
Modélisation, simulation de différents types d’architectures de

noeuds de calcul basés sur l’architecture ARM et optimisés pour

le calcul haute-performance

Design Space Exploration of 64-bit ARM Compute Nodes for

Highly Energy Efficient Exascale

Joël WANZA WELOLI

LEAT/Bull

A dissertation submitted to the Ecole

Doctorale Sciences et Technologies de

L’Information et de la Communication

(EDSTIC) of the Université Côte d’Azur for

the degree of Doctor of Electronic

Directed by: Cécile Belleudy and

 Sébastien Bilavarn

Thesis defense: June 24th 2019

Members of the Thesis jury:

• Mr. Bertrand Granado, Professor,

Sorbonne Université, Examiner

• Mr. Frédéric Petrot, Professor, Université

Grenoble Alpes, Examiner

• Mr. Dominique Lavenier, CNRS

Research Director, IRISA

• Mr. Elyes Zekri , Dr. Eng., Bull/Atos

• Mr. François Verdier, Professor,

Université Côte d'Azur

• Mr. Gabor Dozsa, Dr. Eng., Arm

• Mrs. Cécile Belleudy, Associate

Professor, Université Côte d'Azur, Thesis

director

• Mr. Sébastien Bilavarn, Associate

Professor, Université Côte d'Azur, Thesis

co-supervisor

Ph.D. Thesis

Design Space Exploration of 64-bit
ARM Compute Nodes for Highly

Energy Efficient Exascale

Joël Wanza Weloli
Department of Electronic
University of Côte d’Azur

This dissertation is submitted for the degree of
Doctor of Electronic and Computer Architecture

Laboratoire d’Electronique,
Antennes et Télécommunications 2018-2019

I would like to dedicate this thesis to my loving parents, especially to my mother
Vicky, the first teacher I ever had.

Declaration

I hereby declare that except where specific reference is made to the work of others,
the contents of this dissertation are original and have not been submitted in whole
or in part for consideration for any other degree or qualification in this, or any other
University. This dissertation is the result of my own work and includes nothing which is
the outcome of work done in collaboration, except where specifically indicated in the text.
This dissertation contains fewer than 65,000 words including appendices, bibliography,
footnotes, tables and equations and has less than 150 figures.

Joël Wanza Weloli
2018-2019

Acknowledgements

Foremost, I would like to express my acknowledgments to my Ph.D advisors Cecile
Belleudy and Sébastien Bilavarn for their support and help during my Ph.D study and
research. Thank you Cecile for being the first one to believe in my Ph.D project. My
sincere gratitude to Sébastien for his patience and helpful guidance in all the time for
research and writing of this thesis.

My sincere thanks also go to Sylvie Lesmanne who hired me at Bull for my Ph.D
student position in the hardware architecture team. Also, to Said Derradji for being
a surefire support within Bull and a continuous mentoring on diverse exciting European
projects. I’m very grateful to the different organizations who funded the work of this
thesis: Bull, ANRT, European commission via Mont-Blanc 2 and 3 projects, but also
the LEAT laboratory for hosting this collaboration.

Last but not the least, I would like to thank my family, friends and close colleagues
who supported me throughout during these years. Thank you all for always being there.
You all have been a real human inspiration to me. A special dedication to Benoît Wel-
terlen (if you thought I was about to forget you :-) Thank you for having given to me
my chance as an intern at Bull.

And the very finally, Thanks a lot to all the jury members.

Abstract

English version:
Title: Design Space Exploration of 64-bit ARM Compute Nodes for Highly Energy Effi-
cient Exascale.
Abstract: This work is part of a family of European projects called Mont-Blanc whose
objective is to develop the next generation of Exascale systems. It addresses specifically
the issue of energy efficiency, at micro-architectural level first by considering the use of
64-bit Armv8-A based compute nodes and an associated relevant SoC topology, and ex-
amine also the runtime aspects with notably the study of power management strategies
that can be better suited to the constraints of HPC highly parallel processing. A design
space exploration methodology capable of supporting the simulation of large manycore
computing clusters is developped and lead to propose, design and evaluate multi-SoC
and their associated SoC Coherent Interconnect models (SCI). This approach is then
used to define a pre-exascale achitecture allowing to globally reduce the complexity and
cost of chip developments without sacrifying performances. The resulting partitioning
scheme introduces interesting perspectives at technology level such as the integration of
more compute nodes directly on an interposer based System-in-Package (SiP), possibly
based on 3D Through Silicon Vias (TSVs) using High Memory Bandwidth (HBM). En-
ergy efficiency is addressed more directly in second instance by studying current power
management policies and proposing two strategies to help reducing power while pre-
serving performances. The first one exploits finer application execution knowledge to
adjust the frequency of extensive parallel threads and better balance their execution
time. The second strategy reduces core frequencies at synchronisation points of jobs to
avoid running the cores at full speed while it is not necessary. Experiment results with
these strategies, both in simulation and real hardware, show the possibilities offered par
this approach to address the strong requirements of Exascale platforms.

Version française:
Titre: Modélisation, simulation de différents types d’architectures de nœuds de calcul
basés sur l’architecture ARM et optimisés pour le calcul haute-performance.

v

Résumé: Ce travail s’inscrit dans le cadre de la famille de projets Européens Mont-
Blanc dont l’objectif est de développer la prochaine génération de systèmes Exascale. Il
s’intéresse particulièrement à la question de l’efficacité énergétique, d’abord au niveau
micro-architectural en considérant l’utilisation de nœuds de calcul basés sur l’Armv8-A
64-bit associée à une topologie SoC pertinente, puis en examinant les aspects exécu-
tifs notamment par une étude de stratégies de gestion énergétique (power management)
mieux adaptées à des contraintes de traitement massivement parallèle. Une méthodolo-
gie d’exploration architecturale capable de supporter la simulation de larges clusters de
calcul parallèle est définie et exploitée pour proposer, développer et évaluer des modèles
multi-SoC et de réseaux de communication associés (SoC Coherent Interconnect, SCI).
Cette démarche est ensuite poursuivie pour définir une architecture Exacale permet-
tant de réduire globalement la complexité et les coûts de développement en dégradant
le moins possible les performances. Le partitionnement de la puce permet ainsi des
possibilités intéressantes au niveau technologique telles que l’intégration de nœuds sup-
plémentaires basée sur des technologies System-in-Package (interposer), ou 3D Through
Silicon Vias (TSVs) et High Memory Bandwidth (HBM). En second lieu, les aspects én-
ergétiques sont abordés plus directement par l’étude de politiques de gestion énergétique
existantes et en proposant deux stratégies pour permettre réduire la consommation en
préservant les performance. La première exploite une perception applicative plus fine
pour ajuster la fréquence de nombreuses tâches parallèles et mieux équilibrer leurs temps
d’exécution. La seconde stratégie réduit la fréquence des cœurs aux points de synchro-
nisation des tâches pour limiter les fonctionnements inutiles à pleine puissance. Les
résultats d’expérimentation obtenus avec ces stratégies, à la fois en simulation et sur
plateforme réelle, montrent les possibilités offertes par cette approche pour répondre
aux fortes contraintes des plateformes pre-exascale sur le plan énergétique.

Contents

Contents vi

List of Figures x

List of Tables xiii

List of terms xv

I BACKGROUND 1

1 Introduction 2
1.1 Objectives and Contexts . 3
1.2 Thesis contributions . 3

1.2.1 Main contributions . 3
1.2.2 Published papers . 4

1.3 Thesis outlines . 5

2 State-of-the-Art 6
2.1 HPC background . 6

2.1.1 History . 6
2.1.2 Exascale Challenges . 7
2.1.3 Applications . 12

2.2 HPC Compute node architectures . 15
2.2.1 Introduction . 15
2.2.2 Intel Xeon E series architecture: Skylake (Haswell) 17
2.2.3 Intel Xeon Phi Coprocessor architecture: Knights Landing 20
2.2.4 Emerging compute node architectures: SunWay 22
2.2.5 Emerging compute node architectures: Opteron 24

Contents vii

2.2.6 Arm vs Intel Compute node architecture 26
2.2.7 The first Arm-based HPC Cluster: Tibidabo 27

2.3 Aarch64 architecture and ARMv8 processors 29
2.3.1 ARMv8 or AArch64 ? . 29
2.3.2 ARMv8-A processors : Cortex-A75 30
2.3.3 SVE: Scalable Vector Extension 32

2.4 Research projects . 33
2.4.1 Design space exploration methodologies 33
2.4.2 TSAR Architecture example . 34
2.4.3 Global projects overview . 36
2.4.4 Asian projects . 36
2.4.5 American project : Exascale Computing Project (ECP) 38
2.4.6 European Projects . 39

2.5 Conclusion . 40

II EXPERIMENTATION AND ANALYSIS 42

3 Modeling and exploration methodology 43
3.1 Introduction . 43
3.2 Virtual prototyping and system components 44

3.2.1 Simulation tools . 44
3.2.1.1 Vista . 44
3.2.1.2 SoC Designer . 45
3.2.1.3 GEM5 . 48
3.2.1.4 System Generator Canvas 49
3.2.1.5 Platform Architect . 50

3.2.2 Hardware platforms . 54
3.2.3 programming support for HPC 57

3.2.3.1 Libraries . 57
3.2.3.2 Programming models . 57

3.3 Exploration methodology . 59
3.3.1 Definition and metrics . 59
3.3.2 Extended VPU platform . 60
3.3.3 Correlation study . 62

3.3.3.1 Evaluation of virtual platforms 62
3.3.3.2 Processing efficiency . 62

Contents viii

3.3.3.3 Memory and cache consistency 64
3.3.3.4 Scalability . 64

3.4 Conclusion . 67

4 Architectural exploration 68
4.1 Memory coherency and SoC partitioning 68
4.2 Cache coherence protocols . 69

4.2.1 Overview . 70
4.2.2 Snoop Transaction types . 70
4.2.3 Directory based filtering . 71
4.2.4 ARM Coherence Protocols . 72

4.3 SoC Coherent Interconnect . 73
4.3.1 Description . 73
4.3.2 SCI Architecture . 73
4.3.3 Cache model . 75

4.3.3.1 Cache controller . 75
4.3.3.2 Cache Snoop controller 76

4.3.4 SCI Snoop Filter model . 76
4.3.5 SoC Partitionning . 78

4.3.5.1 Partitioning topology overview 78
4.3.5.2 Multi-SoC scenarios . 79
4.3.5.3 Coherent Proxy extensions 80

4.4 Simulations . 83
4.4.1 Directory-based snoop filtering benefits 83
4.4.2 Partitioning analysis . 85
4.4.3 Parallel programming efficiency 86

4.5 Conclusion . 90

5 Power management 91
5.1 HPC energy efficiency constraints . 91

5.1.1 Existing power strategies for HPC 91
5.1.2 OS based strategies . 93
5.1.3 Energy efficiency improvement 94

5.2 Evaluation of OS power strategies . 95
5.2.1 Simulation framework . 95

5.2.1.1 GEM5 . 95
5.2.1.2 Benchmarks . 95

Contents ix

5.2.1.3 Energy efficiency evaluation 96
5.2.2 Simulation results . 96

5.3 Power strategies for HPC . 100
5.3.1 Soft big.LITTLE strategy simulations with GEM5 100
5.3.2 Blocking point strategy simulations with GEM5 103

5.4 Measurements with Cavium ThunderX2 107
5.4.1 Platform description . 107
5.4.2 Soft big.LITTLE strategy execution on ThunderX2 108
5.4.3 Blocking point strategy execution on ThunderX2 111

5.5 Conclusion . 113

III CONCLUSIONS 114

6 Conclusions and Perspectives 115

Bibliography 117

A Gem5 Related work 126

B Gem5 full system stack effort 127

List of Figures

2.1 HPC systems performance projections 7
2.2 Petersen Graph (Moore Graph illustration) 9
2.3 Interconnect Familly in the Top500 . 10
2.4 Non-exhaustive HPC applications . 12
2.5 Imbrication of annotations in a compute node 15
2.6 x86 architectures hegemony in the HPC Top500 [June 2017] 17
2.7 Intel processors hegemony history in the HPC Top500 17
2.8 Haswell EP Architecture block diagram 18
2.9 Skylake Architecture block diagram . 19
2.10 Haswell based quad-socket platform example 20
2.11 Knights Landing Architecture block diagram overview 21
2.12 Knights Landing (KNL) based Chips . 22
2.13 Purley Platform: bi-socket Storm Lake Integrated with Skylake 22
2.14 Sunway SW26010 compute node architecture diagram 24
2.15 AMD Opteron . 25
2.16 Internal view . 26
2.17 Arm vs INTEL Design flexibility . 27
2.18 Tibidabo Arm-based Cluster . 28
2.19 Arm architecture generations . 29
2.20 The Arm Cortex-A75 processor improvements 30
2.21 Arm DynamIQ concept overview . 31
2.22 TSAR Architecture . 35
2.23 Post-K Computer Hardware . 37
2.24 The US Exascale Computing Project Roadmap 38
2.25 ECP Timeline . 39

3.1 Modeling levels . 44
3.2 VISTA modelled platform and output view 46

List of Figures xi

3.3 Reference platform for SoC Designer evaluation 47
3.4 Gem5 Medium scale platform . 49
3.5 48 AFM Cores block diagram . 51
3.6 Platform example based on Cortex-A57 Fast Model 52
3.7 Equivalent VPU based platform . 52
3.8 Dhrystone task graph . 53
3.10 Task graphs results With vs Without L3 cache 54
3.9 Simulation outputs: Fast models vs. VPU (Dhrystone benchmark) 54
3.11 Juno board diagram . 55
3.12 APM first ARMv8 processor : Xgene1 Storm 56
3.13 AMD Seattle’s architecture : Floorplan and block diagram 56
3.14 VPU vs Traffic generator . 60
3.15 Global Modeling Methodology . 61
3.16 Extensible VPU platform (Dhrystone benchmark) 61
3.17 Principle of correlation study . 62
3.18 SGEMM GFlops Scalability . 63
3.19 SGEMM Performance efficiency correlation 63
3.20 Arm Juno vs. AFM memory level analysis 64
3.21 From 1 to 48 threads scalability . 65

4.1 SoC partitioning scenarios (Mont blanc project) 68
4.2 on-Chip Coherent Interconnect . 74
4.3 2 SoC : simple Chip-toChip topology . 78
4.4 Four small SoC : The on-Chip Interconnect partitioning topology alter-

natives . 78
4.5 Large scale ARM based VPU : partitioning scenarios 80
4.6 2 ×64 and 4 ×32 SoC partitioning with coherent proxy ports 81
4.7 Coherent proxy entensions . 82
4.8 Number of transactions for different SoC and directory configurations . . 84
4.9 DGEMM cache statistics . 84
4.10 Benchmark performance for different SoC and directory configurations . . 85
4.11 Impact of programming models on throughput (blackscholes) 87
4.12 Impact of programming models on performance (blackscholes, 1×128 cores) 88
4.13 Impact of programming model on L2 cache misses (blackscholes, 1×128

cores) . 88
4.14 Impact of programming models on the number of snooping transactions

and overhead (blackscholes, 1×128 cores) 89

https://www.enterprisetech.com/2014/08/12/applied-micro-plots-x-gene-arm-server-future/
http://techreport.com/review/26901/amd-spills-beans-on-seattle-architecture-reference-server

List of Figures xii

4.15 Snooping traffic statistics (blackscholes, 1 ×128 cores) 89

5.1 Frequency and Power on Cavium’s ThunderX2 processor 97
5.2 Efficicency evaluation of Linux governors (config: Nparallel_256x256_matrix_products)

99
5.3 2parallel_256x256_matrix_products and 2parallel_128x128_matrix_products102
5.4 Soft big.LITTLE strategy scalability . 103
5.5 Before and After blocking point strategy: 4 clock domains 105
5.6 Scaling up Before and After blocking point strategy 107
5.7 Power profiles of the Nparallel_MxM_matrix_products on Cavium Thun-

derX2 . 109
5.8 Nparallel_MxM_matrix_products global power summary 110
5.9 Power profiles of the distributed_matrix_product_10240x10240 for 1 node111
5.10 Power profiles of the distributed_matrix_product_10240x10240 for 2 nodes112

List of Tables

2.1 Continents HPC shared systems . 36

4.1 Cache characteristics in the 128 cores VPU platform 75

5.1 Execution time and power breakdown for Blocking point strategy 113

List of terms

Roman Symbols

AICS RIKEN Advanced Institute for Computational Science

API Application Programming interface

APL ARM Performance Libraries

ASIP Application-Specific Instruction Set Processors

ATLAS Automatically Tuned Linear Algebra Software

CERE Codelet Extractor and REplayer

CISC Complex Instruction Set Computing

CMT Cluster Management Tools

CPE Computer Processing Element

CPI Cycle Per Instruction

CSC Cache Snoop Controller

FFT Fast Fourier Transform

HAS High level Architecture Specifications

HBM High Bandwidth Memory

HPC High Performance Computing

HPCG High Performance Conjugate Gradients

IP Intellectual Property, generaly used in this document to designate under license
features

List of terms xv

ISA Instruction Set Architecture

ISA Instruction Set Architectures

LAPACK Linear Algebra PACKage

LISA Language Instruction Set Architecture of ARM fast models

MPE Management Processing Element

MPI Message Passing Interface

MPSoC Multi-Processor Systems-on-Chip

NoC Network-on-chip

OpenMP Open Multi-Processing

QPI QuickPath Interconnect

RISC Reduced Instruction Set Computing

RTL Register-Transfer Level

SIMD Single Instruction, Multiple Data

STT Structural Simulation Toolkit

SVE Scalable Vector Extension

UPI UltraPath Interconnect

VPU Virtual Processing Unit

Greek Symbols

HPC High performance Computing

Part I

BACKGROUND

Chapter 1

Introduction

The performance of supercomputers has traditionally grown continuously with the ad-
vances of Moore’s law and parallel processing, while energy efficiency could be considered
as a secondary problem. But it quickly became clear that power consumption was the
dominant term in the scaling challenges to reach the next level. It is roughly considered
that 20 times energy efficiency improvement is required for exascale computing (1018
FLOPS) to cope with the tremendous electrical power and cost incurred by such com-
putational capacity. The idea of using concepts borrowed from embedded technologies
has naturally emerged to address this.

First prototypes based on large numbers of low power manycore microprocessors (pos-
sibly millions of cores) instead of fast complex cores started to be investigated, putting
forward a number of proposals for improvement at node level architecture to meet HPC
demands. These works covered a variety of 32-bit RISC cores ranging from Arm Cortex-
A8 and Cortex-A9 to more recently Cortex-A15 and Cortex-A7 cores and addressed for
example dual and quad core systems based on Arm Cortex-A9 cores.

The different results indicated various processing limitations to meet HPC performance
requirements, in terms of double precision floating point arithmetic, 32-bit memory
controllers (limiting the address space), ECC memory (e.g. for scientific and financial
computing), and fast interconnect (communication intensive applications) and addition-
ally confirmed that the variability in performance and energy could largely be attributed
to floating point and SIMD computations, and interactions with the memory subsystem.

Other works which addressed explicit comparison against x86 based systems also pointed
out the need for higher levels of performance to meet HPC demands. [4] concludes that

1.1 Objectives and Contexts 3

the cost advantage of Arm clusters diminishes progressively for computation-intensive
applications (i.e. dynamic Web server application, video transcoding), and other works
like [8] conducted on Arm Cortex-A8, Cortex-A9, Intel Sandybridge, and an Intel Atom
confirmed that Arm and x86 could achieve similar energy efficiency, depending on the
suitability of a workload to the micro architectural features at core level. Of the works
addressing the feasibility of Arm SoCs based HPC systems, efforts focused widely on
single-node performance using micro benchmarks. Fewer studies considered large-scale
systems exceeding a few cores even though multinode cluster performance is an essential
aspect of future Exascale systems.

Considering further that new generations of cores such as the ARMv8-A ISA support
features to improve specifically on HPC workloads (64-bit address space, 64-bit arith-
metic, high speed interconnects, fast memory hierarchies), this work is one of the first
to describe outcomes of research opened up with these perspectives.

1.1 Objectives and Contexts
The different contributions of this work take place in the context of European Exas-
cale reseacrh efforts funded by the European Commission under the Horizon 2020 pro-
gramme. Especially, they are part of the long term family of Mont Blanc 1/2/3 projects
investigating Arm based HPC clusters and and their software ecosystem for the realiza-
tion of densely integrated HPC compute nodes under critical system power constraints.
The general philosophy of these approaches is to build on the long experience gained
in embedded system technologies to bring processing and power efficiency to the next
level. Aspects of this research therefore address centrally the recent 64-bit ARMv8 ar-
chitecture for power efficiency, but also the unavoidable architectural (parallelism and
memory hierarchy), methodological (design space exploration, hardware and software
co-development), and runtime (power and resource management) related aspects.

1.2 Thesis contributions

1.2.1 Main contributions

A first contribution therefore is to describe an evaluation of available tools, models and
platforms able to set the foundations of a methodical system level exploration approach
for HPC applications scaling up to 128 Arm 64-bit cores and how it was used to examine

1.2 Thesis contributions 4

the relevance of SoC partitioning to limit complexity, cost and power consumption. A
second achievement is, based on previous methodology, to deeply explore and evaluate
the relevance of chip level partitioning based on the SoC Coherent Interconnect (SCI) de-
velopped by Atos Bull for its Exascale interconnect (BXI) technology. Finally, a last part
of the study addresses the runtime aspect and investigates specific HPC improvements
at power management level to also account for the important amount of power that can
be saved additionally at runtime. In addition to this global perspective, the following
more specific points are other contributing elements to Exascale research efforts: i) The
evaluation of different tools, models and methodologies allowing the design and analysis
of large HPC sytems possibly made of several compute nodes. ii) The definition of an
approach allowing mutli level hardware and software analysis. iii) The design choices
description and evaluation of a SoC Coherent Interconnect design. iv) The analysis and
evaluation of a directory filtering based cache coherence management protocol in a large
multi SoC design context. v) An efficiency analysis of parallel programming models. vi)
An investigation of specific power strategies for HPC and their implementation analysis
on virtual and real platforms. vii) The potential of specific HPC power strategies to
further improve power savings.

1.2.2 Published papers

• WELOLI, J. Wanza, BILAVARN, Sébastien, DE VRIES, Maarten, et al. Efficiency
modeling and exploration of 64-bit Arm compute nodes for exascale. Micropro-
cessors and Microsystems, 2017, vol. 53, p. 68-80.

• WELOLI, Joël Wanza, BILAVARN, Sébastien, DERRADJI, Said, et al. Efficiency
Modeling and Analysis of 64-bit Arm Clusters for HPC. In : 2016 Euromicro
Conference on Digital System Design (DSD). IEEE, 2016. p. 342-347.

• WELOLI, Joël Wanza, BILAVARN, Sébastien, DERRADJI, Said, et al. Modéli-
sation et analyse de l’Efficacité de supercalculateurs HPC basés sur l’ISA ARMv8
64-bit. GDR SOC SIP 2016 (Poster).

• Joël Wanza Weloli, Maarten De Vries, Said Derradji, Sébastien Bilavarn, Cecille
Belleudy. Platform Architect for HPC ARM-based SoC Design. Synopsys User
Group France. June, 2017.

1.3 Thesis outlines 5

1.3 Thesis outlines
The outline of the thesis is to present firstly a detailled discussion of state of the art
efforts related to Exascale High Performance Computing (HPC) systems covering the
most relevant academic and industry architecture and research projects worlwide. The
core of the matter is made in chapters 3, 4 and 5 adressing respectively methodology
definition and model evaluations, architectural exploration and analysis, and the inves-
tigation of specific HPC power management strategies. Each aspect comes with its own
experimentation, result analysis and conclusions that are drawn keeping as close as pos-
sible to realistic operation (real platforms, operating system, runtime software, model
relevance, benchmarks, etc.) to assess processing and power efficiency improvements as
reliably as possible. This will lead finally to a global conclusion in chapter 6 to indi-
cate the key achievements that can be formulated from the different results and several
perspectives arising from them.

Chapter 2

State-of-the-Art

2.1 HPC background
High Performance Computing appeared with the continuous and increasing needs for
computation power to perform large amounts of complex and scientific workloads. The
main ambition in this context has always been to exploit the most advanced technologies
to deploy such large scale systems also referred to as “Supercomputers”. A Supercom-
puter is composed of a massively parallel array of thousands of processors in a way to
realize very greedy computational requirements.

HPC aplications are typically based on processing real numbers. This is why the unit
of measurement of HPC cluster performances is not the number of executed Instruction
Per Second (IPS) but rather the number of Floating Point Operations (64-bit double
precision) Per Second (FLOPS). Appropriate floating point units must be therefore at
least 64-bit wide to enable the encoding of large numbers. This is why only 64-bit
Instruction Set Architectures (ISA) are used in current HPC systems.

2.1.1 History

As always, the idea precedes the innovation and the history of HPC is no exception to
the rule. Indeed, the term “super computing” was first introduced in the New York
World newspaper in 1929 to designate a set of IBM tabulators at Columbia University.
In the 1960’s, Seymour Roger Cray, an American electrical engineer, became one of the
pioneering architects of supercomputer systems. He designed the CDC 6600 series, a
family of computers for the Control Data Corporation which was released in 1964 and
is usually considered to be the first supercomputer in history[1, 2].

2.1 HPC background 7

Half a century later, the most powerful supercomputer in the world is currently the
Sunway TaihuLight in China with 93 petaflops (200 billion times faster than CDC6600)
[June 2017 http//top500.org]. Most HPC projects in the world today aims at reach-
ing the exaflops level of performance at the 2020+ horizon. However, performance is
no longer the unique preoccupation of modern HPC designers. With the tremendous
electrical power and cost incurred by such computational capacity, power consumption
quickly became a major player in the overwhelming system complexity introduced by
this new supercomputing milestone.

2.1.2 Exascale Challenges

An exascale supercomputer is a HPC system capable to reach its peak performance at
one exaflops. The exascale challenge can be more specifically stated as the requirement to
build a system with a power footprint similar to that of petaflops machines. Therefore,
the objective is to improve performances by a factor of 1000 under a power budget
of 20MW, so that the performance per watt ratio is 50 GFlops/watt. First exaflops
supercomputers are expected around 2020 by the HPC community (figure 2.1).

Figure 2.1: HPC systems performance projections
https://www.top500.org/statistics/perfdevel/

https://www.top500.org/statistics/perfdevel/

2.1 HPC background 8

The first question which comes to mind is whether we can effectively exploit such a
machine or not. Are HPC applications ready to get the benefits of the considerable
engineering and building efforts associated? Actually, after reaching the petaflops mile-
stone in 2008, it appeared that only few applications were able to fully exploit the
capabilities of the system a that time[3]. So one of the major problems is to address
scalability with applications whereas there is no actual system yet. Namely, scalabil-
ity of a workload is the capability to maintain the same performance efficiency while
increasing the number of parallel processors in a cluster. Considering that improving
applications is a continuous effort over time, some approaches call for further efforts in
formal modeling, static analysis and optimization, runtime analysis and optimization,
and autonomic computing by successive and stepwise improvements [3]. Application
scalability concerns rely on an incremental process adjusted on an ongoing basis when
new information and asumptions about a given exascale system become available.

With a large cluster of compute nodes, the interconnection network represents a rel-
evant portion for any HPC system. In an exascale architecture, the costs both in terms
of economic and power consumption can’t be overlooked and is very much dependent
on the type of network fabrics used and the deployed interconnexion topology. It has
been observed that many proposals addressed large-radix routers to build scalable low-
distance topologies with the aim of minimizing these costs [4]. The main criticism with
this approach is that it fails to consider a potential unbalance of the network utilization
which may lead to suboptimal designs. Therefore concepts in advanced geometry can
help to achieve optimized non-intuitive solutions. This is the case for example in [4]
where authors propose a set of networks based on incidence graphs of projective. These
graphs form plans based on generalized and very symmetrical Moore’s graphs. In graph
theory, a Moore graph is a regular graph with a maximum number of vertices for a given
degree and diameter (see figure 2.2) [5]. Their simulations show that projective networks
provide very good scalability and well balanced network utilization. This may offer a
competitive alternative for exascale-level interconnection network design [3, 5].

2.1 HPC background 9

Figure 2.2: Petersen Graph (Moore Graph illustration)
http://mathworld.wolfram.com/PetersenGraph.html

Exascale systems will obviously require a large and complex network topology supporting
hundreds of thousands of endpoints. In the top 500 Supercomputer Rankings, top-ranked
HPC systems commonly use a specific high bandwidth interconnect for the compute
network such as InfiniBand or others (figure 2.3). Nevertheless, in [6] for example,
a cost-effective interconnect solution based on Ethernet technology is proposed to scale
Ethernet fabrics up to the level of exascale computing considering the expected topology,
routing, forwarding table management and address assignment.

Another critical aspect in upcoming systems relates to reliability and resiliency. This is
a real issue for designers, producers and users of today’s large scale computing systems.
Moreover, due to the large size of modern HPC installations, no hardware vendor can
carry out full-scale product testing before delivery to a supercomputing center. The
problem becomes even more critical with the increase at system-scale level. Authors
in [7], from their experience with accelerators at the U.S. Department of Energy labo-
ratories, present in experimental and analytical data to characterize or quantify errors
impacts today and future large-scale systems. They have tested the raw sensitivity of
GPU memory structures based on Fermi and Kepler architectures. They observed no
significant differences except that the Kepler based GPU was always less prone to bit

http://mathworld.wolfram.com/PetersenGraph.html

2.1 HPC background 10

Figure 2.3: Interconnect Familly in the Top500

corruptions. Authors attributed this improvement to the better cell design of Kepler ar-
chitecture. This leads them to start studying the benefits and tradeoffs associated with
fault injection and AVF (Architectural Vulnerability Factor) analysis using Multi2Sim
simulation infrastructure[8]. The goal was to show how applications can be designed
more robustly to reduce vulnerability.

However, there are always unexpected variations of performance in contemporary large-
scale supercomputers independent from the inherent system realiability and resiliency.
Such as bandwidth issues, inconsistent error logging, detectable uncorrectable errors or
silent data corruption[9]. In [10], the authors explore a learning based mechanism that
allows a system to generate holistic models of performance variations based on runtime
observation of workloads. These criticality models help applications to detect execution
variations when they occur in order to take relevant actions to reduce their effect. Sim-
ulations based on logistic regressions on small scale clusters and [10] show an accurate
modeling way of criticality factors.

2.1 HPC background 11

Nevertheless, as long as computing power in large scale HPC clusters increases exponen-
tially over time, failure rates will necessary follow the same path. Learnings from the
petaflops experience reflect that some types of failures happen every few days (such as
storage failures at checkpoint/restart or node and cluster node oustages)[11]. Current
hardware based resilience detection techniques of the next generation of HPC exascale
supercomputer are projected to reach several failures per hour [8–13]. Different ap-
proaches are possible to address this. An alternative partial memory protection scheme
based on region-based memory management is proposed for example in [13] to provide
application agnostic fault protection based on a concept of regions called ‘havens’.

Many other innovative solutions and ideas are developped to work also on low cost and
power efficient high end computational resources. In [14] for example, a collaborative
solution is proposed in order to assign huge amounts of computational resources for com-
plex university projects workloads. This approach relies on peering idle computational
resources of users connected to the network. Of course this solution can not compete
with exascale because the relative computing power limitation would require billions of
user devices to approach the exascale level of performance. However this method can
help better exploit external unused resources to reduce power consumption instead.

From this overview of considerations involved in exascale research, it comes out that the
main challenges are to address parallelism concurrency, data locality management and
error resilience. Therefore the exascale challenges cover many expertise areas: energy
and power, memory and storage, concurrency and consistency, locality and resiliency
and a huge software migration complexity on the burden of HPC software developers.
Regarding this, HPC developers have therefore to take another step towards software
migration. Large scale system such as an exascale system implies a new complexity, as
shown in [15] in the scenario demonstrating challenges that may results from the migra-
tion of OS-bypass network example. The next sub-section (2.1.3) introduces which are
the areas covered by HPC applications.

2.1 HPC background 12

2.1.3 Applications

Applications for High Performance Computing are specifically designed to take advan-
tage of the theoretical supercomputing power inherent to the parallel nature of HPC
systems. Just like supercomputer designers who are seeking to exploit all possible tech-
nology advances, the challenge for software developers is to keep the computational
efficiency of applications as close as possible to the system peak performance. Several
open source standards and industrial programming models, compilers and profiling tools
with domain-specific software stack libraries dedicated to HPC are facilities that can be
used in multiple types of applications.

Figure 2.4: Non-exhaustive HPC applications

HPC applications cover a very large variety of domains (figure 2.4). A non-exhaustive
list of areas might include astrophysics, bioinformatics and biophysics, biology, chemistry
and biochemistry, climate and weather modeling, computational fluid dynamics and heat
transfer, databases and data mining, deep learning, finance and bank, geophysics and
Earth imaging, material sciences, mathematics, modeling, signal and image processing,
molecular dynamics, nanoscience, physics, quantum chemistry, structural mechanics and
so on. These applications have in common a strong requirement in terms of execution

2.1 HPC background 13

time to perform an important amount o complex computations.

These application domains are generally considered to have one of these characteristics:
sensitivity to memory latency, bandwidth, communication, and sometimes all of them.
A study conducted on the Stampede supercomputer at the Texas Advanced Computing
Center (TACC), one of the most performant open science HPC system, have shown
for example that only ten of their workloads approached 50% usage of the execution re-
sources. This has led the authors in [16] to emphasize the impact of hardware sensitivity
in predicting the performance of important workloads (running on specific processors)
to allow HPC centers to design better performing system configurations.

To deliver both processing and memory performance, the next generation of HPC sys-
tems will have to associate many-core compute nodes with heterogeneous memory tech-
nologies such as to make the best bandwidth and latency trade offs. For example, the
Intel Xeon Phi Knights Landing (KNL) technology goes in this direction by combining
a high-performance RAM interface for 3D-stacked DRAM (High Bandwidth Memory)
in addition to a high capacity but low bandwidth DDR4 technology. This processor
has been experimented in a few application studies [17, 18]. Authors in [17] address
the problem with a memory-heterogeneity aware run-time system to guide data prefetch
and eviction processes. Their results show a performance improvement by a factor of
two for the matrix multiplication.

However, while HBM should increase performances up to four times compared to conven-
tional DDR4 SDRAM, the conclusions drawn from [18] are basically that many factors
impact the real effectiveness on a set of representative scientific and data-analytics work-
loads. Results indeed show that there is a real benefit from using HBM for applications
with regular memory accesses with up to three times better performance. On the flip
side, applications with random memory access patterns are latency-bound and therefore
suffer from performance degradations when using only HBM. Activating hyper-threading
(thus doubling the number of processes or threads) may reduce this effect.

Another important aspect for the emerging class of HPC applications is the impor-
tance of runtime optimizations. Authors in [19] and [20] have investigated the impact
of compiler optimizations and hardware predictability. In fact, hardware predictability
allows to minimize the allocation of hardware resources at runtime [20]. The reason
behind this is the claim that the strict power efficiency constraints required to reach

2.1 HPC background 14

exascale will dramatically increase the number of detected and undetected transient
errors in future systems [19]. Their results show that highly-optimized codes are gen-
erally more vulnerable than unoptimized codes for several mission-critical applications.
Sustainable trade-offs must be found between compiling optimizations and application
vulnerability, because certain types of optimizations may provide only marginal bene-
fits and considerably increase application vulnerability. These considerations show the
intrinsic link between applications and the hardware in the search for performance. In
the following, we focus on the hardware capabilities with an overview of HPC compute
node architectures.

2.2 HPC Compute node architectures 15

2.2 HPC Compute node architectures

2.2.1 Introduction

To avoid any confusion, we first clarify the terminology used in this paragraph. In
the abstract example of figure 2.5, the system is considered a bi-socket compute node
because it contains two CPUs. A compute node may well be mono or multi-socket but
it must have a single operating system. The socket here is a co-processor which contains
other processors generally connected through a Network on Chip (NoC) interconnect.
In this example, each processor is homogeneous and has a multi-core architecture. Each
core implements a Simultaneous Multi Threading (SMT) technology and has two Hyper-
threads. SMT is an option that can be turned on or off, used to improve parallelization
of computations in a signle core.

Figure 2.5: Imbrication of annotations in a compute node

The HPC compute node is the basic building block of the entire supercomputing in-
frastructure. In practice, HPC is about aggregating the computing power produced by
several of these compute nodes. So a compute node is basically a server designed with
the most advanced technologies to deliver the highest performance. It includes proces-
sors, memory system, disk and interconnect. The architecture has direct impacts on
both the mechanical aspect of the server packaging and the thermal management of
energy dissipation produced by the boards. In a HPC cluster, we distinguish two types
of nodes: compute nodes as introduced previouslly and login nodes. Compute nodes are
used for computation only while login or master nodes are responsible of the Cluster
Management Tools (CMT) which handle functions such as job scheduling, cluster moni-

2.2 HPC Compute node architectures 16

toring, cluster reporting, user account management, and power management strategies.

The main focus of High Performance Computing is always about the execution time
deployed to compute a workload. In a HPC cluster, the workload to be processed is
composed of a very large amount of parallel threads, each one being bound to a pro-
cessor core. In an ideal parallelism situation, global performance is constrained by the
execution time of the slowest thread but in pratice, workload division involves syn-
chronizations between consumers and producers of data. An harmfull consequence of
desynchronization is when the execution of cores does not benefit from stable loads
(unbalanced threads, heterogenous cores, complex data dependencies) which may dra-
matically lead to very poor processing efficiency.

This is one of the reasons why at the hardware level, all basic compute node archi-
tectures are usually supposed to be composed of either homogeneous CPUs or GPUs.
The software effort to reduce desynchronization issues is also addressed by trying to
avoid unnecessary barrier synchronizations and limit the operating system “noise” which
is responsible of unbalanced schedule of running processes between cores. Isolation of
computing cores is also employed by dedicating one core to host the OS. However the
cost of this solution can be very expensive for multicore architectures with high perfor-
mance cores while it may be acceptable in a many-core system based on low power and
smaller cores.

Figure 2.6 and 2.7 shows how x86-64 processors dominate the panorama of HPC. Intel
mainly proposes two families of processors to supply the high-end and high performance
server market: Intel Xeon E series and Intel Xeon Phi series.

2.2 HPC Compute node architectures 17

Figure 2.6: x86 architectures hegemony in the HPC Top500 [June 2017]

Figure 2.7: Intel processors hegemony history in the HPC Top500
https://www.nextplatform.com/2016/06/20/china-topples-united-states-top-

supercomputer-user/

2.2.2 Intel Xeon E series architecture: Skylake (Haswell)

Intel®’s 6th generation Core™ microarchitecture is usually designated under the de-
velopment code name “Skylake”. Skylake results from a continuous effort since Ne-
halem, SandyBridge, IvyBridge, Haswell and previously Broadwell Intel x86 based micro-
architecture. The Xeon Skylake-EP series are processors targeting high-end requirements
in terms of power and performance that are well suited for HPC processing. For example
the Intel Skylake-EP Xeon E5-2699 V5 features a 32 core platform produced in 10nm
process with 48 Mo L3 cache, 6 memory channels and high bandwidth DDR4 memory

https://www.nextplatform.com/2016/06/20/china-topples-united-states-top-supercomputer-user/
https://www.nextplatform.com/2016/06/20/china-topples-united-states-top-supercomputer-user/

2.2 HPC Compute node architectures 18

[12].

Figure 2.8: Haswell EP Architecture block diagram

2.2 HPC Compute node architectures 19

Figure 2.9: Skylake Architecture block diagram

Figures 2.8 and 2.9 respectively represent the architecture block diagrams of Haswell
and Skylake processors. There is a inherent difference based on the manufacturing tech-
nology 14nm process for Broadwell and 10nm for the latest Skylake processors, which
leads obviously to a reduction of power consumption. However, one of the substantial
evolution is the on-Chip coherent interconnect: Broadwell deploys a double ring bus
(two set of rings connected through on-die bridges) interconnect between cores whereas
Skylake is based on a 2D Mesh topology.

The mesh architecture improves scalability (more cores on the same die) with a higher
bandwidth and reduced latencies. This topology also improves data sharing and un-
balanced memory accesses between all cores/threads. Another technique to scale up
the number of cores and the memory of Xeon-E based platforms is to use sophisti-
cated point-to-point processor interconnect such as Intel UPI/QPI (UltraPath Intercon-
nect/QuickPath Interconnect) proxy modules (figure 2.10). This type of platform is not
well-suited for HPC requirements because of the effort needed to maintain coherency
between CPUs which increases latencies without a significant gain of bandwidth.

2.2 HPC Compute node architectures 20

Figure 2.10: Haswell based quad-socket platform example

Like most CPUs designed for performance, Skylake includes vector processing units in
addition to classic arithmetic units. Single Instruction Multiple Data (SIMD) is the
common technique shared by all vector units. Skylake has support for Advanced Vector
Extensions (AVX-512) which define 512-bit wide operations. Depending on the size of
data types, this means for example that 16 32-bit operations (single precision) can be
processed simultaneously at the same CPU clock rate. So for a core running at 1GHz,
it has a theoretical performance of 16 Gflops (single precision) or 8 Gflops (double
precision).

2.2.3 Intel Xeon Phi Coprocessor architecture: Knights Land-
ing

Intel Xeon phi coprocessors are more recent compared with the Xeon-E family. This
generation of coprocessors is based on the Many Integrated Core (MIC) Architecture. As
opposed to classic multi-core architectures like Xeon-E processors, the system combines
smaller and lower-power performance multi-core processors into a single chip. Their
performance is equivalent to those of classical high speed CPUs but they also provide

2.2 HPC Compute node architectures 21

massive parallelism and vectorization capabilities that are more suited to massively
parallel software. This type of architecture is considered to be more relevant for most
HPC workloads, extending as well the benefits in terms of of power efficiency.

Figure 2.11: Knights Landing Architecture block diagram overview

The Knights Corner product family is the first MIC architecture produced by Intel. They
have been designed in 22nm process technology and combine 50 coprocessors. Knights
Landing is the codename of the second generation of Intel Xeon Phi architectures manu-
factured in 14nm process. They integrate 3D-stacked on-Package Multi-Channel DRAM
(MCDRAM), a version of High Bandwidth Memory (HBM), and up to 72 Silvermont
cores (Atom processor with four threads per core). In addition, each core has two
512-bits vector processing units with support for compatibility with AVX-512 SIMD
instructions. Knights Hill will be the third generation, following Knights Landing but
produced in 10nm process technology [21].

2.2 HPC Compute node architectures 22

Figure 2.12: Knights Landing (KNL) based Chips

Figure 2.13: Purley Platform: bi-socket Storm Lake Integrated with Skylake

Figure 2.12 shows examples of chip configurations involving Knights Landing coproces-
sors. OmniPath (OP) is an Intel proprietary fabric that can be deployed as a HPC
cluster interconnect. However, KNL chips provide a PCIe root port that can host a PCI
device from others compatible fabrics, like Infiniband. Figure 2.13 shows an example of
a Skylake based bi-socket motherboard. This platform commonly serves as a compute
node in most of Intel Xeon processors based Supercomputers.

2.2.4 Emerging compute node architectures: SunWay

Sunway architecture is a China homegrown 64-bit Reduced Instruction Set Computing
(RISC) based machine ISA. The custom-designed Sunway SW26010 processor chip is
the 4th generation of this family. These processors are used in the Sunway TaihuLight

2.2 HPC Compute node architectures 23

supercomputer which currently ranks first in the last HPC Top500 (august 2017). The
SW26010 processor is a many-core system like Intel Knight Landing but it integrates
much more lightweight cores and a cache-free architecture (no L2, L3 caches). Actually,
a Sunway SW26010 compute node is made of four CPUs (SW26010 processor). Each
CPU contains one Management Processing Element core (MPE), an 8x8 mesh of cores
called Computer Processing Element (CPE) and a memory controller supporting 8GB
DDR3 [22].

The cores in MPE and CPE are based on a 64-bit RISC architecture, SIMD instructions,
and out of-order execution running at 1.45GHz. They can all participate in the workload
computations but only MPE cores can be responsible of performance management and
Input/Output communications [22]. In addition, each MPE core has a 256KB L2 cache
and dual pipeline (8 flops per cycle per pipeline) while each CPE core is cache-free and
has only one signle floating point pipeline that performs 8 flops per cycle per core (64-
bit floating point arithmetic). Therefore the SW26010 compute node has a theoretical
performance peak of 4(CPU clusters)*64(CPE cores)*8 flops/cycle*1.45GHz + 4(CPU
clusters)*1(MPE core)*16 flops/cycle*1.45GHz or 3.0624 Teraflops/second [22].

The Sunway TaihuLight supercomputer has a computation level called supernode which
is a set of 256 compute nodes. In addition, the entire system has 40 cabinet systems,
where each cabinet system has 4 supernodes. So, there are 160 supernodes or 40960
compute nodes or 10649600 64-bit RISC cores in this supercomputer. The Sunway
TaihuLight supercomputer theoretical performance is about 125.436 Petaflops but the
practical performance reached on a Linpack benchmark is 93 Petaflops with 15.371MW
power budget. This leads to a computational efficiency (the ratio of the obtained per-
formance per the theoretical one) of about 74.14 %. The Sunway TaihuLight system has
been designed to deliver super-efficient floating point performances. Indeed, this super-
computer strikes an impressive 6.074 gigaflops/watt when most of the ten in the Top500
hit more or less 2 gigaflops/watt. But this result is still far from the 50 gigaflops/watt
required to cope with exascale requirements [23].

However, Sunway TaihuLight also has limitations coming from inherent memory weak-
nesses. Actually when using HPCG (High Performance Conjugate Gradients), a set of
benchmarks to collect better data movement metrics, it comes out that Sunway Taihu-
Light is lagging far behind all other systems in the ten of Top500 with six times less
peak performance efficiency. This shows how moving data through the computing block

2.2 HPC Compute node architectures 24

Figure 2.14: Sunway SW26010 compute node architecture diagram

hierarchy can be very expensive and strongly limit the performances of real workloads
[23].

2.2.5 Emerging compute node architectures: Opteron

Opteron is an Advanced Micro Devices (AMD) x86 ISA processor designed for both
desktop and server markets with support of AMD64 (x86-64). This compute node is
composed of the 16-core AMD Opteron 6274 processors 16 cores(L2 1MB per core), x86,
from 2.2GHz up to 3.1 GHz 32nm manufacturing process. The Titan supercomputer
funded by the U.S. Department Of Energy (DOE) for the Oak Ridge National Laboratory
(ORNL) is based on Opteron processors as compute nodes, the Cray Gemini Interconnect
and NVIDIA K20x GPUs. This supercomputer designed by Cray and includes 299008
AMD Opteron cores and 18688 NVIDIA Tesla K20 GPU accelerators. Titan performs
17.6 PFlops and ranks as the 4th world fastest super-computer [Top500: June, 2017].

2.2 HPC Compute node architectures 25

Figure 2.15: AMD Opteron

2.2 HPC Compute node architectures 26

Figure 2.16: Internal view

2.2.6 Arm vs Intel Compute node architecture

The opposition between Arm and Intel architectures is no longer a question of “RISC
versus CISC ISA” as traditionally discussed in the 1980s and 1990s when chip area
and processor design complexity were the main constraints for hardware architects [24].
Nowadays, power and energy are the primary design constraints for the exascale comput-
ing milestone. The RISC vs CISC debate has turned secondary as Arm, deeply rooted in
the field of low-power ISA for mobile and embeded systems, entered the high-peformance
server market.

On this point, surveys like [24] conclude from a large measurement analysis of mobile,
desktop, and server computing workloads that there is nothing fundamentally more en-
ergy efficient in one ISA class or another. However, in a comparison between Arm and
Xeon processors approaching the question in terms of time-to-solution (time spent to
perform a specific workload), peak power, and energy-to-solution (energy required for a
given time-to-solution) [25], results lead to the conclusion that even if Arm processors (at
that time) provides a lower peak power, Xeon still gives a better trade-off from “the user’s

2.2 HPC Compute node architectures 27

point-of-view” [25]. Even if user expectations in HPC are often schizophrenic about the
trade-offs between performance and energy consumption. In another study compar-
ing Arm Cortex-A8 and Intel Atom processors [25], concrete measurements show that
Atom deliver better raw performance while Cortex-A8 has significantly better power effi-
ciency. These conclusions are globally confirmed in [26] in a different context addressing
the low-power processor Arm big.LITTLE (32-bit ISA heterogeneous Cortex-A15/A7)
and a high performance Intel Sandy Bridge-EP (64-bit ISA homogeneous) processor.

Figure 2.17: Arm vs INTEL Design flexibility

In summary, it emerges from this survey that many studies lead to divergent, even
contradictory conclusions on this debate. Each side of the debate makes valid arguments
but it is too early to clearly define which architecture is the most suitable for HPC
applications or workloads profiles. Arm remains an unkown player in processing HPC
heavyweigth workloads. To understand the trends of power consumption and efficiency,
we need to consider the energy spent to power an entire HPC system[25–27]. This is
precisely what we will discuss in the next section: the first Arm-based supercomputer.

2.2.7 The first Arm-based HPC Cluster: Tibidabo

Tibidabo is a mountain overlooking Barcelona, but also a code name used for the first
large-scale Arm-based HPC cluster. It was designed for the Barcelona Supercomput-

2.2 HPC Compute node architectures 28

Figure 2.18: Tibidabo Arm-based Cluster
https://www.hpc2n.umu.se/sites/default/files/PSS2013%20-%20Presentation.pdf

ing Center (BSC) and exploited in their MareNostrum supercomputer[28]. The com-
pute node in Tibidabo is a NVIDIA Tegra2 SoC including a low-power dual-core Arm
Cortex-A9 manufactured in a 40nm TSMC process and running at 1GHz. Tibidabo has
248 computes nodes and achieves 120 MFlops/Watt on HPL benchmarks. Designers
projects that for a theoretical cluster of Arm Cortex-A15 chips (16 cores), the energy
efficiency would increase by a factor of 8.7 reaching a value of 1046 MFlops per Watt [28].

However, Cortex-A9 and Cortex-A15 are both 32-bit processors. They suffer from im-
portant limitations in this regard, such as 4 GB address space per application which
is not enough for real HPC workloads. The ARMv8 64-bit ISA, announced in october
2011[29], was therefore a much awaited technology to address future server class low
power applications [28]. We examine this opportunity and detail this technology in the
following section.

https://www.hpc2n.umu.se/sites/default/files/PSS2013%20-%20Presentation.pdf

2.3 Aarch64 architecture and ARMv8 processors 29

2.3 Aarch64 architecture and ARMv8 processors

2.3.1 ARMv8 or AArch64 ?

Arm initially for Advanced RISC Machine describes a processor architecture based on
the RISC ISA. To develop an Arm-based SoC chips, many others components are pro-
posed by companies as Intellectual Property (IP). Most of these IPs are developed by the
british company Arm Holdings [29]. Under an Arm architectural license, constructors
such as Apple, Samsung, Cavium and many others design their own processors. This
business model gives flexibility to manufacturers architects for innovative added values
and so researchers in processor architecture.

ARMv8-A is the code name of a new family of low power high performance Arm 64-bit
processors. It introduces 64-bit capabilities alongside the existing 32-bit mode and can
therefore support the two execution modes [30, 31]:

• AArch64 featuring enhancements for 64-bit registers , memory accesses and 64-bit
instructions.

• AArch32 which is optional in the ARMv8 architecture specification. Its role is to
mainain backwards compatibility with the Armv7-A 32-bit ISA (Figure 2.19).

Figure 2.19: Arm architecture generations

First issues in the development of the ARMv8 ISA were the ability to access a large

2.3 Aarch64 architecture and ARMv8 processors 30

virtual address space (up to 48 bits from a translation table base register) and higher
native performances. ARMv8 also features an advanced SIMD engine supporting the full
IEEE 754 standard and additional floating-point instructions for IEEE754-2008 [32, 33].
These extensions have been designed specifically to cope with HPC requirements to allow
the expansion of Arm processors from embeded systems to mobiles (smartphone/tablet),
desktops and servers usages.

2.3.2 ARMv8-A processors : Cortex-A75

The Cortex-A75 is the latest application processor of the Cortex-A series and the most
powerful to date (October, 2017). The Cortex-A series is a familly of processors designed
to give the highest performance. They come in addition the Cortex-R series for “Excep-
tional performance” intending real-time applications and the Cortex-M serries designed
for cost effective deterministic microcontroller applications. The Cortex-A75 is the suc-
cessor of the Cortex-A73 and both have been designed at Sophia Antipolis/France unlike
previous Cortex-A72 and Cortex-A57 developped in Austin Texas. This fact explains
some of the similarities or differences between both micro-architectures.

Figure 2.20: The Arm Cortex-A75 processor improvements

The Cortex-A75 is an out-of-order pipeline micro-architecture. Its intruction fetch unit
handles four stages while several decode blocks provide the ability to decode up to 3
instructions per cycle or 6 NEON/FPU micro-operations with the two floating point

2.3 Aarch64 architecture and ARMv8 processors 31

Figure 2.21: Arm DynamIQ concept overview
https://community.arm.com/processors/b/blog/posts/arm-dynamiq-expanding-the-
possibilities-for-artificial-intelligence

units available. The high level view of the Cortex-A75 in the figure 2.20 show that
its architecture can handle an optional integrated L2 cache operating at core speed.
Reducing de facto latencies by more than 50% compare to the A73. In addition, the
Cortex-A75 core comes with a new Arm concept for processing efficiency called “Dy-
namIQ” technology. DynamIQ is similar to the well known big.LITTLE architecture
but is much more flexible and allows up to 8 cores combinaisons of big and LITTLE
coress in a CPU cluster (figure 2.21). These cores could be entirely different from dif-
ferent generations of Arm Cortex-A families [34]. For example, DynamIQ enables to
include a Cortex-A9/15, Cortex-A53/57, CortexA73/A75 in same processor. A recent
technique exploring efficient ways to find the best big.LITTLE configuration improving
energy-efficiency is discussed in [35]. They used Armv7 (32-bit) processors Cortex-A15
and Cortex-A7 in serveral big.LITTLE architectures scenarios. Results confirm that
globally, big.LITTLE architectures allow to reach better energy/performance trade-offs
compared to homegeous Arm CPU clusters. DynamIQ is still under active development
but the technology combined with the ARMv8 ISA intends to radically change the power
efficiency paradigm for HPC.

In addition, several improvements have been done to increase the floating point pro-
cessing units. They can fully perform and respect the IEEE double-precision floating
operations sdantard. Their vector size grew from 16×128bit to 32×128b [36]. Neverthe-
less, the number of floating point operations executed per cycle remains poorer compare

https://community.arm.com/processors/b/blog/posts/arm-dynamiq-expanding-the-possibilities-for-artificial-intelligence
https://community.arm.com/processors/b/blog/posts/arm-dynamiq-expanding-the-possibilities-for-artificial-intelligence

2.3 Aarch64 architecture and ARMv8 processors 32

to the Intel’s AVX of Xeon processors seen previously here 2.2.2. This is exactly why
Arm and Fujitsu have annouced a common effort to design an extension to the ARMv8
ISA called “SVE” (Scalable Vector Extension) at the Hot Chips 28 Symposium (2016).

2.3.3 SVE: Scalable Vector Extension

In theory, SVE allows extening vector length from 128 to 2048 bits [37] resulting in 2
to 32 Flops per cycle per vector. In addition SVE doesn’t replace or an extension of
Advanced SIMD?? the usual ARMv8 architecture but a separate architectural extension
with a new set of A64 instruction encodings corriger cette phrase. SVE focuses on HPC
scientific workloads and supports a vector-length-agnostic HPC programming model.
This means that it scales automatically amoung all vectors length without a need of
recompilation. Actually, Arm has submitted patches to GCC and LLVM to support the
auto-vectorization for VSE.

2.4 Research projects 33

2.4 Research projects

2.4.1 Design space exploration methodologies

This section discusses system level approaches associating architecture expertise and
modeling methodologies in a way to analyze and study conventiently all kind of imple-
mentations choices. Indeed, nowadays, System-on-Chips are made of billions of tran-
sistors, interconnect and other components. However, several hurdles are hindering the
productivity of SoC researchers and architects. The architectural complexity is conti-
nously increasing as designers refine the solution space covering a range of different axes
such as processing elements, on-chip coherent interconnect, memory hierarchy or the
compute node interconnect fabrics. Because of this complexity, the challenge is always
to find trade-offs between the need for accuracy in a wide spectrum of configurations
and simulation times.

Architectural development and analysis are generally based on system level modeling
in order to abstract specific implementation details contrary to RTL (Register-Transfer
Level) sources. For example, authors in [38] propose an integrated open framework for
the design space exploration of heterogeneous Multi-Processor Systems-on-Chips (MP-
SoC). They present a pre-existing standalone CAD methodology which integrates a
state-of-the-art ASIP (Application-Specific Instruction Set Processors) toolchain within
a full-featured virtual platform coded in LISA for processing blocks and SystemC for
interconnects and memory models. Using LISATek for the design flow, they have shown
that the mix of these two environments enables SoC designers to cover all dimensions of
the configuration space by getting immediate feedbacks. The main concern of the design
space exploration problem is therefore a perpetual research for the most efficient way to
address simulation speed and accuracy with the most advanced current technology.

Besides simulation complexity, there are also many other requirements to address in
the design of modern high performance processing models of chips, such as modeling
power consumption and SoC floorplanning [39]. A more recent study proposed a frame-
work for power, area, and thermal simulation [40]. This methodology was applied for the
design of a Network-on-Chip (NoC) architecture. The principle is to define an approach
combining large-scale HPC simulation (SST , Structural Simulation Toolkit [41]), a set
of power libraries (McPAT [42], IntSim [43, 44] and ORION[45]) and a thermal library
(HotSpot [46]) within the same environment. Results showed that there was no signif-
icant difference between results produced by the two power libraries McPat and ORION.

2.4 Research projects 34

However, today only McPat has the most up-to-date version. SST doesn’t integrate
ARMv8 models. Nevertheless, one of these tools can always be used for other purposes.
For example authors in [47] demonstrated the gem5 tool accuracy for manycore architec-
ture exploration. They used Armv7 ISA and a dual-core processor model of Cortex-A9.
Results showed that their processing accuracy varies from 1.39% to about 18%. Nowa-
days, Gem5 integrates ARMv8 processors and most recent Arm features. In addition,
the same authors have also demonstrated in [35] that coupling Gem5 to the power es-
timator McPat efficiently increases the accuracy of both processing and power modeling.

Another key idea in the Exascale process is co-design. The general principle is based on
the process of code developement in closer relation with hardawre. In HPC, two main
approach are used to achieve this: library based code optimization and compute kernels
optimization. Authors in [48] with full awareness of implications, argue that the exascale
design space exploration is prohibitively expensive, at least partially due to the size and
complexity of workloads. Indeed, Application code may contain millions of lines and
often relies on many independant libraries. They rather suggest to use mini-applications
to capture key performance indicators which can be used in the hardware design space
exploration. This methodology is expecting a potential reduction of the order of the
exploration by a factor of a thousand [48].

In a similar reasoning, authors in [49] have presented a framework called “CERE” for
Codelet Extractor and REplayer. CERE is an LLVM based Codelet Extractor and Re-
play framework. This framework finds and extracts the hotspots of an application as
codelets to be replayed, modified or compiled. Their results on the SPEC 2006 FP
benchmarks, shows that CERE codelets cover 90.9% and accurately replay 66.3% of
the execution time. With the codelet mini-apps, CERE is a good candidate to keep
the realism of HPC applications in time-consuming simulations. This method allows to
reduce feedback loops time between software developers and hardware designer when
co-designing a system.

2.4.2 TSAR Architecture example

Serveral studies have managed to scale up simulation challenges of modeling clusters of
compute nodes. For example, the TSAR project developped an architecture supporting
an agnostic processor ISA (working independently of the instruction set RISC and CISC)
and maintaining coherency up to 4086 building blocks (compute nodes)[50]. The TSAR

2.4 Research projects 35

architecture implements the Distributed Hybrid Cache Coherence Protocol (DHCCP)
and a directory based coherence protocol with support of Non Uniform Memory Access
(NUMA) see figure 2.22. The platform is specified in such a way that hardware com-
ponents can be reused. There are two levels of simulation accuracy: Cycle-Accurate /
Bit-Accurate and Transaction Level Model with Distributed Time (TLM-DT). These
simulations help authors to produce an advanced network on chip solution supporting
both packet switched virtual channels and a broadcast service[50].

Figure 2.22: TSAR Architecture

It turns out from this overview that many codesign approaches have been investigated,
with performance and efficiency requirements in mind. Each approach often tackles a
separate aspect of the code optimization problem (libraries, kernel, communication, etc).
A great support in the codesign process is therefore to rely on an environment where
each of these problems can be addressed. In the following we review main Exascale
projects around the world that have led to significant advances regarding the different
issues raised.

2.4 Research projects 36

2.4.3 Global projects overview

Asia, America and Europe accounts for 98.8% of the use of HPC systems in the world
(table2.1).

Continents
Number of

systems
System

share (%)
Rmax

(PFlops)
Rpeak

(PFlops)
Number of

cores
Asia 212 42.4 319.9 529.91 29 013 340

Americas 176 35.2 257.4 377.78 12 496 998
Europe 106 21.2 165.5 217.34 6 306 364
Oceania 5 1 4.5 5.8 230 232
Africa 1 0.2 1.02 1.36 32 855

Table 2.1: Continents HPC shared systems
https://www.top500.org/statistics/list/

We address more specifically in the following projects of countries who invest impor-
tant efforts in exascale research.

2.4.4 Asian projects

Over four consecutive years now, China has hosted the two world’s fastest supercom-
puters as measured by the Linpack benchmark: the 93 petaflops Sunway TaihuLight
since june 2016 and the 33 petaflops Tianhe-2 (MilkyWay-2) since june 2013. China is
obviously leading Asian research towards exascale computing. The country is funding
at least three exascale prototypes. The first one to be delivered is Sugon developped by
Dawning Information Industry and owned by the Chinese Academy of Sciences. The
second exascale project is the Tianhe familly supercomputers designed by the National
University of Defense Technology (NUDT), and finally the Sunway TaihuLight built by
Sunway[51]. It has already been announced that the fisrt exacale prototype could be
deployed sooner than expected, as soon as 2019 on the coast of Shandong province to
support oceanographic research in the South China Sea and around world. Unfortu-
nately without details on the architectural features.

In 2011, Japan held the title the world fastest supercomputer for the first time with
the ’K computer’[52] running the Linpack benchmark at 8.16 Pflops (10.5 Pflops with
recent updates). The K computer was designed by Fujitsu for the japanese RIKEN
Advanced Institute for Computational Science (AICS) located in Kobe. Its architec-

https://www.top500.org/statistics/list/

2.4 Research projects 37

Figure 2.23: Post-K Computer Hardware

ture is based on SPARC64 processors and consists of more than 80 000 compute nodes
(CPU) connected through a fujitsu interconnect called Tofu [53]. Each CPU is made of
8 cores running at 2GHz sharing 6MB of L2 cache. The CPU delivers peak performance
and performance per Watt of respectively 128 GFlops and 2.2 GFlops/W. To cope with
scientific and other HPC workloads, each core has 256-bit large double precision float-
ing point data registers. There are four floating-point multiply-and-add execution units
among which two can operate in parallel with SIMD instructions [52].

In april 2014, the japanese government launched the FLAGPSHIP 2020 project in order
to develop a successor to the K computer and properly named the “Post K Computer”
[54]. RIKEN AICS is in charge of its development and Fujitsu has been selected as the
vendor partner. Both companies annouced that Post-K Computer would be based on the
Arm 64-bit architecture to reach exascale performance by 2020 (mostly 2022 after recent
CPU design headaches [54]). This is why, as seen in 2.3.2, Fujitsu is the lead partner
of the Arm HPC extension effort SVE. The RIKEN Post-K supercomputer (figure 2.23)
is based on a manycore architecture and HPC-optimized CPU (TSMC 10nm FinFET)
coming from the ARMv8 ISA with HPC Extension SVE. It also benefits from a 6D
mesh/torus Interconnect topology and a three level hierarchical storage system (silicon
disk, magnetic disk and storage for archive). Post-K will also implement a job-dedicated
local file system to exploit I/O locality for acceleration and scalability[55, 56].

2.4 Research projects 38

Figure 2.24: The US Exascale Computing Project Roadmap

2.4.5 American project : Exascale Computing Project (ECP)

The Information Processing Techniques Office (IPTO), which is part of the US Defense
Advanced Research Projects Agency (DARPA), was the first to undertake exascale re-
search as soon as 2007 [57]. One of the main objectives at that time was to identify
the overall challenges and problems to provide a sufficient basis for the development
and deployment of Exascale-class systems by 2015. The reality of these challenges and
constraints have led public authorities to adjust the inital ambitions and announced that
such achievement would not take place before 2023-2025 (figure 2.24) [58].

The US Exascale Computing Project (ECP), started in 2016, is the current american ini-
tiative for research, design and delivery of at leat two exascale supercomputers by 2023,
which includes both software and hardware technologies. This research is funded by the
Department of Energy (DoE), National Nuclear Security Administration (NNSA) and
the Office of Science (SC) as a common effort to reach the objective with two projects:
FastForward and DesignForward [59]. To address energy efficiency, reliability and overall
performance problems of exascale computing, the following U.S. companies have been
involved : Advanced Micro Devices (AMD), Cray Inc. (CRAY), Hewlett Packard Enter-
prise (HPE), International Business Machines (IBM), Intel Corp. (Intel) and NVIDIA
Corp. (NVIDIA). The ECP has three phases (see figure 2.25). Applications, Software
and Hardware developments are run in parallel with pre exascale tests between 2020 and
2023.

2.4 Research projects 39

Figure 2.25: ECP Timeline

2.4.6 European Projects

European HPC programme towards exascale computing began with efforts funded by the
European Commission (EC). Since 2011, the European Extrem Data & Computing Ini-
tiative (exDCI) has supported key research in areas such hardware design, programming
models, algorithms, tools and applications within seven parallel projects funded by the
EU’s Seventh Framework Programme (FP7/2007-2013)[60]: CRESTA (Collaborative
Research into Exascale Systemware, Tools and Applications), DEEP-ER (Dynamical
Exascale Entry Platform – and its Extended Reach), EPiGRAM (Exascale Program-
ming Models), NUMEXAS (Numerical Methods and Tools for Key EXAScale Comput-
ing Challenges in Engineering and Applied Sciences), EXA2CT (Exascale Algorithms
and Advanced Computational Techniques) and MONT BLANC (European Approach
Towards Energy Efficient High Performance).

As seen in the Introduction, the work leading this thesis was done in the framework
of Mont-Blanc phase 2 project. Compared to American and Asian approaches, the Eu-
ropean projects seem one level below in terms of funds allocated, scattered, repetitive
or even contradictory. It is a direct consequence of the divergent interests between the
member states, each wanting to lead its own project. Take the example of the MaX
project: MAterials design at the eXascale (2015-2018) aiming to create “an ecosystem
of capabilities, ambitious applications, data workflows and analysis, and user-oriented
services. At the same time, MaX enables the exascale transition in the materials do-
main, by developing advanced programming models, novel algorithms, domain-specific
libraries, in-memory data management, software/hardware co-design and technology-

http://www.max-centre.eu/
http://www.max-centre.eu/
http://www.max-centre.eu/
http://www.max-centre.eu/
http://www.max-centre.eu/
http://www.max-centre.eu/

2.5 Conclusion 40

transfer actions”. One wonders how this project is complementary to the previous 7
projects.

2.5 Conclusion
This chapter introduces the field of High Performance Computing: the main actors,
applications and technologies deployed, but also current and upcoming challenges. The
field of applications covers serveral domains and disciplines, from fundamental sciences,
indutrial modeling and simulation or bank analyses and financial predictions. All of
these applications has in common a huge amount of data to process and relatively short
time results. Since few years, has startted the race to the exascale. An exascale su-
percomputer will be capable to perform a “Quintillion” of instructions per second. At
the global level, research and development are still far from getting there and the road
to the exascale is peppered with difficulties in hardware and software. Researchers and
engineers must change paradigms and explore inovative concepts.

In most scientific publications about exascale computing, “co-design” stands out as the
most suitable methodology to build efficient and optimized machines. In short, co-design
is a method where there are constant exchanges between two parallel developments in
the software stack and the hardware architecture. The goal is to ensure a better com-
putational efficiency, but it is clear that the problem related to energy consumption is
the first factor of all the requirements. Thus, HPC could become HPCPE with the
predominance of power efficiency. Manufacturers offer various multi-core or many-core
based architectures, such as, the low power and cache-free manycore architecture Sunway
SW26010 running RISC ISA. There is a new upcoming of HPC processor architecture:
Arm. Arm has demonstrated the energy efficiency of its low power processors in the field
of embedded systems. The collaboration with the japanese RIKEN institute and the
HPC vendor Fujitsu to build the first Arm-based “Post K Computer” to reach exascale.

Also, we have addressed different design exploration methodologies to analyse and de-
velop system architecture opportunities.. This chapter concluded with an overview of
the reports and major exascale projects known at the global level. There are competing
industrial and research projects in Asia, Europe and the United States, with different
deployement deadlines, but the same purpose towards exascale computing. Exascale
computing aims to boost economic competitiveness, as weel as advanced fundamental
research disciplines. Next chapter introduces the modeling methodology applied based

http://www.max-centre.eu/
http://www.max-centre.eu/

2.5 Conclusion 41

on a combination of tools and models at different levels of abstraction: Arm fast mod-
els, the open source Gem5 framework and the Synopsys Platform Architect tool. This
chapter also presents results about correlation and scalability of workloads between the
modelled virtual platforms and existing Arm-based platforms, such the Arm Juno board,
the Arm Seattle or the Applied Micro’s Xgene1.

Part II

EXPERIMENTATION AND
ANALYSIS

Chapter 3

Modeling and exploration
methodology

3.1 Introduction
This chapter presents modeling methodologies, existing tools and the study of their
combination in an efficient trade-off between simulation time, complexity and result ac-
curacy. We examine first relevant state of the art tools, models and platforms to define
an exploration approach matching all these needs. We then characterize a set of relevant
HPC benchmarks on different platform configurations to verify that we meet all condi-
tions for exploration effectiveness given a set of architectural requirements to consider
(performance, memory architecture, interconnect, scalability).

Figure 3.1 decribes the main levels of abstraction when designing a system on chip.
Indeed, Algorithmic refers to the highest level where components can be seen as func-
tions and their interactions in the overall system. Modeling at this level usually consists
of behavioural blocks described with a high level language (SystemC, UML VHDL, etc.),
sometimes using schematics or graphs. Architectural studies aims to provide the chip’s
High level Architecture Specification (HAS). Therefore, simulating at this level requires
both to remain fairly realistic (close to hardware components internal behaviours) while
keeping simulation times acceptable in order to make a large campaign of configurations
and exploration of architectural choices. RTL, Gate and Transistor abstraction levels al-
low to address logical design, physical design and the manufacturing technology process.
Languages such Verilog or VHDL are commonly used for these purposes.

3.2 Virtual prototyping and system components 44

Figure 3.1: Modeling levels

3.2 Virtual prototyping and system components

3.2.1 Simulation tools

Our approach is to choose complementary tools and platforms supporting Arm 64-bit
features in a way to define a global methodology for configuration and architecture
exploration. The list of tools we have evaluated includes Vista (Mentor Graphics), SoC
Designer (Carbon), GEM5 (academic open source), System Generator Canvas (Arm) and
Platform Architect (Synopsys). In addition to performance, ergonomy and correctness,
the main concerns that have been raised for selection are the ability to address multiscale
analysis (possibly up to several tens of 64-bit Arm cores), support for coherency in a
multicore and multi-socket system and different types of memories and interconnect.

3.2.1.1 Vista

Vista is a TLM 2.0 simulation framework from Mentor Graphics for architectural design
exploration and virtual prototyping. It provides early abstract functional models of

3.2 Virtual prototyping and system components 45

complex hardware of full system architectures with complex bus architectures and multi-
core communications models. The virtual platforms can be used beneficially to develop
and debug embedded software (e.g. driver and firmware) possibly under a complete OS
control, before real hardware is available. An example is illustrated in figure 3.2 on a
realistic dual core system including memory and communication system but also common
peripherals (sdcard, usb, ethernet) under the control of a fully functional Linux kernel.
Such level of modeling and execution detail here is justified by the need to evaluate real
code intended for embedded platforms. For example, simulation of the architectural
model of figure 3.2 takes a few minutes to boot linux. Hower, the limitation is the fact
that system architeture is Armv7 32-bit.

3.2.1.2 SoC Designer

SoC Designer, initially developped by Arm and owned now by Carbon Design Systems,
is a tool for the development of SystemC simulation platforms allowing architecture pro-
filing and software validation in parallel with hardware development. It is based on a set
of cycle accurate and wide range of fast models of Arm IPs that can be easily configured
and assembled to model a fully functional system architecture and perform a detailed
analysis of related hardware and software. An interesting aspect of this framework is
that the models are generated directly from Arm register transfer level (RTL) code en-
suring high model relevance. The figure 3.3 shows the reference platform package used
for evaluation. It is composed of two Cortex-A57 clusters coherently connected through
the Cache Coherent Interconnect CCI-400 and supports the full Arm ACE coherence
protocol. The system includes a ROM model, implementing the firmware stack to boot
the platform, and the Generic Interrupt Controller GIC-400. Like Vista previously, the
resulting cycle-accurate virtual prototypes provide a way to develop and validate soft-
ware before committing to physical hardware implementations. Both Vista and SoC
Designer based platforms will be therefore less effective outside the scope of embed-
ded systems, in particular to address significantly bigger designs such as those expected
in HPC architectures reaching the order of several tens of cores. It can therefore be
used to investigate locally what happens at cluster or compute node level, including
power consumption, but for the purpose of our study we will need also to address sim-
ulation frameworks enabling modeling capabilities at a higher level of abstraction than
TLM/RTL.

3.2 Virtual prototyping and system components 46

Figure 3.2: VISTA modelled platform and output view

3.2 Virtual prototyping and system components 47

Figure 3.3: Reference platform for SoC Designer evaluation

3.2 Virtual prototyping and system components 48

3.2.1.3 GEM5

Gem5is an academic open source system modeling framework written in C++ and
python. The default components designed with this environment are delivered under
a BSD license (permissive free software license). It is possible to add new capabilities
according to the users needs within the limits of interoperability between existing com-
ponents in the tool. Actually, the Gem5 simulator is a “modular discrete event driven
computer system simulator”, which means that components can be rearranged, param-
eterized, extended or replaced easily to suit our needs, and time is considered as a serie
of discrete events.

Gem5 is intended for the simulation of one or more computer systems in various ways.
It provides interchangeable CPU models with different levels of detail (one-CPI CPU,
in-order CPU and out-of-order CPU) but it is also possible to add a custom CPU
model. All CPU models use the same high-level Instruction Set Architecture (ISA).
CPUs can be further abstracted by the use of traffic generators, either based on statis-
tical behaviours or traces. It also supports multi-system components (CPU, crossbars,
caches, etc.) which make easier the creation of complete Arm based SoC platforms. Sys-
temC/TLM co-simulation can be profitably used by including Gem5 as an event kernel
SystemC thread. For all of these reasons, Gem5 a good match for architectural analysis
at different levels. Multi-scale simulations are carried out with the following modes:

• Full system mode: a complete system including devices, operating system (linaro or
Ubuntu) and file system can be configured to simulate the execution of applications
(benchmarks). In theory, Gem5 supports up to 8 64-bit Arm generic cores in
this mode, but only four actually boot in practice. This limitation comes from
the Generic Interrupt Controller (GIC) modeland should be fixed in the coming
months.

• Syscall emulation mode: binaries are directly executed on the platform created.
No Operating System is needed, the simulator directly provides a small set of
operating-system-like services (Syscalls). Simulation is faster but only for simple
programs. Full HPC applications can not be processed in this mode because library
dependencies require system calls that are unsupported in this mode.

The medium scale configuration of figure 3.4 is considered to address a relevant HPC
topology. At the time of this modeling evaluation, it was the largest full system platform
we could create because of the GIC model limitation. Software stack from the gem5

http://gem5.org/Introduction

3.2 Virtual prototyping and system components 49

Figure 3.4: Gem5 Medium scale platform

community can then be used to build a linaro kernel supporting the resulting system
architecture.

3.2.1.4 System Generator Canvas

This part of the evaluation focuses on Arm models, profiling and debugging tools. Sys-
tem Generator Canvas is used to model virtual platforms with Arm Fast Model IPs
(AFM). AFM are described using LISA (Language Instruction Set Architecture) and
can be used to define accurate prototypes supporting simulation at instruction level,
also making use of joint hardware and software co-development to reduce the final inte-
gration time. AFM are loosely timed models which leads to very fast simulation times
but the results cannot be used for performance prediction without additional timing
annotations.

In an effort to continuously improve the accuracy of these models, Arm roadmaps plan to
add further timing annotations to the components (CPU, caches, interconnect, memory)
by setting latencies or CPI (Cycle Per Instruction) derived from real workload execu-
tion on an existing board. This allows to improve greatly performance predictions for

3.2 Virtual prototyping and system components 50

system architectural studies. There are two main possibilities when using these models:
the first one is to generate an Arm Fixed virtual Platform (AFP) which can only be
used within Arm toolchains, and the second is to export the platform as a black-block
subsystem compliant with SystemC/TLM-2.0. The resulting methodology allows cre-
ating mixed platforms combining LISA/AMBA, SystemC/TLM models and compliant
interfaces, making it easier to add custom SystemC/TLM components. To fully evaluate
this framework, it has been decided to address all Arm tools relying on Fast Models,
namely DS-5 for debugging and Arm Compiler 6 supporting optimized code generation.
Considering this, the characterisation objectives are to build an AFM version of an Arm
Juno-r1 board (in the subsection 3.2.2), study the correlation between the real plat-
form and models, build the largest system configuration based on Arm IPs (Cortex-A57,
Cortex-A72, CCN508, CCN512, GICv3), address software development and simulation,
debug and profile HPC benchmarks with DS-5 and compare Arm Compiler 6 and GCC
in terms code optimization ability. The topology set with this platform is illustrated in
figure 3.5.

3.2.1.5 Platform Architect

Platform Architect with Muticore Optimization (MCO) is a SystemC TLM methodology
from Synopsys. It is essentially a graphical environment which allows to easily capture,
configure, simulate and analyze system-level performance and power consumption of
multicore Arm based SoC platforms by means of virtual prototypes. The development
of generic virtual platforms benefits from various libraries of SystemC TLM models to be
conveniently used for architectural explorations, including traffic generators, intercon-
nect, memory subsystem and processor models. Task modeling is based on application
task-mapping and task-driven traffic generation using a Generic File Reader Bus Master
(GFRBM) and Virtual Processing Unit (VPU). The VPU minics the real processor be-
havior as far as performing memory transactions and consuming concerned processing
cycles. The memory traffic is bidirectional, each VPU can issue cacheable requests and
respond to snooping transactions coming from other VPUs. The task graph consists
of a number of synchronized threads, each thread gets mapped on one VPU and the
coherency protocol maintains the consistency of the shared data. This methodology
helps to focus on e the global system interconnect and memory architecture without
executing the real firmware/software stack. The MCO methodology takes advantage of
previous modeling and traffic generation features to further abstract and speedup SoC
architecture simulations. The analysis takes place in two steps: task-graph generation
and optimization using trace-driven traffic generation.

3.2 Virtual prototyping and system components 51

Figure 3.5: 48 AFM Cores block diagram

3.2 Virtual prototyping and system components 52

Figure 3.6: Platform example based on Cortex-A57 Fast Model

The example of figure 3.6 illustrates the configuration of a virtual platform based on
Cortex-A57 Fast Models which will be used to create a SystemC performance model
of the application (task-graph) and bridges to translate AMBAPV transactions from
Cortex-A57 in TLM2 to interact with the rest of the system. We also have a simple
memory model, a TLM bus, and clock and reset generators. The objective here is to
generate a trace database from Dhrystone execution on the CPU. The simulation is done
in frontdoor mode, meaning that the CPU really uses the bus transactions for requests
to the memory and all traces are saved. This is heavy for disk usage.

Figure 3.7: Equivalent VPU based platform

3.2 Virtual prototyping and system components 53

Figure 3.7 is the corresponding VPU platform used for interconnect and memory sub-
system performance optimization based on previous trace-driven traffic generation. The
main difference is that this platform is now based on a VPU to mimic the Cortex-A57
fast model behavior. This is useful when it comes to address large scale exploration in-
volving complex high speed interconnects that might not be compatible with fast models.
A VPU is different from a traffic generator, but behaves like a real CPU without the
need of a full software layer (BIOS, bootloaders, OS, libraries). However it is able to
react to the traffic on the interconnect and respond to snoop requests, making it possible
this way to analyse data coherence issues properly. The following describes the global
approach on the Dhrystone benchmark. Figure 3.8 represents the corresponding task
graph wich is derived from simulation results of an AFM platform.

Figure 3.8: Dhrystone task graph

A set of parameters can be used to filter the task graph in terms of minimum number
of instructions, access types and function context in the workload. This allows a better
view of the execution profile and dependencies among functions, which will be useful
later to derive a task graph and analyse application parallelism and scalability. Figure
3.9 shows the distribution of dhrystone benchmark amoung available VPU cores, cache
hit and miss, and the number of snoop trancations received and responses emmited.

3.2 Virtual prototyping and system components 54

Figure 3.10: Task graphs results With vs Without L3 cache

Figure 3.9: Simulation outputs: Fast models vs. VPU (Dhrystone benchmark)

For instance figure 3.10 shows that adding the level 3 cache within the on-Chip
coherent interconnect, leads to over 28% of execution time reduction.

3.2.2 Hardware platforms

In this section, we describe a set of real ARMv8 based development boards available at
the beginning of this work. These platforms were used, as a preliminary step of this work,
to verify the relevance of the different virtual prototyping and simulation tools addressed
in subsection 3.2.1. The Juno Arm Development Platform is one of the first available
platforms featuring the ARMv8-A performance and low power ISA with clusters of two
Cortex-A57 and four Cortex-A53 cores. This board is particularly useful to deal with
the performance cluster (dual Cortex-A57 of the MPCore big.LITTLE processor), Cache
Coherent Interconnect (CCI-400) and DDR3-1600 dual channel memory controller, and
check the accuracy of previous models (figure 3.11).

3.2 Virtual prototyping and system components 55

Figure 3.11: Juno board diagram

Applied-Micro (APM) is also among the first to propose a new generation of platforms
based on ARMv8 processors. It features eight cores runnning at 2.4GHz, 8MB L3 cache,
and 4 DDR memory channels manufactured in 40nm TSMC process. APM X-Gene1 is
made of a SoC including four clusters of two Arm 64-bit cores running at 2.4 GHz, the
APM coherent network Interconnect and a DDR3 controller supporting 16GB (figure
3.12). In our characterisation effort of real hardware, we also addressed the use of an
AMD Seattle board based on four clusters of two Cortex-A57 cores with AMD Coherent
Interconnect at 2 GHz and two DDR4-3733 memory controllers (figure 3.13). This chip
is designed at the 28nm process level.

3.2 Virtual prototyping and system components 56

Figure 3.12: APM first ARMv8 processor : Xgene1 Storm

Figure 3.13: AMD Seattle’s architecture : Floorplan and block diagram

https://www.enterprisetech.com/2014/08/12/applied-micro-plots-x-gene-arm-server-future/
http://techreport.com/review/26901/amd-spills-beans-on-seattle-architecture-reference-server

3.2 Virtual prototyping and system components 57

3.2.3 programming support for HPC

To analyse performances carefully, hardware is not the only consideration. HPC appli-
cations rely heavily on specific libraries to further build on specific processing features.
This subsection introduces the set of features that are used essentially to optimize soft-
ware performances.

3.2.3.1 Libraries

Automatically Tuned Linear Algebra Software(ATLAS) is an open-source project that
aims to provide a set of commonlly used HPC mathematical calculations. These li-
braries can be automatically tuned for a specific hardware platform to ensure higher
performances. HPC workloads generally process millions of callbacks of mathematical
functions. Accumulating small gains, but on a very large number of function calls,
can potentially lead to very important execution speedups. Arm Performance Libraries
(APL) are optimized ATLAS libraries tuned by Arm software developpers for ARMv8
high-performance processors. APL are based on BLAS, LAPACK (Linear Algebra
PACKage) and FFT (Fast Fourier Transform) routines with OpenMP parallelization
directives [61]. The DGEMM benchmark exposes typical floating point processing that
can be exploited with this library. First evaluations on this benchmark report for ex-
ample 12% performance improvement compared to the original open-source version of
OpenBLAS. APL is used systematically to optimize floating point processing in the
following.

3.2.3.2 Programming models

OpenMP (Open Multi-Processing) is an API (Application Programming Interface) for
parallel programing at compute node level. It provides a set of compiler directives,
library routines and environment variables to improve parallelism in different program-
ming languages such as Fortran or C/C++. It was used in different simulations to de-
rive multithread implementations while taking care of accesses to shared memory data.
OpenMPI is an open-source project of the standard Message Passing Interface (MPI)
implementation. The definition of this message passing based library results from a
consensus made by the MPI standardization forum. OpenMPI is developed and main-
tained by a consortium of academic, research, and industry partners. In fact, contrary
to OpenMP, MPI works at cluster level and allows to manage communications between
compute nodes. OmpSs (OpenMP StarSs) is an effort developped by the Barcelona Su-
percomputing Center (BSC) to integrate features from the StarSs programming model

http://math-atlas.sourceforge.net/
https://developer.arm.com/products/software-development-tools/hpc/arm-performance-libraries
http://www.openmp.org/
http://www.open-mpi.org/

3.2 Virtual prototyping and system components 58

they developped into a standard programming model (OpenMP). Specifically, it aims at
extending OpenMP with support for asynchronous parallelism and heterogeneity. As a
result, OmpSs is tailored to address GPU acceleration and should not have a particular
benefit for CPU based compute nodes. Its directives extend OpenMP for accelera-
tion based APIs like CUDA or OpenCL. POSIX (Portable Operating System Interface)
thread (Pthread) is the native parallel execution model that can be found in Linux dis-
tributions [62]. POSIX threads is a lower level API for working with threads offering
fine-grained threading-specific code to permit control over threading operations. Unlike
OpenMP, the use of Pthreads requires explicit parallelism expression in the source code
(e.g. hard-coded number of threads).

3.3 Exploration methodology 59

3.3 Exploration methodology

3.3.1 Definition and metrics

An important element in the exploration methodology is to evaluate different possible
design alternatives on processing efficiency. We consider two metrics to evaluate the
processing efficiency. The first one is based on floating point operations per second
(GFLOPS) which is reflective of the processing power for HPC workloads, and the sec-
ond is the FLOPS efficiency expressing the ratio of actual versus theoretical FLOPS
supported by the system, and can be calculated as follows:
PerformanceEfficiency(%) = ObtainedP erformance

T heoreaticalP erformance
= MeasuredP erformance

NumberOfCores∗F requency∗NumberOps

Another key point is to extend previous approach to allow the robust analysis of memory
hierarchy, performance (execution time and throughput) and scalability (considering the
possible impacts of cache). Given previous outcome, these metrics and more especially
the cache statistics only relates to the cluster level (L1 and L2 cache) and more impor-
tantly with the L1 cache which has the most performance impact typically have a hit
rate above 95% in real world applications. The ability of virtual platforms to produce
reliable memory / interconnect configurations and related transaction information rep-
resents a fundamental aspect of HPC architecture design analysis.

Finally, since the target platform is designed to take advantage of large ARMv8-A clus-
ters, communication topology and memory system are key issues to address, a final
important aspect is to extend the analysis at a larger scale. We aim to support simula-
tions up to 128 cores four our specific exploration needs. This can greatly benefit here
from the use of VPUs introduced in subsection 3.2.1.5. Figure 3.14 illustrates the main
difference between the VPU and the commonly used traffic generator. In fact, a VPU
acts like a real processor in terms of outgoing and incoming traffic. Traffic generators
are known te be one way issuing, the traffic is always from top to botom. In that case,
it is not possible to implement any coherence method between virtual masters as they
can not communicate between each other. By opposition, VPUs rely on a task graph
featuring the load/store and read/miss ratio of each task. The traffic inside the on-chip
interconnect is characterized in a realistic way.

Our modeling methodology is based on the use of Arm Fast Models and Synopsys
Platform Architect. Arm Fast Model based platforms are used to run real software and
then generate application profile traces for function execution and memory accesses.
From these, we generate a performance workload model (also referred to as task graphs)

3.3 Exploration methodology 60

Figure 3.14: VPU vs Traffic generator

which gets mapped on processing resources (also knowns as Virtual Processing Units
or VPUs) inside an architectural model including also contains a SoC cache Coherent
Interconnect (SCI) and memory subsystem. Figure 3.15 summarises our performance
analysis flow. First of all, we run real applications on a running a Linux kernel on an Arm
Fast Models based Virtual Platform. Then, from the executed software functions and
memory access traces, task graphs are generated using Synopsys graph generator tool.
The task graph obtained is used to perform realistic simulation traces in our large scale
Virtual Processing Unit (VPU) platform in Platform Architect (SystemC/TLM models).
Figure 3.15 summarizes the overview of our exploration methodology and modelling
flow. These considerations lay the foundation for proper investigation of architecture
capabilities which are explored in the following in terms of processing efficiency, memory
hierarchy, interconnect, topology and scalability.

3.3.2 Extended VPU platform

Thus released from software constraints, our goal now is to build a platform (figure
3.16) with a coherent interconnect, supporting tens of processors (up to 128 cores or
more), efficient memory controllers, and analyze the scalability of the system. Figure
3.16 provides a high level view of our 128 cores VPU platform. We have different types
of VPU (equivalent of a CPU), PCIE, SATA, etc. The IMSS block contains the coherent
interconnect topology and the memory subsystem including memory controllers.

3.3 Exploration methodology 61

T

Figure 3.15: Global Modeling Methodology

Figure 3.16: Extensible VPU platform (Dhrystone benchmark)

3.3 Exploration methodology 62

3.3.3 Correlation study

3.3.3.1 Evaluation of virtual platforms

Correlation in the following refers to the analysis of the simulation or execution results
produced by at least two types of systems: one real board and its equivalent as a
virtual platform. Actually, both systems come with identical configurations in terms
of architecture, frequency, memory bandwidth, type of memory controller, interconnect
(figure 3.17). With the help of the different tools and platforms exposed previously,
we start by configuring virtual platforms in similar configurations to Arm Juno and
AMD Seattle boards in a way to compare against fast models for the set of architectural
parameters previously exposed. Task graphs are then derived from fast models execution
traces, which are further used to simulate equivalent VPU platforms. Perf, a lightweight
profiling tool for Linux, is used to get the execution profile and average CPI of the same
test programs executed on the real boards and finally compare the results.

Figure 3.17: Principle of correlation study

3.3.3.2 Processing efficiency

Figures 3.18 and 3.19 show examples of correlation study for three platforms:

• AFM (Arm Fast Models based virtual platform) : 2 clusters of 4 Cortex-A57 cores,
with CCN512 Interconnect

• AMD Seattle board : 4 clusters of 2 Cortex-A57 cores, with AMD coherent Inter-
connect

• APM Xgene1 board : 4 Clusters of 2 ARMv8 cores, AppliedMicro (APM) coherent
Interconnect

3.3 Exploration methodology 63

Figure 3.18: SGEMM GFlops Scalability

Figure 3.19: SGEMM Performance efficiency correlation

We consider for this analysis the same SGEMM (Single precision General Matrix Mul-
tiply) benchmark, optimized with the latest Arm Performance libraries for optimized
basic linear algebra subprograms (BLAS) and using POSIX threads (Pthreads) for mul-
tithreading. All of these platforms operate at 2400 MHz with an average CPI of 1.35
obtained on Juno and then applied to AFM platform.

The SGEMM 8192 x8192 benchmark allocates 1500 MB matrix values in memory. We
observe that the scalability of this benchmark evolves with the number of used codes
(from 1 to 8). Each thread of the workload is assigned to a specific core and they ex-
change transactions to each others through the local distributed memory. The AMD
platform is the one with hardware characteristics are closest to the AFM platform and
one can see that their results are similar with a small margin error.

The traffic on the interconnect increases with the number of running threads. This
affects the performance of the workload because the coherent protocol implementation
can cause additional latencies. Here we have three systems with different interconnect,
the CCN512 of AFM platform seems to be more robust to distributed memory require-

3.3 Exploration methodology 64

ments of this application. Its efficiency remains high (81,65%) with 8 threads, while that
of AMD is 68,10% and that of APM is of 50,31% (figure 3.19).

3.3.3.3 Memory and cache consistency

Memory hierarchy strongly affects performances in large computer architecture design.
A careful analysis is essential at this level to make a reliable architectural decisions.
Figure 3.20 therefore reports the ability of virtual platforms (Arm Fast Models) to
capture cache level statistics compared to the real hardware. The metrics considered here
are cache hit/miss statistics (here L1, but also possibly L2) and data rate performance
(throughput) on the STREAM benchmark.

Figure 3.20: Arm Juno vs. AFM memory level analysis

3.3.3.4 Scalability

As we address large systems that can possibly consist of hundreds of cores, scalability
i.e. the ability to process efficiently an increasing amount of threads, is a very important
concern. This question is first discussed on the SGEMM benchmark example configured

3.3 Exploration methodology 65

Figure 3.21: From 1 to 48 threads scalability

with up to 8 threads. The platforms used for this correlation study are based on Arm
Fast Models (two clusters of four Cortex-A57 cores with CCN512 Interconnect), an AMD
Seattle board (four clusters of two Cortex-A57 cores with AMD coherent interconnect)
and an APM Xgene1 board (four clusters of two ARMv8 cores with APM coherent In-
terconnect). We can examine in figure 3.21 the ability of the AFM platform to ensure a
continuous increase of performances. We additionnaly inspect the efficiency and traffic
generated on the interconnect which are important matters to verify the ability of the
system to scale up with larger workload memory space utilization.

Due to CCN-512 limitations, we target configurations up to 48 cores in the follow-
ing simulations. Figure 6 reports performance measurements in terms of execution time,
number of floating point operations per second and efficiency while increasing the num-
ber of threads. The efficiency is defined as the ratio between the measured and the
theoretical maximum performance. X-axis represents the number of threads and values
on the y-axis relies on a common scale for performance (seconds and GFLOPS) and
efficiency (%). Inspecting the time and GFLOPS traces, system performance increases
until the 22nd thread and then drops, indicating a peak for a 8192*8192 configuration
(involving 1.5 GB of RAM). This means that beyond this peak value, increasing the
number of cores is useless for this benchmark configuration. As the parallelism grows,
the distribution of workload reaches a point above which there is an heterogeneity of
computations caused by desynchronizations between threads due to an under-utilization
of some cores. This is also the reason for multiple non deterministic variations we can
observe after this point. A larger SGEMM matrix size would be required to reach the
peak performance at the 48th thread, but we start to exceed here the limits of AFM
abstraction level leading to prohibitive simulation times (more than 2 weeks). The re-

3.3 Exploration methodology 66

duction of the execution time is proportionally divided by the number of threads as
we process the same workload with increasing number of cores. As previously noticed,
there is a point where thread heterogeneity limits the efficiency of parallelization leading
therefore to a performance threshold level.

3.4 Conclusion 67

3.4 Conclusion
In this chapter, we have examined in detail how a combined use of relevant models,
tools, platforms and benchmarks could be used to define a robust design space explo-
ration approach adapted to the tight processing efficiency constraints of upcoming HPC
SoCs, especially in the new perspectives offered by 64-bit ARMv8-A cores. Proper ar-
chitectural exploration is decomposed in two steps that allow i) reliable modeling and
simulation at node/cluster level and ii) scalability analysis of a larger number of nodes
using ARMv8-A core models. Reported experiments and results have shown the ability
of the approach to reliably study central design parameters, namely in terms of FLOPS
performance and efficiency, cache and memory hierarchy, and scalability support up
to 128 nodes. Correlation results demonstrated the functional accuracy of Arm fast
models. Therefore, the combination of tools towards our methodology and modelling
goals are described in the following: i) Arm fast models platform: to maintain a SoC
composed of the last Arm IPs versions available and provided as fast models, to enable
software/hardware cosign, firmware development and HPC workloads optimizations and
ii) Platform Architect will be mainly used for interconnect and the memory sub-system
exploration, independently of software constraints, by using interactive traffics called
task graphs, generated from a real HPC software execution on the fast models based
platforms and iii) Gem5 will be used for cycle accurate ARMv8 generic cores and clus-
tering simulations.

Since the target platform is designed to take advantage of large ARMv8-A clusters,
communication topology and memory system are key issues to address. In that respect,
SoC partitioning becomes an attractive option to consider due to high development and
production costs of large monolitic chips in the latest silicon technologies. Next archi-
tectural study extends therefore previous exploration approach (Platorm Architect, 64-
bit Arm cores and a specific interconect) with necessary hardware requirements, espe-
cially regarding inter chip cache coherence support between compute nodes, in a way
to study the impacts and efficiency conditions in different partitioning scenarios. In
the next chapter, we will explore opportunities for multi-SoC partitioning based on a
directory-based coherent interconnect (SCI) defined specifically for this purpose. Using
the methodolgy described we will analyse the impact of SoC partitioning in different
scenario and topologies, and compare their coherence traffic overhead.

Chapter 4

Architectural exploration

4.1 Memory coherency and SoC partitioning
This chapter discusses in detail different aspects of micro-architectural design space ex-
ploration based on the previously defined methodology. This exploration study addresses
more specifically the validity of SoC partitioning as an alternative to using large SoC
designs. Indeed, instead of having one large SoC which is very expensive to manufacture,
there may be two or four small SoCs ensuring coherency between the 128 cores and pro-
viding acceptable performance and power efficiency. On the basis of a monolithic SoC
design integrating 128 ARMv8-A cores, high bandwidth memory (HBM/HMC) and a
Bull Exascale computing network interface controller, the idea is to evaluate coherent
multi-SoC models (i.e. two SoCs of 64 cores, four SoCs of 32 cores) communicating
through chip-to-chip ports and coherent proxies (figure 4.5).

Figure 4.1: SoC partitioning scenarios (Mont blanc project)

4.2 Cache coherence protocols 69

Considering the global architecture model (section 4.3.5.3), a bottleneck lies in the
cache coherence management because existing snoop based protocols don’t scale with
the large number of caches that are commonly found in HPC processing. Therefore we
introduce a coherence extension of the SoC interconnect (SCI) required for this parti-
tioning. This aims at reducing the complexity of the coherence protocol and additionally
can significantly reduce the energy consumption from the interconnect as well as the tag
lookups in the remote caches.

4.2 Cache coherence protocols
To address the discussions about different methods leading to ensure data consistency
for a given memory hierarchy in multiprocessor architectures, let us first start in defining
what coherence stands for. A suitable definition of cache coherence is given in [63] as
single-writer-multiple-reader (SWMR) invariant. It means that for any memory location
or space, at a given cycle time, there might be only one single writer or a number of cores
that may read it. Consequently, implementing a cache coherence mechanism requires
avoiding the situation where two separated caches contain two different values for the
same memory address at the same moment. In a multicore system, there are generally
several caches where data coherence must be achieved. Thereby, a cache coherence
protocol is used in multiprocessor architectures to provide processors with a consistent
view of main memory. Especially, the goal is to reflect the writes made by each processor
to the others, by modifying or invalidating the common cache lines. Then, the cache
coherence protocol provides states to each piece of the main memory stored in the caches.
Considering the MSI (Modified, Shared, Invalid) cache coherence protocol, a cache line in
Modified state is the only valid copy. The cache instance is qualified as the owner but the
copy in memory can be different. To ensure coherence, the cache line must be copied to
memory in case of a cache line replacement. The Shared state means that the line is not
owned by the local cache (even if it has been modified by it) and is at least shared with
the owner cache. The local cache is not responsible for global data consistency. Finally,
the Invalid cache line state causes a cache miss as the stored data is untrustworthy.
There are several extensions of the basic MSI (a.k.a. Illinois) cache coherence protocol,
such as MESI (Modified, Exclusive, Shared), MOSI (Modified, Owned, Shared, Invalid)
and MOESI (Modified, Owned, Exclusive, Shared, Invalid). These methods address the
way of maintaining consistency between the multi-level cache hierarchy and the main
memory. In the past, the memory consistency was handled at the software level, but the
performance requirements became critical as the systems got bigger[64]. This is typically

4.2 Cache coherence protocols 70

inadequate for typical HPC systems. Hardware-based cache coherence protocols thus
appeared to be more efficient and are commonly used now in many computing systems
such as servers. A cache coherence protocol specification must define several key elements
of the protocol background such as hardware components, coherence granularity, caches
sizes, transactions types, coherence interconnect channels or the impact of transactions
on cache line states. Therefore for the same coherence protocol, there may be several
implementations depending on the type of architecture, memory hierarchy, number of
cache elements and topology of the on-Chip coherent interconnect.

4.2.1 Overview

There are many comparison studies between the two main hardware based coherency
approaches: snooping cache coherence protocols (snoopy protocol) and directory-based
cache coherence protocols [15,17,18] . It always emerges that the first one is logically
simple, ideal for ring interconnect topologies but does not scale with large numbers of
caches. This comes from the number of snooping broadcast transactions which increases
quadratically with N ∗ (N − 1), where the N is the number of coherent agents [19] .
The second one scales very well but the drawback is that transactions take more time
because of the additional complexity of directory filtering. The traffic scales in theory
with N ∗ ((N − 1) + 1) = N2 where +1 is due to the request for directory lookup [65].
In reality, this overhead only happens when all caches in a system have a copy of the
requested data which is very rare in a large scale system (tens of caches). As it also
depends on the workload parallelism, snooping traffic could thus be reduced between
caches sharing a copy of the same data. The main counterpart of directory based cache
coherency techniques is their implementation cost based upon on-chip SRAM storage
which size depends on the number of cache lines to manage in the system. Therefore,
the potential for reducing cache coherence complexity attracts a lot of interest as it
impacts the processing efficiency of large scale compute nodes. The goal in the following
is to develop a simulation based analysis for HPC benchmarks in different workload
configurations in order to evaluate the impacts of coherence protocol overhead and SoC
partitioning. To achieve this we use the ARM AMBA 4 ACE protocol (described in the
subsection 4.2.4) supporting features for either snoop or directory based approaches .

4.2.2 Snoop Transaction types

There are two types of snoop transactions: snoop coherence (Write updates) and snoop
data request (Read requests) transactions. Snoop coherence transactions are required to

4.2 Cache coherence protocols 71

maintain coherence of the data shared between caches. Snoop data request transactions
are used to save cluster request times in case of read snoop hits, meaning that the
data requested is available at least in one nearby cache. These transactions have to be
considered in the cost evaluation of SoC partitioning. It is unclear whether there is a
benefit in maintaining inter-SoC read snoop transactions, since the latencies increase
de facto (additional interposer delay for inter-SoC communications), and it could even
be more efficient to seek directly the requested data in the local L3 cache or local
memory when the address belongs to the local (intra-SoC) partition. In this regard the
multi-SoC architecture has NUMA properties, a central foundation of the Intel’s MESIF
coherence protocol where the “Forward” state determines at least one cache element
per socket to be responsible of the coherency. Its behaviour is similare to the “Shared”
state and in addition, it indicates the designated cache responder for any requests for a
given line. This improves the overall performances by saving the bandwidth required to
satisfy memory conflicting requests [66]. For coherence transactions, one potential way
to reduce write snoop transaction overheads is to implement a mechanism of Dynamic
Self-Invalidation (DSI) as proposed in [3], in which each cache should care of removing
its local copy of a cache block before a conflicting access occurs, then the directory cache
line is updated to avoid further potential snoops. Results show that DSI can reduce up
to 41% of the execution time of a sequentially consistent full-map coherence protocol
and up to 26% of both invalidation and acknowledgment messages by exploiting tear-off
blocks. Even though DSI does not impact the consistency of program execution because
it has exactly the same semantics as a cache replacement policy, it can however lead to
unnecessary cache misses [66]. This option was not addressed in our exploration study
because we only focus on the coherence protocol and influence of the directory, but it
could be envisaged for physical design specification of the final system.

4.2.3 Directory based filtering

A directory-based coherence protocol is more appropriate to reduce the number of trans-
actions to those that are only necessary. Limiting the number of transactions will also
reduce the energy consumption due to activity in the interconnect as a direct conse-
quence (reduces traffic and average latencies). This solution requires the use of a "snoop
filter" as presented by Moshovos et al [67]. They propose two means of filtering: i) on the
requesting side (source filtering) by using a "source snoop filter" which sollicitates the
common directory and sends transactions only to the caches which can have the data of
the specified cache line address, ii) at the receiver side (destination filtering) to decide
whether or not to send a transaction to the corresponding cache controller depending on

4.2 Cache coherence protocols 72

the availability or status of the requested data (each cache interconnect port having its
own private directory). In the first approach, there is only one global directory for all
requesting caches, which means that the directory covers all cache lines, then filters the
requests before they reach the on-chip interconnect. The resulting decrease of traffic can
help to significantly reduce activity (thus power) in the interconnect and search of labels
in the remote caches [66]. The second approach has the advantage of decentralizing the
snoop filter into small logical directories. However, it has no impact at all on the internal
traffic of the interconnect. With the source filtering approach, there is only one logical
centralized filter (directory). As the directory must have a complete view of all system
cache lines, the on-chip interconnect topology must be well sized to avoid bottlenecks,
but this is the commonly used approach.

4.2.4 ARM Coherence Protocols

Regarding the target ARMv8 based compute, SoC coherence must be compatible with
ARM standards. There are several existing protocols to choose from, depending on the
needs of the coherence approach, system scalability and the expected traffic in the mem-
ory subsystem. The AMBA protocol (Advanced Microcontroller Bus Architecture) is a
popular open-standard used for communications of several types of functional blocks in
a SoC design. Master (requester block) and slave (receiver block) concepts are common
to all other communication protocols. The on-chip interconnect connects all components
and peripherals with different types of ports (interfaces) and deploying different proto-
cols. Introduced in 1996, the AMBA1 specification addresses two types of buses found in
embedded SoC designs: the Advanced system Bus (ASB) and the Advanced Peripheral
Bus (APB). The single clock-edge version named AMBA2 High-performance Bus (AHB)
was introduced two years later to scale with more complex designs. This procotol, like
previous ones, is based upon low complexity shared buses in an attempt to minimize the
area overhead. Then ARM introduced in 2003 the Advanced Extensible Interface (AXI)
protocol to reach even higher performance and bigger non-coherent SoCs. AMBA3 is
widely deployed in most of embeded systems. However, the AMBA4 ACE (AXI with
Coherent Extension) has been introduced since 2011 in order to meet specific require-
ments at server level (multi-processor). Since the AMBA4 protocol suffer critics about
its incompatibility to non-ring based on-chip topologies, the current AMBA 5 CHI (Co-
herent Hub Interface) comes with improvements on this topic.Architecture exploration
in the following contribution is based on ACE.

4.3 SoC Coherent Interconnect 73

4.3 SoC Coherent Interconnect

4.3.1 Description

The main role of the SoC Coherent Interconnect (SCI) is to manage the communica-
tions between processors (ARM clusters) and to ensure data consistency of the whole
memory hierarchy. Unlike traditional approaches which tries to extend the coherence
of several chips with an additional off-chip coherent interface (e.g. UPI, QPI see 2.2.2),
the proposed SCI is an on-chip solution designed on top of the ARM AMBA 4 ACE
protocol. Even though there is a more recent ARM coherence protocol called AMBA 5
CHI, the conclusions drawn on the SoC interconnect architecture and coherent protocol
overhead in the exloration study are not less relevant. The SCI must:

1. perform parallel communications and determine the order of transactions when
multiple transactions are received at the same time.

2. issue efficiently an incoming snoop request transaction from a cluster to other
coherent clusters with a copy of the data according to the snoop transaction type.

3. centralize and generate snoop responses for the initiating clusters and apply the
required updates or request operations to the next level of the memory hierarchy.

4. perform writeback / writethrough operations and snoop write transactions to en-
sure coherence of the data.

4.3.2 SCI Architecture

All clusters are in the same shareability domain (see figure 4.2). This defines a set of
initiating components and determines which other components are invoved when issuing
coherence transactions. The overall system is composed of 32 VPUs (see 4.3.3), each
VPU can possibly exchange snoop transactions with the 31 other VPUs. This may
lead to very large snoop controllers and important snoop traffic to ensure global data
coherence. In such a type of multi-socket system, a snoop based coherence scheme is
not very efficient because the traffic complexity grows with N ∗ (N − 1) ∗ T , where N
is the number of L2 caches (here 32) and T is the number of incoming transactions,
corresponding to the sum of L2 cache misses and non-cacheable operations. In the
following analysis, we focus on read cacheable transactions because they represent more
than 99% of the traffic generated on the interconnect.

4.3 SoC Coherent Interconnect 74

Figure 4.2: on-Chip Coherent Interconnect

4.3 SoC Coherent Interconnect 75

Cache L1 Icache L1 Dcache L2 cache L3 cache
Size (in #Bytes) 32 KB 32 KB 2MB x 32 clusters 64 MB
Latency (cycle) 3 4 5 15

Associativity (#Ways) 4 4 16 16
Replacement algorithm Round robin Round robin Round robin Round robin
WB/WT (for D caches) - WB WB WB

Cache Line size (B) 64 64 64 64
Data width (bit) 64 64 128 128

Address width (bit) 64 64 64 46
Outstanding buffer 32 32 64 256

Protocol AXI AXI ACE ACE

Table 4.1: Cache characteristics in the 128 cores VPU platform

WB : Write Back

WT : Write Through

4.3.3 Cache model

The design analysis is based on Platform Architect methodology. The platforms config-
ured are shown in Figure 4.6. A Virtual Processing Unit (VPU) is generated to mimic
the behavior of a real ARM processor exchanging transactions through the SCI. Table
4.1 reports the characteristics of the cache subsystem in the platform model.

4.3.3.1 Cache controller

The L2 cache controller must manage the last level of cache shared between cores of a
same cluster. Its behaviour is described in the VPU model featuring three bidirectional
main ports:

• AXI_OUT initiating InOut port, responsible for sending data requests to the
attached snoop controller (for this VPU) and for receiving responses.

• SNOOP_IN slave InOut port, used for incoming snoop transactions from other
snoop controllers.

• MASTER_IN slave InOut port, receiving cacheable/Non-cacheable operations
from the four cores of the CPU cluster.

These ports support a TLM2 FTAXI (Fast Transaction model of the AXI protocol)
interface performing the following ACE transactions:

4.3 SoC Coherent Interconnect 76

• Non-snooping transactions (Write)

• Coherent transactions (Read and Write)

• Memory update transactions (cache line state update, writeback, etc.)

The cache replacement policy is based on Round-Robin Least Recently Used (LRU) al-
gorithms. LRU being the L2 cache of the CPU cluster. Transaction latencies considered
for analysis are:

• TAG lookup delay for any incoming cacheable request through the MASTER_IN
port. This is the time needed by the lookup cache hardware to identify the cache
line index of a corresponding address.

• Data access delay in case of a hit, which represents the latency of a cache for
transfering data to the requesting master (core or cluster).

4.3.3.2 Cache Snoop controller

The Cache Snoop Controller (CSC) is a component in the SCI. The CSC collects input
requests from its corresponding clusters and then:

1. Sends each snoop request address to the Central Snoop Filter (CSF) which queries
the presence bit of the cache line containing that address to the directory.

2. Sends snoop transactions only to the VPU that may have a copy of the data, or to
the Coherent Proxy extension if the data is stored on an external SoC partition.

3. Issues the response to the requester through the response channel (in case of a
snoop hit), or transmits the request to the level 3 cache (in case of snoop miss).

In case of write coherence transactions, the Cache Snoop Controller is responsible for
updating all the caches containing a copy of the cache line in the overall memory sub-
system. Further details are available in figure 4.7 (section 4.3.5.3).

4.3.4 SCI Snoop Filter model

The snoop filter model implemented in the virtual platform has input signals from each
initiator (VPU clusters) and output signals to each slave (L3 cache slice partitions and
memory controllers). It supports the directory protocol for all L2 caches in the system. It
provides an access arbitration on the snoop address and snoop data channels. Supporting

4.3 SoC Coherent Interconnect 77

multiple snoop transactions for the same cache line is a requirement specified in the ACE
protocol. In addition, the filter permits writing dirty cache lines to the main memory
when the flag IsDirty is set. The snoop filter has 32 snoop controllers, 1 centralized snoop
controller, several ring buses and Mux/DeMux components (figure 4.7). A rigorous
model of this coherence extension scheme is defined in the VPU model which is then
used for architecture exploration in the following. From the task graphs, VPUs generate
traffic on the interconnect and the coherence is ensured by a proxy component.

4.3 SoC Coherent Interconnect 78

4.3.5 SoC Partitionning

4.3.5.1 Partitioning topology overview

Connecting multiple chips on an interposer migth look simple. In the scenario where
there are two SoCs, the solution is straightforward in terms of chip-to-chip topology. The
on-chip interconnect therefore allow for bi-directional coherence extension as illustrated
in figure 4.3.

Figure 4.3: 2 SoC : simple Chip-toChip topology

Figure 4.4: Four small SoC : The on-Chip Interconnect partitioning topology alternatives

However there are different ways to connect four SoCs: through an additional routing
module (Hub or Switch) in the proxy or with indirect (forwarding) connections. In this
study, we have considered the following topologies (figure 4.4):

1. All-2-All : this topology requires three additional coherent ports on the SCI for
proxy extension.

4.3 SoC Coherent Interconnect 79

2. Transitivity with a maximum of two hops. Thereby, two additional coherent ports
are necessary on the SCI for proxy extension. Each socket has two direct connec-
tions to the first two neighbors and must use one of them to forward the traffic to
the destination (maximum of two jumps for each SoC partition).

3. Transitivity with a maximum of two hops. This topology has the greatest routing
complexity and may be unbalanced. Partitions S1 and S2 are the preferred ones
(two hops maximum) when S0 and S3 have to undergo three jumps to send/receive
a request/response.

4. All-2-Proxy : a coherent proxy hub is responsible in switching communications.
Therefore, only one additional port is needed on the SCI to manage coherence via
the immediate neighbour connected. The proxy could be directly implemented on
the multi-SoC Interposer. Nevertheless, sizing this proxy is a key point to avoid
traffic congestions. This topology is the one selected in the final architecture to
validate the multi-SoC coherence requirement.

4.3.5.2 Multi-SoC scenarios

Figure 4.5 provides a high level view of a large SoC configuration including 128 ARM
cores, high bandwidth memory (HBM/HMC) and a Bull Exascale computing network
interface controller [12]. As stated previously, we explore a coherent SoC partitioning
scheme to help reducing the very large complexity and cost of the resulting design. This
partitioning is based on the three following scenarios :

1. One large SoC (left side of figure 4.5)

2. Two smaller SoCs: this is the scenario involving two small SoCs called sockets.
Each socket includes 16 VPU clusters (64 cores per cluster). The two sockets are
connected with chip-to-chip coherent proxy ports. In this context, a latency of
20 cycles is required for external transactions (the interconnect being clocked at 2
GHz).

3. Four smaller SoCs: the principle is similar. We used the All-to-Proxy topology to
connect the four SoCs for two reasons: i) it has less routing complexity in compari-
son to the All-to-All topology. ii) because this is the worst case when implementing
a single hop configuration, as the Proxy hub is sensitive to bottlenecks.

Partitioning leads to Non Uniform Memory Accesses (NUMA) as each SoC will have

4.3 SoC Coherent Interconnect 80

Figure 4.5: Large scale ARM based VPU : partitioning scenarios

access to its own local memory area and external memory areas as well. In this type of
architecture, the programmer is in charge with explicit load balancing (threads and data)
and the exploration analysis takes this into account. The SoC Coherent Interconnect
(SCI) has a crossbar topology, meaning that each VPU has direct links to other VPUs.
This asumption corresponds to the ideal topology of a Network on Chip. In a classical
single SoC, employing such a full crossbar topology is irrelevant because of the too large
number of interacting devices.

4.3.5.3 Coherent Proxy extensions

We consider two partitioning scenarios of the SCI resulting from splitting a single-SoC
128 cores topology in two and four partitions. Figure 4.6 shows the two block diagrams
for the corresponding cluster configurations of 2×64 and 4×32 cores. All the processors
in a partitioned scenario must be able to communicate coherently as if they were con-
nected to the same on chip coherent interconnect. All SoCs are thus connected through
chip-to-chip coherent proxy ports. The main role of these coherent proxy ports is pre-
cisely to enable both coherent transactions with the neighbouring sockets and accesses
to external memory areas. The L3 cache is considered to be LLC (Last Level Cache)
near each memory controller to save latencies for memory requests.

Coherence extension must remain transparent from a cluster cache agent perspective.
Indeed, 128 cores are distributed between 32 clusters of 4 cores. They all are in the same
shareability domain and must be able to communicate with coherence whether they are

4.3 SoC Coherent Interconnect 81

Figure 4.6: 2 ×64 and 4 ×32 SoC partitioning with coherent proxy ports

in the same SoC or not. Figure 4.3.5.3 depicts exactly the SystemC / TLM2 directory
based filtering model as it would be implemented in the SCI. For example, in the sce-
nario where there is an incoming snoop request from the L2 cache, the snoop controller
sends a request to the directory to locate all copies of the data in the nearby peer caches
(in its shareability domain). Then it queries directly the caches identified in the local
socket or through the proxy extension if an external transaction is involved. In case of
a snoop miss, the request is forwarded to the next cache level (L3). The proxy compo-
nent architecture is quite similar to an empty L2 cache. It repeats incoming snooping
requests from a SoC to the other(s). This leads to additional delays and asymmetric
waiting response times to the snoop controller requests.

The snoop controller is a module attached to each coherent interface (port) in the
SCI. It is responsible for processing coherent transactions from a cluster (VPU) to the
directory and the (N −1) other peer interfaces. When the SCI manages 32 coherent ports
(32 clusters of four cores), each snoop controller must be able to communicate with the
other 31 controllers. In the scenario of partitioning in two SoCs, it will communicate only
with 16 snoop controllers (15 coherent VPU ports and the proxy one) instead of 31 snoop
controllers in a large SCI (Figure 4.7). This reduces de facto the logic design complexity
and the corresponding physical area. The idea remain the same when partitioning in
four SoCs, reducing connections from 31 links to 8 (7 peer ports + 1 hub proxy port) in a
one-to-all topology or from 31 to 10 (7 peers ports + 3 direct proxy port) for an all-to-all

4.3 SoC Coherent Interconnect 82

Figure 4.7: Coherent proxy entensions

topology. The remainder of the exploration study will therefore focus on evaluating the
relevance of these partitioning asumptions and the associated coherence extension.

4.4 Simulations 83

4.4 Simulations
In this assessment study, we address first the ability of using previous directory based
snoop filtering model in the SCI to reduce the complexity of cache coherence management
and the impact on performances considering different types of benchmarks. We then
analyse the relevance of two SoC partitioning configurations with two SoCs / 64 cores
(2×64) and four SoCs / 32 cores (4×32) against one SoC / 128 cores (1×128), with and
without the proposed snoop filtering scheme. Finally we consider more specifically the
effect of different parallel programming paradigms on the internal traffic of the coherent
interconnect and the corresponding performances.

4.4.1 Directory-based snoop filtering benefits

Figure 4.8 reports the analysis of snoop transactions generated in each of the three
configurations of 32 masters (128 cores). Without directory, 31 transactions need to be
generated for each cache miss (or invalidation request) to update every copy of the data.
Including a directory reduces the traffic generated in the SCI between 40% and 63%,
which is in line with the reduction of size of the snoop controller by a factor of two,
from 31 snooping output ports to 16. In turn, transaction benefits improve benchmark
execution times by reducing L2 cache miss penalties. Therefore, figure 4.10 compares
execution times of the same benchmarks, with and without directory, to examine these
gains. The impact of using a directory in our coherent multi-SoC architecture model
is thus an average execution time improvement of 14% (4%–26%). Despite transaction
savings of about two, net performance gains are limited by the relative low number
of cache misses in practice in real applications (around 2.7% reported for DGEMM in
Figure 4.9).

However, the consistency of data shared between processors is very complex in large
scale computing systems. The use of snoop filtering in the three considered SoC models
ensures both data coherency and processing efficiency by reducing transactions to those
that are strictly necessary. The overhead for each incoming transaction is thus reduced
by more than 40% which is an important matter in consumption and scalability at the
memory subsystem level, while performance may be slightly improved at the same time.
Memory consistency among clusters is thus ensured with significantly less coherence
traffic in light of these results. Despite little benefits in terms of net system performance,
this should however bring enough improvement to promote multi-SoC partitioning at
low chip-to-chip communication costs, which is the question discussed next.

4.4 Simulations 84

Figure 4.8: Number of transactions for different SoC and directory configurations

Overhead = number of transactions generated for one incoming request

Figure 4.9: DGEMM cache statistics

4.4 Simulations 85

Figure 4.10: Benchmark performance for different SoC and directory configurations

4.4.2 Partitioning analysis

If we focus more specifically on multi-SoC configurations (2×64, 4×32 w/o dir) against
single-SoC (1×128 w/o dir) in the results of figure 4.10, we can observe a legitimate
deterioration of performances when no directory is used, increasing gradually with SoC
partitioning due to the additional latencies coming from chip- to-chip transactions. Con-
sidering SoC partitioning in a large scale manycore system does not seem at first to be
an effective approach as shown with up to 15% drop in performance for XHPL in config-
uration 4×32. However, the presence of a directory improves both single-SoC and multi-
SoC performances by respectively 13.7% and 14.33% (in average) since transactions are
reduced to what is strictly required for cache coherence. The additional complexity
introduced by the directory is widely compensated by the removal of internal/external
waiting delays. This gain rise up from 4% up to 25% depending on the workload profile.
The XHPL benchmark, which employs a large memory space and is very sensitive to
latencies, is therefore the ideal example to show the impact of a directory in our on-chip
interconnect with 25% performance improvement.

In addition, performances remain stable in the presence of a directory with an aver-
age variation of 1.9% across all SoC configurations and benchmarks. If we compare the
partitioned (2×64, 4×32 w/ dir) versus single-SoC (1×128 w/ dir) topologies, it can be
verified that the impact of partitioning on execution times has been efficiently limited
through the use of the directory (4.3% for 2 ×64 and 5.4% for 4 ×32). The performance
level is more stable in both partitioned SoCs because there is always a copy of shared
data in nearby caches resulting in no snoop misses. These results let us therefore expect
an average performance penalty of 5.2% resulting from SoC partitioning (in two and
four SoCs for a 128 nodes example). But employing the defined directory-based filtering

4.4 Simulations 86

scheme is efficient enough at reducing chip-to-chip cache coherency transactions and
to get rid of this overhead with even a mean improvement of 10.1% (over single- SoC
without directory). The coherence extension scheme then promotes interesting oppor-
tunities such as the integration of more compute nodes directly on an interposer based
System-in-Package (SiP), possibly based on 3D Through Silicon Vias (TSVs) using High
Memory Bandwidth (HBM), to approach the processing power and efficiency of Exascale
requirements.

4.4.3 Parallel programming efficiency

Another factor which may affect the value of SoC partitioning relates to software and
parallelism. The issue here is how to best minimize outgoing transactions between the
partitioned SoCs at the programming level. We have thus considered three parallel
programming models (OpenMP, OmpSs and POSIX Threads) on a blackscholes appli-
cation (part of the PARSEC benchmark suite [20]) to investigate their influence on the
efficiency of the directory. OpenMP, OmpSs and POSIX Threads are application pro-
gramming interfaces (APIs) for multi-platform shared-memory parallel programming.
OpenMP provides high level threading options using code and dataflow annotations
that are then used by the run-time system for execution and synchronization. POSIX
threads is a lower level API for working with threads offering fine-grained threading-
specific code to permit control over threading operations. Unlike OpenMP, the use of
Pthreads requires explicit parallelism expression in the source code (e.g. hard-coded
number of threads). OmpSs is a mix of OpenMP and StarSs, a programming model
developed by the Barcelona Supercomputing Center. It provides a set of OpenMP ex-
tensions to enable asynchronous tasks, heterogeneity (accelerators) and exploit more
performance out of parallel homogeneous and heterogenous architectures.

With previous results showing little influence of partitioning when using a direc-
tory, the following analysis is restricted to a single-SoC configuration. Fig. 15 reports
execution times of the blackscholes benchmark for each programming model. There
are comparatively few differences between OpenMP and OmpSs results because of their
similarity. The application receives little benefits (4.6% performance improvement) from
OmpSs specific features to better exploit the architecture model. However, figures 4.11
and 4.12 show two clear inflection points with 82.6% less performance and 40.9% fewer
application throughput using Pthreads compared to OpenMP and OmpSs. Investigating
further shows that Pthreads has 28% less throughput than OpenMP (in configuration
1×128 with directory) for 79% more cache misses (see figure 4.13). In turn, cache misses
are responsible for generating 23.5% more traffic in the SCI compared to OpenMP (see

4.4 Simulations 87

Figure 4.11: Impact of programming models on throughput (blackscholes)

figure 4.14).
Figure 4.15 confirms that Pthreads has not led to an efficient use of the directory.

With 77.37% snoop misses, the on-chip interconnect had to carry out the transport of
five times more transactions than OpenMP. The reasons of these weaknesses lie mainly
in the capability of the software model to address efficiently high degrees of parallelism.
In the task-graph based parallel versions of blackscholes used for OpenMP and OmpSs,
the work is better divided into units of a predefined block size which allows having
much more task instances and better load balance than Pthreads. The effects from less
reliable parallelism exploitation can therefore increase significantly (up to a factor of two)
when scaling up to 128 cores. Besides the fact that limited conclusions can be drawn
on the effectiveness of a programming model which depends on how well the software
was partitioned and coded, this study shows however the potential for deep analysis
of appropriate parallelism exploitation by the application. These results are beneficial
to help tuning the architecture and design of algorithms and software, to identify and
correct programming shortcomings and further improve parallel processing efficiency.

4.4 Simulations 88

Figure 4.12: Impact of programming models on performance (blackscholes, 1×128 cores)

Figure 4.13: Impact of programming model on L2 cache misses (blackscholes, 1×128
cores)

4.4 Simulations 89

Figure 4.14: Impact of programming models on the number of snooping transactions
and overhead (blackscholes, 1×128 cores)

Figure 4.15: Snooping traffic statistics (blackscholes, 1 ×128 cores)

4.5 Conclusion 90

4.5 Conclusion
In this chaper, we have examined in detail a set of architectural exploration opportuni-
ties for multi-SoC partitioning based on a directory-based coherent interconnect (SCI)
defined specifically for this purpose. Exploration of partitioned (2×64, 4×32) versus
single-SoC (1×128) topologies with this coherent interconnect have shown to decrease
significantly the associated internal traffic (55.3%) and to limit enough the existing par-
titioning overhead (4.3% for 2×64 and 5.4% for 4×32) such as to permit an average
10.1% execution time saving compared to the situation where no partitioning / direc-
tory is used. Additionally, the analysis of parallel programming efficiency on a concrete
example confirmed the validity of directory filtering with the ability to identify and cor-
rect software weaknesses for better parallel processing efficiency.

The exploitation of interesting opportunities available from these results are in the con-
text of the Mont-Blanc project for an efficient use of a large number of 64-bit ARMv8-A
cores. The ability to partition the system into different SoCs at no loss of performance
ensures the feasibility of the solution, and introduces a few possibilities. Indeed cluster
configuration can be fine-tuned to better match application requirements. The choice
of the number of cores sharing the same L2 cache in a cluster can be based for example
on the sensitivity of the workload to cache latencies: one core per cluster for workloads
with high cache miss penalties (e.g. with rather iterative processing, limited data set,
low amount of shared data), four cores per cluster to address applications with higher
parallelism and lower cache miss penalties. Also the size of the L2 caches can be tailored
to the SCI directory complexity. As the full directory covers all lines of the L2 caches of a
coherent cluster peer, their needs and size depend on the SCI topology (i.e. Mesh, Ring).
Finally, this partitioning scheme introduces technology level perspectives for chip inte-
gration, such as the integration of more compute nodes directly on an interposer based
System-in-Package (SiP), possibly based on 3D Through Silicon Vias (TSVs) using High
Memory Bandwidth (HBM).

The considerations of two previous chapters address architectural and design related
concerns. Another essential aspect of energy efficiency, especially for large scale mut-
liprocessor systems, is related to the relevant runtime management of resources. Power
management is therefore an important part of the efficiency question which is the subject
of the following and last chapter.

Chapter 5

Power management

5.1 HPC energy efficiency constraints
As it is so well described in [68], there are two major constraints related to the energy
efficiency in a high-performance computing system: the operational cost and the system
reliability, in addition to environment respect. A strong and strategic power management
can lead to reduce energy consumption and avoid excess heat to the cooling system
which improves system reliability and operational costs (and somehow the environmental
impact). We may distinguish a static power management (SPM) and a dynamic power
management (DPM). SPM mostly consists of utilizing low-power technologies to reduce
power. On the other hand, DPM tries to improve the energy efficiency using both power-
scalable components such as hardware-enforced processor power bounds, and software
capabilities. The proposal in this chapter describes two workload related strategies to
show some opportunities and potential pitfalls using Dynamic Voltage Frequency Scaling
(DVFS) in a HPC environment.

5.1.1 Existing power strategies for HPC

In the HPC world, there are several strategies that tend to mitigate both the waste of
computing ressources and power consumed. The observation is always the same: except
for the benchmarks specially developed to reach the peak performance of a system, real
applications barely use 50% of ressources [69]. Actually, we can distinguish two profiles
of workloads: memory bandwith bound and compute bound applications. To overcome
the tradeoff between power and performance in HPC applications, co-scheduling two ap-
plications with different profiles shows that the runtime can be decreased by 28% and the
energy consumption by 12%, respectively, compared to the best case possible execution

5.1 HPC energy efficiency constraints 92

[70]. This solution sounds pragmatical but it decreases the workload performance and
so might not suit some HPC use-cases. Also, besides the well known DVFS technique,
Power capping, instead of managing the processor’s frequency directly, offers the user to
simply specify a time window with a power bound, and the hardware guarantees that
the average power will not exceed the specified bound over each window [71]. However,
defining a power budget for a workload and letting the system fend for itself to meet this
budget could be a good concept but it seems not to be mature enough yet. Actually,
power clamping can lead to subtle and specific problems with HPC applications. Indeed,
the processors manufacturing process inevitably introduces small variations in terms of
power consumption [72]. Then, placing a power budget on the processors moves the
variation from power (each processor must now operates at a specified number of watts)
to performance (if at least one less-efficient processor is being very slower at the specified
power bound, the entire massivelly parallelized application can be fatally desynchronized
and therefore deliver a poor performance) [71].

Furthermore, in [71] the authors make a harsh criticism of research in power-aware
supercomputing focusing on trading a loss of performance for energy savings. This is
a fundamental discussion when debating about power in the HPC domain. Actually,
the main argument being that this approach doesn’t match well with the goal of super-
computer stakeholders, which is to make an existing machine run as fast as possible (in
other words, never accept to loose performance, to gain power !). Authors even suggest
to stop measuring the utilization as a percentage of node-hours, but rather as a percent-
age of maximum watts used. Indeed, when an application is well optimized to match
a specific supercomputer, the processors are efficiently used and have therefore a power
consumption close to the maximum. For them, Intel’s Running Average Power Limit
(RAPL) technology should allow moving beyond power savings and into power schedul-
ing in HPC, promoting DVFS replacement and treating power as a schedulable resource.
In the same perspective, authors in [69] criticize the process of making individual nodes
more efficient and measuring the results in terms of flops per watt. Indeed, traditional
power design approaches use worst-case power provisioning: the total power allocated
to the system is determined by the maximum power draw possible per node. Authors
argue that overprovisioning hardware with respect to power combined with intelligent,
hardware-enforced power bounds consistently leads to greater performance. Also, as the
best configuration depends on application scalability and memory contention, leverag-
ing system overprovisioning requires that applications use effective configurations which
leads to an average speedup of more than 50% over worst-case provisioning.

5.1 HPC energy efficiency constraints 93

At platform or HPC cluster level, the power management strategy is mostly integrated
in the software that manages job requests for compute resources (compute nodes), like in
SLURM (Simple Linux Utility for Resource Management). One of the major and most
recent tools is introduced in [73] with a run-time system called ’Conductor’. Conductor
utilizes non uniform power distribution, RAPL, DVFS, and DCT (Dynamic Concurrency
Throttling) for optimizing HPC application performance under a power constraint. It is
supposed to choose and adapt configurations dynamically based on application charac-
teristics, resulting in better execution on a number of cases. The configuration analyzer
dynamically selects the optimal thread concurrency level and DVFS state subject to a
hardware-enforced power bound. Its adaptive power balancing scheme efficiently deter-
mines where critical paths are likely to occur so that more power is distributed to those
paths. Encouraging results show a best-case performance improvement of up to 30%,
and average improvement of 19.1%.

5.1.2 OS based strategies

Dynamic voltage frequency scaling (DVFS) as introduced in [74], became an ubiqui-
tous approach for processor power management and accepted as a standard technique
to reduce power and energy consumption. There is an effective relationship between
frequency and power because the CPU dynamic power is proportional to the clock fre-
quency and to the square of the supply voltage. CPU voltage being itself related with
the level of the intended clock frequency. The implementation of DVFS at operating
system level is known as Linux CPUfreq governors: userspace, performance, powersave,
ondemand, conservative, and recently schedutils. Those drivers are mutually exclusive,
they depend on the type of DVFS technology deployed at hardware or processor level
and each of them has its own unique behavior, purpose, and suitability in terms of work-
load. Mostly, these OS based strategies are designed for general purpose usage. They
are expected to be widely used and generally applicable but the counterpart is that they
basically make coarse ajustment of processing resources to the global workload and are
often inefficient too fine tune the system to actual application variations and particular-
ities. The typical example is that of video coding where an onDemand governor will end
up switching to the maximum processor frequency for the full duration of the sequence,
while there exist execution variations at application level (e.g. intra-coded versus pre-
dicted frames) that can be exploited to adapt the best processor frequency to the actual
processing requirements. These capabilities have been investigated in the field of em-
bedded systems to develop more efficient power strategies (e.g. deadline scheduling, low

5.1 HPC energy efficiency constraints 94

power scheduling, energy aware scheduling). The objective therefore is to investigate
the extent to which it can be used to improve specifically on HPC processing constraints
[75, 76].

5.1.3 Energy efficiency improvement

In the embedded world, the goal is generally to minimize the absolute energy required
to process an application, more or less regardless of performances, in a way to maximise
battery life. The benefits can be represented in measures of energy efficiency such as the
energy-delay product. The problem is different in HPC because the absolute requirement
is to run the application at the maximum possible performance. This implies that the
aim here is to save power as long as it does not affect performances, or at least accepting
a tolerable degradation of performance. A first intuitive application of this is to exploit
the variations of thread execution times. An essential condition for any energy efficient
processing system is load balancing. Several threads running on multiple computing
resources will inevitably terminate at different times. Therefore the global performance
is determined by the termination of the slowest thread, and DVFS can be used to slow
down the execution of faster threads. The reductions of processor frequencies decrease
the total power consumption of the application, while keeping the same performance
level, therefore the global performance per Watt of the system. This first HPC strategy
will be referred to as Soft big.LITTLE strategy in the following. Actually, in opposition
to the official ARM big.LITTLE technology, where the size of heterogeneous cores (big
and LITTLE) are hardly defined, the concept here introduces more flexibility at software
level among homogeneous multicore processors.

A second interesting application of HPC dedicated strategies is related to communi-
cations. Because of the inherent large number of parallel threads, the situation where a
global final processing gathering the final result is likely to occur. This scenario often
involves communications and synchronisation mechanisms which does not require to run
the processors at full clock rate. This second strategy will be referred to as Blocking
point strategy in the following. Since communication and synchronisation primitives
are made available in libraries, the achievement of a Blocking point strategy can be
integrated in libraries, it is transparent to the application and eases greatly the use of
the strategy. These considerations introduce two approaches suited with the absolute
performance constraints of HPC operating i) at application level and ii) at library level
to better process massively parallel workloads. The soft big.LITTLE strategy is suitable
in the case where the size of each thread in terms of number of operations or cycle can

5.2 Evaluation of OS power strategies 95

be predicted. The second one would be appropriate in the case where DVFS latencies
are much smaller than the time of a point-to-point communication between two nodes.
Both strategies could be combined to provide a fine grain adaptation for a specific work-
load in massively parallel compute nodes. In the following, we investigate the efficiency
of both proposed strategies by simulation using GEM5 and real experimentation with
a representative platform (Cavium ThunderX2 96 cores). We introduce GEM5 and the
hardware configuration setup for these simulations, in a way to assess first the relevance
of existing strategies (Linux governors) and then compared to the two proposed HPC
strategies.

5.2 Evaluation of OS power strategies

5.2.1 Simulation framework

The section below describes our simulation framework, benchmarks and investigates the
relationship between the processor frequency and its power consumption.

5.2.1.1 GEM5

Gem5 is an open source software for the simulation of hardware architectures with
different specific components, such as the unique machine-type, caches, memories and
buses. The simulations addressed here are made in full system mode, which means
that the platform boots a Linux Operating System. It requires compiling a specific
linux kernel with cpufreq drivers, platform related device tree source and bootloaders
to match with our design. When starting those experiments, by default DVFS was not
supported for ARMv8 in Gem5. To enable DVFS for each core, a DVFS-Handler module
have been developped and so a new machine type that supports several clock and voltage
domains per cluster (see appendix1 ??).

5.2.1.2 Benchmarks

The applications used to illustrate the improvement potential of the two proposed strate-
gies are based on floating point matrix multiplications (128x128, 256x256, 512x512,
1024x1024). This choice of a simple workload avoids sub-optimization of the source
code and allows an easy parallelization over the cluster. Two configurations are used
for parallel processing. In the first one, each thread processes the full multiplication of
two matrixes. Therefore N threads process the multiplication (MxM) of 2*N matrixes in
parallel using N cores. We can play with M (size the matrix) for different purposes. The

5.2 Evaluation of OS power strategies 96

first configuration will be referred to as “Nparallel_MxM_matrix_products”. The sec-
ond one called “distributed_matrix_product_MxM”, is a single matrix multiplication
MxM distributed among N threads. Each thread is responsible to process (M*M)/N
elements for the resulting matrix. An element at (a,b) position being the product of
the ath line of the first matrix and bthcolunm of the second matrix. At the beginning,
the master thread initializes two matrixes and each thread knows which lines to process
according to its rank. For each itteration, all the other threads send their processed ele-
ments to the master (using MPI_Send). Then, the master thread receives one element
after another (using MPI_Recv) and aggregates those partial results in their respective
position in the resulting matrix, and so on until the last one. Therefore there are (N-1)
senders and only 1 receiver. MPI_Send being a blocking operation, the sender waits for
an acknowledgement from the receiver to continue. This delay depends on the position
of the couple sender/receiver in the cluster. When they are in the same compute node,
this is faster as it is similar to a simple memory sharing. When they are in different
compute nodes, it depends then on the network and the size of the data sent.

5.2.1.3 Energy efficiency evaluation

As stated in section 5.1.3, in HPC the energy efficiency improvements are generally
reported in terms of performance per Watt. In our simulations, we will address power
by monitoring clock frequencies, as gem5 only provides a generic ARMv8 core model
from which power extrapolation could be sensless. However the consummed power is
strongly related to frequency of the cores:

Pdynamic = A.C.v2.f

Where, A is the percentage of active gates; C is the total capacitance load; v is the
supply voltage; f is the processor frequency. Then, the accumulated energy is:

E = ∑
Pdynamic ∗ dt

The instructive figure 5.1 shows in a practibable way this relation. These results are
otbained when running a stress program on the Cavium’s ThunderX2 ARMv8 processor.
The measured frequency and core power evolve together in a very linear fashion.

5.2.2 Simulation results

The results of figure 5.2 adresses the evaluation of existing OS based power strategies
(Linux governors) using previous simulation framework. They report the variations of
frequency over time for the benchmark “Nparallel_256x256_matrix_products” where
N, the number of cores (clock domains) varies from 2, 4, 8 and 16. These four platform

5.2 Evaluation of OS power strategies 97

Figure 5.1: Frequency and Power on Cavium’s ThunderX2 processor

configurations are used to assess the efficacy of typical standard power strategies in the
situation of large parallel workloads and to see how they scale. The blue trace reports
the average frequency for the N clock domains, for the sake of clarity. In addition, the
mean value of this frequency trace is computed (in orange) as a measure of the expected
reduction of the average power consumption (as shown in previous section) and there-
fore, of the performance per watt ratio. These variations are measured when running the
benchmark under five Linux standard governors: Performance, Ondemand, Schedutil,
Conservative and Powersave.

All the results are similar to the expected behaviors. The strategies of Performance
and Powersave governors are very straightforward by keeping frequency at their maxi-
mum and minimum value (respectively) over the full duration of the benchmark. The
execution time is very stable whatever the number of cores because each thread runs
an independent matrix product of the same processing complexity. Obviously these two
strategies are basic and certainly not the effective at all for High Performance Comput-
ing (Performance consumes maximum power, and Powersave is not fast at all).

Conservative and ondemand governors are more adaptive. The "conservative" governor,
much like the "ondemand" governor, sets the CPU frequency depending on the current
system load. Actually, the conservative governor is conservative in terms of allocated
compute ressource. Compared with the ondemand governor, CPU speed increases and

5.2 Evaluation of OS power strategies 98

decreases gradually rather than jumping to the maximum speed the moment there is any
load on the CPU. Both are tweaked in the same manner and we can observe practically
in the results how they differ in this way of setting the CPU frequency. The first one is
progressive while the second one can switch more quickly between minimun and max-
imum frequency values. Adaptation of the Ondemand governor is a bit more reactive
with the actual workload. This is visible in particular at both thread synchronisation
barriers, before and after processing the parallel matrix multiplication threads: domains
are mostly set to minimal frequency at the begining, when the program mostly waits for
all threads to be created, and at the end, when the program reaches the termination of
the slowest thread. However, in the strict processing phase of the matrix multiplication,
a clock domain is set at maximum frequency for both governors from the actual start
of the multiplication to the termination of the slowest thread. As the number of clock
domains grows, we therefore observe an increase of both the average frequency and ex-
ecution time, resulting from synchronisations with the last terminating thread.

Similar to ondemand and conservative, the schedutil governor operates from a work-
load estimation with the difference that the information comes directly from the kernel
scheduler to try to better adapt CPU frequency in a timely manner. It aims at better
coupling power policies with the Linux kernel scheduler, as load estimation is achieved
through the scheduler’s Per-Entity Load Tracking (PELT) mechanism which also pro-
vides information about the recent load [77–79]. As a result, the variations of frequencies
are a bit more relevant, which translates into more regularity (less variation) on the fre-
quency profiles. Nevertheless, the behavior of the strategy within the actual processing
phase sets the frequencies at their maximum over the full duration. Consequently, there
is no power saving like Ondemand and Conservative governors in the actual thread
execution phase (outside both synchronisation barriers introduced only for simulation
purposes).

These simulations are very useful to verify the correctness of the simulation procedure
since the traces of frequencies are just as expected. In all cases (except powersave which
is not relevant for performance purpose), frequency is always set at the maximum value
for the duration of a job. Also, while this is appropriate in terms of performance, it leads
to maximum power consumption regardless of actual runtime variations that occurs in
practice that can be used to further adapt processing power with clock scaling. These
opportunities are explored on two practical case studies in the following subsection.

5.2 Evaluation of OS power strategies 99

Figure 5.2: Efficicency evaluation of Linux governors (config: Nparal-
lel_256x256_matrix_products)

5.3 Power strategies for HPC 100

5.3 Power strategies for HPC
DVFS is decribed in [80] as an ubiquitous technique for CPU power management in
modern computing systems. Hower, reducing processor frequency/voltage leads to a
decrease of CPU power consumption and an increase in the execution time. The goal in
this section, is to try to make the second affirmation being false. In other words, try to
save power and keeping the same performance. The idea is to take advantage of some
variations inherent to the execution, algorithm, or parallelization of an application to
save power consumption of the processors using DVFS. However, to obtain a successful
energy-performance trade-off for very large scale parallel applications, it is necessary to
take into account both application and platform characteristics, such as the application
sensitivity to frequency scaling or the processor latency when switching between two
frequencies.

5.3.1 Soft big.LITTLE strategy simulations with GEM5

In previous gem5 simulations of standard existing governors, the system could greatly
benefit from a finer adjustment of frequency. An interesting possibility lies for exam-
ple in slowing down fast threads instead of being run at full speed, in a way to match
with the termination of the slowest (odd) thread. This would allow to reduce power
of the corresponding domains, without any impact on performance since the execution
time of the slowest thread would remain the same. This strategy is referred to as “soft
big.LITTLE” in the following 5.1.3. This strategy can be applied when you can predict
the latency of each thread. It consists in attributing to each core a frequency weighted
by the latency of the corresponding thread or process. Slow threads will run on the cores
with higher frequencies and it’s the other way around for fast threads. Considering two
parallel threads, T1 and T2, where T1 will execute about I1 instructions and I2 for T2

and assuming I2 ≻ I1,which means that T2would be slower if they are executed on two
cores at the same frequency, T2 defines the global execution time. The Soft big.LITTLE
strategy provides an adjustment by making T1 as slow as possible, but not slower than
T2, in a way to save power with the same performance. Therefore the frequencies must
be computed in respect with F2

F1
≤ I2

I1
. For example if T2 executes twice more instructions

than T1, the ratio between the chosen frequencies must be at the most of a factor 2 to
save power without infringing the workload performance.

Figure 5.3 shows the frequencies of four clock domains when running two parallel 256x256
and 128x128 matrix products under the Soft big.LITTLE strategy. To produce controlled

5.3 Power strategies for HPC 101

variations of execution time, the multiplication process is split into even and odd threads
where even threads are running a matrix multiplication twice bigger than odd threads.
The number of operations (additions and multiplications) required in a product of two
square matrices NxN is about n2(n + (n − 1)), when n = N . Therefore, we must set
the frequency of odd threads (N=128) in such a way that the ratio with even threads
(N=256) is less or equal 8. The objective is then to reduce the differences in execution
time thanks to DVFS. In gem5 simulations, we will deal with the couple of frequencies
2500 MHz for even threads and 400 MHz for odd threads. The corresponding ratio of
frequencies is 6.25 ≤ 8.

The three traces on the left reflect the execution for standard OS power strategies (per-
formance, ondemand and schedutil). The average frequency is about 2200 MHz for
schedutil and ondemand, while it stands at 2500MHz for performance as expected. the
execution times are similar in the three cases which means that schedutil and ondmand
are a bit more energy efficient than performance. Comparing with the Soft big.LITTLE
strategy on the right, we observe a clear drop of frequencies which accurately corre-
sponds to an improvement of 20% with the performance governor itself and 36% with
the ondemand governor (compared to 2500 MHz for performance previously). For some
reason the efficiency of schedutil governor decreases, but we can see on the right side
of figure 5.3 that the average frequency is globally reduced, which means that we have
saved power according to the approach adopted in 5.2.1.3.

5.3 Power strategies for HPC 102

Figure 5.3: 2parallel_256x256_matrix_products and 2paral-
lel_128x128_matrix_products

As it is equally important to keep an identical level of performance, left of figure
5.4 reports comparative execution times of OS power (blue plot) and Soft big.LITTLE
strategies (green plot) for an increasing level of parallelism (a clock domain is composed
of one core in these simulations). On the right side, profiles of frequencies (related
to dynamic power) and the corresponding improvements are reported using the same
parallel 256 and 128 matrix products. The plots on the left show similar execution times
(when green and blue dots overlap), when on the left the red line shows the amount of
frequency (power) reduction up to 40%. Therefore, we observe similar execution times
with less power consumption where the strategy is applied. This is precisely the goal
when improving the compute efficiency of a workload.

5.3 Power strategies for HPC 103

Figure 5.4: Soft big.LITTLE strategy scalability

5.3.2 Blocking point strategy simulations with GEM5

This second strategy is based on saving power at some blocking points of a workload
(barriers or synchronization points) instead of running uselessly the system at full speed.
Actually, when developing code intended for HPC, we could also take advantage of in-
herent parallelism management issues. Indeed, processing large parallel applications
implies thread communications and synchronisations that does not need to operate the
cores at the highest frequency. For example a core waiting for a result can be set at
minimum frequency without any impact on the execution time, and this could be imple-
mented in the library providing thread management facilities for instance. To evaluate
the potential power savings (without losing in terms of execution time), we address
an example based on MPI. The MPI_Send mechanism is a blocking transaction that
allows to send a message to one or several threads, and wait for acknowledgement be-
fore proceeding with the rest of the execution. The power saving evaluation approach
is to setup a couple of frequencies (Max, Min) in the folowing way: (1) set the Min
frequency before MPI_Send and the Max after MPI_Send. Measurements are carried
out considering seven pairs of (Max, Min) frequencies (2500-2500, 2500-2300, 2500-2000,
2500-1800, 2500-1200, 2500-800, 2500-400 MHz), using a 1024x1024 distributed matrix

5.3 Power strategies for HPC 104

product parallelized with four threads on four clock domains. We can observe in figure
5.5 that the average frequency decreases from 2500MHz (in configuration 2500-2500)
to 1600MHz (configuration 2500-400), which corresponds to 36% gain in terms of av-
erage power is compared to the reference execution without strategy (upper left of the
figure). The execution times tend to increase as we switch to lower frequencies (13.2
seconds compared to 6.4 seconds without strategy). This is due to the limited number
of threads (4) used in this experiment. The four threads are mapped on four cores in the
same compute node. Communication times between threads are relatively fast in this
case, and especially these latencies are smaller than that of switching frequencies. The
impact on execution times comes from the fact that we are not in an ideal configura-
tion for the Blocking Point strategy which requires larger levels of parallelism (involving
inter compute nodes communications) to be efficient. In the following, we increase the
number of threads (and cores) to further investigate this.

5.3 Power strategies for HPC 105

Figure 5.5: Before and After blocking point strategy: 4 clock domains

Within a compute node, MPI works mostly like simple memory sharing, thus with
relatively fast communications. In a HPC cluster, compute nodes communicate through
a compute network. The Network Interconnect Controller (NIC) of each compute node
is connected to a level 1 switch, which can also be connected to a level 2 switch, and
so on depending on the topology deployed for the cluster. As a result, communications
between threads when different compute nodes are involved are significantly slower.
As there was no ARM based cluster available at the time of this study, we further
analysed the impact of such inter compute node communications on the Blocking Point
strategy with gem5 simulations. The results of figure 5.6 show the effects of scaling
up the number of cores (clock domains) from 2 to 64 within a single compute node.
Running three benchmark configurations of 256x256, 512x512 and 1024x1024 matrix

5.3 Power strategies for HPC 106

products and considering seven pairs of frequencies as previously, we can now observe
that performance is scaling better with the workload. Execution time is supposed to
be divided by two when the number of computing ressources (cores) has doubled. On
the left are represented the absolute values of the execution times and on the right, the
normalized values to better figure out the slow down effects. The objective being to
save power without increasing the execution time, we can note that the execution time
tends to remain stable for important number of threads (32, 64). This remains true
whatever the different pairs of switching frequencies and especially for highly parallel
configurations (1024x1024). The results here show that we can realistically expect the
blocking point strategy to be efficient for workloads deployed in a large HPC cluster,
with very limited impact on performance. We verify the validity of these claims on a
real system in the following.

5.4 Measurements with Cavium ThunderX2 107

Figure 5.6: Scaling up Before and After blocking point strategy

5.4 Measurements with Cavium ThunderX2

5.4.1 Platform description

Cavium ThunderX2 is the lastest ARM based server processor available since the thesis
has started. ThunderX2 is a family of 64-bit multi-core ARM server microprocessors
introduced in early 2018. The SoC model is based on 64-bit ARM v8 based processors
featuring a total of 96 cores organissed in two sockets of 48 cores (CPU-A and CPU-B).
The memory system supports up to 2 TiB of quad/hexa/octa-channel DDR4 2666 MT/s

5.4 Measurements with Cavium ThunderX2 108

memory which is made fully cache coherent across dual sockets using Cavium Coher-
ent Processor Interconnect (CCPI2). This platform is a good fit for the evaluation and
analysis of the actual benefits of the two proposed power management strategies as it
also provides chip power measurement features allowing per socket analysis. The follow-
ing experiments were made possible thanks to an early access to the Dibona platform
produced for the European Mont-Blanc3 project.

5.4.2 Soft big.LITTLE strategy execution on ThunderX2

Figure 5.7 shows the evolution of the Cavium ThunderX2 chip power over time using the
Nparallel_MxM_matrix_products benchmark used previously for Gem5 simulations.
Global and per socket (CPU-A, CPU-B) power consumption are addressed for six pairs
of frequencies supported by the platform (2000-2000, 2000-1800, 2000-1600, 2000-1400,
2000-1200, 2000-1000 MHz). We have set the complexity of even threads (2560x2560
matrix product) and that of odd threads (2048x2048 matrix product) such that the
execution time of even threads is exactly twice that of odd threads. This allows to
ease the control of thread execution time, adjustment of frequencies, and analysis of the
corresponding power savings.

Without strategy (corresponding to the 2000-2000 configuration), power traces show
clearly the two phases of a multiplication: i) even + odd threads up to the half of the
execution and ii) only odd threads until the end of execution at 280s. The growing effect
of the strategy is visible in the following configurations (2000-1800, 2000-1600, 2000-1400,
2000-1200, 2000-1000 MHz) as we decrease the speed of fast even threads to progressively
match 280s. In this way, the global application performance remain strictly unaltered
(280s) despite slowing down even threads. Figure 5.8 provides a zoom on the global
power consumption profiles which allows to better measure the relative improvements of
the soft big.LITTLE strategy, especially when we compare the optimal use of the strategy
(blue trace) with the absence of strategy (pink trace). We can observe that better is the
couple of frequencies implementing the Soft big.LITTLE strategy, better is the spread of
power consumption while keeping similar execution time. This is what we expected as
intruduced in the subsection 5.3.1 and demonstrated by simulations results using Gem5
(see figure 5.3). Comparing the [2000,2000]MHz and [2000,960]MHz configurations, the
average power is reduced from 287W to 262W (>8% of power reduction).

5.4 Measurements with Cavium ThunderX2 109

Figure 5.7: Power profiles of the Nparallel_MxM_matrix_products on Cavium Thun-
derX2

5.4 Measurements with Cavium ThunderX2 110

Figure 5.8: Nparallel_MxM_matrix_products global power summary

5.4 Measurements with Cavium ThunderX2 111

Figure 5.9: Power profiles of the distributed_matrix_product_10240x10240 for 1 node

5.4.3 Blocking point strategy execution on ThunderX2

The results of figure 5.9 come from the benchmark distributed_matrix_product_MxM
described previously for Gem5 simulations. The principle of the strategy being to de-
crease frequency at the end of a thread for communication and synchronisation purposes,
the gains depend on the cost of the associated latencies. The experiment is set at a single
node level, where communications are performed through shared memory.

In this case, communication latencies are lower than that of changing frequency and
there is no benefit the Blocking point strategy. This is what can be seen in the results
where power traces keep similar global profiles around 300W whatever the frequency
drop.

However, for two nodes (figure 5.10), slower inter node communications are involved.
Active waiting in idle state at thread synchonization points can therefore benefit from
decreasing core frequencies. This is visible in the results where the synchronisation phase
(from 0 to 620s) allow to decrease power from 245W (at 2000 MHz) to 190W (at 1000
MHz), saving more than 20% of power consumption on the synchronization phase. Pro-

5.4 Measurements with Cavium ThunderX2 112

Figure 5.10: Power profiles of the distributed_matrix_product_10240x10240 for 2 nodes

cessing phase on the other hand occurs from 620 to around 1300s. The corresponding
average power reduction of the distributed_matrix_product_10240x10240 benchmark
on the full duration (synchronisation + processing) is 10%.

The question which needs to be addressed is to analyse how much these savings impact
performances. Table 5.1 shows that even in the frequency configuration worst affecting
performances ([2000, 1000]), the variation of execution time is less than 2%. Therefore
these results show a promising potential of the Blocking point strategy to reduce power
significantly, at negligible performance loss, in systems having high communication costs
(i.e. most HPC highly parallel applications). Considering [2000,2000] and [2000,1000]
configurations for the CPU-A power for instance, we can observe that at core level,
this strategy leads to power saving from 90 Watt to 77.19 or more than 14% of power
reduction.

5.5 Conclusion 113

Frequencies [2000,1000] [2000,1000] [2000,1200] [2000,1200] [2000,2000] [2000,2000]
Node ids #1 #2 #1 #2 #1 #2
Execution

time 1255.68 1256.99 1269.09 1260.17 1294.85 1279.82

Global
power 241.21 256.44 247.66 259.47 270.72 270.09

CPU-A
power 77.19 79.83 78.78 81.91 91.30 90.00

CPU-B
power 78.24 83.57 79.83 84.23 92.89 87.50

Memory
power 52.96 51.90 52.54 51.79 52.76 51.46

Infiniband
power 12.13 12.93 12.13 12.93 12.12 12.94

Table 5.1: Execution time and power breakdown for Blocking point strategy

5.5 Conclusion
The intent of this chapter was to show the potential of more advanced power strate-
gies to improve HPC energy efficiency. We debated about the goal of supercomputer
stakeholders, which is to make an existing machine to run as fast as possible. Should
we add “even if workloads are not efficient or cannot exceed algorithmic limitations”
? In light of existing power management, we proposed two specific strategies designed
to better match the constraints of HPC processing, especially in the face of widespread
workload based approaches in that matter. Investigating their potential power savings
on realistic use cases let us conclude there is a global power saving potential of more
than 14% at CPU level depending on application and platform parameters. It must
be noted that the implementation aspects of these strategies are not fully defined as
our focus was rather to investigate the potential of dedicated HPC power strategies,
which is an original contribution of this thesis. Future works could investigate further
implementation issues (like prediction for the soft big.LITTLE strategy), or other spe-
cific energy aware scheduling schemes for HPC (e.g. , dynamic reconfiguration) which
is certainly a promising direction of research for energy efficient HPC, in the light of
power efficiency improvement results of both strategies. These results, which have to
be regarded as preliminary estimates, show nevertheless that there is a true potential
in developing HPC dedicated strategies. These strategies show it is possible to build on
specific HPC processing characteristics (DVFS load balancing, library synchronisation)
and realize potentially a better performance per Watt ratio improvement.

Part III

CONCLUSIONS

Chapter 6

Conclusions and Perspectives

This work contributed to investigate the use 64-bit ARMv8-A cores to find significantly
more processing and energy efficiency in future HPC exascale supercomputers. Three of
the fundamental sides of the efficiency question have been adressed through the method-
ological, architectural and executive aspects. A first global outcome from this approach
is the profit at the architectural level. The SoC partitioning scheme explored let the
ability to exploit a large number of 64-bit ARMv8-A cores and reduce the complexity
of cache coherence management at no perfomance cost, which represents a first direct
contribution to complexity (thus power) reduction. In addition, this solution introduces
other opportunites to capitalize on recent integration technologies (3D chip stacking,
TSV, HBM) at less power cost.

On a methodological development point of view, the exploration approach defined and
used illustrate some benefits of tightly-coupled Hardware/Software Co-design, a concept
born in the embedded world, to better address specific Exascale constraints resulting
from the expansion of the number of processing cores instead of increasing processor fre-
quency. Software influences architecture at different levels that are not limited to user
applications and algorithms, but also programming models and system software. These
problematics led to a wider reflection and to consider runtime software and more pre-
cisely power management which is an important issue when it comes to power efficiency.
The potential of more responsive power strategies tuned to the specific performance
constraints of HPC was demonstrated and this original thesis contribution opens other
perspectives. Overall, this study extends quite logically to pursue the investigations of
methodical holistic approaches able to explore and implement a better match between
software and architecture at development and execution levels, allowing both algortihm
well tuning to the complex processing capabilities and the best fit with the applications

116

at runtime.

In the last lines of this thesis manuscript, one thing is clear: that the hardware and
software ecosystem around the Arm technologies are now mature enough in comparison
to the leading ones for HPC. The skepticism of the community at the beginning is re-
placed by a little bit of enthusiasm, with several encouraging preview conclusions of the
new systems using the latest ARMv8-based processor (ThunderX2). At the European
level, the EU has rectified the supercomputing strategy with the Europe Processor Ini-
tiative (EPI) consortium to deliver an exascale machine based on EU processor by 2023.
However, generally speaking HPC is still about silicon technology. The next generation
of CPU will be manufactured at 5nm process and today no one seriously argues about
the fact that Moore’s Law is getting close to fundamental physical limits as processor
features are approaching the size of atoms. The post Moore computing research may
offer several perspectives to post-exascale systems. Recent progress in quantum com-
puting hardware with fully functional Quantum Processing Units (QPU) and associated
ISA; will offer new directions for High Performance Computing. The challenge will be
to integrate or combine QPUs in the silicon computational workflows [81–84].

Bibliography

[1] Sao-Jie Chen, Guang-Huei Lin, Pao-Ann Hsiung, and Yu-Hen Hu. Hardware soft-
ware co-design of a multimedia SOC platform. Springer Science & Business Media,
2009.

[2] John Impagliazzo and John AN Lee. History of Computing in Education: IFIP 18th
World Computer Congress, TC3/TC9 1st Conference on the History of Computing
in Education, 22-27 August 2004, Toulouse, France. Springer, 2004.

[3] Erika Abraham, Costas Bekas, Ivona Brandic, Samir Genaim, Einar Broch Johnsen,
Ivan Kondov, Sabri Pllana, and Achim Streit. Preparing hpc applications for exas-
cale: challenges and recommendations. In 2015 18th International Conference on
Network-Based Information Systems, pages 401–406. IEEE, 2015.

[4] Cristóbal Camarero, Carmen Martínez, Enrique Vallejo, and Ramón Beivide. Pro-
jective networks: Topologies for large parallel computer systems. IEEE Transac-
tions on Parallel and Distributed Systems, 28(7):2003–2016, 2017.

[5] Edy Tri Baskoro, Mirka Miller, Ján Plesník, and Štefan Znám. Digraphs of degree
3 and order close to the moore bound. Journal of Graph Theory, 20(3):339–349,
1995.

[6] Mariano Benito, Enrique Vallejo, and Ramón Beivide. On the use of commodity
ethernet technology in exascale hpc systems. In 2015 IEEE 22nd International
Conference on High Performance Computing (HiPC), pages 254–263. IEEE, 2015.

[7] Nathan DeBardeleben, Sean Blanchard, David Kaeli, and Paolo Rech. Field, ex-
perimental, and analytical data on large-scale hpc systems and evaluation of the
implications for exascale system design. In 2015 IEEE 33rd VLSI Test Symposium
(VTS), pages 1–2. IEEE, 2015.

Bibliography 118

[8] Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana Schaa, and David Kaeli.
Multi2sim: a simulation framework for cpu-gpu computing. In 2012 21st Interna-
tional Conference on Parallel Architectures and Compilation Techniques (PACT),
pages 335–344. IEEE, 2012.

[9] Nathan DeBardeleben, Sean Blanchard, Laura Monroe, Phil Romero, Daryl
Grunau, Craig Idler, and Cornell Wright. Gpu behavior on a large hpc cluster.
In European Conference on Parallel Processing, pages 680–689. Springer, 2013.

[10] Brian Kocoloski, Leonardo Piga, Wei Huang, Indrani Paul, and John Lange. A case
for criticality models in exascale systems. In 2016 IEEE International Conference
on Cluster Computing (CLUSTER), pages 213–216. IEEE, 2016.

[11] Bianca Schroeder and Garth A Gibson. Understanding failures in petascale com-
puters. In Journal of Physics: Conference Series, volume 78, page 012022. IOP
Publishing, 2007.

[12] Daniel Dauwe, Sudeep Pasricha, Anthony A Maciejewski, and Howard Jay Siegel.
A performance and energy comparison of fault tolerance techniques for exascale
computing systems. In 2016 IEEE International Conference on Computer and
Information Technology (CIT), pages 436–443. IEEE, 2016.

[13] Saurabh Hukerikar and Christian Engelmann. Havens: explicit reliable memory
regions for hpc applications. In 2016 IEEE High Performance Extreme Computing
Conference (HPEC), pages 1–6. IEEE, 2016.

[14] Nunziato Cassavia, Sergio Flesca, Michele Ianni, Elio Masciari, Giuseppe Papuzzo,
and Chiara Pulice. A peer to peer approach to efficient high performance comput-
ing. In 2017 25th Euromicro International Conference on Parallel, Distributed and
Network-based Processing (PDP), pages 539–542. IEEE, 2017.

[15] Simon Pickartz, Stefan Lankes, Antonello Monti, Carsten Clauss, and Jens Breit-
bart. Application migration in hpcâa driver of the exascale era? In 2016 Interna-
tional Conference on High Performance Computing & Simulation (HPCS), pages
318–325. IEEE, 2016.

[16] Carlos Rosales, Antonio Gómez-Iglesias, Si Liu, Feng Chen, Lei Huang, Hang Liu,
Antia Lamas-Linares, and John Cazes. Performance prediction of hpc applications
on intel processors. In 2017 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pages 1325–1332. IEEE, 2017.

Bibliography 119

[17] Kavitha Chandrasekar, Xiang Ni, and Laxmikant V Kale. A memory heterogeneity-
aware runtime system for bandwidth-sensitive hpc applications. In 2017 IEEE In-
ternational Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pages 1293–1300. IEEE, 2017.

[18] Ivy Bo Peng, Roberto Gioiosa, Gokcen Kestor, Pietro Cicotti, Erwin Laure, and
Stefano Markidis. Exploring the performance benefit of hybrid memory system on
hpc environments. In 2017 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pages 683–692. IEEE, 2017.

[19] Rizwan A Ashraf, Roberto Gioiosa, Gokcen Kestor, and Ronald F DeMara. Ex-
ploring the effect of compiler optimizations on the reliability of hpc applications.
In 2017 IEEE International Parallel and Distributed Processing Symposium Work-
shops (IPDPSW), pages 1274–1283. IEEE, 2017.

[20] Antoni Portero, Jiri Sevcik, Martin Golasowski, Radim Vavrík, Simone Libutti,
Giuseppe Massari, Francky Catthoor, William Fornaciari, and Vít Vondrák. Us-
ing an adaptive and time predictable runtime system for power-aware hpc-oriented
applications. In 2016 Seventh International Green and Sustainable Computing Con-
ference (IGSC), pages 1–6. IEEE, 2016.

[21] Avinash Sodani, Roger Gramunt, Jesus Corbal, Ho-Seop Kim, Krishna Vinod, Sun-
daram Chinthamani, Steven Hutsell, Rajat Agarwal, and Yen-Chen Liu. Knights
landing: Second-generation intel xeon phi product. Ieee micro, 36(2):34–46, 2016.

[22] Tiffany Trader. China debuts 93-petaflops âsunwayâ with homegrown processors,
2016.

[23] Haohuan Fu, Junfeng Liao, Jinzhe Yang, Lanning Wang, Zhenya Song, Xiaomeng
Huang, Chao Yang, Wei Xue, Fangfang Liu, Fangli Qiao, et al. The sunway taihu-
light supercomputer: system and applications. Science China Information Sciences,
59(7):072001, 2016.

[24] Emily Blem, Jaikrishnan Menon, and Karthikeyan Sankaralingam. Power struggles:
Revisiting the risc vs. cisc debate on contemporary arm and x86 architectures. In
2013 IEEE 19th International Symposium on High Performance Computer Archi-
tecture (HPCA), pages 1–12. IEEE, 2013.

[25] Katie Roberts-Hoffman and Pawankumar Hegde. Arm cortex-a8 vs. intel atom:
Architectural and benchmark comparisons. Dallas: University of Texas at Dallas,
5, 2009.

Bibliography 120

[26] Edson L Padoin, Daniel AG de Oliveira, Pedro Velho, and Philippe OA Navaux.
Time-to-solution and energy-to-solution: a comparison between arm and xeon. In
2012 Third Workshop on Applications for Multi-Core Architecture, pages 48–53.
IEEE, 2012.

[27] Edson Luiz Padoin, Laércio Lima Pilla, Márcio Castro, Francieli Z Boito, Philippe
Olivier Alexandre Navaux, and Jean-François Méhaut. Performance/energy trade-
off in scientific computing: the case of arm big. little and intel sandy bridge. IET
Computers & Digital Techniques, 9(1):27–35, 2014.

[28] Nikola Rajovic, Alejandro Rico, Nikola Puzovic, Chris Adeniyi-Jones, and Alex
Ramirez. Tibidabo: Making the case for an arm-based hpc system. Future Gener-
ation Computer Systems, 36:322–334, 2014.

[29] Grisenthwaite Richard. Armv8-a technology preview, 2011.

[30] Tim Northover. Aarch64: Armâs 64-bit architecture, 2012.

[31] Catalin Marinas. Linux on aarch64 arm 64-bit architecture, 2012.

[32] Arm Ltd. Arm architecture reference manual, 2005.

[33] Arm Ltd. Armv8 instruction set overview, 2011.

[34] Matt Humrick. Exploring dynamiq and armâs new cpus: Cortex-a75, cortex-a55,
2017.

[35] Anastasiia Butko, Abdoulaye Gamatié, Gilles Sassatelli, Lionel Torres, and Michel
Robert. Design exploration for next generation high-performance manycore on-chip
systems: Application to big. little architectures. In 2015 IEEE Computer Society
Annual Symposium on VLSI, pages 551–556. IEEE, 2015.

[36] Nigel Stephens. Armv8-a next-generation vector architecture for hpc. In 2016 IEEE
Hot Chips 28 Symposium (HCS), pages 1–31. IEEE, 2016.

[37] Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou Eyole, Gia-
como Gabrielli, Matt Horsnell, Grigorios Magklis, Alejandro Martinez, Nathanael
Premillieu, et al. The arm scalable vector extension. IEEE Micro, 37(2):26–39,
2017.

Bibliography 121

[38] Federico Angiolini, Jianjiang Ceng, Rainer Leupers, Federico Ferrari, Cesare Ferri,
and Luca Benini. An integrated open framework for heterogeneous mpsoc design
space exploration. In Proceedings of the conference on design, automation and
test in Europe: proceedings, pages 1145–1150. European Design and Automation
Association, 2006.

[39] Wai Kai Chen. The electrical engineering handbook. Elsevier, 2004.

[40] Ming-yu Hsieh, Arun Rodrigues, Rolf Riesen, Kevin Thompson, and William Song.
A framework for architecture-level power, area, and thermal simulation and its ap-
plication to network-on-chip design exploration. ACM SIGMETRICS Performance
Evaluation Review, 38(4):63–68, 2011.

[41] Arun F Rodrigues, K Scott Hemmert, Brian W Barrett, Chad Kersey, Ron Oldfield,
Marlo Weston, Rolf Risen, Jeanine Cook, Paul Rosenfeld, E CooperBalls, et al.
The structural simulation toolkit. SIGMETRICS Performance Evaluation Review,
38(4):37–42, 2011.

[42] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen,
and Norman P Jouppi. Mcpat: an integrated power, area, and timing modeling
framework for multicore and manycore architectures. In Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Microarchitecture, pages 469–480.
ACM, 2009.

[43] Deepak C Sekar, Azad Naeemi, Reza Sarvari, Jeffrey A Davis, and James D Meindl.
Intsim: A cad tool for optimization of multilevel interconnect networks. In 2007
IEEE/ACM International Conference on Computer-Aided Design, pages 560–567.
IEEE, 2007.

[44] Deepak Chandra Sekar. Optimal signal, power, clock and thermal interconnect
networks for high-performance 2d and 3d integrated circuits. PhD thesis, Georgia
Institute of Technology, 2008.

[45] Sarvjeet Singh, Chris Mayfield, Sagar Mittal, Sunil Prabhakar, Susanne Hambrusch,
and Rahul Shah. Orion 2.0: native support for uncertain data. In Proceedings of
the 2008 ACM SIGMOD international conference on Management of data, pages
1239–1242. ACM, 2008.

[46] Kevin Skadron, Mircea R Stan, Karthik Sankaranarayanan, Wei Huang, Sivaku-
mar Velusamy, and David Tarjan. Temperature-aware microarchitecture: Modeling

Bibliography 122

and implementation. ACM Transactions on Architecture and Code Optimization
(TACO), 1(1):94–125, 2004.

[47] Anastasiia Butko, Rafael Garibotti, Luciano Ost, Vianney Lapotre, Abdoulaye
Gamatie, Gilles Sassatelli, and Chris Adeniyi-Jones. A trace-driven approach for
fast and accurate simulation of manycore architectures. In The 20th Asia and South
Pacific Design Automation Conference, pages 707–712. IEEE, 2015.

[48] Sudip S Dosanjh, Richard F Barrett, DW Doerfler, Simon D Hammond, Karl S
Hemmert, Michael A Heroux, Paul T Lin, Kevin T Pedretti, Arun F Rodrigues,
TG Trucano, et al. Exascale design space exploration and co-design. Future Gen-
eration Computer Systems, 30:46–58, 2014.

[49] Pablo De Oliveira Castro, Chadi Akel, Eric Petit, Mihail Popov, and William Jalby.
Cere: Llvm-based codelet extractor and replayer for piecewise benchmarking and
optimization. ACM Transactions on Architecture and Code Optimization (TACO),
12(1):6, 2015.

[50] Alain Greiner. Tsar: a scalable, shared memory, many-cores architecture with global
cache coherence. In 9th International Forum on Embedded MPSoC and Multicore
(MPSoCâ09), volume 15, 2009.

[51] Tiffany Trader. China plans 2019 exascale machine to grow sea power, 2017.

[52] Mitsuo Yokokawa, Fumiyoshi Shoji, Atsuya Uno, Motoyoshi Kurokawa, and
Tadashi Watanabe. The k computer: Japanese next-generation supercomputer
development project. In IEEE/ACM international symposium on low power elec-
tronics and design, pages 371–372. IEEE, 2011.

[53] Yuuichirou Ajima, Tomohiro Inoue, Shinya Hiramoto, and Toshiyuki Shimizu. Tofu:
Interconnect for the k computer. Fujitsu Sci. Tech. J, 48(3):280–285, 2012.

[54] RIKEN. Riken aics annual report, 2017.

[55] Bob Sorensen. Japan’s flagship 2020 âpost-kâ system. Computing in Science &
Engineering, 21(1):48–49, 2019.

[56] RIKEN. Post-k supercomputer with fujitsuâs original cpu, a64fx powered by arm
isa, 2018.

Bibliography 123

[57] Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William Dally,
Monty Denneau, Paul Franzon, William Harrod, Kerry Hill, Jon Hiller, et al. Ex-
ascale computing study: Technology challenges in achieving exascale systems. De-
fense Advanced Research Projects Agency Information Processing Techniques Office
(DARPA IPTO), Tech. Rep, 15, 2008.

[58] Paul Messina. The exascale computing project. Computing in Science & Engineer-
ing, 19(3):63–67, 2017.

[59] Nicole Hemsoth. A look inside china’s chart-topping new supercomputer, 2016.

[60] Bernier-Bruna Pascale, Eisenreich Sabrina, Gimenez Binder Renata, Inglis Cather-
ine, Markidis Stefano, Rossi Ricardo, Soriano Cecilia, Smith Lorna, and Vander Aa
Tom. Europe towards exascale : A lookback on 5 years of european exascale research
collaboration, 2016.

[61] Joshua Wyatt Smith, Graeme A Stewart, Arnulf Quadt, and Rolf Seuster. Atlas
software stack on arm64. In J. Phys. Conf. Ser., volume 898, page 072001, 2017.

[62] David R Butenhof. Programming with POSIX threads. Addison-Wesley Profes-
sional, 1997.

[63] Daniel J Sorin, Mark D Hill, and David A Wood. A primer on memory consistency
and cache coherence. Synthesis Lectures on Computer Architecture, 6(3):1–212,
2011.

[64] Ross Weber. Modeling and verifying cache-coherent protocols, vip, and designs.
Jasper Design Automation, June 2011, 2011.

[65] Ashley Stevens. Introduction to amba® 4 aceâ¢ and big. littleâ¢ processing tech-
nology. ARM White Paper, CoreLink Intelligent System IP by ARM, 2011.

[66] Rasmus Ulfsnes. Design of a snoop filter for snoop based cache coherency protocols.
Master’s thesis, Institutt for elektronikk og telekommunikasjon, 2013.

[67] Andreas Moshovos, Gokhan Memik, Babak Falsafi, and Alok Choudhary. Jetty:
Filtering snoops for reduced energy consumption in smp servers. In Proceedings
HPCA Seventh International Symposium on High-Performance Computer Archi-
tecture, pages 85–96. IEEE, 2001.

Bibliography 124

[68] Giorgio Luigi Valentini, Walter Lassonde, Samee Ullah Khan, Nasro Min-Allah, Saj-
jad A Madani, Juan Li, Limin Zhang, Lizhe Wang, Nasir Ghani, Joanna Kolodziej,
et al. An overview of energy efficiency techniques in cluster computing systems.
Cluster Computing, 16(1):3–15, 2013.

[69] Tapasya Patki, David K Lowenthal, Barry Rountree, Martin Schulz, and Bronis R
De Supinski. Exploring hardware overprovisioning in power-constrained, high per-
formance computing. In Proceedings of the 27th international ACM conference on
International conference on supercomputing, pages 173–182. ACM, 2013.

[70] Jens Breitbart, Josef Weidendorfer, and Carsten Trinitis. Case study on co-
scheduling for hpc applications. In 2015 44th International Conference on Parallel
Processing Workshops, pages 277–285. IEEE, 2015.

[71] Barry Rountree, Dong H Ahn, Bronis R De Supinski, David K Lowenthal, and
Martin Schulz. Beyond dvfs: A first look at performance under a hardware-enforced
power bound. In 2012 IEEE 26th International Parallel and Distributed Processing
Symposium Workshops & PhD Forum, pages 947–953. IEEE, 2012.

[72] John D Davis, Suzanne Rivoire, Moises Goldszmidt, and Ehsan K Ardestani. Ac-
counting for variability in large-scale cluster power models. Exascale Evaluation
and Research Techniques Workshop (EXERT), 2011.

[73] Aniruddha Marathe, Peter E Bailey, David K Lowenthal, Barry Rountree, Martin
Schulz, and Bronis R de Supinski. A run-time system for power-constrained hpc
applications. In International conference on high performance computing, pages
394–408. Springer, 2015.

[74] Chung-Hsing Hsu and Ulrich Kremer. Compiler-directed dynamic voltage and fre-
quency scaling for cpu power and energy reduction. PhD thesis, Rutgers University,
2003.

[75] Sébastien Bilavarn, Jabran Khan, Cécile Belleudy, and Muhammad Khurram
Bhatti. Effectiveness of power strategies for video applications: a practical study.
Journal of Real-Time Image Processing, 12(1):123–132, 2016.

[76] Robin Bonamy, Sébastien Bilavarn, Fabrice Muller, François Duhem, Simon Hey-
wood, Philippe Millet, and Fabrice Lemonnier. Energy efficient mapping on many-
core with dynamic and partial reconfiguration: Application to a smart camera.
International Journal of Circuit Theory and Applications, 46(9):1648–1662, 2018.

Bibliography 125

[77] D Suleiman, M Ibrahim, and I Hamarash. Dynamic voltage frequency scaling (dvfs)
for microprocessors power and energy reduction. In 4th International Conference
on Electrical and Electronics Engineering, 2005.

[78] Dominik Brodowski and Nico Golde. Linux cpufreq governors. Linux Kernel.
https://www. kernel. org/doc/Documentation/cpu-freq/governors. txt, 2013.

[79] Venkatesh Pallipadi and Alexey Starikovskiy. The ondemand governor. In Proceed-
ings of the Linux Symposium, volume 2, pages 215–230, 2006.

[80] Maja Etinski, Julita Corbalán, Jesús Labarta, and Mateo Valero. Understanding
the future of energy-performance trade-off via dvfs in hpc environments. Journal
of Parallel and Distributed Computing, 72(4):579–590, 2012.

[81] Keith A Britt and Travis S Humble. High-performance computing with quantum
processing units. ACM Journal on Emerging Technologies in Computing Systems
(JETC), 13(3):39, 2017.

[82] Keith A Britt and Travis S Humble. Instruction set architectures for quantum
processing units. In International Conference on High Performance Computing,
pages 98–105. Springer, 2017.

[83] Alexander J McCaskey, Eugene F Dumitrescu, Dmitry Liakh, Mengsu Chen, Wu-
chun Feng, and Travis S Humble. Extreme-scale programming model for quantum
acceleration within high performance computing. arXiv preprint arXiv:1710.01794,
2017.

[84] Keith A Britt, Fahd A Mohiyaddin, and Travis S Humble. Quantum accelerators
for high-performance computing systems. In 2017 IEEE International Conference
on Rebooting Computing (ICRC), pages 1–7. IEEE, 2017.

Appendix A

Gem5 Related work

Refer to the github web page for more details about gem5 with aarch64 per core DVFS
capabilities: https://github.com/jwanza/gem5-aarch64-dvfs/tree/master

https://github.com/jwanza/gem5-aarch64-dvfs/tree/master

Appendix B

Gem5 full system stack effort

Refer to the github web page for more details about the binaries and images devel-
oped to use gem5 with DVFS features at core level: https://github.com/jwanza/gem5-
FullSystem-stack

Also, you will find plenty of scripts that enable a quick analysis of the simultations
results.

https://github.com/jwanza/gem5-FullSystem-stack
https://github.com/jwanza/gem5-FullSystem-stack

	Contents
	List of Figures
	List of Tables
	List of terms
	I BACKGROUND
	1 Introduction
	1.1 Objectives and Contexts
	1.2 Thesis contributions
	1.2.1 Main contributions
	1.2.2 Published papers

	1.3 Thesis outlines

	2 State-of-the-Art
	2.1 HPC background
	2.1.1 History
	2.1.2 Exascale Challenges
	2.1.3 Applications

	2.2 HPC Compute node architectures
	2.2.1 Introduction
	2.2.2 Intel Xeon E series architecture: Skylake (Haswell)
	2.2.3 Intel Xeon Phi Coprocessor architecture: Knights Landing
	2.2.4 Emerging compute node architectures: SunWay
	2.2.5 Emerging compute node architectures: Opteron
	2.2.6 Arm vs Intel Compute node architecture
	2.2.7 The first Arm-based HPC Cluster: Tibidabo

	2.3 Aarch64 architecture and ARMv8 processors
	2.3.1 ARMv8 or AArch64 ?
	2.3.2 ARMv8-A processors : Cortex-A75
	2.3.3 SVE: Scalable Vector Extension

	2.4 Research projects
	2.4.1 Design space exploration methodologies
	2.4.2 TSAR Architecture example
	2.4.3 Global projects overview
	2.4.4 Asian projects
	2.4.5 American project : Exascale Computing Project (ECP)
	2.4.6 European Projects

	2.5 Conclusion

	II EXPERIMENTATION AND ANALYSIS
	3 Modeling and exploration methodology
	3.1 Introduction
	3.2 Virtual prototyping and system components
	3.2.1 Simulation tools
	3.2.1.1 Vista
	3.2.1.2 SoC Designer
	3.2.1.3 GEM5
	3.2.1.4 System Generator Canvas
	3.2.1.5 Platform Architect

	3.2.2 Hardware platforms
	3.2.3 programming support for HPC
	3.2.3.1 Libraries
	3.2.3.2 Programming models

	3.3 Exploration methodology
	3.3.1 Definition and metrics
	3.3.2 Extended VPU platform
	3.3.3 Correlation study
	3.3.3.1 Evaluation of virtual platforms
	3.3.3.2 Processing efficiency
	3.3.3.3 Memory and cache consistency
	3.3.3.4 Scalability

	3.4 Conclusion

	4 Architectural exploration
	4.1 Memory coherency and SoC partitioning
	4.2 Cache coherence protocols
	4.2.1 Overview
	4.2.2 Snoop Transaction types
	4.2.3 Directory based filtering
	4.2.4 ARM Coherence Protocols

	4.3 SoC Coherent Interconnect
	4.3.1 Description
	4.3.2 SCI Architecture
	4.3.3 Cache model
	4.3.3.1 Cache controller
	4.3.3.2 Cache Snoop controller

	4.3.4 SCI Snoop Filter model
	4.3.5 SoC Partitionning
	4.3.5.1 Partitioning topology overview
	4.3.5.2 Multi-SoC scenarios
	4.3.5.3 Coherent Proxy extensions

	4.4 Simulations
	4.4.1 Directory-based snoop filtering benefits
	4.4.2 Partitioning analysis
	4.4.3 Parallel programming efficiency

	4.5 Conclusion

	5 Power management
	5.1 HPC energy efficiency constraints
	5.1.1 Existing power strategies for HPC
	5.1.2 OS based strategies
	5.1.3 Energy efficiency improvement

	5.2 Evaluation of OS power strategies
	5.2.1 Simulation framework
	5.2.1.1 GEM5
	5.2.1.2 Benchmarks
	5.2.1.3 Energy efficiency evaluation

	5.2.2 Simulation results

	5.3 Power strategies for HPC
	5.3.1 Soft big.LITTLE strategy simulations with GEM5
	5.3.2 Blocking point strategy simulations with GEM5

	5.4 Measurements with Cavium ThunderX2
	5.4.1 Platform description
	5.4.2 Soft big.LITTLE strategy execution on ThunderX2
	5.4.3 Blocking point strategy execution on ThunderX2

	5.5 Conclusion

	III CONCLUSIONS
	6 Conclusions and Perspectives
	Bibliography
	A Gem5 Related work
	B Gem5 full system stack effort

