Y. Aharonov, L. Davidovich, and N. Zagury, Phys. Rev. A, vol.48, p.1687, 1993.

K. Rudinger, J. K. Gamble, E. Bach, M. Friesen, and R. Joynt, J. Comut. Theory. Nanos, vol.10, issue.7, p.1653, 2013.

E. Farhi and S. Gutmann, Phys. Rev. A, vol.58, p.915, 1998.

G. Grössing, A. Zeilinger, and C. Syst, , vol.2, p.197, 1988.

J. Kempe, Contemp. Phys, vol.44, p.307, 2003.

I. Bloch, J. Dalibard, and S. Nascimbene, Nat. Phys, vol.8, p.267, 2012.

A. M. Childs, Phys. Rev. Lett, vol.102, p.180501, 2009.

N. B. Lovett, S. Cooper, M. Everitt, M. Trevers, and V. Kendon, Phys. Rev. A, vol.81, p.42330, 2010.

A. Ambainis, Int. J. Quantum Inform, vol.01, p.507, 2003.

F. Magniez, A. Nayak, J. Roland, M. Santha, and S. J. Comput, , vol.40, p.142, 2011.

T. Kitagawa, M. A. Broome, A. Fedrizzi, M. S. Rudner, E. Berg et al., Nat. Commun, vol.3, p.882, 2012.

P. Arnault, G. D. Molfetta, M. Brachet, and F. Debbasch, Phys. Rev. A, vol.94, p.12335, 2016.

M. Genske, W. Alt, A. Steffen, A. H. Werner, R. F. Werner et al., Phys. Rev. Lett, vol.110, p.190601, 2013.

G. D. Molfetta and A. Pérez, New J. Phys, vol.18, p.103038, 2016.

A. Schreiber, A. Gábris, P. P. Rohde, K. Laiho, M. ?tefa?ák et al., Science, vol.336, p.55, 2012.

R. Côté, A. Russell, E. E. Eyler, and P. L. Gould, New J. Phys, vol.8, p.156, 2006.

P. W. Anderson, Phys. Rev, vol.109, p.1492, 1956.

S. Aubry, G. André, and A. , Israel Phys. Soc, vol.3, p.18, 1980.

D. R. Grempel, S. Fishman, and R. E. Prange, Phys. Rev. Lett, vol.49, p.833, 1982.

Y. Lahini, R. Pugatch, F. Pozzi, M. Sorel, R. Morandotti et al., Phys. Rev. Lett, vol.103, p.13901, 2009.

A. Joye and M. Merkli, J. Stat. Phys, vol.140, p.1025, 2010.

A. Schreiber, K. N. Cassemiro, V. Poto?ek, A. Gábris, I. Jex et al., Phys. Rev. Lett, vol.106, p.180403, 2011.

A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio et al., Nat. Photonics, vol.7, p.322, 2013.

C. Navarrete-benlloch, A. Pérez, and E. Roldán, Phys. Rev. A, vol.75, p.62333, 2007.

Y. Shikano and H. Katsura, Phys. Rev. E, vol.82, p.31122, 2010.

N. Inui, Y. Konishi, and N. Konno, Phys. Rev. A, vol.69, p.52323, 2004.

V. Rubakov and M. Shaposhnikov, Phys. Lett. B, vol.125, p.136, 1983.

T. Kaluza, . Sitzungsber, and . Preuss, Akad. Wiss. Berlin (Math. Phys.), vol.1, p.966, 1921.

O. Klein, Eur. Phys. J. A, vol.37, p.895, 1926.

N. Arkani-hamed, S. Dimopoulos, and G. Dvali, Phys. Rev. D, vol.59, p.86004, 1999.

G. Di-molfetta, M. Brachet, and F. Debbasch, Phys. A (Amsterdam, Neth.), vol.397, p.157, 2014.

C. Quigg, Gauge Theories of the Strong, Weak, and Electromagnetic Interactions, 2013.

D. A. Meyer, From quantum cellular automata to quantum lattice gases, J. Stat. Phys, vol.85, p.551, 1996.

?. Yalç?nkaya and Z. Gedik, Two-dimensional quantum walk under artificial magnetic field, Phys. Rev. A, vol.92, p.42324, 2015.

P. Arnault and F. Debbasch, Landau levels for discrete-time quantum walks in artificial magnetic fields, Physica A, vol.443, p.179, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02318546

T. Kitagawa, Topological phenomena in quantum walks: elementary introduction to the physics of topological phases, Quantum Inf. Process, vol.11, p.1107, 2012.

T. Kitagawa, M. A. Broome, A. Fedrizzi, M. S. Rudner, E. Berg et al., Observation of topologically protected bound states in photonic quantum walks, Nat. Commun, vol.3, p.882, 2012.

A. D. Verga, Edge states in a two-dimensional quantum walk with disorder, Eur. Phys. J. B, vol.90, p.41, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01500437

P. Arnault and F. Debbasch, Quantum walks and discrete gauge theories, Phys. Rev. A, vol.93, p.52301, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02318234

T. Groh, S. Brakhane, W. Alt, D. Meschede, J. K. Asbóth et al., Robustness of topologically protected edge states in quantum walk experiments with neutral atoms, Phys. Rev. A, vol.94, p.13620, 2016.

S. Brakhane, The quantum walk microscope, 2016.

M. Sajid, J. K. Asbóth, D. Meschede, R. F. Werner, and A. Alberti, Creating Floquet Chern insulators with magnetic quantum walks

O. Boada, L. Novo, F. Sciarrino, and Y. Omar, Quantum walks in synthetic gauge fields with three-dimensional integrated photonics, Phys. Rev. A, vol.95, p.13830, 2017.

D. Jaksch and P. Zoller, The cold atom Hubbard toolbox, Ann. Phys. (NY), vol.315, p.52, 2005.

J. Dalibard, F. Gerbier, G. Juzeli?nas, and P. Öhberg, Artificial gauge potential for neutral atoms, Rev. Mod. Phys, vol.83, p.1523, 2011.

I. Bloch, J. Dalibard, and S. Nascimbène, Quantum simulations with ultracold quantum gases, Nat. Phys, vol.8, p.267, 2012.

J. Dalibard, Introduction to the physics of artificial gauge fields

I. Montvay and G. Münster, Quantum Fields on a Lattice, Cambridge Monographs on Mathematical Physics, 1994.

G. Münster and M. Walzl, Lattice gauge theory -a short primer

J. Smit, Introduction to Quantum Fields on a Lattice, Cambridge Lecture Notes in Physics, 2002.

K. G. Wilson, Confinement of quarks, Phys. Rev. D, vol.10, p.2445, 1974.

G. Di-molfetta, F. Debbasch, and M. Brachet, Quantum walks in artificial electric and gravitational fields, Physica A, vol.397, p.157, 2014.

P. Arnault, Discrete-time quantum walk and gauge theories, 2017.

P. Arrighi, G. D. Molfetta, and N. Eon, A gauge-invariant reversible cellular automaton, Cellular Automata and Discrete Complex Systems, pp.1-12, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01730070

P. Arnault, G. D. Molfetta, M. Brachet, and F. Debbasch, Quantum walks and non-Abelian discrete gauge theory, Phys. Rev. A, vol.94, p.12335, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01554164

G. Jay, J. B. Wang, and F. Debbasch, Dirac quantum walks on triangular and honeycomb lattices
URL : https://hal.archives-ouvertes.fr/hal-02088637

F. Debbasch, Action principles for quantum automata and Lorentz invariance of discrete time quantum walks
URL : https://hal.archives-ouvertes.fr/hal-01818133

, spatial symmetrization" ? i , i labeling the direction taken by the walker at each sub time step, appears in Ref

C. Cedzich, T. Geib, A. H. Werner, and R. F. Werner, Quantum walks in external gauge fields

A. Ambainis, A. M. Childs, B. W. Reichardt, R. ?palek, and S. Zhang, Any and-or formula of size n can be evaluated in time n 1/2+o(1) on a quantum computer, SIAM J. Comput, vol.39, p.2513, 2010.

G. Wang, Efficient quantum algorithms for analyzing large sparse electrical networks, Quantum Inf. Comput, vol.17, p.987, 2017.

I. Bialynicki-birula, D. Weyl, and M. , Phys. Rev. D, vol.49, p.6920, 1994.

D. A. Meyer, From quantum cellular automata to quantum lattice gases, J. Stat. Phys, vol.85, p.551, 1996.

R. P. Feynman, Simulating physics with computers, Int. J. Theor. Phys, vol.21, p.467, 1982.

M. Genske, W. Alt, A. Steffen, A. H. Werner, R. F. Werner et al., Electric Quantum Walks with Individual Atoms, Phys. Rev. Lett, vol.110, p.190601, 2013.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi et al., Two-Particle Bosonic-Fermionic Quantum Walk Via Integrated Photonics, Phys. Rev. Lett, vol.108, p.10502, 2012.

P. Arrighi, V. Nesme, and M. Forets, The Dirac equation as a quantum walk: Higher-dimensions, observational convergence, J. Phys. A: Math. Theor, vol.47, p.465302, 2014.

P. Arrighi, S. Facchini, and M. Forets, Discrete Lorentz covariance for quantum walks and quantum cellular automata, New J. Phys, vol.16, p.93007, 2014.

A. Bisio, G. M. Ariano, and P. Perinotti, Quantum walks, Weyl equation and the Lorentz group, Found. Phys, vol.47, p.1065, 2017.

P. Arrighi, S. Facchini, and M. Forets, Quantum walking in curved spacetime, Quantum Inf. Process, vol.15, p.3467, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01467254

G. Di-molfetta, M. Brachet, and F. Debbasch, Quantum walks in artificial electric and gravitational fields, Phys. Stat. Mech. Appl, vol.397, p.157, 2014.

S. Lloyd, A theory of quantum gravity based on quantum computation

A. H. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys, vol.81, p.109, 2009.

T. Kitagawa, M. S. Rudner, E. Berg, and E. Demler, Exploring topological phases with quantum walks, Phys. Rev. A, vol.82, p.33429, 2010.

P. Arnault and F. Debbasch, Quantum walks and gravitational waves, Ann. Phys. (NY), vol.383, p.645, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01517371

E. Bianchi, M. Han, C. Rovelli, W. Wieland, E. Magliaro et al., Spinfoam fermions, vol.30, p.235023, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00549653

L. A. Bru, G. J. De-valcarcel, G. D. Molfetta, A. Pérez, E. Roldán et al., Quantum walk on a cylinder, Phys. Rev. A, vol.94, p.32328, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01373413

G. Abal, R. Donangelo, F. L. Marquezino, and R. Portugal, Spatial search on a honeycomb network, Math. Struct. Comput. Sci, vol.20, p.999, 2010.

I. Foulger, S. Gnutzmann, and G. Tanner, Quantum walks and quantum search on graphene lattices, Phys. Rev. A, vol.91, p.62323, 2015.

G. Abal, R. Donangelo, M. Forets, and R. Portugal, Spatial quantum search in a triangular network, Math. Struct. Comput. Sci, vol.22, p.521, 2012.

K. Matsue, O. Ogurisu, and E. Segawa, Quantum walks on simplicial complexes, Quantum Inf. Process, vol.15, p.1865, 2016.

I. G. Karafyllidis, Quantum walks on graphene nanoribbons using quantum gates as coins, J. Comput. Sci, vol.11, p.326, 2015.

H. Bougroura, H. Aissaoui, N. Chancellor, and V. Kendon, Quantum-walk transport properties on graphene structures, Phys. Rev. A, vol.94, p.62331, 2016.

C. M. Chandrashekar, Two-component Dirac-like Hamiltonian for generating quantum walk on one-, two-, and threedimensional lattices, Sci. Rep, vol.3, p.2829, 2013.

D. Sarkar, N. Paul, K. Bhattacharya, and T. K. Ghosh, An effective Hamiltonian approach to quantum random walk, Pramana, vol.88, p.45, 2017.

G. M. D'ariano, M. Erba, and P. Perinotti, Isotropic quantum walks on lattices and the Weyl equation, Phys. Rev. A, vol.96, p.62101, 2017.

F. Fillion-gourdeau, E. Lorin, and A. D. Bandrauk, Numerical solution of the time-dependent Dirac equation in coordinate space without fermion-doubling, Comput. Phys. Commun, vol.183, p.1403, 2012.

S. Succi and R. Benzi, Lattice boltzmann equation for quantum mechanics, Phys. Nonlinear Phenom, vol.69, p.327, 1993.

L. Ye, M. Kang, J. Liu, F. Cube, C. R. Wicker et al., Massive Dirac fermions in a ferromagnetic kagome metal, Nature, vol.555, p.638, 2018.

G. Jay, F. Debbasch, and J. B. Wang, Dirac quantum walks on triangular and honeycomb lattices, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02088637

A. Ambainis, A. M. Childs, B. W. Reichardt, R. ?palek, and S. Zhang, Any and-or formula of size n can be evaluated in time n 1/2 +o(1) on a quantum computer, SIAM J. on Comput, vol.39, pp.2513-2530, 2010.

G. Wang, Efficient quantum algorithms for analyzing large sparse electrical networks, Quantum Info. Comput, vol.17, pp.987-1026, 2017.

I. Bialynicki-birula, D. Weyl, and M. , Phys. Rev. D, vol.49, pp.6920-6927, 1994.

D. A. Meyer, From quantum cellular automata to quantum lattice gases, J. Stat. Phys, vol.85, pp.551-574, 1996.

R. P. Feynman, Simulating physics with computers, Int. J. Theor. Phys, vol.21, pp.467-488, 1982.

M. Genske, Electric quantum walks with individual atoms. Phys. review letters, vol.110, p.190601, 2013.

L. Sansoni, Two-particle bosonic-fermionic quantum walk via integrated photonics, Phys. Rev. Lett, vol.108, p.10502, 2012.

P. Arrighi, M. Forets, and V. Nesme, The Dirac equation as a Quantum Walk: higher-dimensions, convergence, Journal of Physics A: Mathematical and Theoretical, vol.47, 2013.

P. Arrighi, S. Facchini, and M. Forets, Discrete lorentz covariance for quantum walks and quantum cellular automata, New J. Phys, vol.16, p.93007, 2014.

A. Bisio, G. M. Ariano, and P. Perinotti, Quantum walks, weyl equation and the lorentz group, Foundations Phys, vol.47, pp.1065-1076, 2017.

A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. modern physics, vol.81, p.109, 2009.

L. Ye, Massive dirac fermions in a ferromagnetic kagome metal, Nat, vol.555, p.638, 2018.

H. Bougroura, H. Aissaoui, N. Chancellor, and V. Kendon, Quantum-walk transport properties on graphene structures, Phys. Rev. A, vol.94, pp.1-11, 2016.

T. Kitagawa, M. S. Rudner, E. Berg, and E. Demler, Exploring topological phases with quantum walks, Phys. Rev. A -At. Mol. Opt. Phys, vol.82, p.1729, 2010.

T. Regge, General relativity without coordinates. Il Nuovo Cimento, vol.19, pp.558-571, 1955.

C. Rovelli, Loop quantum gravity, Living Rev. Relativ. 1, 1, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00477075

J. Ambjorn, J. Jurkiewicz, and R. Loll, The universe from scratch, Contemp. Phys, vol.47, pp.103-117, 2006.

P. Arrighi, G. Di-molfetta, I. Márquez-martín, and A. Pérez, Dirac equation as a quantum walk over the honeycomb and triangular lattices, Phys. Rev. A, vol.97, p.62111, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01758537

G. Jay, F. Debbasch, and J. B. Wang, Dirac quantum walks on triangular and honeycomb lattices, Phys. Rev. A, vol.99, p.32113, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02088637

S. Succi and R. Benzi, Lattice boltzmann equation for quantum mechanics. Phys. D: Nonlinear Phenom, vol.69, pp.327-332, 1993.

P. J. Dellar, D. Lapitski, S. Palpacelli, and S. Succi, Isotropy of three-dimensional quantum lattice boltzmann schemes, Phys. Rev. E, vol.83, p.46706, 2011.

A. Bisio, G. M. D'-ariano, and A. Tosini, Quantum field as a quantum cellular automaton i: the dirac free evolution in one dimension, 2012.

C. Chandrashekar, Two-component dirac-like hamiltonian for generating quantum walk on one-, two-and three-dimensional lattices, Sci. reports, vol.3, p.2829, 2013.

C. Chandrashekar, S. Banerjee, and R. Srikanth, Relationship between quantum walks and relativistic quantum mechanics, Phys. Rev. A, vol.81, p.62340, 2010.

P. Arrighi and S. Facchini, Decoupled quantum walks, models of the klein-gordon and wave equations, EPL Europhysics Lett, vol.104, p.60004, 2013.

G. Di-molfetta and F. Debbasch, Discrete-time quantum walks: Continuous limit and symmetries, J. Math. Phys, vol.53, pp.123302-123302, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00785881

F. W. Strauch, Relativistic quantum walks, Phys. Rev. A, vol.73, p.54302, 2006.

P. Love and B. Boghosian, From Dirac to Diffusion: decoherence in Quantum Lattice gases, Quantum Inf. Process, vol.4, pp.335-354, 2005.

C. Cedzich, Propagation of quantum walks in electric fields, Phys. review letters, vol.111, p.160601, 2013.

G. Di-molfetta, M. Brachet, and F. Debbasch, Quantum walks in artificial electric and gravitational fields, Phys. A: Stat. Mech. its Appl, vol.397, pp.157-168, 2014.

I. Márquez-martín, G. Di-molfetta, and A. Pérez, Fermion confinement via quantum walks in (2 + 1)-dimensional and (3 + 1)-dimensional space-time, Phys. Rev. A, vol.95, p.42112, 2017.

G. Di-molfetta and A. Pérez, Quantum walks as simulators of neutrino oscillations in a vacuum and matter, New J. Phys, vol.18, p.103038, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02066122

P. Arnault, G. Di-molfetta, M. Brachet, and F. Debbasch, Quantum walks and non-abelian discrete gauge theory, Phys. Rev. A, vol.94, p.12335, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01554164

D. A. Meyer, Quantum lattice gases and their invariants, Int. J. Mod. Phys. C, vol.8, pp.717-735, 1997.

A. Ahlbrecht, Molecular binding in interacting quantum walks, New J. Phys, vol.14, p.73050, 2012.

G. Di-molfetta, M. Brachet, and F. Debbasch, Quantum walks as massless dirac fermions in curved space-time, Phys. Rev. A, vol.88, p.42301, 2013.

P. Arrighi, S. Facchini, and M. Forets, Quantum walking in curved spacetime, Quantum Inf. Process, vol.15, pp.3467-3486, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01467254

P. Arnault and F. Debbasch, Quantum walks and gravitational waves, Annals Phys, vol.383, p.3, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01517371

P. Arrighi and F. Facchini, Quantum walking in curved spacetime: (3+1) dimensions, and beyond. Quantum Inf, Comput, vol.17, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01785463

A. Mallick, S. Mandal, A. Karan, and C. M. Chandrashekar, Simulating dirac hamiltonian in curved space-time by split-step quantum walk

T. Stegmann and N. Szpak, Current flow paths in deformed graphene: from quantum transport to classical trajectories in curved space, New J. Phys, vol.18, p.53016, 2016.

R. Kerner, G. G. Naumis, and W. A. Gómez-arias, Bending and flexural phonon scattering: Generalized dirac equation for an electron moving in curved graphene, Phys. B: Condens. Matter, vol.407, 2002.

G. Abal, R. Donangelo, F. L. Marquezino, and R. Portugal, Spatial search on a honeycomb network, Math. Struct. Comput. Sci, vol.20, pp.999-1009, 2010.

I. Foulger, S. Gnutzmann, and G. Tanner, Quantum walks and quantum search on graphene lattices, Phys. Rev. A -At. Mol. Opt. Phys, vol.91, pp.1-15, 2015.

I. G. Karafyllidis, Quantum walks on graphene nanoribbons using quantum gates as coins, J. Comput. Sci, vol.11, pp.326-330, 2015.

I. D. Lawrie, Unified grand tour of theoretical physics, 2001.

C. Koke, C. Noh, and D. G. Angelakis, Dirac equation in 2-dimensional curved spacetime, particle creation, and coupled waveguide arrays, Annals Phys, vol.374, pp.162-178, 2016.

J. Yepez, Einstein's vierbein field theory of curved space, 1106.

C. De-oliveira and J. Tiomno, Representations of dirac equation in general relativity, Il Nuovo Cimento, vol.24, pp.672-687, 1962.

?. I. Márquez-martín, G. D. Molfetta, and A. Pérez, Fermion confinement via quantum walks in (2+1)-dimensional and (3+1)-dimensional space-time, Phys. Rev. A, vol.95, p.42112

?. I. Márquez-martín, P. Arnault, G. D. Molfetta, and A. Pérez, Electromagnetic lattice gauge invariance in two-dimensional discrete-time quantum walks, Phys. Rev. A, vol.98, p.32333

?. P. Arrighi, G. D. Molfetta, I. Márquez-martín, and A. Pérez, The Dirac equation as a quantum walk over the honeycomb and triangular lattices, Phys. Rev. A, vol.97, 62111.
URL : https://hal.archives-ouvertes.fr/hal-01758537

?. P. Arrighi, G. D. Molfetta, I. Márquez-martín, and A. Pérez, From curved spacetime to spacetime-dependent local unitaries over the honeycomb and triangular Quantum Walks, Scientific Reports, vol.9, p.10904, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01965370

. Communications-?winter and . School, Complex Networks: From Classical to Quantum, Theory and Experimental Implementation" from the 3rd to the 7th of, New Trends in Complex Quantum Systems Dynamics, pp.8-12, 2017.

. Cartagena, at Ecole Normale Supérieure, Paris, from the 13th to the 17th of, 8th Workshop of Quantum Simulation and Quantum Walks, 2017.

?. School, Thematic research programme: Operator algebras, groups and applications to quantum information, ICMAT, 2019.

?. Conference,

(. Barcelona and . Spain, Poster session. ?Workshop, 9na Jornada de Lógica, Computación e Información Cuántica, p.24

. October, , 2019.

G. Abal, R. Donangelo, and M. Forets, Spatial quantum search in a triangular network, Mathematical Structures in Computer Science, vol.22, pp.59-62, 2012.

G. Abal, R. Donangelo, and F. L. Marquezino, Spatial search on a honeycomb network, Mathematical Structures in Computer Science, vol.20, pp.59-61, 2010.

G. S. Agarwal and P. K. Pathak, Quantum random walk of the field in an externally driven cavity, Physical Review A -Atomic, Molecular, and Optical Physics, vol.72, p.30, 2005.

A. Ambainis, E. Bach, and A. Nayak, One-dimensional quantum walks, Conference Proceedings of the Annual ACM Symposium on Theory of Computing, p.24, 2001.

A. Ambainis, Quantum Walk Algorithm for Element Distinctness, Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science. FOCS '04, p.17, 2004.

A. Ambainis, J. Kempe, and A. Rivosh, Coins Make Quantum Walks Faster, Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA '05, p.60, 2005.

P. W. Anderson, Absence of Diffusion in Certain Random Lattices, Phys. Rev, vol.109, p.33, 1956.

M. Ansari, Dirac equation in a 5-dimensional Kaluza-Klein theory, In: Indian Journal of Pure and Applied Mathematics, vol.41, p.34, 2010.

P. Arnault and F. Debbasch, Quantum walks and discrete gauge theories, Physical Review A -Atomic, Molecular, and Optical Physics, vol.93, p.10941622, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02318234

P. Arnault and F. Debbasch, Quantum walks and gravitational waves, Annals of Physics, vol.383, p.74, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01517371

P. Arnault, G. D. Molfetta, and M. Brachet, Quantum walks and non-Abelian discrete gauge theory, Physical Review A, vol.94, p.33, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01554164

P. Arrighi, C. Bény, and T. Farrelly, A quantum cellular automaton for one-dimensional QED, vol.101, p.30, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02088646

P. Arrighi and S. Facchini, Quantum walking in curved spacetime: (3 + 1) dimensions, and beyond, Quantum Information and Computation, vol.17, p.74, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01785463

P. Arrighi, S. Facchini, and M. Forets, Quantum walking in curved spacetime, Quantum Information Processing, vol.15, p.74, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01467254

P. Arrighi, G. D. Molfetta, and S. Facchini, Quantum walking in curved spacetime: discrete metric, Quantum, p.74, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02093395

F. Arute, K. Arya, and R. Babbush, Quantum supremacy using a programmable superconducting processor, Nature, vol.574, p.101, 2019.

J. Asbóth, Symmetries, topological phases, and bound states in the onedimensional quantum walk, Phys. Rev. B, vol.86, p.63, 2012.

K. János, H. Asbóth, and . Obuse, Bulk-boundary correspondence for chiral symmetric quantum walks, Phys. Rev. B, vol.88, p.63, 2013.

K. János, L. Asbóth, A. Oroszlány, and . Pályi, A Short Course on Topological Insulators, p.42, 2016.

A. Aspuru, -. Guzik, and P. Walther, Photonic quantum simulators, Nature Physics, vol.8, p.29, 2012.

D. Bailin and A. Love, Kaluza-Klein theories in twelve dimensions, Nuclear Physics, Section B, vol.254, p.34, 1985.

R. Balu, D. Castillo, and G. Siopsis, Physical realization of topological quantum walks on IBM-Q and beyond, Quantum Science and Technology, vol.3, p.31, 2018.

R. Balu, D. Castillo, and G. Siopsis, Physical realization of topological quantum walks on {IBM}-Q and beyond, % 7B % 5C % %7D2F2058 -9565%7B%5C%%7D2Faab823, vol.3, p.63, 2018.

R. Balu, D. Castillo, and G. Siopsis, Physical realization of topological quantum walks on IBM-Q and beyond, Quantum Science and Technology, vol.3, p.102, 2018.

H. Berg, Random Walks in Biology. Princeton paperbacks, p.19, 1993.

D. Scott, J. B. Berry, and . Wang, Two-particle quantum walks: Entanglement and graph isomorphism testing, Physical Review A -Atomic, Molecular, and Optical Physics, vol.83, p.30, 2011.

I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Reviews of Modern Physics, vol.80, p.29, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00195515

H. Bougroura, H. Aissaoui, and N. Chancellor, Quantumwalk transport properties on graphene structures, Physical Review A, vol.94, issue.6, p.59, 2016.

D. Bouwmeester, I. Marzoli, and G. P. Karman, Optical Galton board, Physical Review A, vol.61, issue.1, p.30, 1999.

L. Brey and H. A. Fertig, Electronic states of graphene nanoribbons studied with the Dirac equation, In: Physical Review B -Condensed Matter and Materials Physics, vol.73, issue.23, p.65, 2006.

C. Cedzich, T. Geib, and A. H. Werner, Quantum walks in external gauge fields, Journal of Mathematical Physics, vol.60, p.49, 2019.

C. Cedzich, . Grünbaum, and . Stahl, Bulk-edge correspondence of one-dimensional quantum walks, % 7B % 5C % %7D2F1751 -8113 % 7B % 5C % %7D2F49 % 7B % 5C % %7D2F21 % 7B % 5C % %7D2F21lt01, vol.49, p.63, 2016.

.. G. Ll, C. M. Chambers, S. A. Bender, and . Orszag, Advanced Mathematical Methods for Scientists and Engineers, The Mathematical Gazette, p.26, 1979.

C. M. Chandrashekar, Implementing the one-dimensional quantum (Hadamard) walk using a Bose-Einstein condensate, Physical Review A -Atomic, Molecular, and Optical Physics, vol.74, issue.3, p.30, 2006.

C. Chiang, D. Nagaj, and P. Wocjan, Efficient Circuits for Quantum Walks, p.102, 2009.

A. M. Childs, Universal computation by quantum walk, Physical Review Letters, vol.102, p.17, 2009.

J. , I. Cirac, and F. Verstraete, Renormalization and tensor product states in spin chains and lattices, Journal of Physics A: Mathematical and Theoretical, vol.42, p.28, 2009.

J. Clarke, K. Frank, and . Wilhelm, Superconducting quantum bits, Nature, vol.453, p.29, 2008.

R. Côté, A. Russell, and E. E. Eyler, Quantum random walk with Rydberg atoms in an optical lattice, New Journal of Physics, vol.8, p.30, 2006.

A. Crespi, R. Osellame, and R. Ramponi, Anderson localization of entangled photons in an integrated quantum walk, % 7B % 5C # %7Dsupplementary -information, vol.7, p.34, 2013.

J. Dalibard, F. Gerbier, and G. Juzeliunas, Colloquium: Artificial gauge potentials for neutral atoms, Reviews of Modern Physics, vol.83, p.29, 2011.

G. Mauro, D. Ariano, M. Erba, and P. Perinotti, Isotropic quantum walks on lattices and the Weyl equation, Physical Review A, p.18, 2017.

F. Debbasch, Action principles for quantum automata and Lorentz invariance of discrete time quantum walks, Annals of Physics, vol.405, p.50, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01818133

J. D. Debus, M. Mendoza, and H. J. Herrmann, Shifted Landau levels in curved graphene sheets, Journal of Physics Condensed Matter, vol.30, p.74, 2018.

G. , D. Molfetta, and F. Debbasch, Discrete-time quantum walks: Continuous limit symmetries, Journal of Mathematical Physics, vol.53, p.31, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00785881

G. Di-molfetta and P. Arrighi, A quantum walk with both a continuous-time and a continuous-spacetime limit, p.31, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02165580

G. Di-molfetta, M. Brachet, and F. Debbasch, Quantum walks as massless Dirac fermions in curved space-time, Physical Review A -Atomic, Molecular, and Optical Physics, vol.88, p.33, 2013.

G. D. Molfetta, M. Brachet, and F. Debbasch, Quantum walks in artificial electric and gravitational fields, Physica A: Statistical Mechanics and its Applications, vol.397, p.47, 2014.

T. Di, M. Hillery, and M. Zubairy, Cavity QED-based quantum walk, Physical Review A -Atomic, Molecular, and Optical Physics, vol.70, p.30, 2004.

W. Dür, R. Raussendorf, and V. M. Kendon, Quantum walks in optical lattices, Physical Review A -Atomic, Molecular, and Optical Physics, vol.66, p.30, 2002.

K. Eckert, J. Mompart, and G. Birkl, One-and two-dimensional quantum walks in arrays of optical traps, Physical Review A -Atomic, Molecular, and Optical Physics, vol.72, p.30, 2005.

. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten, Ann. d. Phys, vol.322, p.19, 1905.

V. Fal and &. Ko, Quantum information on chicken wire, Nature Physics, vol.3, p.65, 2007.

. Richard-p-feynman, Simulating Physics with Quantum Computers, Inernational Journal of Theoretical Physics, vol.21, p.28, 1982.

F. Fillion-gourdeau, S. Maclean, and R. Laflamme, Algorithm for the solution of the Dirac equation on digital quantum computers, Physical Review A, vol.95, p.102, 2017.

K. Flouris, S. Succi, and H. J. Herrmann, Quantized Alternate Current on Curved Graphene, Condensed Matter, vol.4, p.74, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02317351

S. Fujiwara, H. Osaki, and I. M. Buluta, Scalable networks for discrete quantum random walks, Physical Review A -Atomic, Molecular, and Optical Physics, vol.72, p.31, 2005.

A. Gallerati, Graphene properties from curved space Dirac equation, European Physical Journal Plus, vol.134, p.74, 2019.

I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Reviews of Modern Physics, vol.86, p.29, 2014.

D. R. Grempel, S. Fishman, and R. E. Prange, Localization in an incommensurate potential: An exactly solvable model, Physical Review Letters, vol.49, p.34, 1982.

G. Grimmett, S. Janson, and P. F. Scudo, Weak limits for quantum random walks, Physical Review E -Statistical, Nonlinear, and Soft Matter Physics 69.2, vol.2, p.27, 2004.

S. Guillet, M. Roget, and P. Arrighi, The Grover search as a naturally occurring phenomenon, vol.83, p.68, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02309063

F. Haldane, Model for a QHE without Landau levels, Physical review letters, vol.61, p.65, 1988.

M. J. Hartmann, Quantum simulation with interacting photons, Journal of Optics (United Kingdom), vol.18, p.29, 2016.

Y. Higuchi, N. Konno, and I. Sato, Spectral and asymptotic properties of Grover walks on crystal lattices, Journal of Functional Analysis, vol.267, p.62, 2014.

N. Inui, Y. Konishi, and N. Konno, Localization of twodimensional quantum walks, Physical Review A -Atomic, Molecular, and Optical Physics 69.5 A, p.34, 2004.

G. Jay, F. Debbasch, and J. B. Wang, Dirac quantum walks on triangular and honeycomb lattices, Physical Review A, vol.99, p.50, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02088637

A. Joye and M. Merkli, Dynamical Localization of Quantum Walks in Random Environments, Journal of Statistical Physics, vol.140, p.34, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00476294

G. Ioannis and . Karafyllidis, Quantum walks on graphene nanoribbons using quantum gates as coins, Journal of Computational Science, vol.11, p.59, 2015.

J. P. Keating, N. Linden, and J. Matthews, Localization and its consequences for quantum walk algorithms and quantum communication, Physical Review A -Atomic, Molecular, and Optical Physics, vol.76, p.34, 2007.

. Vivien-m-kendon, A random walk approach to quantum algorithms, In: Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, vol.364, p.19, 2006.

L. Kilian and M. P. Taylor, Why is it difficult to beat the random walk forecast of exchange rates?, In: Journal of International Economics, p.19, 2003.

T. Kitagawa, M. S. Rudner, and E. Berg, Exploring topological phases with quantum walks, Physical Review A -Atomic, Molecular, and Optical Physics, vol.82, p.63, 2010.

O. Klein, Quantentheorie und fünfdimensionale Relativitätstheorie, Zeitschrift für Physik, vol.37, p.34, 1926.

H. Kleinert, Nonholonomic mapping principle for classical and quantum mechanics in spaces with curvature and torsion, General Relativity and Gravitation, vol.32, p.83, 2000.

L. Peter, E. Knight, J. E. Roldán, and . Sipe, Optical cavity implementations of the quantum walk, Optics Communications, vol.227, p.30, 2003.

L. Peter, E. Knight, J. E. Roldán, and . Sipe, Quantum walk on the line as an interference phenomenon, Physical Review A -Atomic, Molecular, and Optical Physics, vol.68, p.30, 2003.

B. Kollár, M. ?tefa?ák, and T. Kiss, Recurrences in three-state quantum walks on a plane, Physical Review A -Atomic, Molecular, and Optical Physics, vol.82, p.62, 2010.

N. Konno, Quantum random walks in one dimension, vol.5, p.27, 2002.

E. Kroener, Continuized Crystal -a Bridge Between Micro-and Macromechanics?, In: Zeitschrift fur angewandte Mathematik und Mechanik, vol.66, p.83, 1986.

Y. Lahini, R. Pugatch, and F. Pozzi, Observation of a localization transition in quasiperiodic photonic lattices, Physical Review Letters, vol.103, p.34, 2009.

M. Lewenstein, A. Sanpera, and V. Ahufinger, Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond, Advances in Physics, vol.56, p.29, 2007.

G. Liu, S. Shi-liang-zhu, and . Jiang, Simulating and detecting the quantum spin Hall effect in the kagome optical lattice, Physical Review A -Atomic, Molecular, and Optical Physics, vol.82, p.29, 2010.

S. Lloyd, Universal Quantum Simulators: Correction, Science 279, vol.5354, p.28, 1998.

L. Lovász, Random walks on graphs: A survey, Combinatorics Paul Erdos is Eighty, p.19, 1993.

N. B. Lovett, S. Cooper, and M. Everitt, Universal quantum computation using the discrete-time quantum walk, Physical Review A -Atomic, Molecular, and Optical Physics, vol.81, p.17, 2010.

J. Lubliner, Plasticity Theory: Revised Edition, Journal of Applied Mechanics, vol.59, issue.1, p.81, 2006.

C. Lyu, L. Yu, and S. Wu, Localization in quantum walks on a honeycomb network, Physical Review A -Atomic, Molecular, and Optical Physics, vol.92, pp.1-10, 2015.

T. Machida and K. Business, A limit law of the return probability for a quantum walk on a hexagonal lattice, vol.63, p.62, 2015.

Y. Makhlin, G. Scöhn, and A. Shnirman, Josephson-junction qubits with controlled couplings, Nature, vol.398, p.29, 1999.

K. Manouchehri and J. B. Wang, Quantum walks in an array of quantum dots, Journal of Physics A: Mathematical and Theoretical, vol.41, p.31, 2008.

K. Manouchehri and J. B. Wang, Quantum random walks without walking, Physical Review A -Atomic, Molecular, and Optical Physics, vol.80, p.30, 2009.

P. Mark, P. Mark, and . Taylor, econstor the Random Walk Forecast of Exchange Rates ?, p.19, 2001.

G. Modugno, Anderson localization in Bose-Einstein condensates, In: Reports on Progress in Physics, vol.73, p.34, 2010.

M. Montero, Invariance in Quantum Walks, Research Advances in Quantum Dynamics, p.50, 2016.

I. Montvay and G. Munster, Cambridge Monographs on Mathematical Physics, p.47, 1997.

C. Moore and A. Russell, Quantum Walks on the Hypercube". In: Randomization and Approximation Techniques in Computer Science, p.61, 2002.

R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge International Series on Parallel Computation, p.19, 1995.

G. Münster and M. Walzl, Lattice Gauge Theory -A short Primer, p.47, 2000.

C. Navarrete-benlloch, A. Pérez, and E. Roldán, Nonlinear optical Galton board, Physical Review A -Atomic, Molecular, and Optical Physics, vol.75, p.34, 2007.

A. Nayak and A. Vishwanath, Quantum Walk on the Line". In: arXiv preprint quant-ph/0010117, vol.27, p.24, 2000.

J. Dong-noh and H. Rieger, Random Walks on Complex Networks, Physical Review Letters, vol.92, p.19, 2004.

K. S. Novoselov, A. K. Geim, and S. V. Morozov, Electric Field Effect in Atomically Thin Carbon Films Supplementary, % 7B % 5C & %7DAgg = doi % 7B % 5C % %7D0Ahttp, vol.1, p.65, 2004.

K. S. Novoselov, A. K. Geim, and S. V. Morozov, Two-dimensional gas of massless Dirac fermions in graphene, Nature, vol.438, p.60, 2005.

H. Obuse and N. Kawakami, Topological phases and delocalization of quantum walks in random environments, Phys. Rev. B, vol.84, p.63, 2011.

M. Oliva-leyva and G. G. Naumis, Generalizing the Fermi velocity of strained graphene from uniform to nonuniform strain, Physics Letters, Section A: General, Atomic and Solid State Physics, vol.379, p.74, 2015.

C. Oliveira and J. Tiomno, Representations of Dirac equation in general relativity, Il Nuovo Cimento, vol.24, p.80, 1955.

K. Jiannis and . Pachos, Manifestations of topological effects in graphene, Contemporary Physics, vol.50, p.65, 2009.

D. Pandey, N. Satapathy, and M. Meena, Quantum walk of light in frequency space and its controlled dephasing, p.30, 2011.

R. Parr, Density Functional Theory, Annual Review of Physical Chemistry, vol.34, issue.1, p.28, 1983.

A. Peruzzo, M. Lobino, C. Jonathan, and . Matthews, Quantum Walks of Correlated Photons, Science, vol.329, p.30, 2010.

L. A. Pipes and M. L. Boas, Mathematical Methods in the Physical Sciences, The American Mathematical Monthly, p.20, 1967.

J. Preskill, Simulating quantum field theory with a quantum computer, p.101, 2019.

V. A. Rubakov and M. E. Shaposhnikov, Do we live inside a domain wall?, In: Physics Letters B, vol.125, p.3702693, 1983.

R. Saito, M. Fujita, and G. Dresselhaus, Electronic structure of chiral graphene tubules, Applied Physics Letters, vol.60, p.60, 1992.

C. Barry, S. D. Sanders, B. Bartlett, and . Tregenna, Quantum quincunx in cavity quantum electrodynamics, Physical Review A -Atomic, Molecular, and Optical Physics, vol.67, p.30, 2003.

L. Sansoni, F. Sciarrino, and G. Vallone, Two-particle bosonic-fermionic quantum walk via integrated photonics, Physical Review Letters, vol.108, p.30, 2012.

A. Schreiber, . Cassemiro, and . Poto?ek, Decoherence and disorder in quantum walks: from ballistic spread to localization, In: Physical review letters, vol.106, p.34, 2011.

T. Schwartz, G. Bartal, and S. Fishman, Transport and Anderson localization in disordered two-dimensional photonic lattices, Nature, vol.446, p.34, 2007.

. Shun-qing, W. Shen, H. Shan, and . Lu, Topological insulator and the Dirac equation, SPIN 1.1 (2010), p.42

N. Shenvi, J. Kempe, and K. B. Whaley, Quantum random-walk search algorithm, Physical Review A -Atomic, Molecular, and Optical Physics, vol.67, p.17, 2003.

M. Shifman, Large extra dimensions: Becoming acquainted with an alternative paradigm, International Journal of Modern Physics A, vol.25, p.34, 2010.

Y. Shikano and H. Katsura, Localization and fractality in inhomogeneous quantum walks with self-duality, In: Physical Review E -Statistical, Nonlinear, and Soft Matter Physics, vol.82, p.34, 2010.

D. Sommerville, Space-filling Tetrahedra in Euclidean Space, Proceedings of the Edinburgh Mathematical Society, vol.41, p.95, 1922.

J. Struck, C. Ölschläger, and R. L. Targat, Quantum Simulation of Frustrated Classical Magnetism in Triangular Optical Lattices, p.29, 2011.

B. C. Travaglione and G. J. Milburn, Implementing the quantum random walk, Physical Review A -Atomic, Molecular, and Optical Physics, vol.65, p.31, 2002.

A. Tulsi, Faster quantum-walk algorithm for the two-dimensional spatial search, Physical Review A -Atomic, Molecular, and Optical Physics, vol.78, p.60, 2008.

A. D. Verga, Edge states in a two-dimensional quantum walk with disorder, European Physical Journal B, vol.90, p.36, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01500437

F. Verstraete, J. Murg, and . Cirac, Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems, Advances in Physics, vol.57, p.28, 2008.

G. Wendin, Quantum information processing with superconducting circuits: a review, p.29, 2010.

C. T. White and T. N. Todorov, Carbon nanotubes as long ballistic conductors, Nature, vol.393, p.65, 1998.

P. A. Whitlock and S. A. Vitiello, Quantum Monte Carlo simulations of solid 4 He, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics

, LNCS, issue.1, p.28, 2006.

P. Diederik-s-wiersma, A. Bartolini, and . Lagendijk, Localization of light in a disordered medium, Nature, vol.390, p.34, 1997.

G. Kenneth and . Wilson, Confinement of quarks, Phys. Rev. D, vol.10, p.47, 1974.

E. Witten, Search for a realistic Kaluza-Klein theory, Nuclear Physics, Section B, vol.186, issue.81, p.34, 1981.

J. Wu, W. Zhang, and B. C. Sanders, Topological quantum walks: theory and experiments, p.63, 2019.

N. Zagury, Y. Aharonov, and L. Davidovich, Quantum random walks, Physical Review A, vol.48, pp.1050-2947, 1993.

/. Physreva, , p.30

Z. Yan, Y. R. Zhang, and M. Gong, Strongly correlated quantum walks with a 12-qubit superconducting processor, Science 756.May (2019), p.101

,. Yue-yin, S. D-e-katsanos, and . Evangelou, Quantum walks on a random environment, p.34, 2007.

J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature, vol.474, p.29, 2011.

Z. Zhao, J. Du, and H. Li, Implement Quantum Random Walks with Linear Optics Elements, p.30

J. Zhou, L. Cai, and Q. Su, Protocol of a quantum walk in circuit QED, Physical Review A, vol.100, p.101, 2019.