S. R. Kanitkar and J. J. Spivey, « Light Alkane Aromatization: Efficient use of Natural Gas, Natural Gas Processing from Midstream to Downstream, 2015.

K. Aruga and U. S. The, shale gas revolution and its effect on international gas markets, J. Unconv. Oil Gas Resour, vol.14, pp.1-5, 2016.

B. Horsfield and H. Schulz, « Shale gas exploration and exploitation, Mar. Pet. Geol, pp.1-2, 2012.

, « Le bas prix du gaz américain met-il en péril la pétrochimie européenne??, 20160121.

U. S. , Energy Information Administration, « Technically Recoverable Shale Oil and Shale Gas Resources, 2013.

, En Europe, le gaz de schiste?: situation par pays

K. Weissermel and H. Arpe, Industrial organic chemistry, 3ème édition, 1997.

B. Martel, Aide-mémoire à la chimie organique industrielle, Dunod, p.9, 2009.

A. Yu and . Krylova, Products of the Fischer-Tropsch synthesis (A Review), vol.48, pp.22-35, 2014.

T. Ren, M. Patel, and K. Blok, « Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes, pp.425-451, 2006.

, ETHYLENE -Product Stewardship Guidance Manual, 2004.

A. V. Lavrenov, L. F. Saifulina, E. A. Buluchevskii, and E. N. Bogdanets, Propylene production technology: Today and tomorrow, vol.7, pp.75-187, 2015.

M. Iwamoto, Conversion of Ethene to Propene on Nickel Ion-loaded Mesoporous Silica Prepared by the Template Ion Exchange Method, Catal. Surv. Asia, vol.12, pp.28-37, 2008.

M. Stoyanova, M. Schneider, M. Pohl, and U. Rodemerck, « Direct conversion of ethylene to propene over Ni impregnated by incipient wetness on silica-alumina, Catal. Commun, vol.92, pp.65-69, 2017.

B. Lin, Q. Zhang, and Y. Wang, « Catalytic Conversion of Ethylene to Propylene and Butenes over H?ZSM-5 », Ind. Eng. Chem. Res, vol.48, pp.10788-10795, 2009.

W. Dai, X. Sun, B. Tang, G. Wu, L. Li et al., Hunger, « Verifying the mechanism of the ethene-to-propene conversion on zeolite H-SSZ-13, J. Catal, vol.314, pp.10-20, 2014.

J. Skupinska, « Oligomerization of ?-Olefins to Higher Oligomers », Chem. Rev, vol.91, pp.613-648, 1991.

J. T. Dixon, M. J. Green, F. M. Hess, and D. H. Morgan, « Advances in selective ethylene trimerisation -a critical overview, J. Organomet. Chem, vol.689, pp.3641-3668, 2004.

K. A. Alferov, G. P. Belov, and Y. Meng, « Chromium catalysts for selective ethylene oligomerization to 1-hexene and 1-octene: Recent results, Appl. Catal. Gen, vol.542, pp.71-124, 2017.

H. Zhang, X. Li, Y. Zhang, S. Lin, G. Li et al., Ethylene Oligomerization Over Heterogeneous Catalysts, vol.3, pp.246-256, 2014.

C. Bianchini, G. Giambastiani, I. G. Rios, G. Mantovani, A. Meli et al., « Ethylene oligomerization, homopolymerization and copolymerization by iron and cobalt catalysts with 2,6-(bis-organylimino)pyridyl ligands », Coord. Chem. Rev, vol.250, pp.1391-1418, 2006.

M. Ghashghaee, « Heterogeneous catalysts for gas-phase conversion of ethylene to higher olefins, Rev. Chem. Eng, vol.34, pp.595-655, 2018.

A. Finiels, F. Fajula, and V. Hulea, « Nickel-based solid catalysts for ethylene oligomerization -a review », Catal. Sci. Technol, vol.4, pp.2412-2426, 2014.

C. Carlini, M. Marchionna, A. M. Galletti, and G. Sbrana, « Novel ?-nitroketonate nickel(II) complexes as homogeneous catalysts for ethylene oligomerization, Appl. Catal. A Gen, vol.206, pp.1-12, 2001.

A. M. Al-jarallah, J. A. Siddiqui, A. M. Aitini, and A. W. , Al-Sa'doun, « Ethylene dimerization and oligomerization to butene-1 and linear ?-olefins: A review of catalytic systems and processes, Catal. Today, vol.14, pp.1-124, 1992.

M. Lallemand, O. A. Rusu, E. Dumitriu, A. Finiels, F. Fajula et al., « NiMCM-36 and NiMCM-22 catalysts for the ethylene oligomerization: Effect of zeolite texture and nickel cations/acid sites ratio, Appl. Catal. Gen, vol.338, pp.37-43, 2008.

S. Sivasanker and P. Ratnasamy, Council of scientific & Industrial Research, « US4950385 -Reforming process for the catalytic conversion of petroleum fractions to a mixture of hydrocarbons rich in aromatics, 1990.

T. M. Al-qahtani, K. Karim, M. A. Bashir, A. Al-hammad, L. C. Ahmed et al., SABIC Global Technologies B.V.« US 20180118639 A1 -System and method rrelated to syngas to olefin process », 2018.

R. V. Pelaez, R. Narayanaswamy, V. Rajagopalan, A. J. Oprins, A. M. Ward et al.,

M. Schaerlaeckens, J. Van-willigenburg, S. Basic-industries, «. Corporation, and . Us, A1 -Process for producing btx from a mixed hydrocarbon source using pyrolisis», 2018.

N. Soultanidis, M. Shekhar, and J. S. Coleman, ExxonMobil Chemical Patents Inc.,« US10196325 B2 -Process for converting syngas to aromatics and catalyst system suitable therefor, 2019.

A. Kh and . Mamedov, SABIC Global Technologies B.V., « US20190031578A1 -Conversion of shale gas to aromatics, 2019.

H. Ito, S. S. Malwadkar, Q. Zhnag, and S. Miyazoe, « US10195595 B2 -Catalyst composition and process for producing aromatics hydrocarbon using catalyst compostion, 2019.

G. Giannetto, R. Monque, and R. Galiasso, « Transformation of LPG into Aromatic Hydrocarbons and Hydrogen over Zeolite Catalysts », Catal. Rev, vol.36, pp.271-304, 1994.

N. Y. Chen, W. E. Garwood, and R. H. Heck, M-Forming Process, vol.26, pp.706-711, 1987.

N. Y. Chen and T. Y. Yan, « M2 Forming -A Process for Aromatization of Light Hydrocarbons, vol.25, pp.151-155, 1986.

J. R. Mowry, R. F. Anderson, and J. A. Johnson, Process makes aromativs from LPG, vol.83, pp.128-131, 1985.

R. Gregory and A. J. Kolombos, The British Petyrolleum Company Limited, « US4056575 -Chemical process making aromatic hydrocarbons over gallium catalyst, 1977.

S. N. Bulford and E. E. Davies, The British Petyrolleum Company Limited, « US4157356 -Procédé de déshydrocyclo-dimérisation d'une charge d'hydrocarbures en C3 à C8, pour la fabrication d'hydrocarbures aromatiques, 1977.

P. C. Doolan, Cyclar -LPG to valuable aromatics », Petrochemical review, Mars 28-30, 1989.

J. Johnson and G. K. Hilder, « Dehydrocyclodimerization, converting LPG to aromatics », NPRA Annual Meeting, Mars 25-27, 1984.

E. E. Davies and A. J. Kolombos, The British Petyrolleum Company Limited, « US4180689A -Process for converting C3-C12 hydrocarbons to aromatics over gallia-activited zeolite, 1979.

J. D. Swift, M. D. Moser, M. B. Russ, and R. S. Haizmann, The RZ Platforming process: something new in aromatics technolohy », Petrochemicals an gas processing, pp.86-89, 1995.

D. S. Jones and P. R. Pujadó, Handbook of petroleum processing, 2006.

M. Beccari and U. Romano, Encyclopaedia of hydrocarbons, vol.II, 2006.

T. Wakai, K. Hirabayashi, T. Kondoh, and S. Inoue, « Aromatization of light hydrocarbons by Z-forming process, Science and Technology in Catalysis, pp.449-452, 1995.

S. Saito, K. Hirabayashi, S. Shibata, T. Kondo, K. Adachi et al., « Z-forming process: conversion of LPG and light naphtha to aromatics, NPRA Annual Meeting, pp.22-24, 1992.

Y. Nagamori and M. Kawase, Converting light hydrocarbons containing olefins to aromatics (Alpha Process), vol.21, 1998.

J. R. Bernard, « hydrocarbons aromatization on platinium alkaline zeolites », Peoceeding of the fifth international conference on zeolites, pp.686-695, 1980.

P. W. Tamm, D. H. Mohr, and C. R. Wilson, Octane Enhancement By Selective Reforming of Light Paraffins », Studies in Surface Science and Catalysis, vol.38, pp.335-353, 1988.

G. N. Roosen, A. Orieux, and J. Andrews, « A new approach to aromatics production », Petrochemical review, Mars 28-30, 1989.

L. Mank, R. Minkkinen, and . Shaddick«-aroforming, Hydrocarbon Technology International, pp.69-73, 1992.

M. Guisnet, N. S. Gnep, and F. Alario, « Aromatization of short chain alkanes on zeolite catalysts, Appl. Catal. Gen, vol.89, pp.1-30, 1992.

M. Guisnet and F. Ramôa-ribeiro, « Les zéolithes, un nanomonde au service de la catalyse, EDP Sciences, p.préface, 2006.

M. Guisnet and J. P. Gilson, « Zeolites for Cleaner Technologies, Zeolites in industrial separation and catalysis, p.1, 2005.

K. Na, C. Jo, J. Kim, H. Cho, J. Jung et al., « Directing Zeolite Structures into Hierarchically Nanoporous Architectures », pp.328-332, 2011.

S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu et al., « Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles », Nature, pp.169-172, 2001.

E. M. Flanigen, J. M. Benett, R. W. Grose, J. P. Cohen, R. L. Patton et al., Nature, vol.271, pp.512-516, 1978.

C. Raksakoon and J. Limtrakul, « Adsorption of aromatic hydrocarbon onto H-ZSM-5 zeolite investigated by ONIOM study, J. Mol. Struct. THEOCHEM, pp.147-156, 2003.

D. H. Olson, G. T. Kokotailo, S. L. Lawton, and W. M. Meier, Crystal structure and structure-related properties of ZSM-5, vol.85, pp.2238-2243, 1981.

M. Jakubowski, « Zinc and Cadmium Compounds », Patty's Toxixicology, 6 ème édition, vol.1, p.167, 2012.

L. Lander and R. Reuther, Metals in Society and in the Environment», vol.8, p.24, 2004.

, Le marché du zinc en déficit pour la première fois depuis, 2006.

. Kirk, Othmer encyclopedia of chemical technology, 4ème édition, vol.25, pp.398-401, 2001.

J. F. Woodman and H. S. Taylor, « The Hydrogenation of Ethylene at Surfaces of Certain Oxides. I. Zinc Oxide and Zinc Chromite, J. Am. Chem. Soc, vol.62, pp.1393-1396, 1940.

J. Aigueperse and S. J. Teichner, « The hydrogenation of ethylene on zinc oxide catalysts, J. Catal, vol.2, pp.359-365, 1963.

A. L. Dent and R. J. Kokes, « Hydrogenation of ethylene by zinc oxide. I. Role of slow hydrogen chemisorption, J. Phys. Chem, vol.73, pp.3772-3780, 1969.

A. L. Dent and R. J. Kokes, « Hydrogenation of Ethylene by Zinc Oxide. II. Mechanism and Active Sites », J. Phys. Chem, vol.73, pp.3781-3790, 1969.

Y. Ono, Transformation of Lower Alkanes into Aromatic Hydrocarbons over ZSM

. Zeolites, Catal. Rev, vol.34, pp.179-226, 1992.

H. Kitagawa, Y. Sendoda, and T. Ono, « Transformation of propane into aromatic hydrocarbons over ZSM-5 zeolites, J. Catal, vol.101, pp.12-18, 1986.

Y. Ono and K. Kanae, « Transformation of butanes over ZSM-5 zeolites. Part 2.-Formation of aromatic hydrocarbons over Zn-ZSM-5 and Ga-ZSM-5 », J. Chem Soc Faraday Trans, vol.87, pp.669-675, 1991.

K. Osako, K. Nakashiro, and Y. Ono, « The Role of Zinc Cations in the Conversion of Isobutane, Bull. Chem. Soc. Jpn, vol.66, pp.755-759, 1993.

Y. Ono, H. Kitagawa, and Y. Sendoda, Transformation of Lower Alkanes into Aromatic Hydrocarbons over ZSM-5 Zeolites, vol.30, pp.77-88, 1987.

Y. Ono, H. Kitagawa, and Y. Sendoda, « Transformation of but-1-ene into aromatic hydrocarbons over ZSM-5 zeolites », J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, vol.83, pp.2913-2923, 1987.

T. Mole, J. R. Anderson, and G. Creer, The reaction of propane over ZSM-5-H and ZSM

, Zn zeolite catalysts, Appl. Catal, vol.17, pp.141-154, 1985.

T. Inui, Y. Makino, F. Okazumi, and A. Miyamoto, « Effective Conversion of Paraffins to Aromatics on Pt Ion-Exchanged Ga-and Zn-Silicates », Studies in Surface Science and Catalysis, vol.37, pp.487-494, 1988.

A. Smie?ková, E. Rojasová, P. Hudec, L. ?abo, and Z. ?idek, « Influence of the amount and the type of Zn species in ZSM-5 on the aromatisation of n-hexane », Studies in Surface Science and Catalysis, vol.142, pp.855-862, 2002.

J. Kanai and N. Kawata, « Aromatization of n-hexane over ZnO/H-ZSM-5 catalysts, J. Catal, vol.114, pp.84-290, 1988.

V. B. Kazansky, L. M. Kust, and A. Y. Khodaroy, « On the nature of active sites for dehydrogenation of satured hydrocarbons in HZSM-5 zeolites modified by zinc and gallium oxides, Zeolites: Facts, Figures, pp.1173-1182, 1989.

O. V. Chetina, T. V. Vasina, and V. V. Lunin,

G. /. Pt, HZSM-5 catalyst and the effect of intermetallic hydrogen acceptor on the reaction, Appl. Catal. Gen, vol.131, pp.7-14, 1995.

N. M. Al-otaibi and G. Hutchings, « Aromatization of Isobutene Using H-ZSM-5/Oxide Composite Catalysts », Catal. Lett, vol.134, pp.191-195, 2010.

M. Tian, T. Q. Zhao, P. L. Chin, B. S. Liu, A. S. et al., Methane and propane co-conversion study over zinc, molybdenum and gallium modified HZSM-5 catalysts using time-offlight mass-spectrometry », Chem. Phys. Lett, vol.592, pp.36-40, 2014.

A. Hagen and F. Roessner, « Conversion of ethane into aromatic hydrocarbons on zinc containing ZSM-5 zeolites -role of active centers », Studies in Surface Science and Catalysis, vol.98, pp.182-183, 1995.

J. Liu, N. He, W. Zhou, M. Shu, L. Lin et al., Operando dual beam FTIR spectroscopy unravels the promotional effect of Zn on HZSM-5 in isobutane aromatization, vol.9, pp.1609-1620, 2019.

A. A. Gabrienko, S. S. Arzumanov, D. Freude, and A. G. Stepanov, « Propane Aromatization on Zn-Modified Zeolite BEA Studied by Solid-State NMR in Situ, J. Phys. Chem. C, vol.114, pp.12681-12688, 2010.

Y. Kolyagin, V. Ordomsky, Y. Khimyak, A. Rebrov, F. Fajula et al., « Initial stages of propane activation over Zn/MFI catalyst studied by in situ NMR and IR spectroscopic techniques, J. Catal, vol.238, pp.122-133, 2006.

E. Iglesia and J. E. Baumgartner, « Hydrogen transfer and activation of propane and methane on ZSM5-based catalysts », Catal. Lett, vol.21, p.1993, 1993.

J. A. Biscardi and E. Iglesia, « Structure and function of metal cations in light alkane reactions catalyzed by modified H-ZSM5 », Catal. Today, pp.207-231, 1996.

J. A. Biscardi, G. D. Meitzner, and E. Iglesia, « Structure and Density of Active Zn Species in Zn/H-ZSM5 Propane Aromatization Catalysts, J. Catal, vol.179, pp.192-202, 1998.

J. A. Biscardi and E. Iglesia, « Reaction Pathways and Rate-Determining Steps in Reactions of Alkanes on H-ZSM5 and Zn/H-ZSM5 Catalysts, J. Catal, vol.182, pp.117-128, 1999.

J. A. Biscardi and E. Iglesia, « Non-oxidative reactions of propane on Zn/Na-ZSM5 », Phys. Chem. Chem. Phys, vol.1, pp.5753-5759, 1999.

H. Berndt, G. Lietz, B. Lücke, and J. Völter, « Zinc promoted H-ZSM-5 catalysts for conversion of propane to aromatics I. Acidity and activity, Appl. Catal. Gen, vol.146, pp.351-363, 1996.

H. Berndt, G. Lietz, and J. Völter, « Zinc promoted H-ZSM-5 catalysts for conversion of propane to aromatics II. Nature of the active sites and their activation, Appl. Catal. Gen, vol.146, pp.365-379, 1996.

E. M. El-malki, R. A. Van-santen, and W. M. Sachtler, « Introduction of Zn, Ga, and Fe into HZSM-5 Cavities by Sublimation: Identification of Acid Sites, J. Phys. Chem. B, vol.103, pp.4611-4622, 1999.

L. Lin, X. Zhang, N. He, J. Liu, Q. Xin et al., Dual Beam FTIR Study of Hydroxyl Groups and Zn Species over Defective HZSM-5 Zeolite Supported Zinc Catalysts », Catalysts, vol.9, pp.100-116, 2019.

I. V. Asaftei, N. C. Lungu, M. L. Birsa, L. G. Sarbu, M. Ignat et al., Conversion of Light Hydrocarbons From Petroleum Refining Processes Over Zn-HZSM-5 (Nitrate) and Zn-HZSM-5 (Acetate) Catalyst », vol.67, pp.1523-1528, 2016.

I. V. Asaftei, N. C. Lungu, I. G. Sandu, A. F. Spac, and M. Ignat, « Performance of MFI Zeolite Catalysts in n-heptane Conversion Reaction Test », Rev. Chim (Bucharest), vol.69, pp.2420-2424, 2018.

V. B. Kazansky, « State and properties of ion-exchanged cations in zeolites: 1. IR spectra and chemical activation of adsorbed molecular hydrogen, Kinet. Catal, vol.55, pp.492-501, 2014.

S. Triwahyono, A. A. Jalil, R. R. Mukti, M. Musthofa, N. A. Razali et al., « Hydrogen spillover behavior of Zn/HZSM-5 showing catalytically active protonic acid sites in the isomerization of n-pentane, Appl. Catal. Gen, vol.407, pp.91-99, 2011.

E. G. Derouane, J. P. Gilson, and J. B. Nagy, Adsoprtion and conversion of ethylene on H-ZSM-5 zeolite studied by 13 C NMR spectroscopy », Journal of molecular Catalysis, vol.10, pp.331-340, 1981.

O. V. Bragin, A. V. Preobrazhenskii, and A. L. Liberman, « Catalytic cyclotrimerization of ethylene to benzene, Bull. Acad. Sci. USSR Div. Chem. Sci, vol.23, pp.2654-2659, 1974.

O. V. Bragin, T. V. Vasina, and A. V. Preobrazhenskii, Bull. Acad. Sci. USSR Div. Chem. Sci, vol.33, pp.56-63, 1984.

V. N. Romannikov and K. G. Ione, « Sequence of stages in the aromatization of ethylene on high-silicon zeolites, Bull. Acad. Sci. USSR Div. Chem. Sci, vol.35, pp.352-1356, 1986.

D. B. Lukyanov, N. S. Gnep, and M. R. Guisnet, « Kinetic modeling of ethene and propene aromatization over HZSM-5 and GaHZSM-5 », Ind. Eng. Chem. Res, vol.33, pp.223-234, 1994.

C. Zhang, G. Kwak, Y. J. Lee, K. W. Jun, R. Gao et al.,

G. Kang and . Guan, « Light hydrocarbons to BTEX aromatics over hierarchical HZSM-5: Effects of alkali treatment on catalytic performance, Microporous Mesoporous Mater, vol.276, pp.292-301, 2019.

P. Qiu, J. H. Lunsford, and M. P. Rosynek, Characterization of Ga/ZSM-5 for the catalytic aromatization of dilute ethylene streams, Catal. Lett, vol.52, pp.37-42, 1998.

V. R. Choudhary, S. Banerjee, and D. Panjala, « Influence of Temperature on the Product Selectivity and Distribution of Aromatics and C8 Aromatic Isomers in the Conversion of Dilute Ethene over H-Galloaluminosilicate (ZSM-5 type) Zeolite », J. Catal, vol.205, pp.398-403, 2002.

V. R. Choudhary, S. Banerjee, and D. Panjala, « Product distribution in the aromatization of dilute ethene over H-GaAlMFI zeolite: effect of space velocity, Microporous Mesoporous Mater, vol.51, pp.203-210, 2002.

V. R. Choudhary, P. Devadas, S. Banerjee, and A. K. Kinage, « Aromatization of dilute ethylene over Ga-modified ZSM-5 type zeolite catalysts, Microporous Mesoporous Mater, vol.47, pp.253-267, 2001.

F. Solymosi and A. Szöke, « Study of the reactions of ethylene on supported

, Mo2C/ZSM-5 catalyst in relation to the aromatization of methane », Studies in Surface Science and Catalysis, vol.119, pp.355-360, 1998.

M. Hsieh, Y. Zhou, H. Thirumalai, L. C. Grabow, and J. D. , Rimer, « Silver?Promoted Dehydroaromatization of Ethylene over ZSM?5 Catalysts, pp.1675-1682, 2017.

X. Chen, M. Dong, X. Niu, K. Wang, G. Chen et al., Influence of Zn species in HZSM-5 on ethylene aromatization, vol.36, pp.880-888, 2015.

W. M. Cross, D. T. Shay, R. C. Zhang, F. Zhang, and S. A. Invista-north-america, « US20180258352 A1 -Process for the aromatization of dilute ethylene », 2018.

W. M. Cross, D. T. Shay, R. C. Zhang, F. Zhang, and S. A. Invista-north-america, « US20170044446 A1 -Process for the aromatization of dilute ethylene, p.2017

R. L. Van-mao, L. A. Dufresne, J. Yao, and Y. Yu, « Effects of the nature of coke on the activity and stability of the hybrid catalyst used in the aromatization of ethylene and n-butane », Appl. Catal. Gen, vol.164, pp.81-89, 1997.

C. Zhang, G. Kwak, Y. J. Lee, K. W. Jun, R. Gao et al.,

G. Kang and . Guan, Light hydrocarbons to BTEX aromatics over Zn-modified hierarchical ZSM-5 combined with enhanced catalytic activity and stability, Microporous Mesoporous Mater, vol.284, pp.316-326, 2019.

K. Arishtirova, C. Dimitrov, K. Dyrek, K. Hz, Z. Hallmeier et al., « Influences of copper on physico-chemical and catalytic properties of ZSM-5 zeolites in the reaction of ethene aromatization, Appl. Catal. Gen, vol.81, pp.15-26, 1992.

T. Liang, H. Toghiani, and Y. Xiang, « Transient Kinetic Study of Ethane and Ethylene Aromatization over Zinc-Exchanged HZSM-5 Catalyst, Ind. Eng. Chem. Res, vol.57, p.15301, 2018.

H. Coquelin, A. Richard, D. Uzio, L. Pinard, Y. Pouilloux et al., Effect of the metal promoter on the performances of H-ZSM5 in ethylene aromatization, Catal. Today, pp.62-69, 2017.

, Handbook of Heterogenous Catalysis, 2 ème édition, vol.3, p.1729, 2008.

, Seules les zéolithes HZSM-5 présentant des aluminiums extra-réseaux et des ions iminiums (HZ15 et HZ25) sont actives pour la transformation de l'éthylène car leur présence permet d'exalter la force des protons et donc de rendre ces derniers actifs, vol.25

, Les paraffines (éthane, propane et butanes) sont secondaires et seraient issues d'un transfert d'hydrogène entre leurs oléfines respectives et des naphtènes. L'hydrogène est un produit secondaire issu de la déshydrogénation des naphtènes en aromatiques. Ces derniers sont eux aussi secondaires mais ils ne sont pas majoritaires. L'aromatique majoritaire est le toluène. Notons tout de même la présence d'éthylbenzène à haute conversion, Les oléfines en C3 et C4 apparaissent comme primaires

, De ces résultats, il nous est possible de proposer un schéma réactionnel apparent (Figure 21)

, Proposition de schéma réactionnel apparent de la transformation de l'éthylène à 500°C sur la zéolithe HZSM-5, Figure, vol.21

. De-50%, En effet, au-dessus de cette conversion, l'hydrogène formé est consommé pour hydrogéner les oléfines, changeant ainsi le mode de croissance du coke et permettant la désorption plus rapide des molécules de coke. Ce dernier devient plus polyaromatique et plus toxique alors qu'en dessous de cette conversion, les molécules de coke sont plus alkylées, Ensuite nous avons montré que la balance (ZnOH) + / H + est un descripteur de la stabilité d'un catalyseur bifonctionnel Zn/HZSM-5

, Enfin des tests de réjuvénation et de régénération ont été effectués sans donner des résultats probants pour le moment

I. V. Chapitre, Site(s) actif(s), mécanisme réactionnel et désactivation Références bibliographiques

C. W. Kim, N. H. Heo, and K. Seff, Framework Sites Preferred by Aluminum in Zeolite ZSM-5. Structure of a Fully Dehydrated, Fully Cs + -Exchanged ZSM-5 Crystal (MFI, Si/Al = 24), vol.115, pp.24823-24838, 2011.

A. L. Yakovlev, A. A. Shubin, G. M. Zhidomirov, and R. A. Van-santen, DFT study of oxygen-bridged Zn2+ ion pairs in Zn/ZSM-5 zeolites », vol.70, pp.175-181, 2000.

H. Berndt, G. Lietz, and J. Völter, « Zinc promoted H-ZSM-5 catalysts for conversion of propane to aromatics II. Nature of the active sites and their activation, Appl. Catal. Gen, vol.146, pp.365-379, 1996.

J. A. Biscardi, G. D. Meitzner, and E. Iglesia, « Structure and Density of Active Zn Species in Zn/H-ZSM5 Propane Aromatization Catalysts, J. Catal, vol.179, pp.192-202, 1998.

J. Penzien, A. Abraham, J. A. Van-bokhoven, A. Jentys, and T. E. Mu, « Generation and Characterization of Well-Defined Zn 2+ Lewis Acid Sites in Ion Exchanged Zeolite BEA », J. Phys. Chem. B, vol.108, pp.4116-4126, 2004.

E. El-malki, R. A. Van-santen, and W. M. Sachtler, « Introduction of Zn, Ga, and Fe into HZSM-5 Cavities by Sublimation: Identification of Acid Sites, J. Phys. Chem. B, vol.103, pp.4611-4622, 1999.

A. Mehdad and R. F. Lobo, Ethane and ethylene aromatization on zinc-containing zeolites, vol.7, pp.3562-3572, 2017.

L. Rodríguez-gonzález, F. Hermes, M. Bertmer, E. Rodríguez-castellón, A. Jiménez-lópez et al., The acid properties of H-ZSM-5 as studied by NH3-TPD and 27 Al-MAS-NMR spectroscopy, vol.328, pp.174-182, 2007.

«. M. Niwa, M. Iwamoto, K. Segawa, and . Temperature, Programmed Desorption of Ammonia on Zeolites, Bull. Chem. Soc. Jpn, vol.59, pp.3735-3739, 1986.

F. Thibaut-starzyk, « Les Matériaux micro et mésoporeux -Caractérisation, 2004.

Y. Li, S. Liu, S. Xie, and L. Xu, « Promoted metal utilization capacity of alkali-treated zeolite: Preparation of Zn/ZSM-5 and its application in 1-hexene aromatization, Appl. Catal. Gen, vol.360, pp.8-16, 2009.

, Catalysis and zeolites -fundamentals and applications

. Puppe, , p.223, 2010.

A. Zecchina, S. Bordiga, G. Spoto, and L. Marchese, « Silicalite characterization. 2. IR spectroscopy of the interaction of CO with internal and external hydroxyl groups, J. Phys. Chem, vol.96, pp.4991-4997, 1992.

B. H. Chiche, F. Fajula, and E. , Garrone « Formation of conjugated iminium ions from pyridine on dealuminae mazzite, Journal of catalysis, vol.146, pp.460-467, 1994.

I. I. Ivanova, Y. G. Kolyagin, V. V. Ordomsky, E. V. Asachenko, E. M. Pasynkova et al., « Surface species formed during propane aromatization over Zn/MFI catalyst as determined by in situ spectroscopic techniques, J. Mol. Catal. Chem, vol.305, pp.47-53, 2009.

V. I. Yakerson, T. V. Vasina, L. I. Lafer, V. P. Sytnyk, G. L. Dykh et al.,

V. Bragin, .. M. Kh, and . Minachev, « The properties of zinc and gallium containing pentasils?-The catalysts for the aromatization of lower alkanes, Catal. Lett, vol.3, pp.339-345, 1989.

X. Niu, J. Gao, Q. Miao, M. Dong, G. Wang et al., « Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-toaromatics, Microporous Mesoporous Mater, vol.197, pp.252-261, 2014.

S. Tamiyakul, T. Sooknoi, L. L. Lobban, and S. Jongpatiwut, « Generation of reductive Zn species over Zn/HZSM-5 catalysts for n -pentane aromatization, Appl. Catal. Gen, vol.525, pp.190-196, 2016.

Y. Zhang, Y. Zhou, L. Huang, S. Zhou, X. Sheng et al., « Structure and catalytic properties of the Zn-modified ZSM-5 supported platinum catalyst for propane dehydrogenation, Chem. Eng. J, vol.270, pp.352-361, 2015.

J. Chen, Z. Feng, P. Ying, and C. Li, « ZnO Clusters Encapsulated inside Micropores of Zeolites Studied by UV Raman and Laser-Induced Luminescence Spectroscopies, J. Phys. Chem. B, vol.108, pp.12669-12676, 2004.

A. F. Jaramillo, R. Baez-cruz, L. F. Montoya, C. Medinam, E. Pérez-tijerina et al.,

D. Salazar, M. F. Rojas, and . Melendrz, « Estimation of the surface interaction mechanism of ZnO nanoparticles modified with organosilane groups by Raman Spectroscopy, Ceram. Int, vol.43, pp.11838-11847, 2017.

X. Chen, M. Dong, X. Niu, K. Wang, G. Chen et al., Influence of Zn species in HZSM-5 on ethylene aromatization, vol.36, pp.880-888, 2015.

V. R. Choudhary, P. Devadas, S. Banerjee, and A. K. Kinage, « Aromatization of dilute ethylene over Ga-modified ZSM-5 type zeolite catalysts, Microporous Mesoporous Mater, vol.47, pp.253-267, 2001.

D. B. Lukyanov, N. S. Gnep, and M. R. Guisnet, « Kinetic modeling of ethene and propene aromatization over HZSM-5 and GaHZSM-5 », Ind. Eng. Chem. Res, vol.33, pp.223-234, 1994.

P. Wu, T. Komatsu, and T. Yashima, Acidic and catalytic properties of aluminated mordenite zeolite: effect of extraframework aluminium, J. Chem. Soc. Faraday Trans, vol.92, pp.861-869, 1996.

C. Liu, G. Li, E. J. Hensen, and E. A. Pidko, « Nature and Catalytic Role of Extraframework Aluminum in Faujasite Zeolite: A Theoretical Perspective, ACS Catal, vol.5, pp.7024-7033, 2015.

M. Iwamoto, Conversion of Ethene to Propene on Nickel Ion-loaded Mesoporous Silica Prepared by the Template Ion Exchange Method, Catal. Surv. Asia, vol.12, pp.28-37, 2008.

W. Dai, X. Sun, B. Tang, G. Wu, L. Li et al., Hunger, « Verifying the mechanism of the ethene-to-propene conversion on zeolite H-SSZ-13, J. Catal, vol.314, pp.10-12, 2014.

J. A. Biscardi and E. Iglesia, « Reaction Pathways and Rate-Determining Steps in Reactions of Alkanes on H-ZSM5 and Zn/H-ZSM5 Catalysts, J. Catal, vol.182, pp.117-128, 1999.

J. A. Biscardi and E. Iglesia, « Structure and function of metal cations in light alkane reactions catalyzed by modified H-ZSM5 », Catal. Today, pp.207-231, 1996.

S. Brandenberger, W. L. Callender, and W. K. , Meerbott « Mechanisms of methylcyclopentane ring opening over platinum-alumina catalysts, J. Catal, vol.42, pp.282-287, 1976.

A. Raichle, Y. Traa, F. Fuder, M. Rupp, J. Weitkamp et al., Dessau Catalysts for Ring Opening of Cycloalkanes », Angew. Chem. Int, vol.40, pp.1243-1246, 2001.

X. Niu, J. Gao, K. Wang, Q. Miao, M. Dong et al., « Influence of crystal size on the catalytic performance of H-ZSM-5 and Zn/H-ZSM-5 in the conversion of methanol to aromatics, Fuel Process. Technol, vol.157, pp.99-107, 2017.

L. Lin, X. Zhang, N. He, J. Liu, Q. Xin et al., Dual Beam FTIR Study of Hydroxyl Groups and Zn Species over Defective HZSM-5 Zeolite Supported Zinc Catalysts », Catalysts, vol.9, pp.100-116, 2019.

A. M. Al-jarallah, J. A. Siddiqui, A. M. Aitini, and A. W. , Al-Sa'doun, « Ethylene dimerization and oligomerization to butene-1 and linear ?-olefins: A review of catalytic systems and processes, Catal. Today, vol.14, pp.1-124, 1992.

M. Guisnet and F. R. Ribiero, « Deactivation and regeneration of Zeolite Catalysts, 2011.

, Metals Handbook, Desk Edition, 2ème édition, 1998.

D. Seddon, « Paraffin oligomerisation to aromatics, Catal. Today, vol.6, pp.351-372, 1990.

D. F. Anthrop and A. W. Searcy, « Sublimation and Thermodynamic Properties of Zinc Oxide, J. Phys. Chem, vol.68, pp.2335-2342, 1964.

N. S. Gnep, M. L. Martin-de-armando, C. Marcilly, B. H. Ha, M. Guisnet et al., Disproportionation and Coke Formation on Mordenites -Effect of Catalyst Modifications and of Operating Conditions, Catalyst Deactivation, vol.6, pp.79-89, 1980.

H. S. Cerqueira, P. Ayrault, J. Datka, P. Magnoux, and M. Guisnet, « m-Xylene Transformation over a USHY Zeolite at 523 and 723 K: Influence of Coke Deposits on Activity, Acidity, and Porosity, J. Catal, vol.196, pp.149-157, 2000.

J. P. Lange, A. Gutsze, J. Allgeier, and H. G. Karge, « Coke Formation through the Reaction of Ethene over Hydrogen Mordenite -III. IR and 13 C-NMR studies, Applied Catalysis, vol.45, pp.345-356, 1988.

M. Guisnet, P. Magnoux, and D. Martin, « Roles of acidity and pore structure in the deactivation of zeolites by carbonaceous deposits », Studies in Surface Science and Catalysis, vol.111, pp.1-19, 1997.

M. Guisnet and L. Pinard, « Catalyse hétérogène?: désactivation et régénération des catalyseurs », Technique de l'ingénieur, 2014.

M. Guisnet, F. Alvarez, G. Giannetto, and G. Perot, « Hydroisomerization and hydrocracking of n-heptane on PtH zeolites. Effect of the porosity and of the distribution of metallic and acid sites, Catalysis Today, vol.1, pp.415-433, 1987.

, En aval de ce dernier, un second réacteur chargé d'un catalyseur de type Zn/ZSM