J. Yang, Y. S. Zhang, K. Yue, and A. Khademhosseini, Cell-laden hydrogels for osteochondral and cartilage tissue engineering, Acta Biomater, vol.57, pp.1-25, 2017.

B. J. Huang, J. C. Hu, and K. A. Athanasiou, Cell-based tissue engineering strategies used in the clinical repair of articular cartilage, Biomaterials, vol.98, pp.1-22, 2016.

J. Henkel, M. A. Woodruff, D. R. Epari, R. Steck, V. Glatt et al., Bone Regeneration Based on Tissue Engineering Conceptions-A 21st Century Perspective, Bone Res, vol.1, pp.216-248, 2013.

S. Font-tellado, E. R. Balmayor, and M. Van-griensven, Strategies to engineer tendon/ligament-to-bone interface: Biomaterials, cells and growth factors, Adv. Drug Deliv. Rev, vol.94, pp.126-140, 2015.

D. T. Kirkendall and W. E. Garrett, Function and biomechanics of tendons. Scand, J. Med. Sci. Sports, vol.7, pp.62-66, 2007.

D. A. Hart, A. Kydd, and C. Reno, Gender and pregnancy affect neuropeptide responses of the rabbit Achilles tendon, Clin. Orthop, vol.365, pp.237-246, 1999.

H. L. Birch, Tendon matrix composition and turnover in relation to functional requirements, Int. J. Exp. Pathol, vol.88, pp.241-248, 1997.

P. Kannus, Structure of the tendon connective tissue. Scand, J. Med. Sci. Sports, vol.10, pp.312-320, 2000.

F. H. Silver, J. W. Freeman, and G. P. Seehra, Collagen self-assembly and the development of tendon mechanical properties, J. Biomech, vol.36, pp.1529-1553, 2003.

B. J. Rigby, N. Hirai, J. D. Spikes, and H. Eyring, The Mechanical Properties of Rat Tail Tendon, J. Gen. Physiol, vol.43, pp.265-283, 1959.

K. G. Danielson, H. Baribault, D. F. Holmes, H. Graham, K. E. Kadler et al., Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility, J. Cell Biol, vol.136, pp.729-743, 1997.

K. A. Derwin, L. J. Soslowsky, J. H. Kimura, and A. H. Plaas, Proteoglycans and glycosaminoglycan fine structure in the mouse tail tendon fascicle, J. Orthop. Res. Off. Publ. Orthop. Res. Soc, vol.19, pp.269-277, 2000.

I. M. Kuc and P. Scott, Increased Diameters of Collagen Fibrils Precipitated in vitro in the Presence of Decorin from Various Connective Tissues, Connect. Tissue Res, vol.36, pp.287-296, 1997.

E. Schönherr, P. Witsch-prehm, B. ;. Harrach, H. Robenek, J. Rauterberg et al., Interaction of biglycan with type I collagen, J. Biol. Chem, vol.270, pp.2776-2783, 1995.

Y. Ezura, S. Chakravarti, A. Oldberg, I. Chervoneva, and D. E. Birk, Differential expression of lumican and fibromodulin regulate collagen fibrillogenesis in developing mouse tendons, J. Cell Biol, vol.151, pp.779-788, 2000.

R. J. Mccormick, Extracellular modifications to muscle collagen: Implications for meat quality, Poult. Sci, vol.78, pp.785-791, 1999.

K. G. Vogel and T. J. Koob, Structural specialization in tendons under compression, Int. Rev. Cytol, vol.115, pp.267-293, 1989.

J. A. Martin, D. Mehr, P. D. Pardubsky, and J. A. Buckwalter, The role of tenascin-C in adaptation of tendons to compressive loading, Biorheology, vol.40, pp.321-329, 2003.

P. Sharma and N. Maffulli, Biology of tendon injury: Healing, modeling and remodeling, J. Musculoskelet. Neuronal Interact, vol.6, pp.181-190, 2006.

P. Sharma and N. Maffulli, Tendon injury and tendinopathy: Healing and repair, J. Bone Jt. Surg. Am, vol.87, pp.187-202, 1995.

Y. Bi, D. Ehirchiou, T. M. Kilts, C. A. Inkson, M. C. Embree et al., Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche, Nat. Med, vol.13, pp.1219-1227, 2007.

R. B. Martin, D. B. Burr, N. A. Sharkey, and D. P. Fyhrie, Mechanical Properties of Ligament and Tendon, Skeletal Tissue Mechanics, pp.175-225, 2015.

F. H. Silver, D. L. Christiansen, P. B. Snowhill, and Y. Chen, Role of storage on changes in the mechanical properties of tendon and self-assembled collagen fibers, Connect. Tissue Res, vol.41, pp.155-164, 2000.

A. Najafbeygi, M. J. Fatemi, A. H. Lebaschi, S. J. Mousavi, S. A. Husseini et al., Effect of Basic Fibroblast Growth Factor on Achilles Tendon Healing in Rabbit, World J. Plast. Surg, vol.6, pp.26-32, 2017.

R. James, G. Kesturu, G. Balian, and A. B. Chhabra, Tendon: Biology, biomechanics, repair, growth factors, and evolving treatment options, J. Hand Surg, vol.33, pp.102-112, 2008.

M. Skutek, M. Van-griensven, J. Zeichen, N. Brauer, and U. Bosch, Cyclic mechanical stretching modulates secretion pattern of growth factors in human tendon fibroblasts, Eur. J. Appl. Physiol, vol.86, pp.48-52, 2001.

K. Heinemeier, H. Langberg, J. L. Olesen, and M. Kjaer, Role of TGF-beta1 in relation to exercise-induced type I collagen synthesis in human tendinous tissue, J. Appl. Physiol, vol.95, pp.2390-2397, 2003.

K. M. Heinemeier and M. Kjaer, In vivo investigation of tendon responses to mechanical loading, J. Musculoskelet. Neuronal Interact, vol.11, pp.115-123, 2011.

A. E. Loiselle, K. Yukata, M. B. Geary, S. Kondabolu, S. Shi et al., Development of antisense oligonucleotide (ASO) technology against Tgf-signaling to prevent scarring during flexor tendon repair, J. Orthop. Res. Off. Publ. Orthop. Res. Soc, vol.33, pp.859-866, 2015.

S. C. Juneja, E. M. Schwarz, R. J. O'keefe, and H. A. Awad, Cellular and molecular factors in flexor tendon repair and adhesions: A histological and gene expression analysis, Connect. Tissue Res, vol.54, pp.218-226, 2013.

J. Lou, Y. Tu, M. Burns, M. J. Silva, and P. Manske, BMP-12 gene transfer augmentation of lacerated tendon repair, J. Orthop. Res. Off. Publ. Orthop. Res. Soc, vol.19, pp.1199-1202, 2001.

B. P. Chan, S. C. Fu, L. Qin, C. Rolf, and K. M. Chan, Supplementation-time Dependence of Growth Factors in Promoting Tendon Healing, Clin. Orthop, vol.448, pp.240-247, 2006.

D. S. Musson, M. L. Tay, A. Chhana, B. Pool, B. Coleman et al., Lactoferrin and parathyroid hormone are not harmful to primary tenocytesin vitro, but PDGF may be. Muscles Ligaments Tendons, vol.7, pp.215-222, 2017.

F. Klatte-schulz, T. Schmidt, M. Uckert, S. Scheffler, U. Kalus et al., Comparative Analysis of Different Platelet Lysates and Platelet Rich Preparations to Stimulate Tendon Cell Biology: An In Vitro Study, Int. J. Mol. Sci, vol.19, 2018.

I. Andia, J. I. Martin, and N. Maffulli, Advances with platelet rich plasma therapies for tendon regeneration, Expert Opin. Biol. Ther, pp.1-10, 2018.

M. Govoni, A. C. Berardi, C. Muscari, R. Campardelli, F. Bonafè et al., An Engineered Multiphase Three-Dimensional Microenvironment to Ensure the Controlled Delivery of Cyclic Strain and Human Growth Differentiation Factor 5 for the Tenogenic Commitment of Human Bone Marrow Mesenchymal Stem Cells, Tissue Eng. Part A, vol.23, pp.811-822, 2017.

K. Vuornos, M. Björninen, E. Talvitie, K. Paakinaho, M. Kellomäki et al., Human Adipose Stem Cells Differentiated on Braided Polylactide Scaffolds Is a Potential Approach for Tendon Tissue Engineering, Tissue Eng. Part A, vol.22, pp.513-523, 2016.

A. P. Bhole, B. P. Flynn, M. Liles, N. Saeidi, C. A. Dimarzio et al., Mechanical strain enhances survivability of collagen micronetworks in the presence of collagenase: Implications for load-bearing matrix growth and stability, Philos. Trans. A Math. Phys. Eng. Sci, vol.367, pp.3339-3362, 2009.

Y. Nabeshima, E. S. Grood, A. Sakurai, and J. H. Herman, Uniaxial tension inhibits tendon collagen degradation by collagenase in vitro, J. Orthop. Res. Off. Publ. Orthop. Res. Soc, vol.14, pp.123-130, 1996.

B. P. Flynn, A. P. Bhole, N. Saeidi, M. Liles, C. A. Dimarzio et al., Mechanical strain stabilizes reconstituted collagen fibrils against enzymatic degradation by mammalian collagenase matrix metalloproteinase 8 (MMP-8), PLoS ONE, vol.5, 2010.

S. P. Magnusson, H. Langberg, and M. Kjaer, The pathogenesis of tendinopathy: Balancing the response to loading, Nat. Rev. Rheumatol, vol.6, pp.262-268, 2010.

J. Zeichen, M. Van-griensven, and U. Bosch, The proliferative response of isolated human tendon fibroblasts to cyclic biaxial mechanical strain, Am. J. Sports Med, vol.28, pp.888-892, 2000.

G. Yang, R. C. Crawford, and J. H. Wang, Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions, J. Biomech, vol.37, pp.1543-1550, 2004.

L. Gaut and D. Duprez, Tendon development and diseases, Wiley Interdiscip. Rev. Dev. Biol, vol.5, pp.5-23, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01190806

D. M. Doroski, M. E. Levenston, and J. S. Temenoff, Cyclic tensile culture promotes fibroblastic differentiation of marrow stromal cells encapsulated in poly(ethylene glycol)-based hydrogels, Tissue Eng. Part A, vol.16, pp.3457-3466, 2010.

H. Tanaka, P. R. Manske, D. L. Pruitt, and B. J. Larson, Effect of cyclic tension on lacerated flexor tendons in vitro, J. Hand Surg, vol.20, pp.467-473, 1995.

M. Govoni, C. Muscari, J. Lovecchio, C. Guarnieri, and E. Giordano, Mechanical Actuation Systems for the Phenotype Commitment of Stem Cell-Based Tendon and Ligament Tissue Substitutes, Stem Cell Rev, vol.12, pp.189-201, 2016.

K. R. Kinneberg, V. S. Nirmalanandhan, N. Juncosa-melvin, H. M. Powell, S. T. Boyce et al., Chondroitin-6-sulfate incorporation and mechanical stimulation increase MSC-collagen sponge construct stiffness, J. Orthop. Res. Off. Publ. Orthop. Res. Soc, vol.28, pp.1092-1099, 2010.

U. G. Longo, A. Lamberti, S. Petrillo, N. Maffulli, and V. Denaro, Tendon Tissue Engineering, 2012.

S. A. Müller, L. Dürselen, P. Heisterbach, C. Evans, and M. Majewski, Effect of a Simple Collagen Type I Sponge for Achilles Tendon Repair in a Rat Model, Am. J. Sports Med, vol.44, 1998.

E. Gentleman, A. N. Lay, D. A. Dickerson, E. A. Nauman, G. A. Livesay et al., Mechanical characterization of collagen fibers and scaffolds for tissue engineering, Biomaterials, vol.24, pp.3805-3813, 2003.

X. Cheng, U. A. Gurkan, C. J. Dehen, M. P. Tate, H. W. Hillhouse et al., An electrochemical fabrication process for the assembly of anisotropically oriented collagen bundles, Biomaterials, vol.29, pp.3278-3288, 2008.

N. Minoura, S. Aiba, Y. Gotoh, M. Tsukada, and Y. Imai, Attachment and growth of cultured fibroblast cells on silk protein matrices, J. Biomed. Mater. Res, vol.29, pp.1215-1221, 1995.

C. K. Kuo, J. E. Marturano, and R. S. Tuan, Novel strategies in tendon and ligament tissue engineering: Advanced biomaterials and regeneration motifs, Sports Med. Arthrosc. Rehabil. Ther. Technol, 1920.

G. Li, Y. Li, G. Chen, J. He, Y. Han et al., Silk-based biomaterials in biomedical textiles and fiber-based implants, Adv. Healthc. Mater, vol.4, pp.1134-1151, 2015.

M. Ghiasi, E. Naghashzargar, and D. Semnani, Silk Fibroin Nano-Coated Textured Silk Yarn by Electrospinning Method for Tendon and Ligament Scaffold Application, Nano Hybrids, vol.7, pp.35-51, 2014.

J. L. Chen, Z. Yin, W. L. Shen, X. Chen, B. C. Heng et al., Efficacy of hESC-MSCs in knitted silk-collagen scaffold for tendon tissue engineering and their roles, Biomaterials, vol.31, pp.9438-9451, 2010.

Z. Zheng, J. Ran, W. Chen, Y. Hu, T. Zhu et al., Alignment of collagen fiber in knitted silk scaffold for functional massive rotator cuff repair, Acta Biomater, vol.51, pp.317-329, 2017.

Y. Zhi, W. Liu, P. Zhang, J. Jiang, and S. Chen, Electrospun silk fibroin mat enhances tendon-bone healing in a rabbit extra-articular model, Biotechnol. Lett, vol.38, pp.1827-1835, 2016.

H. L. Malcarney, F. Bonar, and G. A. Murrell, Early Inflammatory Reaction after Rotator Cuff Repair with a Porcine Small Intestine Submucosal Implant: A Report of 4 Cases, Am. J. Sports Med, vol.33, pp.907-911, 2005.

K. K. Mallick and S. C. Cox, Biomaterial scaffolds for tissue engineering, Front. Biosci. Elite Ed, vol.5, pp.341-360, 2013.

B. S. Kim and D. J. Mooney, Development of biocompatible synthetic extracellular matrices for tissue engineering, Trends Biotechnol, vol.16, pp.224-230, 1998.

E. S. Place, J. H. George, C. K. Williams, and M. M. Stevens, Synthetic polymer scaffolds for tissue engineering, Chem. Soc. Rev, vol.38, pp.1139-1151, 2009.

S. J. Peter, M. J. Miller, A. W. Yasko, M. J. Yaszemski, and A. G. Mikos, Polymer concepts in tissue engineering, J. Biomed. Mater. Res, vol.43, pp.422-427, 1998.

X. Wang, B. Ding, and B. Li, Biomimetic electrospun nanofibrous structures for tissue engineering, Mater. Today Kidlington Engl, vol.16, pp.229-241, 2013.

K. L. Moffat, A. S. Kwei, .. Spalazzi, J. P. Doty, S. B. Levine et al., Novel nanofiber-based scaffold for rotator cuff repair and augmentation, Tissue Eng. Part A, vol.15, pp.115-126, 2009.

C. Erisken, X. Zhang, K. L. Moffat, W. N. Levine, and H. H. Lu, Scaffold fiber diameter regulates human tendon fibroblast growth and differentiation, Tissue Eng. Part A, vol.19, pp.519-528, 2013.

Y. Xu, J. Wu, H. Wang, H. Li, N. Di et al., Fabrication of electrospun poly(L-lactide-co-"-caprolactone)/collagen nanoyarn network as a novel, three-dimensional, macroporous, aligned scaffold for tendon tissue engineering, Tissue Eng. Part C Methods, vol.19, pp.925-936, 2013.

R. L. Horan, A. L. Collette, C. Lee, K. Antle, J. Chen et al., Yarn design for functional tissue engineering, J. Biomech, vol.39, pp.2232-2240, 2006.

X. Wang, C. Han, X. Hu, H. Sun, C. You et al., Applications of knitted mesh fabrication techniques to scaffolds for tissue engineering and regenerative medicine, J. Mech. Behav. Biomed. Mater, vol.4, pp.922-932, 2011.

S. H. Park, Y. Choi, S. W. Moon, B. H. Lee, J. Shim et al., Three-Dimensional Bio-Printed Scaffold Sleeves With Mesenchymal Stem Cells for Enhancement of Tendon-to-Bone Healing in Anterior Cruciate Ligament Reconstruction Using Soft-Tissue Tendon Graft, Arthroscopy, vol.34, pp.166-179, 2018.

V. J. Mkhabela and S. S. Ray, Poly(epsilon-caprolactone) nanocomposite scaffolds for tissue engineering: A brief overview, J. Nanosci. Nanotechnol, vol.14, pp.535-545, 2014.

P. Saini, M. Arora, and M. N. Kumar, Poly(lactic acid) blends in biomedical applications, Adv. Drug Deliv. Rev, vol.107, pp.47-59, 2016.

W. Zhao, J. Li, K. Jin, W. Liu, X. Qiu et al., Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering, Mater. Sci. Eng. C Mater. Biol. Appl, vol.59, pp.1181-1194, 2016.

D. Sarkar, J. Yang, A. S. Gupta, and S. T. Lopina, Synthesis and characterization of L-tyrosine based polyurethanes for biomaterial applications, J. Biomed. Mater. Res. A, vol.90, pp.263-271, 2009.

S. F. Badylak and T. W. Gilbert, Immune response to biologic scaffold materials, Semin. Immunol, vol.20, pp.109-116, 2008.

J. Glowacki and S. Mizuno, Collagen scaffolds for tissue engineering, Biopolymers, vol.89, pp.338-344, 2008.

H. Schoof, J. Apel, I. Heschel, and G. Rau, Control of pore structure and size in freeze-dried collagen sponges, J. Biomed. Mater. Res, vol.58, pp.352-357, 2001.

M. G. Haugh, C. M. Murphy, and F. J. O'brien, Novel freeze-drying methods to produce a range of collagen-glycosaminoglycan scaffolds with tailored mean pore sizes, Tissue Eng. Part C Methods, vol.16, pp.887-894, 2010.

K. J. De-france, F. Xu, and T. Hoare, Structured Macroporous Hydrogels: Progress, Challenges, and Opportunities, Adv. Healthc. Mater, vol.7, 2018.

D. L. Butler, N. Juncosa-melvin, G. P. Boivin, M. T. Galloway, J. T. Shearn et al., Functionaltissue engineering for tendon repair: A multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation, J. Orthop. Res. Off. Publ. Orthop. Res. Soc, vol.26, pp.1-9, 2008.

Y. P. Kato, D. L. Christiansen, R. A. Hahn, S. J. Shieh, J. D. Goldstein et al., Mechanical properties of collagen fibres: A comparison of reconstituted and rat tail tendon fibres, Biomaterials, vol.10, pp.38-42, 1989.

S. J. Kew, J. H. Gwynne, D. Enea, M. Abu-rub, A. Pandit et al., Regeneration and repair of tendon and ligament tissue using collagen fibre biomaterials, Acta Biomater, vol.7, pp.3237-3247, 2011.

F. H. Silver and R. L. Trelstad, Type I collagen in solution. Structure and properties of fibril fragments, J. Biol. Chem, vol.255, pp.9427-9433, 1980.

E. M. Reece, S. N. Oishi, and M. Ezaki, Brachioradialis flap for coverage after elbow flexion contracture release, Tech. Hand Up. Extrem. Surg, vol.14, pp.125-128, 2010.

P. Vang, Advantages and Disadvantages between Allograft Versus Autograft in Anterior Cruciate Ligament Replacement, 2006.

R. P. Casaroli-marano, J. Tabera, A. Vilarrodona, and E. Trias, Regulatory issues in cell-based therapy for clinical purposes, Dev. Ophthalmol, vol.53, pp.189-200, 2014.

I. Y. Shadrin, A. Khodabukus, and N. Bursac, Striated Muscle Function, Regeneration, and Repair, Cell. Mol. Life Sci, vol.73, pp.4175-4202, 2016.

A. J. Engler, M. A. Griffin, S. Sen, C. G. Bönnemann, H. L. Sweeney et al., Myotubes differentiate optimally on substrates with tissue-like stiffness: Pathological implications for soft or stiff microenvironments, J. Cell Biol, vol.166, pp.877-887, 2004.

J. E. Valentin, N. J. Turner, T. W. Gilbert, and S. F. Badylak, Functional Skeletal Muscle Formation with a Biologic Scaffold, Biomaterials, vol.31, pp.7475-7484, 2010.

J. M. Fishman, A. Tyraskis, P. Maghsoudlou, L. Urbani, G. Totonelli et al., Skeletal muscle tissue engineering: Which cell to use?, Tissue Eng. Part B Rev, vol.19, pp.503-515, 2013.

S. Hashimoto, F. Sato, R. Uemura, and A. Nakajima, Effect of Pulsatile Electric Field on Cultured Muscle Cells In Vitro, J. Syst. Cybern. Inform, vol.10, pp.1-6, 2012.

C. P. Pennisi, C. G. Olesen, M. De-zee, J. Rasmussen, and V. Zachar, Uniaxial Cyclic Strain Drives Assembly and Differentiation of Skeletal Myocytes, Tissue Eng. Part A, vol.17, pp.2543-2550, 2011.

K. J. Boonen, M. L. Langelaan, R. B. Polak, D. W. Van-der-schaft, F. P. Baaijens et al., Effects of a combined mechanical stimulation protocol: Value for skeletal muscle tissue engineering, J. Biomech, vol.43, pp.1514-1521, 2010.

T. Okano, S. Satoh, T. Oka, and T. Matsuda, Tissue engineering of skeletal muscle. Highly dense, highly oriented hybrid muscular tissues biomimicking native tissues, ASAIO J, vol.43, pp.749-753, 1997.

H. Baniasadi, S. Mashayekhan, S. Fadaoddini, and Y. Haghirsharifzamini, Design, fabrication and characterization of oxidized alginate-gelatin hydrogels for muscle tissue engineering applications, J. Biomater. Appl, vol.31, pp.152-161, 2016.

M. T. Lam, S. Sim, X. Zhu, and S. Takayama, The effect of continuous wavy micropatterns on silicone substrates on the alignment of skeletal muscle myoblasts and myotubes, Biomaterials, vol.27, pp.4340-4347, 2006.

P. Bajaj, J. A. Rivera, D. Marchwiany, V. Solovyeva, and R. Bashir, Graphene-based patterning and differentiation of C2C12 myoblasts, Adv. Healthc. Mater, vol.3, pp.995-1000, 2014.

L. Altomare, N. Gadegaard, L. Visai, M. C. Tanzi, and S. Farè, Biodegradable microgrooved polymeric surfaces obtained by photolithography for skeletal muscle cell orientation and myotube development, Acta Biomater, vol.6, pp.1948-1957, 2010.

J. L. Charest, A. J. García, and W. P. King, Myoblast alignment and differentiation on cell culture substrates with microscale topography and model chemistries, Biomaterials, vol.28, pp.2202-2210, 2007.

M. Costantini, S. Testa, E. Fornetti, A. Barbetta, M. Trombetta et al., Engineering Muscle Networks in 3D Gelatin Methacryloyl Hydrogels: Influence of Mechanical Stiffness and Geometrical Confinement, Front. Bioeng. Biotechnol, vol.5, 2017.

V. Hosseini, S. Ahadian, S. Ostrovidov, G. Camci-unal, S. Chen et al., Engineered Contractile Skeletal Muscle Tissue on a Microgrooved Methacrylated Gelatin Substrate, Tissue Eng. Part A, vol.18, pp.2453-2465, 2012.

I. Liao, J. B. Liu, N. Bursac, and K. W. Leong, Effect of Electromechanical Stimulation on the Maturation of Myotubes on Aligned Electrospun Fibers, Cell. Mol. Bioeng, vol.1, pp.133-145, 2008.

G. Candiani, S. A. Riboldi, N. Sadr, S. Lorenzoni, P. Neuenschwander et al., Cyclic mechanical stimulation favors myosin heavy chain accumulation in engineered skeletal muscle constructs, J. Appl. Biomater. Biomech, vol.8, pp.68-75, 2010.

K. J. Aviss, J. E. Gough, and S. Downes, Aligned electrospun polymer fibres for skeletal muscle regeneration, Eur. Cells Mater, vol.19, pp.193-204, 2010.

P. M. Martins, S. Ribeiro, C. Ribeiro, V. Sencadas, A. C. Gomes et al., Effect of poling state and morphology of piezoelectric poly(vinylidene fluoride) membranes for skeletal muscle tissue engineering

N. Takeda, K. Tamura, R. Mineguchi, Y. Ishikawa, Y. Haraguchi et al., In situ cross-linked electrospun fiber scaffold of collagen for fabricating cell-dense muscle tissue, J. Artif. Organs, vol.19, pp.141-148, 2016.

A. G. Guex, D. L. Birrer, G. Fortunato, H. T. Tevaearai, and M. Giraud, Anisotropically oriented electrospun matrices with an imprinted periodic micropattern: A new scaffold for engineered muscle constructs, Biomed. Mater, 2013.

P. N. Abarzúa-illanes, C. Padilla, A. Ramos, M. Isaacs, J. Ramos-grez et al., Improving myoblast differentiation on electrospun poly("-caprolactone) scaffolds, J. Biomed. Mater. Res. A, vol.105, pp.2241-2251, 2017.

I. Jun, S. Jeong, and H. Shin, The stimulation of myoblast differentiation by electrically conductive sub-micron fibers, Biomaterials, vol.30, pp.2038-2047, 2009.

S. Sirivisoot and B. S. Harrison, Skeletal myotube formation enhanced by electrospun polyurethane carbon nanotube scaffolds, Int. J. Nanomedicine, vol.6, pp.2483-2497, 2011.

M. M. Maciel, S. Ribeiro, C. Ribeiro, A. Francesko, A. Maceiras et al., Relation between fiber orientation and mechanical properties of nano-engineered poly(vinylidene fluoride) electrospun composite fiber mats, Compos. Part B Eng, vol.139, pp.146-154, 2018.

S. Ostrovidov, X. Shi, L. Zhang, X. Liang, S. B. Kim et al., Myotube formation on gelatin nanofibers-Multi-walled carbon nanotubes hybrid scaffolds, Biomaterials, vol.35, pp.6268-6277, 2014.

Y. C. Shin, J. H. Lee, L. Jin, M. J. Kim, Y. Kim et al., Stimulated myoblast differentiation on graphene oxide-impregnated PLGA-collagen hybrid fibre matrices, J. Nanobiotechnol, vol.13, 2015.

L. Wang, Y. Wu, B. Guo, and P. X. Ma, Nanofiber Yarn/Hydrogel Core-Shell Scaffolds Mimicking Native Skeletal Muscle Tissue for Guiding 3D Myoblast Alignment, Elongation, and Differentiation, ACS Nano, vol.9, pp.9167-9179, 2015.

S. H. Cha, H. J. Lee, and W. Koh, Study of myoblast differentiation using multi-dimensional scaffolds consisting of nano and micropatterns, Biomater. Res, vol.21, 2017.

K. D. Mckeon-fischer, D. H. Flagg, and J. W. Freeman, Poly(acrylic acid)/poly(vinyl alcohol) compositions coaxially electrospun with poly("-caprolactone) and multi-walled carbon nanotubes to create nanoactuating scaffolds, Polymer, vol.52, pp.4736-4743, 2011.

E. Serena, M. Flaibani, S. Carnio, L. Boldrin, L. Vitiello et al., Electrophysiologic stimulation improves myogenic potential of muscle precursor cells grown in a 3D collagen scaffold, Neurol. Res, vol.30, pp.207-214, 2008.

M. L. Langelaan, K. J. Boonen, K. Y. Rosaria-chak, D. W. Van-der-schaft, M. J. Post et al., Advanced maturation by electrical stimulation: Differences in response between C2C12 and primary muscle progenitor cells, J. Tissue Eng. Regen. Med, vol.5, pp.529-539, 2011.

B. Bandyopadhyay, V. Shah, M. Soram, C. Viswanathan, and D. Ghosh, In vitro and in vivo evaluation of L-lactide/"-caprolactone copolymer scaffold to support myoblast growth and differentiation, Biotechnol. Prog, vol.29, pp.197-205, 2013.

J. Stern-straeter, A. D. Bach, L. Stangenberg, V. T. Foerster, R. E. Horch et al., Impact of electrical stimulation on three-dimensional myoblast cultures-A real-time RT-PCR study, J. Cell. Mol. Med, vol.9, pp.883-892, 2005.

C. A. Powell, B. L. Smiley, J. Mills, and H. H. Vandenburgh, Mechanical stimulation improves tissue-engineered human skeletal muscle, Am. J. Physiol. Cell Physiol, vol.283, pp.1557-1565, 2002.

W. Bian, M. Juhas, T. W. Pfeiler, and N. Bursac, Local tissue geometry determines contractile force generation of engineered muscle networks, Tissue Eng. Part A, vol.18, pp.957-967, 2012.

M. Kheradmandi, E. Vasheghani-farahani, A. Ghiaseddin, and F. Ganji, Skeletal muscle regeneration via engineered tissue culture over electrospun nanofibrous chitosan/PVA scaffold, J. Biomed. Mater. Res. A, vol.104, pp.1720-1727, 2016.

J. L. Shadrach and A. J. Wagers, Stem cells for skeletal muscle repair, Philos. Trans. R. Soc. B Biol. Sci, vol.366, pp.2297-2306, 2011.

H. Liao and G. Zhou, Development and progress of engineering of skeletal muscle tissue, Tissue Eng. Part B Rev, vol.15, p.1116, 2009.

S. F. Gilbert and . Myogenesis, The Development of Muscle, Developmental Biology, p.22, 2000.

M. A. Egerman and D. J. Glass, Signaling pathways controlling skeletal muscle mass, Crit. Rev. Biochem. Mol. Biol, vol.49, pp.59-68, 2014.

A. Mauro, C. Ciccarelli, P. De-cesaris, A. Scoglio, M. Bouché et al., PKCalpha-mediated ERK, JNK and p38 activation regulates the myogenic program in human rhabdomyosarcoma cells, J. Cell Sci, vol.115, pp.3587-3599, 2002.

I. Michailovici, H. A. Harrington, H. H. Azogui, Y. Yahalom-ronen, A. Plotnikov et al., Nuclear to cytoplasmic shuttling of ERK promotes differentiation of muscle stem/progenitor cells, Development, vol.141, pp.2611-2620, 2014.

H. Wang, Q. Xu, F. Xiao, Y. Jiang, and Z. Wu, Involvement of the p38 Mitogen-activated Protein Kinase ?, and Isoforms in Myogenic Differentiation, Mol. Biol. Cell, vol.19, pp.1519-1528, 2008.

H. Fujita, K. Shimizu, Y. Yamamoto, A. Ito, M. Kamihira et al., Fabrication of scaffold-free contractile skeletal muscle tissue using magnetite-incorporated myogenic C2C12 cells, J. Tissue Eng. Regen. Med, vol.4, pp.437-443, 2010.

K. Ikeda, T. Takayama, N. Suzuki, K. Shimada, K. Otsuka et al., Effects of low-intensity pulsed ultrasound on the differentiation of C2C12 cells, Life Sci, vol.79, pp.1936-1943, 2006.

L. Ricotti, T. Fujie, H. Vazão, G. Ciofani, R. Marotta et al., Boron Nitride Nanotube-Mediated Stimulation of Cell Co-Culture on Micro-Engineered Hydrogels, PLoS ONE, vol.8, 2013.

A. R. Salgarella, A. Cafarelli, L. Ricotti, L. Capineri, P. Dario et al., Optimal Ultrasound Exposure Conditions for Maximizing C2C12 Muscle Cell Proliferation and Differentiation, Ultrasound Med. Biol, vol.43, pp.1452-1465, 2017.

D. R. Campion, R. L. Richardson, R. R. Kraeling, and J. O. Reagan, Regulation of skeletal muscle development by the central nervous system in the fetal pig, Growth, vol.42, pp.189-204, 1978.

A. Khodabukus and K. Baar, Defined electrical stimulation emphasizing excitability for the development and testing of engineered skeletal muscle, Tissue Eng. Part C Methods, vol.18, pp.349-357, 2012.

T. Tanaka, N. Hattori-aramaki, A. Sunohara, K. Okabe, Y. Sakamoto et al., Alignment of Skeletal Muscle Cells Cultured in Collagen Gel by Mechanical and Electrical Stimulation, p.15, 2018.

P. Bajaj, B. Reddy, L. Millet, C. Wei, P. Zorlutuna et al., Patterning the differentiation of C2C12 skeletal myoblasts, Integr. Biol. Quant. Biosci. Nano Macro, vol.3, pp.897-909, 2011.

S. Buvinic, G. Almarza, M. Bustamante, M. Casas, J. López et al., ATP released by electrical stimuli elicits calcium transients and gene expression in skeletal muscle, J. Biol. Chem, vol.284, pp.34490-34505, 2009.

J. M. Eltit, A. A. García, J. Hidalgo, J. L. Liberona, M. Chiong et al., Membrane Electrical Activity Elicits Inositol 1,4,5-Trisphosphate-dependent Slow Ca 2+ Signals through a G /Phosphatidylinositol 3-Kinase Pathway in Skeletal Myotubes, J. Biol. Chem, vol.281, pp.12143-12154, 2006.

J. A. Rahnert and T. J. Burkholder, ERK phosphorylation correlates with intensity of electrical stimulation in mouse tibialis anterior, FASEB J, 1051.

A. M. Zöllner, O. J. Abilez, M. Böl, and E. Kuhl, Stretching skeletal muscle: Chronic muscle lengthening through sarcomerogenesis, PLoS ONE, vol.7, p.45661, 2012.

W. W. Ahmed, T. Wolfram, A. M. Goldyn, K. Bruellhoff, B. A. Rioja et al., Kemkemer, R. Myoblast morphology and organization on biochemically micro-patterned hydrogel coatings under cyclic mechanical strain, Biomaterials, vol.31, pp.250-258, 2010.

D. G. Moon, G. Christ, J. D. Stitzel, A. Atala, and J. J. Yoo, Cyclic mechanical preconditioning improves engineered muscle contraction, Tissue Eng. Part A, vol.14, pp.473-482, 2008.

S. J. Zhang, G. A. Truskey, and W. E. Kraus, Effect of cyclic stretch on 1D-integrin expression and activation of FAK and RhoA, Am. J. Physiol. Cell Physiol, vol.292, pp.2057-2069, 2007.

M. Hara, K. Tabata, T. Suzuki, M. Q. Do, W. Mizunoya et al., Calcium influx through a possible coupling of cation channels impacts skeletal muscle satellite cell activation in response to mechanical stretch, Am. J. Physiol. Cell Physiol, vol.302, pp.1741-1750, 2012.

R. Tatsumi, A. Hattori, Y. Ikeuchi, J. E. Anderson, and R. E. Allen, Release of Hepatocyte Growth Factor from Mechanically Stretched Skeletal Muscle Satellite Cells and Role of pH and Nitric Oxide, Mol. Biol. Cell, vol.13, pp.2909-2918, 2002.

R. M. Adam, J. A. Roth, H. Cheng, D. C. Rice, J. Khoury et al., Signaling Through PI3K/Akt Mediates Stretch and PDGF-BB-Dependent DNA Synthesis in Bladder Smooth Muscle Cells, J. Urol, vol.169, pp.2388-2393, 2003.

N. Hanke, H. Kubis, R. J. Scheibe, M. Berthold-losleben, O. Hüsing et al., Passive mechanical forces upregulate the fast myosin heavy chain IId/x via integrin and p38 MAP kinase activation in a primary muscle cell culture, Am. J. Physiol. Cell Physiol, vol.298, pp.910-920, 2010.

A. Pavesi, G. Adriani, M. Rasponi, I. K. Zervantonakis, G. B. Fiore et al., Controlled electromechanical cell stimulation on-a-chip, Sci. Rep, vol.5, 2015.

V. Sørensen, Y. Zhen, M. Zakrzewska, E. M. Haugsten, S. Wälchli et al., Phosphorylation of Fibroblast Growth Factor (FGF) Receptor 1 at Ser777 by p38 Mitogen-Activated Protein Kinase Regulates Translocation of Exogenous FGF1 to the Cytosol and Nucleus, Mol. Cell. Biol, vol.28, pp.4129-4141, 2008.

J. Suzuki, Y. Yamazaki, L. Guang, Y. Kaziro, and H. Koide, Involvement of Ras and Ral in Chemotactic Migration of Skeletal Myoblasts, Mol. Cell. Biol, vol.20, pp.4658-4665, 2000.

N. Walker, T. Kahamba, N. Woudberg, K. Goetsch, and C. Niesler, Dose-dependent modulation of myogenesis by HGF: Implications for c-Met expression and downstream signalling pathways, Growth Factors, vol.33, pp.229-241, 2015.

M. Bustamante, R. Fernández-verdejo, E. Jaimovich, and S. Buvinic, Electrical stimulation induces IL-6 in skeletal muscle through extracellular ATP by activating Ca 2+ signals and an IL-6 autocrine loop, Am. J. Physiol. Endocrinol. Metab, vol.306, pp.869-882, 2014.

A. Perez-ruiz, V. F. Gnocchi, and P. Zammit, Control of Myf5 activation in adult skeletal myonuclei requires ERK signalling, Cell Signal, vol.19, pp.1671-1680, 2007.

C. Cárdenas, M. Müller, E. Jaimovich, F. Pérez, D. Buchuk et al., Depolarization of Skeletal Muscle Cells induces Phosphorylation of cAMP Response Element Binding Protein via Calcium and Protein Kinase C?, J. Biol. Chem, vol.279, pp.39122-39131, 2004.

E. Dargelos, S. Dedieu, C. Moyen, S. Poussard, P. Veschambre et al., Characterization of the calcium-dependent proteolytic system in a mouse muscle cell line, Mol. Cell. Biochem, vol.231, pp.147-154, 2002.

B. B. Friday, V. Horsley, and G. K. Pavlath, Calcineurin Activity Is Required for the Initiation of Skeletal Muscle Differentiation, J. Cell Biol, vol.149, pp.657-666, 2000.

S. Y. Low and P. M. Taylor, Integrin and cytoskeletal involvement in signalling cell volume changes to glutamine transport in rat skeletal muscle, J. Physiol, vol.512, pp.481-485, 1998.

M. Kjaer, Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading, Physiol. Rev, vol.84, pp.649-698, 2004.

S. Kin, A. Hagiwara, Y. Nakase, Y. Kuriu, S. Nakashima et al., Regeneration of skeletal muscle using in situ tissue engineering on an acellular collagen sponge scaffold in a rabbit model, ASAIO J, vol.53, pp.506-513, 2007.

M. Lehto, M. Kvist, T. Vieno, and L. Józsa, Macromolecular composition of the sarcolemma and endomysium in the rat, Acta Anat, vol.133, pp.297-302, 1988.

S. Ansari, C. Chen, X. Xu, N. Annabi, H. H. Zadeh et al., Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors, Ann. Biomed. Eng, vol.44, 1908.

Y. Li, H. Meng, Y. Liu, and B. P. Lee, Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering, Sci. World J, vol.685690, 2015.

M. T. Lam, Y. Huang, R. K. Birla, and S. Takayama, Microfeature guided skeletal muscle tissue engineering for highly organized 3-dimensional free-standing constructs, Biomaterials, vol.30, pp.1150-1155, 2009.

C. Tonda-turo, F. Ruini, M. Ramella, F. Boccafoschi, P. Gentile et al., Non-covalently crosslinked chitosan nanofibrous mats prepared by electrospinning as substrates for soft tissue regeneration, Carbohydr. Polym, vol.162, pp.82-92, 2017.

W. E. Hennink and C. F. Van-nostrum, Novel crosslinking methods to design hydrogels, Adv. Drug Deliv. Rev, vol.54, pp.13-36, 2002.

J. A. Rowley and D. J. Mooney, Alginate type and RGD density control myoblast phenotype, J. Biomed. Mater. Res, vol.60, pp.217-223, 2002.

N. Davidenko, C. F. Schuster, D. V. Bax, N. Raynal, R. W. Farndale et al., Control of crosslinking for tailoring collagen-based scaffolds stability and mechanics, Acta Biomater, vol.25, pp.131-142, 2015.

C. Lin, J. Yang, N. Chiang, H. Ma, and R. Tsay, Evaluation of decellularized extracellular matrix of skeletal muscle for tissue engineering, Int. J. Artif. Organs, vol.37, pp.546-555, 2014.

P. G. Gamba, M. T. Conconi, R. Lo-piccolo, G. Zara, R. Spinazzi et al., Experimental abdominal wall defect repaired with acellular matrix, Pediatr. Surg. Int, vol.18, pp.327-331, 2002.

J. M. Fishman, M. W. Lowdell, L. Urbani, T. Ansari, A. J. Burns et al., Immunomodulatory effect of a decellularized skeletal muscle scaffold in a discordant xenotransplantation model, Proc. Natl. Acad. Sci, vol.110, pp.14360-14365, 2013.

A. Porzionato, M. M. Sfriso, A. Pontini, V. Macchi, L. Petrelli et al., Decellularized Human Skeletal Muscle as Biologic Scaffold for Reconstructive Surgery, Int. J. Mol. Sci, vol.16, pp.14808-14831, 2015.

A. K. Saxena, J. Marler, M. Benvenuto, G. H. Willital, and J. P. Vacanti, Skeletal muscle tissue engineering using isolated myoblasts on synthetic biodegradable polymers: Preliminary studies, Tissue Eng, vol.5, pp.525-532, 1999.

A. K. Saxena, G. H. Willital, and J. P. Vacanti, Vascularized three-dimensional skeletal muscle tissue-engineering, Biomed. Mater. Eng, vol.11, pp.275-281, 2001.

R. P. Rimington, A. J. Capel, S. D. Christie, and M. P. Lewis, Biocompatible 3D printed polymers via fused deposition modelling direct C 2 C 12 cellular phenotype in vitro, Lab Chip, vol.17, pp.2982-2993, 2017.

L. Ricotti, S. Taccola, V. Pensabene, V. Mattoli, T. Fujie et al., Adhesion and proliferation of skeletal muscle cells on single layer poly(lactic acid) ultra-thin films, Biomed. Microdevices, vol.12, pp.809-819, 2010.

W. Li, R. L. Mauck, J. A. Cooper, X. Yuan, and R. S. Tuan, Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering, J. Biomech, vol.40, pp.1686-1693, 2007.

M. Kim, Y. S. Choi, S. H. Yang, H. Hong, S. Cho et al., Muscle regeneration by adipose tissue-derived adult stem cells attached to injectable PLGA spheres, Biochem. Biophys. Res. Commun, vol.348, pp.386-392, 2006.

J. Xu, Y. Xie, H. Zhang, Z. Ye, and W. Zhang, Fabrication of PLGA/MWNTs composite electrospun fibrous scaffolds for improved myogenic differentiation of C2C12 cells, Colloids Surf. B Biointerfaces, vol.123, pp.907-915, 2014.

J. C. Middleton and A. J. Tipton, Synthetic biodegradable polymers as orthopedic devices, Biomaterials, vol.21, pp.2335-2346, 2000.

K. M. Yamada, Adhesive recognition sequences, J. Biol. Chem, vol.266, pp.12809-12812, 1991.

J. S. Choi, S. J. Lee, G. J. Christ, A. Atala, and J. J. Yoo, The influence of electrospun aligned poly("-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes, Biomaterials, vol.29, pp.2899-2906, 2008.

P. Heher, B. Maleiner, J. Prüller, A. H. Teuschl, J. Kollmitzer et al., A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain, Acta Biomater, vol.24, pp.251-265, 2015.

G. C. Suh, A. Bettadapur, J. W. Santoso, and M. L. Mccain, Fabrication of Micromolded Gelatin Hydrogels for Long-Term Culture of Aligned Skeletal Myotubes, Methods Mol. Biol, vol.1668, pp.147-163, 2017.

A. S. Salimath and A. J. García, Biofunctional hydrogels for skeletal muscle constructs, J. Tissue Eng. Regen. Med, vol.10, pp.967-976, 2016.

H. Salahshoor and N. Rahbar, Multi-scale mechanical and transport properties of a hydrogel, J. Mech. Behav. Biomed. Mater, vol.37, pp.299-306, 2014.

B. E. Pollot, C. R. Rathbone, J. C. Wenke, and T. Guda, Natural polymeric hydrogel evaluation for skeletal muscle tissue engineering, J. Biomed. Mater. Res. B Appl. Biomater, vol.106, pp.672-679, 2018.

V. Pardo-yissar, R. Gabai, A. N. Shipway, T. Bourenko, and I. Willner, Gold Nanoparticle/Hydrogel Composites with Solvent-Switchable Electronic Properties, Adv. Mater, vol.13, pp.1320-1323, 2001.

S. H. Ku and C. B. Park, Myoblast differentiation on graphene oxide, Biomaterials, vol.34, 2013.

J. Ramón-azcón, S. Ahadian, M. Estili, X. Liang, S. Ostrovidov et al., Dielectrophoretically Aligned Carbon Nanotubes to Control Electrical and Mechanical Properties of Hydrogels to Fabricate Contractile Muscle Myofibers, Adv. Mater, vol.25, pp.4028-4034, 2013.

R. A. Macdonald, C. M. Voge, M. Kariolis, and J. P. Stegemann, Carbon nanotubes increase the electrical conductivity of fibroblast-seeded collagen hydrogels, Acta Biomater, vol.4, pp.1583-1592, 2008.

K. D. Mckeon-fischer and J. W. Freeman, Characterization of electrospun poly(L-lactide) and gold nanoparticle composite scaffolds for skeletal muscle tissue engineering, J. Tissue Eng. Regen. Med, vol.5, pp.560-568, 2011.

H. H. Vandenburgh, P. Karlisch, and L. Farr, Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel, In Vitro Cell. Dev. Biol, vol.24, pp.166-174, 1988.

M. A. Griffin, S. Sen, H. L. Sweeney, and D. E. Discher, Adhesion-contractile balance in myocyte differentiation, J. Cell Sci, vol.117, pp.5855-5863, 2004.

W. Bian and N. Bursac, Engineered skeletal muscle tissue networks with controllable architecture, Biomaterials, vol.30, pp.1401-1412, 2009.

T. Courtney, M. S. Sacks, J. Stankus, J. Guan, and W. R. Wagner, Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy, Biomaterials, vol.27, pp.3631-3638, 2006.

M. J. Dalby, S. Childs, M. O. Riehle, H. J. Johnstone, S. Affrossman et al., Fibroblast reaction to island topography: Changes in cytoskeleton and morphology with time, Biomaterials, vol.24, pp.927-935, 2003.

H. S. Yang, N. Ieronimakis, J. H. Tsui, H. N. Kim, K. Suh et al., Nanopatterned muscle cell patches for enhanced myogenesis and dystrophin expression in a mouse model of muscular dystrophy, Biomaterials, vol.35, pp.1478-1486, 2014.

I. Sanzari, M. Callisti, A. D. Grazia, D. J. Evans, and T. Polcar, Prodromakis, T. Parylene C topographic micropattern as a template for patterning PDMS and Polyacrylamide hydrogel

V. Janakiraman, B. L. Kienitz, and H. Baskaran, Lithography Technique for Topographical Micropatterning of Collagen-Glycosaminoglycan Membranes for Tissue Engineering Applications, J. Med. Devices, vol.1, pp.233-237, 2007.

T. H. Qazi, D. J. Mooney, M. Pumberger, S. Geißler, and G. N. Duda, Biomaterials based strategies for skeletal muscle tissue engineering: Existing technologies and future trends, Biomaterials, vol.53, pp.502-521, 2015.

M. Costantini, J. Idaszek, K. Szöke, J. Jaroszewicz, M. Dentini et al., 3D bioprinting of BM-MSCs-loaded ECM biomimetic hydrogels for in vitro neocartilage formation, Biofabrication, vol.8, p.35002, 2016.

C. Cvetkovic, R. Raman, V. Chan, B. J. Williams, M. Tolish et al., Three-dimensionally printed biological machines powered by skeletal muscle, Proc. Natl. Acad. Sci, vol.111, pp.10125-10130, 2014.

H. Omidian, J. G. Rocca, and K. Park, Elastic, superporous hydrogel hybrids of polyacrylamide and sodium alginate, Macromol. Biosci, vol.6, pp.703-710, 2006.

J. H. Lee, S. J. Lee, G. Khang, and H. B. Lee, Interaction of fibroblasts on polycarbonate membrane surfaces with different micropore sizes and hydrophilicity, J. Biomater. Sci. Polym. Ed, vol.10, pp.283-294, 1999.

A. M. Kasper, D. C. Turner, N. R. Martin, and A. P. Sharples, Mimicking exercise in three-dimensional bioengineered skeletal muscle to investigate cellular and molecular mechanisms of physiological adaptation, J. Cell. Physiol, vol.233, 1985.

S. Rangarajan, L. Madden, and N. Bursac, Use of flow, electrical, and mechanical stimulation to promote engineering of striated muscles, Ann. Biomed. Eng, vol.42, pp.1391-1405, 2014.

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts et al., Modulation, and Regeneration of Skeletal Muscle, 2002.

Y. Choi, T. G. Kim, J. Jeong, H. Yi, J. W. Park et al., 3D Cell Printing of Functional Skeletal Muscle Constructs Using Skeletal Muscle-Derived Bioink, Adv. Healthc. Mater, vol.5, pp.2636-2645, 2016.

J. W. Drexler and H. M. Powell, Regulation of electrospun scaffold stiffness via coaxial core diameter, Acta Biomater, vol.7, pp.1133-1139, 2011.

M. S. Kim, I. Jun, Y. M. Shin, W. Jang, S. I. Kim et al., The development of genipin-crosslinked poly(caprolactone) (PCL)/gelatin nanofibers for tissue engineering applications, Macromol. Biosci, vol.10, pp.91-100, 2010.

P. R. Sreerekha, D. Menon, S. V. Nair, and K. P. Chennazhi, Fabrication of fibrin based electrospun multiscale composite scaffold for tissue engineering applications, J. Biomed. Nanotechnol, vol.9, pp.790-800, 2013.

K. D. Mckeon-fischer, D. H. Flagg, and J. W. Freeman, Coaxial electrospun poly("-caprolactone), multiwalled carbon nanotubes, and polyacrylic acid/polyvinyl alcohol scaffold for skeletal muscle tissue engineering, J. Biomed. Mater. Res. A, vol.99, pp.493-499, 2011.

K. D. Mckeon-fischer, J. H. Rossmeisl, A. R. Whittington, and J. W. Freeman, In vivo skeletal muscle biocompatibility of composite, coaxial electrospun, and microfibrous scaffolds, Tissue Eng. Part A, vol.20, 1961.

B. Charvet, F. Ruggiero, and D. Le-guellec, The development of the myotendinous junction. A review. Muscles Ligaments Tendons J, vol.2, pp.53-63, 2012.

T. Y. Kostrominova, S. Calve, E. M. Arruda, and L. M. Larkin, Ultrastructure of myotendinous junctions in tendon-skeletal muscle constructs engineered in vitro, Histol. Histopathol, vol.24, pp.541-550, 2009.

L. M. Larkin, S. Calve, T. Y. Kostrominova, and E. M. Arruda, Structure and Functional Evaluation of Tendon-Skeletal Muscle Constructs Engineered In Vitro, Tissue Eng, vol.12, pp.3149-3158, 2006.

M. R. Ladd, S. J. Lee, J. D. Stitzel, A. Atala, and J. J. Yoo, Co-electrospun dual scaffolding system with potential for muscle-tendon junction tissue engineering, Biomaterials, vol.32, pp.1549-1559, 2011.

T. K. Merceron, M. Burt, Y. Seol, H. Kang, S. J. Lee et al., A 3D bioprinted complex structure for engineering the muscle-tendon unit, Biofabrication, vol.7, p.35003, 2015.

?. References,

D. W. Buck and G. A. Dumanian, Bone Biology and Physiology: Part I. The Fundamentals, Plast. Reconstr. Surg, vol.2012, issue.6

N. Reznikov, R. Shahar, and S. Weiner, Bone Hierarchical Structure in Three Dimensions, Acta Biomater, vol.10, issue.9, pp.3815-3826, 2014.

A. I. Alford, K. M. Kozloff, and K. D. Hankenson, Extracellular Matrix Networks in Bone Remodeling, Int. J. Biochem. Cell Biol, vol.65, pp.20-31, 2015.

Y. C. Chai, A. Carlier, J. Bolander, S. J. Roberts, L. Geris et al., Current Views on Calcium Phosphate Osteogenicity and the Translation into Effective Bone Regeneration Strategies, Acta Biomater, vol.8, issue.11, pp.3876-3887, 2012.

A. R. Amini, C. T. Laurencin, and S. P. Nukavarapu, Bone Tissue Engineering: Recent Advances and Challenges, Crit. Rev. Biomed. Eng, vol.2012, issue.5, pp.363-408

R. Rai, R. Raval, R. V. Khandeparker, S. K. Chidrawar, A. A. Khan et al., Tissue Engineering: Step Ahead in Maxillofacial Reconstruction, J. Int. Oral Health JIOH, vol.2015, issue.9, pp.138-142

S. M. Glynn, V. Shetty, K. Elliot-brown, R. Leathers, T. R. Belin et al., Chronic Posttraumatic Stress Disorder after Facial Injury: A 1-Year Prospective Cohort Study, J. Trauma, vol.62, issue.2, pp.410-418, 2007.

J. D. Kretlow, S. Young, L. Klouda, M. Wong, and A. G. Mikos, Injectable Biomaterials for Regenerating Complex Craniofacial Tissues, Adv. Mater, pp.3368-3393, 2009.

L. B. Moura, P. H. Carvalho, A. De, C. B. Xavier, L. K. Post et al., Autogenous Non-Vascularized Bone Graft in Segmental Mandibular Reconstruction: A Systematic Review, Int. J. Oral Maxillofac. Surg, vol.45, issue.11, pp.1388-1394, 2016.

R. F. Laprade and J. C. Botker, Donor-Site Morbidity after Osteochondral Autograft Transfer Procedures, Arthrosc. J. Arthrosc. Relat. Surg. Off. Publ. Arthrosc. Assoc. N. Am. Int. Arthrosc. Assoc, vol.20, issue.7, pp.69-73, 2004.

A. Seidi, M. Ramalingam, I. Elloumi-hannachi, S. Ostrovidov, and A. Khademhosseini, Gradient Biomaterials for Soft-to-Hard Interface Tissue Engineering, Acta Biomater, vol.7, issue.4, pp.1441-1451, 2011.

M. A. Fernandez-yague, S. A. Abbah, L. Mcnamara, D. I. Zeugolis, A. Pandit et al., Biomimetic Approaches in Bone Tissue Engineering: Integrating Biological and Physicomechanical Strategies, Adv. Drug Delivery Rev, vol.84, pp.1-29, 2015.

J. Glowacki and S. Mizuno, Collagen Scaffolds for Tissue Engineering, Biopolymers, vol.89, issue.5, pp.338-344, 2008.

J. I. Dawson, D. A. Wahl, S. A. Lanham, J. M. Kanczler, J. T. Czernuszka et al., Development of Specific Collagen Scaffolds to Support the Osteogenic and Chondrogenic Differentiation of Human Bone Marrow Stromal Cells, Biomaterials, vol.29, issue.21, pp.3105-3116, 2008.

B. H. Oh, A. Bismarck, M. B. Chan-park, and . Injectable, Interconnected, High-Porosity Macroporous Biocompatible Gelatin Scaffolds Made by Surfactant-Free Emulsion Templating, Macromol. Rapid Commun, vol.36, issue.4, pp.364-372, 2015.

S. Saravanan, R. S. Leena, and N. Selvamurugan, Chitosan Based Biocomposite Scaffolds for Bone Tissue Engineering, Int. J. Biol. Macromol, vol.93, pp.1354-1365, 2016.

J. Venkatesan, I. Bhatnagar, P. Manivasagan, K. Kang, and S. Kim, Alginate Composites for Bone Tissue Engineering: A Review, Int. J. Biol. Macromol, vol.72, pp.269-281, 2015.

R. Xue, Y. Qian, L. Li, G. Yao, L. Yang et al.,

, Polycaprolactone Nanofiber Scaffold Enhances the Osteogenic Differentiation Potency of Various Human Tissue-Derived Mesenchymal Stem Cells, Stem Cell Res. Ther, vol.8, p.148, 2017.

T. Xu, J. M. Miszuk, Y. Zhao, H. Sun, and H. Fong, Electrospun Polycaprolactone 3D Nanofibrous Scaffold with Interconnected and Hierarchically Structured Pores for Bone Tissue Engineering, Adv. Healthcare Mater, vol.2015, issue.15, pp.2238-2246

V. Guduric, C. Metz, R. Siadous, R. Bareille, R. Levato et al., Layerby-Layer Bioassembly of Cellularized Polylactic Acid Porous Membranes for Bone Tissue Engineering, J. Mater. Sci.: Mater. Med, vol.2017, issue.5, p.78

Y. Chen, J. Xu, Z. Huang, M. Yu, Y. Zhang et al., An Innovative Approach for Enhancing Bone Defect Healing Using PLGA Scaffolds Seeded with Extracorporeal-Shock-Wave-Treated Bone Marrow Mesenchymal Stem Cells (BMSCs), Sci. Rep, vol.7, p.44130, 2017.

T. Albrektsson and C. Johansson, Osteoinduction, Osteoconduction and Osseointegration, Eur. Spine J, vol.10, pp.96-101, 2001.

L. Lao, Y. Wang, Y. Zhu, Y. Zhang, C. Gao et al., Hydroxyapatite Nanofibrous Scaffolds Fabricated by Electrospinning for Bone Tissue Engineering, J. Mater. Sci

. Med, , vol.22, pp.1873-1884, 2011.

N. Wongsupa, T. Nuntanaranont, S. Kamolmattayakul, and N. Thuaksuban, Assessment of Bone Regeneration of a Tissue-Engineered Bone Complex Using Human Dental Pulp Stem Cells/ Poly(?-Caprolactone)-Biphasic Calcium Phosphate Scaffold Constructs in Rabbit Calvarial Defects, J. Mater. Sci.: Mater. Med, vol.2017, issue.5, p.77

J. Huang, Y. W. Lin, X. W. Fu, S. M. Best, R. A. Brooks et al., Development of Nano-Sized Hydroxyapatite Reinforced Composites for Tissue Engineering Scaffolds, J. Mater. Sci.: Mater. Med, vol.18, issue.11, pp.2151-2157, 2007.

C. Xu, P. Su, X. Chen, Y. Meng, W. Yu et al., Biocompatibility and Osteogenesis of Biomimetic Bioglass-Collagen-Phosphatidylserine Composite Scaffolds for Bone Tissue Engineering, Biomaterials, vol.32, issue.4, pp.1051-1058, 2011.

H. Shimizu, Y. Jinno, Y. Ayukawa, I. Atsuta, T. Arahira et al., Tissue Reaction to a Novel Bone Substitute Material Fabricated With Biodegradable Polymer-Calcium Phosphate Nanoparticle Composite, Implant Dent, vol.25, issue.5, pp.567-574, 2016.

L. Shor, S. Guc?ri, R. Chang, J. Gordon, Q. Kang et al., Precision Extruding Deposition (PED) Fabrication of Polycaprolactone (PCL) Scaffolds for Bone Tissue Engineering, Biofabrication, vol.1, issue.1, p.15003, 2009.

S. T. Bendtsen, S. P. Quinnell, and M. Wei, Development of a Novel Alginate-Polyvinyl Alcohol-Hydroxyapatite Hydrogel for 3D

, ACS Biomaterials Science & Engineering Article

, ACS Biomater. Sci. Eng, vol.4, pp.3317-3326, 2018.

, Bioprinting Bone Tissue Engineered Scaffolds, J. Biomed. Mater. Res., Part A, vol.2017, issue.5, pp.1457-1468

S. Sankar, C. S. Sharma, S. N. Rath, and S. Ramakrishna,

, Electrospun Nanofibres to Mimic Natural Hierarchical Structure of Tissues: Application in Musculoskeletal Regeneration, J. Tissue Eng. Regener. Med, vol.12, pp.604-619, 2018.

A. P. Kishan and E. M. Cosgriff-hernandez, Recent Advancements in Electrospinning Design for Tissue Engineering Applications: A Review, J. Biomed. Mater. Res., Part A, issue.10, pp.2892-2905, 2017.

Y. Wu, Z. Dong, S. Wilson, and R. Clark, Template-Assisted Assembly of Electrospun Fibers, Polymer, p.3244, 2010.

U. Ripamonti and . Biomimetism, Biomimetic Matrices and the Induction of Bone Formation, J. Cell. Mol. Med, vol.13, issue.9B, pp.2953-2972, 2009.

A. Graziano, R. Aquino, M. G. Cusella-de-angelis, F. De-francesco, A. Giordano et al., Scaffold's Surface Geometry Significantly Affects Human Stem Cell Bone Tissue Engineering, J. Cell. Physiol, vol.214, issue.1, pp.166-172, 2008.

K. Takabatake, E. Yamachika, H. Tsujigiwa, Y. Takeda, M. Kimura et al.,

, J. Biomed. Mater. Res., Part A, vol.102, issue.9, pp.2952-2960, 2014.

C. R. Wittmer, A. Hebraud, S. Nedjari, and G. Schlatter, Well-Organized 3D Nanofibrous Composite Constructs Using Cooperative Effects between Electrospinning and Electrospraying, Polymer, vol.55, issue.22, pp.5781-5787, 2014.

S. Nedjari, A. Hebraud, S. Eap, S. Siegwald, C. Me?art et al., Electrostatic Template-Assisted Deposition of Microparticles on Electrospun Nanofibers: Towards Microstructured Functional Biochips for Screening Applications, RSC Adv, vol.2015, issue.102, pp.83600-83607

B. Clarke, Normal Bone Anatomy and Physiology, Clin. J. Am

. Soc, , vol.3, pp.131-139, 2008.

P. Smolewski, E. Bedner, W. Gorczyca, Z. Darzynkiewicz, and . Liquidless, Cell Staining by Dye Diffusion from Gels and Analysis by Laser Scanning Cytometry: Potential Application at Microgravity Conditions in Space, Cytometry, vol.44, issue.4, pp.355-360, 2001.

K. J. Livak and T. D. Schmittgen, Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, vol.25, issue.4, pp.402-408, 2001.

J. Duval, T. Dinis, G. Vidal, P. Vigneron, D. L. Kaplan et al., Organotypic Culture to Assess Cell Adhesion, Growth and Alignment of Different Organs on Silk Fibroin, J. Tissue Eng. Regener. Med, vol.2017, issue.2, pp.354-361
URL : https://hal.archives-ouvertes.fr/hal-01955068

T. Komori, Regulation of Osteoblast Differentiation by Runx2

, Adv. Exp. Med. Biol, vol.658, pp.43-49, 2009.

N. K. Lee, H. Sowa, E. Hinoi, M. Ferron, J. D. Ahn et al., Endocrine Regulation of Energy Metabolism by the Skeleton. Cell, vol.130, issue.3, pp.456-469, 2007.

R. Schweitzer, J. H. Chyung, L. C. Murtaugh, A. E. Brent, V. Rosen et al., Analysis of the Tendon Cell Fate Using Scleraxis, a Specific Marker for Tendons and Ligaments, Development, vol.128, issue.19, pp.3855-3866, 2001.

C. Shukunami, A. Takimoto, M. Oro, and Y. Hiraki, Scleraxis Positively Regulates the Expression of Tenomodulin, a Differentiation Marker of Tenocytes, Dev. Biol, vol.298, issue.1, pp.234-247, 2006.

T. Baudequin, F. Bedoui, M. Dufresne, P. Paullier, and C. Legallais, Towards the Development and Characterization of an Easy Handling Sheet-like Biohybrid Bone Substitute, Tissue Eng., Part A, vol.21, issue.11, pp.1895-1905, 2015.

A. M. Parfitt, H. Osteonal, and . Remodeling, The Spatial and Temporal Framework for Signal Traffic in Adult Human Bone, J. Cell. Biochem, vol.55, issue.3, pp.273-286, 1994.

H. Wu, J. Fan, C. Chu, and J. Wu, Electrospinning of Small Diameter 3-D Nanofibrous Tubular Scaffolds with Controllable Nanofiber Orientations for Vascular Grafts, J. Mater. Sci.: Mater. Med, vol.21, issue.12, pp.3207-3215, 2010.

M. Borden, S. F. El-amin, M. Attawia, and C. T. Laurencin, Structural and Human Cellular Assessment of a Novel Microsphere-Based Tissue Engineered Scaffold for Bone Repair, Biomaterials, vol.24, pp.597-609, 2003.

H. E. Go?z, M. Muller, A. Emmel, U. Holzwarth, R. G. Erben et al., Effect of Surface Finish on the Osseointegration of Laser-Treated Titanium Alloy Implants, Biomaterials, vol.25, issue.18, pp.4057-4064, 2004.

Q. M. Jin, H. Takita, T. Kohgo, K. Atsumi, H. Itoh et al., Effects of Geometry of Hydroxyapatite as a Cell Substratum in BMP-Induced Ectopic Bone Formation, J. Biomed. Mater. Res, vol.51, issue.3, pp.491-499, 2000.

M. H. Mankani, S. A. Kuznetsov, B. Fowler, A. Kingman, and P. G. Gehron-robey, In Vivo Bone Formation by Human Bone Marrow Stromal Cells: Effect of Carrier Particle Size and Shape, Biotechnol. Bioeng, vol.72, pp.96-107, 2001.

A. C. Jones, C. H. Arns, D. W. Hutmacher, B. K. Milthorpe, A. P. Sheppard et al., The Correlation of Pore Morphology, Interconnectivity and Physical Properties of 3D Ceramic Scaffolds with Bone Ingrowth, Biomaterials, vol.30, issue.7, pp.1440-1451, 2009.

M. Bigerelle, S. Giljean, and K. Anselme, Existence of a Typical Threshold in the Response of Human Mesenchymal Stem Cells to a Peak and Valley Topography, Acta Biomater, vol.7, issue.9, pp.3302-3311, 2011.

T. Date, Y. Doiguchi, M. Nobuta, and H. Shindo, Bone Morphogenetic Protein-2 Induces Differentiation of Multipotent C3H10T1/2 Cells into Osteoblasts, Chondrocytes, and Adipocytes in Vivo and in Vitro, J. Orthop. Sci, vol.9, issue.5, pp.503-508, 2004.

T. Baudequin, L. Gaut, M. Mueller, A. Huepkes, B. Glasmacher et al., The Osteogenic and Tenogenic Differentiation Potential of C3H10T1/2 (Mesenchymal Stem Cell Model) Cultured on PCL/PLA Electrospun Scaffolds in the Absence of Specific Differentiation Medium, Materials, vol.10, p.1387, 2017.

C. M. Shea, C. M. Edgar, T. A. Einhorn, and L. C. Gerstenfeld, BMP Treatment of C3H10T1/2 Mesenchymal Stem Cells Induces Both Chondrogenesis and Osteogenesis, J. Cell. Biochem, vol.90, issue.6, pp.1112-1127, 2003.

T. Takata and C. Morimoto, Raspberry Ketone Promotes the Differentiation of C3H10T1/2 Stem Cells into Osteoblasts, J. Med. Food, vol.17, issue.3, pp.332-338, 2014.

K. K. Go?ez-liza?raga, C. Flores-morales, M. L. Del-prado-audelo, M. A. A?lvarez-pe?ez, M. C. Pinã-barba et al., Polycaprolactone-and Polycaprolactone/Ceramic-Based 3D-Bioplotted Porous Scaffolds for Bone Regeneration: A Comparative Study, Mater. Sci. Eng, pp.326-335, 2017.

S. D. Subramony, B. R. Dargis, M. Castillo, E. U. Azeloglu, M. S. Tracey et al., The Guidance of Stem Cell Differentiation by Substrate Alignment and Mechanical Stimulation, Biomaterials, vol.2013, issue.8, pp.1942-1953

, terms of viscous ( , dissipated energy and E´´) and elastic

, no significant differences were found between the different parameters for the different culture conditions with or without cells. s were found for each condition. For the dissipated energy (hysteresis), cell-constructs seemed to present lower values than controls, with the complex modulus (E*)

. E'', another parameter related to viscosity, the same trend was found, with lower values for cell-constructs (0.30 ± 0.16MPa & 0.37 ± 0.13MPa) in both static and dynamic conditions

, E" for cell-constructs, both static and dynamically cultured (Fig 7), compared to both static and dynamic controls. For E' and E*, the same trend was found after 14 days of culture

J. T. Shearn, K. R. Kinneberg, N. A. Dyment, M. T. Galloway, K. Kenter et al., Tendon tissue engineering: progress, challenges, and translation to the clinic, J. Musculoskelet. Neuronal Interact, vol.11, pp.163-173, 2011.

D. L. Butler, N. Juncosa-melvin, G. P. Boivin, M. T. Galloway, J. T. Shearn et al., Functional tissue engineering for tendon repair: A multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation, J. Orthop. Res. Off. Publ. Orthop. Res. Soc, vol.26, pp.1-9, 2008.

Z. Yin, X. Chen, J. L. Chen, W. L. Shen, T. M. Hieu-nguyen et al., The regulation of tendon stem cell differentiation by the alignment of nanofibers, Biomaterials, vol.31, pp.2163-2175, 2010.

M. Beldjilali-labro, A. G. Garcia, F. Farhat, F. Bedoui, J. Grosset et al., Biomaterials in Tendon and Skeletal Muscle Tissue Engineering: Current Trends and Challenges, vol.11, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01956820

S. Testa, M. Costantini, E. Fornetti, S. Bernardini, M. Trombetta et al., Combination of biochemical and mechanical cues for tendon tissue engineering, J. Cell. Mol. Med, vol.21, pp.2711-2719, 2017.

G. Yang, B. B. Rothrauff, H. Lin, S. Yu, and R. S. Tuan, Tendon-Derived Extracellular Matrix Enhances Transforming Growth Factor-?3-Induced Tenogenic Differentiation of Human Adipose-Derived Stem Cells, Tissue Eng. Part A, vol.23, pp.166-176, 2017.

A. P. Kishan and E. M. Cosgriff-hernandez, Recent advancements in electrospinning design for tissue engineering applications: A review, J. Biomed. Mater. Res. A, vol.105, pp.2892-2905, 2017.

N. M. Lee, C. Erisken, T. Iskratsch, M. Sheetz, W. N. Levine et al., Polymer fiber-based models of connective tissue repair and healing, Biomaterials, vol.112, pp.303-312, 2017.

N. Maffulli, U. G. Longo, M. Loppini, F. Spiezia, and V. Denaro, New options in the management of tendinopathy, Open Access J. Sports Med, vol.1, p.29, 2010.

S. P. Magnusson, H. Langberg, and M. Kjaer, The pathogenesis of tendinopathy: balancing the response to loading, Nat. Rev. Rheumatol, vol.6, pp.262-268, 2010.

T. Andersson, P. Eliasson, M. Hammerman, O. Sandberg, and P. Aspenberg, Low-level mechanical stimulation is sufficient to improve tendon healing in rats, J. Appl. Physiol, vol.113, pp.1398-1402, 2012.

P. Eliasson, T. Andersson, and P. Aspenberg, Influence of a single loading episode on gene expression in healing rat Achilles tendons, J. Appl. Physiol. Bethesda Md, vol.112, pp.279-288, 1985.

J. D. Humphrey, E. R. Dufresne, and M. A. Schwartz, Mechanotransduction and extracellular matrix homeostasis, Nat. Rev. Mol. Cell Biol, vol.15, pp.802-812, 2014.

J. Lee, V. Guarino, A. Gloria, L. Ambrosio, G. Tae et al., Regeneration of Achilles' tendon: the role of dynamic stimulation for enhanced cell proliferation and mechanical properties, J. Biomater. Sci. Polym. Ed, vol.21, pp.1173-1190, 2010.

B. Engebretson, Z. R. Mussett, and V. I. Sikavitsas, Tenocytic extract and mechanical stimulation in a tissue-engineered tendon construct increases cellular proliferation and ECM deposition, Biotechnol. J, p.12, 2017.

B. Engebretson, Z. R. Mussett, and V. I. Sikavitsas, The effects of varying frequency and duration of mechanical stimulation on a tissue-engineered tendon construct, Connect. Tissue Res, vol.59, pp.167-177, 2018.

X. Li, Y. Zhang, and G. Qi, Evaluation of isolation methods and culture conditions for rat bone marrow mesenchymal stem cells, Cytotechnology, vol.65, pp.323-334, 2013.

S. K. Maiti, Mesenchymal Stem Cells Derived from Rat Bone Marrow (rBM MSC): Techniques for Isolation, Expansion and Differentiation, J. Stem Cell Res. Ther, vol.3, 2017.

M. R. Neidert, E. S. Lee, T. R. Oegema, and R. T. Tranquillo, Enhanced fibrin remodeling in vitro with TGF-beta1, insulin and plasmin for improved tissue-equivalents, Biomaterials, vol.23, pp.3717-3731, 2002.

J. E. Marturano, J. D. Arena, Z. A. Schiller, I. Georgakoudi, and C. K. Kuo, Characterization of mechanical and biochemical properties of developing embryonic tendon, Proc. Natl. Acad. Sci, vol.110, pp.6370-6375, 2013.

A. Kanani and S. H. Bahrami, Effect of Changing Solvents on Poly( -Caprolactone) Nanofibrous Webs Morphology, J. Nanomater, 2011.

I. Stoilov, B. C. Starcher, R. P. Mecham, and T. J. Broekelmann, Methods Cell Biol, pp.133-146, 2018.

N. Bölgen, 10 -Electrospun materials for bone and tendon/ligament tissue engineering, Tissue Eng. Biomed. Appl, pp.233-260, 2017.

R. B. Martin, D. B. Burr, N. A. Sharkey, and D. P. Fyhrie, Mechanical Properties of Ligament and Tendon, Skelet. Tissue Mech, pp.175-225, 2015.

C. T. Thorpe, H. L. Birch, P. D. Clegg, and H. R. Screen, Tendon Physiology and Mechanical Behavior: Structure-Function Relationships, pp.3-39, 2015.

K. Ikoma, M. Kido, M. Nagae, T. Ikeda, T. Shirai et al., Effects of stress-shielding on the dynamic viscoelasticity and ordering of the collagen fibers in rabbit Achilles tendon, J. Orthop. Res. Off. Publ. Orthop. Res. Soc, vol.31, pp.1708-1712, 2013.

K. Choi, Y. Seo, H. Yoon, K. Song, S. Kwon et al., Effects of mechanical stimulation on the proliferation of bone marrow-derived human mesenchymal stem cells, Biotechnol. Bioprocess Eng, vol.12, pp.601-609, 2007.

R. Kuang, Z. Wang, Q. Xu, S. Liu, and W. Zhang, Influence of mechanical stimulation on human dermal fibroblasts derived from different body sites, Int. J. Clin. Exp. Med, vol.8, pp.7641-7647, 2015.

Y. Xu, S. Dong, Q. Zhou, X. Mo, L. Song et al., The effect of mechanical stimulation on the maturation of TDSCs-poly(L-lactide-co-ecaprolactone)/collagen scaffold constructs for tendon tissue engineering, Biomaterials, vol.35, pp.2760-2772, 2014.

Y. Wang and C. S. Chen, Cell adhesion and mechanical stimulation in the regulation of mesenchymal stem cell differentiation, J. Cell. Mol. Med, vol.17, pp.823-832, 2013.

S. D. Subramony, B. R. Dargis, M. Castillo, E. U. Azeloglu, M. S. Tracey et al., The guidance of stem cell differentiation by substrate alignment and mechanical stimulation, Biomaterials, vol.34, pp.1942-1953, 2013.

H. R. Screen, J. C. Shelton, D. L. Bader, and D. A. Lee, Cyclic tensile strain upregulates collagen synthesis in isolated tendon fascicles, Biochem. Biophys. Res. Commun, vol.336, pp.424-429, 2005.

E. Huisman, A. Lu, R. G. Mccormack, and A. Scott, Enhanced collagen type I synthesis by human tenocytes subjected to periodic in vitro mechanical stimulation, BMC Musculoskelet. Disord, vol.15, p.386, 2014.

S. Wu, Y. Wang, P. N. Streubel, and B. Duan, Living nanofiber yarn-based woven biotextiles for tendon tissue engineering using cell tri-culture and mechanical stimulation, Acta Biomater, vol.62, pp.102-115, 2017.

K. M. Heinemeier and M. Kjaer, In vivo investigation of tendon responses to mechanical loading, J. Musculoskelet. Neuronal Interact, vol.11, pp.115-123, 2011.

S. Dex, P. Alberton, L. Willkomm, T. Söllradl, S. Bago et al., Tenomodulin is Required for Tendon Endurance Running and Collagen I Fibril Adaptation to Mechanical Load, EBioMedicine, vol.20, pp.240-254, 2017.

K. Nagasawa, M. Noguchi, K. Ikoma, and T. Kubo, Static and dynamic biomechanical properties of the regenerating rabbit Achilles tendon, Clin. Biomech. Bristol Avon, vol.23, pp.832-838, 2008.

D. M. Doroski, K. S. Brink, and J. S. Temenoff, Techniques for biological characterization of tissue-engineered tendon and ligament, Biomaterials, vol.28, pp.187-202, 2007.

, Tendon Physiology and Mechanical Behavior: Structure-Function Relationships -ScienceDirect

K. Kubo, H. Kanehisa, and T. Fukunaga, Effect of stretching training on the viscoelastic properties of human tendon structures in vivo, J. Appl. Physiol, vol.92, pp.595-601, 2002.

R. A. Thomas, In Vitro Degradation of Electrospun Polycaprolactone Membranes in Simulated Body Fluid

A. J. Licup, S. Münster, A. Sharma, M. Sheinman, L. M. Jawerth et al., Stress controls the mechanics of collagen networks, Proc. Natl. Acad. Sci. U. S. A, vol.112, pp.9573-9578, 2015.

R. B. Martin and J. Ishida, The relative effects of collagen fiber orientation, porosity, density, and mineralization on bone strength, J. Biomech, vol.22, pp.90202-90211, 1989.

T. Finni, J. Peltonen, L. Stenroth, and N. J. Cronin, Viewpoint: On the hysteresis in the human Achilles tendon, J. Appl. Physiol. Bethesda Md, vol.114, pp.515-517, 1985.

C. T. Thorpe, H. L. Birch, P. D. Clegg, and H. R. Screen, The role of the non-collagenous matrix in tendon function, Int. J. Exp. Pathol, vol.94, pp.248-259, 2013.

T. Baudequin, Caractérisation biologique et mécanique d'un subsitut osseux biohybride et développement de scaffolds par électrospinning: vers un pansement vivant pour la reconstruction maxillo-faciale, vol.297

P. Grabowski, Physiology of Bone. Endocr. Dev, vol.16, pp.32-48, 2009.

M. F. Young, Bone Matrix Proteins: Their Function, Regulation, and Relationship to Osteoporosis, Osteoporos. Int. J. Establ. Result Coop. Eur. Found. Osteoporos. Natl. Osteoporos. Found, vol.14, issue.3, pp.35-42, 2003.

C. Gentili, R. Cancedda, . Cartilage, and . Bone-extracellular-matrix, Curr. Pharm. Des, vol.15, issue.12, pp.1334-1348, 2009.

D. W. Buck and G. A. Dumanian, Bone Biology and Physiology: Part I. The Fundamentals, Plast. Reconstr. Surg, vol.2012, issue.6, pp.1314-1320

B. Clarke, Normal Bone Anatomy and Physiology, Clin. J. Am. Soc. Nephrol. CJASN, vol.3, issue.3, pp.131-139, 2008.

D. J. Hadjidakis, I. I. Androulakis, and . Bone-remodeling, Ann. N. Y. Acad. Sci, vol.1092, pp.385-396, 2006.

R. Oftadeh, M. Perez-viloria, J. C. Villa-camacho, A. Vaziri, and A. Nazarian, Biomechanics and Mechanobiology of Trabecular Bone: A Review, J. Biomech. Eng, vol.137, issue.1, pp.108021-01080215, 2015.

C. Chen, D. Jin, Y. Liu, F. W. Wehrli, G. Chang et al., Trabecular Bone Characterization on the Continuum of Plates and Rods Using in Vivo MR Imaging and Volumetric Topological Analysis, Phys. Med. Biol, issue.18, pp.478-496, 2016.

E. Cowin, R. Sc;-telega, and . Jj, Bone Mechanics Handbook, Appl. Mech. Rev, vol.56, issue.4, pp.61-63, 2003.

P. A. Downey and M. I. Siegel, Bone Biology and the Clinical Implications for Osteoporosis, Phys. Ther, vol.86, issue.1, pp.77-91, 2006.

L. J. Raggatt and N. C. Partridge, Cellular and Molecular Mechanisms of Bone Remodeling, J. Biol. Chem, issue.33, pp.25103-25108, 2010.

G. Garcia, A. Hébraud, A. Duval, J. Wittmer, C. R. Gaut et al., Poly(?-Caprolactone)/Hydroxyapatite 3D Honeycomb Scaffolds for a Cellular Microenvironment Adapted to Maxillofacial Bone Reconstruction, ACS Biomater. Sci. Eng, vol.4, issue.9, pp.3317-3326, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02393845

R. Dimitriou, E. Jones, D. Mcgonagle, and P. V. Giannoudis, Bone Regeneration: Current Concepts and Future Directions, BMC Med, vol.9, 2011.

C. R. Black, V. Goriainov, D. Gibbs, J. Kanczler, R. S. Tare et al., Bone Tissue Engineering. Curr. Mol. Biol. Rep, vol.2015, issue.3, pp.132-140

R. Shi, Y. Huang, C. Ma, C. Wu, and W. Tian, Current Advances for Bone Regeneration Based on, Tissue Engineering Strategies. Front. Med, 2018.

N. Shibuya and D. C. Jupiter, Bone Graft Substitute: Allograft and Xenograft, Clin. Podiatr. Med. Surg, vol.32, issue.1, pp.21-34, 2015.

Y. Fillingham and J. Jacobs, Bone Grafts and Their Substitutes, Bone Jt. J, issue.1, pp.6-9, 2016.

T. W. Bauer and G. F. Muschler, Bone Graft Materials. An Overview of the Basic Science, Clin. Orthop, issue.371, pp.10-27, 2000.

H. C. Pape, A. Evans, and P. Kobbe, Autologous Bone Graft: Properties and Techniques, J. Orthop. Trauma, p.24, 2010.

G. F. Rogers and A. K. Greene, Autogenous Bone Graft: Basic Science and Clinical Implications, J. Craniofac. Surg, vol.2012, issue.1, pp.323-327

T. T. Roberts and A. J. Rosenbaum, Bone Grafts, Bone Substitutes and Orthobiologics: The Bridge between Basic Science and Clinical Advancements in Fracture Healing, Organogenesis, vol.2012, issue.4, pp.114-124

F. D. Beaman, L. W. Bancroft, J. J. Peterson, and M. J. Kransdorf, Bone Graft Materials and Synthetic Substitutes, Radiol. Clin. North Am, vol.44, issue.3, pp.451-461, 2006.

, Autograft and Synthetic Bone Fusion Material for Patients and Service Providers -A Systematic Review, JBI Database Syst. Rev. Implement. Rep, vol.8, issue.8, 2010.

C. Laurencin, Y. Khan, and S. F. El-amin, Bone Graft Substitutes. Expert Rev. Med. Devices, vol.3, issue.1, pp.49-57, 2006.

Y. Liu, J. Lim, and S. Teoh, Review: Development of Clinically Relevant Scaffolds for Vascularised Bone Tissue Engineering, Biotechnol. Adv, issue.5, pp.688-705, 2013.

B. C. Mendelson, S. R. Jacobson, A. M. Lavoipierre, and R. J. Huggins, The Fate of Porous Hydroxyapatite Granules Used in Facial Skeletal Augmentation, Aesthetic Plast. Surg, vol.34, issue.4, pp.455-461, 2010.

R. Z. Legeros, Properties of Osteoconductive Biomaterials: Calcium Phosphates, Clin. Orthop, issue.395, pp.81-98, 2002.

V. V. Välimäki and H. T. Aro, Molecular Basis for Action of Bioactive Glasses as Bone Graft Substitute, Scand. J. Surg. SJS Off. Organ Finn. Surg. Soc. Scand. Surg. Soc, vol.95, issue.2, pp.95-102, 2006.

N. A. Van-gestel, J. Geurts, D. J. Hulsen, B. Van-rietbergen, S. Hofmann et al., Clinical Applications of S53P4 Bioactive Glass in Bone Healing and Osteomyelitic Treatment: A Literature Review, BioMed Res. Int, 2015.

W. Wang and K. W. Yeung, Bone Grafts and Biomaterials Substitutes for Bone Defect Repair: A Review. Bioact. Mater, vol.2017, issue.4, pp.224-247

A. R. Amini, C. T. Laurencin, and S. P. Nukavarapu, Bone Tissue Engineering: Recent Advances and Challenges, Crit. Rev. Biomed. Eng, vol.2012, issue.5, pp.363-408

S. Samavedi, A. R. Whittington, and A. S. Goldstein, Calcium Phosphate Ceramics in Bone Tissue Engineering: A Review of Properties and Their Influence on Cell Behavior, Acta Biomater, vol.2013, issue.9, pp.8037-8045

H. Yoshikawa and A. Myoui, Bone Tissue Engineering with Porous Hydroxyapatite Ceramics, J. Artif. Organs Off. J. Jpn. Soc. Artif. Organs, vol.8, issue.3, pp.131-136, 2005.

S. B. Sulaiman, T. K. Keong, C. H. Cheng, A. B. Saim, and R. B. Idrus, Tricalcium Phosphate/Hydroxyapatite (TCP-HA) Bone Scaffold as Potential Candidate for the Formation of Tissue Engineered Bone, Indian J. Med. Res, vol.137, issue.6, pp.1093-1101, 2013.

R. Trombetta, J. A. Inzana, E. M. Schwarz, S. L. Kates, and H. A. Awad, 3D Printing of Calcium Phosphate Ceramics for Bone Tissue Engineering and Drug Delivery, Ann. Biomed. Eng, vol.2017, issue.1, pp.23-44

S. Deville, E. Saiz, and A. P. Tomsia, Freeze Casting of Hydroxyapatite Scaffolds for Bone Tissue Engineering, Biomaterials, vol.27, issue.32, pp.5480-5489, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01785721

C. Vitale-brovarone, S. Di-nunzio, O. Bretcanu, and E. Verné, Macroporous Glass-Ceramic Materials with Bioactive Properties, J. Mater. Sci. Mater. Med, vol.15, issue.3, pp.209-217, 2004.

J. R. Jones, L. M. Ehrenfried, and L. L. Hench, Optimising Bioactive Glass Scaffolds for Bone Tissue Engineering, Biomaterials, vol.27, issue.7, pp.964-973, 2006.

X. Liu, M. N. Rahaman, and Q. Fu, Oriented Bioactive Glass (13-93) Scaffolds with Controllable Pore Size by Unidirectional Freezing of Camphene-Based Suspensions: Microstructure and Mechanical Response, Acta Biomater, vol.7, issue.1, pp.406-416, 2011.

Q. Fu, M. N. Rahaman, B. S. Bal, K. Kuroki, and R. F. Brown, In Vivo Evaluation, pp.13-93

, Bioactive Glass Scaffolds with Trabecular and Oriented Microstructures in a Subcutaneous Rat Implantation Model, J. Biomed. Mater. Res. A, vol.2010, issue.1, pp.235-244

L. Shor, S. Güçeri, R. Chang, J. Gordon, Q. Kang et al., Precision Extruding Deposition (PED) Fabrication of Polycaprolactone (PCL) Scaffolds for Bone Tissue Engineering, Biofabrication, vol.1, issue.1, p.15003, 2009.

S. H. Ahn, H. J. Lee, and G. H. Kim, Polycaprolactone Scaffolds Fabricated with an Advanced Electrohydrodynamic Direct-Printing Method for Bone Tissue Regeneration, Biomacromolecules, vol.12, issue.12, pp.4256-4263, 2011.

A. Gregor, E. Filová, M. Novák, J. Kronek, H. Chlup et al., Designing of PLA Scaffolds for Bone Tissue Replacement Fabricated by Ordinary Commercial 3D Printer, J. Biol. Eng, vol.11, 2017.

A. Grémare, V. Guduric, R. Bareille, V. Heroguez, S. Latour et al., Characterization of Printed PLA Scaffolds for Bone Tissue Engineering, J. Biomed. Mater. Res. A, vol.106, issue.4, pp.887-894, 2018.

I. Ortega-oller, M. Padial-molina, P. Galindo-moreno, F. O'valle, A. B. Jódar-reyes et al., Bone Regeneration from PLGA Micro-Nanoparticles, BioMed Res. Int, p.415289, 2015.

X. Sun, C. Xu, G. Wu, Q. Ye, C. Wang et al., Applications and Future Prospects for Periodontal Tissue Regeneration, Polymers, vol.2017, issue.6, p.189

C. Lavrador, R. Mascarenhas, P. Coelho, C. Brites, A. Pereira et al., Elastomeric Enriched Biodegradable Polyurethane Sponges for Critical Bone Defects: A Successful Case Study Reducing Donor Site Morbidity, J. Mater. Sci. Mater. Med, vol.27, issue.3, p.61, 2016.

J. Yu, H. Xia, A. Teramoto, and Q. Ni, Fabrication and Characterization of Shape Memory Polyurethane Porous Scaffold for Bone Tissue Engineering, J. Biomed. Mater. Res. A, vol.2017, issue.4, pp.1132-1137

M. Marzec, J. Kuci?ska-lipka, I. Kalaszczy?ska, and H. Janik, Development of Polyurethanes for Bone Repair, Mater. Sci. Eng. C Mater. Biol. Appl, vol.80, pp.736-747, 2017.

M. F. Groppo, P. H. Caria, A. R. Freire, S. R. Figueroba, W. A. Ribeiro-neto et al., The Effect of a Hydroxyapatite Impregnated PCL Membrane in Rat Subcritical Calvarial Bone Defects, Arch. Oral Biol, vol.82, pp.209-215, 2017.

A. Totaro, A. Salerno, G. Imparato, C. Domingo, F. Urciuolo et al., Microscaffolds for in Vitro Modular Bone Tissue Engineering, J. Tissue Eng. Regen. Med, vol.2017, issue.6, pp.1865-1875

H. Eftekhari, A. Jahandideh, A. Asghari, A. Akbarzadeh, and S. Hesaraki, Assessment of Polycaprolacton (PCL) Nanocomposite Scaffold Compared with Hydroxyapatite (HA) on Healing of Segmental Femur Bone Defect in Rabbits, Artif. Cells Nanomedicine Biotechnol, vol.45, issue.5, pp.961-968, 2017.

D. Santos, D. M. Silva, P. S. Gomes, M. H. Fernandes, and J. Santos, Sencadas, V. Multifunctional PLLA-Ceramic Fiber Membranes for Bone Regeneration Applications

, J. Colloid Interface Sci, vol.504, pp.101-110, 2017.

H. Qi, Z. Ye, H. Ren, N. Chen, Q. Zeng et al., Bioactivity Assessment of PLLA/PCL/HAP Electrospun Nanofibrous Scaffolds for Bone Tissue Engineering, Life Sci, vol.148, pp.139-144, 2016.

D. B. Bhuiyan, J. C. Middleton, R. Tannenbaum, and T. M. Wick, Bone Regeneration from Human Mesenchymal Stem Cells on Porous Hydroxyapatite-PLGA-Collagen Bioactive Polymer Scaffolds, Biomed. Mater. Eng, vol.2017, issue.6, pp.671-685

C. I. Van-houdt, D. J. Ulrich, J. A. Jansen, and J. J. Van-den-beucken, The Performance of CPC/PLGA and Bio-Oss® for Bone Regeneration in Healthy and Osteoporotic Rats, J. Biomed. Mater. Res. B Appl. Biomater, vol.106, issue.1, pp.131-142, 2018.

H. Liao, R. P. Félix-lanao, J. J. Van-den-beucken, N. Zhou, S. K. Both et al., Size Matters: Effects of PLGA-Microsphere Size in Injectable CPC/PLGA on Bone Formation, J. Tissue Eng. Regen. Med, vol.10, issue.8, pp.669-678, 2016.

B. Dhandayuthapani, Y. Yoshida, T. Maekawa, and D. S. Kumar, Polymeric Scaffolds in Tissue Engineering Application: A Review, 2019.

L. Polo-corrales, M. Latorre-esteves, and J. E. Ramirez-vick, Scaffold Design for Bone Regeneration, J. Nanosci. Nanotechnol, vol.14, issue.1, pp.15-56, 2014.

, Growth Factors and Biomaterials | IntechOpen, 2019.

D. Mondal, S. Lin, A. S. Rizkalla, and K. Mequanint, Porous and Biodegradable Polycaprolactone-Borophosphosilicate Hybrid Scaffolds for Osteoblast Infiltration and Stem Cell Differentiation, J. Mech. Behav. Biomed. Mater, vol.92, pp.162-171, 2019.

Q. Wu, B. Yang, K. Hu, C. Cao, Y. Man et al., Deriving Osteogenic Cells from Induced Pluripotent Stem Cells for Bone Tissue Engineering, Tissue Eng. Part B Rev, vol.2017, issue.1, pp.1-8

S. P. Medvedev, A. I. Shevchenko, and S. M. Zakian, Induced Pluripotent Stem Cells: Problems and Advantages When Applying Them in Regenerative Medicine, Acta Naturae, vol.2, issue.2, pp.18-28, 2010.

G. Asatrian, D. Pham, W. R. Hardy, A. W. James, and B. Peault, Stem Cell Technology for Bone Regeneration: Current Status and Potential Applications, Stem Cells Cloning Adv. Appl, vol.8, pp.39-48, 2015.

C. Romagnoli and M. L. Brandi, Adipose Mesenchymal Stem Cells in the Field of, Bone Tissue Engineering. World J. Stem Cells, vol.6, issue.2, pp.144-152, 2014.

S. Y. Park, C. S. Ki, Y. H. Park, H. M. Jung, K. M. Woo et al., Electrospun Silk Fibroin Scaffolds with Macropores for Bone Regeneration: An in Vitro and in Vivo Study, Tissue Eng. Part A, vol.16, issue.4, pp.1271-1279, 2010.

R. Fang, E. Zhang, L. Xu, and S. Wei, Electrospun PCL/PLA/HA Based Nanofibers as Scaffold for Osteoblast-like Cells, J. Nanosci. Nanotechnol, vol.10, issue.11, pp.7747-7751, 2010.

L. Terranova, R. Mallet, R. Perrot, and D. Chappard, Polystyrene Scaffolds Based on Microfibers as a Bone Substitute; Development and in Vitro Study, Acta Biomater, vol.29, pp.380-388, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01388749

Z. Guo, J. Xu, S. Ding, H. Li, C. Zhou et al., In Vitro Evaluation of Random and Aligned Polycaprolactone/Gelatin Fibers via Electrospinning for Bone Tissue Engineering, J. Biomater. Sci. Polym. Ed, vol.26, issue.15, pp.989-1001, 2015.

Y. Yu, S. Hua, M. Yang, Z. Fu, S. Teng et al., Fabrication and Characterization of Electrospinning/3D Printing Bone Tissue Engineering Scaffold, vol.6, pp.110557-110565, 2016.

T. Baudequin, L. Gaut, M. Mueller, A. Huepkes, B. Glasmacher et al., The Osteogenic and Tenogenic Differentiation Potential of C3H10T1/2 (Mesenchymal Stem Cell Model) Cultured on PCL/PLA Electrospun Scaffolds in the Absence of Specific Differentiation Medium, Materials, vol.2017, issue.12, p.10

S. Y. Yang, T. H. Hwang, L. Che, J. S. Oh, Y. Ha et al., Membrane-Reinforced Three-Dimensional Electrospun Silk Fibroin Scaffolds for Bone Tissue Engineering

, Biomed. Mater, vol.10, issue.3, p.35011, 2015.

M. P. Prabhakaran, J. Venugopal, and S. Ramakrishna, Electrospun Nanostructured Scaffolds for Bone Tissue Engineering, Acta Biomater, vol.5, issue.8, pp.2884-2893, 2009.

Y. Zhang, J. R. Venugopal, A. El-turki, S. Ramakrishna, B. Su et al., Electrospun Biomimetic Nanocomposite Nanofibers of Hydroxyapatite/Chitosan for Bone Tissue Engineering, Biomaterials, vol.29, issue.32, pp.4314-4322, 2008.

V. Kartsogiannis and K. W. Ng, Cell Lines and Primary Cell Cultures in the Study of, Bone Cell Biology. Mol. Cell. Endocrinol, vol.228, issue.1, pp.79-102, 2004.

G. Kaur and J. M. Dufour, Cell Lines. Spermatogenesis, vol.2012, issue.1, pp.1-5

,. De-witte, L. E. Fratila-apachitei, A. A. Zadpoor, and N. A. Peppas, Bone Tissue Engineering via Growth Factor Delivery: From Scaffolds to Complex Matrices, Regen. Biomater, vol.5, issue.4, pp.197-211, 2018.

L. F. Bonewald and G. R. Mundy, Role of Transforming Growth Factor-Beta in Bone Remodeling, Clin. Orthop, issue.250, pp.261-276, 1990.

D. Chen, M. Zhao, and G. R. Mundy, Bone Morphogenetic Proteins. Growth Factors Chur Switz, vol.22, issue.4, pp.233-241, 2004.

N. Su, M. Jin, and L. Chen, Role of FGF/FGFR Signaling in Skeletal Development and Homeostasis: Learning from Mouse Models, Bone Res, vol.2, 2014.

K. Hu and B. R. Olsen, The Roles of Vascular Endothelial Growth Factor in Bone Repair and Regeneration, vol.91, pp.30-38, 2016.

T. L. Mccarthy, M. Centrella, and E. Canalis, Insulin-like Growth Factor (IGF) and Bone, Connect. Tissue Res, vol.20, issue.1-4, pp.277-282, 1989.

M. Wu, G. Chen, Y. Li, B. Tgf-?-and, . Signaling-in et al., Skeletal Development, and Bone Formation, Homeostasis and Disease, Bone Res, 2016.

I. Itonaga, A. Sabokbar, S. G. Sun, O. Kudo, L. Danks et al., Transforming Growth Factor-Beta Induces Osteoclast Formation in the Absence of RANKL, Bone, vol.34, issue.1, pp.57-64, 2004.

K. A. Blackwood, N. Bock, T. R. Dargaville, and M. Woodruff, Scaffolds for Growth Factor Delivery as Applied to Bone Tissue Engineering, 2019.

A. Sahni, A. A. Khorana, R. B. Baggs, H. Peng, and C. W. Francis, FGF-2 Binding to Fibrin(Ogen) Is Required for Augmented Angiogenesis, Blood, vol.107, issue.1, pp.126-131, 2006.

B. Behr, P. Leucht, M. T. Longaker, and N. Quarto, Fgf-9 Is Required for Angiogenesis and Osteogenesis in Long Bone Repair, Proc. Natl. Acad. Sci. 2010, pp.11853-11858

J. Moreaux, D. Hose, A. Kassambara, T. Rème, P. Moine et al., Osteoclast-Gene Expression Profiling Reveals Osteoclast-Derived CCR2 Chemokines Promoting Myeloma Cell Migration, Blood, vol.117, issue.4, pp.1280-1290, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00906774

J. Klein-nulend, R. G. Bacabac, and A. D. Bakker, Mechanical Loading and How It Affects Bone Cells: The Role of the Osteocyte Cytoskeleton in Maintaining Our Skeleton, Eur. Cell. Mater, vol.24, pp.278-291, 2012.

M. M. Saunders and J. S. Lee, The Influence of Mechanical Environment on Bone Healing and Distraction Osteogenesis, Atlas Oral Maxillofac. Surg. Clin. North Am, vol.16, issue.2, pp.147-158, 2008.

R. L. Duncan and C. H. Turner, Mechanotransduction and the Functional Response of Bone to Mechanical Strain, Calcif. Tissue Int, vol.57, issue.5, pp.344-358, 1995.

T. Baudequin, C. Legallais, and F. Bedoui, In Vitro Bone Cell Response to Tensile Mechanical Solicitations: Is There an Optimal Protocol?, Biotechnol. J, vol.2019, issue.1, p.1800358
URL : https://hal.archives-ouvertes.fr/hal-02061207

Z. Ma, M. Kotaki, R. Inai, and S. Ramakrishna, Potential of Nanofiber Matrix as Tissue-Engineering Scaffolds, Tissue Eng, vol.11, issue.1-2, pp.101-109, 2005.

X. Wang, B. Ding, and B. Li, Biomimetic Electrospun Nanofibrous Structures for, Tissue Engineering. Mater. Today, vol.16, issue.6, pp.229-241, 2013.

M. Norouzi, S. M. Boroujeni, N. Omidvarkordshouli, and M. Soleimani, Advances in Skin Regeneration: Application of Electrospun Scaffolds, Adv. Healthc. Mater, vol.2015, issue.8, pp.1114-1133

C. B. Horner, K. Low, and J. Nam, 10 -Electrospun Scaffolds for Cartilage Regeneration, Nanocomposites for Musculoskeletal Tissue Regeneration

H. Liu and . Ed, , pp.10-18, 2016.

D. A. Brennan, A. A. Conte, G. Kanski, S. Turkula, X. Hu et al., Mechanical Considerations for Electrospun Nanofibers in Tendon and Ligament Repair, Adv. Healthc. Mater, vol.7, issue.12, 2018.

Y. Mu, F. Wu, Y. Lu, L. Wei, and W. Yuan, Progress of Electrospun Fibers as Nerve Conduits for Neural Tissue Repair, Nanomed, vol.2014, issue.12, pp.1869-1883

K. Ramachandran and P. Gouma, Electrospinning for Bone Tissue Engineering, Recent Pat. Nanotechnol, vol.2, issue.1, pp.1-7, 2008.

N. Bhardwaj and S. C. Kundu, Electrospinning: A Fascinating Fiber Fabrication Technique, Biotechnol. Adv, vol.28, issue.3, pp.325-347, 2010.

A. Haider, S. Haider, and I. Kang, A Comprehensive Review Summarizing the Effect of Electrospinning Parameters and Potential Applications of, Nanofibers in Biomedical and Biotechnology. Arab. J. Chem, issue.8, pp.1165-1188, 2018.

Y. V. Shih, C. Chen, S. Tsai, Y. J. Wang, and O. K. Lee, Growth of Mesenchymal Stem Cells on Electrospun Type I Collagen Nanofibers, Stem Cells Dayt. Ohio, vol.24, issue.11, pp.2391-2397, 2006.

A. K. Ekaputra, Y. Zhou, S. M. Cool, and D. W. Hutmacher, Composite Electrospun Scaffolds for Engineering Tubular Bone Grafts, Tissue Eng. Part A, vol.15, issue.12, pp.3779-3788, 2009.

C. M. Haslauer, A. K. Moghe, J. A. Osborne, B. S. Gupta, and E. G. Loboa, Collagen-PCL Sheath-Core Bicomponent Electrospun Scaffolds Increase Osteogenic Differentiation and Calcium Accretion of Human Adipose-Derived Stem Cells, J. Biomater. Sci. Polym. Ed, vol.22, issue.13, pp.1695-1712, 2011.

Y. Zhang, H. Ouyang, C. T. Lim, S. Ramakrishna, and Z. Huang, Electrospinning of Gelatin Fibers and Gelatin/PCL Composite Fibrous Scaffolds, J. Biomed. Mater. Res. B Appl. Biomater, vol.72, issue.1, pp.156-165, 2005.

M. Wang, H. Jin, D. L. Kaplan, and G. C. Rutledge, Mechanical Properties of Electrospun Silk Fibers, Macromolecules, vol.37, issue.18, pp.6856-6864, 2004.

C. Li, C. Vepari, H. Jin, H. J. Kim, and D. L. Kaplan, Electrospun Silk-BMP-2 Scaffolds for Bone Tissue Engineering, Biomaterials, vol.27, issue.16, pp.3115-3124, 2006.

K. T. Shalumon, G. Lai, C. Chen, and J. Chen, Modulation of Bone-Specific Tissue Regeneration by Incorporating Bone Morphogenetic Protein and Controlling the Shell Thickness of Silk Fibroin/Chitosan/Nanohydroxyapatite Core-Shell Nanofibrous Membranes, ACS Appl. Mater. Interfaces, vol.7, issue.38, pp.21170-21181, 2015.

H. Yoshimoto, Y. M. Shin, H. Terai, and J. P. Vacanti, A Biodegradable Nanofiber Scaffold by Electrospinning and Its Potential for Bone Tissue Engineering, Biomaterials, vol.24, issue.12, pp.2077-2082, 2003.

M. T. Rodrigues, A. Martins, I. R. Dias, C. A. Viegas, N. M. Neves et al., Synergistic Effect of Scaffold Composition and Dynamic Culturing Environment in Multilayered Systems for Bone Tissue Engineering, J. Tissue Eng. Regen. Med, vol.2012, issue.10

A. Canha-gouveia, A. Costa-pinto, A. M. Martins, N. A. Silva, S. Faria et al., Hierarchical Scaffolds Enhance Osteogenic Differentiation of Human Wharton's Jelly Derived Stem Cells, Biofabrication, vol.7, issue.3, 2015.

E. K. Ko, S. I. Jeong, N. G. Rim, Y. M. Lee, H. Shin et al., In Vitro Osteogenic Differentiation of Human Mesenchymal Stem Cells and in Vivo Bone Formation in Composite Nanofiber Meshes, Tissue Eng. Part A, vol.14, issue.12, pp.2105-2119, 2008.

S. J. Kim, D. H. Jang, W. H. Park, and B. Min, Fabrication and Characterization of 3-Dimensional PLGA Nanofiber/Microfiber Composite Scaffolds, Polymer, vol.2010, issue.6, pp.1320-1327

, Three Dimensional Honeycomb Patterned Fibrinogen Based Nanofibers Induce Substantial Osteogenic Response of, Mesenchymal Stem Cells | Scientific Reports, 2019.

Z. Chen, Y. Song, J. Zhang, W. Liu, J. Cui et al., Laminated Electrospun NHA/PHB-Composite Scaffolds Mimicking Bone Extracellular Matrix for Bone Tissue Engineering, Mater. Sci. Eng. C, vol.72, pp.341-351, 2017.

S. Nedjari, F. Awaja, and G. Altankov, Three Dimensional Honeycomb Patterned Fibrinogen Based Nanofibers Induce Substantial Osteogenic Response of Mesenchymal Stem Cells, Sci. Rep, vol.2017, issue.1, p.15947

Y. Cai, G. Zhang, L. Wang, Y. Jiang, H. Ouyang et al., Novel Biodegradable Three-Dimensional Macroporous Scaffold Using Aligned Electrospun Nanofibrous Yarns for Bone Tissue Engineering, J. Biomed. Mater. Res. A, vol.2012, issue.5, pp.1187-1194

C. Vaquette and J. J. Cooper-white, Increasing Electrospun Scaffold Pore Size with Tailored Collectors for Improved Cell Penetration, Acta Biomater, vol.7, issue.6, pp.2544-2557, 2011.

J. Apostolakos, T. J. Durant, C. R. Dwyer, R. P. Russell, J. H. Weinreb et al., The Enthesis: A Review of the Tendon-to-Bone Insertion, Muscles Ligaments Tendons J, vol.2014, issue.3, pp.333-342

A. J. Boys, M. C. Mccorry, S. Rodeo, L. J. Bonassar, and L. A. Estroff, Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces, MRS Commun, vol.2017, issue.3, pp.289-308

M. Benjamin, T. Kumai, S. Milz, B. M. Boszczyk, A. A. Boszczyk et al., The Skeletal Attachment of Tendons-Tendon 'Entheses, Comp. Biochem. Physiol. A. Mol. Integr. Physiol, vol.133, issue.4, pp.138-139, 2002.

S. H. Schlecht, Understanding Entheses: Bridging the Gap between Clinical and Anthropological Perspectives, Anat. Rec. Hoboken NJ, vol.295, issue.8, pp.1239-1251, 2007.

X. Zhang, W. N. Levine, H. H. Lu, M. E. Gomes, R. L. Reis et al., Chapter 15 -Scaffold Design for Integrative Tendon-Bone Repair, Tendon Regeneration, pp.413-437, 2015.

J. Z. Paxton, K. M. Baar, and L. Grover, Current Progress in Enthesis Repair: Strategies for Interfacial Tissue Engineering, Orthop. Muscular Syst. Curr. Res, vol.2012, issue.1

P. Sharma and N. Maffulli, Tendon Injury and Tendinopathy: Healing and Repair, J. Bone Joint Surg. Am, vol.87, issue.1, pp.187-202, 2005.

S. Font-tellado, E. R. Balmayor, and M. Van-griensven, Strategies to Engineer Tendon/Ligament-to-Bone Interface: Biomaterials, Cells and Growth Factors, Adv. Drug Deliv. Rev, vol.94, pp.126-140, 2015.

B. S. Kim, E. J. Kim, J. S. Choi, J. H. Jeong, C. H. Jo et al., Human Collagen-Based Multilayer Scaffolds for Tendon-to-Bone Interface Tissue Engineering, J. Biomed. Mater. Res. A, vol.102, issue.11, pp.4044-4054, 2014.

C. Erisken, D. M. Kalyon, and H. Wang, Functionally Graded Electrospun Polycaprolactone and Beta-Tricalcium Phosphate Nanocomposites for Tissue Engineering Applications, Biomaterials, vol.29, issue.30, pp.4065-4073, 2008.

W. Liu, J. Lipner, J. Xie, C. N. Manning, S. Thomopoulos et al., Nanofiber Scaffolds with Gradients in Mineral Content for Spatial Control of Osteogenesis, ACS Appl

, Mater. Interfaces, vol.6, issue.4, pp.2842-2849, 2014.

J. P. Spalazzi, E. Dagher, S. B. Doty, X. E. Guo, S. A. Rodeo et al., In Vivo Evaluation of a Multiphased Scaffold Designed for Orthopaedic Interface Tissue Engineering and Soft Tissue-to-Bone Integration, J. Biomed. Mater. Res. A, vol.86, issue.1, pp.1-12, 2008.

S. Patel, J. Caldwell, S. B. Doty, W. N. Levine, S. Rodeo et al., Integrating Soft and Hard Tissues via Interface Tissue Engineering, J. Orthop. Res. Off. Publ. Orthop. Res. Soc, vol.36, issue.4, pp.1069-1077, 2018.

I. Calejo, R. Costa-almeida, and M. E. Gomes, Cellular Complexity at the Interface: Challenges in Enthesis Tissue Engineering, 1920.

Z. Yin, X. Chen, J. L. Chen, W. L. Shen, T. M. Hieu-nguyen et al., The Regulation of Tendon Stem Cell Differentiation by the Alignment of Nanofibers, Biomaterials, vol.2010, issue.8, pp.2163-2175

V. Kishore, W. Bullock, X. Sun, W. S. Van-dyke, O. Akkus et al., HUMAN MSCs INDUCED BY THE TOPOGRAPHY OF ELECTROCHEMICALLY ALIGNED COLLAGEN THREADS. Biomaterials, vol.2012, issue.7, pp.2137-2144

M. Younesi, A. Islam, V. Kishore, J. M. Anderson, and O. Akkus, Tenogenic Induction of Human MSCs by Anisotropically Aligned Collagen Biotextiles, Adv. Funct. Mater, vol.24, issue.36, pp.5762-5770, 2014.

T. Qin, Y. Sun, A. R. Thoreson, S. P. Steinmann, P. C. Amadio et al., Effect of Mechanical Stimulation on Bone Marrow Stromal Cell-Seeded Tendon Slice Constructs: A Potential Engineered Tendon Patch for Rotator Cuff Repair, Biomaterials, vol.51, pp.43-50, 2015.

S. D. Subramony, B. R. Dargis, M. Castillo, E. U. Azeloglu, M. S. Tracey et al., The Guidance of Stem Cell Differentiation by Substrate Alignment and Mechanical Stimulation, Biomaterials, vol.2013, issue.8, pp.1942-1953

R. D. Cardwell, J. A. Kluge, P. S. Thayer, S. A. Guelcher, L. A. Dahlgren et al., Static and Cyclic Mechanical Loading of Mesenchymal Stem Cells on Elastomeric, Electrospun Polyurethane Meshes, J. Biomech. Eng, issue.7, p.137, 2015.

R. F. Robledo, L. Rajan, X. Li, and T. Lufkin, The Dlx5 and Dlx6 Homeobox Genes Are Essential for Craniofacial, Axial, and Appendicular Skeletal Development, Genes Dev, vol.16, issue.9, pp.1089-1101, 2002.

N. Samee, V. Geoffroy, C. Marty, C. Schiltz, M. Vieux-rochas et al., Dlx5, a Positive Regulator of Osteoblastogenesis, Is Essential for Osteoblast-Osteoclast Coupling, Am. J. Pathol, vol.173, issue.3, pp.773-780, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02135935

T. Komori, Regulation of Osteoblast Differentiation by Runx2, Adv. Exp. Med. Biol, vol.658, pp.43-49, 2010.

M. E. Mcgee-lawrence, L. R. Carpio, E. W. Bradley, A. Dudakovic, J. B. Lian et al., Runx2 Is Required for Early Stages of Endochondral Bone Formation but Delays Final Stages of Bone Repair in Axin2-Deficient Mice, vol.66, pp.277-286, 2014.

A. Neve, A. Corrado, F. P. Cantatore, and . Osteocalcin, Skeletal and Extra-Skeletal Effects, J. Cell. Physiol, vol.228, issue.6, pp.1149-1153, 2013.

M. L. Zoch, T. L. Clemens, and R. C. Riddle, New Insights into the Biology of Osteocalcin. Bone, vol.82, pp.42-49, 2016.

R. Schweitzer, J. H. Chyung, L. C. Murtaugh, A. E. Brent, V. Rosen et al., Analysis of the Tendon Cell Fate Using Scleraxis, a Specific Marker for Tendons and Ligaments, Dev. Camb. Engl, vol.128, issue.19, pp.3855-3866, 2001.

C. Shukunami, A. Takimoto, M. Oro, and Y. Hiraki, Scleraxis Positively Regulates the Expression of Tenomodulin, a Differentiation Marker of Tenocytes, Dev. Biol, vol.298, issue.1, pp.234-247, 2006.

D. Docheva, E. B. Hunziker, R. Fässler, and O. Brandau, Tenomodulin Is Necessary for Tenocyte Proliferation and Tendon Maturation, Mol. Cell. Biol, vol.25, issue.2, pp.699-705, 2005.

S. Dex, P. Alberton, L. Willkomm, T. Söllradl, S. Bago et al., Tenomodulin Is Required for Tendon Endurance Running and Collagen I Fibril Adaptation to Mechanical Load, vol.20, pp.240-254, 2017.

E. Havis, M. Bonnin, I. Olivera-martinez, N. Nazaret, M. Ruggiu et al., Transcriptomic Analysis of Mouse Limb Tendon Cells during Development, Dev. Camb. Engl, issue.19, pp.3683-3696, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01538325

C. A. Bashur, R. D. Shaffer, L. A. Dahlgren, S. A. Guelcher, and A. S. Goldstein, Effect of Fiber Diameter and Alignment of Electrospun Polyurethane Meshes on Mesenchymal Progenitor Cells, Tissue Eng. Part A, vol.15, issue.9, pp.2435-2445, 2009.

K. L. Moffat, A. S. Kwei, .. Spalazzi, J. P. Doty, S. B. Levine et al., Novel Nanofiber-Based Scaffold for Rotator Cuff Repair and Augmentation, Tissue Eng. Part A, vol.15, issue.1, pp.115-126, 2009.

M. Beldjilali-labro, A. Garcia-garcia, F. Farhat, F. Bedoui, J. Grosset et al., Biomaterials in Tendon and Skeletal Muscle Tissue Engineering: Current Trends and Challenges. Mater. Basel Switz, issue.7, p.11, 2018.

,

S. B. Orr, A. Chainani, K. J. Hippensteel, A. Kishan, C. Gilchrist et al., Aligned Multilayered Electrospun Scaffolds for Rotator Cuff Tendon Tissue Engineering, Acta Biomater, vol.24, pp.117-126, 2015.

A. D. Schoenenberger, J. Foolen, P. Moor, U. Silvan, and J. G. Snedeker, Substrate Fiber Alignment Mediates Tendon Cell Response to Inflammatory Signaling, Acta Biomater, vol.71, pp.306-317, 2018.

L. A. Bosworth, N. Alam, J. K. Wong, and S. Downes, Investigation of 2D and 3D Electrospun Scaffolds Intended for Tendon Repair, J. Mater. Sci. Mater. Med, vol.24, issue.6, pp.1605-1614, 2013.

S. D. Subramony, A. Su, K. Yeager, and H. H. Lu, Combined Effects of Chemical Priming and Mechanical Stimulation on Mesenchymal Stem Cell Differentiation on Nanofiber Scaffolds, J. Biomech, vol.47, issue.9, pp.2189-2196, 2014.

Y. Xu, S. Dong, Q. Zhou, X. Mo, L. Song et al., The Effect of Mechanical Stimulation on the Maturation of TDSCs-Poly(L-Lactide-Co-e-Caprolactone)/Collagen Scaffold Constructs for Tendon Tissue Engineering, Biomaterials, vol.35, issue.9, pp.2760-2772, 2014.

B. Engebretson, Z. R. Mussett, and V. I. Sikavitsas, The Effects of Varying Frequency and Duration of Mechanical Stimulation on a Tissue-Engineered Tendon Construct, Connect. Tissue Res, vol.59, issue.2, pp.167-177, 2018.