton amélioré avec les quatre étapes
numérotées et l’heuristique d’initialisation.

De plus, une heuristique d’initialisation a été introduite afin d’obtenir un point
de départ plus proche de la solution et ainsi éviter les minima locaux. L’heuristique
d’initialisation est définie en considérant que la projection dans l’image du point le plus
bas de la châınette 3D est approximée avec le point le plus bas détecté dans l’image.

L’ajustement des points détectés sur une courbe de type châınette a été validé
en simulation et en situation réelle en bassin ; les résultats obtenus ont montré que
l’estimation de la forme de l’ombilical était suffisante pour notre application lorsqu’au
moins 30% des points de la projection du câble étaient détectés dans l’image.
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Contrôle de la forme du câble par asservissement visuel

Le schéma global de commande du robot suiveur est décrit dans la figure H.4. La partie
encadrée en bleu désigne le cœur des développements effectués en terme d’asservissement
visuel sur les paramètres du câble qui se déforme en fonction des mouvements des points
d’attache sur le robot de tête et sur le robot suiveur (Fig. H.5).
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Figure H.4: Schéma global de contrôle par asservissement visuel basé châınette du
robot sous-marin suiveur

.

La forme de l’ombilical est régulée par le mouvement du robot suiveur qui génère un
déplacement adéquat du point d’attache de l’ombilical. La figure H.5 décrit l’algorithme
de contrôle par asservissement visuel qui consiste à calculer la vitesse que le robot
suiveur doit produire afin de conserver la forme désirée du câble dans l’image de sa
caméra embarquée. Les paramètres estimés du modèle de type châınette sont regroupés
dans un vecteur de paramètres, appelé s, qui doit être régulé afin de maintenir le câble
à la forme désirée. Il doit être suffisamment lâche pour ne pas gêner les mouvements
du robot de tête. De plus, une orientation adéquate entre chaque robot et le plan du
câble doit être maintenue afin de conserver une vue du câble à l’intérieur du champ
de vision de la caméra. Cela permet d’obtenir une estimation précise de la forme à
partir du retour d’information de la caméra. Cet algorithme passe par le calcul d’une
matrice d’interaction 3D, qui traduit la relation entre le mouvement du robot suiveur
et les dérivées temporelles des paramètres de la châınette. Un formalisme général
pour le calcul de cette matrice d’interaction est proposé, permettant la régulation des
paramètres du modèle de type châınette par rapport aux robots leader et suiveur. Ce
formalisme décompose la matrice d’interaction en deux parties, une partie décrivant la
cinématique du système, et une deuxième partie décrivant le lien entre le mouvement
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igation de haut niveau au sein d’une cordèe de robots sous-marins afin de donner la
priorité au placement d’un des robots par rapport au câble.

Perspectives

Dans la perspective du contrôle de la forme des câbles, une extension intéressante de
ces travaux de thèse est l’utilisation d’informations sensorielles supplémentaires afin de
fournir une estimation fiable de la forme pour des câbles longs (de plusieurs dizaines
ou centaines de mètres de long). Les caméras ont une portée limitée et le câble reste
visible jusqu’à quelques mètres seulement. De plus, les opérations en eau trouble peu-
vent rendre difficile la détection des points du câble dans l’image, ce qui compromet
l’estimation de sa forme à partir du retour visuel de la caméra.

Des capteurs supplémentaires, tels que des accéléromètres mono ou tridimension-
nels, peuvent être ajoutés aux extrémités du câble afin de fournir des informations
supplémentaires sur sa forme. Ces capteurs pourraient être utiles pour mesurer les
angles de départ du câble, et ainsi calculer la hauteur dans le cas d’un modèle de type
châınette. De plus, les accéléromètres peuvent fournir des informations sur le mouve-
ment de balancement du câble, ce qui n’a pas été pris en compte dans les schémas de
commande proposés.

Même dans le cas de la régulation de la forme de gros câbles, les caméras pourraient
fournir des informations exploitables sur l’orientation des câbles par rapport aux robots.
L’utilisation des caméras sur le robot de tête et le robot suiveur peut également fournir
des informations redondantes sur le relâchement du câble, qui peuvent être utilisées
avec les données des accéléromètres afin d’améliorer la fiabilité de l’estimation de la
forme du câble.

Le concept de contrôle de la forme du câble par modèle de châınette entre deux
robots peut également être étendu à une châıne composée de plusieurs robots sous-
marins déployés par un navire de surface. Le schéma de commande d’asservissement
visuel que nous avons introduit pourrait être adapté à la régulation de l’ombilical reliant
deux robots consécutifs. Le mouvement d’un robot ayant un effet sur les autres, un
contrôle de haut niveau doit être mis en place pour éviter l’effet de platooning.

La navigation de toute la châıne des robots est un thème de recherche prometteur
à développer. Le contrôleur de haut niveau doit gérer la position relative entre les
robots en fonction de la situation. Si de petites cavités doivent être traversées, les
robots doivent être le plus souvent alignés et l’ombilical pas trop lâche pour ne pas
trâıner sur le sol. Sinon, lors de l’exploration de sites ouverts, il serait préférable que
les robots soient plus espacés latéralement afin d’avoir une meilleure perception de
l’environnement. Les schémas de contrôle hiérarchiques peuvent être utilisés pour que
la priorité soit donnée à l’orientation ou au relâchement, selon la situation.

Des configurations géométriques autres qu’une châıne de robots peuvent être utilisées.
Des réseaux maillés de formation triangulaire ou carrée peuvent être utiles pour explorer
des sites ouverts et obtenir une perception plus distribuée de l’environnement.

Les applications possibles de ces travaux comprennent l’exploration des zones côtières
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par de petits robots sous-marins reliés, appelés mini-ROV. De petits robots sous-marins
sont nécessaires pour effectuer des missions d’exploration de ces zones en raison de leur
faible profondeur. Seuls, ces robots ne peuvent pas contrebalancer les perturbations
causées par les marées et les courants agissant sur le câble. Ensemble, cependant,
ils peuvent contrôler plus efficacement la forme de la laisse. De plus, l’utilisation de
plusieurs robots reliés par un câble permet une perception distribuée de l’environnement
sous-marin pour l’opérateur humain en surface, ce qui est utile pour la cartographie et
la collecte synchronisée des données de l’environnement.

Le contrôle de la forme du câble basé châınette peut également être employé dans le
contexte de l’exploration d’environnements encombrés, tels que les grottes sous-marines
et les sites miniers submergés. Dans de telles situations, la gestion correcte de la forme
du câble est cruciale pour le succès de la mission, car elle permet d’éviter la perte des
robots suite à des accrochages avec les obstacles.

D’un point de vue général, les travaux présentés dans cette thèse ont prouvé que le
câble peut être utilisé pour le positionnement relatif entre les robots, ou entre un robot
et une base fixe. Le concept peut être mis à profit, par exemple, par un robot qui a
pour mission de s’ancrer au relief du fond marin ou à une structure sous-marine afin de
stabiliser sa position pour l’exécution de sa mission. Un autre exemple d’application
serait le positionnement relatif entre un navire de surface et un robot éclaireur.
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Résumé

Cette thèse porte sur le problème du contrôle de la forme d’ombilicaux pour des robots
sous-marins légers téléopérés (mini-ROVs), qui conviennent, grâce à leur petite taille
et grande manoeuvrabilité, à l’exploration des eaux peu profondes et des espaces en-
combrés. La régulation de la forme de l’ombilical est cependant une tâche difficile,
car ces robots n’ont pas une puissance de propulsion suffisante pour contrebalancer
les forces de trâınée du câble. Pour faire face à ce problème, nous avons introduit le
concept de Cordée de mini-ROVs, dans lequel plusieurs robots sont reliés à l’ombilical
et peuvent, ensemble, contrebalancer les perturbations extérieures et contrôler la forme
du câble.

Nous avons étudié l’utilisation des caméras embarquées pour réguler la forme d’une
portion de l’ombilical reliant deux robots successifs, un leader et un suiveur. Seul le
robot suiveur se chargera de la tâche de régulation de la forme du câble. Le leader
est libéré pour explorer ses alentours. L’ombilical est supposé être légèrement pesant
et donc modélisé par une châınette. Les paramètres de forme du câble sont estimés
en temps réel par une procédure d’optimisation non-linéaire qui adapte le modèle de
châınette aux points détectés dans les images des caméras. La régulation des paramètres
de forme est obtenue grâce à une commande reliant le mouvement du robot à la vari-
ation de la forme de l’ombilical. L’asservissement visuel proposé s’est avéré capable
de contrôler correctement la forme du câble en simulations et expériences réalisées en
basin.

Abstract

This thesis addresses the problem of tether shape control for small remotely operated
underwater vehicles (mini-ROVs), which are suitable, thanks to their small size and
high maneuverability, for the exploration of shallow waters and cluttered spaces. The
management of the tether is, however, a hard task, since these robots do not have
enough propulsion power to counterbalance the drag forces acting on the tether cable.
In order to cope with this problem, we introduced the concept of a Chain of mini-
ROVs, where several robots are linked to the tether cable and can, together, manage
the external perturbations and control the shape of the cable.

We investigated the use of the embedded cameras to regulate the shape of a por-
tion of tether linking two successive robots, a leader and a follower. Only the follower
robot deals with the tether shape regulation task. The leader is released to explore
its surroundings. The tether linking both robots is assumed to be negatively buoyant
and is modeled by a catenary. The tether shape parameters are estimated in real-time
by a nonlinear optimization procedure that fits the catenary model to the tether de-
tected points in the image. The shape parameter regulation is thus achieved through a
catenary-based control scheme relating the robot motion with the tether shape varia-
tion. The proposed visual servoing control scheme has proved to properly manage the
tether shape in simulations and real experiments in pool.
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